• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
Documento
Autor
Nombre completo
Andressa Nunes Siroky
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2019
Director
Tribunal
Bolfarine, Heleno (Presidente)
Andrade Filho, Mário de Castro
Branco, Marcia D Elia
Labra, Filidor Edilfonso Vilca
Valle, Reinaldo Boris Arellano
Título en portugués
Extensões do Modelo Potência Normal
Palabras clave en portugués
Assimetria
Bimodalidade
GAMLSS
Máxima verossimilhança
Mistura
Resumen en portugués
Em análise de dados que apresentam certo grau de assimetria, curtose ou bimodalidade, a suposição de normalidade não é válida, sendo necessários modelos que capturem estas características dos dados. Neste contexto, uma nova classe de distribuições bimodais assimétricas gerada por um mecanismo de mistura é proposta neste trabalho. Algumas propriedades para o caso particular que inclui a distribuição normal como família base desta classe são estudadas e apresentadas, tal caso resulta no chamado Modelo Mistura de Potência Normal (MPN). Dois algoritmos de simulação são desenvolvidos com a finalidade de obter variáveis aleatórias com esta distribuição. A abordagem frequentista é empregada para a inferência dos parâmetros do modelo proposto. São realizados estudos de simulação com o objetivo de avaliar o comportamento das estimativas de máxima verossimilhança dos parâmetros. Adicionalmente, um modelo de regressão para dados bimodais é proposto, utilizando a distribuição MPN como variável resposta nos modelos Generalizados Aditivos para Posição, Escala e Forma, cuja sigla em inglês é GAMLSS. Para este modelo de regressão estudos de simulação também são realizados. Em ambos os casos estudados, o modelo proposto é ilustrado utilizando um conjunto de dados reais referente à pontuação de jogadores na Super Liga Brasileira de Voleibol Masculino 2014/2015. Com relação a este conjunto de dados, o modelo MPN apresenta melhor ajuste quando comparado à modelos já existentes na literatura para dados bimodais.
Título en inglés
Power Normal Model extensions
Palabras clave en inglés
Asymmetry
Bimodality
GAMLSS
Maximum likelihood estimation
Mixture
Resumen en inglés
In analysis of data that present a certain degree of asymmetry, kurtosis or bimodality, the assumption of normality is not valid and models that capture these characteristics of the data are required. In this context, a new class of bimodal asymmetric distributions generated by a mixture mechanism is proposed. Some properties for the particular case that includes the normal distribution as the base family of this class are studied and presented, such case results in the so-called Power Normal Mixture Model. Two simulation algorithms are developed with the purpose of obtaining random variables with this new distribution. The frequentist approach is used to the inference of the model parameters. Simulation studies are carried out with the aim of assessing the behavior of the maximum likelihood estimates of the parameters. In addition, the power normal mixture distribution is introduced as the response variable for the Generalized Additives Models for Location, Scale and Shape (GAMLSS). For this regression model, simulation studies are also performed. In both cases studied, the proposed model is illustrated using a data set on players' scores in the Male Brazilian Volleyball Superliga 2014/2015. With respect to this dataset, the power normal mixture model presents better fit when compared to models already existing in the literature to bimodal data.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
tese_Siroky.pdf (14.38 Mbytes)
Fecha de Publicación
2019-06-03
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2019. Todos los derechos reservados.