• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2008.tde-27082009-120419
Documento
Autor
Nome completo
Mayra Ivanoff Lora
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2008
Orientador
Banca examinadora
Singer, Julio da Motta (Presidente)
Andrade, Dalton Francisco de
Demetrio, Clarice Garcia Borges
Paula, Gilberto Alvarenga
Pinheiro, Hildete Prisco
Título em português
Modelos Beta-Binomial/Poisson-Gama para contagens bivariadas repetidas
Palavras-chave em português
contagens bivariadas
dados longitudinais
efeitos aleatórios
modelos de regressão
sobredispersão
Resumo em português
Em Lora e Singer (Statistics in Medicine, 2008), propusemos um modelo Beta- Binomial/Poisson p-variado para análise dos dados provenientes de um estudo que consistiu em contar o número de tentativas e acertos de um exercício manual com duração de um minuto realizado por doentes de Parkinson, antes e depois de um treinamento. O objetivo era verificar se o treinamento aumentava o número de tentativas e a porcentagem de acerto, o que destaca o aspecto bivariado do problema. Esse modelo leva tais características em consideração, usa uma distribuição adequada para dados de contagem e ainda acomoda a sobredispersão presente na contagem dos acertos. Como generalização, inicialmente, propomos um modelo Beta-Binomial/Poisson-Gama que acomoda sobredispersão também para as contagens dos totais de tentativas, além incluir covariâncias possivelmente diferentes entre as contagens em diversos instantes de avaliação. Neste novo modelo, introduzimos um parâmetro que relaciona o total de tentativas com a probabilidade de acerto, tornando-o ainda mais geral. Obtemos estimadores de máxima verossimilhança dos parâmetros utilizando um algoritmo de Newton-Raphson. Consideramos um outro conjunto de dados provenientes do mesmo estudo para ilustração da metodologia proposta.
Título em inglês
Beta-binomial/gamma-Poisson regression models for repeated bivariate counts
Palavras-chave em inglês
bivariate counts
longitudinal data
overdispersion
random effects
regression models
Resumo em inglês
In Lora and Singer (Statistics in Medicine, 2008), we proposed a Beta-Binomial/Poisson p-variate model to analyze data from a study which consists in counting the number of trials and successes of a manual exercise in one minute periods, done by Parkinsons disease patients, before and after a training. The purpose was to verify if the training improves the number of trials and the percentage of success, which emphasizes the bivariate aspect of the problem. This model considers these characteristics, uses an adequate distribution to count data and settles the overdispersion suggested in the number os successes. As a generalization, initially, we propose a Beta-Binomial/Poisson-Gama model which also settles the overdispersion suggested by the total number of trials, besides includes possible different covariances between total trial counts in different evaluation instants. In this new model, we introduce a parameter that links the total trials with the success probability, making it even more general. We obtain maximum likelihood estimators for the parameters using an Newton-Raphson algorithm. We consider another data from the same study to illustrate the proposal methodology.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Tese.pdf (299.97 Kbytes)
Data de Publicação
2009-08-27
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.