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Resumo

TAVARES, A. C. M. Reparação Interativa de Segmentações 3D com Transformada Imagem-
Floresta, Supervoxels e Robustez de Sementes. 2017. 65 f. Tese (Doutorado) - Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2017.

Segmentação de imagem consiste no seu particionamento em regiões, tal como para isolar
os pixels pertencentes a objetos de interesse em uma imagem, sendo uma etapa importante para
visão computacional, processamento de imagens médicas e outras aplicações. Muitas vezes a
segmentação automática gera resultados com imperfeições. O usuário pode corrigi-las editando-
a manualmente, interativamente ou simplesmente descartar o resultado e gerar outro automati-
camente. Métodos interativos combinam os benefícios dos métodos manuais e automáticos, re-
duzindo o esforço do usuário e utilizando seu conhecimento de alto nível. Nos métodos baseados
em sementes, para continuar ou reparar uma segmentação prévia (presegmentação), evitando o
usuário começar do zero, é necessário resolver o Problema da Segmentação Interativa Reversa
(RISP), ou seja, estimar automaticamente as sementes que o gerariam. Para isso, este trabalho
particiona o objeto da segmentação em núcleos. Em um núcleo, duas sementes separadamente
produzem o mesmo resultado, tornando uma delas redundante. Com isso, apenas uma semente
por núcleo é necessária. Núcleos contidos nos resultados de outros núcleos são redundantes e
também podem ser descartados, reduzindo ainda mais o conjunto de sementes, um processo de-
nominado Análise de Redundância. Um conjunto mínimo de sementes para a presegmentação
é gerado e o problema da reparação interativa pode então ser resolvido através da adição de no-
vas sementes ou remoção. Dentro do arcabouço da Transformada Imagem-Floresta (IFT), novos
métodos como Oriented Image-Foresting Transform (OIFT) e Oriented Relative Fuzzy Connect-
edness (ORFC) foram desenvolvidos. Todavia, não há algoritmos para calcular o núcleo destes
métodos. Este trabalho desenvolve tais algoritmos, com prova de corretude. Os núcleos tam-
bém nos fornecem uma indicação do grau de robustez dos métodos sobre o posicionamento das
sementes. Por isso, um método híbrido do GraphCut com o núcleo do ORFC, bem como um
Coeficiente de Robustez (RC), foram desenvolvidos. Neste trabalho também foi desenvolvida
outra solução para reparar segmentações, a qual é baseada em IFT-SLIC, originalmente utilizada
para gerar supervoxels. Resultados experimentais analisam, comparam e demonstram o poten-
cial destas soluções.

Palavras-chave: segmentação baseada em grafos, transformada imagem-floresta, robustez de
sementes, supervoxels.
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Abstract

TAVARES, A. C. M. Interactive 3D Segmentation Repair with Image-Foresting Transform, Su-
pervoxels and Seed Robustness. 2017. 65 f. Tese (Doutorado) - Instituto de Matemática e
Estatística, Universidade de São Paulo, São Paulo, 2017.

Image segmentation consists on its partition into relevant regions, such as to isolate the pix-
els belonging to desired objects in the image domain, which is an important step for computer
vision, medical image processing, and other applications. Many times automatic segmentation
generates results with imperfections. The user can correct them by editing manually, interac-
tively or can simply discard the segmentation and try to automatically generate another result
by a different method. Interactive methods combine benefits from manual and automatic ones,
reducing user effort and using its high-level knowledge. In seed-based methods, to continue or
repair a prior segmentation (presegmentation), avoiding the user to start from scratch, it is neces-
sary to solve the Reverse Interactive Segmentation Problem (RISP), that is, how to automatically
estimate the seeds that would generate it. In order to achieve this goal, we first divide the seg-
mented object into its composing cores. Inside a core, two seeds separately always produce the
same result, making one redundant. With this, only one seed per core is required. Cores leading
to segmentations which are contained in the result of other cores are redundant and can also be
discarded, further reducing the seed set, a process called Redundancy Analysis. A minimal set
of seeds for presegmentation is generated and the problem of interactive repair can be solved by
adding new seeds or removing seeds. Within the framework of the Image-Foresting Transform
(IFT), new methods such as Oriented Image-Foresting Transform (OIFT) and Oriented Relative
Fuzzy Connectedness (ORFC) were developed. However, there were no known algorithms for
computing the core of these methods. This work develops such algorithms, with proof of cor-
rectness. The cores also give an indication of the degree of robustness of the methods on the
positioning of the seeds. Therefore, a hybrid method that combines GraphCut and the ORFC
cores, as well as the Robustness Coefficient (RC), have been developed. In this work, we present
another developed solution to repair segmentations, which is based on IFT-SLIC, originally used
to generate supervoxels. Experimental results analyze, compare and demonstrate the potential
of these solutions.

Keywords: graph-based segmentation, image-foresting transform, seed robustness, supervox-
els.

vii



viii



Contents

List of Acronyms xi

List of Symbols xiii

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Goals and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Structure of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Digital Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Path, Predecessor Map, Forest and Root . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Connectivity Function and Optimum Path . . . . . . . . . . . . . . . . . . . 10

2.3 Image as a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Segmentation: Binary Object, Seeds, Algorithm and Energy . . . . . . . . . . . . . 12
2.5 Evaluation of Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Seeds in Evaluation: Robot Users and Erosion . . . . . . . . . . . . . . . . . 14

3 Image-Foresting Transform 15
3.1 An illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Oriented Image-Foresting Transform (OIFT) . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Oriented Relative Fuzzy Connectedness (ORFC) . . . . . . . . . . . . . . . . . . . . 18
3.4 IFT-SLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Seed Robustness Analysis 21
4.1 ORFC Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 OIFT Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Robustness Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ix



x CONTENTS

5 Hybrid Method ORFCCore + GC 27
5.1 Graph Cut (GC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 ORFCCore + GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Interactive Segmentation Repair 31
6.1 IFT-SLIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1.1 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Segmentation editing by seed robustness . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2.1 Redundancy Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Conclusion 41
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Index 49



List of Acronyms

DC Distance Cut. 2

DIFT Differential Image Foresting Transform. 32

FC Fuzzy Connectedness. 2

FN False Negatives. 13, 14

FP False Positives. 13

GC Graph Cut. 2, 5, 27, 28

IFT Image-Foresting Transform. 2, 3, 5, 6, 15, 16, 19, 31

MI Monotonically Incremental. 10

MR Magnetic Ressonance. xvi, 7, 28, 29, 34, 36

OIFT Oriented Image Foresting Transform. 6, 17, 21, 22, 24–26, 39

OPSF Optimum-Path Spanning Forest. 10

OPSFP Optimum-Path Spanning Forest Problem. 10, 12, 15

ORFC Oriented Relative Fuzzy Connectedness. 6, 17, 18, 21, 27, 39

RAG Region Adjacency Graph. 24, 25, 37, 38

RC Robustness Coefficient. 26, 34–36

RFC Relative Fuzzy Connectedness. 18

RISP Reverse Interactive Segmentation Problem. 31, 40

RW Random Walk. 2, 4

TN True Negatives. 13

TP True Positives. 13

WS Watershed. 2

xi



xii List of Acronyms



List of Symbols

A(So,Sb) Segmentation algorithm. 12
Copt Optimal Connectivity map. xvi, 10, 37, 38
D(O,G) Dice coefficient. 13
DCCG(s) Directed Connected Component. 9
E Set of arcs. 8, 11
GT Graph Transpose. 8
G Graph. 8, 11, 12
H Handicap (initialization) function. 10
I(s) Image intensity. 7
I Digital image. 7
L Label map. 12
Pr Predecessor map and spanning forest. 8
Q Priority Queue. 15–17
RPr Set of forest roots. 8
SCCG(s) Strongly Connected Component. 9
V Set of nodes. 8–14
Π(G) Set of paths of a graph G. 8, 9
Πt Set of paths from any node to t. 8
ΠS;t Set of paths from node s ∈ S to t. 8
Πs;t Set of paths from node s to t. 8
Π Set of paths of a implicit graph. 8
α Orientation factor. 11
δ Non-oriented similarity factor. 11
≡ Equivalence relation. 21, 23–25
〈s, t〉 Arc from node s to t. 8
〈t〉 Trivial path. 8
C A cut. 12, 23, 27
G Groundtruth. xiii, 13, 14
I Image domain. 7, 11
L Set of distinct class labels. 12
N Core. xv, xvi, xix, 21–24, 26, 28, 35–38
O Segmentation object. xiii, 12, 13, 15, 18, 27,

31
PL Partition induced by a label map. 12
Sb Set of background (external) seeds. xv, xvi,

xix, 12, 15, 17, 18, 21–24, 26–28, 31, 35–37
So Set of object (internal) seeds. xv, xix, 12, 15,

17, 18, 21–24, 26–28, 31, 35–37
S Set of seeds. 8, 12, 14–16, 19, 22, 27, 28, 31

xiii



xiv List of Symbols

X (So,Sb) Space of objects restricted to seeds. 12, 18
X ↓∞(So,Sb) Space of objects of minimum ∞-norm en-

ergy. 18
X Space of objects. 12, 18, 21
ω Weight function. 8, 11, 12, 15, 17, 18, 23–27,

37
π∗t Optimum path. 10
πs · 〈s, t〉 Concatenation between path and arc. 8
πs · πs;t Concatenation between paths. 8
πt Path from any node to t. 8, 10
πS;t Path from node s ∈ S to t. 8
πs;t Path from node s to t. 8, 9
πPr

t Path from forest root to node t. 8
oift≡ Equivalence relation based on OIFT. 24
ε↓∞ Minimum ∞-norm energy. 18, 23
ε∞ A ∞-norm energy function. 12, 17, 18, 28
εq A q-norm energy function. 12
ε Energy function. 12
∧ Logical conjunction in propositional logic.

xvi, 23, 24, 37
c Total number of classes. 12
f ♂ OIFT connectivity function. 17, 22, 23
fD IFT-SLIC connectivity function. 19, 31
f←−min Minimum weight connectivity function for

reversed arcs. 18, 23–25
fmin Minimum weight connectivity function. 10,

16, 17
feuc Euclidean distance connectivity function. 10
fsum Weight sum connectivity function. 10
fw Last weight connectivity function. 10
f Connectivity function. 10, 15
lb Background label. 12
lo Object label. 12
sAt Adjacency relation between nodes s and t.

11



List of Figures

1.1 Some applications of image segmentation . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Segmentation classification by user interaction . . . . . . . . . . . . . . . . . . . . . 1
1.3 Diagram illustrating interactive segmentation and the reverse one . . . . . . . . . 2
1.4 Methods for the segmentation repair problem . . . . . . . . . . . . . . . . . . . . . 4

2.1 Multidimensional and/or multichannel digital image and space of characteristics 7
2.2 Non-oriented graph, digraph and transpose . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Path and spanning forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Example of finding Strongly Connected Components by Tarjan algorithm . . . . . 9
2.5 Connectivity Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Euclidean adjacency relations (neighboring 4 and 8 for 2D and neighboring 6, 18

and 26 for 3D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.7 Example of image converted to a graph . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8 Segmentation: Image, graph, cut, seeds and energies . . . . . . . . . . . . . . . . . 12
2.9 Confusion matrix: True Positive (TP), True Negative (TN), False Positive (FP), False

Negative (FN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.10 Evaluation with robot user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.11 Evaluation with erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Illustration of an IFT execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Additional features added in traditional IFT formulation . . . . . . . . . . . . . . . 17
3.3 Segmentation with ORFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Showing that AOIFT 6= AORFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 Effect of δ in the IFT-SLIC result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 IFT-SLIC process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Showing that AORFC(So,Sb) ⊆ AOIFT(So,Sb) . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Showing that AORFC({s1},Sb) 6= NOIFT({s1},Sb) . . . . . . . . . . . . . . . . . . . 22
4.3 Showing that NOIFT({s1},Sb) 6= NORFC({s1},Sb) . . . . . . . . . . . . . . . . . . . 22
4.4 Showing that NCoH(ORFC)({s1},Sb) 6= NOIFT({s1},Sb) . . . . . . . . . . . . . . . . 22
4.5 Illustration of Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.6 ORFC cores in a CT slice of a liver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Cores of ORFC and OIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 Region Adjacency Graph (RAG) for computing NOIFT . . . . . . . . . . . . . . . . 25

5.1 Example of Shrinking Bias of Graph Cut . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 MR Image of the foot and segmentations by OIFT, RFC + GC, ORFC, Core of

ORFC, ORFC + GC and ORFCCore + GC. . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Mean accuracy curves of ORFCCore + GC applied for talus and calcaneus . . . . . 29

xv



xvi LIST OF FIGURES

6.1 IFT-SLIC for segmentation editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 3D renditions of presegmentations with errors and ground truths . . . . . . . . . . 34
6.3 ORFC and OIFT cores in a BrainWeb image . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 ORFC and OIFT cores in a license plate image . . . . . . . . . . . . . . . . . . . . . 35
6.5 ORFC and OIFT cores in a talus bone image with good boundary contrast . . . . 35
6.6 ORFC and OIFT cores in a talus bone image with poor boundary contrast . . . . . 35
6.7 ORFC and OIFT cores wrist Magnetic Ressonance (MR) image . . . . . . . . . . . . 36
6.8 Robustness Coefficient and Mean Accuracy Curves for talus, calcaneus and spinal-

vertebra images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.9 Repairing a 3D segmentation by IFT-SLIC . . . . . . . . . . . . . . . . . . . . . . . . 37
6.10 Counterexample to show that t ∈ DCCG>(s) does not imply t ∝ s . . . . . . . . . . 38
6.11 Counterexample to show thatN ({t},Sb) ∝ N ({s},Sb) does not imply t ∈ DCCG>(s)∧

Copt(t) ≥ Copt(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.12 Example of OIFT applied to the graph of Figure 6.10. . . . . . . . . . . . . . . . . . 39



List of Tables

2.1 Connectivity functions commonly used for paths . . . . . . . . . . . . . . . . . . . 10
2.2 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.1 Data set D1: Number of markers (nm) required for corrective actions and number
of computed initial seeds (ns) per voxels in parts per thousand. . . . . . . . . . . . 33

6.2 Data set D2: Number of markers (nm) required for corrective actions and number
of computed initial seeds (ns) per voxels in parts per thousand. . . . . . . . . . . . 33

xvii



xviii LIST OF TABLES



List of Algorithms

1 Tarjan’ Strongly Connected Components . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Image-Foresting Transform (IFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Computing AORFC({si},Sb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Computing NORFC({si},Sb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5 Computing NORFC(So,Sb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6 Computing AORFCCore+GC(So,Sb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xix



xx LIST OF ALGORITHMS



Chapter 1
Introduction

1.1 Motivation

Image segmentation is one of the most fundamental and challenging problems in image pro-
cessing and computer vision [1, 2]. It consists on partitioning a digital image into regions, to
simplify a posterior analysis, visualization, object representation and other tasks. It is an im-
portant step for several applications, like computer vision, medical image processing, and object
recognition/tracking (Figure 1.1). In the case of binary segmentation, such as to separate an
object from a background, the result of a segmentation can also be called a mask.

(a) (b) (c) (d)

Figure 1.1: Some applications of image segmentation: a) Augmented/Virtual/Mixed Reality, b) Object recogni-
tion/tracking, c) Face recognition and d) Medical Imaging.

In a manual segmentation process, the mask can be obtained by directly labeling all voxels.
Interactive methods explore high-level visual expertise but requiring minimal user effort. Auto-
matic segmentation eliminates the need for user interaction. A simple diagram is illustrated in
Figure 1.2.

manual


automatic

interactive

Figure 1.2: Segmentation classification by user interaction: the user can manually label all voxels, a small set (or
define parametric surfaces) in a interactive way, or use automatic process.

Medical image segmentation assists the medical practitioner in the diagnosis of clinical pa-
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2 CHAPTER 1. INTRODUCTION

tient status, performing delineation of organs, detecting abnormalities and deformities [3]. Due
to the variability of medical images generated by different modalities [4], with the presence of
poorly defined structures, non-standard intensity distribution, field inhomogeneity, noise, partial
volume and interplay among these factors [1], automatic segmentation methods often generate
results with imperfections.

A common problem in medical image analysis is how to repair an automatic segmentation,
as obtained by FreeSurfer [5], SPM2 [6] and CLASP1. The professional can simply discard the
initial segmentation (presegmentation) and start another one using different parameter values in
the same automatic method, try other automatic methods, or can edit the presegmentation. A
manual editing requires a great user effort. Besides that, the results vary among professionals
and sessions of a same specialist. Editing through interactive methods combines the benefits of
automatic (e.g., reduction of user effort) and manual approaches (e.g., adding the knowledge of
a specialist).

Another related problem is how to continue a presegmentation obtained from interactive
method. Usually this task is performed for constructing groundtruths, generated by successive
refinements, which can be executed in different moments, or sessions. It is necessary to keep the
history of user actions between consecutive sessions. However, popular formats do not store this
data. For both described problems, the history of presegmentation should be estimated, which
is a reverse segmentation problem, as depicted in Figure 1.3.

Seeds

Image

Reverse
Segmentation

Interactive
Segmentation Mask

=
Presegmentation

Figure 1.3: Segmentation Editing Process: Given an image and its presegmentation, the seeds are estimated by a
reverse segmentation method (blue section), so that the user can continue or correct the segmentation (green section).

Although the segmentation problem has motivated the development of a variety of works,
the problem of editing segmentations has not caught much attention. Parametric surfaces [7–10],
energy minimization [11], low level editing [8–10], region-based segmentation [12, 13], edge-
based ones [14–16], graphs [7,11–13,15] or Human-Computer Interface [7,17] have been applied.
These methods differ in user effort degree, complexity, running time, flexibility and robustness of
algorithm. A complete analysis of these aspects still are demanded in comparative assessments.
Empirical evaluations still are often conducted, with high degree of subjectivity.

Many image segmentation methods are modeled as graph partition problems, where a graph
represents an image. In seed-based methods, the user defines restrictions by marking nodes
as seeds, that is, by adding labels a priori. The algorithm finds a partition which satisfies these
restrictions while optimizes a local or global expression. The labels are propagated to the remain-
ing nodes of the graph, defining a possible segmentation. Seeds may be added and removed to
perform corrections for intermediate results. Watershed (WS) [18, 19], Graph Cut (GC) [20, 21],
Fuzzy Connectedness (FC) [22–24], Random Walk (RW) [25], Distance Cut (DC) [26], Image-Foresting
Transform (IFT) [27] and GrowCut [28] are popular graph-based methods.

IFT is a popular framework of methods of graph partitioning, being an extension of optimal-
path search algorithm from Dijkstra to different connectivity functions and multiple sources [27],
which solves the problem of finding an optimum-path forest (OPF) by dynamic programming
[29]. Its linearithmic complexity (linear depending on the priority queue) makes it an attractive
solution for image segmentation. IFT can perform segmentation of multiple classes in just one
step. The differential version [30] allows successive refinements in the result by adding and
removing seeds, with sub-linear complexity. In the context of image segmentation as a cut in

1https://www.mcgill.ca/bic/

https://www.mcgill.ca/bic/
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the graph, besides the traditional formulation with undirected graphs [27, 29], versions with
digraphs [31–33] were also developed, investigated and applied.

The algorithm receives a graph and a seed set, and returns a label map. To edit the segmen-
tation, the user modifies the seed set and rerun the method, in a differential way or not. Without
previous seed set, the user should redo all previous segmentation. This work estimates a mini-
mal set of seeds, from the presegmentation by IFT. This solution may also be used for correcting
results obtained from automatic segmentations. A smaller set of estimated seeds allows user
modifications to exert a bigger influence to the algorithm. In the opposite way, when the seed set
equals the set of image voxels, the method degenerates towards a manual editing, undesirable
for an interactive segmentation. The present work develops and analyzes two approaches for
interactive repair of segmentations:

• IFT-SLIC [34, 35]: Alexandre et al. [34] developed a supervoxel generation method which
initializes a seed set equally spaced like a grid, and moves them appropriately according
to intensity and shape constraints, by regulating supervoxels compactness and boundary
adherence. The natural returning of seeds allows the user to edit the presegmentation by
IFT;

• Theoretical robustness analysis [12, 13, 36, 37]: if two seeds separately produce the same
result, then they are equivalent, and just one is enough for defining a region. By finding
equivalence regions (subsets of equivalent seeds), called cores, and representing each one
by just one seed, a compact seed set can be built. Besides that, cores with resulting segmen-
tations contained in results generated by other cores can be discarded, further reducing the
seed set. The cores can also determine the degree of robustness to seeds placement, which
can serve as a metric for comparison among methods.
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1.2 Related Methods

In spite of the vast literature on segmentation, only a few works have dealt with the editing
issue, usually considering qualitative and highly subjective empirical evaluations [38]. Figure 1.4
illustrates the methods described in this section.

(a) El-Zehiri et al. [14] (b) Harrison et al. [15]

(c) Jackowski et al. [8] (d) Valenzuela et al. [10]

(e) Yang et al. [11]
(f) Karimov et al. [17]

(g) Miranda et al. [12, 13]

(h) Spina et al. [39]

Figure 1.4: Methods for the segmentation repair problem: a-b) Edge based RW, c-d) Parametric surfaces, e) Graph
Cut, f) Human-Computer Interface, g) Seed robustness of Image-Foresting Transform.

El-Zehiri et al. [14] and Grady and Funka-Lea [40] apply RW [25] to correct presegmented
images, optimized with downsampling, which loses important and high frequency information,
like small objects, negatively affecting the result. Harrison et al. [15] join discriminative classifi-
cation and energy minimization with RW for contour-based correction, using GPU training. It
inherits disadvantages from contour-based segmentations, like sensitivity to seed placing, lack
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of texture and region information. It depends on the training set size to propagate the labels to
other slices, affecting its accuracy.

Jackowski et al. [8] approximate a digital volume representing the segmented object by a
Rational of Gaussians (RaG) parametric surface, allowing the user to change the surface by its
control points. Advantages are compression for fast transmission, sub-voxel correction, and
inclusion of graphical effects without a voxelized appearance. But editing non-compact objects
by control points is not trivial. Valenzuela et al. [10] use Bézier-based surfaces. The user can
modify the curve in one slice, and it propagates to the rest in 3D.

Yang and Choe [11] use GC, with energy function composed by presegmentation and new
user inputs. It assumes that the presegmentation is almost correct, restricting the user active
field. It inherits GC disadvantages. The graph weights are based on the Euclidean distance, not
effective for non-compact objects, like veins and arteries. To remove parts of the presegmenta-
tion, the user must always unnecessarily place background and foreground seeds. Moreover,
its conducted evaluation does not include a user effort analysis. Karimov et al. [17] develop a
software that suggests correction candidates, based on the extraction of region skeletons, which
should be similar to ground truth, and histogram similarity analysis. Complex images can affect
the number of candidates.

Miranda et al. [12, 13] proposed an editing solution based on the IFT with an experimental
analysis in MR-T1 three-dimensional images. Contrary to previous methods, it can be applied
to multidimensional images and to objects with arbitrary shapes, with low running time and
without any special hardware support. It first solves the reverse segmentation problem, with
strong theoretical background, reducing the required number of seeds by employing a conser-
vative force [13]. The corrections can then be performed in sub-linear time by differential IFT
(DIFT) [30]. It is restricted to the max-arc path-cost function over an undirected graph derived
from a gradient image, which is usually not the best option to deal with blurred transitions.

Spina et al. [39] proposed a solution with robot users [41], which simulate user interaction
by placing brush strokes automatically to iteratively perform the segmentation task resulting
in the given presegmentation. It can correct any existing delineation result [39]. However, it
considered a robot user tailored to IFT-based segmentation, since the end goal was to learn the
spatial distribution of seeds added to reproduce ground truth training masks, in order to output
a statistical seed model of an object of interest to aid in its interactive segmentation. Hence, they
were more interested in consistent seed positioning than high accuracy for editing.

Our proposed methods are also based on the IFT framework, but they are designed to cir-
cumvent the main problems of [13], such as its high number of seeds and non-uniform seed
distribution, in order to give more freedom to the user to perform corrections, and using better
path-cost functions. To achieve that, it is necessary to understand concepts described in Chap-
ter 2.
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1.3 Goals and Contributions

The present work has as main goals the development of methods to solve the problem of interac-
tively editing segmentations obtained by automatic or semi-automatic techniques, in the absence
of the user’s action history. From this main objective, several contributions were made:

• Application and investigation of IFT-SLIC [34] in obtaining the seed set for interactive
segmentation repair. Features such as compactness (which gives a more regular shape) and
boundary adherence are benefits of using this method. The format of partitions, compared
to other methods, is more regular [35];

• Theoretical analysis of the Oriented Relative Fuzzy Connectedness (ORFC) robustness and
development of the algorithm that computes the ORFC cores, with proof of correctness [36];

• Theoretical analysis of the Oriented Image Foresting Transform (OIFT) robustness and devel-
opment of the algorithm that computes the OIFT cores, with proof of correctness [37];

• Development of the hybrid method ORFCCore +GC, and comparative evaluation with other
methods [36];

• Core redundancy analysis and algorithm development [36, 37];

• The proposal of new segmentation repair algorithms, for OIFT and ORFC, based on their
core computation and redundancy analysis;

• Definition of robustness index of methods [37].

Throughout the text, these different contributions are described and detailed.

1.4 Structure of the work

Chapter 2 presents the basic concepts regarding digital images and the theory of graphs needed
to understand IFT and the solutions developed. Chapter 3 describes the IFT framework, includ-
ing its derived methods OIFT, ORFC and IFT-SLIC. Chapter 4 is about the robustness analysis of
the OIFT and ORFC methods, with their theorems and proofs. Chapter 6 describes the develop-
ment of interactive segmentation repair methods using the three approaches mentioned above,
as well as their experimental results. The Chapter 5 shows a hybrid method which improves
Graph Cut by using the cores of ORFC, and vice-versa, with experimental evaluations comparing
it with other methods from the literature. Chapter 7 concludes the work and proposes extensions
and future work.



Chapter 2
Background

Two fundamental concepts are treated throughout the text and defined in this chapter: digital
images (Section 2.1) and graphs (Section 2.2). Although the application domain is image seg-
mentation, as the methods described in this text deal with graphs, any other domain (e.g., social
and biological networks), whose problem could be modeled by graphs, can benefit from these
methods. This section also describes how to convert a digital image to a graph, concepts about
segmentation, and evaluation of segmentation methods, important elements to comprehend so-
lutions of the segmentation editing problem.

2.1 Digital Image

A digital image is a mapping I : I → V , which assigns a vector I(s) ∈ V for a space element (spel)
s = (s1, . . . , sn) ∈ I , where I ⊂ Zn is the image domain (space of coordinates) and V ⊂ Zm

the space of characteristics (or intensities). I(K) returns the domain of a specific image K, as
well as V(K) returns its values. If n = 2, s is denoted picture element (pixel). If n = 3, then s
is denoted volume element (voxel), and the image is three-dimensional (3D). Generally speaking, if
n > 1, the image is multidimensional. If m > 1, the image is multichannel or multiband. Medical
images generated by MR devices are examples of multidimensional images. Colored images are
examples of multichannel ones (Figure 2.1).

Red

Blue

Green

a) b) c)

y

x

Figure 2.1: Digital Image: (a) 3D MR image of 1 channel, (b) 2D colored image with 3 channels (RGB) and its (c)
space of characteristics

7
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2.2 Graph

A weighted graph is a tuple G = 〈V, E, ω〉, where V (or explicitly V(G)) is a set of nodes, E ⊆ V×V
(or explicitly E(G)) is a set of arcs and ω : E→ R assigns a weight ω(〈s, t〉) for each arc 〈s, t〉 ∈ E,
with s, t ∈ V. If 〈s, t〉 ∈ E, then t is adjacent to s. In an oriented graph, also called digraph,
〈s, t〉 and 〈t, s〉 are distinct (they are ordered pairs), as opposed to a undirected graph. The
transpose graph GT = 〈V, ET, ωT〉 of G is the unique digraph where ET = {〈t, s〉 : 〈s, t〉 ∈ E}
and ωT(〈s, t〉) = ω(〈t, s〉). In a symmetric graph, E = ET, that is, 〈s, t〉 ∈ E ⇔ 〈t, s〉 ∈ E.
Figure 2.2 shows examples of graphs.
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ω(〈s, t〉)

(a)
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(b)

s t4
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38
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49

7

1

15

(c)

Figure 2.2: Weighted graph: (a) non-oriented, (b) digraph and (c) transpose of (b).

2.2.1 Path, Predecessor Map, Forest and Root

A path πs;t = 〈s = t1, t2, . . . , tn = t〉 is a sequence of adjacent nodes, where s represents the origin
and t the terminus. Πs;t is the set of all paths in G from s to t, Πt =

⋃
s∈V Πs;t is the set of

all paths πt with terminus t and Π =
⋃

t∈V Πt. Let Π(G) be all possible paths in G. Consider
also πS;t ∈ ΠS;t = {πs;t : s ∈ S}, for any S ⊆ V. A path is trivial when πt = 〈t〉. A
path πt = πs · 〈s, t〉 represents an extension of a prefix πs by an arc 〈s, t〉 and πt = πs · πs;t
the extension by another path. A predecessor map is a function Pr : V → V ∪ {nil} where
∀t ∈ V, Pr(t) = s if 〈s, t〉 ∈ E, otherwise Pr(t) = nil. A spanning forest is a predecessor map
without cycles. The roots of the forest are nodes RPr = {r ∈ V : Pr(r) = nil}. Let πPr

t be defined
recursively as 〈t〉 if t ∈ RPr, or πPr

s · 〈s, t〉 otherwise. Figure 2.3 illustrates these concepts.

a b c
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πa e =πa b · 〈b,e〉
= 〈a,b,e〉

πg = 〈g 〉

(a)

a b c

d e f

g

(b)

a b c

d e f

g

a

f

g

(c)

Figure 2.3: (a) Trivial (πg) and extended (πa;e) paths, (b) predecessor map (red arrows indicating the predecessors),
with cycle 〈d, a, b, e〉 and (c) spanning forest Pr, roots RPr = {a, f , g} (blue circles) and paths πPr (red arrows).
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2.2.2 Component

Let DCCG(s) = {t ∈ V : ∃πs;t ∈ Π(G)} be the Directed Connected Component of base s ∈ V,
the set of all successors of s, and SCCG(s) = {t ∈ V : ∃{πs;t, πt;s} ⊆ Π(G)} the Strongly
Connected Component of s, the set of pairwise nodes connected by paths. DCC and SCC may
be related as: SCCG(s) = {t ∈ V : s ∈ DCCG(t) and t ∈ DCCG(s)}. A known and efficient
(linear complexity) algorithm to find SCCs of a graph was developed by Tarjan [42], which visits
neighbors of the current node (in a depth-first search way, which requires a stack) to find cycles
(updating each lowlink to be the lowest index of the component) for each node, its neighbors are
visited until a cycle is found it visits neighbors. Algorithm 1 shows Tarjan’ SCC method and
Figure 2.4 illustrates the steps.

Algorithm 1: Tarjan’ Strongly Connected Components

1 i← 0 and S← empty array
2 For Each s ∈ V(G) Do
3 If s.index = nil Then strongconnect(s)

4 Function strongconnect(s)
5 s.index ← i, s.lowlink← i and i← i + 1
6 S.push(s) and s.onStack← true
7 For Each 〈s, t〉 ∈ E(G) Do
8 If t.index = nil Then strongconnect(t) and s.lowlink← min(s.lowlink, t.lowlink)
9 Else If t.onStack Then s.lowlink← min(s.lowlink, t.index)

10 If s.lowlink = s.index Then
11 component← new SCC
12 Do
13 t← S.pop() and t.onStack = false
14 component.push(t)
15 While t 6= s
16 store or just output component

1/1

index/lowlink

(a)

1/1 2/2

3/3

(b)

1/1 2/1

3/1

(c)

1/1 2/1 4/4

3/1 6/6 5/5

(d)

1/1 2/1 4/4

3/1 6/5 5/5

(e)

1/1 2/1 4/4

3/1 6/5 5/5

(f)

Figure 2.4: Example of finding Strongly Connected Components by Tarjan algorithm: (a) for each non-processed
node s, (b) we recursively apply strongconnect(s) (red arrows) by propagating it to its neighbors and setting their
index and lowlink variables (red numbers). (c) If a cycle is found, we reverse the flow (blue arrows), updating
lowlink until we find starting node (index = lowlink), creating a SCC. (d) As we continue the process, (e) we see
that not all parents are included in the next new SCC. f) The final result.
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2.2.3 Connectivity Function and Optimum Path

A connectivity function f : Π → R assigns a value for a path π ∈ Π. A path πt is optimum if
f (πt) ≥ f (π′t), ∀π′t ∈ Πt, for a maximization (primal) problem. For a minimization (dual) one,
f (πt) ≤ f (π′t), ∀π′t ∈ Πt. Equality means there may be more than one optimum path. An
optimum path to t is denoted as π∗t . This generates a connectivity map Copt : V → R as Copt(t) =
f (π∗t ). Figure 2.5 illustrates these concepts.

a b c

d e f

g

4

7
38

6

5
49

7

1

15
fmin(πd b) = 4
fmin(π f b) = 9
fmin(πc b) = 5

Figure 2.5: Example of connectivity function (minimum arc value) for 3 different paths πb. To compute π∗b and
f (π∗b ), all paths should be calculated, but at least it will prefer π f;b.

An optimum path 〈t1, . . . , tn〉 composed only by optimum prefixes 〈t1, . . . , tj〉 (1 ≤ j ≤ n) is a
complete-optimum prefix path, or just prefix-complete. In a general case, an optimum path composed
by optimum subpaths 〈ti, . . . , tj〉 (1 ≤ i ≤ j ≤ n) is a complete-optimum path, or just complete.
An Optimum-Path Spanning Forest Problem (OPSFP), consists on finding a Optimum-Path Spanning
Forest (OPSF), a spanning forest Pr, so that πPr

t are optimum paths, for all t ∈ V, according
to a connectivity function f . In an OPSF, Copt(t) = f (πPr

t ), ∀t ∈ V, and πPr
t is complete (and

prefix-complete). A path connectivity may be based on its subpaths. This work uses functions
defined recursively, as shown in Table 2.1, where H(s) is a handicap function for initialization of
trivial paths.

Table 2.1: Connectivity functions commonly used for paths

function
parameter

πs = 〈s〉 πs;t = πs;r · 〈r, t〉
fmin

H(s)

min{ fmin(πs;r), ω(〈r, t〉)}
fsum fsum(πs;r) + ω(〈r, t〉)
feuc deuc(s, t) =

√
∑n

i=1(si − ti)2

fw ω(〈r, t〉)

It can be checked that, for fmax or fsum, at least one OPSF can be generated from any graph
with non-negative weights. This also happens for any other Monotonically Incremental (MI) func-
tions, which satisfies

f (〈t〉) = H(t),
f (π · 〈s, t〉) = f (π)� 〈s, t〉 (2.1)

where � : R× E→ R is a binary operation that satisfies the conditions:

• M1: x′ ≥ x =⇒ x′ � 〈s, t〉 ≥ x� 〈s, t〉,
• M2: x� 〈s, t〉 ≥ x.

Finding an OPSF is not restricted to MI functions. There are a more general class of functions
called smooth functions [27] which generate at least one OPSF.
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2.3 Image as a Graph

To get a graph from an image, it is necessary to establish a relation between spels. An adjacency
relation A is a binary relation in I . Let E(s) = {t ∈ I : sAt} and E =

⋃
s∈I{〈s, t〉 : t ∈ E(s)}.

Commonly used relations are those defined by metric distances. For example, set sAt as true
if the euclidean distance deuc(s, t) =

√
∑n

i=1(si − ti)2 ≤ ρ, where ρ is a constant (ρ = 1 for
neighboring-4 grid graph and ρ =

√
2 for neighboring-8 king graph), as Figure 2.6.

(a) (b) (c) (d) (e)

Figure 2.6: Adjacency relation based on euclidean distance: (a) neighboring-4 (ρ = 1) and (b) neighboring-8
(ρ =

√
2). In 3D: (c) neighboring-6 (ρ = 1), (d) neighboring-18 (ρ =

√
2) and (e) neighboring-26 (ρ =

√
3).

After choosing the adjacency relation, the image could be represented by a weighted digraph
G = 〈V, E, ω〉, where V = I and E ⊆ V2, based on adjacency relation. The weight ω(〈s, t〉) may
be based on I(s) and I(t) as follows:

ω(〈s, t〉) =


δ(s, t)× (1− α) if I(s) > I(t)
δ(s, t)× (1 + α) if I(s) < I(t)
δ(s, t) otherwise

(2.2)

where α ∈ [−1, 1] is an orientation factor and δ(s, t) = δ(t, s) is a measure of non-oriented
similarity (i.e., δ(s, t) = K− ‖I(s)− I(t)‖, where K is the maximum intensity variation) [43, 44].
If α = 0, then ω(〈s, t〉) = ω(〈t, s〉) (a non-oriented graph). Figure 2.7 shows an example. The
methods in this work can be applied to any graph, not only those obtained from images.
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Figure 2.7: Example of image converted to a graph: (a) 8-bit image with 3 gray levels (0, 127 and 255), (b) graph
with oriented weight and α = 0.1, with low values in high contrast transitions (e.g., black and white nodes) and
discerning transitions in opposed directions (e.g.,gray/white nodes).
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2.4 Segmentation: Binary Object, Seeds, Algorithm and Energy

Given c classes, a label map L : V → L (L = {l1, . . . , lc}) defines a partition PL = {P1, . . . , Pc},
where

⋃c
i=1 Pi = V and Pi are regions where L(t) = li, ∀t ∈ Pi. A binary partition {O, V \ O}

can be represented by the binary segmented object O, with L = {lo, lb} (in general lb = 0 and
lo = 1), also called mask. Let X be the space of all possible objects. A seed-based segmentation
uses seeds S = So ∪ Sb ⊆ V, where So and Sb are internal (So ⊆ O) and external (Sb ⊆ V \ O)
ones, respectively. They reduce X to X (So,Sb) = {O ∈ X : So ⊆ O ⊆ V \ Sb}. A segmentation
algorithm A(So,Sb) ∈ X (So,Sb) divides G into O and V \ O. Primal seed-based OPSFP require
trivial connectivity values for seeds to be higher (lower for dual ones) than other nodes, so that
root set RPr ⊆ S .

A cut is defined as C(O) = {〈s, t〉 ∈ E : s ∈ O and t /∈ O}. An energy ε : X → R can
be assigned to an object (and its cut), so that we can restrict a set of solutions to those which

minimize it. A class of energies often used is q-norm, where εq(O) = (∑〈s,t〉∈C(O) ω(〈s, t〉)q)
1
q . If

q = ∞, then ε∞(O) = max〈s,t〉∈C(O) ω(〈s, t〉). A εq-minimizer returns O with the lowest εq(O).
Figure 2.8 illustrates these concepts.
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Figure 2.8: Elements of a segmentation: (a) binary segmentation and (b) graph with binary object O1 (set of nodes
with label 255), cut C(O1) highlighted (red arcs), external Sb (blue) and internal So (red) seeds used in algorithm
A(So,Sb), and energies ε2(O1) = 314, 83 and ε∞(O1) = 140.8, c-d) other segmentation and object O2 with
ε∞(O2) = 139.7. An ε∞-minimizer will prefer O2.
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2.5 Evaluation of Methods

The performance of a method can be defined in many ways: complexity, running time, accuracy,
space consuming, etc. The accuracy is the degree of similarity between the gotten result O and
desired one G, denominated groundtruth. Usually it is in the range [0,1] or [-1,1], whose ends
represent the worst (0 or -1) and best (1) possible accuracy.

In a binary graph segmentation (object and background), to specify the modifications be-
tween the result O and groundtruth G, the True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN) are defined, where TP and TN are respectively nodes labeled cor-
rectly as object and background. FP represents the background nodes in V \ G, labeled as object
in O, and FN represents object nodes in G, labeled as background in V \ O. TP, TN, FP and
FN compose the confusion matrix of Table 2.2. Equation 2.3 formulates these definitions and
Figure 2.9 illustrates in a visual way.

TP = G ∩O TN = V \ (G ∪O) FP = O \ G FN = G \ O (2.3)

(a) (b)

TP

TP

TN

FP
FN

FN

(c)

Figure 2.9: Confusion matrix over a segmentation: (a) obtained result, (b) desired result (groundtruth), (c) regions
indicating True Positive (TP), True Negative (TN), False Positive (FP), False Negative (FN).

Table 2.2: Confusion matrix

Obtained result
Object (positive) Background (negative)

G
ro

un
dt

ru
th Object

(positive)

TP FN
True Positive False Negative

correctly labeled as object incorrectly labeled as background

Background
(negative)

FP TN
False Positive True Negative

incorrectly labeled as object correctly labeled as background

A metric used in this work for determining the accuracy of a method is Dice coefficient [45],
as known as F-score or F-measure [46]. Given the groundtruth G and the result O over a graph,
the Dice coefficient is calculated in Equation 2.4. If both regions are similar, the intersection, and
consequently the numerator of the fraction, has high cardinality, coming close to the union one.
When both objects are identical, the union and intersection also are, justifying the factor 2. Note
that TN, and consequently the graph size, does not influence the metric.

D(O,G) = 2× |O ∩ G|
|O|+ |G| =

2× |O ∩ G|
|O ∪ G|+ |O ∩ G| =

2× |TP|
2× |TP|+ |FP|+ |FN| (2.4)
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2.5.1 Seeds in Evaluation: Robot Users and Erosion

Altering the seed set S can also be subject for evaluation. One approach used for evaluating
interactive segmentation methods is the robot user [41], which consists on automatic simulation
of seed inclusion process. The method runs after each modification for evaluating intermediate
results and groundtruth. Wrong regions (false negative and false positive) are treated (by adding
seeds) to raise accuracy, and it generates an accuracy curve. The addition may be done in the
center of the region (geodesic), at weaker edges (pixel robot) or next other class regions (superpixel
robot) [47]. Figure 2.10 illustrates robot user.

(a)
(b) (c) (d)

(e) (f) (g) (h)

Figure 2.10: Evaluation with robot user: (a) image, (b-h) false negative (dark green), true negative (white), false
positive (grey) and true positive (light green) when adding 1-pixel seeds in a geodesic manner (center of biggest
inscribed circle of FT and FN regions, with object (red) and background seeds (blue). Lighter (in this picture) means
more accurate.

Another approach is erosion [48] of groundtruth G, which undergoes a process of erosion and
dilation (or erosion of V \ G), through parameter radius, which can be different for each class.
The border of each resulting object is used as seeds. The method is executed, evaluated and the
process is repeated, which generates an accuracy curve. Figure 2.11 illustrates the erosion.

(a) (b)

Dilation Border

Erosion Border

(c)

background seeds

object seeds

(d)

Figure 2.11: Evaluation with erosion: (a) image, (b) groundtruth, (c) borders of erosion and dilation of object, (d)
example of borders as background and object seeds. The radius defines the degree of segmentation flexibility.



Chapter 3
Image-Foresting Transform

Image-Foresting Transform (IFT) [27] is an extension of Dijkstra shortest path algorithm [49, 50],
contemplating multiple sources and different connectivity functions. Several image operators
could be constructed from the same algorithm, favoring implementation in hardware [51] and
helping to define relations between them. IFT can be used in: distance transform, multiscale
skeleton, fractal dimensions, shape filtering, shape salience detection, shape descriptors, geodesic
paths [27], morphological reconstruction [52], Watershed [19], Live Wire [53], Riverbed [54], Grow-
cut by cellular automata [28, 55], fuzzy connectivity [56], data clustering [57] and supervised
classification [58].

IFT solves OPSFP by receiving a graph G = 〈V, E, ω〉, a connectivity function f , a seed set
S ⊆ V and calculates a label map L : V → L (L ⊂ N represents the classes) and a connectivity
map C : V → R defined by a optimum-path spanning forest Pr, which converges to Copt(t) =
f (π∗t ), ∀t ∈ V, when f is smooth [27]. Algorithm 2 formulates IFT for maximization (primal)
problem. For solving minimization (dual) problems, it is enough to replace best > C(t) by
best < C(t). In a binary segmentation, L = {lb, lo} (often {0, 1}), the label L defines the object O
(because s ∈ O ⇔ L(s) = lo) and S = Sb ∪ So.

Algorithm 2: Image-Foresting Transform (IFT)
INPUT : Graph G = (V, E, w), seed set S ⊆ V and connectivity function f : Π(G)→ R.
OUTUT : Forest Pr : V → V ∪ {nil}, Connectivity Map C : V → R and Label Map

L : V → L.
AUXILIAR: Priority Queue Q, variable best, and State Map St : V → {0, 1}.

1 For Each s ∈ V, Do
2 St(s)← 0, Pr(s)← nil and C(s)← f (〈s〉)
3 If s ∈ S , Then add s in Q and initialize L(s).

4 While Q 6= ∅, Do
5 Remove s from Q whose value C(s) is the minimum and assign St(s)← 1.
6 For Each t, where 〈s, t〉 ∈ E and St(t) = 0, Do
7 best← f (πP

s · 〈s, t〉).
8 If best > C(t), Then
9 If Q contains t, Then remove t from Q.

10 Pr(t)← s, C(t)← best, L(t)← L(s) and add t in Q.

15
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3.1 An illustrative example

Due to flexibility and robustness of IFT, a simple example can help clarifying it. Let a primal IFT
with fmin and three classes applied to a graph of Figure 3.1. The map C (illustrated in the center
of each node) are initialized and S is added to the priority queue Q. In each step, let s be the
first element of Q. s is removed and processed (indicated by red/black border for current/next
steps, respectively), so that L(s) (indicated by a colored square) does not change anymore (the
method finishes when |V| steps are processed and the whole L are fixed).
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Figure 3.1: Illustration of primal IFT ( fmin and α = 0) execution: priority queue Q (top nodes in each figure),
labels L (colored squares), node index (grey labels), connectivity C (black numbers inside circle), edges, weights,
descendants (red arrows), processing node (red border), old processed ones (black border). At the end we have an
OPSF with C = Copt ( fmin is smooth). Step 15 is omitted.
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For each non-processed neighbor t of s, s offers its best path (πP
s ) extended by the arc 〈s, t〉.

If its connectivity fmin(πP
s · 〈s, t〉) is better than C(t), C(t) is updated and t becomes descendant

of s (P(t) ← s, indicated by a red arc in Figure 3.1), as well as its label (L(t) ← L(s)). t is added
to Q in the correct position (sorted by C). The method has linear complexity in respect to |V|.

With a smooth function, the final values of the connectivity map only decrease as it moves
away from the initial nodes (in this case, the seeds). At each step, the next connectivity values are
always less or equal than the connectivity of the first node of the priority queue (the algorithm
does not have to "go back"), justifying its dynamic nature. The nodes do not enter the queue
after being processed, justifying their linear complexity. Several works (Figure 3.2) have added
features from the initial algorithm, such as boundary polarity [31, 32], shape constraints [59],
connectedness [60] and star convexity [61]. This work investigates and uses two variations as
part of the solution to the segmentation interactive repair problem: OIFT and ORFC.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.2: Additional features added in traditional IFT formulation: (a-b) boundary polarity [31, 32] (favoring
intensity transitions in one direction), (c-d) shape constraints [59] and (e-g) connectedness [60] (keeping results of
object seeds connected).

3.2 Oriented Image-Foresting Transform (OIFT)

OIFT is a ε∞-minimization method [31, 32] build upon the IFT framework. It uses a connectiv-
ity function f ♂ (Equation 3.1) in a symmetric digraph. In practice, OIFT uses weight values
restricted to N and f ♂ is also restricted to N in a bucket queue [27].

f ♂(〈t〉) =
{

∞ if t ∈ So ∪ Sb

−∞ otherwise

f ♂(πr;s · 〈s, t〉) =
{

min{ f ♂(πr;s), 2×ω(〈s, t〉)} if r ∈ So

min{ f ♂(πr;s), 2×ω(〈t, s〉) + 1} otherwise

(3.1)

For α > 0 (Equation 2.2), OIFT favors intensity transitions from dark to bright, and α < 0
favors the opposite orientation. We set odd connectivity values for πSb;t and even for πSo;t
to avoid tie zones. The segmented object AOIFT(So,Sb) by OIFT is defined from the forest P
computed by IFT with f ♂, by taking as object all nodes conquered by paths rooted in So, that
is, AOIFT(So,Sb) = {t ∈ V : πP

t ∈ ΠSo;t}. Even though f ♂ is not smooth, the optimality of
AOIFT(So,Sb) is given by ε∞-minimization problem.
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3.3 Oriented Relative Fuzzy Connectedness (ORFC)

ORFC [33] is also a ε∞-minimizer, which involves arcs from object to background. Let ε↓∞ =

minO∈X (So ,Sb){ε∞(O)} and X ↓∞(So,Sb) = {O ∈ X (So,Sb) : ε∞(O) = ε↓∞}. Equation 3.2 defines
AORFC for seeds So and Sb.

AORFC(So,Sb) =

[ ⋃
si∈So

AORFC({si},Sb)

]
, where AORFC({si},Sb) = arg min

O∈X ↓∞({si},Sb)

|O| (3.2)

ORFC primal formulation (maximization) uses a connectivity function f←−min (Equation 3.3), a
smooth function which processes reversed (antiparallel) arcs. Relative Fuzzy Connectedness (RFC)
is a particular case of ORFC applied to non-oriented graphs (e.g., when α = 0). Algorithm 3
demonstrates the computation of ORFC in a symmetrical digraph. Figure 3.3 illustrates ORFC.
Although ORFC and OIFT are methods from the same energy class, their outputs are usually
different with distinct characteristics (Figure 3.4). This kind of illustration represents a graph
with invisible nodes (it could be any |V|), highlighting only important arcs (as borders and
arrows). The shades are the labels of nodes.

f←−min (〈t〉) =
{

∞ if t ∈ Sb

−∞ otherwise
f←−min (πr;s · 〈s, t〉) = min{ f←−min (πr;s), ω(〈t, s〉)} (3.3)

Algorithm 3: Computing AORFC({si},Sb)

1 Get connectivity map Copt with f←−min by IFT;
2 Create G> = (V, E′, ω) from G = (V, E, ω) where E′ = {〈s, t〉 ∈ E : ω(〈s, t〉) > Copt(si)};
3 Return DCCG>(si);
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Figure 3.3: Segmentation with ORFC from Algorithm 3: (a) graph and seeds, (b) Step 1, with Copt from Sb, (c)
Step 2 and G> with only 〈s, t〉 where ω(〈s, t〉) > Copt(So) and (d) DCCG>
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Figure 3.4: (a) Input image graph with So = {s} and Sb = {t}. (b) ORFC result. (c) A candidate solution. (d)
OIFT result. Note that all the three solutions have the same energy ε∞(O) = 4.
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3.4 IFT-SLIC

IFT-SLIC [34] combines benefits of both IFT and SLIC [62] to provide a more regular and power-
ful partition generation. IFT-SLIC was formulated according to the following requirements:

• Ability to adhere to image boundaries: respecting and preserving local structures;

• Flexibility in the number of superpixels it generates: preventing undersegmentation;

• Efficiency: fast running also for extending to higher dimensions;

• Hard segmentation: supernodes should not overlap each other;

• Compactness: regular and uniform shape.

Similar to SLIC, we convert the image color space to LAB and start with a selection of k initial
cluster centers Cli = [li ai bi xi yi]

T, which are sampled on a regular grid spaced
√
|V|/k nodes

apart (Figure 3.6a). The main difference with SLIC lies in the assignment step. Instead of using an
adaptive k-means clustering approach, we consider the computation of a dual IFT (minimization)
with the non-smooth [63] connectivity function fD (Equation 3.4):

fD(πt = 〈t〉) =
{

0, if t ∈ S
+∞, otherwise

fD(πr;s · 〈s, t〉) = fD(πr;s) + (‖I(t)− I(r)‖ · δ)β︸ ︷︷ ︸
Boundary Adherence

+ deuc(s, t)︸ ︷︷ ︸
Compactness

(3.4)

where I(t) is the color vector at voxel t, i.e., I(t) = [lt at bt]T, I(r) is the color vector of the
cluster center of seed r, and δ and β weights the importance between boundary adherence and
compactness. At the end of the assignment step, each cluster/supervoxel is represented by its
respective tree in the spanning forest computed by the IFT (Figure 3.6b). After that, an update
step adjusts the cluster centers. Differently from SLIC, we take the coordinate of the cluster voxel
closest to the mean position (Figure 3.6c). The assignment and update steps are iterated until n
steps or based on another stop criteria (Figure 3.6d). Different values of δ affect the adhesion of
clusters to the image boundaries (Figure 3.5).

(a) (b) (c)

Figure 3.5: Effect of δ in the IFT-SLIC result: (a) δ = 0.01, (b) δ = 0.04 and (c) δ = 0.08. Note the difference of
image boundary adherence effect.
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(a) (b)

(c)

(d) (e)

Figure 3.6: IFT-SLIC process: (a) starting with a regular grid of cluster centers (seeds), we run dual IFT (mini-
mization) with non-smooth connectivity function fD, (b) resulting in a compact and regular partition, (c) and we
move the seeds to a position inside the cluster closest to the mean. (d-e) The result after 10 iterations.



Chapter 4
Seed Robustness Analysis

In this chapter, we define concepts of robustness, equivalence and cores, formulate relations
between OIFT and ORFC, algorithms to compute cores (Section 4.1 and Section 4.2) as well as
defining a metric (Section 4.3) for robustness comparisons. Without loss of generality, we will
constrain the analysis of robustness only to internal seeds, being the external seeds a completely
symmetric problem. In order to define the concept of core, we must first introduce the notion of
seed equivalence (Definition 1).

Definition 1. (Equivalent seeds). Two internal seeds s1 and s2 are said equivalent if they separately
produce the same result. That is, for a given external seed set Sb, we have that A({s1},Sb) = A({s2},Sb).

The equivalence relation between s1 and s2 is denoted as s1 ≡ s2, a binary relation which is
reflexive (s1 produces same result as s1), symmetric (s1 ≡ s2 =⇒ s2 ≡ s1) and transitive (if
s2 and s3 produce same result as s1, s2 ≡ s3) over V \ Sb. This relation partitions V \ Sb into
equivalence classes [s] = {t ∈ A({s},Sb) : s ≡ t}, also denoted by cores N ({s},Sb) = [s]. By
fixing Sb, to get an object composed by n cores, at most n internal seeds (one for each core) are
necessary for segmenting it. Some theoretical relations between ORFC and OIFT, as well as their
cores, are defined in the following propositions. Figure 4.1 illustrates the Proposition 1.
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Figure 4.1: Showing that AORFC(So,Sb) ⊆ AOIFT(So,Sb), with So (×) in different positions and Sb (?) fixed:
(a) AORFC({s1},Sb) = AOIFT({s1},Sb), (b) AORFC({s2},Sb) = AOIFT({s2},Sb), (c) AORFC({s1, s2},Sb)
with two object seeds. (d) AOIFT({s1, s2},Sb) with two object seeds.

Proposition 1. For any sets of seeds So and Sb, we have that AORFC(So,Sb) ⊆ AOIFT(So,Sb).

Proof. For a single internal seed si, by Equation 3.2, AORFC({si},Sb) ∈ X ↓∞({si},Sb) and, based on
Miranda and Mansilla [31,32], we also have AOIFT({si},Sb) ∈ X ↓∞({si},Sb). As AORFC({si},Sb) is
the smallest element in X ↓∞({si},Sb) (Equation 3.2), we have that AORFC({si},Sb) ⊆ AOIFT({si},Sb).
Therefore, in case of multiple internal seeds:

AORFC(So,Sb) =
⋃

si∈So

AORFC({si},Sb) ⊆
⋃

si∈So

AOIFT({si},Sb) (4.1)

21
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Note that, ∀t ∈ V, f ♂(πS ′o;t) ≤ f ♂(πSo;t) for S ′o ⊆ So. Hence, AOIFT(S ′o,Sb) ⊆ AOIFT(So,Sb)
and, consequently, AOIFT({si},Sb) ⊆ AOIFT(So,Sb), ∀si ∈ So. Then

⋃
si∈So

AOIFT({si},Sb) ⊆
AOIFT(So,Sb). By joining it with Equation 4.1, we conclude that AORFC(So,Sb) ⊆ AOIFT(So,Sb).

Next, we present an analysis of the core of the methods. Given that the delineated ob-
ject by RFC corresponds to the core of IFT-Watershed [12, 22], we may ask if AORFC(So,Sb) =
NOIFT(So,Sb), but Figure 4.2 shows a counterexample. We also could think that ORFC and

OIFT possess the same core, but Figure 4.3 shows another counterexample. Another question is
to find whether the core of ACoH(ORFC)(So,Sb)) (ORFC followed by a post-processing by Closing
of Holes [52]) corresponds to the core of OIFT, but Figure 4.4 shows another counterexample.
These results suggest the Proposition 2.
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Figure 4.2: Showing that AORFC({s1},Sb) 6= NOIFT({s1},Sb), with So (×) in different positions and
Sb (?) fixed. (a) AORFC({s1},Sb) = AOIFT({s1},Sb), (b) AORFC({s2},Sb) = AOIFT({s2},Sb) (c)
NORFC({s1},Sb) = NOIFT({s1},Sb), but AORFC({s1},Sb) 6= NOIFT({s1},Sb).
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Figure 4.3: Showing that NOIFT({s1},Sb) 6= NORFC({s1},Sb), with So (×) in different positions and Sb (?)
fixed. (a) AORFC({s1},Sb), where Copt(s1) = 2. (b) AOIFT({s1},Sb) (c) AORFC({s2},Sb) = AOIFT({s2},Sb),
where Copt(s2) = 2. (d)NORFC({s1},Sb), (e)NOIFT({s1},Sb). Note thatNOIFT({s1},Sb) 6= NORFC({s1},Sb).

11
11

11
11

11
11

11
11

2 4 1
3

3
1

10

1

*

�S1

(a)

11
11

11
11

11
11

11
11

2 4 1
3

3
1

10

1

*

�S1

(b)

11
11

11
11

11
11

11
11

2 4 1
3

3
1

10

1

*

�S1

(c)

11
11

11
11

11
11

11
11

2 4 1
3

3
1

10

1

*

�S1

(d)

11
11

11
11

11
11

11
11

2 4 1
3

3
1

10

1

*

�S1

(e)

Figure 4.4: Showing that NCoH(ORFC)({s1},Sb) 6= NOIFT({s1},Sb), with So (×) in different positions and
Sb (?) fixed. (a) AORFC({s1},Sb), (b) ACoH(ORFC)({s1},Sb), (c) AOIFT({s1},Sb), (d) NORFC({s1},Sb),
(e) NOIFT({s1},Sb). As NCoH(ORFC)({s1},Sb) ⊆ ACoH(ORFC)({s1},Sb) ⊂ NOIFT({s1},Sb), therefore
NCoH(ORFC)({s1},Sb) 6= NOIFT({s1},Sb).

Proposition 2. For any seed si and seed set Sb:

NORFC({si},Sb) ⊆ NCoH(ORFC)({si},Sb) ⊆ NOIFT({si},Sb) (4.2)
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Proof. The first part of Equation 4.2, NORFC({si},Sb) ⊆ NCoH(ORFC)({si},Sb), has a trivial proof,
since any seed position in the core of ORFC, will produce the same output with closing of holes
as well, by definition.
NORFC({si},Sb) ⊆ NOIFT({si},Sb) can be proved as follows: Let CORFC = C(AORFC({si},Sb))

and COIFT = C(AOIFT({si},Sb)). We know that ω(〈s, t〉) ≤ ε↓∞ for any arc 〈s, t〉 in CORFC ∪ COIFT,
by definition of ε↓∞. By Equation 3.2, ∀s ∈ AORFC({si},Sb), ∃πsi;s ∈ Πt where πsi;s = 〈si =

v1, . . . , vn = s〉 and ω(〈vi, vi+1〉) > ε↓∞, for i = 1, . . . , n − 1, otherwise s would not be part of
DCCG>(si) (Algorithm 3). Hence, for any arc 〈s, t〉 ∈ CORFC, f ♂(πP

si;s) > 2× ε↓∞ and f ♂(πP
si;s ·

〈s, t〉) = 2×ω(〈s, t〉) ≥ 2× ε↓∞, where πP
si;s corresponds to the path calculated in the forest P by

IFT with function f ♂.
Since f ♂(πP

si;s · 〈s, t〉) = 2 × ω(〈s, t〉) and 〈s, t〉 ∈ CORFC, consequently the connectivity

values offered by f ♂ to nodes outside the AORFC({si},Sb) are defined exclusively based on arcs
from CORFC. Therefore, the result of AOIFT({si},Sb) is not affected by changes in the position of
si within NORFC({si},Sb), since these changes leads to the same CORFC.

The part NCoH(ORFC)({si},Sb) ⊆ NOIFT({si},Sb) can be proved, in an analog way, by using
essentially the same arguments. Figure 4.5 illustrates the proof of Proposition 2.

NORFC

AORFC AOI F T

ω(〈v i , v i+1〉)>ε
↓
∞

ω(〈s, t〉)≥ε
↓
∞

si

s t b

(a)

NORFC

AORFC AOI F T

f ♂(πsi;t ) = 2×ω(〈s, t〉) ≥ 2×ε↓∞

f ♂ (πsi;b) = f ♂ (πsi;t)si

s t b

(b)

Figure 4.5: Illustration of Proof of Proposition 2: (a) ω(〈vi, vi+1〉) > ε↓∞ for πP
si;s = 〈si = v1, . . . , vn = s〉 and

ω(〈s, t〉) ≥ ε↓∞, so (b) 〈s, t〉 defines not only f ♂(πsi;t) but also f ♂(πsi;b) for b ∈ AOIFT . Changing si inside
NORFC doesn’t change CORFC, which doesn’t change AOIFT , which implies NORFC ⊆ NOIFT .

4.1 ORFC Core

We present a formal definition and an efficient algorithm to compute the core NORFC({si},Sb)
of a ORFC seed si.

If s1 ≡ s2, then AORFC({s1}, Sb) = AORFC({s2}, Sb) and, consequently, by Lemma 1 from Bejar
and Miranda [33], Copt(s1) = Copt(s2) = ε↓∞, for the connectivity function f←−min . Therefore, nodes
in the same core must have the same value in the map Copt. This condition is necessary, but not
sufficient. Note that, since Copt(s1) = Copt(s2), in Step 2 of Algorithm 3, the digraph G> will be
the same for equivalent seeds. As AORFC({s1},Sb) = AORFC({s2},Sb), {πs1;s2 , πs2;s1} ⊆ Π(G>)
(i.e., s1 ∈ DCCG>(s2) and s2 ∈ DCCG>(s1)). Therefore, NORFC({s},Sb) forms a SCC in G>,
considering only arcs 〈s, t〉, such that Copt(s), Copt(t) = ε↓∞, which can be computed in linear time
by Tarjan’s algorithm [42] (Algorithm 1). Algorithm 4 calculates NORFC({s},Sb). In the case
of multiple seeds, we consider NORFC(So,Sb) =

⋃
si∈So
NORFC({si},Sb). To find NORFC(So,Sb),

instead of computing separately each individual core and applying a union procedure, we can
find all cores at once. Note that in Step 2 of Algorithm 4, as C(s) = C(si), we can change
ω(〈s, t〉) > Copt(si) ∧ Copt(s) = Copt(t) = Copt(si) by w(〈s, t〉) > Copt(s) ∧ Copt(s) = Copt(t), apply
Tarjan’s algorithm and label the SCCs of all internal seeds as objects, so that the complexity
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does not depend on the number of seeds (Algorithm 5). Figure 4.6 shows one example of
NORFC({si},Sb) computed by Algorithm 4.

(a) (b) (c)

(d) (e)

Figure 4.6: A slice image from a CT thoracic study of the liver. (a-c) ORFC segmentation results for different
internal seeds (s1,s2, and s3). (d) NORFC({s1},Sb): The core of s1 by ORFC computed by Algorithm 4. From the
above results, we can conclude that s1 ≡ s2, but s1 is not equivalent to s3. Note that by comparing ORFC from
(a) and the core of seed s1 from (d), it is easy to get the inferior vena cava, as the largest residual component. (e)
Multiple ORFC Cores computed at once by Algorithm 5.

Algorithm 4: Computing NORFC({si},Sb)

1 Get connectivity map Copt with f←−min by
IFT;

2 Create G> = 〈V, E′, ω〉 from G = 〈V, E, ω〉
where E′ = {〈s, t〉 ∈ E : ω(〈s, t〉) >
Copt(si) ∧ Copt(s) = Copt(t) = Copt(si)};

3 Return SCCG>(si);

Algorithm 5: Computing NORFC(So,Sb)

1 Get connectivity map Copt with f←−min by
IFT;

2 Create G> = 〈V, E′, ω〉 from G = 〈V, E, ω〉
where E′ = {〈s, t〉 ∈ E : ω(〈s, t〉) >
Copt(s) ∧ Copt(s) = Copt(t)};

3 Apply Tarjan’s algorithm in G>;
4 Return only SCCs which contains internal

seeds;

4.2 OIFT Core

From Proposition 2, we know that, for any si ∈ So, NORFC({si},Sb) ⊆ NOIFT({si},Sb). If a

node si is equivalent to a node s2 for OIFT (i.e., s1
oift≡ s2), and they belong to different ORFC

cores (i.e., NORFC({s1},Sb) 6= NORFC({s2},Sb)), then by transitivity we have that c
oift≡ d for any

c ∈ NORFC({s1},Sb) and d ∈ NORFC({s2},Sb). This observation allow us to drastically reduce
the complexity of the OIFT core computation problem, allowing us to work in a Region Adjacency
Graph (RAG), composed by the ORFC cores that can be fast computed, rather than working at
the node level.

Since NOIFT(So,Sb) ⊆ AOIFT(So,Sb), we first compute AOIFT(So,Sb), then we compute all
the ORFC cores inside OIFT segmentation AOIFT(So,Sb). Figure 4.7 illustrates one example,
showing all the ORFC cores inside the object for a given image graph (Figure 4.7i). Figure 4.8a
shows the resulting RAG, with a node for each ORFC core and one external node x for the
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background. The arc weights of the RAG are selected as the highest arc values interconnecting
their regions.
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Figure 4.7: (a-d) Results of ORFC, where ω(〈s, t〉) = 10 for non-contour edges, with a fixed external seed • and
an internal seed × in different places, (e-h) OIFT results for different internal seeds, (i) ORFC cores and (j) OIFT
cores.

The proposed algorithm to compute the OIFT cores uses a disjoint-set data structure. Initially,
each RAG node is its own representative. For each pair 〈c, d〉, c 6= x and d 6= x, of neighboring
nodes in the RAG an equivalence test is performed and if the test is satisfied they are joined
(union operation). The value Cc(d) = f (π∗d) of an optimum path π∗d by the connectivity function
f←−min (Eq. 3.3) is computed in the induced subgraph G[V \ {c}] from x to d (Figure 4.8b). Similarly
we also compute Cd(c) = f (π∗c ) as the value of an optimum path π∗c for f = f←−min in the induced
subgraph G[V \ {d}] from x to c (Figure 4.8c). If ω(〈c, d〉) > Cc(d) and ω(〈d, c〉) > Cd(c) we can

conclude that c
oift≡ d and we perform their union operation (Figure 4.8d). Dual OIFT works with

> instead of <.
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Figure 4.8: (a) Region Adjacency Graph (RAG), composed by the ORFC cores from Figure 4.7. (b-c) The
equivalence test: (b) ω(〈c, d〉) = 7 > Cc(d) = 6, and (c) ω(〈d, c〉) = 6 > Cd(c) = 1. (d) The union operation.

In order to understand the equivalence test performed in RAG, we need to know the follow-
ing property that distinguishes OIFT from ORFC. From Figure 3.4, we can note that in the case
of multiple solutions with the same energy, the OIFT result gives preference to select bound-
ary pieces with lower energy values. For example, between the border segments with outgoing
arcs with values 3 and 2, from Figures 3.4c and d, OIFT selects the one with the lowest value
in Figure 3.4d. This result can be verified theoretically by a proof similar to Theorem 2 (Piece-
wise optimum property) in [29]. In the equivalence test, ω(〈c, d〉) and Cc(d) essentially repre-
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sent the energies of two boundary pieces. Since OIFT gives preference to lower energy values,
ω(〈c, d〉) > Cc(d) implies that a OIFT segmentation from a seed in c would conquer d, and
ω(〈d, c〉) > Cd(c) implies that d would conquer c leading to equivalent seeds. Figure 4.7j shows
the resulting OIFT cores at the pixel level derived from the RAG in Figure 4.8d.

Since we have to evaluate the equivalence test, and consequently Cc(d), for all arcs 〈c, d〉 in
the RAG, the final complexity of the algorithm becomes O(|V|2 + |E| · |V|), where |V| and |E|
are the number of nodes and arcs in the RAG. Note that to compute the maps Cc for all c ∈ V
requires |V| IFT’s executions and each IFT takes O(|V|+ |E|). In practice, the algorithm is fast,
because the RAG has a small number of nodes compared to the image graph.

4.3 Robustness Coefficient

We define a measure to evaluate the robustness of the methods in relation to the seed positioning.
For a given segmentation algorithm A(So,Sb) with cores given by N (So,Sb), the Robustness
Coefficient (RC) is defined as:

RC =
|N (So,Sb)|
|A(So,Sb)|

(4.3)

RC provides an analytic solution to measure the reproducibility of experiments. The higher
the RC value, the lower is the sensitivity of the method in relation to inter- and intra-user vari-
ability in image segmentation. Note that a high RC value does not imply that the method has a
high accuracy, the RC measure only evaluates how easy it is to reproduce the same segmentation,
regardless of its accuracy. In this sense, it is a complementary measure to traditional accuracy
measures.

The next two chapters applies all these robustness analysis for solving the main studied
problems with experimental results. Chapter 6 tackles the segmentation editing problem and
Chapter 5 develops a hybrid approach to solve Graph Cut problems.



Chapter 5
Hybrid Method ORFCCore + GC

The study of cores also can help analyze and improving robustness of segmentation methods.
This chapter describes a hybrid method ORFC+GC [33], for reducing Graph Cut (Section 5.1)
problems by using ORFC cores.

5.1 Graph Cut (GC)

Different from solving OPSFP, Graph Cut (GC) [20] finds a partition by solving minimum cut
/ maximum flow [64, 65] problem. Let graph G = 〈V, E, w〉 and N = 〈G, c, s, t〉 be a flow net-
work where c : E → R+ assigns for each arc a capacity, the maximum flow f l : E → R

allowed to pass through it, s ∈ V the source and t ∈ V the sink, which respects flow con-
servation ∑〈i,v〉∈E f l(〈i, v〉) = ∑〈v,o〉∈E f l(〈v, o〉), ∀v ∈ V \ {s, t} and antisymmetry f l(〈u, v〉) =
− f l(〈v, u〉), ∀〈u, v〉 ∈ E. The goal of maximum flow problem is maximize network flow | f l| =
∑〈s,v〉∈E f l(〈s, t〉) = ∑〈v,t〉∈E f l(〈v, t〉), equivalent to minimum cut problem, that is, to choose
a partition {S, T} of V (s ∈ S and t ∈ T) which minimizes capacity ∑〈u,v〉∈C c(〈u, v〉) of cut
C = {〈u, v〉 ∈ E : u ∈ S, v ∈ T}.

In case of graph G = 〈V, E, w〉 originated from images, an interactive segmentation with
seeds S = So ∪ Sb ⊆ V uses a modified network N = 〈G′, c, s, t〉, where G′ = 〈V ′, E′, w′〉, with
V ′ = V ∪ {s, t}, E′ = E∪ Eo ∪ Eb, Eo = {〈s, i〉 : i ∈ So}, Eb = {〈i, t〉 : i ∈ Sb}, ω′(e) = ω(e), ∀e ∈ E,
ω′(e) = ∞, ∀e ∈ Eo ∪ Eb, and c(〈u, v〉) = ω′(〈u, v〉), partitioning V onto AGC(So,Sb) = O and
V \ O and making Graph Cut a ε1-minimizer. One problem with ε1-minimizer is the preference
for smaller objects (with low perimeter), which degenerates to So, a problem denoted shrinking
bias (Figure 5.1).

(a) (b) (c)

Figure 5.1: Example of Shrinking Bias of Graph Cut, where yellow opaque pixels represent internal seeds and purple
for external ones. (a-b) Segmentations are equivalent to proper seeds, (c) the user needs to add more seeds (and effort)
to get desired region.

27
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5.2 ORFCCore + GC

ORFC, as a ε∞-minimizer, does not have shrinking bias, it has complexity O(n) and it is more ro-
bust (bigger cores) than GC, with complexity O(n2.5) [66]. GC helps ORFC by being more robust
against weaker borders. Algorithm 6 expands So and Sb through NORFC (reducing shrinking
bias possibility and raising robustness) and sends expanded sets S ′o and S ′b to GC for labeling
remaining nodes V \ S ′o ∪ S ′b.

Algorithm 6: Computing AORFCCore+GC(So,Sb)

1 S ′o ← NORFC(So,Sb) in G;
2 S ′b ← NORFC(Sb,So) in GT;
3 Return← AGC(S ′o,S ′b) in G;

5.2.1 Experimental Results

In the experiments, we used 40 slice images from realMR images of the foot, to perform the
segmentation of the bones calcaneus and talus, for all the methods (IRFC [23], RFC [24], Power
Watershed (PW) [67], OIFT [31], RFC + GC [68], OGC [20] - the graph cut with boundary polar-
ity, ORFC [33], ORFC + GC [33], and the proposed hybrid method ORFCCore + GC), for different
seed sets automatically obtained by eroding and dilating the ground truth at different radius
values, totaling a total of 1200 executions for each method. By varying the radius value, we can
repeat the segmentation for different seed sets and trace accuracy curves using the Dice coeffi-
cient of similarity However, in order to generate a more challenging situation, we considered a
larger radius of dilation for the external seeds (twice the value of the inner radius), resulting in
an asymmetrical arrangement of seeds.

Several different procedures can be adopted for δ(a, b) [44, 69]. For example, Figures 4.6
and 5.2 show some results for user-selected markers using the image-based weight assignment
from [43]. For the sake of simplicity, in the quantitative experiments, we adopted the weight
assignment δ(a, b) = K − |G(a) + G(b)|, where G(a) denotes the gradient magnitude of the
Sobel operator and the dual IFT. In Equation 2.2, α could be in the range of [−1, 1], We used
α = −0.5, in all experiments involving OIFT, OGC, ORFC, ORFC + GC, and ORFCCore + GC;
since the foot bones present transitions from dark to bright pixels; and α = 0.0 in the case of
undirected approaches.

The PW code comes from a software library in C developed by Camille Couprie, which is
available at SourceForge1. The OGC code comes from a software library in C++2 developed by
Yuri Boykov and Vladimir Kolmogorov. It implements the max-flow algorithm [66]. In the case
of ORFC and RFC, we considered a post-processing by Closing of Holes [52] to improve their
results.

Figure 5.3 shows the experimental curves. OGC has a decreasing accuracy for higher radius
values due to the shrinking problem, while the proposed hybrid method ORFCCore + GC can
conserve a high accuracy, with better results in general than ORFC + GC [33].

1http://sourceforge.net/projects/powerwatershed/
2http://pub.ist.ac.at/~vnk/software/maxflow-v3.04.src.zip

http://sourceforge.net/projects/powerwatershed/
http://pub.ist.ac.at/~vnk/software/maxflow-v3.04.src.zip
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: AMRimage of the foot. Segmentation results of the talus bone for the given user-selected markers by:
(a) OIFT, (b) RFC + GC, (c) ORFC, (d) Core of ORFC, (e) ORFC + GC, (f) ORFCCore + GC.
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Figure 5.3: The mean accuracy curves (Dice coefficient of similarity), using non-equally eroded-dilated seeds, for
segmenting talus and calcaneus.
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Chapter 6
Interactive Segmentation Repair

Given a graph G (generated from an image, biological or social network, etc) and its binary pre-
segmentation O (generated by any interactive, manual or automatic process), the main problem
of this study refers to estimating a set of seeds S which can be used for continuing or fixing
the result through future interactive sessions. This work solves Reverse Interactive Segmentation
Problem (RISP), formulated in Problem 1 and illustrated in Figure 1.3, allowing the user to run
IFT for repairs, which should generate O (or an approximated version) for G and S .

Problem 1. Reverse Interactive Segmentation Problem (RISP)
• Given: graph G, binary segmentation O and algorithm A(So,Sb)
• Return: set of seeds S = So ∪ Sb so that A(So,Sb) ∼ O
Two approaches are developed for solving RISP. IFT-SLIC iteratively moves an initial set S

which generates supervoxels and analytical methods produce a minimal set S by equivalence
classes (cores) and redundancy analysis.

6.1 IFT-SLIC

Although IFT-SLIC was originally conceived for graph partitioning, the natural returning of
seeds turns the method a solution for RISP. IFT-SLIC automatically estimates So and Sb, which
is respectively the seeds inside and outside O. The size of S is defined by the user before
algorithm execution. An advantage of IFT-SLIC is the regular spacing of seeds, compactness
and boundary adherence. The running time can be improved by computing just the bounding
box around O, specially if O is much smaller than V. In this case, we can keep the size of S
proportional to the size of the bounding box, to have the density constant.

The union of all supervoxels from seeds in So, gives us an initial approximation of the pre-
segmentation, denoted as the initial supervoxel segmentation, which does not perfectly resemble
the presegmentation (Figure 6.1d). To further boost the results, we improve the final supervoxel
segmentation by changing the connectivity function to f ′D (Figure 6.1e) as follows:

f ′D(πt = 〈t〉) = fD(πt = 〈t〉)
f ′D(πr;s · 〈s, t〉) = f ′D(πr;s) + deuc(s, t)︸ ︷︷ ︸

Compactness

+ (‖I(t)− I(r)‖ · δ · γB(r,t) + γ · B(r, t))β︸ ︷︷ ︸
Boundary Adherence

(6.1)

where B(r, t) = |B(r)− B(t)|, that is, B(r, t) captures the transitions in the binary mask B of the
presegmentation, and γ plays the same role as the liberal and conservative forces used in [13].
For higher values of γ, the final supervoxel segmentation better resembles the presegmentation,
conserving its fine details. Thus, higher values of γ allow us to reduce the number of supervoxels
k, giving more freedom to the user to perform corrections. So we empirically used k = vol/(200 ·
γ), where vol is the number of object voxels in the presegmentation.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 6.1: IFT-SLIC for segmentation editing: (a) The given presegmentation. (b) Seed set computed by
ISBI2011 [13] has many non-uniformly distributed seeds, and (c) its attempt to fix the segmentation by placing
new background markers (red dots) fails. Proposed editing method: (d) Supervoxels by IFT-SLIC to find the seed set.
(e) Supervoxels better conforming to the presegmentation are obtained by changing the cost function to f ′D. (f) The
union of supervoxels from seeds contained in the presegmentation gives us a starting point to perform corrections.
(g) A corrected result is obtained by adding a new background seed (red dot) and running DIFT.

The final supervoxel segmentation can then be used as a starting point, so that the user can
insert and/or remove seeds from S0 and S1 in order to correct the segmentation in a differential
way, by using Differential Image Foresting Transform (DIFT) [30] with function f ′D (Figures 6.1f-g).
Therefore, the corrections take sublinear time.
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6.1.1 Experimental Results

In this section, we conducted experiments to measure the user involvement in the editing process
of the wrong parts of the presegmentation in real 3 Tesla MRI-T1 images of the brain of size
240× 240× 180 voxels with severe inhomogeneity problems. We also quantified the number of
estimated seeds, where lower values indicate more flexibility for posterior user corrections. We
compared our proposed method with the best solution so far by IFT, denoted as ISBI2011 [13].
In all cases, the corrective actions were conducted by a robot user [41], in order to get impartial
results, with a spherical brush size of 5 voxels, using an Intel core i3 laptop with 4GB memory.

Table 6.1 shows the results of the first experiment (data set D1) to correct the wrong parts
of automatic segmentation of the cerebral hemispheres, where the errors are related mainly to
the bad positioning of the fuzzy model [29] (Figures 6.2a-b). The mean execution time to obtain
the initial seeds by the proposed method was 24.0s and 13.5s for ISBI2011 [13]. The mean Dice
value for the initial supervoxel segmentation using the seeds by IFT-SLIC increased from 89.75%
to 99.96% when changing the path cost-function to f ′D for γ = 3, and from 88.64% to 99.98% for
γ = 4. We noted that lower values of γ (γ < 3) can lead to a loss of presegmentation details.
The proposed method reduced the number of markers required for corrective actions in 68.2%
and reduced the total number of initial seeds in 4.3% for γ = 3. For γ = 4, we had a reduction
of 60.8% for corrective actions and 29.2% for the number of initial seeds.

Proposed (γ = 3) Proposed (γ = 4) ISBI2011

image# nm, ns (h), nm, ns (h), nm, ns (h),

01 5, 0.0729 7, 0.0463 46, 0.0657
02 10, 0.0608 13, 0.0463 35, 0.0766
03 12, 0.0729 12, 0.0502 42, 0.0811
04 15, 0.0602 18, 0.0463 33, 0.0949
05 8, 0.0781 11, 0.0648 23, 0.0443
06 6, 0.0677 10, 0.0463 15, 0.0683
07 8, 0.0677 10, 0.0463 26, 0.0750
08 15, 0.0729 16, 0.0501 20, 0.0470
09 6, 0.0501 8, 0.0463 20, 0.0672
10 9, 0.0502 11, 0.0405 36, 0.0631

Mean 9.4, 0.0653 11.6, 0.0483 29.6, 0.0683

Table 6.1: Data set D1: Number of markers (nm) required for corrective actions and number of computed initial
seeds (ns) per voxels in parts per thousand.

Proposed (γ = 3) Proposed (γ = 4) ISBI2011

image# nm, ns (h), nm, ns (h), nm, ns (h),

01 20, 0.1633 26, 0.1252 33, 0.8230
02 20, 0.1633 22, 0.1379 28, 1.2129
03 23, 0.1516 21, 0.1253 32, 0.9770
04 19, 0.1908 18, 0.1484 37, 0.6807
05 23, 0.1909 22, 0.1485 67, 1.6071
06 19, 0.1379 18, 0.1253 34, 1.0022
07 17, 0.1516 19, 0.1273 31, 0.3774
08 17, 0.1633 23, 0.1253 24, 0.4172
09 21, 0.1633 21, 0.1157 42, 0.4365
10 18, 0.1633 25, 0.0936 30, 0.4303

Mean 19.7, 0.1639 21.5, 0.1272 35.8, 0.7965

Table 6.2: Data set D2: Number of markers (nm) required for corrective actions and number of computed initial
seeds (ns) per voxels in parts per thousand.



34 CHAPTER 6. INTERACTIVE SEGMENTATION REPAIR

On the second experiment (data set D2 in Table 6.2), we considered a more challenging
scenario. We conducted experiments to fix the segmentation of the cortical surface of the brain,
where several pronounced errors were intentionally introduced by manual editing along the 3D
surface (Figures 6.2c-d). The mean Dice value for the initial supervoxel segmentation using the
seeds by IFT-SLIC increased from 93.08% to 99.95% when changing the path cost-function to f ′D
for γ = 3, and from 92.48% to 99.95% for γ = 4. The proposed method reduced the number of
markers required for corrective actions in 45% (39.9%) and reduced the total number of initial
seeds in 79.4% (84%) for γ = 3 (γ = 4). Figure 6.9 shows an implementation of IFT-SLIC
segmentation repair on Brain Image Analyser (BIA) software.

(a) (b) (c) (d)

Figure 6.2: 3D renditions of presegmentations with errors (a and c) and respective ground truths (b and d), with
their main differences highlighted in another color. Examples (each data set has 10 different images) from: (a-b) Data
set D1. (c-d) Data set D2 with severe errors.

6.2 Segmentation editing by seed robustness

Figures 6.3, 6.4, 6.5, 6.6 and 6.7 show examples of the incremental computation of the cores by
OIFT, from the ORFC cores, for a variety of real images. We will be using Robustness Coefficient
measure from Equation 4.3 to compare the cores.

(a) (b) (c) (d)

Figure 6.3: A brain image from the BrainWeb - Simulated Brain Database. (a) ORFC segmentation with RC =
99.95%. (b) OIFT segmentation with RC = 96.23%. (c) ORFC cores inside OIFT mask. (d) OIFT cores.

In the experiments, we used 40 slice images from real MR images of the foot, to perform
the segmentation of the bones talus and calcaneus, and 40 slice images from CT cervical spine
studies of 10 subjects to segment the spinal-vertebra. We used different seed sets automatically
obtained by eroding and dilating the ground truth at different radius values. By varying the
radius value, we can repeat the segmentation for different seed sets and trace accuracy curves,
using the Dice coefficient of similarity, and curves of the robustness coefficient. However, in
order to generate a more challenging situation, we considered a larger radius of dilation for the
external seeds (twice the value of the inner radius), resulting in an asymmetrical arrangement of
seeds.
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(a) (b) (c) (d)

Figure 6.4: Image of a license plate. (a) ORFC segmentation with RC = 97.89%. (b) OIFT segmentation with RC
= 89.06%. (c) ORFC cores inside OIFT mask. (d) OIFT cores.

(a) (b) (c) (d)

Figure 6.5: MR image of a talus bone with good boundary contrast. (a) ORFC segmentation with RC = 98.60%.
(b) OIFT segmentation with RC = 96.01%. (c) ORFC cores inside OIFT mask. (d) OIFT cores.

(a) (b) (c) (d)

(e) (f)

Figure 6.6: MR image of a talus bone with poor boundary contrast. (a) ORFC segmentation with RC = 58.87%.
(b) Effect of placing the seed outside its core. (c) OIFT segmentation with RC = 52.04%. (d) Effect of placing the
seed outside its core. (e) ORFC cores inside the OIFT mask. (f) OIFT cores.

In order to show the robustness coefficient, we considered in the evaluation only methods
with known procedure to compute their cores: IRFC [23], RFC [24], OIFT [31], ORFC [33], or at
least with a good lower bound estimation of their cores: RFC + GC [68], ORFC + GC [33], and
ORFCCore + GC [36]. For RFC + GC we considered RC = |NRFC(So ,Sb)|

|ARFC+GC(So ,Sb)| , RC = |NORFC(So ,Sb)|
|AORFC+GC(So ,Sb)|

for ORFC + GC, and RC = |NORFC(So ,Sb)|
|AORFCCore+GC(So ,Sb)| for ORFCCore + GC.

In the quantitative experiments, we adopted the weight assignment δ(a, b) = K − |G(a) +
G(b)|, where G(a) denotes the gradient magnitude of the Sobel operator, and dual (maximiza-
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(a) (b) (c) (d)

Figure 6.7: An MR image of a wrist with two seed pixels selected inside the bone. (a) ORFC segmentation with RC
= 99.17%. (b) OIFT segmentation with RC = 95.40%. (c) ORFC cores inside the OIFT mask. (d) OIFT cores.

tion) IFT. For approaches based on directed graphs, we used α = −0.5, for the foot bones
(transitions from dark to bright pixels) and α = 0.5 for the spinal-vertebra; and α = 0.0 in the
case of undirected approaches.

Figure 6.8 shows the experimental results. Note that the robustness coefficient of RFC is
always 100%, since NRFC(So,Sb) = ARFC(So,Sb) [24]. For the bones datasets, with respect to
the Dice measure, OIFT is among the first three methods, losing only to the hybrid methods
ORFC + GC and ORFCCore + GC. However, with respect to the robustness coefficient, OIFT
usually gives better results than ORFC+GC and ORFCCore +GC, losing only to RFC and ORFC.
For the spinal-vertebra, the Dice values of all methods decrease rapidly because the object has
thin parts and the erosion process rapidly eliminates seeds in several important regions of the
object. OIFT has the best Dice values for the spinal-vertebra, and the third best robustness
coefficient. So we can conclude that OIFT has a good balance between accuracy and robustness.
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Figure 6.8: The mean robustness coefficient curves and the mean accuracy curves (Dice coefficient), using non-
equally eroded-dilated seeds, for segmenting talus, calcaneus, and spinal-vertebra.
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Figure 6.9: Repairing a 3D segmentation by IFT-SLIC: loading a mask, continuing a segmentation, automatically
estimating seeds, adding a new internal seed, processing a new mask and repeating the process in a differential way.
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6.2.1 Redundancy Analysis

Sections 4.1 and 4.2 describe how calculate cores NORFC(So,Sb) and NOIFT(So,Sb). If each core
is replaced by just one seed, a built seed set can be used in a interactive repair. Besides that, if a
core is contained inside the segmentation of another one, the first core is considered redundant
and could be discarded. This process is denoted redundancy analysis.

After core computation and redundancy analysis, a minimal set of seeds is returned. Follow-
ing Miranda et al. [12, 13] notation, we use N1 ∝ N2 to represent a core N1 redundant to N2.
This is transitive (N1 ∝ N2 ∧ N2 ∝ N3 =⇒ N1 ∝ N3). Any cycle of redundancies implies in
equivalence and t ∝ s means that node t is redundant in relation to s, so: t ∝ s∧ s ∝ t ⇐⇒ s ≡ t.

Cores of ORFC are SCCs of G> after removing arcs 〈s, t〉 from G where ω(〈s, t〉) ≤ ε↓∞ and
Copt(s) = Copt(t) = ε↓∞. Note that we do not need to compute ε↓∞, we just test ω(〈s, t〉) >
Copt(s) ∧ Copt(s) = Copt(t), removing 〈s, t〉 otherwise. In AORFC (Algorithm 3), an internal seed
s results in its DCC. If t ∝ s, then t ∈ DCCG>(s). We might think that t ∈ DCCG>(s) is not only
necessary but sufficient for t ∝ s to be true, but Figure 6.10 shows a counterexample.
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Figure 6.10: Counterexample to show that t ∈ DCCG>(s) does not imply t ∝ s. (a-b) Even though s2 ∈
DCCG>(s1), (c-d) s3 ∈ N ({s2},Sb) but s3 /∈ N ({s1},Sb), so s2 is not redundant in relation to s1.

Let t ∈ DCCG>(s). For any k ∈ DCCG>(t), there is a path πt;k = 〈t = v1, . . . , vn = k〉,
where ω(〈vi, vi+1〉) > Copt(t), 1 ≤ i ≤ n. If Copt(t) ≥ Copt(s), then there is a path from s to k
whose arcs have weight values higher than Copt(s). In this case, k ∈ DCCG>(s), and DCCG>(t) ⊆
DCCG>(s) (from Proposition 1 of [33]). As NORFC({t},Sb) ⊆ DCCG>(t), then we can formulate
Proposition 3.

Proposition 3. t ∈ DCCG>(s) ∧ Copt(t) ≥ Copt(s) =⇒ NORFC({t},Sb) ∝ NORFC({s},Sb).

So, after computing NORFC by Algorithm 4, we create a Region Adjacency Graph (RAG)
and remove node Nt (which represents core NORFC({t},Sb)) in this RAG if ∃〈Ns,Nt〉 where
ω(〈Ns,Nt〉) > Copt(s) and Copt(t) ≥ Copt(s).

We might think the other side of Proposition 3 is true: NORFC({t},Sb) ∝ NORFC({s},Sb) =⇒
t ∈ DCCG>(s) ∧ Copt(t) ≥ Copt(s). However, Figure 6.11 shows a counterexample. It is similar to
Figure 6.10, but one arc had its weighted changed. In this example, we just needNORFC({s1},Sb).
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Figure 6.11: Counterexample to show that N ({t},Sb) ∝ N ({s},Sb) does not imply t ∈ DCCG>(s) ∧ Copt(t) ≥
Copt(s). Even though Copt(s2) < Copt(s1) (that is, 1 < 3), N ({s2},Sb) ∝ N ({s1},Sb).
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It means that we have developed a method which can reduce the number of estimated seeds,
but we cannot assert that it is the smallest possible seed set. Further research is needed to find a
method to return the smallest estimated seed set, even if Copt(t) < Copt(s).

The same algorithm can be applied in the RAG of NOIFT. Figure 6.12 shows OIFT applied to
the same graph of Figure 6.10. It suggest we could remove the restriction Copt(t) ≥ Copt(s) and
test in the RAG the condition ω(〈Ns,Nt〉) > Copt(t). The validation of this hypothesis is another
source of future research.
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Figure 6.12: Example of OIFT applied to the graph of Figure 6.10. Note that there is an arc 〈s, t〉 between
NOIFT({s1},Sb) and NOIFT({s2},Sb) where ω(〈s, t〉) = 4 > 1 = Copt(s2), which implies NOIFT({s2},Sb) ⊆
AOIFT({s1},Sb).
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Chapter 7
Conclusion

We have developed techniques to allow the user edit the segmentation previously generated
from automatic, interactive or manual methods. Instead of editing it manually or discarding it to
generate another, which is cumbersome, Image-Foresting Transform (IFT) can reduce the effort
in a interactive way.

Initial seed are automatically estimated by using two approaches: IFT-SLIC (Section 3.4),
which moves a grid of equally spaced seeds to partition the graph into supernodes, and center
of cores (Chapter 4), regions of redundant seeds, returning a small set of seeds (one for each
core). We can also reduce this set, by discarding the cores whose segmentations are contained in
the results obtained from other cores.

Results of Chapter 6 shows experiments for both approaches, validating the hypothesis and
showing the potential of the method. The method of repairing segmentations via OIFT/ORFC
should be used whenever we wish to continue a previous segmentation obtained also from
OIFT/ORFC. IFT-SLIC is a good choice for images with field inhomogeneity and low boundary
contrast, as it is based on an additive function of relative intensities. OIFT is indicated for images
with boundary polarity well defined (from dark to bright or vice-versa).

The reader may try some implementations like our @kv1 library, both in Git versioning sys-
tem. Our library is briefly described in Section 7.1.

7.1 Contributions

• Application and investigation of IFT-SLIC [34] method in obtaining the seed set for in-
teractive segmentation repair. Features such as compactness and boundary adherence are
benefits of using this method. The format of partitions, compared to other methods, is
more regular [35] (Section 6.1);

• Theoretical analysis of the ORFC robustness and development of the algorithm that calcu-
lates the ORFC core, with proof of correctness [36] (Section 4.1);

• Theoretical analysis of the OIFT robustness and development of the algorithm that calcu-
lates the OIFT core, with proof of correctness [37] (Section 4.2);

• Development of the hybrid method ORFCCore +GC, and comparative evaluation with other
methods [36] (Chapter 5);

• Core redundancy analysis and algorithm development [36, 37] (Chapter 6);

• Segmentation repair algorithm (for OIFT and ORFC) using the algorithms of core calcula-
tion and redundancy analysis (Chapter 6);

1https://atkv.github.io/
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• Definition of robustness index of methods [37] (Section 4.3);

• Development of the @kv framework, with described algorithms implemented in C11 for
computer vision problems. The goal of @kv is to build an Application Program Interface
(API), compiled in a set of shared libraries to be used in any project. NIFTI and DICOM
parsers, IFT, OIFT, ORFC, OIFTCore, ORFCCore, IFT-SLIC, primal and dual approaches, as
well as reading and writing PNG, JPG, PPM and PGM also are available. Charts and
widgets made in GTK+3 for visualization purposes also are developed. The user can
save/read intermediate results from/to a compressed file (with .atz extension). Most of
the algorithms come with unit tests. A documentation for the API as well as some tuto-
rials also are available. Wrappers for other languages (i.e., Python and Java) also are in
the roadmap. A WebAssembly2 module also could be an interesting way for web apps to
provide binary and compiled IFT algorithms for the web, although WebAssembly is a very
new and developing technology.

7.2 Difficulties

• The lack of libraries for IFT developed over a Version Control System (VCS) like Git makes
modifying and extending it with implementations of studied algorithms some kind diffi-
cult. We tackle this problem by developing a new library which use VCS so that users can
use any version of the system, even legacy ones;

• Comparison between robustness of different segmentation methods is not trivial, because,
differently from our IFT-based approaches, most methods do not have a known efficient
algorithm to compute their cores. As this is an ongoing work, more research is needed to
get a more general picture of relations between these methods.

7.3 Future Work

As future work, we plan to investigate online training with IFT with Cores. For example, in
a dataset of 50 similar images (i.e., segmentation of liver), the effort of segmenting subsequent
images could be reduced by exploiting the previous results to train a classifier in order to update
the IFT parameters, connectivity functions and weights. Cores can reduce the search space of
parameters in the training phase.

Another interesting research may be the impact of non-smooth connectivity functions to
robustness of the method. As it is a diverse class of functions, a careful analysis could lead to
improvements for many applications which uses these functions.

Experiments for validating the hypothesis of reducing the number of seeds when applying
redundancy analysis to ORFC and OIFT is another future work. The reduction ratio may be one
of the metrics for comparison between RISP with and without redundancy analysis.

A more comprehensive study between segmentation methods can be improved with robust-
ness analysis. Computing cores of methods other than IFT-based ones also may improve under-
standing the relations.

2http://webassembly.org

http://webassembly.org
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