
Estimation and model selection for graphical models
under mixing conditions

Magno Tairone de Freitas Severino

PhD Thesis presented
to

Institute of Mathematics and Statistics
of

University of São Paulo
to

obtain the title
of

Doctor in Science

Program: Probability and Statistics

Advisor: Prof. Florencia Graciela Leonardi

This work was produced as part of the activities of the Research, Innovation and

Dissemination Center for Neuromathematics (grant FAPESP 2013/07699-0). It also was

�nanced in part by the Conselho Nacional de Desenvolvimento Cientí�co e Tecnológico

(CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil

(CAPES) - Finance Code 001.

São Paulo, March 2024



Estimação e seleção de modelos para modelos grá�cos
sob condições de mixing

Magno Tairone de Freitas Severino

Tese apresentada
ao

Instituto de Matemática e Estatística
da

Universidade de São Paulo
para

obtenção do título
de

Doutor em Ciências

Programa: Probabilidade e Estatística

Orientadora: Profa. Florencia Graciela Leonardi

Este trabalho foi produzido como parte das atividades do Centro de Pesquisa, Inovação e

Disseminação em Neuromatemática (bolsa FAPESP 2013/07699-0). Também foi realizado

com apoio do Conselho Nacional de Desenvolvimento Cientí�co e Tecnológico (CNPq) e da

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código

de Financiamento 001.

São Paulo, março 2024



Estimation and model selection for graphical models
under mixing conditions.

Esta versão da tese contém as correções e alterações sugeridas

pela Comissão Julgadora durante a defesa da versão original do trabalho,

realizada em 05/04/2024. Uma cópia da versão original está disponível no

Instituto de Matemática e Estatística da Universidade de São Paulo.

Comissão Julgadora:

� Profª. Drª. Florencia Graciela Leonardi (orientadora) - IME-USP

� Profª. Drª. Aline Duarte de Oliveira - IME-USP

� Prof. Dr. Daniel Yasumasa Takahashi - UFRN

� Prof. Dr. Guilherme Ost de Aguiar - IM-UFRJ

� Profª. Drª. Mariela Sued - IC-UBA



i

Dedico esta tese à memória de minha

avó Therezinha, cujo carinho e incentivo

moldaram meu caminho acadêmico.



Agradecimentos

Meus sinceros agradecimentos à Profa. Florencia pela sua orientação e apoio durante

toda essa jornada. Sua maneira de me incentivar e motivar me deram força para realizar

esta tese e todos os outros projetos que desenvolvemos juntos nos últimos anos, e não foram

poucos!

Sou muito grato aos meus pais, Magno e Scheila, que sempre acreditaram que a educação

transforma. Sem o seu apoio incondicional, eu jamais teria chegado aqui.

Agradeço aos meus avós Francisco e Therezinha (in memoriam), que sempre torceram

pelo meu sucesso nos estudos.

Aos amigos que �z no IME, dentro da sala 154B, em especial Cátia, Felipe, Gabriela,

Joan, Luísa e Luiza, com quem compartilhei minhas incertezas e inseguranças, mas também

muitos momentos de alegria.

Agradeço ao Gustavo pelo companheirismo e suporte genuínos que foram essenciais para

a conclusão desta jornada.

Agradeço também à CAPES, ao CNPq e à Fapesp pelo �nanciamento de parte deste

trabalho.

ii



�Eu sou o sonho dos meus pais

Que eram sonhos dos avós

Que eram sonhos dos meus ancestrais!�



Abstract

Severino, M. T. F. Estimation and model selection for graphical models under mix-

ing conditions. PhD Thesis - Institute of Mathematics and Statistics, University of São

Paulo, São Paulo, 2023.

This thesis introduces a novel approach for estimating the graph of conditional depen-

dencies in a random vector based on �nite sample data. We de�ne this approach as a global

model selection criterion, which means optimizing a function across the entire set of po-

tential graphs, removing the need to estimate and combine individual neighborhoods as

commonly proposed in the literature. Our results establish the strong convergence of this

graph estimator, provided that the multivariate stochastic process satis�es a mixing con-

dition. To the best of our knowledge, these results represent a pioneering demonstration

of the consistency of a model selection criterion for Markov random �elds on graphs when

dealing with non-independent data. Additionally, we propose e�cient algorithms for graph

estimation and complement our theoretical results with simulation studies. To illustrate the

practical applicability of our approach, we present two real-world examples: a study of the

dependence structure among water �ow measurements gauges located in the course of the

São Francisco River in Brazil; and a daily stock market index performance analysis in order

to identify the conditional dependence among the stock markets around the world.

Keywords: Model selection, regularized estimator, structure estimation, mixing processes.
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Resumo

Severino, M. T. F. Estimação e seleção de modelos para modelos grá�cos sob

condições de mixing. Tese (Doutorado) - Instituto de Matemática e Estatística, Uni-

versidade de São Paulo, São Paulo, 2023.

Esta tese apresenta uma nova abordagem para estimar o grafo de dependências condi-

cionais em um vetor aleatório com base em dados de amostras �nitas. De�nimos essa abor-

dagem como um critério global de seleção de modelos, o que signi�ca otimizar uma função

em todo o conjunto de possíveis grafos, eliminando a necessidade de estimar e combinar

vizinhanças individuais como é comumente proposto na literatura. Nossos resultados es-

tabelecem a convergência deste estimador, desde que o processo estocástico multivariado

satisfaça uma condição de mistura. Até onde sabemos, esses resultados representam uma

demonstração pioneira da consistência de um critério de seleção de modelos para campos

aleatórios de Markov em grafos ao lidar com dados não independentes. Além disso, propo-

mos algoritmos e�cientes para a estimativa do grafo e complementamos nossos resultados

teóricos com um estudo de simulação. Para ilustrar a aplicabilidade prática de nossa abor-

dagem, apresentamos dois exemplos do mundo real: estudo da estrutura de dependência

entre as medições de �uxo de água nos medidores localizados no curso do rio São Francisco,

no Brasil; e análise do desempenho diário de índices de mercado de ações, com o objetivo

de identi�car a dependência condicional entre os diferentes mercados de ações ao redor do

mundo.

Palavras-chave: seleção de modelos, estimador regularizado, estimação de estruturas de

grafo, processos de mistura.
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Chapter 1

Introduction

A graph is an ordered pair G = (V,E), where V is the set of vertices (or nodes) and

E ⊆ V × V is the set of edges connecting pairs of vertices. We say a graph is undirected

if (vi, vj) ∈ E implies that (vj, vi) ∈ E, ∀(vi, vj) ∈ E, for vi, vj ∈ V . Moreover, a graph

is said to be simple if (v, v) ∉ E ∀v ∈ V. In this work, we focus our attention solely on

undirected simple graphs, which will be referred to simply as graph.

Let X = (X1, . . . , Xd) denote a d-dimensional random vector, with each component

Xj ∈ A, a �nite alphabet, for 1 ≤ j ≤ d. We include a superscript to indicate that this vec-

tor X(i), i = 0, 1, . . . , is observed over a discrete-time, constituting a multivariate stochastic

process. We assume the process is stationary, with invariant distribution π. In such pro-

cesses, not all random variables within the vector X are inherently dependent on each other.

Therefore, there exists a �eld of research dedicated to studying the relationships among these

random variables by estimating the underlying graph of conditional dependencies inherent

in this multivariate stochastic process. Denote by G∗ the graph encoding the conditional

dependencies in π. In this work, we are interested in estimating G∗ as well as the associated

conditional probability distributions.

In the case where we assume that the sampleX(1)
, . . . , X

(n) is independent and identically

distributed (IID), we reduce to the classical model selection for discrete graphical models or

Markov random �elds on graphs. Extensive research has been conducted on these models,

including, but not limited to, Lauritzen [1996], Divino et al. [2000], Koller and Friedman

[2009], Lerasle and Takahashi [2016], Pensar et al. [2017], Leonardi et al. [2023]. Further-

more, these models have found applications in various �elds, including Biology

[Shojaie and Michailidis, 2010], Social Sciences [Strauss and Ikeda, 1990] or Neuroscience

[Duarte et al., 2019]. Up to this moment, the most studied model has been the binary graph-

ical model with pairwise interactions where structure estimation can be addressed by using

standard logistic regression techniques [Ravikumar et al., 2010, Strauss and Ikeda, 1990],

distance-based approaches between conditional probabilities

Bresler et al. [2018], Galves et al. [2015] and maximization of the ℓ1-penalized

pseudo-likelihood [Atchade, 2014, Hö�ing and Tibshirani, 2009]; see also

1



2 INTRODUCTION 1.0

Santhanam and Wainwright [2012].

In the case of bigger discrete alphabets or general types of interactions, to our knowl-

edge, the only works addressing the structure estimation problem are Loh and Wainwright

[2013] and Leonardi et al. [2023]. In Loh and Wainwright [2013], the authors obtain a char-

acterization of the edges in the graph with the zeros in a generalized inverse covariance

matrix. Then, this characterization is used to derive estimators for restricted classes of mod-

els, and the authors prove the consistency in probability of these estimators. In the work

Leonardi et al. [2023], a penalized criterion is proposed to estimate the neighborhood of each

vertex, and the results are then combined to construct the model's graph. Markov random

�elds on graphs have also been proposed for continuous random variables, where the struc-

ture estimation problem has been addressed by ℓ1-regularization for Gaussian Markov ran-

dom �elds [Meinshausen and Bühlmann, 2006] and also extended to non-parametric models

[La�erty et al., 2012, Liu et al., 2012] and general conditional distributions from the expo-

nential family [Yang et al., 2015].

From another perspective, graphical models can be seen as non-homogeneous versions

of general random �elds or Gibbs distributions on lattices, classical models in stochastic

processes, and statistical mechanics theory [Georgii, 2011]. In such a setting, the number

of variables increases despite having only one observation within the sample. Given the

regularity of the graph (each node has the same neighborhood), inference and model selection

can be done based on the unique observation. The statistical inference for Markov random

�elds and Gibbs distributions under this setting has been addressed in Comets [1992] and

Comets and Gidas [1992], for example. More recently, model selection criteria, such as the

BIC proposed by Schwarz [1978], have been proven consistent under this regular setting

[Csiszár and Talata, 2006, Ji and Seymour, 1996]; see also Tjelmeland and Besag [1998] and

Löcherbach and Orlandi [2011].

From an applied point of view, the assumption of independence of the observations in

the non-homogeneous Markov random �elds setting is often too restrictive. Consider, for ex-

ample, the task of estimating interaction graphs from EEG time series data [Cerqueira et al.,

2017], river stream �ow data [Leonardi et al., 2021] or daily stock market

indices [Leonardi et al., 2023]. In these scenarios, the independence assumption does not

hold, and the methods commonly used for graphical models serve only as approximations to

the true underlying distribution. While such approximations can be practical from an ap-

plied point of view, from a theoretical perspective, it is interesting to consider the problem

of estimation and model selection in a scenario with dependence, as, for example, in the case

of mixing processes considered in this thesis.

Conventional model selection techniques for graphical models often involve estimating

the neighborhoods of individual nodes and constructing the graph based on these neighbor-

hoods, as exempli�ed by Ravikumar et al. [2010]. As mentioned above, the approach adopted

by Leonardi et al. [2023] involves a penalized pseudo-likelihood criterion for estimating the

graph of conditional dependencies within partially observed discrete Markov random �elds.
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This technique is based on estimating each node's neighborhood in the graph. The authors

have established the almost sure convergence of the estimator in cases where the number

of variables is �nite or countably in�nite, and the process is independent and identically

distributed. Moreover, the method imposes minimal assumptions on the probability distri-

bution, eliminating the need for the usual positivity condition present in other approaches

in the literature. Once the neighborhood of each vertex is estimated, they are aggregated to

construct the estimated graph itself. However, as discussed by the authors, depending on the

rule to combine the neighborhoods, the �nal estimated graph can drastically underestimate

or overestimate the set of edges in the graph.

Conversely, Leonardi et al. [2021] presents a di�erent perspective by proposing a model

selection criterion for estimating points of independence within a random vector that satis-

�es a mixing condition. This results in decomposing the vector's distribution function into

distinct independent blocks. The method, based on a general estimator of the distribution

function, can be applied to both discrete and continuous random vectors, as well as IID

data or dependent time series. The authors have proved the consistency of the approach

under general conditions on the estimator of the distribution function and show that the

consistency holds for IID data and discrete time series with mixing conditions.

This thesis is mainly motivated by the works of Leonardi et al. [2021] and Leonardi et al.

[2023] and can be viewed as a combination and generalization of both. We aim to over-

come the limitations of the previously mentioned works. While the estimator introduced

by Leonardi et al. [2023] is only applicable to IID data and the estimation is done for each

vertex, the method proposed by Leonardi et al. [2021] assumes that the random vector can

only be decomposed into subvectors. In response to these limitations, we propose a penalized

pseudo-likelihood criterion for estimating the entire graph G, which consists of the set of

edges E connecting the nodes V, particularly for multivariate stochastic processes satisfying

a mixing condition. The primary advantage of our approach is its ability to handle non-IID

data and its global estimation approach. This means that the entire set of edges E is esti-

mated as a whole, eliminating the need to estimate the neighborhood of each node separately

and then combine them to obtain the estimated graph. We provide a proof of convergence,

showing that the estimator almost surely converges to the actual underlying graph in cases

of �nite graphical models, provided a mixing condition holds for the generating process.

This thesis is organized as follows. Chapter 2 reviews the theoretical framework of multi-

variate stochastic processes, particularly the de�nition of the mixing condition. The chapter

concludes by proposing a method to estimate the underlying graph of conditional dependen-

cies of a multivariate process satisfying a mixing condition.

Chapter 3 presents algorithms implementing the proposed graph estimator. Speci�cally,

the exact algorithm that performs an exhaustive search for the graph. Additionally, the

chapter covers the simulated annealing algorithm. This stochastic optimization technique

iteratively explores potential edge additions or deletions while gradually reducing the accep-

tance probability of unfavorable changes to �nd an optimal structure that maximizes the
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pseudo-log-likelihood function. Furthermore, the chapter discusses the forward and backward

stepwise algorithms. This iterative model selection technique incrementally add or remove

edges to maximize the pseudo-log-likelihood function while considering both the forward

and or backward directions in the estimation process.

Chapter 4 conducts a detailed evaluation of the algorithms introduced in Chapter 3 for

graph estimation. The assessment utilizes simulation studies to evaluate the convergence

and performance of the proposed graph estimators, focusing on each algorithm individually.

The evaluations are conducted in two distinct settings. First, the performance is analyzed

in scenarios where a graph of conditional dependencies is de�ned, and data is sampled from

a distribution with this structure. This allows for the assessment of the estimator's stability.

Second, the investigation shifts to analyzing performance concerning the number of edges in

the graph. This is achieved by generating random graphs, each with a di�erent number of

edges, and assessing the estimator's accuracy in recovering these graphs considering speci�c

metrics. These comprehensive evaluations highlight the e�ectiveness and robustness of the

proposed estimator in real-world applications.

Chapter 5 presents two distinct applications of the proposed method, primarily em-

phasizing practical implementation rather than introducing new modeling approaches. The

analysis centers on stream �ow data from the São Francisco River in Brazil, aiming to un-

cover the dependency structure among measurements from various gauges along the river.

Also we present a study about stock market indices, examining the dependencies among

the global markets in terms of their �uctuations, particularly focusing on their upward and

downward movements.

Finally, Chapter 6 presents the main discussions, highlights the contributions of this work

and the directions for future research. Additional and auxiliary content regarding theoretical

results, complementary simulation results, and algorithms are presented in Appendices A,

B, and C, respectively.



Chapter 2

Graph Estimator on Mixing Processes

This chapter is dedicated to presenting the fundamental aspects of multivariate stochas-

tic processes with mixing conditions. Once again, this thesis aims to perform estimation

and model selection for mixing graphical models. The purpose of this chapter is to establish

the theoretical background for this work. We begin with the de�nition of graphical models

and the concepts regarding this �eld of study in Section 2.1. Subsequently, we present the

de�nition of vector-valued stochastic processes that satisfy a mixing condition in Section 2.2.

Following this, we discuss the estimation and rate of convergence of the empirical probabil-

ities in a stationary stochastic process with exponential mixing rate in Section 2.3. Finally,

in Section 2.4 we discuss and propose a model for the estimation of the underlying graph of

the process.

2.1 Graphical Models

Consider a graph G = (V,E), with V = {1, . . . , d}, for d ∈ N, and assume we observe at

each vertex v ∈ V a random variable Xv, which is discrete and takes values in A, a �nite

alphabet. Moreover, let X = (X1, . . . , Xd) be the vector of all variables observed on the

graph's vertices. Denote by P the joint probability distribution of the vector X. For any

W ⊂ V and any con�guration aW ∈ A
∣W ∣ we write

π(aW ) = P(XW = aW ).

Moreover, if π(aW ) > 0 then we denote by

π(aU ∣aW ) = P(XU = aU ∣XW = aW ),

the corresponding conditional probability distributions, for aU ∈ A
∣U∣ and aW ∈ A

∣W ∣, where

U and W are subsets of V.

For a given vertex v ∈ V , any set W ⊂ V , with v ∉ W , is a neighborhood of v.

5
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Furthermore, W is called a Markov neighborhood of v if

π(av∣aU) = π(av∣aW ),

for all U ⊃ W , v ∉ U and all aU ∈ A
∣U∣, with π(aU) > 0. The de�nition of a Markov

neighborhood W of v is equivalent to request that for all U ′
⊂ V \ {v} (not containing v)

such that U ′ ∩W = ∅, XU ′ is conditionally independent of Xv, given XW . That is,

Xv⊥⊥XU ′∣XW ,

for all U ′ with U ′ ∩W = ∅, where⊥⊥ is the usual symbol denoting independence of random

variables.

As discussed in Leonardi et al. [2023], ifW is a Markov neighborhood of v ∈ V , then any

�nite set U ⊃ W is also a Markov neighborhood of v. In contrast, W1 and W2 being Markov

neighborhoods of v does not imply in general that W1 ∩ W2 is a Markov neighborhood

of v, however this property is satis�ed by some probability measures. This fact leads to the

following de�nition.

De�nition 1 (Markov intersection property). We say that π satis�es the Markov intersec-

tion property if for all v ∈ V and all W1 and W2 Markov neighborhoods of v, the set W1∩W2

is also a Markov neighborhood of v.

The Markov intersection property is desirable in this context to de�ne the smallest

Markov neighborhood of a node and its structure estimation. This property is guaranteed

under the usually assumed positivity condition de�ned below.

De�nition 2 (Positivity condition). We say that π satis�es the positivity condition if for

all �nite W ⊂ V and all aW ∈ A
∣W ∣

we have π(aW ) > 0.

The positivity condition implies the Markov intersection property [see Lauritzen, 1996].

For this reason, in the literature on Markov random �elds, it is generally assumed that

the positivity condition holds. Leonardi et al. [2023] discuss that there are distributions

satisfying the Markov intersection property that are not strictly positive. Thus, we assume

in this thesis that the distribution π satis�es the Markov intersection property in De�nition 1.

Therefore, it is worth to name the intersection of all Markov neighborhoods of a given node

v ∈ V , as in De�nition 3.

De�nition 3 (Basic neighborhood). For v ∈ V , let W(v) be the set of all subsets of V

which are Markov neighborhoods of v. The basic neighborhood of v is de�ned as

ne(v) = ⋂
W∈W(v)

W. (2.1)
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When the Markov intersection property holds, ne(v) is the smallest Markov neighborhood

of v ∈ V . Based on these basic neighborhoods, de�ne the graph G∗
= (V,E∗) as

(v, w) ∈ E
∗ if and only if w ∈ ne(v), (2.2)

where E∗
⊆ V × V. The graph G

∗ with edges de�ned in (2.2) is undirected, as proved by

Leonardi et al. [2023]. It means that,

(v, w) ∈ E
∗
⇔ (w, v) ∈ E

∗
.

For any given graph G = (V,E), let G(v) be the set of all neighbors of vertex v ∈ V in

graph G, that is

G(v) = {u ∈ V ∶ (u, v) ∈ E}. (2.3)

Note that for G = G
∗
, G(v) = ne(v). This set G(v) will be used in the estimation process

presented in Section 2.4.

2.2 Vector-Valued Mixing Processes

In this work, we consider a vector-valued stationary and ergotic stochastic process

X
(1)
, X

(2)
, . . . , where each variable X(i) is a vector of d components, belonging to the set

A
d, with A being a �nite alphabet. We denote by ((Ad)∞,F ,P) the probability space for the

process {X(i)∶ i ∈ Z}.We use superscript indices in this process to indicate the time at which

the observation is taken. Therefore X(i)
= (X(i)

1 , . . . , X
(i)
d ) is the d-dimensional random vec-

tor observed at time i, for i = 1, . . . , n, and more speci�cally X(i)
v is the random variable

observed at time i on vertex v ∈ V. Further, we assume that the process {X(i)∶ i ∈ Z} has

an underlying graph G∗, which we aim to estimate this graph given a sample of the process.

In order to make inference, we shall consider slices of the entire realization of

X
(1)
, . . . , X

(n) on both dimensions, i.e. time and space. To avoid misleading notations, we

use superscripts to denote the indices in time (ranging from 1 to n) and subscripts to rep-

resent indices on space (a subset of V = {1, . . . , d}). For any set U ⊂ V and any integer

interval i ∶ j, we denote by X
(i∶j)
U the sequence X

(i)
U , . . . , X

(j)
U with X

(k)
U = (X(k)

u ∶u ∈ U),
k = i, . . . , j. When U = V , we avoid the subscript and simply write X(i∶j). The same notation

is used for realizations of the process, denoted in lower case x
(i∶j)
U instead of the notation for

the random variables X
(i∶j)
U . As an illustration, Figure 2.1 shows an example of realization

of the process X: the x-axis represents time whereas the y-axis represents space, i.e., the

vertices. Moreover, the rectangle highlights the slice of the process denoted by x
(2∶3)
U , where

U = {1, 2}, or straightforwardly, x(2∶3){1,2}.

As mentioned before, we want to estimate the graph G
∗ given a sample

{x(i)∶ i = 1, . . . , n}. The estimation of G∗ is presented in Leonardi et al. [2023] speci�cally

for the case when the observations are independent, that is, for IID processes. We consider
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Figure 2.1: Representation of a realization of the process X, with set of vertices V = {1, . . . , d}
observed from time 1 to n. The subscript indicates the vertex, and the superscript indicates the time

at which the observation was taken. The highlighted rectangle indicates the observed slice x
(2∶3)
{1,2}.

a less restrictive case where the sample satis�es the mixing condition below.

De�nition 4 (Mixing condition). For i < j, let X
(i∶j)

denote the sequence of vectors

X
(i)
, X

(i+1)
, . . . , X

(j)
. We say the process X = {X(i)∶ −∞ < i < ∞} satis�es a mixing

condition with rate {ψ(ℓ)}ℓ∈N if for each k,m ∈ N and each x
(1∶k)

∈ (Ad)k, x(1∶m)
∈ (Ad)m

with P(X(1∶m)
= x

(1∶m)) > 0, we have that

»»»»»»P(X
(n∶(n+k−1))

= x
(1∶k) ∣X(1∶m)

= x
(1∶m)) − P(X(n∶(n+k−1))

= x
(1∶k))»»»»»»

≤ ψ(ℓ)P(X(n∶(n+k−1))
= x

(1∶k)),
(2.4)

for ℓ ≥ n −m.

In the estimation process that we propose in Section 2.4, we will consider the sample data

restricted to some nodes rather than the entire process. Speci�cally, a subprocess {X(i)
W ∶ i ∈

N}, W ⊂ V , where X
(i)
W = (X(i)

w ∈ A ∶ w ∈ W ). Lemma 5 states that any sub-process of a

multivariate mixing process is also mixing.

Lemma 5. If the process {X(i)∶ i ∈ Z} satis�es the mixing condition (2.4) with rate {ψ(ℓ)},
then for W ⊂ V, the sub-process {X(i)

W ∶ i ∈ Z} is also mixing with the same rate {ψ(ℓ)}.

Proof. Let W c
= V \W, and let a

(1∶k)
W c ∈ (A∣W c∣)k. Observe that for any a

(1∶k)
W ∈ (A∣W ∣)k,

and any a
(1∶m)
W ∈ (A∣W ∣)m we have that

∣P(X(n∶(n+k−1))
W = a

(1∶k)
W ∣X(1∶m)

W = a
(1∶m)
W ) − P(X(n∶(n+k−1))

W = a
(1∶k)
W )∣

=
»»»»»» ∑
a
(1∶k)
Wc

P(X(n∶(n+k−1))
W = a

(1∶k)
W , X

(n∶(n+k−1))
W c = a

(1∶k)
W c ∣X(1∶m)

W = a
(1∶m)
W )
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− ∑
a
(1∶k)
Wc

P(X(n∶(n+k−1))
W = a

(1∶k)
W , X

(n∶(n+k−1))
W c = a

(1∶k)
W c )»»»»»»

≤ ∑
a
(1∶k)
Wc ,a

(1∶m)
Wc

»»»»»»P(X
(n∶(n+k−1))
W = a

(1∶k)
W , X

(n∶(n+k−1))
W c = a

(1∶k)
W c ∣X(1∶m)

W = a
(1∶m)
W , X

(1∶m)
W c = a

(1∶m)
W c )

− P(X(n∶(n+k−1))
W = a

(1∶k)
W , X

(n∶(n+k−1))
W c = a

(1∶k)
W c )»»»»»»

≤ ∑
a
(1∶k)
Wc

ψ(n −m)P(X(n∶(n+k−1))
W = a

(1∶k)
W , X

(n∶(n+k−1))
W c = a

(1∶k)
W c )

≤ ψ(n −m)P(X(n∶(n+k−1))
W = a

(1∶k)
W ) .

Then the process {X(i)
W ∶ i ∈ N} with W ⊂ {1, . . . , d} is mixing with rate {ψ(ℓ)}.

The following lemma states that a given function of a mixing process is also mixing, as

long as this function is bounded and takes values from A
d into the real line.

Lemma 6. Let the process {X(i)∶ i ∈ Z} satisfy the mixing condition (2.4) with rate {ψ(ℓ)}ℓ∈N
Since A

d
is �nite, f ∶ Ad

→ R is a bounded function. Then, the process {f(X(i))∶ i ∈ Z} is

also mixing with rate ψ(ℓ)ℓ∈N.

Proof. Consider Y
(i)

= f(X(i)) and let PY denote the distribution of the process

{Y (i) ∶ i ∈ Z}. Note that

PY (Y (i)
= y) = PY (f(X(i)) = y)

= ∑
a∶f(a)=y

PX(X(i)
= a),

where a ∈ A
d and PX denotes the probability distribution of the process {X(i) ∶ i ∈ Z}. Also

note that the notation above can be generalized for vectors of the form

Y
(1∶m)

= (Y (1)
, . . . , Y

(m)), for m > 1, as

{Y (1∶m)
= y

(1∶m)} =

m

⋂
i=1

{f(X(i)) = y
(i)}

=

m

⋂
i=1

{ ⋃
a∶f(a)=y(i)

{X(i)
= a}}.

(2.5)

Now, for i < j, de�ne the set

C(y(i∶j)) = {(a(i), . . . , a(j)) ∈ A
d×(j−i+1)

∶ f(a(k)) = y
(k)
, k = i, . . . , j},

which denotes all con�gurations of (a(i), . . . , a(j)) such that {Y (i∶j)
= y

(i∶j)} holds. Then, we

can write

PY (Y (1∶m)
= y

(1∶m)) = ∑
x(1∶m)

∈C(y(1∶m))
PX(X(1∶m)

= x
(1∶m)) (2.6)
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for each sequence y(1∶m).

Analogously to (2.5), the conditional event {Y (n∶(n+k−1))
= y

(1∶k)∣Y (1∶m)
= y

(1∶m)} can be

written as

{ ⋃
x(1∶k)

∈C(y(1∶k))
{X(n∶(n+k−1))

= x
(1∶k)}

»»»»»»»»»»
⋃

x(1∶m)
∈C(y(1∶m))

{X(1∶m)
= x

(1∶m)}},

for each sequence y(1∶k) given y(1∶m). Then

PY (Y (n∶(n+k−1))
= y

(1∶k)∣Y (1∶m)
= y

(1∶m))

= P( ⋃
x(1∶k)

∈C(y(1∶k))
{X(n∶(n+k−1))

= x
(1∶k)}

»»»»»»»»
⋃

x(1∶m)
∈C(y(1∶m))

{X(1∶m)
= x

(1∶m)})

= ∑
x(1∶k)

∈C(y(1∶k))
P(X(n∶(n+k−1))

= x
(1∶k)»»»»»»»»

⋃
x(1∶m)

∈C(y(1∶m))
{X(1∶m)

= x
(1∶m)})

= ∑
x(1∶k)

∈C(y(1∶k))

P(X(n∶(n+k−1))
= x

(1∶k)
,∪x(1∶m)

∈C(y(1∶m)){X(1∶m)
= x

(1∶m)})
P(∪x(1∶m)

∈C(y(1∶m))X
(1∶m)

= x(1∶m))

= ∑
x(1∶k)

∈C(y(1∶k))

∑x(1∶m)
∈C(y(1∶m)) P(X

(n∶(n+k−1))
= x

(1∶k)
, X

(1∶m)
= x

(1∶m))
∑x(1∶m)

∈C(y(1∶m)) P(X(1∶m)
= x(1∶m))

.

(2.7)

Observe that by the mixing property (2.4), for each x(1∶m)
∈ C(y(1∶m)), we obtain that

[1 − ψ(n −m)]P(X(n∶(n+k−1))
= x

(1∶k)) ≤ P(X(n∶(n+k−1))
= x

(1∶k)
, X

(1∶m)
= x

(1∶m))
P(X(1∶m)

= x(1∶m))
≤[1 + ψ(n −m)]P(X(n∶(n+k−1))

= x
(1∶k)).

(2.8)

By combining (2.7) with (2.8), we obtain that

[1 − ψ(n −m)]P(X(n∶(n+k−1))
= x

(1∶k))

≤

∑x(1∶m)
∈C(y(1∶m)) P(X

(n∶(n+k−1))
= x

(1∶k)
, X

(1∶m)
= x

(1∶m))
∑x(1∶m)

∈C(y(1∶m)) P(X(1∶m)
= x(1∶m))

≤ [1 + ψ(n −m)]P(X(n∶(n+k−1))
= x

(1∶k)).

(2.9)

Finally, to prove that the process {Y (i)
, i ∈ N} is mixing, we need to show that the

absolute di�erence

»»»»»»P(Y
(n∶(n+k−1))

= y
(1∶k)∣Y (1∶m)

= y
(1∶m)) − P(Y (n∶(n+k−1))

= y
(1∶k))»»»»»» (2.10)

is bounded, similarly as in Expression (2.4). Using (2.6), (2.7), and (2.9) we can rewrite
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expression (2.10) as

»»»»»»»»»»
∑

x(1∶k)
∈C(y(1∶k))

[P(X(n∶(n+k−1))
= x

(1∶k)»»»»»»»»
⋃

x(1∶m)
∈C(y(1∶m))

{X(1∶m)
= x

(1∶m)})]

− ∑
x(1∶k)

∈C(y(1∶k))
P(X(n∶(n+k−1))

= x
(1∶k))

»»»»»»»»»»

≤ ∑
x(1∶k)

∈C(y(1∶k))

»»»»»»»»
P(X(n∶(n+k−1))

= x
(1∶k)»»»»»»»»

⋃
x(1∶m)

∈C(y(1∶m))
{X(1∶m)

= x
(1∶m)})

− P(X(n∶(n+k−1))
= x

(1∶k))
»»»»»»»»»»

= ∑
x(1∶k)

∈C(y(1∶k))

»»»»»»»»»»

∑x(1∶m)
∈C(y(1∶m)) P(X

(n∶(n+k−1))
= x

(1∶k)
, X

(1∶m)
= x

(1∶m))
∑x(1∶m)

∈C(y(1∶m)) P(X(1∶m)
= x(1∶m))

− P(X(n∶(n+k−1))
= x

(1∶k))
»»»»»»»»»»

≤ ∑
x(1∶k)

∈C(y(1∶k))
ψ(n −m)P(X(n∶(n+k−1))

= x
(1∶k))

= ψ(n −m) ∑
x(1∶k)

∈C(y(1∶k))
P(X(n∶(n+k−1))

= x
(1∶k))

= ψ(n −m)P(Y (n∶(n+k−1))
= y

(1∶k)).

Thus,

»»»»»»P(Y
(n+1)∶(n+k)

= y
(1∶k)∣Y (1∶m)

= y
(1∶m)) − P(Y (1∶k)

= y
(1∶k))»»»»»»

≤ ψ(n −m)P(Y (n∶(n+k−1))
= y

(1∶k))

and the process {Y (i)
, i ∈ Z} is mixing with rate {ψ(ℓ)}.

2.3 Empirical Probabilities

Assume we observe a sample of size n of the process, denoted by {x(i)∶ i = 1, . . . , n}. In
this section, we state and prove Proposition 7 and Proposition 8 that show upper bounds

for the rate of convergence of π̂(aW ) into π(aW ) and π̂(av∣aW ) into π(av∣aW ), respectively.
These are auxiliary results needed in the proof of Theorem 10, the main contribution of this

thesis.

Since the stationary distribution of the process π is unknown, we must estimate it from

the data. For any W ⊂ V and any aW ∈ A
W denote by

π̂(aW ) = N(aW )
n ,
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where N(aW ) denotes the number of times the con�guration aW appears in the sam-

ple {x(i)∶ i = 1, . . . , n}. If π̂(aW ) > 0, we can also de�ne the conditional probabilities

π̂(aW ∣aW ′) = π̂(aW∪W ′)
π̂(aW ′) , (2.11)

for two disjoint subsets W,W ′
⊂ V and con�gurations aW ∈ A

W
, aW ′ ∈ A

W
′

.

Based on results in Csiszár [2002], we can state and prove the following two propositions

showing the rate of convergence of the empirical probabilities in a stationary stochastic

process with exponential mixing sequence.

Proposition 7 (Typicality). Assume the process {X(i)∶ i ∈ Z} satis�es the mixing condi-

tion (2.4) with rate ψ(ℓ) = O(1/ℓ1+ϵ), for some ϵ > 0. Then, for any W ⊂ V and δ > 0,

»»»»»»π̂(aW ) − π(aW )»»»»»» <
√
δ log n
n ,

eventually almost surely as n→ ∞.

Proof. Let aW ∈ A
W be �xed and let

Y
(i)

= f(X(i)) = 1{X(i)
W = aW} − π(aW ), (2.12)

for i = 1, 2, . . . , n, be random variables that are functions of the process {X(i)
W ∶ i ∈ N,W ⊂

V }. Since {X(i) ∶ i ∈ Z} is mixing with rate ψ(ℓ) and the function f(X(i)) de�ned in (2.12)

is bounded, then by Lemmas 5 and 6 the sub-process {Y (i) ∶ i ∈ Z} is also mixing with the

same rate.

Also, note that

E(Y (i)) = [1 − π(aW )]π(aW ) − π(aW )[1 − π(aW )]
= 0,

and

E[(Y (i))2] = [1 − π(aW )]2π(aW ) + π(aW )2[1 − π(aW )]
= π(aW ) − 2π(aW )2 + π(aW )3 + π(aW )2 − π(aW )3

= π(aW )[1 − π(aW )]

≤
1

4
. (2.13)
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For Y (i) de�ned in (2.12) and δ > 0, we have that

E∣Y (i)∣2+δ = ∑
y(i)

∣y(i)∣2+δπ(Y (i)
= y

(i))

= ∣1 − π(aW )∣2+δπ(aW ) + ∣ − π(aW )∣2+δ[1 − π(aW )]

= [∣1 − π(aW )∣2+δ − ∣π(aW )∣2+δ]π(aW ) + ∣π(aW )∣2+δ

≤ [(1 − π(aW ))2+δ − π(aW )2+δ]π(aW ) + π(aW )2+δ

< ∞.

Now, de�ne the sum of the �rst n elements Y (i),

Zn =

n

∑
i=1

Y
(i)
.

By Theorem 17 (see Appendix A), for some ϵ > 1/(1+ δ), the process {Y (i) ∶ i ∈ N} satis�es
the Law of the Iterated Logarithm. That is, for any ϵ > 0,

∣Zn∣ < (1 + ϵ)(2σ2
n log log n)1/2,

eventually almost surely as n→ ∞, where

σ
2
= E[(Y (1))2] + 2

n

∑
j=1

E[Y (1)
Y

(j)].

Now, by Lemma 19, since E[Y (1)
Y

(j)] = 0, we have that σ2
= E[(Y (1))2]. And therefore,

by Expression (2.13), we have that

σ
2
≤

1

4
.

Thus, for any ϵ > 0,

∣Zn∣ < (1 + ϵ)(n log log n)1/2,

eventually almost surely as n→ ∞. Since Zn = N(aW ) − nπ(aW ), we obtain

»»»»»»»»
Zn

n

»»»»»»»»
= ∣π̂(aW ) − π(aW )∣ <

√
2 log log n

n ,

eventually almost surely as n→ ∞. Now, for any δ > 0 we have that

2 log log n < δ log n.
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for all n su�ciently large. Therefore,

»»»»»»π̂(aW ) − π(aW )»»»»»» <
√
δ log n
n ,

eventually almost surely as n→ ∞.

Proposition 8 (Conditional typicality). Then for any δ > 0, any disjoint sets W,W
′
⊂ V

and any aW ∈ A
W

and aW ′ ∈ A
W

′

we have that

»»»»»»π̂(aW ∣aW ′) − π(aW ∣aW ′)»»»»»» <
√

δ log n

N(aW ) ,

eventually almost surely as n→ ∞.

Proof. This proof uses similar arguments to those presented to prove Proposition 7 with

slight adaptations since here we seek for the estimator's rate of convergence to the conditional

distribution π(aW ∣aW ′).
For W,W ′

∈ V two disjoint subsets, let aW ∈ A
W and aW ′ ∈ A

W
′

be two �xed con�gu-

rations. De�ne the process {Y (i) ∶ i ∈ Z} by

Y
(i)

= 1{X(i)
W = aW , X

(i)
W ′ = aW ′} − π(aW ∣aW ′)1{X(i)

W = aW ′}, (2.14)

for i = 1, 2, . . . , n. Note that Y (i) can only assume three values,

Y
(i)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − π(aW ∣aW ′), with probability π(aW , aW ′),
0, with probability 1 − π(aW ′),
−π(aW ∣aW ′), with probability ∑ãW≠aW

π(ãW , aW ′) = π(aW ′) − π(aW , aW ′),

where π(aW ′) = ∑a∈A∣W ∣ π(a, aW ′). Since {X(i) ∶ i ∈ Z} is mixing with rate ψ(ℓ) and Y (i)

de�ned in (2.14) is a bounded function of this process, then, according to Lemmas 5 and 6

the sub-process {Y (i) ∶ i ∈ N} is also mixing with the same rate.

Moreover,

E(Y (i)) = [1 − π(aW ∣aW ′)]π(aW , aW ′) − π(aW ∣aW ′)[π(aW ′) − π(aW , aW ′)]
=π(aW , aW ′) − π(aW ∣aW ′)π(aW , aW ′) − π(aW ∣aW ′)π(aW ′) + π(aW ∣aW ′)π(aW , aW ′)

=π(aW , aW ′) − π(aW , aW ′)
π(aW ′) π(aW , aW ′) − π(aW , aW ′)

π(aW ′) π(aW ′) + π(aW , aW ′)
π(aW ′) π(aW , aW ′)

=0,

and

E[(Y (i))2] =[1 − π(aW ∣aW ′)]2π(aW , aW ′) + [ − π(aW ∣aW ′)]2[π(aW ′) − π(aW , aW ′)]
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=[1 − 2π(aW ∣aW ′) + π(aW ∣aW ′)2]π(aW , aW ′)
+ [ − π(aW ∣aW ′)]2[π(aW ′) − π(aW , aW ′)]

=π(aW , aW ′) − 2π(aW ∣aW ′)π(aW , aW ′) + π(aW ∣aW ′)2π(aW , aW ′)
+ π(aW ∣aW ′)2π(aW ′) − π(aW ∣aW ′)2π(aW , aW ′)

=π(aW , aW ′) − 2π(aW ∣aW ′)π(aW , aW ′) + π(aW ∣aW ′)2π(aW ′)

=π(aW , aW ′)[1 − 2
π(aW , aW ′)
π(aW ′) +

π(aW , aW ′)
π(aW ′) ]

=π(aW , aW ′)[1 − π(aW , aW ′)
π(aW ′) ]

=
π(aW , aW ′)
π(aW ′) [π(aW ′) − π(aW , aW ′)]

=π(aW ∣aW ′)[π(aW ′) − π(aW ∣aW ′)p(aW ′)]

=π(aW ∣aW ′)[1 − π(aW ∣aW ′)]π(aW ′)

≤
1

4
π(aW ′). (2.15)

Also note that, for some δ > 0, we have

E∣Y (i)∣2+δ = ∑
y(i)

∣y(i)∣2+δπ(Y (i)
= y

(i))

= ∣1 − π(aW ∣aW ′)∣2+δπ(aW , aW ′) + ∣ − π(aW ∣aW ′)∣2+δ[π(aW ′) − π(aW , aW ′)]

= [∣1 − π(aW ∣aW ′)∣2+δ − ∣π(aW ∣aW ′)∣2+δ]π(aW , aW ′) + ∣π(aW ∣aW ′)∣2+δπ(aW ′)

≤ [(1 − π(aW ∣aW ′))2+δ − π(aW ∣aW ′)2+δ]π(aW , aW ′) + π(aW ∣aW ′)2+δπ(aW ′)

≤ [(1 − π(aW ∣aW ′))2+δ − π(aW ∣aW ′)2+δ] + π(aW ∣aW ′)2+δ + π(aW ∣aW ′)2+δ

< ∞. (2.16)

Now, de�ne

Zn =

n

∑
i=1

Y
(i)
. (2.17)

Analogously to the proof of Proposition 7, since (2.16) holds, E∣Y (i)∣2+δ < ∞ with rate

ψ(ℓ) = O(1/ℓ1+ϵ), then by Theorem 17 and Remark 18 (see in Appendix A), we obtain that

∣Zn∣ < (1 + ϵ)(2σ2
n log log n)1/2,

eventually almost surely as n→ ∞, where σ2
= E[(Y (0))2]+ 2∑n

j=1 E[Y
(0)
Y

(j)]. Again, by
Lemma 19, since E[Y (0)

Y
(j)] = 0 and from (2.15), we have that

σ
2
≤

1

4
π(aW ′).
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Therefore, for any ϵ > 0,

∣Zn∣ < (1 + ϵ)[1
2
π(aW ′)n log log n]

1/2
,

eventually almost surely as n→ ∞. In particular, by taking ϵ =
√
2 − 1 we have that

∣Zn∣ < [π(aW ′)n log log n]1/2, (2.18)

eventually almost surely as n→ ∞.

Note that Zn de�ned in (2.17) can be written as

Zn = N(aW , aW ′) − π(a∣aW ′)N(aW ′).

If we divide Zn by N(a′W ) and together with (2.18), we get that

∣π̂(aW ∣aW ′) − π(aW ∣aW ′)∣ <
√

π(aW ′)n log log n
N(aW ′)2 ,

eventually almost surely as n→ ∞. By Proposition 7, for any α > 0 we have that

N(aW ′) > nπ(aW ′) −
√
δn log n > (1 − α)nπ(aW ′),

eventually almost surely as n→ ∞. Then, we obtain that

∣π̂(aW ∣aW ′) − π(aW ∣aW ′)∣ <

√
log log n

(1 − α)N(aW ′) .

As before, for any δ > 0 we have that

log log n

1 − α
< δ log n

for su�ciently large n, and therefore for all δ > 0

∣π̂(aW ∣aW ′) − π(aW ∣aW ′)∣ <

√
δ log n

N(aW ′) ,

eventually almost surely as n→ ∞.
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2.4 Regularized Maximum Pseudo-Likelihood Graph Es-

timator

In this work, we take a regularized pseudo maximum likelihood approach to estimate the

graph G∗, given a sample x(1), . . . , x(n) of the stochastic process. Instead of estimating each

neighborhood and then combining the results, as is done in several works, in particular in

Leonardi et al. [2023], we globally estimate the graph G∗ by optimizing a function over the

set of all simple graphs over V .

Given any graph G, we de�ne the pseudo-likelihood function by

L(G) =

n

∏
i=1

∏
v∈V

π(x(i)v ∣x(i)G(v)),

where G(v), de�ned in (2.3), represents the set of all neighbors of node v in graph G.

Since the conditional probabilities of π are unknown, we can estimate them from the data,

obtaining the maximum pseudo-likelihood estimator given by

L̂(G) =

n

∏
i=1

∏
v∈V

π̂(x(i)v ∣x(i)G(v)) , (2.19)

with π̂(x(i)v ∣x(i)G(v)) being de�ned as in (2.11) taking W = {v} and W ′
= {G(v)}. Applying

the logarithm and taking into account the number of occurrences of each con�guration in

the sample, we can write the log pseudo-likelihood function as

log L̂(G) = ∑
v∈V

∑
av∈A

∑
aG(v)∈A∣G(v)∣

N(av, aG(v)) log π̂(av∣aG(v)) , (2.20)

where the sum is taken over all v ∈ V and all con�gurations av ∈ A, aG(v) ∈ A
∣G(v)∣ such that

N(av, aG(v)) > 0. Here ∣G(v)∣ denotes the cardinal of the set G(v). The graph estimator is

de�ned below.

De�nition 9 (Graph estimator). Given a sample {x(i)∶ i ∈ {1, . . . , n}} of a process that

satis�es the mixing condition (2.4) and λn a non-negative decreasing sequence, we de�ne the

estimator of G
∗
as

Ĝ = argmax
G

{ log L̂(G) − λn ∑
v∈V

∣A∣∣G(v)∣}. (2.21)

Denote by Gmax the complete graph over V , that is

Gmax = (V,Emax),

where

Emax = {(u, v) ∈ V ∶ u ≠ v}.
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Note that in particular we have that Gmax(v) = V \ {v} for all v ∈ V. For any v ∈ V , denote

by

α(v) = min
G(v)⊂V \{v} ∶G∗(v)/⊂G(v)

{ ∑
aGmax(v)

π(aGmax(v))D(π(⋅v∣aG∗(v)); π(⋅v∣aG(v)))} (2.22)

where π(⋅v∣aG∗(v)) denotes the probability distribution over A given by {π(av∣aG∗(v))}av∈A
and similarly for π(⋅v∣aG(v)), and D denotes the Küllback-Leibler divergence (see De�nition

14 in Appendix A). By De�nition 3 of basic neighborhood and Lemma 20 (presented in

Appendix A) we must have α(v) > 0. A formal proof can be found in Leonardi et al. [2023].

Thus, by taking the sum of α(v) > 0 over all v ∈ V we get

∑
v∈V

α(v) > 0.

The quantity de�ned in (2.22) is required to prove the results in the sequel.

The theorem presented below is the main theoretical contribution of this work. Moreover,

as mentioned before, Propositions 7 and 8 are auxiliary results used to prove the consistency

of our proposed estimator.

Theorem 10. Assume the process {X(i) ∶ i ∈ Z} satis�es the mixing condition (2.4) with

ψ(ℓ) = O(1/ℓ1+ϵ) for some ϵ > 0. Then, taking λn = c log n we have that Ĝ de�ned in (2.21)

satis�es Ĝ = G
∗
eventually almost surely as n→ ∞.

Proof. First, note that we can decompose the event {Ĝ ≠ G
∗} as the union of two events:

{G∗
⊊ Ĝ} ∪ {G∗ /⊂ Ĝ}, (2.23)

for all graph Ĝ. The event on the left-hand side signi�es over�tting, occurring when Ĝ is a

strict superset of G∗, meaning that Ĝ has at least one more edge than G
∗. On the other

hand, the event on the right-hand side denotes under�tting, where Ĝ has at least one fewer

edge than G∗
. In this proof, we consider the elements in the union (2.23) separately, i.e., we

treat them in two cases

(a) {G∗
⊊ Ĝ},

(b) {G∗ /⊂ Ĝ},

proving that eventually almost surely as n→ ∞, neither of them can happen, which implies

that Ĝ = G
∗
.

First, case (a), where G∗
⊊ Ĝ, is graphically shown in Figure 2.2 (a). We show that

{G∗
⊊ Ĝ} does not hold eventually almost surely as n → ∞. To show that, we prove that

for all graph G such that G∗
⊊ G,

log L̂(G) − λn ∑
v∈V

∣A∣∣G(v)∣
< log L̂(G∗) − λn ∑

v∈V

∣A∣∣G
∗(v)∣

, (2.24)
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Ĝ

G
∗

(a)

ĜG
∗

(b)

Figure 2.2: Decomposition of the event {Ĝ ≠ G
∗} in two cases: (a) G

∗
is strictly contained in G

(non-over�tting), and (b) G
∗
is not a subset of G (non-under�tting). Furthermore, in the second

case we consider that {G∗ \ Ĝ} ≠ ∅, otherwise it is similar to the �rst case.

eventually almost surely as n→ ∞, proving that Ĝ ≠ G for all G ⊋ G
∗. Note that (2.24) is

equivalent to say that

log L̂(G) − log L̂(G∗) < λn( ∑
v∈V

∣A∣∣G(v)∣
− ∑

v∈V

∣A∣∣G
∗(v)∣), (2.25)

eventually almost surely as n→ ∞.

Moreover, from (2.19) we can write

log L̂(G) = ∑
v∈V

∑
av ,aG(v)

N(av, aG(v)) log π̂(av∣aG(v)), (2.26)

and log L̂(G∗) can be expressed similarly as in Equation (2.26). Thus, since G∗
⊊ G (i.e.,

G has more edges than G∗), the di�erence log L̂(G)− log L̂(G∗) can be written in terms of

the sum over the edges of G, that is,

log L̂(G) − log L̂(G∗) = ∑
v∈V

∑
av ,aG(v)

N(av, aG(v)) log
π̂(av∣aG(v))
π̂(av∣aG∗(v))

.

By the de�nition of maximum likelihood estimators, for a �xed v ∈ V, we have that

∑
av ,aG(v)

N(av, aG(v)) log π̂(av∣aG∗(v)) ≥ ∑
av ,aG(v)

N(av, aG(v)) log π(av∣aG∗(v))

= ∑
av ,aG(v)

N(av, aG(v)) log π(av∣aG(v)),

and π(av∣aG∗(v)) = π(av∣aG(v)) holds since G∗ is the true graph and G is considered to have

more edges than G∗
.
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Therefore, the left-hand side of (2.25) can be upper-bounded by

∑
v∈V

∑
av ,aG(v)

N(av, aG(v)) log
π̂(av∣aG(v))
π(av∣aG(v))

= ∑
v∈V

∑
aG(v)

N(aG(v))D(π̂(⋅v∣aG(v)) ; π(⋅v∣aG(v))) ,

where D denotes the Küllback-Leibler divergence (see De�nition 14 in Appendix A). Thus,

by Lemma 15,

∑
v∈V

∑
aG(v)

N(aG(v))D(π̂(⋅v∣aG(v)) ; π(⋅v∣aG(v)))

≤ ∑
v∈V

∑
aG(v)

N(aG(v)) ∑
av∈A

[ π̂(av∣aG(v)) − π(av∣aG(v)) ]2

π(av∣aG(v))
.

(2.27)

Now, by Proposition 8 and Expression (2.27), for δ > 0, we have that

∑
v∈V

∑
aG(v)

N(aG(v))D(π̂(⋅v∣aG(v)) ; π(⋅v∣aG(v)))

≤ ∑
v∈V

∑
aG(v)

N(aG(v)) ∑
av∈A

δ log n

N(aG(v))π(av∣aG(v))

≤ ∑
v∈V

∑
aG(v)

∑
av∈A

δ log n

π(av∣aG(v))

≤
δ log n
πmin

∑
v∈V

∣A∣G(v)∣A∣

≤
δ log n
πmin

∣A∣ ∑
v∈V

∣A∣G(v)
,

(2.28)

and this holds eventually almost surely for n→ ∞, where

πmin = min
v∈V

{π(av∣aG(v)) ∶ π(av∣aG(v)) > 0, av ∈ A, aG(v) ∈ A
∣G(v)∣}. (2.29)

Finally, in order to show (2.25), one can see from Expression (2.28) that it is enough to

show that for λn = c log n, there exists δ > 0 such that

δ log n
πmin

∣A∣ ∑
v∈V

∣A∣G(v)
< c log n ( ∑

v∈V

∣A∣∣G(v)∣
− ∑

v∈V

∣A∣∣G
∗(v)∣),

which is equivalent to

c log n ( ∑
v∈V

∣A∣∣G(v)∣
− ∑

v∈V

∣A∣∣G
∗(v)∣) − δ log n

πmin
∣A∣ ∑

v∈V

∣A∣G(v)
> 0. (2.30)
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Note that, since G∗
⊊ G, we have that ∣E∗∣ < ∣E∣ and

∑
v∈V

∣A∣∣G(v)∣
− ∑

v∈V

∣A∣∣G
∗(v)∣

= ∑
v∈V

[ ∣A∣∣G(v)∣(1 − ∑v∈V ∣A∣∣G
∗(v)∣

∑v∈V ∣A∣∣G(v)∣ )]

≥ ∑
v∈V

[ ∣A∣∣G(v)∣
c
′]

≥ c
′ ∑
v∈V

∣A∣∣G(v)∣
,

for 0 < c
′
< 1. This inequality holds because

∑v∈V ∣A∣∣G
∗(v)∣

∑v∈V ∣A∣∣G(v)∣ < 1.

Thus in (2.30), δ can be chosen such that

∣A∣ δ
πmin

< cc
′
,

that is, we take

δ < cc
′
πmin

1

∣A∣
and therefore, we have that

max
G⊃G∗

{ log L̂(G) − λn ∑
v∈V

∣A∣∣G(v)∣ } < log L̂(G∗) − λn ∑
v∈V

∣A∣∣G
∗(v)∣

, (2.31)

eventually almost surely as n→ ∞. This completes the proof of case (a), i.e., that {G∗
⊊ Ĝ}

does not hold with probability converging to 1 as n→ ∞.

Now, we move to prove case (b). In this case, shown in Figure 2.2 (b), we need to prove

that

{G∗ /⊂ Ĝ},

where {G∗ \ G} ≠ ∅, does not hold eventually almost surely as n → ∞. To prove this, we

need to demonstrate that for any graph G such that G /⊃ G
∗
,

log L̂(G) − λn ∑
v∈V

∣A∣∣G(v)∣
< log L̂(G∗) − λn ∑

v∈V

∣A∣∣G
∗(v)∣

, (2.32)

eventually almost surely as n→ ∞. In order to prove that (2.32) holds, �rst we prove that

log L̂(G) − λn ∑
v∈V

∣A∣∣G(v)∣
< log L̂(Gmax) − λn ∑

v∈V

∣A∣∣Gmax(v)∣,

where Gmax denotes the complete graph in V . Then, this inequality, together with the argu-

ments presented in case (a), see Expression 2.31, will imply the desired result.
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Note that we have

log L̂(Gmax) − λn ∑
v∈V

∣A∣∣Gmax(v)∣ − log L̂(G) + λn ∑
v∈V

∣A∣∣G(v)∣

= ∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v)) log
π̂(av∣aGmax(v))
π̂(av∣aG(v))

− λn ∑
v∈V

(∣A∣∣Gmax(v)∣ − ∣A∣∣G(v)∣)

= n[ ∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n log

π̂(av∣aGmax(v))
π̂(av∣aG(v))

−
λn
n ∑

v∈V

(∣A∣∣Gmax(v)∣ − ∣A∣∣G(v)∣)]. (2.33)

One can see that for λn = c log n, with c > 0, the second term in the brackets in (2.33)

vanishes when n→ ∞, i.e.,

λn
n ∑

v∈V

(∣A∣∣Gmax(v)∣ − ∣A∣∣G(v)∣) −−−→
n→∞

0.

Now, by adding
N(av, aGmax(v))

n log
π(av∣aG(v))
π(av∣aG(v))

= 0

into the �rst term of the sum in (2.33), we can write it as

∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n log

π̂(av∣aGmax(v))
π̂(av∣aG(v))

= ∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n ( log

π̂(av∣aGmax(v))
π̂(av∣aG(v))

+ log
π(av∣aG(v))
π(av∣aG(v))

)

= ∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n ( log

π̂(av∣aGmax(v))
π(av∣aG(v))

− log
π̂(av∣aG(v))
π(av∣aG(v))

)

= ∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n log

π̂(av∣aGmax(v))
π(av∣aG(v))

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
(1)

− ∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n log

π̂(av∣aG(v))
π(av∣aG(v))

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
(2)

. (2.34)

As highlighted in (2.34), we analyze this expression in two parts. The second term in the
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right-hand side of (2.34) can be written as

∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n log

π̂(av∣aG(v))
π(av∣aG(v))

= ∑
v∈V

∑
av ,aG(v)

N(aG(v))
n π̂(av∣aG(v)) log

π̂(av∣aG(v))
π(av∣aG(v))

= ∑
v∈V

∑
aG(v)

N(aG(v))
n ∑

av

π̂(av∣aG(v)) log
π̂(av∣aG(v))
π(av∣aG(v))

= ∑
v∈V

∑
aG(v)

N(aG(v))
n D(π̂(⋅v∣aG(v)); π(⋅v∣aG(v))).

Further, observe that, by Lemma 15 and Proposition 8, for δ > 0, we have

∑
v∈V

∑
aG(v)

N(aG(v))
n D(π̂(⋅v∣aG(v)) ; π(⋅v∣aG(v)))

≤ ∑
v∈V

∑
aG(v)

N(aG(v))
n ∑

av∈A

[ π̂(av∣aG(v)) − π(av∣aG(v)) ]2

π(av∣aG(v))

≤ ∑
v∈V

∑
aG(v)

N(aG(v))
n ∑

av∈A

δ log n

N(aG(v))π(av∣aG(v))

≤ ∣V ∣∣A∣∣V ∣ δ
πmin

log n
n → 0.

as n→ ∞. Remember that πmin is de�ned in (2.29).

Since π̂(av∣aGmax(v)) are the maximum likelihood estimators of π(av∣aGmax(v)) and

G
∗
⊆ Gmax, the �rst term in the right-hand side of (2.34) can be lower-bounded by

∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n log

π̂(av∣aGmax(v))
π(av∣aG(v))

≥ ∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n log

π(av∣aGmax(v))
π(av∣aG(v))

= ∑
v∈V

∑
av ,aGmax(v)

N(av, aGmax(v))
n log

π(av∣aG∗(v))
π(av∣aG(v))

. (2.35)

By Proposition 7,

N(av, aGmax(v))
n = π̂(av, aGmax(v)) > π(av, aGmax(v)) −

√
δ log n
n ,
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eventually almost surely as n→ ∞. Then, one can see that (2.35) can be lower-bounded by

∑
v∈V

∑
av ,aGmax(v)

[π(av, aGmax(v)) −
√
δ log n
n ] log

π(av∣aG∗(v))
π(av∣aG(v))

= ∑
v∈V

∑
aGmax(v)

π(aGmax(v))∑
av

π(av∣aGmax(v)) log
π(av∣aG∗(v))
π(av∣aG(v))

−

√
δ log n
n ∑

v∈V

∑
av ,aGmax(v)

log
π(av∣aG∗(v))
π(av∣aG(v))

= ∑
v∈V

∑
aGmax(v)

π(aGmax(v))D(π(⋅v∣aG∗(v)); π(⋅v∣aG(v)))

−

√
δ log n
n ∑

v∈V

∑
av ,aGmax(v)

log
π(av∣aG∗(v))
π(av∣aG(v))

≥
1

2
∑
v∈V

α(v), (2.36)

eventually almost surely as n→ ∞. Revisit Expression (2.22) for the de�nition of α(v). The
last inequality above comes from the fact that

√
δ log n
n ∑

v∈V

∑
av ,aGmax(v)

log
π(av∣aG∗(v))
π(av∣aG(v))

→ 0

eventually almost surely as n→ ∞.

Therefore, since ∑v∈V α(v) > 0, we have from (2.36) that

log L̂(G) − λn ∑
v∈V

∣A∣∣G(v)∣
≤ log L̂(Gmax) − λn ∑

v∈V

∣A∣∣Gmax(v)∣,

eventually almost surely as n→ ∞. Now, since G∗
⊂ Gmax, by case (a) we have that

log L̂(G) − λn ∣G∣ ≤ log L̂(Gmax) − λn ∑
v∈V

∣A∣∣Gmax(v)∣
< log L̂(G∗) − λn ∑

v∈V

∣A∣∣G
∗(v)∣

eventually almost surely as n → ∞, and this concludes the proof for case (b). Thus, com-

bining the two cases leads to

max
G∶{G≠G∗}

log L̂(G) − λn ∑
v∈V

∣A∣∣G(v)∣
< log L̂(G∗) − λn ∑

v∈V

∣A∣∣G
∗(v)∣

,

eventually almost surely as n → ∞ and we conclude that Ĝ = G
∗ eventually almost surely

as n→ ∞ which concludes the proof.

In summary, this chapter served as the fundamental groundwork for our study of multi-
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variate stochastic processes satisfying the mixing condition (2.4). Additionally, we presented

our proposed estimator of the underlying graph of this process and proved its consistency.



Chapter 3

Algorithms for Computing the Estimator

This chapter introduces and discusses the algorithms employed in this work to estimate

the graph G∗ (refer to Expression 2.21). The estimation involves �nding the maximal value

of

log L̂(G) − λn ∑
v∈V

∣A∣∣G(v)∣ (3.1)

over the set of graphs G over V. For clarity, let us de�ne

H(G) = log L̂(G) − λn ∑
v∈V

∣A∣∣G(v)∣
. (3.2)

Notice that our focus is on determining the maximal value of H(⋅) and identifying the ar-

gument at which this maximum occurs. As previously mentioned, an existing method in the

literature [see Leonardi et al., 2023] involves estimating the neighborhood of each node and

constructing the graph based on these estimated neighborhoods, adopting either a conser-

vative or non-conservative approach. Alternatively, a direct but computationally demanding

approach is the Exact algorithm outlined in Section 3.1, which evaluates Expression (3.1)

for all possible graphs and selects the one maximizing this quantity. However, it is important

to note that this algorithm su�ers from exponential time complexity.

In Section 3.2, we introduce the Simulated Annealing algorithm, a heuristic optimization

technique. This method begins with an initial graph solution and iteratively explores the

solution space by randomly perturbing the current solution, accepting perturbations based

on a probability function. As discussed later, this approach may require a substantial number

of iterations to �nd the solution, i.e., the estimated graph. To mitigate this challenge, we also

explore a greedy algorithm in Section 3.3, employing stepwise model selection. The Stepwise

algorithm, whether Forward or Backward, begins with a graph without edges (or a complete

graph) and selectively adds (or removes) edges based on their contributions to maximize the

penalized pseudo-loglikelihood function.

The primary goal of this chapter is to present each algorithm mentioned above. In Chap-

ter 4, we explore di�erent simulation scenarios, providing a detailed discussion of each im-

plementation's speci�cs and unique aspects. Additionally, we conduct a comparative study

26
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Algorithm 1 Exact algorithm

1: G ← {G = (V,E) ∶ E ⊆ {V × V } \ {(v, v) ∶ v ∈ V }}
2: ℓmax ← −∞
3: for G ∈ G do
4: ℓ← log L̂(G) − λn∑v∈V ∣A∣∣G(v)∣

5: if ℓ > ℓmax then
6: ℓmax = ℓ
7: Ĝ← G
8: end if
9: end for
10: return Ĝ

among these algorithms to evaluate their performance over di�erent penalizing constant

values.

3.1 Exact Algorithm

Given the task of maximizing Expression (3.1), the primary method that comes to mind

involves an exhaustive search across all potential graphs G = (V,E) within the de�ned

setting, where E ⊆ {V × V } \ {(v, v) ∶ v ∈ V }. The algorithm starts by de�ning the set G
encompassing all graphs with d = ∣V ∣ nodes, speci�ed as

G = {G = (V,E) ∶ E ⊆ {V × V } \ {(v, v) ∶ v ∈ V }}, (3.3)

and initializes the maximum pseudo-likelihood value ℓmax to −∞.

Then, it calculates the penalized pseudo-likelihood for each G ∈ G and sets Ĝ as the

graph at which Expression (3.1) achieves its maximum; let us refer to this value as ℓmax.

These steps are shown in Algorithm 1.

Note that the number of candidates to seek for the one that maximizes (3.1) is 2d(d−1)/2.

Its computational complexity is a signi�cant drawback, speci�cally as the number of nodes

in the graph increases. Hence, the exhaustive search performed by the Exact algorithm

for the best subset becomes computationally prohibitive, leading to impractical runtimes

for datasets with a large number of variables. Additionally, the algorithm is susceptible to

over�tting, particularly in scenarios with small sample sizes, potentially resulting in poor

generalization. Another concern is the risk of selection bias, as the algorithm may favor

subsets that perform well on the training data but might not accurately represent the true

relationships in the broader population. See more details in James et al. [2021].

Despite the computational ine�ciency of the Exact algorithm, we will consider it in our

simulation studies presented in Chapter 4. This is because the Exact algorithm ensures that

the estimated graph maximizes the penalized pseudo-log-likelihood function. Thus, we will

use its results for comparison with alternative methods discussed in the following sections:

the Simulated Annealing algorithm and the Stepwise edge selection algorithm.
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Figure 3.1: An example of (a) a graph with �ve nodes, denoted as G, and two possible neighbors:

(b) a neighboring graph of G, without the edge linking nodes 1 and 4, (c) another possible neighbor

of graph G, now adding an edge between nodes 3 and 5.

3.2 Simulated Annealing Algorithm

As discussed earlier, the Exact algorithm lacks numerical e�ciency. Therefore, we in-

troduce an alternative approach, the Simulated Annealing algorithm. Referring back to

Expression (3.2), let

H
∗
= max

G∈G
H(G)

represents the maximum penalized pseudo-likelihood among all possible graphs in the set G
and let

H = {G ∈ G ∶ H(G) = H
∗}

be the set of all graphs for which the penalized pseudo-likelihood attains the maximum

value H∗
. Our goal is to determine H∗ as well as an element of the set H. In this section,

we demonstrate how to achieve this.

Before presenting the algorithm itself, let us de�ne the concept of a graph's neighbor.

Two graphs, G and G′, are considered neighbors if they di�er by only a single edge. Figure 3.1

provides two examples of neighbors for the graph in the left panel. The central panel shows

a neighboring graph obtained by removing the edge between nodes 1 and 4 from the original

graph. In the right panel, nodes 3 and 5 were connected, adding an edge to the original

graph.

The Simulated Annealing is an iterative algorithm and operates as follows. It starts by

de�ning an initial state G1 ∈ G for the Markov chain. This state can be chosen randomly or

based on prior knowledge about the graph being estimated. For each n ∈ {1, 2, 3 . . . m}, a

Algorithm 2 Simulated annealing algorithm

1: Initialize G1 ∈ G.
2: Randomly choose a neighbor G′

1 of G1.

3: Transition to G′
1 with probability min {1, exp{ηnH(G2)}/∣N(G2)∣

exp{ηnH(G1)}/∣N(G1)∣
}, where ηn = C log(1+ n),

for n ≥ 1, where C > 0.
4: Repeat steps 2 and 3 m times.
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neighbor G′
n of Gn is randomly selected, here we consider that any neighbor of Gn is equally

likely to be chosen. The next state of the chain is either G′
n with probability

min {1, exp{ηnH(G′
n)}/∣N(G′

n)∣
exp{ηnH(Gn)}/∣N(Gn)∣

}, (3.4)

or it remains Gn, where ∣N(G)∣ is the number of neighbors of G, and ηn, for n ≥ 1, is

a prescribed set of values that start small, which leads to a large number of changes in

state, and then grow. This process is repeated m successive times to generate the states

G1, G2, . . . , Gm. We can then estimate H∗ by

max
i=1,...,m

H(Gi)

and if the maximum occurs at G∗
i , then it is taken as the estimated point in H. These steps

are outlined in Algorithm 2, and more details are available in Ross [2006], Section 10.4.

A computationally practical choice of ηn that also mathematically results in convergence

is to let ηn = C log(1 + n), where C > 0 is a �xed constant [Ross, 2006]. For further details

and justi�cation, refer to Besag et al. [1995] and Diaconis and Holmes [1995]. Note that

Expression (3.4) can be simpli�ed if each graph has the same number of neighbors. Then

when state is Gn, one of its neighbors, G
′
n for instance, is randomly chosen, the chain moves

to state G′
n with probability exp{ηn[H(G′

n) −H(Gn)]} or remains in state Gn otherwise.

As one can see, some choices must be made before executing Algorithm 2. The �rst is

the number m of iterations of the Simulated Annealing, the second is the value of constant

C, and the third is the initial state G1 of the chain. These values can interfere in the �nal

graph estimate. We discuss in more detail these aspects in Chapter 4 considering simulated

data in several scenarios.

3.3 Stepwise Edge Selection Algorithm

The Stepwise edge selection criteria is a computationally e�cient alternative to the Exact

algorithm presented in Section 3.1. While the Exact algorithm (also known as best subset

selection procedure) considers all 2d(d−1)/2 possible graphs, the Stepwise approach considers

a much smaller set of models. Remember that d = ∣V ∣.
The Backward Stepwise edge selection begins with the complete graph containing edges

linking all nodes and then removes edges from the graph, one at a time until no more edge

is left. In particular, at each step, the edge that, upon its removal, results in the greatest

improvement to the �t, is removed from the graph. The stopping condition of these steps

occurs when no improvement is made in maximizing the penalized pseudo-likelihood. More

formally, the Backward Stepwise selection procedure is outlined in Algorithm 3.

Alternatively, the Forward Stepwise edge selection is initiated with a graph containing no

edges. Then, edges are added to the graph one by one until all possible edges are included.
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Algorithm 3 Backward Stepwise edge selection

1: Let Gd denote the complete graph.
2: for k = d, d − 1 . . . , 1 do
3: Consider all k(k − 1)/2 graphs that contain all but one of the edges of graph Gk.
4: Choose the best among these k(k−1)/2 models, and call it Gk−1. Here best is de�ned

as having the highest penalized pseudo-likelihood (3.1).
5: if No improvement is made in maximizing the penalized pseudo-likelihood then
6: break
7: end if
8: end for
9: Select among G0, G1, . . . , Gd the graph with maximum penalized pseudo-likelihood.

Algorithm 4 Forward Stepwise edge selection

1: Let G0 denote the empty graph.
2: for k = 0, . . . , d do
3: Consider all (d − k)(d − k − 1)/2 graphs that adds exactly one edge in graph Gk

4: Choose the best among these (d− k)(d− k− 1)/2 models, and call it Gk+1. Here best
is de�ned as having the highest penalized pseudo-likelihood (3.1).

5: if No improvement is made in maximizing the penalized pseudo-likelihood then
6: break
7: end if
8: end for
9: Select among G0, G1, . . . , Gd the graph with maximum penalized pseudo-likelihood.

Speci�cally, at each step, the edge that provides the most signi�cant additional enhancement

to the �t is incorporated into the graph. The stopping condition of these steps occurs when

no improvement is made in maximizing the penalized pseudo-likelihood. Algorithm 4 gives

a formal version of the Forward Stepwise selection procedure.

3.4 The MixingGraph R package

The algorithms for estimation introduced in this chapter have been implemented in the R

package MixingGraph. You can access the package through the development version, which

is currently accessible at github.com/magnotairone/MixingGraph. Examples demonstrating

the package's usage are also provided on this page.

These estimation algorithms will be evaluated in Chapter 4 not only in terms of quality

of estimation but also computationally in terms of complexity considering practical scenarios

with simulated data.

https://github.com/magnotairone/MixingGraph


Chapter 4

Simulation Studies

This chapter is dedicated to comprehensively evaluating the algorithms introduced in

Chapter 3 concerning their estimation performance. We use a simulation scheme to show the

convergence of the proposed graph estimator presented in Expression (2.21) considering each

algorithm individually. By thoroughly evaluating the performance of the proposed estimator

through simulation studies, we aim to provide evidence of its e�ectiveness and robustness

in real-world applications. To conduct this simulation study, we utilize the R language [see

R Core Team, 2022], which provides a �exible and powerful tool for statistical computing.

Our exploration of the algorithms' performance encompasses two distinct settings. Ini-

tially, we address the scenario where a �xed true graph exists. Conditional probabilities are

de�ned on the basis of this graph, leading to the generation of synthetic data that are used to

assess how close our estimation is to the "true" graph. The primary objective of this initial

scenario is to analyze the proposed estimator's performance under stability conditions. This

investigation is detailed in Section 4.1.

Subsequently, our attention shifts to an investigation of performance relative to the num-

ber of edges within the graph. To undertake this study, the number of vertices d is held con-

stant while a series of random graphs is generated, varying the number of edges over a range

from 1 to d(d − 1)/2. Based on each generated graph, we de�ne conditional probabilities

and then generate sample data, which is then subjected to the algorithms that implement

our proposed method in order to recover the graph. This process is repeated several times

for each scenario, permitting the consolidation of results in terms of the selected metrics (in-

cluding underestimation error, overestimation error, and overall error for each case), which

are de�ned ahead. In Section 4.2, we present the �ndings obtained from this exploration.

Overall, the synthetic graph examples presented in this section allowed us to evaluate

our proposed estimator's performance comprehensively. The results showcase not only its

e�ectiveness but also its potential utility in real-world applications.

31
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4.1 Fixed Graph Scenario

Within this section, we introduce two illustrative instances of graphical models. In both

cases, the joint probabilities are established by the multiplication of conditional probabilities

p(xi∣xW ) where the set W does not have to be the set of neighbors of vertex i. Nevertheless,

the selection of the joint probability's factorization delineates the structures of conditional

dependencies�essentially shaping the graph's arrangement. This factorization facilitates a

more straightforward methodology for generating samples, as discussed in Section 4.1.1.

The �rst example (Example 11) presented in this section functions as a straightforward

scenario to demonstrate the estimation algorithms under examination within this thesis.

Based on this example, we discuss speci�c characteristics associated with each algorithm

presented in Section 4.1.2. Shifting to the second example (Example 12), presented in Sec-

tion 4.1.5, the graph structure is motivated by the application of our method to the context

of São Francisco river water �ow measurements (see Section 5.1).

Example 11. Let us consider a scenario involving �ve distinct random variables denoted by

X1, . . . , X5, where each variable assumes values in the set A = {0, 1}. The joint probability

function of these variables is expressed as follows:

p(x1, x2, x3, x4, x5) = p(x3)p(x1∣x3)p(x2∣x1, x3)p(x4∣x3)p(x5∣x3). (4.1)

This equation highlights the dependencies among the variables through conditional prob-

abilities. From (4.1) we can compute p(x1∣x2, x3, x4, x5) in order to identify the neighborhood
of node 1. That is

p(x1∣x2, x3, x4, x5) =
p(x1, x2, x3, x4, x5)

∑x1∈A
p(x1, x2, x3, x4, x5)

=
p(x3)p(x1∣x3)p(x2∣x1, x3)p(x4∣x3)p(x5∣x3)

p(x4∣x3)p(x5∣x3)∑x1∈A
p(x3)p(x1∣x3)p(x2∣x1, x3)

=
p(x3)p(x1∣x3)p(x2∣x1, x3)

∑x1∈A
p(x3)p(x1∣x3)p(x2∣x1, x3)

=
p(x1, x3)p(x2∣x1, x3)

∑x1∈A
p(x1, x3)p(x2∣x1, x3)

=
p(x1, x2, x3)

∑x1∈A
p(x1, x2, x3)

= p(x1∣x2, x3).

Therefore, the set of neighbors of vertex 1 is {2, 3}. We can use this very same argument to
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Figure 4.1: Graph of Example 11, with vertices X1, . . . , X5. For simplicity, instead of Xi the �gure

shows only the node index, i.e., i, 1 ≤ i ≤ 5.

�nd out that

p(x2∣x1, x3, x4, x5) = p(x2∣x1, x3),
p(x4∣x1, x2, x3, x5) = p(x4∣x3),
p(x5∣x1, x2, x3, x4) = p(x5∣x3).

That is, vertex 2 is the neighbor of vertices {1, 3}, vertex 4 is the neighbor of vertex {3},
vertex 5 is also the neighbor of vertex {3} and since vertex 3 is the neighbor of all other

nodes, its neighborhood is the set {1, 2, 4, 5}. Figure 4.1 shows the graph of conditional

dependencies for this example, with edges linking all neighbors of each node.

It is necessary to establish theoretical values for the marginal and conditional distribu-

tions described above to generate sample data for this example using the Gibbs sampler

algorithm. In our illustrative scenario, we assigned speci�c numerical values to the marginal

distribution of X3, which are outlined in Table 4.1. Moreover, the conditional probabilities

for X1∣X3, X4∣X3, X5∣X3, and X2∣X1, X3 are presented in Tables 4.2, 4.3, 4.4, and 4.5,

respectively. These particular values have been chosen randomly and can be adjusted as

necessary.

4.1.1 Data Generation

We use the Gibbs sampler algorithm, originated in the studies of Geman and Geman

[1984] and Gelfand and Smith [1990], to generate the samples. The Gibbs sampler is a widely

used Monte Carlo Markov Chain (MCMC) method that provides a way to estimate complex

joint distributions by iteratively drawing samples from the conditional distribution of each

variable given the current values of all the other variables. By sampling from the conditional

distributions, the Gibbs sampler can generate a sequence of samples whose distribution

converges to the target distribution.

Remember that the joint probability function of Example 11 can be factorized as shown

in (4.1). We consider the following steps to use the Gibbs sampler algorithm to sample

from (4.1):
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x3 0 1

p(x3) 1 / 2 1 / 2

Table 4.1: Marginal distribution of X3 for

Example 11.

x1 0 1

p(x1∣x3 = 0) 1 / 2 1 / 2
p(x1∣x3 = 1) 1 / 3 2 / 3

Table 4.2: Conditional distribution of

X1∣X3 for Example 11.

x4 0 1

p(x1∣x3 = 0) 1 / 5 4 / 5
p(x1∣x3 = 1) 3 / 5 2 / 5

Table 4.3: Conditional distribution of

X4∣X3 for Example 11.

x5 0 1

p(x1∣x3 = 0) 2 / 3 1 / 3
p(x1∣x3 = 1) 1 / 2 1 / 2

Table 4.4: Conditional distribution of

X5∣X3 for Example 11.

x2 0 1

p(x2∣x1 = 0, x3 = 0) 1 / 2 1 / 2
p(x2∣x1 = 1, x3 = 0) 3 / 4 1 / 4
p(x2∣x1 = 0, x3 = 1) 1 / 4 3 / 4
p(x2∣x1 = 1, x3 = 1) 1 / 3 2 / 3

Table 4.5: Conditional distribution of X2∣X1, X3 for Example 11.

1. Initialize the variables

X
0
3 ∼ p(X3),

X
0
1 ∼ p(X1∣X0

3),
X

0
2 ∼ p(X2∣X0

1 , X
0
3),

X
0
4 ∼ p(X4∣X0

3),
X

0
5 ∼ p(X5∣X0

3).

2. For j = 1, 2 . . . , generate

X
j
1 ∼ p(X1∣Xj−1

2 , X
j−1
3 ),

X
j
2 ∼ p(X2∣Xj

1 , X
j−1
3 ),

X
j
4 ∼ p(X4∣Xj−1

3 ),
X

j
5 ∼ p(X5∣Xj−1

3 ),
X

j
3 ∼ p(X3∣Xj

1 , X
j
2 , X

j
4 , X

j
5).

Step 2 above should be repeated accordingly to generate a sample size with the size needed.

In the case of this example, the Gibbs sampler was set to perform 15,000 iterations,

with a burn-in period of 5,000 iterations and thus 10,000 observations forming the �nal
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sample s1, . . . , s10,000. The R function generating a sample for Example 11 can be found in

Section C.2 of Appendix C. From this initial sample of size 10,000, smaller samples of size

N were extracted, where N ∈ {100, 500, 1,000, 5,000, 10,000}. Each subsample SN was taken

from the initial state of the chain to the N -th state, represented as (s1, . . . , sN). Figure 4.2
illustrates this sampling scheme.

4.1.2 Estimation

In this section, we evaluate the performance of the algorithms presented in Chapter 3,

with a focus on the quality of estimation considering the data generated following the steps

described in Section 4.1.1. Speci�cally, we work with �ve sets of sample data, each with di�er-

ent sizes, namely N ∈ {100, 500, 1,000, 5,000, 10,000}. For each algorithm (Exact, Simulated

Annealing, Forward Stepwise, and Backward Stepwise), we execute the procedures with var-

ious values for the penalizing term λ = c logN , where c ∈ {0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}
and N represents the sample size.

Exact algorithm

In the context of the Exact algorithm, which computes the penalized log-pseudo-likelihood

for all possible graphs, the computational burden remains manageable as we are dealing with

a relatively small number of vertices (d = 5) � yielding a total of 1,024 potential graphs.

To begin with an illustration, we �xed the sample size in N = 5,000 and computed

the penalized pseudo-log-likelihood for all possible graphs, considering a set of penalizing

constant values c. Then, we �x the number of edges and choose the graph with the maximum

value of H(G). Figure 4.3 shows the e�ect of the penalization in the log pseudo-likelihood

function (refer to (2.20)), that is, the penalized logarithm of the pseudo-likelihood function

logL(Ĝ) concerning the number of edges present in the graph (ranging from 0 to 10). The

absence of penalization is illustrated by the solid line at c = 0, which is an increasing function.

It is evident that, in this case, the true graph (Figure 4.1) cannot be recovered. However,

note that the rate of increase rapidly diminishes when the number of edges in the graph

exceeds �ve, the number of edges in the true graph.

Figure 4.2: Scheme showing how the subsamples of size N ∈ {100, 500, 1,000, 5,000, 10,000} were

extracted from the initial chain of size 10,000.
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Figure 4.3: The e�ect of the penalization term in the log-likelihood function in terms of the number

of edges, considering the Exact algorithm c ∈ {0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, in a sample of size

5,000. The dotted horizontal lines highlight the value of H(G) when the number of edges in the

estimated graph equals �ve, the value in the true graph.

Furthermore, Figure 4.3 illustrates the e�ect of the penalization term in Expression (3.2)

across various values of c ∈ {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The dotted horizontal lines high-

light the value of H(G) de�ned in (3.2) when the number of edges in the estimated graph

equals �ve, consistent with the true graph. With this aid, we observe that for c ∈ {0.1, 0.5, 1.0, 1.5},
the estimation outcomes are accurate (the corresponding estimated graphs are shown in

Figure 4.4). However, for c ∈ {2.0, 2.5, 3.0}, the correct recovery of the true graph was not

achievable, as the maximum penalized pseudo-likelihood was obtained for a graph with four

edges.

Illustrated in Figure 4.4, each subgraph is an outcome of the exact algorithm corre-

sponding to a pair (N, c) of values of sample size and penalizing constant. For simplicity,

we remove the node number in each graph, but the node arrangement in the �gure mirrors

that of Figure 4.1.

Considering the terms of the sum in the log pseudo-likelihood function (2.20), we can

say that sample sizes of 100 and 500 are small, and thus, the results may not lead to

good estimation. In the �rst column of Figure 4.4, we can clearly see an example of an

overestimation problem (when the set of estimated edges is greater than the set of edges

in the true graph) for c = 0.10. As the penalizing term increases, the underestimation

problem arises (when the set of estimated edges is smaller than the true graph's set of

edges). Evidently, smaller values of the penalizing term tend to yield graphs characterized
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Figure 4.4: Exact algorithm results for Example 11, considering several scenarios, namely N ∈

{100, 500, 1,000, 5,000, 10,000} and penalizing term c ∈ {0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

by a substantial number of edges. In this particular example, regardless of the sample size,

a penalizing constant of c = 0.10 consistently yields an overestimated graph.

The case where N = 1,000 shows an interesting result: no correct estimation for all

the c values considered. In this case, one could re�ne the grid in the search for the correct

penalizing constant value.

Conversely, the graph is correctly estimated for a sample of size 5,000 and for penalizing

constants c ∈ {0.5, 1.0, 1.5}, and for a sample of size 10,000 coupled with penalizing con-

stants c ∈ {0.5, 1.0, 1.5, 2.0, 2.5}. Nevertheless, when c = 3.0, all scenarios yield an erroneous

underestimation.

Simulated Annealing

Presented in Section 3.2, the Simulated Annealing algorithm involves iteratively exploring

potential solutions while accepting less favorable ones with a decreasing probability over time

to eventually converge to an optimal or near-optimal solution. This algorithm has some

hyperparameters, which are parameters that are not learned from the data but are set prior

to training a statistical learning model. These parameters are essential for controlling the

model's learning process and behavior.

In this context, the hyperparameters consist of the initial state of the Markov chain,

denoted as G1; the cooling rate, denoted as C; and the total number of iterations m for the

algorithm.

Various combinations of these hyperparameter values were evaluated, but none yielded

satisfactory results. Consequently, we present the outcomes based on one speci�c con�gu-

ration that correctly recovered the true graph in one speci�c case: the initial state of the
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Figure 4.5: Simulated annealing algorithm results for Example 11, considering several sce-

narios, with samples of size N ∈ {100, 500, 1,000, 5,000, 10,000} and penalizing constant c ∈

{0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

chain is set as the empty graph (with no edges), the cooling rate is �xed at C = 0.001, and

the total number of iterations is set to m = 100. We selected this speci�c chain size value

because opting for a larger one would not be logical, as it would necessitate precisely 1024

steps to the exhaustive algorithm to explore the entire range of potential graphs.

Figure 4.5 displays the outcomes of the Simulated Annealing algorithm following the

described con�guration. It is noteworthy that, in general, for small sample sizes (speci�cally

N = 100 and N = 500), the estimated graphs do not closely resemble the true graph, except

for instances when c ∈ {0.10, 0.50} and N = 500, where some edges are correctly estimated

while others are overestimated. As the sample size increases, more of the estimated graphs

start to resemble the true one. However, unlike the Exact algorithm, only one of them has

fully captured the correct underlying graph, for c = 1.00 and N = 5,000. This result led us

to consider the Stepwise algorithms, the results of which are presented ahead.

Backward Stepwise

As de�ned in Section ??, the Backward Stepwise algorithm starts with the complete

graph as its initial guess. It progressively eliminates the edges that help increase the pe-

nalized pseudo-log-likelihood, halting when further increases are unattainable. Depicted in

Figure 4.6, this algorithm's progression is shown for a sample of size 5,000 and penalizing

constant c = 0.5. The process encompasses six successive steps before reaching the halting

criterion.

The outcomes of each scenario are presented in Figure 4.7. Each subgraph represents the

estimated graph corresponding to a particular pair of values (N, c). In general, it is possible

to observe that smaller values of c lead to substantial overestimation errors. As the value of c
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Figure 4.6: Steps of the Backward Stepwise selection algorithm. Commencing with the full graph,

it successively removes edges to increase the penalized pseudo-log-likelihood, stopping when further

improvements become unattainable. These steps were obtained using a sample of size 5,000 and

c = 0.5.

Figure 4.7: Backward Stepwise algorithm results for Example 11, considering several scenar-

ios, with a sample of size N ∈ {100, 500, 1,000, 5,000, 10,000} and penalizing constant c ∈

{0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

increases, the overestimation error diminishes; however, in this progression, underestimation

errors arise, specially for small values of N and large values of c.

Now, for a sample of size N ∈ {5,000, 10,000}, the Backward Stepwise algorithm produces

accurate estimations for some values of c, but presents increasing underestimation error as

c increases and overestimation when c = 0.1.

Forward Stepwise

This algorithm starts with the null graph (with no edges) and progressively adds edges

that increase the penalized pseudo-log-likelihood function H(G) de�ned in (3.2), see details

in Section ??. The iteration stops when further increases are unattainable. Figure 4.8 shows

the progression of the Forward Stepwise algorithm for a sample of size N = 5,000 and

considering c = 0.5. The process encompasses six successive steps before satisfying the

termination criterion.
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Figure 4.8: Stages of the Forward Stepwise selection algorithm. Starting with the null graph, it

sequentially incorporates edges that increase the penalized pseudo-log-likelihood, stopping when fur-

ther increases are unattainable. These steps were obtained considering a sample of size 5,000 and

c = 0.5.

Figure 4.9: Penalized log-likelihood function H(G) in terms of the number of edges, considering a

sample of size N = 5,000 and c = 0.50 for the Forward Stepwise algorithm. The highlighted orange

dot represents the graph at which the maximum of this function is attained.

Figure 4.9 shows the penalized log pseudo-likelihood function, de�ned in Expression (3.2),

considering the Forward Stepwise algorithm, a sample of size N = 5,000, and penalizing

constant c = 0.5. The highlighted orange dot represents the graph at which the maximum

of this function is attained, which is exactly the same number of edges as in the true graph.

This estimated graph is shown in Figure 4.10 (second row from bottom to the top, fourth

column), note that it has the same structure as the true graph.

In Figure 4.10, each subgraph depicts the outcome for a speci�c pair of values (N, c).
For N = 100, smaller c values lead to substantial overestimation errors. As c increases,

overestimation errors vanish; however, underestimation errors emerge for all cases considered.

This pattern holds the same for N = 500, and N = 1,000 with underestimation errors rising

for c ≥ 0.5.

Note that as the sample size grows, algorithmic errors diminish for certain values of c. For

a sample of size N = 5,000, the Forward Stepwise algorithm produces accurate estimations

for the cases considered where 0.5 ≤ c ≤ 1.5, but underestimation arises as c increases. In

the case of N = 10,000, the overestimation error displays a diminishing trend as c increases,

vanishing when c ≥ 0.5, however when c = 3,0, underestimation error arises.
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Figure 4.10: Forward Stepwise algorithm results for Example 11, considering sev-

eral scenarios, namely N ∈ {100, 500, 1,000, 5,000, 10,000} and penalizing constant c ∈

{0, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}.

4.1.3 Overall Performance in Several Replications

Applying the data generation process outlined in Section 4.1.1, we proceed to assess

the algorithms across samples of di�erent sizes: N ∈ {100, 500, 1,000, 5,000, 10,000}. Ten
distinct samples are generated for each sample size N , 50 in total. Subsequently, these 50

samples undergo evaluation through the Exact, Simulated Annealing, Forward Stepwise,

and Backward Stepwise algorithms. This evaluation considers a range of penalizing constant

values c = {0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}, yielding a result comprising 350 scenarios for each

algorithm considered (�ve sample sizes, ten replications, and seven penalizing values). The

primary motivation to perform this study is to not only rely on a single realization as

presented in Section 4.1 but to consider di�erent repetitions of the same scenario to observe

the average performance of each algorithm.

To facilitate this comprehensive analysis, we de�ne metrics to quantify two distinct errors:

underestimation error (when the estimated graph does not contain all edges of the true

graph), overestimation error (when the estimated graph has edges that are not in the true

graph), and a weighted average of both, referred to as total error.

Let G = (V,E) be the true graph and Ĝ = (V, Ê) an estimate. Also, let v, w ∈ V . We

de�ne the underestimation error as

ue(G, Ĝ) =
∑(v,w) 1{(v, w) ∈ E and(v, w) /∈ Ê}

∑(v,w) 1{(v, w) ∈ E} . (4.2)

This equation computes the underestimation error by comparing the set E of edges in the

true graph with the set Ê of edges in the estimated graph. The numerator of the equation
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counts all the edge (v, w) present in the true graph E but not in the estimated graph Ê.

The denominator counts the number of edges present in the true graph E. Thus, the fraction

in (4.2) gives the proportion of edges that are present in the true graph but not correctly

estimated in the estimated graph.

The overestimation error is de�ned as

oe(G, Ĝ) =
∑(v,w) 1{(v, w) /∈ E and(v, w) ∈ Ê}

∑(v,w) 1{(v, w) /∈ E} . (4.3)

The numerator sums the edges in Ê but not in E. The denominator sums over pairs (v, w)
where edges are absent in E. By computing the fraction of edges present in Ê but absent in

E, the equation provides insights into the extent of overestimation. It o�ers an understanding

of how the estimation process has overpredicted the graph's edge structure.

Finally, the total error provides a quantitative measure of the overall accuracy of the

estimated graph and is calculated by weighting the underestimation error with the number

of edges missing in G and the overestimation error with the number of edges in G and. It is

given by

te(G, Ĝ) =
ue∑(v,w) 1{(v, w) /∈ E} + oe∑(v,w) 1{(v, w) ∈ E}

∣V ∣(∣V ∣ − 1)/2 . (4.4)

Subsequently, we calculated the error metrics for each combination of algorithm, sample

size, and penalizing constant using the ten replicates and then averaged these outcomes.

The synthesized results are visually depicted in Figure 4.11. The initial row in the �gure

illustrates the mean underestimation error (ue), overestimation error (oe), and total error

(te) values attained from the Exact algorithm's performance.

As anticipated, this row echoes the behavior evident in the individual sample scenario, as

illustrated in Figure 4.4. Speci�cally, larger values of c predominantly lead to underestima-

tion, especially notable for smaller sample sizes, whereas smaller values of c induce signi�cant

overestimation errors. These errors diminish as the sample size is bigger. Overall, the most

accurate estimations are achieved with larger sample sizes and penalizing constants in the

interval (0.5, 2.0).
The results from the Forward Stepwise notably resemble those depicted in Figure 4.10 for

the individual sample case. In general, the Forward Stepwise algorithm's performance aligns

with that of the Exact algorithm. The third row in Figure 4.11 presents the outcomes from

the Backward Stepwise algorithm. These results also resemble those displayed in Figure 4.7.

The Backward Stepwise algorithm generally mirrors the behavior of the Exact algorithm.

Lastly, the fourth row of Figure 4.11 illustrates the outcomes of the Simulated Annealing

algorithm. As demonstrated in Figure 4.5 and discussed above, the algorithm's behavior, as

considered in this thesis, presents an unpredictable behavior even in instances with larger

sample sizes.

In conclusion, the investigation presented in this section thoroughly explores the algo-
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Figure 4.11: Mean error metrics (underestimation, overestimation, and total error) for the algo-

rithms considering ten samples of each size. Sizes considered are N ∈ {100, 500, 1,000, 5,000, 10,000}
and penalizing constant value c ∈ {0.1, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The color in the tile's back-

ground indicates the size of the error metric; the darker, the bigger. In general, small penalizing

constant values tend to cause overestimation. Conversely, bigger c values tend to cause underesti-

mation, especially when the sample size is small.

rithms' performance across diverse sample sizes. As mentioned before, we used the Exact

algorithm as a comparison basis since it is not feasible even for graphs with a small number

of vertices. For this particular example with �ve edges, it was possible to compare the re-

sults with the Backward and Forward Stepwise, and the Simulated Annealing. This detailed

evaluation enables us to draw valuable insights into the algorithms' e�cacy across a range

of scenarios, o�ering a robust foundation for understanding their performance and guiding

practical applications. The Stepwise algorithms have shown an appealing alternative to the

Exact algorithm. Meanwhile, the Simulated Annealing did not yield good results. Thus, we

shall consider either the Forward Stepwise or the Backward Stepwise algorithms for practical

applications.

4.1.4 The Choice of the Penalizing Constant c

In the sections above, we examined the e�ect of various penalization values over the

penalized pseudo-likelihood function (refer to Expression 2.21), always assessing the results
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against the true graph, which is known, in each considered scenario. However, when working

with real data, the underlying graph is unknown. In order to use any algorithm that incor-

porates a penalizing term, a range of possible values should be considered. The challenging

task then becomes selecting the appropriate value for penalization.

Multiple methods can be used to select the penalizing constant value that yields the best

result. Here, we consider the k-fold cross-validation approach � a widely used technique in

machine learning and statistical modeling to evaluate a model's performance and general-

ization capability. In summary, in this approach, the available dataset is randomly divided

into k subsets, or folds, of roughly equal size. The model is then estimated and evaluated k

times, each time using a di�erent fold as the validation set and the remaining k − 1 folds

as the training set. This process helps mitigate the risk of over�tting and provides a more

reliable estimate of the model's performance by utilizing di�erent portions of the data for

training and validation. The �nal evaluation metrics are typically averaged over all k runs,

yielding a more robust assessment of the model's e�ectiveness across di�erent subsets of the

data. K-fold cross-validation is particularly bene�cial when the dataset is limited or when

the goal is to better understand how the model performs on various portions of the data.

More details can be found in James et al. [2021] and Hastie et al. [2009].

Generally, the metric used for evaluation is the mean squared error (for regression prob-

lems) and the accuracy (for classi�cation problems). However, in our case, we will assess the

pseudo log-likelihood of the model over each of the k-folds.

Let Pi, i = 1, . . . , k denote a partition of the observed data set X = {X(1)
, . . . , X

(N)} and
let P−i = ⋃j≠i Pj. Each Pi is a fold for the k-fold cross-validation method. For each �xed

value of c and for each i, we estimate the underlying graph using the estimator in (2.21)

considering the set P−i as training data. After this procedure, we have an estimate Ĝ of

the true graph and corresponding probabilities for π(av∣aĜ(v)). These estimates are used to

compute the pseudo-log-likelihood over the validation set, i.e., Pi, as

CV
(i)
k (c) = ∑

v∈V

∑
(av∈A)

∑
aĜ(v)∈A

∣Ĝ(v)∣

Ni(av, aĜ(v)) log π̂(av∣aĜ(v)) ,

where Ni(av, aĜ(v)) is computed over the validation set Pi and c is the �xed penalizing term.

Then, the cross-validation metric is averaged over the results from all folders,

CVk(c) =
1

k

k

∑
i=1

CV
(i)
k (c). (4.5)

This procedure is repeated for a set of di�erent values of constant c, and the best c is then

c
∗
k = max

c
CVk(c).

Once this value is chosen, the �nal graph is estimated using the entire sample data with
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Figure 4.12: 5-fold cross-validation error for Example 11, considering a sample of

size 5,000 and set of penalizing constant {0.01, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50, 0.60,
0.70, 0.80, 0.90, 1.00, 1.25, 1.50, 2.00, 2.50}.

penalizing constant c∗k .

For Example 11, we performed the 5-fold cross-validation approach considering a sample

of size 5,000 and a set of penalizing values {0.01, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, 0.50, 0.60,
0.70, 0.80, 0.90, 1.00, 1.25, 1.50, 2.00, 2.50}. Figure 4.12 shows the cross-validation metric (4.5)

as a function of the penalizing constant c. The penalizing values considered were chosen in

an iterative process, manually re�ning the search grid when necessary, for example, when

c ∈ [0.2, 1.0]. Note that the highest value of CV5(c) is attained for c∗5 ∈ {0.20, 0.30, 0.40,
0.50, 0.60, 0.70, 0.80, 0.90, 1.00}. The next step is to estimate the graph considering the com-

plete data set and the values of c∗5 . Considering the Forward Stepwise algorithm, the graph

was correctly estimated in all possible values for c∗5 ; revisit Figure 4.1.

An issue that can arise in validation methods, such as cross-validation, with real data

occurs when a con�guration av observed in the validation set is absent in the training set.

This mismatch leads to π̂(av∣aĜ(v)) = 0, resulting in CV
(i)
k (c) = −∞. To prevent such cases,

we introduce a hyperparameter γ and rede�ne

π̂(av∣aĜ(v)) = γ, (4.6)

for cases where this probability is zero. Then, the distribution π(⋅∣aĜ(v)) should be rescaled

to accommodate this change. We recommend the hyperparameter γ to be set to a small

value to prevent numerical instability. Following this, the distribution π̂(⋅∣aĜ(v)) is rescaled
for con�gurations not observed in the training data. This adjustment ensures stability in

the cross-validation method for real data sets. Examples of this issue happening in real data

sets are shown and examined in Section 5.1 and Section 5.2.
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Figure 4.13: Graph of Example 12, with vertices X1, . . . , X8. For simplicity, instead of Xi, the
�gure shows only the node index, i.e., i.

4.1.5 Additional Scenario

We also consider another illustrative example, presented below.

Example 12. Let us consider a scenario involving eight discrete random variables, each

taking values in A = {0, 1, 2} with a joint probability function given by

p(x1, x2, x3, x4, x5, x6, x7, x8) = p(x1∣x2)p(x2∣x3)p(x3∣x4)p(x4)×
p(x5∣x4)p(x6∣x7)p(x8∣x7)p(x7).

(4.7)

The graphical representation of this example is depicted in Figure 4.13. Notably, the

graph structure exhibits a certain linearity in the arrangement of te nodes. Again, it was

intentionally designed to resemble the graph structure expected in the context of stream�ow

data from the São Francisco river; see details in Section 5.1.

For the sake of conciseness and to prevent redundancy in this chapter, we o�er a concise

overview of the outcomes from Example 12 in Appendix B, brie�y discussing the data

generation process and relevant particular aspects of each algorithm. This approach helps

us avoid unnecessary repetition and the inclusion of similar �gures within the main text.

In Section B.1, we present the conditional distributions as well as the theoretical val-

ues chosen for the probability distributions. For this example, we also evaluate the per-

formance of the algorithms in two settings: �rst, considering a single sample of size N ∈

{100, 500, 1000, 5,000, 10,000}; second, generating ten di�erent samples of each size N . We

then compute and analyze the estimation errors; see Expressions (4.2), (4.3), and (4.4).

For this relatively simple eight-node graph, employing the Exact algorithm becomes im-

practical due to the vast number of possible graphs in the search space, totaling 268,435,456.

As a result, we exclude this algorithm from consideration in this context. Despite the erratic

behavior exhibited by the Simulated Annealing algorithm in the results of Example 11, we

opt to include it in this scenario. Additionally, we also consider the forward and Backward

Stepwise algorithms, as outlined in detail in Section B.1 of Appendix B. In summary, we ob-

serve that the forward and Backward Stepwise algorithms demonstrate e�ective performance

when the sample size is not small and the penalizing constant value is appropriately chosen.
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As in Example 11, here results of the Simulated Annealing algorithm were not satisfying.

4.2 Random Graphs with Varying Edge Number

We use the Example 13 presented below to study the performance of the proposed algo-

rithms in arbitrarily chosen simulated scenarios.

Example 13. Let the number of nodes in the graph be �xed at d = 5. Thus, this graph with

�ve nodes might have at most ten edges, which would be the complete graph. The discrete

random variables in the nodes of the graph are binary, taking value in A = {0, 1}. In this

example, we �x the number of edges nedges in the graph and generate ten random graphs with

d nodes and exactly nedges. This procedure is executed for 1 ≤ nedges ≤ 10.

In this example, we iterate over the number of edges in a graph with a �xed number of

nodes. For each con�guration of a �xed number of edges, we generate ten random graphs,

each having the same number of edges. Figure 4.14 displays the assortment of randomly

generated graphs used in this example. These graphs present varying numbers of edges

within the scope of graphs comprising �ve vertices (ranging from 1 to 10 edges). We show

the ten di�erent graphs considered for each possible number of edges. The node arrangement

in the �gure mirrors that of Figure 4.1.

4.2.1 Data Generation

We illustrate the data generation procedure used for each replicate in Example 13 through

a single speci�c case. Taking a graph comprising two edges, let us focus on the replication

number 1. This speci�c graph is visualized in the �nal row of the second column within

Figure 4.14. From now on, within the scope of this section, we will refer to this speci�c graph

simply as G1. In this graph, the edges link nodes 2 and 5, as well as nodes 3 and 4. With

the edges of G1 de�ned, the subsequent step involves determining the neighborhood of each

node, which serves as the basis for generating random values for each node's marginal and

conditional distributions. The resulting probability distributions for this illustrative scenario

are presented in Tables 4.6, 4.7, 4.8, 4.9, and 4.10. Using the Gibbs sampler algorithm (similar

to the one introduced in Section 4.1.1), we generate sample data from the multivariate

stochastic process with a dependence structure de�ned by the graph G1. This procedure

considers a burn-in period of 5,000 iterations and results in a sample of size 5,000.

The procedure described above to generate sampled data from graph G1 was replicated

across each of the 100 graph scenarios depicted in Figure 4.14. Details regarding the imple-

mentation of this data-generating process can be found in Section C.2 of Appendix C.
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x1 0 1

p(x1) 0.4934 0.5066

Table 4.6: Marginal distribution of X1 in

graph G1 of Example 13.

x2 0 1

p(x2∣x5 = 0) 0.2649 0.2649
p(x2∣x5 = 1) 0.8535 0.1465

Table 4.7: Conditional distribution of

X2∣X5 in graph G1 of Example 13.

x3 0 1

p(x3∣x4 = 0) 0.4185 0.4185
p(x3∣x4 = 1) 0.2216 0.7784

Table 4.8: Conditional distribution of

X3∣X4 in graph G1 of Example 13.

x4 0 1

p(x4∣x3 = 0) 0.4708 0.5292
p(x4∣x3 = 1) 0.0676 0.9324

Table 4.9: Conditional distribution of

X4∣X3 in graph G1 of Example 13.

x5 0 1

p(x5∣x2 = 0) 0.3612 0.6388
p(x5∣x2 = 1) 0.4292 0.5708

Table 4.10: Conditional distribution of X5∣X2 in graph G1 of Example 13.

Figure 4.15: Outcomes of the Forward Stepwise algorithm for graph G1 considering a range of

penalization constant c ∈ {0.001, 0.010, 0.050, 0.100, 0.150, 0.200, 0.250}.

4.2.2 Estimation

Considering the superior outcomes of the Stepwise algorithms in Examples 11 and 12

over the Simulated Annealing algorithm, we opted to exclusively use this algorithm for

estimation within this example, considering both forward and Backward approaches. Then,

for each sampled data set, we executed the algorithm across a range of penalization constants,

speci�cally c ∈ {0.001, 0.010, 0.050, 0.100, 0.150, 0.200, 0.250}.
To illustrate the impact of the penalizing constant on the estimation process, Figure 4.15

showcases the estimated graphs generated by the Forward Stepwise algorithm for all c values

considered in this case study. As expected, lower values of penalizing constant result in

higher overestimation errors. In particular, when c ∈ {0.001, 0.010}, the estimated graph

is the complete graph, leading to an overestimation error of 1. As c increases, the number

of overestimated edges decreases for c ∈ {0.005, 0.100, 0, 150}, and �nally, the algorithm

correctly recovers the true structure of graph G1 for c ∈ {0.200, 0.250}.
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Figure 4.16: Average error metrics outcomes of the Forward Stepwise algorithm. Each sub-�gure

represents the result of a speci�c c value and displays the averaged errors as a function of the number

of edges in the graph.

Again, for each possible number of edges in the graph, ranging from 1 to 10, ten distinct

random graphs and, consequently, ten samples were generated. Error metrics were computed

for each of these samples and then averaged. An overall summary of the results is depicted in

Figure 4.16, where each sub-�gure corresponds to a speci�c value of c and shows the average

error metrics as a function of the number of edges in the graph. Regardless of the penalizing

constant, the average of all errors vanishes when the number of edges in the graph is 10 (the

complete graph in this case). In particular, by construction, the overestimation error is zero.

On the other hand, the underestimation error in the Forward Stepwise algorithm is low for

all values of c, as shown in all sub-�gures of Figure 4.16.

Furthermore, we can break down the analysis of the results in Figure 4.16 into two distinct

parts. The �rst one encompasses outcomes for small values of the penalizing constant c,

speci�cally Λ1 = {0.001, 0.010}. Here, the mean overestimation error is consistently high for

all numbers of edges (except in the complete graph case), and the underestimation error is

zero. This behavior is expected, as small values of the penalizing constant are known to lead

to overestimation.

In contrast, the second group corresponds to larger values of c, denoted as Λ2 = {0.050,
0.100, 0.150, 0.200, 0.250}, and exhibits a di�erent trend. The mean overestimation error is

relatively smaller for c ∈ Λ2. However, it increases as the number of edges in the graphs

grows. In general, the underestimation error remains low for all values of c. However, for
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c ∈ Λ2, some instances exhibit underestimation error, particularly when the number of edges

in the graphs falls between 2 and 5.

Figure 4.17: E�ect of varying the penalizing constant c on the average error metrics outcomes from

the Forward Stepwise algorithm. Each sub�gure is the result given by graphs with a �xed number of

edges, from 1 to 10.

Additionally, Figure 4.17 shows the result from a di�erent perspective: the impact of

di�erent penalizing constant c values on the average error metrics from the Forward Step-

wise algorithm results. Each sub�gure showcases the result while maintaining constant the

number of edges in the graphs, ranging from 1 to 10. As expected, the error metrics decrease

as the penalizing constant value increases. The exception is the case where the number of

edges is 10, and the error metrics are somewhat constant. This is due to the de�nition of

the overestimation error and the total error. When the number of edges is 10, the complete

graph, all the errors vanish regardless of the penalizing constant value. More speci�cally, in

this case, the overestimation error is always zero.

We also considered the Backward Stepwise algorithm for estimation in this scenario. In

terms of estimation, the results were similar to those of the Forward Stepwise algorithm. For

this reason, we leave the corresponding �gures and additional comments to Section B.2 of

Appendix B.



52 SIMULATION STUDIES 4.3

4.3 Comparative Analysis

In this chapter, we presented an extensive study aimed at validating the proposed algo-

rithms for estimating the underlying graph of a multivariate stochastic process that satis�es

a mixing condition. The entire suite of R functions utilized in this simulation study can be

accessed in the author's repository at github.com/magnotairone/phd_codes.

As shown, the Exact algorithm was used solely as a means of comparison among the other

methods, as it is unfeasible in computational terms even for graphs with a small number of

nodes (see Example 12).

The Simulated Annealing algorithm was the �rst alternative to the Exact algorithm that

we took into consideration. However, despite our e�orts performing hyperparameter tuning,

this method did not yield satisfying results. This was not expected, as this method was

used in Leonardi et al. [2023] to estimate the neighborhood of each node separately. In this

work, the underlying graph is estimated by combining these neighborhoods. However, the

Simulated Annealing was not a good approach when used to estimate the entire graph, as

proposed in this thesis.

Therefore, we considered the Stepwise algorithms. Both the forward and Backward ap-

proaches presented satisfying results, comparable to the Exact algorithm as shown in the

scenarios of Example 11. Since the forward and Backward had a good performance in all

scenarios considered, we suggest using the Forward Stepwise in cases where it is previously

known that the underlying graph has few edges. On the other hand, the Backward Stepwise

should be used in cases where the number of edges in the underlying graph is known to be

high.

https://github.com/magnotairone/phd_codes


Chapter 5

Applications

This chapter presents two distinct applications. It is important to emphasize that our

intention here is not to introduce novel modeling strategies. Instead, we aim to demonstrate

the practical utilization of the proposed method across di�erent contexts.

In Section 5.1, we present the stream �ow data recorded along the São Francisco river

in Brazil over time. Our goal is to study the underlying dependency structure among the

measurements taken across the gauges positioned throughout the river's course. Moving

forward to Section 5.2, we shift our focus to stock market indices. Here, we investigate the

dependency relationship concerning the �uctuations of these indices in di�erent markets,

speci�cally analyzing their daily rises and falls, and the aim is to understand the dependency

relationship across global markets.

5.1 São Francisco River Data

The measurement of water volume �owing within a river's course relies on stream�ow

stations strategically positioned along its length. Each station denoted as Xu, where u =

1, . . . , d, captures the �ow characteristics at speci�c points. These individual measurements

collectively constitute the random vector X = (X1, . . . , Xd) containing the records from the

d stations. This random vector is also observed at distinct discrete time intervals, such as

daily, weekly, or monthly instances. We represent the vector observed on the i-th day as

X
(i)

= (X(i)
1 , . . . , X

(i)
d ). Then, we can consider the process Xn

= {X(i) ∶ 1 ≤ i ≤ n}, where
X

(i)
∈ Rd, and employ techniques for modeling multidimensional stochastic processes.

In scenarios such as river water �ow, the dynamic nature of the system can lead to inde-

pendence in behavior at speci�c points along the river's course. For example, constructing

a hydroelectric dam or diverting a watershed can introduce independence between observa-

tions made before and after these interventions. To illustrate, consider the scenario where

(X1, . . . , Xu) is independent of (Xu+1, . . . , Xd). This independence allows us to model the

records from the initial u stations separately from the remaining stations. Consequently, we

reduce the dimensionality of the problem, enabling the exploration of independent processes

53
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(a) (b)

Figure 5.1: (a) Geographical boundaries of Brazil and its state limits. The highlighted rectangle

indicates the region where the São Francisco River is situated; (b) An enlarged view of the boxed

area in (a), encompassing the São Francisco River. Gray points correspond to the ten stream�ow

gauges included in our analysis, numbered in ascending order from bottom to top.

with u and d − u dimensions, respectively.

One direct application of this method lies in monitoring stream�ow data in Brazilian

rivers. Daily measurements of meteorological and hydrological variables, including river lev-

els, �ow rates, precipitation, climatology, and water quality in Brazil, are publicly accessible

through the Brazilian National Water Agency (SNIRH [2023]). The analysis's main focus

will be the �ow rate at various points along the course of São Francisco River (SFR). Span-

ning a distance of over 2,914 kilometers, the SFR originates in the Canastra mountain range

in the central region of Brazil, �owing northwards into the northeastern part of the country.

Figure 5.1 (a) visually represents the river's path within Brazil.

The SFR course can be segmented into four sections: the upper section (including stations

1 and 2), extending from its source to Pirapora city; the upper middle section (stations 3,

4, 5, 6, and 7), spanning from Pirapora to Sobradinho dam, the navigable part; the lower

middle section, covering the stretch from Sobradinho Dam to Itaparica Dam (station 8);

and the lower section, encompassing the path from the Itaparica dam to the river mouth

(stations 9 and 10). The locations of these selected stations are depicted in Figure 5.1 (b).

The river's �ow at various points can also be in�uenced by the time of year. The wet season,

which accounts for nearly 60% of the annual precipitation, occurs from November to January,

while the dry season lasts from June to August.

The data used in this study case were collected at the beginning of 2019 and contain daily

measurements dating back to the �rst record on October 1st, 1924, with the most recent

recorded on February 28th, 2019. According to the National Hydrometeorological Network

Inventory by Agência Nacional de Águas (ANA), there are 29 gauging stations positioned

along the SFR. Due to the considerably large amount of missing data, as each gauge was

constructed and started operating at di�erent times, we focused on ten stations with the

least amount of missing data. The data wrangling process, performed using the tidyverse
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Figure 5.2: Availability of measurements (gray spots) and data gaps (white spots) for each station

in the SFR dataset. The vertical dashed black line delineates the time frame of this study, a period

with reduced data gaps, spanning from January 1977 to January 2016.

R package (Wickham et al. [2019]), took a considerable amount of time due to the format

in which the data were stored and organized.

Despite this selection, among the stations there is a notable amount of missing data

persists, as evident in Figure 5.2. This �gure illustrates the days of available measurements

(gray tiles) and those with missing data (white tiles) for each station. The vertical dashed

black lines indicate a period with fewer gaps in data, spanning from January 1977 to De-

cember 2016. This timeframe is the scope of analysis for this study. Instead of working with

the daily measurements, we opted to consider 10-day average values to reduce the amount

of missing data.

This data was �rst analyzed by Leonardi et al. [2021], which introduces a model selec-

tion criterion designed to identify points of independence within a random vector, leading

to a decomposition of the vector distribution function into independent blocks. In their

analysis, the authors found out that the random vector X could be decomposed into two

subvectors, (X1, X2, X3, X4, X5, X6, X7), and (X8, X9, X10). It is important to mention that

Leonardi et al. [2021] focused on monthly averaged stream�ow data, whereas our current

study utilizes a 10-day average approach. An inherent limitation of this approach is that it

restricts the dependence of any given random variable Xi to its neighboring variables in the

vector in the same block.

Our proposed estimator is designed for discrete random processes. However, the stream

�ow measurement data comprises continuous random variables. To accommodate this, we

introduce the process Y
n
= {Y(i) ∶ 1 ≤ i ≤ n}, where Y

(i)
∈ ∣A∣d, A ∈ {0, 1, 2, 3, 4}. To

work with this process e�ectively, we discretized the data into �ve levels based on quantiles.

Figure 5.3 provides a visual representation of the count of levels observed in the discretized

stream�ow values derived from the original dataset. The horizontal x-axis displays these

individual random variables, while the vertical y-axis represents each level of these random

variables. Each tile within the �gure contains a numeric value, indicating the count of obser-

vations associated with a particular level of the respective random variable. This graphical
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Figure 5.3: Frequency of discrete levels within random variables representing discretized stream-

�ow values from the original dataset. The x-axis corresponds to the random variables (stream �ow

gauges), while the y-axis displays the corresponding observation counts for each level. Numeric val-

ues inside each tile indicate the observation count for speci�c levels within the random variables.

Figure 5.4: 5-fold cross-validation error as function of c ∈ {0.01, 0.10, 0.20, 0.30, 0.40, 0.50,
0.75, 1.00} for the SFR data. The text box highlights the penalizing value at which the maximum

is attained: 0.40 and 0.50.

representation o�ers insights into the distribution and variability of the discretized stream-

�ow values across di�erent levels.

Altogether, the dataset encompasses a total of 1042 observations. It is worth noting

that variable Y1, corresponding to station 1, assumes values only within the �rst level in the

alphabet, Y (i)
∈ {0}. This singular behavior could challenge estimation and will be discussed

ahead. In contrast, the remaining random variables assume values across at least two levels

of the alphabet.

We employed our proposed estimator using the forward stepwise algorithm and a 5-fold

cross-validation approach, as presented in Section 4.1.4, to determine the optimal value of

the penalizing constant c. The range considered for c was the set {0.01, 0.10, 0.20, 0.30, 0.40,
0.50, 0.75, 1.00}. Figure 5.4 displays the average log pseudo-likelihood computed over the

validation set for each value of c. The highest value of CV 5(c∗) was achieved when c∗ = 0.40
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Figure 5.5: The underlying graph estimated by our proposed model for the SFR, considering c
∗
∈

{0.40, 0.50}. The station's arrangement mirrors the geographical locations shown in Figure 5.1 (b).

Figure 5.6: Stream �ow volume measured at the ten stations in the SFR (logarithmic scale).

and c∗ = 0.50.

It is important to note that during cross-validation for this data, certain con�gurations

av observed in the validation set were not present in the training set. As discussed in Sec-

tion 4.1.4, this situation can cause instability in the cross-validation method, and a hyper-

parameter γ is introduced to cope with this problem. Thus, we considered here γ = 0.0001

(refer to Equation (4.6) for its de�nition).

Finally, using the complete sample, we estimate the underlying graph with c
∗ values

of 0.4 and 0.5. The resulting estimated graph is visualized in Figure 5.5. By the natural

spatial con�guration of the river, the sequential structure seems adequate for this problem.

It consists of three disconnected sub-graphs with nodes {1}, {2, 3, 4, 5, 6, 7} and {8, 9, 10},
respectively, with each node being linked with the previous and subsequent stations in each

component, as expected for a dataset with a Markovian spatial dependence.

The measurements recorded at Station 1 signi�cantly di�er from those at the other

stations, which might explain why this node is estimated to be independent of the others.
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Moreover, the break in the sequential structure can be explained by the presence of the

Sobradinho hydroelectric dam, the largest dam along the course of the SFR, situated between

stations 7 and 8. This in�uence is evident in the boxplots of stream�ow volume measurements

shown in Figure 5.6, represented on a logarithmic scale. There is a qualitative change in

regime in the boxplots after Station 7, likely attributed to the hydroelectric dam's impact

on the river �ow. This aligns with the independence detected by the algorithm at this location

and is consistent with the results obtained by Leonardi et al. [2021].

5.2 Stock Exchange Data

A stock, also known as a share or equity, represents ownership in a company. Individuals

or institutions become shareholders when they own stocks, holding a portion of the company,

as the total ownership is divided into shares. Investors can buy or sell these shares in the

stock market.

A stock exchange, commonly known as a stock market, serves as a centralized platform

facilitating the trading of various �nancial instruments, with a primary focus on stocks and

securities. This marketplace enables investors, from individuals to institutions, to buy and

sell shares in publicly listed companies. Within stock exchanges, the essential infrastructure

and regulatory framework are in place to ensure the e�ciency and transparency of these

�nancial transactions.

On the other hand, a stock index is a statistical measure that represents the performance

of a speci�c group of stocks or the broader stock market. It is often used to gauge the overall

health and direction of the �nancial markets. Stock indices are constructed using a weighted

average of the prices or market capitalizations of the component stocks. Popular examples

include the Índice Bovespa (Ibovespa) in Brazil and the Dow Jones Industrial Average (DJIA)

in the United States.

The relationship between the performance of stock indices in di�erent countries is of

signi�cant importance for several reasons. Firstly, it re�ects the interconnectedness of global

�nancial markets. As economies become increasingly globalized, the performance of one

country's stock market can have a ripple e�ect on others. Investors and analysts closely

monitor these relationships to assess potential risks and opportunities.

Secondly, it provides valuable insights into broader economic trends. When multiple

stock indices from di�erent countries move in a similar direction, it can signal global eco-

nomic trends, such as periods of growth or recession. Conversely, diverging performances

may indicate regional disparities or unique economic factors at play. Lastly, the correla-

tion between stock indices can impact investment strategies. Diversifying investments across

countries with low or negative correlations can help reduce portfolio risk.

In this scenario, another challenging problem arises when dealing with multiple time

zones due to di�erent opening times of global stock exchanges, as depicted in Figure 5.7.
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Figure 5.7: Working hours of the 15 stock exchanges on business days corresponding to the market

indices under consideration. The time zone used as a reference is UTC+0.

Here the analysis focuses on data from 15 stock indices of di�erent countries: S&P Merval

(Argentina), S&P ASX 200 (Australia), Ibovespa (Brazil), Shanghai Composite (China),

DAX (Germany), FTSE China 50 (Hong Kong), Nifty 50 (India), Nikkei 225 (Japan), S&P

BMV IPC (Mexico), Moroccan All Shares (Morocco), Tadawul All Share (Saudi Arabia),

South Africa Top 40 (South Africa), IBEX 35 (Spain), FTSE 100 (United Kingdom), Dow

Jones Industrial Average (United States). The analysis covers the period from May 18th,

2010, to September 20th, 2023, with daily measurements taken from Investing.com [2023],

which provides free access to this data.

Several data processing steps were implemented to address missing data, particularly on

holidays and weekends in certain countries. In all the countries under consideration, stock

exchanges operate from Monday to Friday on business days. However, the stock exchange in

Saudi Arabia follows a di�erent schedule, operating from Sunday to Thursday. A workaround

was applied to maintain consistency and avoid the need to exclude all Friday data from

the dataset. Speci�cally, the data observed on each Thursday was replicated for Fridays in

all records pertaining to the Tadawul All Share index. A similar approach was applied to

account for holidays, ensuring data continuity. After implementing these adjustments, the

�nal dataset comprises 2,654 rows.

Figure 5.8 displays the daily variations in the stock indices grouped by their respective

continents. Analyzing these variations for correlations is a complex task. As an alternative to

address this, we utilize our proposed graph estimator model to represent conditional depen-

dencies among these random variables. However, a preliminary step involves transforming

the continuous random variables into discrete ones. We achieve this by considering the daily
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Figure 5.8: Stock indices from May 18th 2010 to September 20th 2023. Each sub�gure shows the

indices grouped by continent.
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Figure 5.9: 5-fold cross-validation error as function of c ∈ {0.01, 0.05, 0.10, 0.12, 0.14, 0.16, 0.17,
0.18, 0.19, 0.20, 0.25, 0.30, 0.40, 0.50, 0.75, 1.00, 1.50, 2.00} for the stock indices data. The text box

highlights the penalizing value at which the maximum is attained: c
∗
= 0.16.

indicator of an increase in the index rate. Speci�cally, consider two dates, D0 as the ref-

erence date and D−1 as the previous date. If the index price at D0 exceeds that of D−1,

the random variable takes the value 1; otherwise, it takes 0. Thus, for each stock index, we

create a discrete random variable taking value in A = {0, 1} with a sample of size 2,653, one

observation less than the original data due to the lagged data used in this transformation.

We employed our proposed graph estimator through a 5-fold cross-validation approach,

exploring a range of potential values for the penalizing constant c. The considered values for

c were iteratively chosen and included {0.01, 0.05, 0.10, 0.12, 0.14, 0.16, 0.17, 0.18, 0.19, 0.20,
0.25, 0.30, 0.40, 0.50, 0.75, 1.00, 1.50, 2.00}. The results, illustrated in Figure 5.9, showcase

the average pseudo-log-likelihood computed over the validation set for each c value. The

highest CV 10(c∗) value occurred at c∗ = 0.16.

Again, as in the previous application for the São Francisco river data, we also de�ne the

hyperparameter γ = 0.0001 to avoid possible cross-validation problems, speci�cally when

certain con�gurations av observed in the validation set were not present in the training set.

See Equation (4.6) for this hyperparameter de�nition.

We used this optimal c∗ value of 0.16 to estimate the underlying graph based on the

complete sample, as visualized in Figure 5.10. This graph represents the relationship between

the stock indices �uctuations. In general, the estimated edges are linking stock markets in

the same geographical area, except for speci�c indices that play a global in�uence, such as

that of the United Kingdom and the United States. An interesting �nding is the connections

with South Africa across all continents: Mexico, United Kingdom, Germany, and Hong Kong,

while Morocco was not connected to any other country.



62 APPLICATIONS 5.2

F
ig
u
r
e
5
.1
0
:
T
h
e
u
n
d
erlyin

g
gra

p
h
estim

a
ted

by
o
u
r
p
ro
po
sed

m
od
el

fo
r
th
e
stock

in
d
ices

d
a
ta
,
co
n
sid

erin
g
c
∗
=
0.16.



Chapter 6

Conclusion and Future Work

The study presented in this thesis was mainly motivated by two key sources:

Leonardi et al. [2023] and Leonardi et al. [2021]. The former introduced a penalized pseudo-

likelihood criterion for estimating the graph of conditional dependencies within a partially

observed discrete Markov random �eld. Their approach involved estimating the neighbor-

hood of each node in the graph and subsequently aggregating these neighborhoods to con-

struct the graph itself. The latter proposed a model selection criterion for identifying points

of independence within a random vector, resulting in a decomposition of the vector's distri-

bution function into independent blocks. This method, based on a general estimator of the

distribution function, is applicable to both discrete and continuous random vectors, as well

as independent identically distributed (IID) data and dependent time series data.

This thesis addresses certain limitations of the previously mentioned works. While the

estimator introduced by Leonardi et al. [2023] is restricted to independent and identically

distributed data, the method proposed by Leonardi et al. [2021] assumes that the random

vector can only be decomposed into subvectors, limiting the dependence structure. In this

scenario, a random variable in the vector can only be dependent on the random variables

within its block of dependence.

In response to these limitations, we have developed a penalized pseudo-likelihood criterion

for estimating the entire graphG, which consists of the set of edges E connecting the nodes V,

particularly for multivariate stochastic processes satisfying a mixing condition. The primary

advantage of our approach is its ability to handle non-IID. data and its global estimation

approach. This means that the entire set of edges E is estimated as a whole, eliminating the

need to estimate the neighborhood of each node separately and then combine them to obtain

the estimated graph. Another advantage is that our proposed method allows for any node

to be dependent on any other node in the graph, eliminating restrictions on the dependence

structure.

We proved the consistency of our proposed estimator as well as de�ned the rate of conver-

gence. This is the main theoretical result of this thesis (refer to Theorem 10). Transitioning

to practical implementation, we explored several approaches for implementing the estima-
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tor: the exact algorithm, the simulated annealing algorithm, and the forward and backward

stepwise algorithms. We also discussed and highlighted the advantages and disadvantages

associated with each method.

We conducted a comprehensive simulation study to evaluate the algorithms' e�ectiveness

in estimation. First, we evaluated the estimation of each algorithm in a speci�c scenario,

�xing the graph structure and then generating a random vector with a joint probability

function being factorized according to the graph arrangement. The results showed that once

the penalizing constant c is �xed, we observed a convergence of the estimated graph as

the sample size increases, con�rming the consistency of the estimator. We also assessed the

impact of the value of c in estimation: small values of c lead to a nonconservative estimation

(an estimated graph with many edges), while higher values of c lead to less conservative

graphs (with fewer edges linking the nodes).

In the second part of the simulation study, we focused on evaluating the algorithms'

performance concerning the number of edges in a graph. The random vector's size remained

constant, and we generated multiple random graph structures, each with a di�erent number

of edges. Subsequently, random samples were generated based on each created graph, and

we applied the proposed algorithms to recover the graph structure.

In summary, while the exact algorithm produced favorable results, it becomes impractical

due to its exponential complexity on the number of edges in the graph. Although e�ective in

neighbor estimation according to Leonardi et al. [2023], the simulated annealing algorithm

did not yield satisfactory results in our considered scenarios. On the other hand, the stepwise

algorithms provided a viable alternative, exhibiting satisfactory performance. We recommend

utilizing the forward stepwise method when prior knowledge suggests a small number of

graph edges. Conversely, the backward stepwise approach is more suitable when dealing

with graphs known to have a larger number of edges. Furthermore, it is essential to consider

that several factors in�uence the estimation process, including the number of nodes in the

problem, the size of the alphabet, and the underlying graph structure. These factors can

signi�cantly a�ect the computational performance of the algorithms.

Furthermore, we extend our analysis to real-world applications, demonstrating the prac-

tical performance of the estimator in scenarios where understanding the conditional depen-

dence structure is of particular interest. The two datasets used in this context comprise

observations of continuous random variables. Given that the proposed method is designed

for discrete random variables, an appropriate discretization method relevant to each case

was necessary.

Moreover, one notable challenge encountered when working with real data is the choice

of the penalizing constant c. To address this issue, we designed a k-fold cross-validation

approach speci�cally for the scope of this thesis, which aids in determining the most suitable

value for the penalization constant.



65

Directions for future work

A straightforward extension of this work involves generalizing the approach to accommo-

date continuous multivariate stochastic processes. This extension would signi�cantly broaden

the range of data types that can be e�ectively analyzed using the estimator, making it even

more versatile and widely applicable in �elds such as signal processing, �nance, and envi-

ronmental monitoring.

Another line of research for extending this work involves the generalization of the method-

ology to in�nite vertex sets and unbounded estimators, where the size of the estimated graph

is permitted to grow proportionally with the sample size. Such an approach could �nd ap-

plications in diverse �elds, including but not limited to biology, social sciences, and �nance,

where complex systems with evolving structures are prevalent.

From another point of view, we can adapt the model to be able to estimate the direction of

the edges, i.e., to cope with directed graphs. Extending the model to capture the asymmetry

inherent in directed graphs would signi�cantly broaden its applicability. Directed graphs are

prevalent in various domains, such as causal inference in epidemiology, information �ow in

communication networks, and regulatory interactions in biological systems.



Appendix A

Theoretical complementary results

In this Appendix, we present a collection of theoretical results that complement and

support the �ndings discussed in the main body of the thesis. We begin with the de�nition

of the Küllback-Leibler divergence.

De�nition 14 (Küllback-Leibler divergence). The Küllback-Leibler divergence between two

probabilities distributions P and Q over A is de�ned as

D(P ;Q) = ∑
a∈A

P (a) log P (a)
Q(a) . (A.1)

By convention, P (a) log P (a)
Q(a) = 0 if P (a) = 0 and P (a) log P (a)

Q(a) = +∞ if P (a) > Q(a) = 0.

The next lemma is presented and proved in Lemma A.7 of Csiszár and Talata [2006].

Lemma 15. For any P and Q we have

D(P ;Q) ≤ ∑
a∈A∶Q(a)>0

[P (a) −Q(a)]2

Q(a) .

The following de�nition is adapted from Oodaira and Yoshihara [1971] for the context

of this thesis.

De�nition 16 (Oodaira and Yoshihara 1971, Section 1). Let Y = {Y (i)
,−∞ < i < ∞}

be an univariate process which is strictly stationary and let X
(i∶j)

denote the sequence

Y
(i)
, Y

(i+1)
, . . . , Y

(j)
, for i < j. We say the process Y satis�es the uniformly strong mix-

ing condition with rate {ψ(ℓ)} ↓ 0 as ℓ→ ∞ if

»»»»»»P(Y
(n∶(n+k−1))

= y
(1∶k) ∣Y (1∶m)

= y
(1∶m)) − P(Y (n∶(n+k−1))

= y
(1∶k))»»»»»» ≤ ψ(n −m), (A.2)

for each k,m ∈ N and each y
(1∶k)

∈ Rk
, y

(1∶m)
∈ Rm

with P(Y (1∶m)
= y

(1∶m)) > 0.

The following theorem is also adapted from Oodaira and Yoshihara [1971].
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Theorem 17 (Oodaira and Yoshihara 1971, Theorem 3). The strictly stationary univariate

process {Y (i)
,−∞ < i < ∞}, satisfying the mixing condition (A.2), obeys the law of the

iterated logarithm if the following requirements are ful�lled:

1. E∣Y (i)∣2+δ < ∞ for some δ > 0;

2. ψ(n) = O(1/n1+ϵ) for some ϵ > 1/(1 + δ).

De�nition 18. To say that the process {Y (i)
,−∞ < i < ∞}, in Theorem 17, obeys the law

of iterated logarithm means that, for any ϵ > 0,

P (∣Zn∣ > (1 + ϵ)χ(n) i.o.) = 0,

P (∣Zn∣ > (1 − ϵ)χ(n) i.o.) = 1,

where Zn = ∑n

i=1 Y
(i)
, χ(n) = (2σ2

n log log n)1/2, and

σ
2
= E[(Y (1))2] + 2

n

∑
j=2

E(Y (1)
Y

(j)). (A.3)

Lemma 19. Under the same assumptions of Theorem 17, if E(Y (j)) = 0 for all j, then

σ
2
= E[(Y (1))2].

Proof. For the process {Y (i)
,−∞ < i < ∞} de�ned in Theorem 17, we have that

∣E(Y (1)
Y

(j))∣ = ∑
Y (1)

∑
Y (j)

Y
(1)
Y

(j)P(Y (1)
= Y

(1)
, Y

(j)
= Y

(j))

≤ ∑
Y (1)

∑
Y (j)

Y
(1)
Y

(j)P(Y (j)
= Y

(j)∣Y (1)
= Y

(1))P(Y (1)
= Y

(1))

≤ ∑
Y (1)

∑
Y (j)

Y
(1)
Y

(j)[P(Y (j)
= Y

(j)) + ψ(j)]P(Y (1)
= Y

(1))

= [∑
Y (1)

Y
(1)P(Y (1)

= Y
(1))][∑

Y (j)

Y
(j)P(Y (j)

= Y
(j))]

+ ψ(j)∑
Y (j)

Y
(j) ∑

Y (1)

Y
(1)P(Y (1)

= Y
(1))

= E(Y (1))E(Y (j)) + ψ(j)∑
Y (j)

Y
(j)
E(Y (1))

= 0.

Since E(Y (j)) = 0 for all j, by (A.3), σ2
= E[(Y (1))2].

The lemma below is presented and proved in Leonardi et al. [2023].

Lemma 20. If a neighborhood W of v ∈ V satis�es

π(av∣aW ) = π(av∣ane(v))
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for all av ∈ A, and all aW∪ne(v) ∈ A
W∪ne(v)

with p(aW∪ne(v)) > 0 then W is a Markov

neighborhood.



Appendix B

Simulations' complementary results

We present the corresponding results in this Appendix to avoid redundancy with �g-

ures from other scenarios examined in the main text. We begin with the outcomes of the

considered algorithms for Example (12) in Section B.1. Subsequently, Section B.2 provides

supplementary results regarding Example (13), speci�cally focusing on the Backward Step-

wise algorithm.

B.1 Supplementary Information for Example 12

In this section, we provide additional details concerning Example 12. The formulation

of the joint probability distribution in Example 12 mirrors that of Example 11, and certain

details have been excluded for conciseness. We reproduce Expression (4.7) below:

p(x1, x2, x3, x4, x5, x6, x7, x8) = p(x1∣x2)p(x2∣x3)p(x3∣x4)p(x4)
p(x5∣x4)p(x6∣x7)p(x8∣x7)p(x7).

To generate a sample from the joint probability distribution described by this scheme,

we calculate the conditional probability distribution for each node, as outlined below.

p(x1∣x2, x3, x4, x5, x6, x7, x8) = p(x1∣x2),

p(x2∣x1, x3, x4, x5, x6, x7, x8) =
p(x1∣x2)p(x2∣x3)

∑x2∈A
p(x1∣x2)p(x2∣x3)

,

p(x3∣x1, x2, x4, x5, x6, x7, x8) =
p(x2∣x3)p(x3∣x4)

∑x3∈A
p(x2∣x3)p(x3∣x4)

,

p(x4∣x1, x2, x3, x5, x6, x7, x8) =
p(x3∣x4)p(x4)p(x5∣x4)

∑x4∈A
p(x3∣x4)p(x4)p(x5∣x4)

,
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p(x5∣x1, x2, x3, x4, x6, x7, x8) = p(x5∣x4),
p(x6∣x1, x2, x3, x4, x5, x7, x8) = p(x6∣x7),

p(x7∣x1, x2, x3, x4, x5, x6, x8) =
p(x6∣x7)p(x8∣x7)p(x7)

∑x7∈A
p(x6∣x7)p(x8∣x7)p(x7)

,

p(x8∣x1, x2, x3, x4, x5, x6, x7) = p(x8∣x7).

The R function for generating a sample in Example 12 is detailed in Section C.2 of

Appendix C. The code within the ex2initialize function, found in the same section,

supplies the theoretical values for the marginal and conditional distributions presented above.

These theoretical values serve as inputs for the Gibbs sampler algorithm to generate a sample

of the data, following the same approach executed in Example 11.

To assess the proposed algorithm's performance, we initially evaluate them using a single

sample. Subsequently, we repeat the process to generate ten distinct samples, calculating

average error metrics as de�ned in Equations (4.2), (4.3), and (4.4) for further analysis of

the estimator's performance.

B.1.1 Results

Due to the considerable computational complexity involved in evaluating all potential

graphs (amounting to a total of 268,435,456), we omit consideration of the Exact algorithm

in this scenario. Instead, we focus on presenting results derived from the Simulated Annealing

and Stepwise algorithms, encompassing both Forward and Backward variations.

The outcomes achieved using the Simulated Annealing algorithm closely resemble those

observed in Example 11. Following the algorithm speci�cations outlined in Section 4.1.2, we

present the corresponding graphs in Figure B.1. This illustration is for a single sample with

varying sizes (N ∈ {100, 500, 1,000, 5,000, 10,000}) and a range of penalizing constant values

c ∈ {0.01, 0.10, 0.25, 0.50, 0.75, 1.00, 2.00, 3.00}.
For context on this scenario's setup, refer to Figure 4.2. Despite assessing 40 scenarios, the

Simulated Annealing algorithm consistently failed to accurately recover the graph structure.

In contrast, the Stepwise algorithms displayed favorable outcomes for certain combinations of

sample size and penalizing constant. Figure B.2 depicts the results of the Backward Stepwise

algorithm. As observed in Example 11, these algorithms correctly capture the actual graph

structure for the cases where the sample size is equal to 5,000 and c ∈ {0.25, 0.50, 0.75, 1.00}.
The same occurs when N = 10,000 and c = 0.25 or c = 0.50. For all other combinations of

N and c, there were either under or overestimation problems.

Figure B.3 shows the results of the Forward Stepwise algorithm, which exhibited slightly

better performance than the Backward Stepwise algorithm. The Forward Stepwise algorithm

correctly recovered the true graph in a few more scenarios, speci�cally when N = 1,000
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Figure B.1: Simulated Annealing algorithm results for Example 12, considering several sce-

narios, with samples of size N ∈ {100, 500, 1,000, 5,000, 10,000} and penalizing constant c ∈

{0.01, 0.10, 0.25, 0.50, 0.75, 1.00, 2.00, 3.00}. The node structure resembles that of Figure 4.13.

and c = 0.50, N = 10,000 and c ∈ {0.25, 0.50, 0.75, 1.00}, and N = 10,000 and c =∈

{0.25, 0, 50, 0, 75, 1.00, 2.00}.
As expected, the overestimation error is considerably high for small penalizing values

(c = 0.01 or c = 0.10). In all other scenarios, an increase in the penalizing constant leads to

the emergence of underestimation error.

We then executed the considered algorithms for ten replications of each scenario (combi-

nation of sample size and penalizing constant), with a total of 40 combinations. The average

of underestimation error, overestimation error, and total error were then computed. The

results are visually presented in Figure B.4. The �rst row of the �gure represents the mean

underestimation error (ue), overestimation error (oe), and total error (te) values obtained

from the performance of the Forward Stepwise algorithm. The second and third rows corre-

spond to the Backward and Simulated Annealing algorithms.

In general, these outcomes closely mirror those obtained for the individual sample case,

as illustrated in Figures B.1, B.2, and B.3. Except for the Simulated Annealing algorithm,

the combination of relatively large sample sizes and speci�c penalizing constant values leads

to low error rates.

In conclusion, we observe that the Forward and Backward Stepwise algorithms demon-

strated e�ective performance when the sample size is not small and when the penalizing

constant value was appropriately chosen. Here, the sample size being small depends on the

number of nodes in the graph.
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Figure B.2: Backward Stepwise algorithm results for Example 12, considering several scenarios,

with sample of size N ∈ {100, 500, 1,000, 5,000, 10,000} and penalizing constant c ∈ {0.01, 0.10, 0.25,
0.50, 0.75, 1.00, 2.00, 3.00}. The node structure resembles that of Figure 4.13.

Figure B.3: Forward Stepwise algorithm results for Example 12, considering several scenarios,

with sample of size N ∈ {100, 500, 1,000, 5,000, 10,000} and penalizing constant c ∈ {0.01, 0.10, 0.25,
0.50, 0.75, 1.00, 2.00, 3.00}. The node structure resembles that of Figure 4.13.
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Figure B.4: Underestimate error, overestimate error, and total error of algorithms considered in

the estimation of Example 12. Mean error metrics (underestimation, overestimation, and total error)

for the algorithms considering ten samples of each size in Example 12. Sizes considered are N ∈

{100, 500, 1,000, 5,000, 10,000} and penalizing constant value c ∈ {0.01, 0.10, 0.25, 0.50, 0.75, 1.0, 2}.
The color in the tile's background indicates the size of the error metric; the darker, the bigger. In

general, small penalizing constant values tend to cause overestimation. Conversely, bigger c values

tend to cause underestimation, especially when the sample size is small.
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Figure B.5: Average error metrics outcomes of the Backward Stepwise algorithm for Example 12.

Each sub-�gure represents the result of a speci�c c value and displays the averaged errors as a

function of the number of edges in the graph.

B.2 Supplementary Information for Example 13

In this section, we provide the results of the Backward Stepwise algorithm when applied

to Example 13, which consists of evaluating 100 scenarios, as shown in Figure 4.14.

An overall summary of the results is depicted in Figure B.5, where each sub-�gure corre-

sponds to a speci�c value of c and shows the average error metrics as function of the number

of edges in the graph. This result can be analyzed in two groups. The �rst one regards small

values of the penalizing constant, speci�cally Λ1 = {0.001, 0.010}. In this case, the mean

overestimation error is high regardless of the number of edges in the graph (except in the

complete graph case), and the underestimation error is zero. This is expected as small values

of the penalizing constant lead to overestimation.

The second group corresponds to larger values of c, denoted as Λ2 = {0.050, 0.100, 0.150,
0.200, 0.250}, and showcases a di�erent behavior. The mean overestimation error is relatively

smaller for c ∈ Λ2, but it increases with the growth in the number of edges in the graphs.

Generally, the underestimation error remains low across all c values. However, for c ∈ Λ2,

certain instances exhibit underestimation error, particularly when the number of edges in

the graphs ranges between 2 and 5.

Finally, note that regardless of the value of the penalizing constant when the number of

edges in the graph is 10 (the complete graph in this case), the average of all errors vanishes.
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In particular, by construction, the overestimation error is zero here, and the underestimation

error was zero in all scenarios.

Figure B.6: E�ect of varying the penalizing constant c on the average error metrics outcomes from

the Backward Stepwise algorithm for Example 12. Each sub-�gure is the result given by graphs with

a �xed number of edges, from 1 to 10.

Additionally, Figure B.6 illustrates the impact of di�erent values of the penalizing con-

stant c on the average error metrics resulting from the Backward Stepwise algorithm. Each

sub�gure presents the results while maintaining a constant number of edges in the graphs,

ranging from 1 to 10. As expected, the error metrics decrease as the penalizing constant

value increases. The exception is the case where the number of edges is 9, and the error

metrics remain somewhat constant. This phenomenon is attributed to the de�nition of the

overestimation error and the total error. When the number of edges is 10, representing the

complete graph, all errors vanish regardless of the penalizing constant value.
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R functions

In this Appendix, we provide a collection of R functions that play an important role

in implementing various aspects of this thesis. Section C.1 presents the scripts regard-

ing the implementation of our proposed estimator in (2.21) and Section C.2 encompasses

the scripts used for generating samples for the examples presented in Chapter 4. The

entire set of functions used in this thesis is available in the author's GitHub repository

(github.com/magnotairone/phd_codes).

C.1 Estimator

In Listing C.1, we show the function that takes as argument the sample dataset (in a

dataframe structure) and the graph's adjacency matrix and implements the computation

of the terms in the pseudo-likelihood function de�ned in (2.20). The terms are returned in

a list format containing the elements of the sum indexed by the vertices.

1 get_sum_terms <- function(sample_data, G) {

2 result <- list()

3 for (v in 1:ncol(G)) {

4 if (length(which(G[v, ] == 1)) == 0) { # W is empty

5 V <- paste("V", v, sep = "")

6 a_v_W <- sample_data %>%

7 dplyr::group_by_at(c(V)) %>%

8 dplyr::count(name = "N_a_v_W") %>%

9 dplyr::ungroup() %>%

10 dplyr::mutate(N_a_w = nrow(sample_data),

11 pi = N_a_v_W * log(N_a_v_W / N_a_w))

12 result[[v]] <- a_v_W

13 next

14 }

15 W <- paste("V", which(G[v, ] == 1), sep = "")

16 V <- paste("V", v, sep = "")

17 a_v_W <- sample_data %>%

18 dplyr::group_by_at(c(V, W)) %>%
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19 dplyr::count(name = "N_a_v_W") %>%

20 dplyr::ungroup()

21 a_v <- a_v_W %>%

22 dplyr::group_by_at(W) %>%

23 dplyr::summarize(N_a_w = sum(N_a_v_W)) %>%

24 dplyr::ungroup()

25 result[[v]] <- a_v_W %>%

26 dplyr::left_join(a_v) %>%

27 dplyr::mutate(pi = N_a_v_W * log(N_a_v_W / N_a_w))

28 }

29 return(result)

30 }

Listing C.1: Computes the terms in the sum of the log pseudo-likelihood function.

In Listing C.2, we present the implementation of the penalizing term (2.21). The input

arguments are the penalizing factor (number), the cardinality of the alphabet (number), and

the adjacency matrix of the graph (matrix).

1 penalty <- function(lambda, card_A, G) {

2 return(lambda * sum(card_A ^ colSums(G)))

3 }

Listing C.2: Computes the estimator's penalty term.

In Listing C.3, we showcase the function that computes and returns the value of the

penalized pseudo-likelihood function (2.21) given the sample data frame and the graph's

adjacency matrix.

1 get_penalized_pseudo_log_likelihood <- function(sample_data, G){

2 get_sum_terms(sample_data, G) %>%

3 sum_terms()

4 }

Listing C.3: Computes the penilized log-likelihood function.

C.2 Generating samples

This section presents the functions used to generate samples for each example presented

in Chapter 4.

Example 11

We start by presenting the scripts utilized to generate samples for Example 11. The

function in Listing C.4 generates the initial state for the �ve variables in the vector.

1 ex1_initialize <- function(){

2 alphabet <- c(0, 1)
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3 p1_3 <- matrix(c(1/2, 1/2,

4 1/3, 2/3), nrow = 2, ncol = 2, byrow = T)

5 p2_13 <- matrix( c(1/2, 1/2,

6 3/4, 1/4,

7 1/4, 3/4,

8 1/3, 2/3), nrow = 4, ncol = 2, byrow = T)

9 p4_3 <- matrix(c(1/5, 4/5,

10 3/5, 2/5), nrow = 2, ncol = 2, byrow = T)

11 p5_3 <- matrix(c(2/3, 1/3,

12 1/2, 1/2), nrow = 2, ncol = 2, byrow = T)

13 p3 <- c(1/2, 1/2)

14 x <- vector(length = 5)

15 x[3] <- sample(alphabet, 1, prob = p3)

16 x[1] <- sample(alphabet, size = 1, prob = p1_3[x[3]+1,])

17 x[4] <- sample(alphabet, size = 1, prob = p4_3[x[3]+1,])

18 x[5] <- sample(alphabet, size = 1, prob = p5_3[x[3]+1,])

19 x[2] <- sample(alphabet, size = 1, prob = p2_13[2*x[3]+x[1]+1,])

20 return(x)

21 }

Listing C.4: Generation of an initial state for the chain in Example 11.

Listing C.5 presents the function that is used in the Gibbs sampler algorithm. It generates

a new state for the random vector based on the chain's current state, taken as input (vector)

of the function.

1 ex1_new_state <- function(x){

2 p1_3 <- matrix(c(1/2, 1/2,

3 1/3, 2/3), nrow = 2, ncol = 2, byrow = T)

4 p2_13 <- matrix( c(1/2, 1/2,

5 3/4, 1/4,

6 1/4, 3/4,

7 1/3, 2/3), nrow = 4, ncol = 2, byrow = T)

8 p4_3 <- matrix(c(1/5, 4/5,

9 3/5, 2/5), nrow = 2, ncol = 2, byrow = T)

10 p5_3 <- matrix(c(2/3, 1/3,

11 1/2, 1/2), nrow = 2, ncol = 2, byrow = T)

12 p3 <- c(1/2, 1/2)

13 y <- vector(length = 5)

14 q1 <- p3[x[3]+1] * p1_3[x[3]+1,] * p2_13[2*x[3]+1:2, x[2]+1] /

15 sum(p3[x[3]+1] * p1_3[x[3]+1,] * p2_13[2*x[3]+1:2,x[2]+1])

16 y[1] <- sample(c(0,1), 1, prob = q1)

17 q2 <- p3[x[3]+1] * p1_3[x[3]+1,y[1]+1] * p2_13[2*x[3]+y[1]+1,] /

18 sum(p3[x[3]+1] * p1_3[x[3]+1,y[1]+1] * p2_13[2*x[3]+y[1]+1,])

19 y[2] <- sample(c(0,1), 1, prob = q2)

20 q3 <- p3 * p1_3[,y[1]+1] * p2_13[c(0,2)+y[1]+1,y[2]+1] /

21 sum(p3 * p1_3[,y[1]+1] * p2_13[c(0,2)+y[1]+1,y[2]+1])

22 y[3] <- sample(c(0,1), 1, prob = q3)

23 q4 <- p3[y[3]+1] * p4_3[y[3]+1,] / sum(p3[y[3]+1] * p4_3[y[3]+1,])
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24 y[4] <- sample(c(0,1), 1, prob = q4)

25 q5 <- p3[y[3]+1] * p5_3[y[3]+1,] / sum(p3[y[3]+1] * p5_3[y[3]+1,])

26 y[5] <- sample(c(0,1), 1, prob = q5)

27 return(y)

28 }

Listing C.5: Generation of a new state for the chain in Example 11.

As an illustrative example, the code snippet below in Listing C.6 demonstrates how to

generate a Gibbs sample of size 10,000.

1 n <- 10000

2 n_nodes <- 5

3 data <- matrix(ex1_initialize(), ncol = n_nodes)

4 for(i in 2:n) data <- rbind(data, ex1_new_state(data[i-1,]))

Listing C.6: Gibbs sampler for Example 11

Example 12

Listing C.7 presents the function to generate an initial state for the random variables in

the vector of Example 12. It also showcases the randomly generated empirical probabilities

used in this example.

1 ex2_initialize <- function(){

2 alphabet <- c(0, 1, 2)

3 p1_2 <- matrix(c(1/3, 1/3, 1/3,

4 1/5, 2/5, 2/5,

5 4/9, 4/9, 1/9), nrow = 3, ncol = 3, byrow = TRUE)

6 p2_3 <- matrix(c(2/9, 3/9, 4/9,

7 1/3, 1/3, 1/3,

8 1/5, 1/5, 3/5), nrow = 3, ncol = 3, byrow = TRUE)

9 p3_4 <- matrix(c(2/8, 2/8, 4/8,

10 4/10, 3/10, 3/10,

11 3/8, 2/8, 3/8), nrow = 3, ncol = 3, byrow = TRUE)

12 p4 <- c(1/3, 1/3, 1/3)

13 p5_4 <- matrix(c(2/10, 5/10, 3/10,

14 2/6, 3/6, 1/6,

15 2/9, 4/9, 3/9), nrow = 3, ncol = 3, byrow = TRUE)

16 p6_7 <- matrix(c(2/7, 2/7, 3/7,

17 2/6, 1/6, 3/6,

18 3/9, 4/9, 2/9), nrow = 3, ncol = 3, byrow = TRUE)

19 p7 <- c(3/6, 2/6, 1/6)

20 p8_7 <- matrix(c(3/7, 2/7, 2/7,

21 3/8, 3/8, 2/8,

22 2/5, 1/5, 2/5), nrow = 3, ncol = 3, byrow = TRUE)

23 x <- vector(length = 8)

24 x[4] <- sample(alphabet, 1, prob = p4)

25 x[3] <- sample(alphabet, 1, prob = p3_4[x[4] + 1,])
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26 x[2] <- sample(alphabet, 1, prob = p2_3[x[3] + 1,])

27 x[1] <- sample(alphabet, 1, prob = p1_2[x[2] + 1,])

28 x[5] <- sample(alphabet, 1, prob = p5_4[x[4] + 1,])

29 x[7] <- sample(alphabet, 1, prob = p7)

30 x[6] <- sample(alphabet, 1, prob = p6_7[x[7] + 1,])

31 x[8] <- sample(alphabet, 1, prob = p8_7[x[7] + 1,])

32 return(x)

33 }

Listing C.7: Generation of an initial state for the chain in Example 12.

The function in Listing C.8 generates a new state for the random vector based on the

current state (vector) taken as the function's input.

1 ex2_new_state <- function(x){

2 alphabet <- c(0, 1, 2)

3 p1_2 <- matrix(c(1/3, 1/3, 1/3,

4 1/5, 2/5, 2/5,

5 4/9, 4/9, 1/9), nrow = 3, ncol = 3, byrow = TRUE)

6 p2_3 <- matrix(c(2/9, 3/9, 4/9,

7 1/3, 1/3, 1/3,

8 1/5, 1/5, 3/5), nrow = 3, ncol = 3, byrow = TRUE)

9 p3_4 <- matrix(c(2/8, 2/8, 4/8,

10 4/10, 3/10, 3/10,

11 3/8, 2/8, 3/8), nrow = 3, ncol = 3, byrow = TRUE)

12 p4 <- c(1/3, 1/3, 1/3)

13 p5_4 <- matrix(c(2/10, 5/10, 3/10,

14 2/6, 3/6, 1/6,

15 2/9, 4/9, 3/9), nrow = 3, ncol = 3, byrow = TRUE)

16 p6_7 <- matrix(c(2/7, 2/7, 3/7,

17 2/6, 1/6, 3/6,

18 3/9, 4/9, 2/9), nrow = 3, ncol = 3, byrow = TRUE)

19 p7 <- c(3/6, 2/6, 1/6)

20 p8_7 <- matrix(c(3/7, 2/7, 2/7,

21 3/8, 3/8, 2/8,

22 2/5, 1/5, 2/5), nrow = 3, ncol = 3, byrow = TRUE)

23 y <- vector(length = 8)

24 q4 <- p4 * p3_4[x[4]+1,] * p5_4[x[4]+1,] / sum(p4 * p3_4[x[4]+1,] * p5_

4[x[4]+1,])

25 y[4] <- sample(alphabet, 1, prob = q4)

26 q5 <- p5_4[y[4]+1,] / sum(p5_4[y[4]+1,])

27 y[5] <- sample(alphabet, 1, prob = q5)

28 q3 <- p2_3[x[3]+1] * p3_4[y[4]+1,] / sum(p2_3[x[3]+1] * p3_4[y[4]+1,])

29 y[3] <- sample(alphabet, 1, prob = q3)

30 q2 <- p1_2[x[2]+1,] * p2_3[y[3]+1,] / sum(p1_2[x[2]+1,] * p2_3[y[3]+1,])

31 y[2] <- sample(alphabet, 1, prob = q2)

32 q1 <- p1_2[y[2]+1,] / sum(p1_2[y[2]+1,])

33 y[1] <- sample(alphabet, 1, prob = q1)

34 q7 <- p7 * p6_7[x[7]+1,] * p8_7[x[7]+1,] / sum(p7 * p6_7[x[7]+1,] * p8_
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7[x[7]+1,])

35 y[7] <- sample(alphabet, 1, prob = q7)

36 q6 <- p6_7[y[7]+1,] / sum(p6_7[y[7]+1,])

37 y[6] <- sample(alphabet, 1, prob = q6)

38 q8 <- p8_7[y[7]+1,] / sum(p8_7[y[7]+1,])

39 y[8] <- sample(alphabet, 1, prob = q8)

40 return(y)

41 }

Listing C.8: Generation of a new state for the chain in Example 12.

As the data generation process is very similar to the code chunk presented in Listing C.6,

we omit the respective code chunk for Example 12.

Example 13

As this example involves generating random scenarios, in Listing C.9 we de�ne the func-

tion that randomly creates a symmetric adjacency matrix to represent an undirected graph

with a speci�ed number of vertices (n_vertices) and edges (n_edges). It ensures that

the number of edges does not exceed the maximum possible for a symmetric matrix and

employs a while loop to randomly assign edges between vertices until the desired number of

edges is reached.

1 generate_adj_matrix <- function(n_vertices, n_edges){

2 if (n_edges > n_vertices * (n_vertices - 1) / 2) {

3 stop("The number of edges cannot exceed the maximum possible number of

edges in a symmetric matrix.")

4 }

5 adj_matrix <- matrix(0, nrow = n_vertices, ncol = n_vertices)

6 edge_counter <- 0

7 while (edge_counter < n_edges) {

8 row <- sample(1:n_vertices, 1)

9 col <- sample(1:n_vertices, 1)

10

11 if (row != col && adj_matrix[row, col] == 0) {

12 adj_matrix[row, col] <- 1

13 adj_matrix[col, row] <- 1

14 edge_counter <- edge_counter + 1

15 }

16 }

17 return(adj_matrix)

18 }

Listing C.9: Generation of a random adjacency matrix.

Listing C.10 presents the function that takes the graph's adjacency matrix as input and

produces random conditional probability distributions for each vertex based on its neighbors

in the graph. It initializes a list to store the distributions, iterates over each vertex, identi�es
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its neighbors, and calculates the number of possible combinations of states for the neighbors.

The function generates random conditional probabilities for each combination and organizes

them into a matrix. Finally, these matrices are stored in a list, and the function returns this

list of conditional probability distributions for each vertex in the graph.

1 generate_conditional_distributions <- function(adjacency_matrix) {

2 num_vertices <- nrow(adjacency_matrix)

3 distributions <- vector("list", num_vertices)

4 for (i in 1:num_vertices) {

5 neighborhood <- adjacency_matrix[i, ]

6 neighbors <- which(neighborhood == 1)

7 num_neighbors <- length(neighbors)

8 num_combinations <- 2^num_neighbors

9 conditional_probs <- matrix(0, nrow = num_combinations, ncol = 2)

10 for (j in 1:num_combinations) {

11 probabilities <- runif(2)

12 probabilities <- probabilities / sum(probabilities)

13 conditional_probs[j, ] <- probabilities

14 }

15 distributions[[i]] <- conditional_probs

16 }

17 return(distributions)

18 }

Listing C.10: Generation of random conditional distribution functions.

The complete functions used in implementing the algorithms proposed in this thesis can

be found in the repository in the author's Github pro�le.

https://github.com/magnotairone/phd_codes
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