• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
Document
Auteur
Nom complet
Andressa Nunes Siroky
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2019
Directeur
Jury
Bolfarine, Heleno (Président)
Andrade Filho, Mário de Castro
Branco, Marcia D Elia
Labra, Filidor Edilfonso Vilca
Valle, Reinaldo Boris Arellano
Titre en portugais
Extensões do Modelo Potência Normal
Mots-clés en portugais
Assimetria
Bimodalidade
GAMLSS
Máxima verossimilhança
Mistura
Resumé en portugais
Em análise de dados que apresentam certo grau de assimetria, curtose ou bimodalidade, a suposição de normalidade não é válida, sendo necessários modelos que capturem estas características dos dados. Neste contexto, uma nova classe de distribuições bimodais assimétricas gerada por um mecanismo de mistura é proposta neste trabalho. Algumas propriedades para o caso particular que inclui a distribuição normal como família base desta classe são estudadas e apresentadas, tal caso resulta no chamado Modelo Mistura de Potência Normal (MPN). Dois algoritmos de simulação são desenvolvidos com a finalidade de obter variáveis aleatórias com esta distribuição. A abordagem frequentista é empregada para a inferência dos parâmetros do modelo proposto. São realizados estudos de simulação com o objetivo de avaliar o comportamento das estimativas de máxima verossimilhança dos parâmetros. Adicionalmente, um modelo de regressão para dados bimodais é proposto, utilizando a distribuição MPN como variável resposta nos modelos Generalizados Aditivos para Posição, Escala e Forma, cuja sigla em inglês é GAMLSS. Para este modelo de regressão estudos de simulação também são realizados. Em ambos os casos estudados, o modelo proposto é ilustrado utilizando um conjunto de dados reais referente à pontuação de jogadores na Super Liga Brasileira de Voleibol Masculino 2014/2015. Com relação a este conjunto de dados, o modelo MPN apresenta melhor ajuste quando comparado à modelos já existentes na literatura para dados bimodais.
Titre en anglais
Power Normal Model extensions
Mots-clés en anglais
Asymmetry
Bimodality
GAMLSS
Maximum likelihood estimation
Mixture
Resumé en anglais
In analysis of data that present a certain degree of asymmetry, kurtosis or bimodality, the assumption of normality is not valid and models that capture these characteristics of the data are required. In this context, a new class of bimodal asymmetric distributions generated by a mixture mechanism is proposed. Some properties for the particular case that includes the normal distribution as the base family of this class are studied and presented, such case results in the so-called Power Normal Mixture Model. Two simulation algorithms are developed with the purpose of obtaining random variables with this new distribution. The frequentist approach is used to the inference of the model parameters. Simulation studies are carried out with the aim of assessing the behavior of the maximum likelihood estimates of the parameters. In addition, the power normal mixture distribution is introduced as the response variable for the Generalized Additives Models for Location, Scale and Shape (GAMLSS). For this regression model, simulation studies are also performed. In both cases studied, the proposed model is illustrated using a data set on players' scores in the Male Brazilian Volleyball Superliga 2014/2015. With respect to this dataset, the power normal mixture model presents better fit when compared to models already existing in the literature to bimodal data.
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
tese_Siroky.pdf (14.38 Mbytes)
Date de Publication
2019-06-03
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2019. Tous droits réservés.