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Abstract

URIBE, P. V. Dynamic sparsity on time-varying Cholesky-based covariance matrices.
2017. Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São
Paulo, 2017.
In the present work, we consider variable selection and shrinkage for Gaussian Dynamic Linear
Models (DLM) within a Bayesian framework. In particular, we propose a novel method that
accommodates time-varying sparsity, based on an extension of spike-and-slab priors for dynamic
models. This is done by assigning appropriate priors for the time-varying coefficients’ variances,
extending the previous work of Ishwaran and Rao (2005). Our approach is similar to the Normal
Gamma Autoregressive (NGAR) process of Kalli and Griffin (2014), nevertheless, we assume a
Markov switching structure for the process variances instead of a Gamma Autoregressive (GAR)
process. Furthermore, we investigate different priors, including the common Inverted gamma
prior for the process variances, and other mixture prior distributions such as Gamma priors for
both the spike and the slab, which leads to a mixture of Normal-Gammas priors (Griffin et al.
(2010)) for the coefficients and also different distributions for the spike and the slab. In this
sense, our prior can be view as a dynamic variable selection prior which induces either smooth-
ness (through the slab) or shrinkage towards zero (through the spike) at each time point. The
MCMC method used for posterior computation uses Markov latent variables that can assume
binary regimes at each time point to generate the coefficients’ variances. In that way, our model
is a dynamic mixture model, thus, we could use the algorithm of Gerlach et al. (2000) to gene-
rate the latent processes without conditioning on the states. Finally, our approach is exemplified
through simulated examples and a real data application.

Keywords: Cholesky decomposition, dynamic models, Normal-Gamma prior, spike-and-slab
priors, high-dimensional data, scale mixture of Normals.
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Resumo

URIBE, P. V. Esparsidade dinâmica em matrizes de covariância variantes no tempo
via decomposição de Cholesky. 2017. Tese (Doutorado) - Instituto de Matemática e Esta-
tística, Universidade de São Paulo, São Paulo, 2017.
No presente trabalho são apresentados diversos métodos de seleção de variáveis e encolhimento
para modelos lineares dinâmicos Gaussianos sob a perspectiva Bayesiana. Em particular, pro-
pomos um novo método o qual induz esparsidade dinâmica em modelos de regressão linear com
coeficientes variantes no tempo. Isso é feito através da especificação de prioris spike-and-slab
para as variâncias dos coeficientes de variação do tempo, estendendo o trabalho anterior de
Ishwaran and Rao (2005). A abordagem é semelhante ao processo definido em Kalli and Griffin
(2014), no entanto, assumimos uma estrutura Markov switching para as variâncias ao invés de
um processo Gama autoregressivo. Além disso, investigamos diferentes priores, incluindo uma
mistura de distribuições Gama Inversa, bastante utilizada para variâncias, além de outras mis-
turas de distribuições, como a Gama, que gera a priori conhecida como Normal-Gama para os
coeficientes (Griffin et al. (2010)). Nesse sentido, o modelo proposto pode ser visto como uma
seleção de variável dinâmica em que os coeficientes podem assumir valores diferentes de zero
seguindo uma distribuição mais dispersa (através do slab) ou encolhimento em direção a zero
(através do spike) em cada ponto do tempo. O esquema MCMC usado para simular a posteriori
utiliza variáveis latentes Markovianas que podem assumir regimes binários em cada ponto de
tempo para gerar as variâncias dos coeficientes. Dessa forma, o modelo é um modelo de mistura
dinâmica, portanto, para gerar as variáveis latentes, utilizamos o algoritmo de Gerlach et al.
(2000), que permite gerar essas variáveis sem condicionamento nos estados (coeficientes varian-
tes no tempo). A abordagem é exemplificada através de exemplos simulados e uma aplicação de
dados reais.

Palavras-chave: Decomposição de Cholesky, modelos dinâmicos, priori Normal-Gama, priori
spike-and-slab, misturas de escala Normal.
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Chapter 1

Introduction

Over the past few decades, advances in computational processing have encouraged the pro-
liferation of massive datasets, bringing new perspectives and challenges to statistical research
due to high-dimensionality issue. In this sense, regularization and variable selection techniques
have become even more relevant to induce sparsity and solve ill-posed problems. A few years
ago, Hastie et al. (2001) coined the informal Bet on Sparsity principle, which encourages the
use of procedures that do well in sparse problems for high-dimensional problems, since no pro-
cedure does well in dense problems. Actually, they have shown that for a dense problem, where
all the numerous coefficient where different from zero, and/or there is a high Noise-to-Signal
Ratio (NSR), both the former ridge regression procedure of Hoerl and Kennard (1970) and the
least absolute shrinkage and selection operator (lasso) from Tibshirani (1996) do poorly in terms
of prediction. In contrast, famous statistician Andrew Gelman has questioned this principle in
his blog 1 saying that in fact the world is non-sparse and the relations between variables are
very complex. Therefore in a dense setting as we encounter in Social Science research one is not
actually interested in “recovering the underlying model.”

Despite the different point of views, sparsity makes sense and appear frequently in many
situations. For instance, in several areas of research, such as genetics, finance and neuroscience,
high-dimensional data are collected daily and there is great interest in establishing measures
of association or dependence between variables. For example, the estimation of correlation or
measures of dependency among several regions of interest (ROI) of the brain is of great impor-
tance in studies of brain connectivity involving functional magnetic resonance imaging data. In
finance, the solution to the portfolio optimization problem between risk and expected returns
needs the inverse of the covariance matrix among the assets, which may be numerous given the
preference for portfolio diversification.

In both mentioned situations, a sparse setting is reliable and even desired for practical
reasons. The fact is that estimating a covariance matrix among many variables, considering
relatively few observations of each variable is a difficult problem. Let X be a data matrix
(n × p), where n is the number of sample observations and p the number of variables. We
know that to estimate a complete or unconditional covariance matrix, we need to estimate
p(p − 1)/2 parameters, which may be really complex if p is big. Another difficulty that occurs
in high-dimensional problems is that many methods, such as least squares, require the inverse

1http://andrewgelman.com/2013/12/16/whither-the-bet-on-sparsity-principle-in-a-nonsparse-world/
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2 INTRODUCTION 1.1

calculation of X ′X, which is obviously singular when p � n. If we think about time-varying
covariance matrices, the problem gets even harder as now we have to estimate p(p − 1)n/2

parameters.
In science, Occam’s razor principle is used as a heuristic guide in the development of theoret-

ical models. Although it is not considered an irrefutable principle of logic or a scientific result,
the preference for simplicity in the scientific method is based on the falsifiability criterion as
long as simpler theories are preferable to more complex ones because they are more testable.
Applied to statistical analysis, this implies that the less dense model that fits the data is best as
unnecessary predictors will add noise to the estimation and, besides that, degrees of freedom will
be wasted. For these reasons, regularization and variable selection techniques are particularly
encouraged as they involve some form of dimensionality reduction, making regression problems
less complex.

The problem of variable selection refers to the statistical endeavor of selecting a subset of ob-
served characteristics, which collectively provide a good description of an observed phenomenon.
Of particular interest are settings where such a subset is parsimonious. In this sense, variable
selection acts as a form of model selection within a regression framework, where models differ
in their configuration of the contributing variables. In frequentist approach, stepwise regression
and criterion based methods are very well known techniques for model selection. In Bayesian
framework, variable selection is commonly based on spike-and-slab priors for regression coeffi-
cients, being the focus of this thesis. Seminal papers on this topic are Mitchell and Beauchamp
(1988) and George and McCulloch (1993), where the latter is called the stochastic search variable
selection (SSVS) method.

While variable selection stands for model selection, regularization methods uses the entire
dictionary of variables but restrict the coefficients. In the frequentist framework, this is the pe-
nalized maximum likelihood estimation, such as the lasso Tibshirani (1996) and ridge regression
of ridge regression, where the former imposes a `2 penalty on the regression coefficients, while
the latter works with the `1 penalty. As noted in Hastie et al. (2001), ridge regression is a sim-
ple example of a regularization approach, while the lasso is both a regularization and selection
method, because it can be proven that lasso actually induces sparsity even though it has some
bias problems, as it also over shrinks non-zero coefficients in some cases. In the Bayesian con-
text, regularization within regression problems is equivalent to assigning shrinking priors to the
coefficients.

1.1 Outline

In this thesis, we focus on Bayesian methods, discussing several shrinking priors for regular-
ization purposes and well as spike-and-slab priors for variable selection. The aim of the work is
to derive a Bayesian variable selection method within the framework of the Gaussian Dynamic
Linear Models (DLM). Furthermore, besides estimating and shrinking the time-varying coeffi-
cients horizontally, we want to derive a method that accommodates time-varying sparsity, that
is, where the subset of relevant predictors also change over time (vertical sparsity).

First, it is worth explain in details the concepts of vertical and horizontal sparsity. To make
these concepts even more clear, Table 1.1 above illustrates a time-varying sparsity pattern for
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q = 5 potential predictors and t = 1, .., 12 (months). One can see that the regressor X1 always
have an irrelevant effect such as it can be estimated as being zero at all times (horizontal
sparsity). Nevertheless, variables X2,X3 and X4 are relevant in some quarters and irrelevant in
others, therefore the subset of non negligible variables varies over months (vertical sparsity).

jan feb mar apr may jun jul aug sep oct nov dec
x0 β1,1 β1,2 β1,3 β1,4 β1,5 β1,6 β1,7 β1,8 β1,9 β1,10 β1,11 β1,12

x1 0 0 0 0 0 0 0 0 0 0 0 0
x2 β3,1 β3,2 β3,3 β3,4 β3,5 0 0 0 β3,9 β3,10 β3,11 β3,12

x3 0 0 β4,3 β4,4 β4,5 β4,6 β4,7 β4,8 β4,9 β4,10 β4,11 0
x4 β5,1 β5,2 β5,3 β5,4 β5,5 0 0 0 β5,9 β5,10 β5,11 β5,12

Table 1.1: Horizontal and vertical sparsity example

Our method is based on placing spike-and-slab priors on the time-varying variances’ of the
time-varying coefficients, extending the previous work of Ishwaran and Rao (2005). That is, for
each time point t, each βj,t from the linear regression with j = 1, ..., q predictors is (marginally)
normally distributed as

βj,t|ψj,t ∼ N (0, ψj,t),

for t = 1, ..., T where each parameter ψj,t = Kj,tτ
2
j , conditional on the previous value Kj,t−1 is

a finite mixture

ψj,t|Kj,t−1 ∝ ωpslab(ψj,t) + (1− ω)pspike(ψj,t),

where the weight ω = f(Kj,t−1) is a function of the previous value of Kj,t−1 and the latent vari-
ables Kj,1, ..,Kj,T evolves as a Markov switching process. The basic idea is that each variance
ψj,t is modeled as having come either from a distribution with most (or all) of its mass concen-
trated around zero (pspike(ψj,t)), or from a comparably diffuse distribution with mass spread out
over a large range of values (pslab(ψj,t)).

We investigate different prior distributions for pspike(ψj,t) and pslab(ψj,t), including the com-
mon Inverted Gamma prior for the process variances, and other mixture prior distributions such
as Gamma priors for both the spike and the slab, which leads to a mixture of Normal-Gammas
priors (Griffin et al. (2010)) for each βj,t. In this sense, our prior can be view as a dynamic
variable selection prior which induces either smoothness (through the slab) or shrinkage towards
zero (through the spike) at each time point.

The posterior computation is done by a Gibbs Sampler with a Metropolis step. The Markov
latent variables Kj,1, ..,Kj,T can assume binary regimes at each time point and they generate
the coefficients’ variances ψj,1, ..., ψj,T , which in turn shrink the coefficients. In that way, our
model is a dynamic mixture model, thus, we could use the algorithm of Gerlach et al. (2000) to
generate the latent processes without conditioning on the states. Furthermore, the states βj,t are
generated using the Forward Filtering Backward Sampling (FFBS) algorithm (Carter and Kohn
(1994); Frühwirth-Schnatter (1994)). The other parameters from the regression are also sampled
within the MCMC scheme, in a full Bayes strategy.
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1.2 Organization

The rest of this work is organized as follows:

• Chapter 2 is devoted to study of the Gaussian linear model and the regularization and
variable selection methods applied to linear regression models. First, the Gaussian lin-
ear model is presented and several estimation methods are discussed such as the classical
ordinary least squares as well as the Bayesian inference of the Gaussian linear model.
Second, some regularization methods are introduced in Section 2.2, such as the lasso
(Tibshirani (1996)), the Bayesian lasso (Park and Casella (2008)), the ridge regression
(Hoerl and Kennard (1970)) and the elastic net (Zou and Hastie (2005)). Finally, Bayesian
methods of variable selection are presented as an alternative to the classical stepwise re-
gression approaches in Section 2.3. Specifically, we discuss the stochastic search variable
selection method of George and McCulloch (1993) and the stochastic variable selection
model of Ishwaran and Rao (2005), both based on spike-and-slab priors. Then, we gener-
alize the spike-and-slab prior by allowing different combinations of distributions, following
the work of Frühwirth-Schnatter and Wagner (2011).

• Chapter 3 is dedicated to presenting the general Gaussian Dynamic Linear Model theory
(DLM) and the existing literature of regularization and variable selection methods applied
to Time Varying Parameter (TVP) models. Specifically, in Section 3.1, we discuss the
basic formulation of state space models and the structure of the recursive computations
for estimation and prediction. Then, in Section 3.2, the specific case of the Gaussian DLM
is presented as well as the the Kalman filter, the Kalman smoother and the Forward
Filtering Backward Sampling (FFBS) algorithm for Gaussian DLMs. Finally, we discuss
some existing regularization methods for TVP models in Section 3.3 that have influenced
our proposed model which will be discussed in Chapter 5.

• Chapter 4 is allocated to discussing some existing methods for sparse covariance modeling
based on the regularization of the linear regressions which result from the covariance
matrix decompositions. The objective is to briefly discuss the various decompositions of
the covariance matrix that make the problem of estimation of a matrix into a linear
regression problem, especially in the case of high-dimensional problems. In particular, we
choose the modified Cholesky decomposition for the applications, because of its natural
interpretation and practical appeal. Thus, in Section 4.1 we present the modified Cholesky
and other covariance matrix decompositions. Then, Section 4.2 is dedicated to presenting
existing frequentist methods for regularizing the Cholesky factor such as the approach
of Huang et al. (2006), based on the lasso regularization, the Adaptative Banding with a
nested lasso penalty (AB) of Levina et al. (2008) and the Forward Adaptative Banding
of Leng and Li (2011). Lastly, we present some simulated and real data examples and
compare with the Bayesian regularization of the Cholesky linear regressions based on the
Normal-Gamma prior.

• Finally, in Chapter 5 we propose a new method that accommodates time-varying sparsity,
based on spike-and-slab priors. In Section 5.1, we present the formulation of the proposed
model and its posterior inference. In Section 5.2, some simulated examples, including
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one where we simulate and obtain a time-varying covariance matrix using the Cholesky
decomposition, are given. An empirical example using inflation data is given in Section
5.3.



6 INTRODUCTION 1.2



Chapter 2

Regularization and variable selection in
the Gaussian linear model

In this chapter we consider some approaches for extending the Gaussian linear model frame-
work. In particular, we discuss several regularization and variable selection methods applied to
linear regression models.

First, the Gaussian linear model is presented and several estimation methods are discussed in
Section 2.1, such as the classical ordinary least squares and the maximum likelihood approaches,
as well as the Bayesian inference of the Gaussian linear model.

Second, some regularization methods for linear regression models are introduced in Section
2.2, such as the lasso (Tibshirani (1996)), the Bayesian lasso (Park and Casella (2008)), the
ridge regression (Hoerl and Kennard (1970)) and the elastic net (Zou and Hastie (2005)). All
these methods are discussed both from the classical point of view, which is based on the idea of
penalized maximization (or minimization), and from the Bayesian perspective, which is based
on assigning priors for the regression coefficients, mostly within the class of scaled mixture of
normals (see, e.g.,West (1987)).

Finally, Bayesian methods of variable selection are presented as an alternative to the clas-
sical stepwise regression approaches in Section 2.3. Specifically, we discuss the stochastic search
variable selection method of George and McCulloch (1993) and the stochastic variable selection
model of Ishwaran and Rao (2005), both based on spike-and-slab priors. Then, we generalize
the spike-and-slab prior by allowing different combinations of distributions, following the work
of Frühwirth-Schnatter and Wagner (2011).

2.1 The Gaussian linear model

The Gaussian linear model is defined by

y = β01 +Xβ + ε, ε ∼ N (0, σ2I), (2.1)

where y denotes a n-dimensional vector of continuous responses, β0 is the intercept, β is a q-
dimensional vector of regression coefficients associated with covariates, X is a (n × q) design
matrix with each column representing a covariate, and ε is multivariate Gaussian (i.e.,N denotes
the Gaussian distribution). Note that each component εi of ε, for i = 1, ..., n, is an independent

7
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and identically distributed Gaussian error with zero mean and variance σ2.
Notice that, generally and without loss of generalization, the design matrix X is often stan-

dardized, namely, the columns of X are centered and scaled (for each column j = 1, ..., q, we
have E(Xj) = 0 and Var(Xj) = 1) so that the estimated values of β are truly comparable. In
addition, because we can define α = ȳ, where ȳ =

∑n
i=1 yi/n, if we replace the responses yi by

their centered values yi − ȳ, for i = 1, ..., n, then we can simply ignore the intercept β0.
From Equation (2.1), rearranging the design matrix X and the coefficients’ vector β, we

may rewrite the model as

(y|X,β, σ2) ∼ N (Xβ, σ2I), (2.2)

where now β = (β0, β1, ..., βq) and X is a (n× (q + 1)) matrix (we add a column of 1s into X).

2.1.1 The classical approach

Consider the Gaussian linear model presented in Equation (2.2). A model fitting procedure
produces the vector of estimates β̂ = (β̂0, β̂1, ..., β̂q). The ordinary least squares (OLS) estimates
are obtained by minimizing the residual sum of squares

RSS(β) = (y −Xβ)′(y −Xβ) = ‖y −Xβ‖2 ,

that is,

β̂OLS = arg min
β
{‖y −Xβ‖2},

which results in the unique solution

β̂OLS = (X ′X)−1X ′y. (2.3)

Note that under Gaussian errors, the OLS solution is equivalent to the classical maximum
likelihood estimate (MLE), which is obtained by maximizing the likelihood

L(y|X,β, σ2) =
1

(2πσ2)n/2
exp

{
− 1

2σ2
(y −Xβ)′(y −Xβ)

}
.

It is well known that the OLS/MLE estimator is unbiased and that the sampling distribution
considering the Gaussian linear model is

β̂OLS ∼ N (β, σ2(X ′X)−1),

while assuming that σ2 is known. Nevertheless, in most cases, σ2 in unknown and has to be
estimated using the mean squared residual error

s2 =
n

n− q
‖y −Xβ‖2 ,

in which case β̂OLS has a multivariate t sampling distribution centered on β.
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2.1.2 Bayesian inference in the Gaussian linear model

We describe two cases of Bayesian inference with conjugate priors for the regression model:
inference on the regression coefficients β, assuming that σ2 is known, and inference on β and
σ2, assuming that both are unknown.

Inference on β, σ2 known. A typical approach is to introduce a conjugate Gaussian prior
for the coefficients, for instance

β ∼ N (µ0,S0), (2.4)

while assuming that σ2 is known. The posterior is then

(β|y,X, σ2) ∝ exp

{
− 1

2σ2
(y −Xβ)′(y −Xβ)− 1

2
(β − µ0)′S−1

0 (β − µ0)

}
,

where, completing the square inside the exponent, we get the following posterior

(β|y,X, σ2) ∼ N (µ,S), (2.5)

with

S = σ2(X ′X + σ2S−1
0 )−1,

µ = S(S−1
0 µ0 +

1

σ2
X ′y).

Note that when S−1
0 → 0, µ→ β̂OLS . The same happens when we place a non-informative

(the so-called Jeffrey’s) prior on β. That is, if β ∝ 1, then (β|y,X, σ2) ∼ N (β̂OLS , σ
2(X ′X)−1).

Inference on both β and σ2. As we rarely know σ2, another typical approach is placing the
hierarchical prior

β|σ2 ∼ N (µ0, σ
2S0), σ2 ∼ IG(a, b), (2.6)

where IG denotes the Inverse-Gamma distribution with shape a and scale b.
Note that the hierarchical structure in (2.6) is the same of placing a conjugate prior for both

(β, σ2), i.e.,

p(β, σ2) = p(β|σ2)p(σ2) = N (µ0, σ
2S0)IG(a, b),

where this structure is called the Normal Inverse-Gamma (NIG) prior with parameters
(µ0,S0, a, b). The resulting posterior distribution is

(β, σ2|y,X) ∼ N (µn, σ
2S−1

n )IG(an, bn), (2.7)

where
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an = a+ n/2,

bn = b+
1

2
(y′y + µ′0S

−1
0 µ0 − µ′nSnµn),

µn = (S−1
0 +X ′X)−1(S−1

0 µ0 +X ′y),

Sn = S−1
0 +X ′X.

An interesting analytic form results from integrating out σ2 from the joint posterior density
in (2.7). In this case, the marginal posterior of β follows a multivariate t-distribution

(β|y,X) =

∫
p(β, σ2|y,X)dσ2 ∼ tν(µ∗,S∗),

with

µ∗ = µn,

S∗ =
bn
an
Sn,

and ν = 2an degrees of freedom.

g-prior & ridge prior. In practice, NIG prior is too informative and has too many constants.
People often prefer to use the g-prior introduced by Zellner (1986)

β|σ2 ∼ N (0, gσ2(X ′X)−1), (2.8)

where for choosing g one could use information criteria BIC, empirical Bayes or full Bayes
strategies.

Note that (2.8) is equivalent to the NIG prior presented in (2.6) with µ0 = 0, S0 = g(X ′X)−1

and a→ 0, b→ 0, i.e., the Jeffrey’s prior p(σ2) ∝ 1
σ2 . The posterior density of β is Gaussian

(β|y,X, σ2) ∼ N
(

g

g + 1
β̂OLS ,

g

g + 1
σ2(X ′X)−1

)
,

where letting g →∞, we recover the frequentist β̂OLS from Equation (2.3).
Finally, another famous Bayesian approach for linear Gaussian model is the ridge prior, which

is taken to be

β ∼ N (0, σ2λ−1I), (2.9)

where λ > 0 and σ2 > 0 are known scalars. Note that this is equivalent to (2.4), where S0 =

σ2λ−1I and σ2 is known. Thus, the posterior is Gaussian with posterior mean µ given by

µ = (X ′X + λI)−1X ′y.

In the next section, we will give more details about ridge prior and its frequentist analogue.
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2.2 Regularization

It is well known that OLS often does poorly on both prediction accuracy and interpretation,
as noted in Tibshirani (1996) and in Zou and Hastie (2005). Interpretation stands for the prefer-
ence for parsimony, in the sense that simpler models put more light on the relationship between
the response and covariates. Prediction accuracy is related to the bias-variance trade-off.

Consider the Gaussian linear model defined in the Equation (2.2). For simplicity, assume
throughout this section that the covariates from matrix X are standardized and the response
y is centered, so that we can ignore the intercept. Let β̂ be an estimate for β and X = X0

be a known particular target point for prediction. Suppose we have an estimator for y equal to
f̂(X) = Xβ̂. Then, the prediction error pe(X0) is

pe(X0) = Ey|X=X0

{(
y − f̂(X)

)2
|X = X0

}
= σ2 +

(
y − f̂(X0)

)2
+ Var

(
f̂(X0)

)
.

Such a decomposition is known as the bias-variance trade-off. Although the OLS/ MLE esti-
mator has the smallest variance among all unbiased estimators accordingly to the Gauss Markov
Theorem, an estimator with slight bias but smaller variance could be preferable, leading to a
substantial decrease in prediction error. As the model complexity rises (more terms included),
OLS estimates suffer from higher variance.

Modern statistics allows for this trade-off between bias and variance through regularization
methods, which encourages simpler models because the space of values of β̂ considered is smaller.
This is consistent with the sparsity principle which assumes that only a small number of predic-
tors contribute to the response. Intuitively, regularization prevents overfitting, leading to better
generalization.

Another important issue concerning the OLS/MLE estimate is that it is undefined in high-
dimensional problems, where the number of variables is much greater than the number of obser-
vations (q � n). In this case, X ′X is singular or not well-conditioned.

In general terms, the notion of regularization summarizes approaches that allow to solve
ill-posed problems, such as those which arises from high-dimensional data, or to prevent over-
fitting. Hence, the purpose of regularization is introducing additional information that allow to
characterize useful solutions for β, inducing models to be sparse or introducing a group structure
into the problem.

2.2.1 The ridge regression and the lasso: classical and Bayesian approaches

One of the first classical regularization approach was the ridge regression from Hoerl and Kennard
(1970) or Tikhonov regularization, which solution is given by

β̂ridge = arg min
β

{
‖y −Xβ‖2 + λ ‖β‖22

}
, (2.10)

where λ ≥ 0 is a regularization parameter controlling the length of the vector of regression
coefficients. This is equivalent to saying that the ridge estimate for β is the optimal solution
obtained by minimizing

∑n
i=1(yi − Xiβ)2 subject to

∑q
j=1 β

2
j ≤ t, where t ≥ 0 is a tuning
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parameter. That is, the ridge estimate is a penalized least squares method imposing a `2 penalty
on the regression coefficients. The unique ridge solution is

β̂ridge = (X ′X + λI)−1X ′y. (2.11)

Note that for each λ we have a solution. If λ→ 0, we obtain the least squares solution from
Equation (2.3) and if λ → ∞, we have β̂ridge = 0. In the original paper, a procedure called
ridge traces was discussed, i.e., in order to choose λ, one should plot the estimates against λ
and choose the one for which the coefficients are not rapidly changing and have sensible signs.
This procedure was heavily criticized, so now the standard practice is to use cross validation for
choosing λ. It can be proven that

E(β̂ridge) = Z−1β

Var(β̂ridge) = σ2Z(X ′X)−1Z ′,

where Z = (I+λ(X ′X)−1)−1, which means that the ridge estimator is biased. The total variance
decreases as λ increases, while the square bias increases with λ. This illustrates the bias-variance
trade-off of the ridge estimate.

Even though the ridge regression solves problems when there are more variables than obser-
vations (q > n), it is worth noting that it doesn’t induce sparsity solutions, which forces to zero
the smaller coefficients, but keeps the bigger ones around.

In this sense, another classical regularization approach for the Gaussian linear regression
problem has arisen to fix this drawback: the least absolute shrinkage and selection operator
(lasso) from Tibshirani (1996). The lasso estimate is defined by

β̂lasso = arg min
β
{‖y −Xβ‖2 + λ ‖β‖1}, (2.12)

where λ ≥ 0 is a regularization parameter that determines the impact of penalty function.
Again, this is equivalent to saying that the lasso estimate for β is the optimal solution obtained
by minimizing

∑q
i=n(yi −Xiβ)2 subject to

∑q
j=1 |βj | ≤ t, where t ≥ 0 is a tuning parameter.

That is, the lasso is a penalized least squares method imposing a `1 penalty on the regression
coefficients.

Note that if t =
∑q

j=1 |β̂OLSj |, then λ = 0 and we obtain no shrinkage. Therefore, only when
t <

∑q
j=1 |β̂OLSj | will cause shrinkage of the solutions towards zero, and some of the coefficients

may be exactly equal to zero. This explains why lasso is also considered a variable selection
method by some.

Unlike the ridge estimate, the lasso estimate has no closed form since it is a non linear and
non-differentiable function of the response values even for a fixed value of t. Original implemen-
tation involves quadratic programming techniques from convex optimization. Again, the lasso
shrinking parameter λ is usually chosen by cross validation methods.

Many other sparsity-inducing penalties such as the elastic net from Zou and Hastie (2005)
and the adaptive lasso from Zou (2006) have similar structures, with penalty functions equal to,
respectively

λ1 ‖β‖1 + λ2 ‖β‖22 , λ1 ≥ 0, λ2 ≥ 0 (2.13)
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and

λ

q∑
j=1

|βj |/|β̂OLSj |, λ ≥ 0. (2.14)

While the frequentist approaches are based on penalized optimizations, Bayesian regulariza-
tion for the linear regression can be formalized through the conditional distribution p(y|β,φ),
where φ is a parameter vector, comprising, for example, the error variance σ2. The regu-
larization is achieved by specifying appropriate informative priors p(β|θ), where the hyper-
parameter vector θ includes parameters controlling shrinkage properties. The model is com-
pleted by assuming hyperpriors p(θ) and p(φ) and the inference is based on the posterior
p(β,φ,θ,y) ∝ p(y|β,φ)p(β|θ)p(θ)p(φ). It can be shown that if φ and θ are fixed, then the
posterior mode or the maximum a posteriori estimate (MAP)

arg max
β
{p(y|β,φ)p(β|θ)}

is equivalent to penalizing the log-likelihood log p(y|β,φ) with penalty equal to the (minus) log
prior log p(β|θ).

In fact, this was pointed out by Tibshirani (1996), who also noted that |βj | is proportional
to the log density of the double exponential distribution. As a result, one can derive the lasso
estimate as the Bayes posterior mode under independent Laplace or Double-Exponential priors
for the components of β. That is,

βj
ind∼ 1

2τ
exp

(
−|βj |

τ

)
, (2.15)

for j = 1, ..., q, with τ = 1/λ. Here, λ is the shrinking parameter from the lasso penalty.
In general, practically all shrinking priors are defined hierarchically as a scaled mixture of

normals (SMN). For details on SMN distributions, see West (1987). The SMN class has the
following general structure

βj |ψj ∼ N (0, ψj), ψj |θ ∼ p(ψj |θ), (2.16)

where βi and βj are independent for any i, j ∈ {1, ..., q} and ψj depends on the vector of
hyperparameters θ. Note that the marginal distribution of βj

p(βj |θ) =

∫
p(βj |ψj)p(ψj |θ)dψj

is non Gaussian, and can assume many forms depending on the mixing distribution p(ψj |θ).
A famous form arises when the mixing distribution is Exponential. As pointed out in Park and Casella

(2008), the Laplace prior from (2.15) can be represented by as a scale mixture of normals with
the following hierarchic specification

(βj |ψj)
ind∼ N (0, ψj), ψj |λ ∼ E

(
λ2

2

)
, (2.17)

for j = 1, ..., q, where E(α) denotes the Exponential distribution with mean 1/α. Thus, marginally,
βj follows a Laplace distribution with parameter λ, that is, p(βj) ∝ exp(−λ|βj |).



14 REGULARIZATION AND VARIABLE SELECTION IN THE GAUSSIAN LINEAR MODEL 2.2

In fact, Park and Casella (2008) considered a conditional (on σ2) Laplace prior specification
to guarantee a unimodal full posterior, that is

βj |σ2 ind∼ λ

2
√
σ2
e−λ|βj |/

√
σ2 (2.18)

for j = 1, ..., q, where a non informative scale-invariant marginal prior is assigned to σ2, that
is, p(σ2) ∝ 1/σ2. The conditional Laplace prior specified in (2.18) applied to linear regression
models is known as the Bayesian lasso. In their paper, the authors presented two ways of choosing
the hyperparameter λ: empirical Bayes through maximum likelikood and full Bayes by using an
appropriate hyperprior.

The frequentist ridge regression also has a Bayesian analogue as shown in Equation (2.9) and
can also be represented as a SMN hierarchical model. If we let λ = σ2/ψj in (2.9), we get for
each component that βj ∼ N(0, ψj). Although ψj is in principle fixed to achieve equivalence to
the classical formulation, even the classical formulation has a data-driven determination of λ by
using cross validation. Therefore, in the Bayesian perspective one could also assign a hyperprior
for ψj , where the most common choice is ψj ∼ IG(a, b). It can be shown that assuming the
following independent priors

βj |ψj
ind∼ N (0, ψj), ψj ∼ IG(a, b), (2.19)

for j = 1, ..., q, then, βj will follow a scaled t distribution with 2a degrees of freedom and scale
parameter

√
a/b, marginally. In that way, the Bayesian version of the ridge regression leads to

weaker penalization of large coefficients as long as the t distribution has heavier tails than the
Gaussian distribution.

The elastic net from Zou and Hastie (2005), which penalty function was showed in Equation
(2.13), can also be expressed under the Bayesian perspective. In their paper, it was pointed out
that solving the elastic net optimization problem is equivalent to finding the marginal posterior
mode of p(β|y) when the prior distribution is given by

p(β) ∝ exp{−λ1 ‖β‖1 − λ2 ‖β‖22},

a compromise between Gaussian and Laplace priors. However, as noted by Li et al. (2010),
neither the posterior mode of p(β|σ2,y) nor the marginal posterior mode of p(β|y) would
be equivalent to the elastic net estimator unless the analysis is conditional on σ2 or σ2 is
given a point-mass prior. Based on this discussion, Li et al. (2010) proposed a conditional prior
specification similar to Park and Casella (2008). The proposed hierarchical prior for β is

p(β|σ2) ∝ exp

{
− 1

2σ2
(λ1 ‖β‖1 + λ2 ‖β‖22)

}
,

while is given an non informative prior for σ2, i.e., p(σ2) ∝ 1/σ2.

2.2.2 The Normal-Gamma prior

Even more shrinkage than the Bayesian lasso and the ridge prior can be achieved by using
a Gamma mixing distribution in Equation (2.16). The hierarchical formulation, known as the
Normal-Gamma prior and applied to regression problems in Griffin et al. (2010) is as follows
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βj |ψj
ind∼ N (0, ψj), ψj |λ, γ2 ∼ G(λ, 1/(2γ2)), (2.20)

for j = 1, ..., q, where G(λ, 1/(2γ2)) denotes the Gamma distribution with shape parameter λ
and mean 2λγ2. The marginal density p(βj |λ, γ2) can be expressed in closed form as follows

p(βj) =
1

√
π2λ−1/2γλ+1/2Γ(λ)

|βj |λ−1/2Kλ−1/2(|βj |/γ), (2.21)

where K is the modified Bessel function of the third kind. The variance of βj is 2λγ2 and the
excess kurtosis is 3/λ.

The Gamma distribution can represent a wide-range of shapes. As the shape parameter λ
decreases these include distributions that place a lot of mass close to zero but at the same time
have heavy tails. The figure 2.1 shows the effect of the shrinking parameter λ on the marginal
log prior distribution of βj . The marginal distribution becomes more peaked at zero which places
increasing mass close to zero as λ decreases.

Figure 2.1: The log density of the normal-gamma prior with a
variance of 2 and different values of λ (dot line: λ = 0.1; dot-dashed

line: λ = 0.33; solid line: λ = 1)

The effect of parameter λ of the Normal-Gamma prior is related to shrinking. An interesting
interpretation arises when the regressors in X have been standardized so that the mean and
variance of each regressor is 0 and 1, respectively. Assuming independent Normal-Gamma priors
as in (2.20), the regression total variability is

∑q
j=1 ψj . Thus, ζj = ψj/(

∑q
j=1 ψj) can be inter-

preted as the proportion of total variability attributable to the jth regressor and ζ = (ζ1, ..., ζq)

follows a Dirichlet distribution with all parameters equal to λ. Therefore, increasing λ will lead
to more evenly distributed values of ζ = (ζ1, ..., ζq) and small values of λ will be associated with
large differences between the proportions.

Evidently, the Normal-Gamma prior reduces to the Bayesian lasso when λ = 1. Another
interesting case is obtained when λ = 1/2, in which case ψj |γ2 ∼ γ2χ2

1, or equivalently,
√
ψj ∼

N(0, γ2). This case motivated the work of Frühwirth-Schnatter and Wagner (2010), which will
be discussed in later in Chapter 3.

One could use the empirical Bayes approach for choosing the hyperparameters λ and γ2.
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However, accordingly to Griffin et al. (2010), the posterior distribution of λ and γ2 can be highly
multimodal and an empirical Bayes approach difficult to implement. Therefore, the authors took
a fully Bayesian approach assigning hyperpriors to λ and γ2. A prior which seemed to work well in
the simulations is taking λ to be an exponential distribution with mean 1, which offers variability
around the Bayesian lasso (λ = 1).

The prior for the scale parameter γ conditional on λ is defined through a prior on the marginal
variance Var(βj) = 2λγ2 ∼ IG(2,M), so that it has expectationM . This is the same of specifying
γ2|λ ∼ IG(2,M/2λ). The hyperparameter M is chosen to be equal to M = 1

q

∑q
j=1 β̂

2
j , when

the regression design matrix X is non singular, where β̂j is the least square estimate. When X
is singular, such as in high-dimensional cases (q � n), M = 1

n

∑q
j=1 β̃

2
j , where β̃j states for the

minimum length least squares estimate. Lastly, they choose a vague prior for the error variance
σ2 so that σ−2 ∝ 1.

In summary, the model proposed by Griffin et al. (2010) has the following hierarchical struc-
ture

y ∼ N (Xβ, σ2I),

β|Ψ ∼ N (0,Ψ), Ψ = diag(ψ1, ..., ψq),

(ψj |λ, γ) ∼ G(λ, 1/(2γ2)),

γ2|λ ∼ IG(2,M/2λ),

λ ∼ E(1),

σ−2 ∝ 1.

The posterior distribution of the parameters can be simulated using a Gibbs sampler with an
additional Metropolis-Hastings update. The Gibbs sampler and the respective full conditionals
is presented in Algorithm 1.

Note that sampling β involves an inversion of an (q × q) matrix. It is computationally
convenient in problems with q > n to express the mean and variance of this distribution using
the following form which only involves the inversion of an (n×n) matrix. We know that in high
dimensional problems the standard OLS/MLE estimator is not defined. However, the problem
can be re-expressed in terms of a n-dimensional parameter θ for which the MLE exists. The
singular value decomposition of X is

X = F ′DA′,

where A is a (n×q)-dimensional matrix such that A′A = I,D is a (n×n)-dimensional diagonal
matrix and F is a (n × n)-dimensional matrix for which F ′F = FF ′ = I. Therefore, we can
write

Xβ = (F ′D)θ.

Then, the MLE θ̂ of θ exists and has the form

θ̂ = D−1Fy.

After some calculation we can express the posterior mean and posterior variance (knowing
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Algorithm 1: Gibbs sampler for the Normal-Gamma prior
1. Update β by its full conditional

(β|Ψ,X, σ2,y) ∼ N (X ′X + σ2Ψ−1)−1X ′y, σ2(X ′X + σ2Ψ−1)−1),

where Ψ = diag(ψ1, ..., ψq).
If response is not centered, in order to allow for an intercept, use X∗ = [1 : X] in place of
X and Λ = diag(0, 1/ψ1, ..., 1/ψq) in place of Ψ−1.

2. Update σ2 by its full conditional

(σ2|X,y) ∼ IG(n/2, (y −Xβ)′(y −Xβ)/2).

3. Update Ψ in a block, since ψ1, ..., ψq are independent and each full conditional of ψj is

ψj |β, γ, λ ∼ GIG(λ− 1/2, 1/γ2, β2
j ),

where GIG(m, c, d) has the density

(c/d)m/2

2Km

√
cd
xm−1 exp{−1

2
(cx+ d/x)}.

An algorithm for simulating the Generalized Inverse Gaussian (GIG) distribution is
available in Matlab (randraw toolbox) and in R (package GIGrvg).
4. Update λ by its full conditional

λ|γ2 ∼ 1

λ2
exp

{
− M

2λγ2
− λ

} q∏
j=1

ψj

λ

1

(Γ(λ))q(2γ2)qλ
,

which can be updated using a Metropolis-Hastings random walk update on log λ. The
proposal is λ∗ = exp{σ2

λz}λ, where z is a standard Normal and σ2
λ is a tuning parameter

which is chosen to set the average acceptance rate at around 20-30%. λ∗ is accepted
with probability

min

1,
π(λ∗)

π(λ)

(
Γ(λ)

Γ(λ∗)

)q(2γ2)−q
q∏
j=1

ψj

λ∗−λ
λ∗

λ

 ,

where π(λ) = (1/λ)2 exp{−M/(2γ2λ)− λ}.
5. Update γ2 by its full conditional

(γ2|λ,Ψ) ∼ IG

2 + qλ,
M

2λ
+

1

2

q∑
j=1

ψj

 .

that the posterior is Gaussian) as

E(β|Ψ,X, σ2,y) = ΨA(A′ΨA+ σ2D−2)−1θ̂,

Var(β|Ψ,X, σ2,y) = Ψ−ΨA(A′ΨA+ σ2D−2)−1A′Ψ.

Remember that, we could also fix λ = 1 to mimic the Bayesian lasso or use a fixed value
such as λ = 1/2 as in Bitto and Frühwirth-Schnatter (2016) or λ = 0.1 as in Kastner (2016).

The similarity between the Normal-Gamma prior and spike-and-slab prior was discussed in
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Griffin et al. (2010). Nevertheless, if the coefficient βj is small, the shrinkage associated with the
spike-and-slab prior tends to be larger than for the matching normal-gamma prior.

2.3 Variable selection

The principle of Occam’s Razor states that among several plausible explanations for a phe-
nomenon, the simplest is best. Applied to linear regression analysis, this implies that the smallest
model that fits the data is best as unnecessary predictors will add noise to the estimation and,
besides that, degrees of freedom will be wasted.

Variable selection is intended to select the best subset of predictors. The problem arises when
there is some unknown subset of the predictors with regression coefficients so small that it would
be preferable to ignore them.

Classical approaches to variable selection includes stepwise and criterion-based procedures.
In stepwise procedure, such as forward selection and backward selection, the choice of predictive
variables is carried out by an sequential procedure, where in each step, a variable is considered
for addition to or subtraction from the set of explanatory variables while there is a stopping
rule based on the value of t-statistic or F-statistic. In criterion-based procedure, if there are q
potential predictors, then we fit all 2q possible models and choose the best one according to some
criterion such as AIC, BIC, R2, Mallow’s Cp statistic and others. For a comprehensive summary
of these procedures see, e.g, Miller (2002).

Bayesian variable selection is commonly based on spike-and-slab priors for regression co-
efficients. Consider the Gaussian linear model from Equation (2.1) with q possible predictors
and ignoring the intercept (assume that the response is centered). The basic idea is that each
component βj from β is modeled as having come either from a distribution with most (or all)
of its mass concentrated around zero (the spike), or from a comparably diffuse distribution with
mass spread out over a large range of values (the slab).

By a spike-and-slab model we mean a Bayesian model specified by the following hierarchy

(y|X,β, σ2) ∼ N (Xβ, σ2I),

(β|Ψ) ∼ N (0,Ψ),

Ψ ∼ π(dΨ),

σ2 ∼ µ(dσ2),

(2.22)

where Ψ is a q × q covariance matrix, π is a prior measure for Ψ and µ is the prior measure
for σ2. Generally, it is assumed that the q coefficients of β are independent, in which case the
covariance matrix Ψ = diag(ψ1, ..., ψq).

In the following subsections, we discuss two variable selection approaches that use spike-
and-slab models: the stochastic search variable selection (SSVS) prior of George and McCulloch
(1993) and the Normal mixture of Inverse-Gamma prior of Ishwaran and Rao (2005)), which
was originally named stochastic variable selection (SVS) by the authors. Then, we generalize
the spike-and-slab prior by allowing different combinations of distributions for the spike and the
slab as discussed in Frühwirth-Schnatter and Wagner (2011).



2.3 VARIABLE SELECTION 19

2.3.1 The stochastic search variable selection prior

Seminal references about bayesian variable selection using spike-and-slab priors for regression
coefficients are Mitchell and Beauchamp (1988) and George and McCulloch (1993). The method
developed by the latter, which is called stochastic search variable selection (SSVS), is based on
embedding the entire regression setup in a hierarchical Bayes normal mixture model, where
latent variables are used to identify subset choices. In this framework, the promising subset of
predictors can be identified as those with higher posterior probability.

Consider the structure for a spike-and-slab model presented in (2.22). Introducing latent
binary variables Jj ∈ {0, 1}, the prior for the coefficients β assumed by George and McCulloch
(1993) can be formally expressed as

βj |Jj ∼ (1− Jj)N (0, τ2
j ) + JjN (0, c2

jτ
2
j ), (2.23)

and

p(Jj = 1) = 1− P (Jj = 0) = ωj , (2.24)

for j = 1, .., q, where cj > 1 is a large scalar and τj > 0 is a small scalar. Note that the latent
variables J = (J1, ..., Jq) can assume 2q values as J ∈ {0, 1}q.

The hyperparameter ωj in (2.24) is the prior probability that the covariate Xj has a signifi-
cant effect and should be included in the model. A simple and usual choice for ωj is simply to
assume ωj = ω = 0.5 for all j = 1, ..., q. A more flexible approach, assuming that ωj = ω for all
j = 1, ..., q, is to place a hyperprior on ω, for instance, a Beta prior is a reasonable and convenient
choice, including the special case ω ∼ U(0, 1), where U denotes the Uniform distribution.

Thus, the prior for the coefficients stated in equations (2.23) and (2.24) is a mixture of
Gaussian densities. When Jj = 0, we have that (βj |Jj = 0) ∼ N (0, τ2

j ), and when Jj = 1, we
have that (βj |Jj = 1) ∼ N (0, c2

jτ
2
j ). The interpretation is as follows. First, by setting τj small

enough, if Jj = 0, then βj is probably so small that it can be safely estimated as being equal to
0. Second, by setting cj large, if Jj = 1, then a non zero estimate of βj is probably included in
the final model.

This mixture prior for each component of β can be obtained using a multivariate normal
mixture prior

β|J ∼ N (0,DJRDJ), (2.25)

where J = (J1, ..., Jq), R is the prior correlation matrix, and DJ = diag(a1τ1, ..., aqτq), with
aj = 1 if Jj = 0 and aj = cj if Jj = 1 for each j = 1, ..., q. That is, the covariance matrix Ψ

from the spike-and-slab model stated in (2.22) can be decomposed using the variance-correlation
decomposition, i.e., Ψ = DJRDJ . In general, most researchers work with independent priors
for the coefficients, in which case R = I.

For the indicators J a standard joint prior was assumed, that is, each component Jj is
independent from each other and follows a Bernoulli distribution

J |ω ∼
q∏
j=1

ω
Jj
j (1− ωj)1−Jj . (2.26)
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Finally, it was proposed an Inverse-Gamma prior for the variance σ2 as

σ2|J ∼ IG(νJ/2, νJλJ/2), (2.27)

where νJ and λJ may depend on the indicators variables J to incorporate dependence between
β and σ2 as one might expect that σ2 would decrease as the dimension of β increased.

One may ask how to set the hyperparameters cj and τj from (2.23). To respond this, we refer
to George and McCulloch (1997). In this second article, they used a simpler notation as follows

βj |Jj ∼ (1− Jj)N (0, υ0j) + JjN (0, υ1j), (2.28)

for j = 1, ..., q, where υ0j = τ2
j and υ1j = c2

jτ
2
j .

As discussed in George and McCulloch (1993) and in George and McCulloch (1997), to use
the above hierarchical mixture setup for variable selection, the hyperparameters υ0j and υ1j are
set small and large (υ0j � υ1j) or, as mentioned before, cj > 1 is large and τj > 0 is small. To
help guide the choice of cj , George and McCulloch (1993) observed that densities of N (0, τ2

j )

and N (0, c2
jτ

2
j ) intersect at ξ(cj)τj with

ξ(cj) =
√

2 log(cj)c2
j/(c

2
j − 1),

which implies that the density of N (0, c2
jτ

2
j ) is greater than the density of N (0, τ2

j ) if, and only
if, |βj | > ξ(cj)τj . This property is equivalent to setting any υ0j and υ1j from equation (2.28)
satisfying

δ2
j = log(υ1j/υ0j)/(υ

−1
0j − υ

−1
1j ),

where δj = ξ(cj)τj . In this case, if |βj | < δj , then it would be preferable to exclude covariate
Xj . Thus, δj > 0 could be considered the threshold of practical significance. A simple choice
for δj might be ∆y/∆Xj , where ∆y is the size of an insignificant change in y, and ∆Xj is
the size of the maximum feasible change in Xj . Note that, the intersection point from the two
densities increases very slowly with cj . For example, the choices cj = 10, 100, 1000, 10000, 100000

correspond to ξ(cj) = 2.1, 3.1, 3.7, 4.3, 4.8.
In addition, George and McCulloch (1997) noted that the incorporation of a threshold δj

requires choosing υ0j > 0 for all j as δj depends on the ratio υ1j/υ0j . Computational problems
can arise when this ratio is set too large, accordingly to the authors. However, this problems
should be avoided whenever υ1j/υ0j ≤ 10000, thus allowing for a wide variety of settings.

Besides using the the threshold of practical significance, an alternative semiautomatic ap-
proach for choosing τ2

j and cj based on statistical significance is described in George and McCulloch
(1993).

Gibbs sampling the best subsets. In the hierarchical mixture model defined by the equation
(2.25), the latent vector J = (J1, ..., Jq) contains the relevant information for variable selection.
If J were known, then with high probability for suitably chosen τ2

1 , ..., τ
2
q and c1, ..., cq, a desirable

model would be obtained by including Xj for which Jj = 1 and excluding those covariates for
which Jj = 0.
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Although J in unknown, the posterior distribution p(J |y) can provide useful information.
The posterior updates the prior probabilities on each 2q possible values of J . Thus, identifying
those J with higher posterior probability, one can identify the more promising subsets of vari-
ables. However, rather than calculate all 2q posterior probabilities in p(J |y), we can use Gibbs
sampler to generate a sequence

J (1), ...,J (m),

which in many cases converges rapidly in distribution to the posterior p(J |y), where m is the
number of iterations of the Markov chain. The sequence is embedded in the chain

β(1), σ2(1)
,J (1), ...,β(m), σ2(m)

,J (m),

which is obtained by successive simulation from the full conditionals p(β|σ2,J ,y), p(σ2|β,y)

and p(Jj |β, σ2,J(−j)) for j = 1, ..., q, where J(−j) = (J1, ..., Jj−1, Jj+1, ..., Jq).
Note that the last full conditional does not depend on y, which reduces computational

requirements and allows for faster convergence of the sequence J (1), ...,J (m). In problems where
the number of predictors q is small, this sequence can be used to evaluate the entire posterior
p(J |y). In large problems, the sequence may still provide useful information. This is because
those J with highest probability will also appear most frequently in the generated sequence and
hence will be easiest to identify.

The Gibbs sampler and the respective full conditionals p(β|σ2,J ,y) and p(σ2|β,y) for the
SVSS model are presented in Algorithm 2.

Algorithm 2: Gibbs sample the SVSS prior
1. Draw β from its full conditional

(β|σ2,J ,y) ∼ N ((X ′X + σ2(DJRDJ)−1)−1X ′y, σ2(X ′X + σ2(DJRDJ)−1)−1).

2. Draw σ2 from its full conditional

(σ2|β,J ,y) ∼ IG

(
n+ νJ

2
,
‖y −Xβ‖2 + νJλJ

2

)
.

3. The vector J is obtained componentwise by sampling each Jj consecutively from the
Bernoulli distribution with probability

p(Jj = 1|β, σ2,J(−j)) =
a

a+ b
,

where

a = p(β|Jj = 1,J(−j))p(σ
2|Jj = 1,J(−j))p(J(−j), Jj = 1),

b = p(β|Jj = 0,J(−j))p(σ
2|Jj = 0,J(−j))p(J(−j), Jj = 0).

It is worth pointing out that, under the independent Bernouilli prior for J as in equation
(2.26), when the hyperparameters of the prior for σ2 in equation (2.27) are constant (i.e, νJ = ν

and λJ = λ), and under the choice of independent priors (R = I), a and b from the full
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conditional of J can be obtained more simply by

a = p(βj |Jj = 1)ωj ,

b = p(βj |Jj = 0)(1− ωj).

2.3.2 The Normal mixture of Inverse-Gamma prior

Note that the SSVS prior under the choice of independent priors for βj can be rewritten as

β|ψj
ind∼ N (0, ψj),

(ψj |cj , τj , Jj) ∼ (1− Jj)δτ2j (.) + Jjδc2jτ2j
(.),

Jj |ωj ∼ (1− ωj)δ0(.) + ωjδ1(.), j = 1, ..., q,

(2.29)

where δυ(.) is a discrete measure concentrated at value υ.
In practice, it can be difficult to select values τ2

j , c
2
jτ

2
j and ωj used in the SSVS prior.

Recognizing this problem Ishwaran and Rao (2005) proposed a continuous bimodal distribution
for ψj in place of the two point mixture distribution for ψj in Equation (2.29).

Instead of encouraging variable selection by placing priors directly on the coefficients βj ,
for each variable j = 1, ..., q, a different strategy is to place priors on the variances ψj . The
hierarchical prior is formalized as

(y|X,β, σ2) ∼ N (Xβ, σ2λnI),

(βj |τ2
j ,Kj)

ind∼ N (0,Kjτ
2
j ),

Kj |ω
iid∼ (1− ω)δυ0(.) + ωδυ1(.),

τ−2
j

iid∼ G(aτ , bτ ),

ω ∼ B(aω, bω),

σ−2 ∼ G(aσ, bσ),

(2.30)

for j = 1, ..., q, where G denotes the Gamma distribution with shape aτ and rate bτ (mean
aτ/bτ ), and B denotes the Beta distribution with parameters aω and bω.

Note that each variance ψj = Kjτ
2
j , where Kj ∈ {υ0, υ1}. The prior for βj in (2.30) can also

be rewritten as

βj |ψj
ind∼ N (0, ψj),

ψj |Ij ∼ (1− Jj)IG(aτ , υ0bτ ) + JjIG(aτ , υ1bτ ),
(2.31)

for j = 1, ..., q, where Jj ∈ {0, 1} is related to the binary variable Kj ∈ {υ0, υ1} in the original
formulation (Equation (2.30)) through Jj = 1 ⇔ Kj = υ1 and Jj = 0 ⇔ Kj = υ0. Thus, we
see that this structure means a spike-and-slab prior for variances specified as a bimodal mixture
of two Inverse-Gamma distributions, also known as Normal mixture of Inverse-Gamma (NMIG)
prior.

The NMIG prior provides a natural procedure for selecting variables. The larger the estimated
posterior probability of the binary variable Kj , i.e., the higher is the percentage of υ1 values in
the sample, the larger is the evidence that the jth covariate has non-negligible effects and can
not be eliminated from the regression model.
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Rescaled spike-and-slab models. Ishwaran and Rao (2005) suggested default options, in
particular υ1 = 1, after standardizing all covariates and rescaling y. They have called this
specific approach rescaled spike-and-slab models, that is, in place of y they used

y∗i = σ̂−1
n n1/2yi, σ̂2

n =
∥∥∥y −Xβ̂∥∥∥2

/(n− q),

for i = 1, ..., n, where β̂ is the least square estimate for β and σ̂2
n is the unbiased estimate for

σ2. The rescaled spike-and-slab model is the same from Equation (2.30), except from y and υ1.
While y is substituted by

y∗ ∼ N (Xβ, σ2λnI), (2.32)

where λn is a variance inflation factor introduced to compensate for the scaling of y, a fixed
value was used for υ1 = 1 in (2.30) so that

Kj |ω
iid∼ (1− ω)δυ0(.) + ωδ1(.). (2.33)

Assuming υ1 = 1 and integrating out ψj from Equation (2.31) , the marginal distribution
βj |ω is a mixture of two scaled t-distributions:

p(βj |ω) = ω

∫ ∞
0

p(βj |ψj)p(ψj |aτ , bτ )dψj + (1− ω)

∫ ∞
0

p(βj |ψj)p(ψj |aτ , bτυ0)dψj

= K1

∫ ∞
0

ψ
−(aτ+3/2)
j exp

−
β2
j

2 + bτ

ψj

 dψj +K2

∫ ∞
0

ψ
−(aτ+3/2)
j exp

−
β2
j

2 + bτυ0

ψj

 dψj

= K1

∫ ∞
0

(
β2
j

2
+ bτ

)−(aτ+1/2)
 ψ

β2
j

2 + bτ

−(aτ+3/2)

exp

−
β2
j

2 + bτ

ψj

 d

 ψ
β2
j

2 + bτ


+K2

∫ ∞
0

(
β2
j

2
+ bτυ0

)−(aτ+1/2)
 ψ

β2
j

2 + bτυ0

−(aτ+3/2)

exp

−
β2
j

2 + bτυ0

ψj

 d

 ψ
β2
j

2 + bτυ0


= ω

baττ Γ(aτ + 1/2)
√

2πΓ(aτ )
(
β2
j

2 + bτ

)(aτ+1/2)
+ (1− ω)

(bτυ0)aτΓ(aτ + 1/2)
√

2πΓ(aτ )
(
β2
j

2 + bτυ0

)(aτ+1/2)

= ω
Γ( 2aτ+1

2 )

Γ( 2aτ
2 )
√

2πaτ
bτ
aτ

(
1 +

β2
j

2aτ
bτ
aτ

)−( 2aτ+1
2 )

+ (1− ω)
Γ( 2aτ+1

2 )

Γ( 2aτ
2 )
√

2πaτ
bτυ0
aτ

(
1 +

β2
j

2aτ
bτυ0
aτ

)−( 2aτ+1
2 )

,

which is a mixture of scaled t-distributions with 2aτ degrees of freedom, scale factors
√
bτ/aτ and√

(bτυ0)/aτ and weights ω and 1−ω, where we used the fact that p(Jj = 1) = P (Kj = υ1) = ω

and that K1 = ω baττ√
2πΓ(aτ )

and K2 = (1− ω)
(bτυ0)aτ√
2πΓ(aτ )

.

It was shown in Ishwaran and Rao (2005) that, under some conditions for design matrix X,
the parameter λn in Equation (2.32) controls the amount of shrinkage and that a value of λn = n

is the amount of penalization required in order to ensure shrinkage effect in the limit.
Let β̂∗n(Ψ, σ2) = E(β|Ψ, σ2,y∗) be the conditional posterior mean for β from the rescaled

spike-and-slab model, where Ψ = diag(K1τ
2
1 , ...,Kqτ

2
q ). It can be verified that
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β̂∗n(Ψ, σ2) = (X ′X + σ2λnΨ
−1)−1X ′y∗

= σ̂−1
n n1/2(X ′X + σ2λnΨ

−1)−1X ′y.

Thus, by the ridge prior presented in Equation (2.9), we find that β̂∗n(Ψ, σ2) is the ridge
solution to a regression of y∗ on X with ridge matrix σ2λnΨ

−1.
Now define θ̂∗n(Ψ, σ2) = σ̂nβ̂

∗
n(Ψ, σ2)/

√
n. Then, it is clear that θ̂∗n(Ψ, σ2) is the ridge

solution to a regression of y on X with ridge matrix σ2λnΨ
−1. In that way, λn can be seen as

a penalty term because ridge solution can always be recast as an optimization problem, that is,
it is straightforward to prove that

θ̂∗n(Ψ, σ2) = arg min
β

‖y −Xβ‖2 + λn

q∑
j=1

σ2ψ−1
j β2

j

 .

Theorem 2 from Ishwaran and Rao (2005) is an analogue of Theorem 1 from Knight and Fu
(2000), which establishes consistency for bridge estimators, where ridge estimation is a special
case. Define β̂∗n = E(β|y∗) and θ̂∗n = σ̂nβ̂

∗
n/
√
n. Through the mentioned theorem, the authors

demonstrated that a penalization satisfying λn/n → 0 yields a posterior mean after rescaling
θ̂n = σ̂nβ̂n/

√
n

p−→ β, assuming that X ′X is positive definite and that X ′X/n → Σ, where Σ

is positive definite. That is, if λn/n → 0, the posterior mean after rescaling is asymptotically
consistent for β.

While consistency is crucial for estimation purposes, it could be advantageous in terms of
variable selection to have a shrinkage effect that does not vanish asymptotically and a posterior
mean that behaves differently from OLS. For this result the authors assumed λn = n. When
this is assumed, it was found that σ2 plays an important adaptive role in adjusting the penalty
λn. It was also noted that under this setting the posterior of σ2 would concentrate around the
value of 1.

The rescaled spike-and-slab model uses a Gibbs sampler to simulate the posterior distribu-
tion p(β,K, τ 2, ω, σ2|y∗). Recall that ψj = Kjτ

2
j , j = 1, ..., q, so simulating K = (K1, ...,Kq)

and τ 2 = (τ2
1 , ..., τ

2
q ) provides an update for Ψ = diag(ψ1, ..., ψq). The sampler is presented

below in Algorithm 3.

2.3.3 Other mixture priors

Although the NMIG prior specified by (2.30) allows discrimination or variable selection,
it does not encourage shrinkage in the sense that the resulting marginal distribution of each
coefficient βj is a two component mixture of scaled Student’s t distributions as shown before
through the Section 2.3.2. That is, assuming the NMIG structure as presented before, each βj
has the following marginal distribution

βj |ω ∼ ωt2aτ (0, υ1bτ/aτ ) + (1− ω)t2aτ (0, υ0bτ/aτ ),

where tξ(0, s) denotes the Student’s t distribution with zero location, scale
√
s and ξ degrees of

freedom. Note that the marginal distribution of βj is also a spike-and-slab prior.
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Algorithm 3: Gibbs sampler for the NMIG prior
1. Simulate β from its full conditional

(β|Ψ, σ2,y∗) ∼ N (µ, σ2Σ),

where

µ = ΣX ′y∗, Σ = (X ′X + σ2nΨ−1)−1.

For large q the inversion from the first step can be very costly. A better approach is to
update β individually

(βj |ψj , σ2,y∗) ∼ N (µj ,Σj),

with

µj = ΣjX
′
j(y
∗ −X(−j)β(−j)), Σj = (X ′jXj + σ2nψ−1

j )−1,

where the subscript (−j) denotes all the covariates except Xj .
2. Simulate K from its full conditional

(Kj |β, τ 2, ω)
ind∼ ω1j

ω1j + ω2j
δυ0(.) +

ω2j

ω1j + ω2j
δ1(.), j = 1, ..., q,

where

ω1j = (1− ω)υ
−1/2
0 exp

(
−

β2
j

2υ0τ2
j

)
, ω2j = ω exp

(
−
β2
j

2τ2
j

)
.

3. Simulate τ2
j from its full conditional

(τ2
j |β,K)

ind∼ IG

(
aτ +

1

2
+ bτ

β2
j

2Kj

)
, j = 1, ..., q.

4. Simulate ω from its full conditional

(ω|Kj) ∼ B(aω + #{j : Kj = 1}, bω + #{j : Kj = υ0}).

5. Simulate σ2 from its full conditional

σ2|β,y∗ ∼ IG
(
aσ +

n

2
, bσ +

1

2n
‖y∗ −Xβ‖2

)
.

6. Update Ψ by setting ψj = Kjτ
2
j for j = 1, ..., q. and repeat the previous steps for a

sufficiently large number of iterations until the chain converges.

Hence it makes sense to choose other component specific distributions, besides the Inverse
Gamma, that could actually induce shrinkage. Consider the binary variable Jj ∈ {0, 1} which
indicates the spike (Jj = 0) or the slab (Jj = 1). Assume that each βj has a spike-and-slab
mixture distribution as

βj |Jj ,θ ∼ Jjpslab(βj |θ) + (1− Jj)pspike(βj |θ), (2.34)

where θ is a vector of parameters, pspike(βj |θ) is the spike distribution and pslab(βj |θ) is the
slab distribution.
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One can achieve (2.34) by formulating appropriate spike-and-slab priors to the component
variances Varspike(βj |θ) and Varslab(βj |θ), similar to what was proposed by Ishwaran and Rao
(2005). An excellent reference that discusses different combinations of spike-and-slab distribu-
tions is Frühwirth-Schnatter and Wagner (2011). Following their notation, we note that each
coefficient βj can be defined hierarchically as a scaled mixture of Normals (SMN), i.e., βj |ψj ∼
N (0, ψj), ψj |θ ∼ p(ψj |θ).

Therefore, if we assume absolutely continuous priors for ψj |Jj = 1 (slab) and ψj |Jj =

0 (spike), that is, a mixture prior for ψj , then we reach the spike-and-slab structure for the
coefficient βj as in (2.34). For instance, choosing Inverted-Gamma densities for both the spike
and the slab variances can be done by

(ψj |Jj = 0) ∼ IG(ν, rQ), (ψj |Jj = 1) ∼ IG(ν,Q), (2.35)

where θ = (ν, r,Q) is the vector of hyperparameters that define the conditional (on Ij) variances’
densities. Note that (2.35) is the same NMIG prior presented in Section (2.30), assuming that
aτ = ν, bτ = Q, r = υ0 and υ1 = 1. Thus, the hyperparameter r can be viewed as the ratio of
the variances r = Varspike(βj |θ)/Varslab(βj |θ), which we have shown to be a small number less
than 1.

Another mixture prior for ψj arises by choosing Exponential densities for both the spike and
the slab as

(ψj |Jj = 0) ∼ E(1/2rQ), (ψj |Jj = 1) ∼ E(1/2Q), (2.36)

where E(α) denotes the Exponential distribution with mean 1/α, which leads to a mixture of
Laplace densities for βj as noted by Frühwirth-Schnatter and Wagner (2011), that is

(βj |ω) ∼ ωLap(
√
Q) + (1− ω)Lap(

√
rQ), (2.37)

where Lap(x) denotes the Laplace distribution with mean 0 and scale parameter x and the
weight ω is the prior probability of the slab, i.e., ω = p(Jj = 1). If we assume that ψj is a
mixture of Gammas, that is,

(ψj |Jj = 0) ∼ G(a, 1/2rQ), (ψj |Jj = 0) ∼ G(a, 1/2Q), (2.38)

then the marginal distribution of βj is a mixture of Normal-Gamma distributions as discussed
in Section 2.2.2

(βj |ω) ∼ ωNG(βj |a,Q) + (1− ω)NG(βj |a, r,Q).

More generally we may combine distribution families which lead to shrinkage for the spike
and, at the same time, avoid too much smoothing in the slab of the marginal mixture of βj . A
promising candidate, which was used by Frühwirth-Schnatter and Wagner (2011), is combining
the Exponential density for the spike with the Inverted Gamma density for the slab as follows

(ψj |Jj = 0) ∼ E(1/2rQ), (ψj |Jj = 1) ∼ IG(ν,Q), (2.39)



2.3 VARIABLE SELECTION 27

which leads to a finite mixture for βj , where a Laplace density in the spike is combined with a
Student-t distribution in the slab as

βj |ω ∼ ωt2ν(0, Q/ν) + (1− ω)Lap(
√
rQ). (2.40)

From what was exposed above, we conclude that the variances of the slab and the spike
depend on the hyperparameter Q. One could simply fix Q or place and hyperprior on it, which
was the strategy adopted by Frühwirth-Schnatter and Wagner (2011). Assuming an Inverted-
Gamma prior for the variance of βj leads to a general prior distribution for Q|ω as follows

vβ = Var(βj |Q,ω) = (1− ω) Varspike(βj |r,Q) + ωVarslab(βj |Q) ∼ IG(c0, C0), (2.41)

where r is a fixed parameter. Thus, the distribution of Q|ω is

Q|ω ∼ IG(c0, C0/s
∗(ω)), (2.42)

where s∗(ω) is a function of ω and other hyperparameters, depending on the mixing distribution
adopted.

If we assume the same mixing distribution for both the spike and the slab, then we can
conclude that Varspike(βj |r,Q) = cQr and Varslab(βj |Q) = cQ, where c is a constant that
depends on the distribution assumption. Thus, s∗(ω) from Equation (2.42) turns into s∗(ω) =

c[(1− ω)r + ω].
For the NMIG prior (whose marginal distribution for βj is scaled-t) we have that

Varslab(βj |Q) =
2ν

2ν − 2

Q

ν
,

thus, the constant c = 1/(ν − 1). For the mixture of Normal-Gammas, we have

Varslab(βj |Q) = 2aQ,

then, c = 2a depends on the shape parameter a specified in (2.38). For the mixture of Laplaces,
we have

Varslab(βj |Q) = 2Q,

then, c = 2. Finally, if we adopt the prior in (2.40), then assuming that Varspike(βj |r,Q) = c1Qr

and Varslab(βj |r,Q) = c2Q and using the results from the variances of Laplace and t-distribution,
we have that c1 = 2 and c2 = 1/(ν − 1). Therefore, in this case, s∗(ω) = (1− ω)rc1 + ωc2.

Even the SSVS prior discussed in Section 2.3.1 can be written is this general form. From
Equation (2.23), which uses the original notation, we see that c2

jτ
2
j = Q and τ2

j = rQ, that is,
adopting a Normal mixture for βj , we have that r = 1/c2

j and the constant c = 1. The difference
from the other mentioned priors is that SSVS prior does not uses an absolutely continuous prior
for ψj as noted before.

Therefore, knowing the constant c for each prior (and assuming the ratio r and the other
hyperparametes a and ν as fixed) allows us to generate Q|ω in a MCMC sampling scheme.
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Table 2.1 gives a summary for what as discussed through Section 2.3 assuming the general
form from (2.34) and viewing each prior as a scaled mixture of Normals (SMN). This completes
our specification for the spike-and-slab mixture priors. The next section is dedicated to shrinking
priors (and their frequentist analogues) that alone (without embedding in a mixture structure)
can regularize the least square or maximum likelihood estimate, including the Normal-Gamma
prior, which was mentioned above.

Prior Spike ψ|J = 0 Slab ψ|J = 1 Marginal β|ω Constant c

SSVS ψ|J = 0 = δrQ(.) ψ|J = 1 = δQ(.) ωN (0, Q) + (1− ω)N (0, rQ) 1
NMIG IG(ν, rQ) IG(ν,Q) ωt2ν(0, Q/ν) + (1− ω)t2ν(0, rQ/ν) 1/(ν − 1)
Mixture of Laplaces E(1/2rQ) E(1/2Q) ωLap(

√
Q) + (1− ω)Lap(

√
rQ) 2

Mixture of Normal-Gammas G(a, 1/2rQ) G(a, 1/2Q) ωNG(βj |a,Q) + (1− ω)NG(βj |a, r,Q) 2a
Laplace-t E(1/2rQ) IG(ν,Q) ωt2ν(0, Q/ν) + (1− ω)Lap(

√
rQ) c1 = 2, c2 = 1/(ν − 1)

Table 2.1: Summary table: spike-and-slab mixture priors



Chapter 3

Sparsity in dynamic linear models

In this chapter some basic concepts underlying the general dynamic linear model theory are
introduced and developed in the context of the Gaussian dynamic linear model (DLM), which
is presented as a special case of a general state space model (SSM), being linear and Gaussian.

In Section 3.1, we discuss the basic formulation of state space models and the structure of
the recursive computations for estimation and prediction.

In Section 3.2, the specific case of the Gaussian DLM is presented (see e.g., Petris et al.
(2009); West and Harrison (1997)) as well as the filtering and smoothing recursions for this
case. In particular, we present the Kalman filter, the Kalman smoother and the forward filtering
backward sampling (FFBS) algorithm for Gaussian DLMs.

Finally, we discuss some existing regularization methods for time varying parameter (TVP)
models in Section 3.3. This completes the concepts needed to understand the model that will be
presented in Chapter 5.

3.1 State space models

State space models (SSM) originated in the early sixties in the area of control engineering
(Kalman et al. (1960)). It provides a general framework for analyzing deterministic and stochas-
tic dynamical systems that are measured or observed through a stochastic process. The SSM
framework has been successfully applied in engineering, statistics, computer science and eco-
nomics to solve a broad range of dynamical systems problems. It appeared in the time series
literature in the seventies (Akaike (1974); Harrison and Stevens (1976)) and became established
during the eighties (Harvey (1989);West and Harrison (1997)).

The main applications in statistics are structural time series models and dynamic regression
models of the form

yt = µt + γt + xtβt + εt,

where µt is a trend component, γt is a seasonal component, βt is the time-varying effect of the
covariate xt, and εt is an error. Gathering µt, γt and βt into a vector called the states’ vector
and defining appropriate transition structures for them, these models can be written in a state
space form (see, e.g., Harvey (1989)).

As noted in Petris et al. (2009), SSMs consider a time series as the output of a dynamic

29
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system perturbed by random disturbances. They allow a natural interpretation of a time series
as the combination of several components, such as trend, seasonal or regressive components.
The problems of estimation and forecasting are solved by recursively computing the conditional
distribution of the hidden states, given the available information. In this sense, they are quite
naturally treated within a Bayesian framework.

Consider a time series {yt}t≥1. Specifying the joint distribution of (y1, y2, .., yt) is not easy
since in time series analysis the assumptions of independence are seldom justified. In that way,
Markovian dependence is often assumed, i.e., we say that {yt}t≥1 is a Markov chain if, for any
t > 1,

p(yt|y1:t−1) = p(yt|yt−1).

Another way of expressing the Markovian dependence is saying that yt and y1:t−2 are condi-
tionally independent given yt−1. Thus the joint distribution of (y1, y2, .., yt) is

p(y1:t) = p(y1)
∏
t>1

p(yt|yt−1).

The following definition presents the assumptions that characterize a general state space
model.

Definition 3.1. State space models. Formally, a state space model (SSM) consists of an
Rq-valued unobserved time series {θt}t≥0 (the states) and a Rm-valued time series {yt}t≥1 (the
observations) satisfying the assumptions:

(A.1) {θt}t≥0 is a Markov chain;
(A.2) Conditionally on {θt}t≥0, the {yt}t≥1 are independent and yt depends on θt only.

State space models in which the states are discrete-valued random variables are often called
hidden Markov models.

Throughout this chapter, we assume m = 1, i.e., we will work with univariate time series,
where yt is a scalar rather than a vector. Nevertheless, the derived results can easily be extended
to multivariate time series.

From Definition 3.1, we conclude that a SSM is completely specified by the initial distribu-
tion of p(θ0) and the conditional densities p(θt|θt−1) and p(yt|θt). Thus, for t > 0, the joint
distribution is as follows

p(θ0:t, y1:t) = p(θ0)
∏
t≥1

p(θt|θt−1)p(yt|θt). (3.1)

It follows from the Definition 3.1 that p(θt|θ0:t−1, y1:t−1) = p(θt|θt−1).
The information flow assumed by a state space model is represented in Figure 3.1. The graph

in the figure is a special case of a directed acyclic graph (DAG).
For a SSM, the main tasks are to make inference on the unobserved states or predict future

observations based on a part of the observation sequence. To estimate de state vector one has
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θ0 θ1 θ2
... θt−1 θt θt+1

y1 y2 yt−1 yt yt+1

Figure 3.1: Dependence structure for a state space model

to compute the conditional densities p(θs|y1:t) when s = t (filtered density), s < t (smoothed
density) or s > t (predictive density).

In the filtering problem, the data is supposed to arrive sequentially in time. In this case we
want to update our current inference on the state vector as new data become available, that is,
we want to estimate the filtering densities p(θt|y1:t), then p(θt+1|y1:t+1), and so on.

Conversely, the problem of smoothing, or retrospective analysis, consists in estimating the
state sequence at times 1, ..., t given data y1, ..., yt, that is, estimate p(θ1:t|y1:t).

Finally, the problem of forecasting or prediction consists in estimating yt+h based on data
y1:t, where h is the number of steps ahead. For example, for one-step-ahead forecasting, one
has to estimate first the next value θt+1 of the state vector, and then, based on this estimate,
compute the forecast for yt+1. The one-step-ahead predictive density p(θt+1|y1:t) is calculated
through the filtering density p(θt|y1:t). Then, one can calculate p(yt+1|y1:t).

One of the advantages of SSM is that, due to the Markovian structure of the state dynamics
(A.1) and the assumption on the conditional independence for the observables (A.2), the filtered,
smoothed and predictive densities can be computed using a recursive algorithm. The following
proposition presents the filtering recursions for a general SSM.

Proposition 3.1. Filtering recursions. For a general state space model defined by 3.1 the
following statements hold. Starting from θ0 ∼ p(θ0), one can recursively compute, for t ≥ 1:

(i) The one-step ahead predictive density for the states p(θt|y1:t−1) from the filtered density
p(θt−1|y1:t−1) as

p(θt|y1:t−1) =

∫
p(θt|θt−1)p(θt−1|y1:t−1)dθt−1.

(ii) The one-step ahead predictive density for the observations p(yt|y1:t−1) from the predictive
density for the states p(θt|y1:t−1) as

p(yt|y1:t−1) =

∫
p(yt|θt)p(θt|y1:t−1)dθt.

(iii) The filtering density p(θt|y1:t) from the above densities as

p(θt|y1:t) =
p(yt|θt)p(θt|y1:t−1)

p(yt|y1:t−1)
.

Proof. Because θt is conditionally independent of y1:t−1 given θt−1, then
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p(θt|y1:t−1) =

∫
p(θt−1,θt|y1:t−1)dθt−1

=

∫
p(θt|θt−1, y1:t−1)p(θt−1|y1:t−1)dθt−1

=

∫
p(θt|θt−1)p(θt− 1|y1:t−1)dθt−1.

Note also that yt is conditionally independent of y1:t−1 given θt. Therefore,

p(yt|y1:t−1) =

∫
p(yt,θt|y1:t−1)dθt

=

∫
p(yt|θt, y1:t−1)p(θt|y1:t−1)dθt

=

∫
p(yt|θt)p(θt|y1:t−1)dθt.

Finally, to prove (iii) note that by Bayes’ theorem

p(θt|y1:t) =
p(y1:t,θt)p(θt)

p(y1:t)
=
p(yt|θt, y1:t−1)p(y1:t−1|θt)p(θt)

p(yt|y1:t−1)p(y1:t−1)
=
p(yt|θt, y1:t−1)p(θt|y1:t−1)p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
,

and by conditional independence of yt and y1:t−1 given θt, p(yt|θt, y1:t−1) = p(yt|θt). Then, we
get the result (iii). Note that p(θt|y1:t−1) is the prior distribution and p(yt|θt) is the likelihood.

Using Proposition 3.1, k-steps ahead predictive distributions for the state and for the obser-
vation can be derived recursively according to

p(θt+k|y1:t) =

∫
p(θt+k|θt+k−1)p(θt+k−1|y1:t)dθt+k−1

and

p(yt+k|y1:t) =

∫
p(yt+k|θt+k)p(θt+k|y1:t)dθt+k.

Note that p(θt|y1:t) summarizes the information contained in the past observations y1:t, which
is sufficient for predicting yt+k for any k > 0.

Proposition 3.1 is about filtering and forecasting problems. In addition, if we want to recon-
struct the retrospective behavior of the system given all available data up to a certain time T
(the smoothing problem), we can use a backward-recursive algorithm to compute the conditional
distributions of θt given y1:T for any t < T , starting from the filtered density p(θT |y1:T ). The
following proposition presents the smoothing recursion for a general SSM.

Proposition 3.2. Smoothing recursion. For a general state space model defined by 3.1 the
following statements hold.

(i) Conditional on y1:T the state sequence (θ0, ...,θT ) has the following backward transition
probabilities for any t < T

p(θt|θt+1, y1:T ) =
p(θt+1|θt)p(θt|y1:t)

p(θt+1|y1:t)
.
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(ii) The smoothing distributions of θt given y1:T can be computed by the following backward
recursion in t, starting from p(θT |y1:T )

p(θt|y1:T ) = p(θt|y1:t)

∫
p(θt+1|θt)
p(θt+1|y1:t)

p(θt+1|y1:T )dθt+1.

Proof. First, by the Markovian structure of a SSM, note that θt and yt+1:T are conditionally
independent given θt+1 and that θt+1 and y1:T are conditionally independent given θt. Them,
using Bayes theorem we have

p(θt|θt+1, y1:T ) = p(θt|θt+1, y1:t)

=
p(θt,θt+1, y1:t)

p(θt+1, y1:t)
=
p(θt+1|θt, y1:t)p(θt|y1:t)

p(θt+1|y1:t)

=
p(θt+1|θt)p(θt|y1:t)

p(θt+1|y1:t)
.

To prove (ii) compute de marginal distribution p(θt|y1:T ) by

p(θt|y1:T ) =

∫
p(θt,θt+1|y1:T )dθt+1

=

∫
p(θt+1|y1:T )p(θt|θt+1, y1:T )dθt+1

=

∫
p(θt+1|y1:T )

p(θt+1|θt)p(θt|y1:t)

p(θt+1|y1:t)
dθt+1

= p(θt|y1:t)

∫
p(θt+1|y1:T )

p(θt+1|θt)
p(θt+1|y1:t)

dθt+1,

where we use (i) in the penultimate equality.

3.2 Dynamic linear models

3.2.1 Definition of dynamic linear models and the Kalman recursions

An important class of state space models is given by Gaussian linear state space models as
stated in the following definition. We will se that the computation of conditional distributions
simplify considerably under the Gaussian assumption.

Definition 3.2. Gaussian dynamic linear models. The Gaussian dynamic linear model
(DLM) is specified by a Normal prior distribution for the q-dimensional state vector at time
t = 0,

θ0 ∼ N (m0,C0), (3.2)

and the pair of equations for each time t ≥ 1,

yt = F ′tθt + νt, νt ∼ N (0,Vt) (3.3)

θt = Gtθt−1 + ωt, ωt ∼ N (0,Wt), (3.4)
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where Gt and F ′t are known matrices (of order (q × q) and (m × q) respectively) and {νt}t≥1

and {ωt}t≥1 are two independent sequences of independent Gaussian vectors with mean zero and
known variances {Vt}t≥1 and {Wt}t≥1.

Equation (3.3) is called the observation equation, while (3.4) is the evolution, state or system
equation. Furthermore, it is assumed that θ0 is independent of the errors νt and ωt for any t.

Even though it is possible to assume heavy tailed errors for the general DLM, the price to
be paid when removing the Normality assumption is additional computation difficulties. The
assumption of Normality is sensible in many applications, though, it can be justified by central
limit theorem arguments.

West and Harrison (1997) pointed out that more general models could be obtained by al-
lowing the error sequences {νt} and {ωt} to be both autocorrelated and cross correlated, and
some definitions of dynamic linear models would allow for this structure. However, it is always
possible to reformulate such a correlated model in terms of one that satisfies the independence
assumptions. Thus, nothing is lost by imposing this restriction.

It is straightforward to show that the DLM of Definition 3.2 satisfies assumptions (A.1) and
(A.2) that characterized a SSM in the Definition 3.1, with

yt|θt ∼ N (F ′tθt,Vt),

θt|θt−1 ∼ N (Gtθt−1,Wt).
(3.5)

In summary, the Gaussian DLM from Definition 3.2 is completely characterized by the set
of quadruples {F ,G, V,W }t = {Ft,Gt,Vt,Wt} for each time t.

Of special interest are the following two subsets of the general class of DLMs: (i) If the pair
{F ,G}t is constant for all t then the model is referred to as a time series DLM, or TSDLM; (ii)
A TSDLM whose observation variances V and evolution variances W are constant for all t is
referred to as a constant DLM.

Again, from now on we assume m = 1, i.e., a univariate Gaussian DLM so that yt, νt and
Vt are scalars. Nevertheless, it is straightforward to derive the results that will be showed for
multivariate time series.

As the Gaussian DLM is a special case of a SSM, the filtering and the forecasting problems
can also be solved by the general recursions presented in the Proposition 3.1. In this case, it can
be proved that the random vector (θ1, ...,θt, y1, ..., yt) has a Gaussian distribution for any t ≥ 1.
It follows that the marginal and conditional distributions are also Gaussian. Therefore, they
are completely determined by their means and variances. The filtering recursions for Gaussian
DLMs is given by the Kalman filter as follows.

Proposition 3.3. Kalman filter. Consider the Gaussian DLM specified by 3.2. Let the poste-
rior at time t− 1 be θt−1|y1:t−1 ∼ N (mt−1,Ct−1). Then, the following statements hold.

(i) The one-step ahead predictive distribution of θt given y1:t−1 (i.e., the prior at t) is

θt|y1:t−1 ∼ N (at,Rt), (3.6)

where
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at = Gtmt−1, Rt = GtCt−1G
′
t +Wt.

(ii) The one-step ahead predictive distribution of yt given y1:t−1 is

yt|y1:t−1 ∼ N (ft, Qt), (3.7)

where

ft = F ′tat, Qt = F ′tRtFt + Vt.

(iii) The filtering distribution of θt given y1:t (i.e., the posterior at t) is

θt|y1:t ∼ N (mt,Ct), (3.8)

where

mt = at +RtFtQ
−1
t et, Ct = Rt −RtFtQ

−1
t F

′
tRt,

with et = yt − ft (i.e., the forecast error).

Proof. The random vector (θ1, ...,θt, y1, ..., yt) has joint distribution given by Equation (3.1),
where the marginal and conditional distributions involved are Gaussian. It follows that the
joint distribution of (θ1, ...,θt, y1, ..., yt) is Gaussian for any t ≥ 1. Therefore, from multivariate
Normal standard results, the distribution of any subvector is Gaussian. Thus, the filtering and
predictive distributions are Gaussian, so it sufficient to calculate its means and variances.

(i) Let θt|y1:t−1 ∼ N (at,Rt). Using the system equation from Definition 3.2, we obtain

at = E(θt|y1:t−1) = E(E(θt|θt−1, y1:t−1)|y1:t−1)

= E(Gtθt−1|y1:t−1) = Gtmt−1,

and

Rt = Var(θt|y1:t−1)

= E(Var(θt|θt−1, y1:t−1)|y1:t−1) + Var(E(θt|θt−1, y1:t−1)|y1:t−1)

= Wt +GtCt−1G
′
t.

(ii) Let yt|y1:t−1 ∼ N (ft, Qt). Using the observation equation from Definition 3.2, we obtain

ft = E(yt|y1:t−1) = E(E(yt|θt, y1:t−1)|y1:t−1) = E(F ′tθt|y1:t−1) = F ′tat

and

Qt = Var(yt|y1:t−1)

= E(Var(yt|θt, y1:t−1)|y1:t−1) + Var(E(yt|θt, y1:t−1)|y1:t−1)

= Vt + F ′tRtFt.

(iii) The problem is the same as the Bayesian inference problem for the Gaussian linear
model (see Section 2.1.2)
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yt = F ′tθt + νt, νt ∼ N (0, Vt),

with the regression vector parameter θt|y1:t−1 ∼ N (at,Rt) (the prior) and Vt is known. By
Proposition 3.1 (iii), we have that p(θt|y1:t) ∝ p(yt|θt)p(θt|y1:t−1), where p(yt|θt) is the likeli-
hood. In the Gaussian DLM case, all the distributions are Gaussian, so the posterior

θt|y1:t ∼ N (mt,Ct).

Applying the results from Equation (2.5), we have that

Ct = (R−1
t + FtV

−1
t F ′t )

−1

and

mt = Ct(FtV
−1
t yt +R−1

t at).

Using the Woodbury matrix identity (Woodbury (1950)), we get

Ct = Rt −RtFt(Vt + F ′tRtFt)
−1F ′tRt = Rt −RtFtQ

−1
t F

′
tRt,

where we use (ii) for the last equality. Finally, using the above identity and (ii), we have

mt = at +RtFtQ
−1
t (yt − ft).

We have seen that the state space models’ filtering recursions can be easily computed for
a Gaussian DLM. Thus, the smoothing recursion presented in the Proposition 3.2 can also be
stated more explicitly in terms of means and variances of the smoothing distributions. This is
introduced by the following proposition.

Proposition 3.4. Kalman smoother. Consider the Gaussian DLM specified by Definition
3.2. If θt+1|y1:T ∼ N (st+1,St+1), then

θt|y1:T ∼ N (st,St),

where

st = mt +CtG
′
t+1R

−1
t+1(st+1 − at+1),

St = Ct −CtG′t+1R
−1
t+1(Rt+1 − St+1)R−1

t+1Gt+1Ct.

Proof. From the properties of the multivariate Gaussian distribution, we have that θt|y1:T is
Gaussian. Therefore, we only have to calculate its mean and variance, i.e.,

st = E(θt|y1:T ) = E(E(θt|θt+1, y1:T )|y1:T )

and
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St = Var(θt|y1:T ) = Var(E(θt|θt+1, y1:T )|y1:T ) + E(Var(θt|θt+1, y1:T )|y1:T ).

As shown before, by conditional independence, p(θt|θt+1, y1:T ) = p(θt|θt+1, y1:t). We can
compute this distribution by using the Bayes theorem. In the Proposition 3.3, we have noted
the equivalence to the Bayesian inference problem for the Gaussian linear model. In this case
we can do the same by noting that the state equation

θt+1 = Gt+1θt + ωt+1, ωt+1 ∼ N (0,Wt+1)

is equivalent to a regression problem, where the prior is θt|y1:t ∼ N (mt,Ct), the likelihood is
p(θt+1|θt, y1:t) = p(θt+1|θt) ∼ N (Gt+1θt,Wt+1), whereWt+1 is known. Therefore, applying the
same results from the Equation 2.5 and the Woodbury matrix identity (Woodbury (1950))

E(θt|θt+1, y1:t) = mt +CtG
′
t+1R

−1
t+1(θt+1 − at+1) = ht

and

Var(θt|θt+1, y1:t) = Ct −CtG′t+1R
−1
t+1Gt+1Ct = Ht.

It follows that

st = E(E(θt|θt+1, y1:t)|y1:T ) = mt +CtG
′
t+1R

−1
t+1(st+1 − at+1),

and

St = Var(E(θt|θt+1, y1:t)|y1:T ) + E(Var(θt|θt+1, y1:t)|y1:T )

= CtG
′
t+1R

−1
t+1St+1R

−1
t+1Gt+1Ct +Ct −CtG′t+1R

−1
t+1Gt+1Ct

= Ct −CtG′t+1R
−1
t+1(Rt+1 − St+1)R−1

t+1Gt+1Ct.

3.2.2 Dynamic linear models with unknown parameters

Until now, we have assumed that the system matrices Ft, Gt, Wt and the variance Vt of
the univariate Gaussian DLM were known. In fact, these matrices are rarely completely known,
so let the matrices and the variance depend on a vector of unknown parameters Φ. Usually, Φ

is constant over time, however, it is possible that the vector of unknown parameters be time-
varying, i.e., Φ = Φt.

Dynamic regression. For example, an important case of the Gaussian DLM is the dy-
namic multiple regression (through the origin) that links the response yt to q regressors Xt =

(X1t, ..., Xqt) at time t

yt = Xtβt + νt, νt ∼ N (0, σ2
t ),

βt = βt−1 + ωt, ωt ∼ N (0,Wt),
(3.9)
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for t = 1, ..., n, whereXt is the (1×q) vector of regressors, β′t = (β1t, ..., βqt) is the (q×1) vector
of coefficients and νt and ωt are two independent sequences of independent Gaussian errors with
mean zero and variances σ2

t and Wt, respectively. Thus, this is a Gaussian DLM defined by 3.2
with F ′t = Xt, θt = βt (the states), Gt = G = Iq and Vt = σ2

t . Note that settingWt = 0 for all
t is equivalent to βt = β, i.e., the static regression.

Some points should be highlighted in (3.9). First, note that it is assumed a time-varying
observational variance σ2

t , for which can can be assigned a stochastic volatility process. Never-
theless, we could also assume a constant variance σ2 = σ2. Second, even though it is assumed
a time-varying evolution matrix Wt for the states (coefficients), often it is supposed that the
coefficients are independent and evolve in time as a random walk with constant evolution matrix
W = diag(ω1, ..., ωq).

In addition, often the system matrices Ft and Gt are completely known, such as in some
structural models, but very rarely are the covariance matrices Vt andWt. A simple case is when
Vt and Wt are known up to a common scale factor, that is, Vt = σ2Ṽt and Wt = σ2W̃t, where
σ2 is unknown and Ṽt and W̃t are known. An interesting case is when Ṽt = 1 (considering
univariate DLMs) or Ṽt = Im (for multivariate DLMs, where yt ∈ Rm), and W̃t is specified by
a discount factor. For a good discussion on discount factors, see Chapter 4 from Petris et al.
(2009) or Chapter 6 from West and Harrison (1997).

Bayesian approach for Gaussian DLM with unknown parameters Φ assume prior knowledge
about Φ, which is expressed through a prior distribution. It is also assumed that state space
hypothesis for the processes yt and θt hold conditionally on the parameters Φ. Thus, the joint
distribution for t ≥ 1 is

(θ0:t, y1:t,Φ) ∼ p(θ0|Φ)p(Φ)
∏
t≥1

p(yt|θt,Φ)p(θt|θt−1,Φ), (3.10)

which is similar to the previous Equation (3.1), except from the fact that now we have a prior
distribution for the unknown parameters Φ and all the probabilities are conditional on them.
The filtering density is then given by

p(θt|y1:t) =

∫
p(θt|Φ, y1:t)p(Φ|y1:t)dΦ.

Inference on the vector θ0:t and Φ is expressed through their joint posterior distribution

p(θ0:t,Φ|y1:t) = p(θ0:t|Φ, y1:t)p(Φ|y1:t), (3.11)

where, using conjugate priors, it can be computed in closed form. However, in most cases, the
joint posterior is analytically intractable, so we often use Markov chain Monte Carlo (MCMC)
methods (see, e.g., Gamerman and Lopes (2006)) or sequential Monte Carlo methods.

The inclusion of the states in the posterior distribution usually simplifies the sampling,
even when one is only interested in the posterior distribution of the Φ. Indeed, drawing a
random variable/vector from p(Φ|θ0:t, y1:t) is almost invariably much easier than drawing it
from p(Φ|y1:t). This suggests that a sample from the joint distribution (3.11) can be obtained
by alternating draws from p(Φ|θ0:t, y1:t) and p(θ0:t|Φ, y1:t) in a Gibbs sampler.
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Forward filtering backward sampling. While p(Φ|θ0:t, y1:t) is problem specific, p(θ0:t|Φ, y1:t)

has a general expression. We have seen that the smoothing recursions from the Proposition 3.4
provide an algorithm for computing the mean and variance of the the distribution θt|y1:T con-
sidering the Gaussian DLM. Note that, using the chain rule from probability theory, we can
write the joint distribution of θ0:T given y1:T as

p(θ0:T |y1:T ) =
T∏
t=0

p(θt|θt+1:T , y1:T ),

where the last factor is p(θT |y1:T ), which is the filtering distribution of θT . By Proposition 3.3,
we know that θT |y1:T ∼ N (mT ,CT ). Therefore, one can start by drawing θT using the Kalman
filter and then, for t = T − 1, T − 2, ..., 0, recursively draw θt using the smoothing recursions.
From the proof of Proposition 3.4 we have seen that p(θt|θt+1:T , y1:T ) = p(θt|θt+1, y1:t), where
it was shown that this distribution is N (ht,Ht), with

ht = mt +CtG
′
t+1R

−1
t+1(θt+1 − at+1),

Ht = Ct −CtG′t+1R
−1
t+1Gt+1Ct,

where we note that ht explicitly depends on the value of θt+1 generated previously.
This sampling method is widely known as forward filtering backward sampling (FFBS) and

is due to Carter and Kohn (1994) and Frühwirth-Schnatter (1994). The method is summarized
in the Algorithm 4.

Algorithm 4: Forward filtering backward sampling
1. Run one step of the Kalman filter.
2. Draw θT |y1:T ∼ N (mT ,CT ).
3. For t = T − 1, ..., 0, draw (θt|θt+1:T , y1:T ) ∼ N (ht,Ht).

In the context of Gaussian DLMs with unknown parameters, the FFBS algorithm can be
applied to sample from the joint posterior distribution presented in Equation (3.11). That is,
it is enough to draw θ

(i)
0:T from p(θ0:T |Φ = Φ(i−1), y1:T ) using FFBS and then draw Φ(i) from

p(Φ|θ0:t = θ
(i)
0:T , y1:t) to obtain the sample {(θ(i)

0:T ,Φ
(i)), i = 1, ...,M}, where M is the total

number of iterations. The sampling strategy is summarized as follows.

Algorithm 5: Forward filtering backward sampling in a Gibbs sampler

1. Initialize Φ = Φ(0).
2. For i = 1, ...,M :
a) Draw θ(i)

0:T from p(θ0:T |Φ = Φ(i−1), y1:T ) using FFBS;
b) Draw Φ(i) from p(Φ|θ0:t = θ

(i)
0:T , y1:t).

The above MCMC strategy will be used to draw the posterior distribution of the dynamic
linear regression model regularized by a dynamic version of the NMIG prior. The hierarchical
specification and the results will be presented in Chapter 5. In the next session, some existing
sparsity inducing methods for DLMs are discussed in order to introduce the subject and prepare
for the model proposed later.
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3.3 Sparsity in time-varying parameter models

Chapter 2 was dedicated to shrinkage and sparsity inducing priors independently assigned to
static coefficients from the Gaussian linear model. Now we turn attention to the case where the
coefficients from regression are time-varying, the so-called time-varying parameter (TVP) regres-
sion models. There are many recent papers that have applied shrinking or parsimony-inducing
methods for TVP models such as Frühwirth-Schnatter and Wagner (2010), Chan et al. (2012),
Belmonte et al. (2014), Kalli and Griffin (2014), Lopes et al. (2014), Bitto and Frühwirth-Schnatter
(2016) and a few others. In the following sections we discuss the proposed models of each of
these references, dividing them by related topics.

3.3.1 Parsimony-inducing priors for state space models

Even though the terminology of TVP models is mainly related to the econometric literature of
univariate and multivariate (vector autoregression or VAR) regression models, in this subsection
we will refer to generic state space models. The method proposed by Frühwirth-Schnatter and Wagner
(2010) is based on extending the Bayesian variable selection approach, which is usually applied
to regression models, to state space models. The approach determines which components to
include in the model and specifies whether these components are fixed or time-varying. For this
reason it was called stochastic model specification search for Gaussian and partial non-Gaussian
state space models.

The basic state space model considered in the paper is the dynamic linear trend model
defined for t = 1, ..., T as

yt = µt + εt, εt ∼ N (0, σ2), (3.12)

where the trend µt follows a random walk with a random drift at starting from unknown initial
values µ0 and a0

µt = µt−1 + at−1 + ω1t, ω1t ∼ N (0, θ1),

at = at−1 + ω2t, ω2t ∼ N (0, θ2).
(3.13)

The model defined by (3.12) and (3.13) can be rewritten as follows. Define two independent
random walk processes µ̃t and ãt with Normal standard independent increments as well as an
integrated process Ãt as

µ̃t = µ̃t−1 + ω̃1t, ω̃1t ∼ N (0, 1)

ãt = ãt−1 + +ω̃2t, ω̃2t ∼ N (0, 1)

Ãt = Ãt−1 + ãt−1,

(3.14)

with µ̃0 = ã0 = Ã0 = 0. Thus, combining (3.14) with the following observation equation

yt = µ0 + ta0 +
√
θ1µ̃t +

√
θ2Ãt + εt, εt ∼ N (0, σ2) (3.15)

we get what the authors named non-centered parametrization of the dynamic linear trend model.
In order to verify this result, define
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at = a0 +
√
θ2ãt,

µt = µ0 + ta0 +
√
θ1µ̃t +

√
θ2Ãt

and calculate at−at−1 and µt−µt−1, for which we obtain the centered parametrization presented
in the Equation (3.13).

The state space representation of the non-centered model defined by (3.14) and (3.15) is then

yt = z′tα+Hxt + εt, εt ∼ N (0, σ2)

xt = Fxt−1 +wt, wt ∼ N (0,W ),
(3.16)

where x0 = 0 and

xt =

 µ̃t

ãt

Ãt

 , F =

 1 0 0

0 1 0

0 1 1

 , W =

 1 0 0

0 1 0

0 0 1

 ,

H =
(√

θ1 0
√
θ2

)
, zt = (1 t) , α = (µ0 a0) .

Theoretically, this state space form could be used to perform Kalman filter (Proposition 3.3)
and to compute the integrated likelihood

p(y1:T |Φ) =

∫
p(y1:T |x1:T ,Φ)dx1:T ,

where Φ = (
√
θ1,
√
θ2, σ

2, µ0, a0).
However, the non-centered parametrization of dynamic linear trend model is not identified

because in the observation equation (3.15) the sign of
√
θ1 and the sequence µ̃1:T may be changed

by multiplying all elements with -1 without changing the distribution of y1:T . That is, if we define
the state x∗t = (−µ̃t, ãt, Ãt)′ and Φ∗ = (−

√
θ1,
√
θ2, σ

2, µ0, a0) we have that

p(y1:T |Φ) =

∫
p(y1:T |x1:T ,Φ)dx1:T =

∫
p(y1:T |x∗1:T ,Φ

∗)dx∗1:T = p(y1:T |Φ∗).

Similarly, the sign of
√
θ2 and the sequences ãt and Ãt may be changed without changing

the integrated likelihood.
As a consequence, the function p(y1:T |Φ) is symmetric around 0 in the direction of

√
θ1 and

√
θ2 and therefore multimodal. If the true variances θ1 and θ2 are positive, then the likelihood

function concentrates around four modes. If one of these true variances is positive and the other is
equal to 0, two of these modes collapse and the likelihood becomes bimodal with increasing T . If
both true variances are equal to 0, then the likelihood function becomes unimodal as T increases.
Thus, considering the non-centered parametrization and allowing for non-identifiability one can
test whether the variances of the state space model are zero.

The multimodal property of the integrated likelihood gave an insight for building what the
authors called the parsimonious dynamic linear trend model. The non-centered parametrization
of this model is defined by the observation equation

yt = µ0 + δta0 + γ1

√
θ1µ̃t + γ2

√
θ2Ãt + εt, εt ∼ N (0, σ2),
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together with the Equation (3.14), where (δ, γ1, γ2) are the model binary indicators. While δ is
responsible for including or not including trend (if δ = 0, then the initial slope a0 = 0), γ1 and
γ2 decide if a certain component of the state vector is fixed (the case when

√
θi = 0, i = 1, 2) or

time-varying.
Evidently, (δ, γ1, γ2) = (1, 1, 1) corresponds to the unrestricted dynamic linear trend model

defined by (3.12) and (3.13). The combination (δ, γ1, γ2) = (0, 1, 0) leads to the local linear model
or exponential smoothing, the combination (δ, γ1, γ2) = (1, 0, 0) leads to a regression model with
deterministic linear trend and (δ, γ1, γ2) = (0, 0, 0) leads to a i.i.d Normal data yt ∼ N (µ0, σ

2).
The state space representation of the non-centered parametrization of the parsimonious dy-

namic linear trend model is given by

yt = zt(δ)
′α+H(γ1, γ2)xt + εt, εt ∼ N (0, σ2)

xt = Fxt−1 +wt, wt ∼ N (0,W ),

where xt, F and α are the same as (3.16), while H(γ1, γ2) and zt(δ) depend on the model
indicators

H(γ1, γ2) = (γ1

√
θ1 0 γ2

√
θ2), zt(δ) = (1 δt).

Note that the parsimonious dynamic linear trend model has more unknown parameters than
the unrestricted case because of the model binary indicators. That is, the vector of unknown
parameters is now Φ = (

√
θ1,
√
θ2, σ

2, µ0, a0, δ, γ1, γ2).
The prior distributions assigned for each parameter of Φ is as follows. For the model indica-

tors it is assumed an Uniform distribution over all possible 8 combinations, i.e., each combination
is equally likely to be observed.

As common for dynamic linear trend models, it is assumed that a priori µ0 and a0 are
independently normally distributed

µ0 ∼ N (y1, P0,11σ
2), a0 ∼ N (0, P0,22σ

2).

Furthermore, for the observation variance σ2 it is assumed an inverted Gamma prior

IG(c0, C0).

Lastly, in contrast with previous work, they did not use the usual Inverse-Gamma priors for
the variances θ1 and θ2, i.e., θ1 ∼ IG(d0,1, D0,1) and θ2 ∼ IG(d0,2, D0,2), assuming Gaussian
distributions for the standard deviations instead. That is, it was assumed a priori that

√
θ1 ∼ N (0, B0,1σ

2),
√
θ2 ∼ N (0, B0,2σ

2).

Accordingly to the authors, the reason for choosing the Normal prior is based on the strong
influence of the hyperparameters of the Inverse-Gamma prior on the posterior density of θi, if
the true value θtri is close to 0. Due to the symmetry of the likelihood discussed above, the
posterior density of ±

√
θi (which is obtained from θi by multiplying the square root of θi with

a random sign) is symmetric around zero as long as the prior is also symmetric around zero. If
the unknown true variance θtri is significantly different from zero, then the posterior density of
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±
√
θi is likely to be bimodal with the modes being close to ±

√
θtri . Otherwise, if the true θtri is

close to or equal to zero, then the posterior density of ±
√
θi is likely to be centered around zero.

Whereas the posterior is robust to the choice of hyperparameter B0,i in the Normal prior, it
turns out to be rather sensitive to hyperparameter D0,i in the Inverse-Gamma prior for i = 1, 2.
A practical example was given by fixing two values for θ1 ∈ {0.01, 0} and assuming the priors
θ1 ∼ IG(0.5, D0,1) or

√
θ1 ∼ N (0, B0,1σ

2) for various scale parametersD0,1 ∈ {0.015, 0.1, 0.2275}
and B0,1 ∈ {1, 10, 100}. When θtr1 = 0.01 both posteriors are roughly the same and clearly
indicate that θtr1 > 0. A remarkable difference occurred when θtr1 = 0. Under the Normal prior,
the posterior of ±

√
θ1 is centered at 0 for all values of B0,1. However, under the Inverse-Gamma

prior, the posterior is always centered away from 0, for all the values D0,1.
Posterior inference is obtained by an MCMC approach, where the indicators (δ, γ1, γ2) and

the parameters (
√
θ1,
√
θ2, σ

2, µ0, a0) are sampled jointly in one block and the states x1:T are
sampled using the FFBS (Algorithm 4). For details on the MCMC scheme, please refer to Section
2.4 from Frühwirth-Schnatter and Wagner (2010).

Another important reference on parsimony-inducing priors is Lopes et al. (2014), who pro-
posed a mixture prior for the autoregressive parameters of the state equation. In the article, two
specifications for the observation equation were considered: (i) a dynamic linear regression, and
(ii) a standard stochastic volatility model. The mixture prior is presented as follows.

Consider the dynamic linear regression model from equation (3.9) with an intercept in the
state equation. Assume that we have only one regressor for simplicity. Model (i) is then specified
as

yt = xtst + ηt

st = α+ βst−1 + τεt,

where st is latent (hidden) state-space variable, ηt and εt are independent random shocks in the
observation and state equations respectively, usually Gaussian, and the pair (xt, yt) is observed.
The proposed mixture prior for (α, β, τ) is

p(α, β, τ) = p01p(τ |β = 1)δ{α=0,β=1}

+ p00p(τ |β = 0)δ{α=0,β=0}

+ pu0p(τ |β = 0)p(α|β = 0, τ)δ{β=0}

+ puup(β)p(τ |β 6= 0)p(α|β),

where p01, p00, pu0 and puu are the mixture weights of our four components. The notation δx

represents the distribution such that x happens for sure, p01 is the probability that (α, β) = (0, 1),
p00 is the probability that (α, β) = (0, 0), pu0 is the probability that β = 0 and α is unrestricted,
and puu is the probability that β ∈ (0, 1) and α is unrestricted. p(τ |β) denotes a discrete
distribution on a grid which will be discussed below.

The prior was structured in order to express a small τ , which expresses the notion that the
state evolves smoothly, while (α, β) can assume different values. In the paper, only four cases
were considered. The cases as well as their interpretation are

• (α, β) = (0, 1), i.e., the state evolves like a random walk;

• (α, β) = (0, 0), i.e., the state is fixed near zero;
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• (α, β) = (α, 0), i.e., the state simply varies around a fixed level α, which is unrestricted;

• (α, β) = (α, β), where 0 < β < 1, i.e., the state varies in a stationary fashion;

It is important to note that zero prior weight was given on β < 0 and that the case τ = 0

was not considered.
The priors for α, β, τ, s0 was specified as follows. For τ , they chose a discrete prior over a

n-dimensional grid of evenly spaced values (t1, t2, .., tn), with t1 = τmin (minimum value) and
tn = τmax (maximum value). It was supposed that p(τ = τmin) = pmin and that, for i > 1, p(τ =

ti) ∝ exp(−cτ |ti − τmin|). Thus, the prior for τ has four hyperparameters (τmin, τmax, pmin, cτ ).
They allowed for the possibility that the choice of the four hyperparameters could depend on β.
For example, one may want a smaller values of τ when β = 0. For this reason, the choice of cτ
given β = 0 was twice the value used for non-zero β.

The prior for α also depends on the value of β and τ , that is, it was assumed that (α|β, τ) ∼
N (0, σ2

α(1− β2)). As β increases, α is shrunken towards the case where α = 0 at β = 1. When
β = 0, it is simply assumed that α ∼ N (0, σ2

α).
To specify a prior for β ∈ (0, 1), they used a grid of points (b1, b2, ..., bn), where they let

p(β = bi) ∝ N (|β̃, σ2
β).

Finally, for the initial state s0, a mixture prior was assigned in order to induce sparsity since
the value s0 = 0 represents a model simplification in many cases. In fact, they used the SSVS
prior presented in Section 2.3.1.

Posterior sitribution was calculated using an augmented Gibbs sampler. For details on the
sampling scheme, please refer to Section 2.2 of Lopes et al. (2014).

3.3.2 Shrinking priors under the non-centered parametrization

The last section was dedicated to introduce some important references on parsimony-inducing
priors which automatically choose some structural components of a state space model. In that
way, those strategies are similar to the variable selection problem discussed in Section 2.3. In
this section we discuss another strategy for inducing sparsity in time-varying parameter models
that is more related to the regularization methods presented in Section 2.2. In particular, we
discuss two alike papers which used the same kind of parametrization for the state equation.

In Belmonte et al. (2014) a TVP version of the generalized Phillips curve was estimated with
the coefficients shrunken by a lasso type prior. Their basic model is formalized as a state space
model

πt+h = θ∗t zt + εt+h

θ∗t = θ∗t−1 + ηt,

where the variable of interest is the h-step-ahead inflation, defined as πt+h = log(Pt+h)− log(Pt),
zt = [1,∆ log(Pt), ...,∆ log(Pt−p+1),xt], xt is a (q × 1) vector of exogenous predictors, and
θ∗t = (α′t, φ

′
t,0, ..., φ

′
t,p,γ

′
t)
′. It is assumed that εt ∼ N (0, σ2

t ) and ηt ∼ N (0,Ω), where Ω =

diag(ω2
1, ...., ω

2
k), with k = 1 + p + q. The errors are supposed to be independent of each other

and independent at all leads and lags. Note that it is allowed for heteroskedasticity in the
observation equation, in particular, it is assumed a standard stochastic volatility specification
for σ2

t .
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The initial condition for the states plays the role of a regression effect. Thus, the model
can be rewritten breaking the coefficients into a constant part θ = θ∗0 and a time-varying part
θt = θ∗t − θ as follows

πt+h = θzt + θtzt + εt+h

θt = θt−1 + ηt

θ0 = 0.

In order to induce shrinkage, the authors used another transformation: each state θj,t was
divided by its standard deviation ωj for j = 1, .., k, what was called non-centered parametrization
and it was based on Frühwirth-Schnatter and Wagner (2010)

πt+h =
k∑
j=1

θizj,t +
k∑
j=1

ωiθ̃j,tzj,t + εt+h

θ̃j,t = θ̃j,t−1 + uj,t

θ̃j,0 = 0,

(3.17)

where θ̃j,t = θj,t/ωj and uj,t ∼ N (0, 1) for j = 1, ..., k. Note that ωj is not time-varying.
The prior used to shrink the coefficients is defined as follows. For the constant coefficients

θ = (θ1, ..., θk)
′, it is assigned an hierarchical mixture of normal priors with an exponential mixing

distribution inspired by the traditional Bayesian lasso (see Equation (2.17)). In particular, each
θj for j = 1, ..., k is assumed to be, a priori, independent with the following structure

θj |τ2
j ∼ N (0, τ2

j ), τ2
j ∼ E

(
λ2

2

)
,

where E denotes the exponential distribution with mean 2/λ2.
For shrinking the time-varying coefficients, a lasso extension was used by assigning for the

standard deviations ω = (ω1, .., ωk)
′ an hierarchical mixture of normal priors with an exponential

mixing density. That is, each element of ω is assumed to be, a priori, conditionally independent
with

ωj |ξ2
j ∼ N (0, ξ2

j ), ξ2
j |κ ∼ E

(
κ2

2

)
. (3.18)

Finally, the specification is completed by assuming a stochastic volatility specification for σ2
t

and hyperpriors λ ∼ G(a1, a2) and κ ∼ G(b1, b2).
The methodology explained above decides, in an automatic fashion, whether any predictor is

important for forecasting inflation and, if so, whether it has a coefficient which is constant over
time or time-varying. In terms of Equation (3.17), the model has four outcomes/combinations:

• If ωj is shrunk to 0, but θj is not shrunk to 0, then the model has a constant parameter
on predictor j.

• If ωj is shrunk to 0 and θj is shrunk to 0, then predictor j is irrelevant for forecasting
inflation.
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• If ωj is not shrunk to 0, but θj is shrunk to 0, then the model has a small time-varying
coefficient on predictor j (small since θj,0 = 0, that is, the coefficient starts at value 0).

• If ωj is not shrunk to 0 and θj is not shrunk to 0, then we have an unrestricted time-varying
coefficient on predictor j .

Posterior computation is based on a MCMC algorithm, where the block θ̃1:T = (θ1, ...,θT )′,
with θt = (θ1,t, ..., θk,t) for t = 1, ..., T , is drawn using the FFBS algorithm presented in Algo-
rithm 4. Note that conditional on ω, the model becomes a Gaussian DLM, allowing for drawing
the states using FFBS. For the stochastic volatility treatment, the algorithm of Kim et al. (1998)
was used. For details about the full conditionals, please refer to Belmonte et al. (2014).

Is is worth pointing out that, it was assigned a Normal prior for the standard deviations
ωj , j = 1..., k in order to induce sparsity, differently from the traditional Bayesian approaches,
which generally assign Inverted Gamma priors for the variances ω2

j . The choice follows the work
of Frühwirth-Schnatter and Wagner (2010), where it is argued and presented evidence that the
hyperparameters of the Inverted-Gamma prior strongly influence the posterior density of ωj if
the true value of ω2

j is close to 0 (that is, the case when the jth time-varying coefficient is
irrelevant), shrinking the posterior of ωj away from 0.

In a recent paper, Bitto and Frühwirth-Schnatter (2016) adopted a very similar approach
from Belmonte et al. (2014), encouraging shrinkage in TVP models using a scaled mixture of
normal prior for the standard deviation ωj with a Gamma mixing distribution instead, which
corresponds to the Normal-Gamma prior from Griffin et al. (2010) as discussed in Section 2.2.

In their work they also used the non-centered parametrization of the dynamic linear re-
gression for shrinking. Note that the centered parametrization of the dynamic linear regression
model was presented in the Equation(3.9). Using the same notation from this equation, the
non-centered parametrization considered by Bitto and Frühwirth-Schnatter (2016) is as follows

yt = Xtβ +XtW
−1/2
t β̃t + νt

β̃t = β̃t + ω̃t,

β̃0 ∼ N (0,P0),

(3.19)

for t = 1, ..., n, where Xt is a (1× q) vector of regressors, β = (β1, ..., βq)
′ is a (q × 1) vector of

fixed coefficients over time, β̃t = (β̃1t, ..., β̃qt)
′ is a (q×1) vector of time-varying scaled coefficients

over time, where β̃jt = βjt/ωj for j = 1, .., q, and Wt = W = diag(ω2
1, ..., ω

2
q ) is the covariance

matrix from the centered parametrization, which is assumed to be diagonal and fixed over time.
Hence, ω̃t ∼ N (0, I).

Concerning the error variances in the measurement equation, it was considered the ho-
moscedastic case νt ∼ N (0, σ2) for all t as well as a more flexible model specification, where
νt ∼ N (0, σ2

t ). To capture heteroscedasticity, they used a stochastic volatility specification as in
Jacquier et al. (1994) for σ2

t .
To avoid any scaling issues, it is assumed that all covariates, except a possible intercept, have

been standardized such that for each j the average of Xtj over t is zero and the sample variance
is equal to 1.

Note that the initial value in the non-centered parameterization is assumed to be random, i.e.,
β̃0 ∼ N (0,P0) rather than zero as in earlier work of Belmonte et al. (2014) (compare with the
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earlier Equation (3.17)). That is, it is assumed that (βj,0|βj , ωj) ∼ N (βj , ω
2
jP0,jj), where βj is the

fixed coefficient related to covariateXj and ω2
j is the process variance governing the dynamics of

the time-varying coefficient βjt. Accordingly to the authors, this additional randomness avoids
overshrinking of the time-varying parameters βt toward β for the first few time points.

The rationale behind the specification (3.19) is to pull time-varying regression coefficients
βj,1, ..., βj,n toward the fixed regression coefficient βj , if the TVP model is overfitting and the
effect of the jth covariate Xj is in fact not changing over time. This requires the definition of
priors on the process variances ω2

j that are able to shrink ω2
j toward the boundary value 0, but,

at the same time, are flexible enough to avoid overshrinking for regression coefficients that are,
actually, changing over time t and are characterized by a non-zero process variance (ω2

j 6= 0).
As mentioned before, a very popular prior choice for the process variance ω2

j is the Inverse-
Gamma prior distribution, which is the conjugate prior for ω2

j in the centered parameteriza-
tion. However, following Frühwirth-Schnatter and Wagner (2010), they prefered to use Gaussian
priors for the standard deviations ωj . Differently from Belmonte et al. (2014), who have used
Bayesian lasso for shrinking ωj , it is assumed a Normal-Gamma prior for ωj as follows

ωj |ξ2
j ∼ N (0, ξ2

j ), (ξ2
j |aξ, κ2) ∼ G(aξ, aξκ2/2), (3.20)

where G denotes the Gamma distribution with mean 2/κ2 (shape-rate parametrization). For
aξ = 1 the Gamma distribution reduces to the Exponential distribution and the Bayesian lasso
adopted by Belmonte et al. (2014) in Equation (3.18) is a special case of (3.20).

In terms of the process variances ω2
j , (3.20) implies that ω2

j follows a "double Gamma" prior

ωj |2ξ2
j ∼ G(1/2, 1/(2ξ2

j )), (ξ2
j |aξ, κ2) ∼ G(aξ, aξκ2/2). (3.21)

To infer an appropriate value of κ2 from the data, yet another layer of hierarchy is added,
by assuming that the hyperparameter κ2 is random, following again a gamma distribution

κ2 ∼ G(d1, d2),

while aξ is supposed fixed at the value aξ = 0.1 based on simulations made by the authors. As
argued by them, the prior with aξ = 0.1 showed a much more flexible shrinkage behavior than
the Bayesian lasso aξ = 1. In fact, this value is the same used by Kastner (2016) as mentioned
before in Section 2.2.

If ω2
j is shrunken toward 0, then this pulls βj,0 and all subsequent values βj, t toward the

fixed regression parameter βj . Then, it is also relevant to allow shrinkage of βj toward 0. The
also used the the Normal-Gamma prior for shrinking the fixed coefficients βj for j = 1, ..., q, i.e.,

βj |τ2
j ∼ N (0, τ2

j ), (τ2
j |aτ , λ2) ∼ G(aτ , aτλ2/2). (3.22)

Also another layer of hierarchy is added by assuming

λ2 ∼ G(e1, e2),

while assuming aτ = 0.01. Closed forms for the densities of βj,t and βj can be inferred using
the Normal-Gamma marginal density presented in the Equation(2.21) from Section 2.2.
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To carry out Bayesian inference under the shrinkage priors (3.20) and (3.22), it was developed
efficient schemes for full conditional Markov chain Monte Carlo (MCMC) sampling based on
the ancillarity sufficiency interweaving strategy (ASIS) introduced by Yu and Meng (2011). For
details on what they named efficient full conditional Gibbs sampling for sparse TVP models,
please refer to Section 3.1 from Bitto and Frühwirth-Schnatter (2016).

Finally, the proposed model and the sampling strategy were applied to two real world data set:
the first application was an inflation modeling using the same data analyzed in Belmonte et al.
(2014) and the second application was a TVP Cholesky stochastic volatility modeling of 29
returns from German Stock Index DAX.

3.3.3 Time-varying dimension models

In the previous sections we have presented many approaches for inducing sparsity or parsi-
mony in time-varying parameter models. However, neither of these methods treated the sparsity
structure as time-varying. From now on, we turn our attention to approaches where the subset
of relevant variables varies over time.

A distinguish reference about shrinkage in TVP models is Chan et al. (2012), whose focus
was also inflation forecasting. According to the authors, TVP models are parameter-rich and risk-
overfitting unless the dimension of the model is small. Therefore, through a Bayesian approach
considering the estimation of state space models subject to equality restrictions on the states,
they have proposed a method where the dimension of the model can change over time, allowing
for an automatically choice over different parsimonious representations.

Their approach belongs to the category of dynamic mixture models, which will be discussed
in Section 3.3.4 and was named time-varying dimension (TVD) models. The model specification
is given below.

Consider the dynamic linear regression from Equation (3.9) with a slight modification, i.e.,

yt = Xtβt + νt,

βt+1 = βt + ωt,
(3.23)

for each t = 1, ..., n, where Xt is the (1× q) vector of regressors, β′t = (β1t, ..., βqt) is the (q× 1)

vector of coefficients, νt ∼ N (0, Vt) and ωt ∼ N (0,Wt), with errors νt and ωt independent of
each other.

The dynamic mixture model of Gerlach et al. (2000) adds to (3.24) the assumption that the
values of the system matrices Xt and Wt and the variance Vt are determined, up to a set of
unknown parameters, by the value of the vector Kt, where K1:n = (K1, ...,Kn) is a sequence
of random vectors that are Markov, i.e., p(Kt|K1:t−1) = p(Kt|Kt−1), for t = 2, ..., n.

The great contribution of Gerlach et al. (2000) was developing an efficient algorithm for
posterior simulation for this class of models. The efficiency gains occur since the states β =

(β1, ...,βn) are integrated out andK1:n is drawn unconditionally. A simple alternative algorithm
would involve drawing from the posterior of K1:n, conditional on the states β1:n, and then the
posterior of β1:n, conditional on K1:n. Such a strategy was shown to produce a chain of draws
which is very slow to mix. In Chan et al. (2012), the algorithm of Gerlach et al. (2000) was used
to draw the posterior ofK1:n, considering three different waysKt can enter the system matrices
so as to yield a TVD model.
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The first TVD model adapts the approach of Gerlach et al. (2000) in a particular way such
that βt remains a q-dimensional vector at all times, but there is a sense in which the dimension
of the model can change over time. This can be done by allowing for explanatory variables to
be included/excluded from the likelihood function depending on Kt.

The basic idea can be illustrated as follows. Suppose q = 1 and Xt = Ktzt, where zt is an
explanatory variable and Kt ∈ {0, 1}. If Kt = 0, then zt does not enter the likelihood, and the
coefficient βt does not enter the model. However, if Ks = 1, then the coefficient βs enters the
model. Thus the dimension of the model is different from time t than at time s. It is worth
stressing that, if Kt = 0, then βt does not enter the likelihood, but the dimension of the state β
remains the same.

To make this idea clear, suppose we have a model with the response y depending on a vector
of parameters θ which are partitioned as θ = (φ,γ). Then the prior is p(θ) = p(γ)p(φ|γ) and
the likelihood is `(y|θ).

Consider a second model which imposes the restriction φ = 0. Instead of directly imposing
this restriction, consider what happens if we impose the restriction that φ does not enter the
likelihood. That is, the likelihood for the second model would be `(y|θ) = `(y|γ) and its posterior
would be

p(θ|y) =
`(y|θ)p(θ)∫
`(y|θ)p(θ)dθ

=
`(y|γ)p(γ)∫
`(y|γ)p(θ)dθ

p(φ|γ) = p(γ|y)p(φ|γ).

Since p(φ|γ) integrates to one (or assigns a point mass to φ = 0) integrating p(θ|y) with
respect to φ provides a valid posterior for the second model and the integral

∫
`(y|γ)p(θ)dθ

would result in the correct marginal likelihood. This is the strategy which underlies and justifies
the first approach.

In summary, assuming the same structure for the errors and the design matrix as in (3.23),
the first TVD model is then

yt = XtMtβt + νt,

βt+1 = βt + ωt,
(3.24)

for t = 1, .., n, where Mt = diag(K1,t, ...,Kq,t) and Kj,t ∈ {0, 1}, j = 1, ..., q.
The second TVD model is based on what is known in Bayesian Vector Autoregression

(BVAR) literature as the Minnesota prior, which was first proposed by Litterman et al. (1979).
The model is a follows (assuming the same structure for the errors and the design matrix as in
(3.23))

yt = Xtβt + νt,

βt+1 = Mβt + (I −M)β̄ + ωt,

for t = 1, .., n, where M is a (q × q) matrix and β̄ is a q × 1 vector. In particular, the authors
set M = Mt = diag(K1,t, ...,Kq,t), β̄ = 0 and Wt = MtW . That is, if Kj,t = 1, the jth
coefficient evolves according to a random walk as in standard TVP regression. But if Kj,t = 0,
then coefficient is set to zero, and the dimension of the model reduces.

The third TVD model formally reduces the dimension of the state vector βt as it specified
as follows (again, assuming the same structure for the errors and the design matrix as in (3.23))
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yt = Xtβt + νt,

βt+1 = Mθt+1 + ωt,

θt+1 = θt + ut,

(3.25)

for t = 1, .., n, where ut ∼ N (0,R) and ut is independent from the other errors in the model.
The third TVD model can be constructed by specifying M and Wt to be exactly as in the
second TVD model. That is, ωt ∼ N (0,MtW ) and M = Mt = diag(K1,t, ...,Kq,t).

Note that θt can potentially be of a lower dimension that βt and that the two last equations
from (3.25) can be rewritten as

βt+1 = βt + υt,

where υt = Mut + ωt − ωt−1, that is, a moving average (MA) structure.
Note that the first and the third model has similar properties. In order to understand these

properties consider the case where a coefficient drops out of the model for h periods and then
reenters it, i.e.,

Kj,t−1 = 1, Kj,t = Kj,t+1 = ... = Kj,t+h−1 = 0, Kj,t+h = 1.

In this case, the first TVD model, supposing that Wt = W , implies E(βt+h) = βt−1 and
Var(βt+h) = hW while the second model implies E(βt+h) = 0 and Var(βt+h) = W . The
third model has properties closer to those of the first approach and yields E(βt+h) = βt−1 and
Var(βt+h) = hR+W if M is a square matrix.

The three different TVD models can be implemented with any choice of Kt . However, the
approach can become computationally demanding if the dimension of Kt is large. If one let
Kt be a vector of q dummy variables controlling whether each regressor out of q regressors is
included or excluded in the model at time t, then there would be 2q values Kt could take and
the computational demands will be high unless q is small.

Therefore, to handle the computational problem they have limited the values that Kt could
take, precisely, Kt could only take values in

I = {(0, 0, ..., 0), (1, 0, ..., 0), (0, 1, 0, ..., 0), (0, 0, ..., 0, 1), (1, 1, ..., 1)},

which totals q + 2 possible values.
In addition, they imposed a Markov hierarchical prior for K1:n as

p(Kt+1 = i|Kt = i) = c, i ∈ I

p(Kt+1 = j|Kt = i) =
1− c
q + 1

, i 6= j, i, j ∈ I,
(3.26)

for t = 1, ..., n − 1. This prior expresses the belief that, with probability c the model will stay
with its current set of explanatory variables and with probability 1 − c it will switch to a new
model. It was assumed that c follows a Beta distribution.

For the analyzed data (core inflation as measured by the Personal Consumption Expenditure
(PCE) deflator for 1962Q1 through 2008Q3), the authors set the following hyperparameters for
the Beta distribution: c ∼ B(4.54, 10), such as E(c) = 0.31.
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One must specify the initial values K1,1, ...,Kq,1, because the Markov hierarchical prior in
(3.26) is for (K2, ...,Kn). Thus, for the initial values, it was assumed that each Kj,1 is inde-
pendent of each other and follows, a priori, a Bernouilli distribution with p(Kj,1 = 1) = bj , for
j = 1, ..., q, where bj ∼ B(1.5, 1.5) such that E(bj) = 0.5. For further details about each TVD
model and the real data application, please refer to the article.

In all the TVD models, MCMC methods was used to draw the posteriors, including the draw-
ing of K1:n, where the algorithm ofGerlach et al. (2000) was used. For details on the posterior
computations please refer to Section 2.3 from Chan et al. (2012) as well as the online appendix
available in https://sites.google.com/site/garykoop/research.

3.3.4 Efficient Bayesian inference for dynamic mixture models

In this section, we present in details the dynamic mixture model approach proposed by
Gerlach et al. (2000). This approach is used in the model that will be presented later in Chapter
5.

Consider the univariate Gaussian DLM from Definition 3.2 with a slight modification, i.e.,
allowing for time-varying intercepts in both observation and state equation as

yt = ft + F ′tθt + γtut, ut ∼ N (0, 1)

θt = gt +Gtθt−1 + Γvt, vt ∼ N (0, I),
(3.27)

for t = 1, .., n, where θt is a q-dimensional vector of states, ut and vt are independent and
standard Normal distributed, and ft, F ′t , γt, gt, Gt and Γt may all depend on the vector Markov
Kt and on a vector of parameters Φ. This makes observations yt mixture of normals.

Note that K1:n = (K1, ...,Kn) is a sequence of random vectors that are Markov as for
t = 2, ..., n

p(Kt|K1:t−1) = p(Kt|Kt−1).

The sampling scheme proposed generates Kt from density p(Kt|y1:n,Ks 6=t) for t = 1, ..., n

without conditioning on the states θ1:n. The crucial thing is to notice that

p(Kt|y1:n,Ks 6=t ∝ p(y1:n|K1:n)p(Kt|Ks 6=t)

∝ p(yt+1:n|y1:t,K1:n)p(yt|y1:t−1,K1:t)p(Kt|Ks 6=t),
(3.28)

where the dependence on the parameters Φ has been suppressed for convenience.
For each value of Kt the right size of (3.28) is evaluated as follows. The term p(Kt|Ks 6=t)

is obtained from the prior, for example the prior used by Chan et al. (2012) which is presented
in the Equation (3.26). The term p(yt|y1:t−1,K1:t) is obtained from p(θt−1|y1:t−1,K1:t−1), i.e.,
from the the filtering distribution, using one step of the Kalman filter presented in Proposition
3.3.

Obtaining the term p(yt+1:n|y1:t,K1:n) is the crucial innovation of the algorithm of Gerlach et al.
(2000). Traditional sampling algorithms use n− t+1 steps of the Kalman filter given the current
values of Kt,n to obtain the term p(yt+1:n|y1:t,K1:n). Therefore, it requires O(n) operations to
generate each Kt, and hence O(n2) operations to generate K1:n. Nevertheless, in the proposed
algorithm the term p(yt+1:n|y1:t,K1:n) is obtained in one step after an initial set of backward
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recursions. This reduces the number of operations required to generate the complete vectorK1:n

to O(n).
Before giving the efficient method for generating K1:n, we are going to state several prelim-

inary lemmas, whose proofs can be found in the Appendix of Gerlach et al. (2000). All of the
lemmas refer to the univariate Gaussian DLM (3.27).

Lemma 3.1. Let rt+1 = Var(yt+1|θt,K1:t+1). Then, the following hold:

E(yt+1|θt,K1:t+1) = ft+1 + F ′t+1(gt+1 +Gt+1θt),

rt+1 = F ′t+1Γt+1Γ
′
t+1Ft+1 + γ2

t+1,

and

E(θt+1|θt, yt+1,K1:n) = at+1 +At+1θt +Bt+1yt+1,

Var(θt+1|θt, yt+1,K1:n) = Ct+1C
′
t+1,

where

at+1 = (I −Bt+1F
′
t+1)gt −Bt+1ft,

At+1 = (I −Bt+1F
′
t+1)Gt+1,

Bt+1 = Γt+1Γ
′
t+1Ft+1r

−1
t+1,

Ct+1C
′
t+1 = Γt+1(I − Γ′t+1Ft+1r

−1
t+1F

′
t+1Γt+1)Γt+1,

It is straightforward to factor the expression on the right side of the last equality to get a
matrix Ct+1 that either is null or has full column rank. Then, we can write

θt+1 = at+1 +At+1 +Bt+1yt+1 +Ct+1ξt+1,

where ξt+1 ∼ N (0, I) and is independent of θt and yt+1, conditional on K1:n.

Lemma 3.2. For t = 1, ..., n− 1, the density p(yt+1:n|θt,K1:n) is independent of K1:t and can
be expressed as

p(yt+1:n|θt,K1:n) ∝ exp

{
−1

2
(θtΩt(θt − 2µ′tθt)

}
,

where the terms Ωt and µt are computed recursively starting from

Ωn = 0, µn = 0

and moving backward

Ωt = A′t+1(Ωt+1 −Ωt+1Ct+1D
−1
t+1C

′
t+1Ωt+1)At+1 +G′t+1Ft+1r

−1
t+1F

′
t+1Gt+1,

µt = A′t+1(I−Ωt+1Ct+1D
−1
t+1C

′
t+1)(µt+1−Ωt+1(at+1+Bt+1yt+1))+G′t+1Ft+1r

−1
t+1(yt+1−ft+1−F ′t+1gt+1),

where
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Dt+1 = C ′t+1Ωt+1Ct+1 + I.

Lemma 3.3. Let mt = E(θt|y1:t,K1:n), Vt = Var(θt|y1:t,K1:n) and Rt = Var(yt|y1:t−1,K1:n).
The Kalman filter for the model (3.27) is given by

Rt = F ′tGtVt−1G
′
tFt + F ′tΓtΓ

′
tFt + γ2

t ,

mt = (I − JtF ′t )(gt +Gtmt−1) + Jt(yt − ft),

Vt = GtVt−1G
′
t + ΓtΓ

′
t − JtJ ′tRt,

where

Jt = [GtVt−1G
′
tFt + ΓtΓ

′
tFt]/Rt.

The conditional density p(yt|y1:t−1,K1:t) ∝ R−1
t exp

{
− 1

2Rt
(yt − ft − F ′t (gt +Gtmt−1))2

}
.

We can write Vt = TtT
′
t , where the matrix Tt either has full column rank if Vt 6= 0 or is null

if Vt = 0. Conditional on K1:n, we can express θt as

θt = mt + Ttξt,

where ξt ∼ N (0, I) and is independent of y1:t.

The next Lemma uses Lemma 3.3 to efficiently evaluate the factor p(yt+1:n|y1:t,K1:n).

Lemma 3.4. Using the results of Lemma 3.3, it follows that

p(yt+1:n|y1:t,K1:n) =

∫
p(yt+1:n|θt,Kt+1:n)p(ξt|K1:t)dξt

∝ |T ′tΩtTt + I|−1/2 exp

{
−1

2

(
m′tΩtmt − 2µ′tmt − φ′t(T ′tΩtTt + I)−1φt

)}
,

where φt = T ′t (µt −Ωtmt).

The recursion for generating K1:n in O(n) operations is now given.

3.3.5 Time-varying sparsity in dynamic regression models

In this section we present the approach of Kalli and Griffin (2014), a novel Bayesian method
for inference in dynamic regression models where both the values of the regression coefficients
and the importance of the variables are allowed to change over time. In order to allow for a
time-varying sparsity, an extension of the Normal-Gamma prior (see, e.g., Griffin et al. (2010))
for dynamic regression was developed which allows the shrinkage of the regression coefficients
to suitably change over time.

In regression models with a large number of predictors, it is common to assume that only a
subset of them is important for prediction. In the context of dynamic regression it is reasonable
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Algorithm 6: The algorithm of Gerlach et al. (2000) for dynamic mixture models
1. Given the current value of K1:n, calculate Ωt and µt for t = n− 1, ..., 1, using the
recursions in Lemma 3.2.
2. Given E(θ0) and Var(θ0), perform the following for t = 1, ...n:
(a) Obtain Rt, mt and Vt from mt−1 and Vt−1 as in Lemma 3.3;
(b) Obtain p(yt|y1:t−1,K1:t) as in Lemma 3.3 and p(yt+1:n|y1:t,K1:n) as in Lemma 3.4;
(c) Obtain p(Kt|y1:nKs 6=t) for all values of Kt by normalization of

p(Kt|y1:n,Ks 6=t ∝ p(y1:n|K1:n)p(Kt|Ks 6=t)

∝ p(yt+1:n|y1:t,K1:n)p(yt|y1:t−1,K1:t)p(Kt|Ks6=t).

Then, draw Kt.
(d) Update mt and Vt as in Lemma 3.3, using the generated value of Kt.

to assume that these subsets change over time. This assumption can be expressed by defining a
stochastic process for the coefficients as follows. Consider the observation equation

yt =

q∑
j=0

Xj,tβj,t + εt, εt ∼ N (0, σ2
t ) (3.29)

for t = 1, ..., n, where βj,t is the coefficient associated with the jth regressor in time t, Xj,t.
An intercept is allowed by defining X0,t = 1 for all t. Time-varying sparsity is allowed by
giving independent Normal-Gamma autoregressive (NGAR) process priors to the time series of
regression coefficients β1, ...,βq. That is, for t = 2, ..., n and j = 1, .., q,

βj,t =

√
ψj,t
ψj,t−1

ϕjβj,t−1 + ηi,t, ηj,t|ψj,t ∼ N (0, (1− ϕ2
j )ψj,t), (3.30)

with βj,1 ∼ N (0, ψj,1). Note that this is a Normal AR(1) process conditional onψj = (ψj,1, ..., ψj,n),
where ψj,t follows a first order gamma autoregressive (GAR) process (see, e.g., Gourieroux and Jasiak
(2006)), which is specified using latent variables κj,1, ..., κj,t−1 by the recursion

ψj,t|κj,t−1 ∼ G
(
λj + κj,t−1,

λj
µj(1− ρj)

)
,

κj,t−1|ψj,t−1 ∼ P
(
ρjλjψj,t−1

µj(1− ρj)

)
,

(3.31)

for t = 2, ..., n, with ψj,1 ∼ G(λj , λj/µj). In this definition, G(a, b) denotes the Gamma distribu-
tion with mean a/b and P denotes the Poisson distribution.

The NGAR process specified by equations (3.30) and (3.31) and notated as NGAR(λj , µj , ϕj , ρj)

can also be represented as the product of the following two independent stationarity stochastic
processes: ψj = (ψj,1, ..., ψj,n) and φj = (φj,1, ..., φj,n). That is, for t = 1, ..., n,

βj,t =
√
ψj,tφj,t,

where φ is generated by from an AR(1) process with autocorrelation parameter ϕj such that φ
has the standard Normal as its stationarity distribution, i.e.,

φj,t = ϕjφj−1 + ξj , ξj ∼ N (0, (1− ϕ2)),
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and ψj is generated from a GAR process with stationarity distribution G(λj , λj/µj) as in (3.31).
The process βj = (βj,1, ..., βj,n) is stationary and has a Normal-Gamma stationarity dis-

tribution since ψj and φj are independent and stationarity (assuming that |ϕj | < 1). The
unconditional variance is Var(βj) = µj and the excess kurtosis 3/λj .

The NGAR process prior is similar to the Normal-Gamma prior discussed in Section 2.2.2
with βj,t|ψj,t following a Normal distribution with mean zero and variance ψj,t following a
Gamma distribution ψj,t ∼ G(λj , λj/µj), marginally. Therefore, ψj,t plays the role of relevance
of jth regressor at time t. Small values of the conditional variance ψj,t leads to greater shrinkage
of the coefficient βj,t.

For a fixed prior mean µj , as the value of the shrinkage parameter λj decreases, more prior
mass for βj,t is placed close to zero and so the process βj tends to spend a greater proportion of
time close to zero. That is, the parameter λj controls the proportion of time that the regression
coefficient spends close to zero, where smaller values of λj lead to "spikier" processes of ψj,t and
βj,t, i.e., favor rapid changes from small to large values.

The autocorrelation parameter ρj controls the dependence between ψj,t and ψj,t−1, while the
autocorrelation parameter ϕj controls the dependence between βj,t and βj,t−1 conditional on the
ψj = (ψj,1, ..., ψj,n) process.

Hyperpriors for the parameters of the NGAR process prior are described as follows. Pa-
rameter µj acts as an overall relevance parameter for the jth coefficient since it controls the
unconditional variance of βj,t. If µj is small, then βj,t will be close to zero for all t. Therefore,
the authors proposed the following hierarchical prior for µ1, ..., µq,

µj ∼ G(λ∗, λ∗/mu∗), λ∗ ∼ E(1/s∗), µ∗ ∝ (µ∗ + 2b∗)−3,

where E(x) denotes the Exponential distribution with mean 1/x so that the hyperparameter s∗

is the prior mean of λ∗ and λ∗ is the shrinkage parameter of µj . Smaller values of λ∗ indicates
that more µj ’s are close to zero. This introduces a second level of sparsity at the level of the
regressors rather than the time-varying coefficients. The hyperparameter µ∗ has a heavy tailed
prior distribution with prior mean b∗, which is given a value suitable for the spread of the
regression coefficients in the particular application.

The sparsity parameter λj is given the prior

λj ∝ λj(0.5 + λj)
−4,

which is a heavy tailed prior with values around 1. This centers the prior over the lasso cases
(λj=1).

According to the authors, the flexibility of the NGAR process can lead to overfitting when
the values of the autocorrelation parameters ρj and ϕj are small. Thus, it was assigned Beta
distribution priors with a high prior mean

ρj ∼ B(77.6, 2.4), ϕj ∼ B(77.6, 2.4),

which gives a prior mean of 0.97 with most mass over 0.9 and implies that the processes for
the regression coefficients βj and for the relevances ψj are strongly autocorrelated. These priors
excludes models which allow the regression coefficients to rapidly change over time and lead to
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overfitting.
Finally, it was assumed a stochastic volatility specification for the variances σ2

1, ..., σ
2
n from

equation (3.29), where σ2
1, ..., σ

2
n follow a first order GAR process. The hyperparameter settings

for the volatilities as well as the MCMC methods to fit the dynamic regression with a NGAR
process as described in (3.30) and (3.31) can be found in Kalli and Griffin (2014).

The NGAR regression model was applied to both equity premium and inflation datasets
and the predictive performance was compared with other sparsity inducing methods, such as
those proposed by Belmonte et al. (2014) and Chan et al. (2012), which were explained before
in sections 3.3.2 and 3.3.3, respectively. The comparison focused on one step ahead forecasts
through the root mean square error (RMSE) using the posterior mean as the estimate calculated
on the second half of the data

RMSE =

√√√√ 1

n− s

n∑
t=s+1

(yt − E(yt|y1:t−1,X))2,

where X is the design matrix and s = bn/2c is largest integer less than or equal to n/2.

3.3.6 Sparse autoregressive process for dynamic variable selection

Lastly, we discuss the approach of Ročková (2016) which was called Autoregressive Spike-and-
Slab Process (ASSP) priors. Assuming the dynamic regression model with observation equation
given by (3.29) with σ2

t = 1 and given a binary indicator Jj,t ∈ {0, 1} and a lagged coefficient
value βj,t the ASSP is defined as

p(βj,t|Jj,t, βj,t−1) = (1− Jj,t)ψ0(βj,t|λ0) + Jj,tψ0(βj,t|µj,t, λ1),

µj,t = φ0 + φ1(βt−1 − φ0),

θj,t = p(Jj,t = 1|βj,t−1),

for j = 1, ..., q, where |φ1| < 1, ψ0(βj,t|λ0) is the spike distribution and ψ1(βj,t|µj,t, λ1). It is
assumed that the q time series β1,1:n, ..., βq,1:n follow independent and identical ASSP priors.

The spike distribution can be any density sufficiently peaked around zero, for instance, the
Laplace density ψ0(βj,t|λ0) = λ0

2 exp−|βj,t|λ0. The slab distribution ψ1(βj,t|µj,t, λ1) should be
moderately peaked around its mean µj,t, where the amount of spread is regulated by λ1 > 0.
More specifically, the Gaussian density was chosen in the work, although other reasonable choices
may be considered. It is worth to notice that the spike distribution does not depend on βj,t−1.
Under the spike, the coefficient time series is trivially stationarity, iid with a marginal density
ψ0(βj,t|λ0), whereas under the slab it follows a stationarity Gaussian AR(1) process

βj,t = φ0 + φ1(βj,t−1 − φ0) + et, et ∼ N (0, λ1),

with stationary distribution

ψST1 = N
(
φ0,

λ1

1− φ2

)
.

Although the process βj,1:n will be stationarity under each of the spike and slab distributions
separately, it is not immediately obvious that it will be stationary under the spike-and-slab
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mixture. That is why the sequence of mixture weights θj,t should move smoothly over time,
depending not only on the previous value θj,t−1 but also on βj,t−1. It was assumed the following
deterministic transition function for θj,t, which preserves the spike-and-slab mixture for the
marginals of βj,t

θj,t ≡ θ(βj,t−1) =
ΘψST1 (βj,t−1|λ− 1, φ0, φ1)

ΘψST1 (βj,t−1|λ− 1, φ0, φ1) + (1−Θ)ψ0(βj,t−1|λ0)
,

where Θ is a marginal importance weight 0 < Θ < 1 which controls the overall balance between
the spike and the slab distributions. The interpretation of Equation (3.3.6) is the following: if
|βj,t−1| was large, then θ(βj,t−1) will be large as well, signaling that the current βj,t−1 is more
likely to be on the slab. The contrary occurs when |βj,t−1| is small.

It can be proven that (see Theorem 1 of Ročková (2016)) βj,1:n has a stationarity distribution

pST (βj,t) = ΘψST1 (βj,t|λ− 1, φ0, φ1) + (1−Θ)ψ0(βj,t|λ0),

that is, a spike-and-slab mixture model as noted before.
The practical appeal of the approach is the strategy pursued by the author, given the avail-

ability of MAP estimation algorithms. A one-step-late EM algorithm for MAP smoothing was
implemented in a new dynamic coordinate-wise strategy. Although the algorithm may be fast,
it gives only MAP estimates, nevertheless, the full distribution remains unavailable.
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Chapter 4

Sparse covariance modeling

In this chapter we discuss some existing methods for sparse covariance modeling based on the
regularization of the linear regressions which result from the covariance matrix decompositions.
The objective is to briefly discuss the various decompositions of the covariance matrix that make
the problem of estimation of a matrix into a linear regression problem, especially in the case of
high-dimensional problems. In particular, we choose the modified Cholesky decomposition for
the applications, because of its natural interpretation and practical appeal.

In Section 4.1, we present the modified Cholesky and other covariance matrix decompositions.
Then, Section 4.2 is dedicated to presenting existing frequentist methods for regularizing the
Cholesky factor such as the approach of Huang et al. (2006), based on the lasso regularization,
the Adaptative Banding with a nested lasso penalty (AB) of Levina et al. (2008) and the Forward
Adaptative Banding of Leng and Li (2011).

Lastly, in Section 4.3 some simulated and real data examples are presented comparing the
Bayesian regularization of the Cholesky linear regressions based on the Normal-Gamma prior
with the three methods introduced before.

4.1 Covariance decompositions

Let y = (y1, ...,yp)
′ a vector of p-dimensional responses, each one with n observations,

with mean 0, and variance Σ. The estimation of an unconditional covariance matrix (without
constraints or structure) requires the estimation of p(p − 1)/2 parameters. In many cases, the
sample size n is not enough to estimate many parameters, especially if p � n. In this sense,
there are some decompositions of Σ that allied to the use of linear models and regularization
techniques such as the lasso, may reduce the number of parameters to be estimated.

The first of these is the variance-correlation decomposition

Σ = DRD, (4.1)

where D is the diagonal matrix of standard deviations and R is the correlation matrix of y.
While the logarithm of D has no restrictions, R has the constraint of being positive definite
with 1s on the main diagonal. The decomposition allows a separate estimation of D and R, but
it is inconvenient due to the restriction in R.

Another possible decomposition of the covariance matrix is the object of study of the Gaus-

59
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sian graph models (Whittaker (2009))

Σ−1 = D̃R̃D̃, (4.2)

where Σ−1 is the precision matrix, D̃ is the diagonal matrix of the partial standard deviations
and R̃ is the partial correlation matrix of y.

The precision matrix denotes the conditional dependencies. Assuming that y has mean zero,
if the entry of Σ−1 is σ−1

ij = 0, then the variables yi and yj are conditionally independent, given
the other variables. This is shown in graph form, with the variables being equivalent to nodes,
and the absence of arrows indicating conditional independence.

A third way of decomposing covariance matrices is through the very well known factor
analysis. A factorial model for y with E(y) = µ and Var(y) = Σ, is given by

y − µ = LF + ε, (4.3)

where L = (lij) is a matrix p × q of coefficients of the q latent factors F = (f1, ..., fq)
′, and

ε = (ε1, ..., εp)
′ are the idiosyncratic errors. Thus, we can decompose Σ into

Σ = LΛL′ + Ψ, (4.4)

being Λ and Ψ diagonal arrays of dimensions q×q and p×p, respectively. Note that the problem
of estimating Σ now turns out to estimating (L,Λ,Ψ), and if q is relatively small in relation to
p, there is a considerable reduction in the number of parameters to be estimated.

The Cholesky decompostion. Assume that y is an ordered random vector with mean zero
and a positive definite covariance matrix Σ. The standard Cholesky decomposition of Σ is as
follows

Σ = CC ′, (4.5)

where C = (cij) is a unique lower triangular matrix with positive diagonal entries.
The entries ofC lacks of statistical interpretation. However, this can be solved by multiplying

C by the inverse of D1 = diag(c11, ..., cpp). Using matrix multiplication, (4.5) can be rewritten
as

Σ = CD−1
1 D2

1D
−1
1 C ′ = LD2

1L
′, (4.6)

where L = CD−1
1 is obtained by dividing the jth column of C by the diagonal entry cjj . The

decomposition can also be stated as follows, known as modified Cholesky decomposition (see,
e.g., Pourahmadi (2013)):

D = TΣT ′, Σ−1 = T ′D−1T , (4.7)

where D = D2
1 and T = L−1 is a lower triangular matrix with 1s as diagonal entries.

It is worth to note that Equation (4.4) is equivalent to (4.6), where the matrix L from
Equation (4.4) is a lower triangular matrix (p× p) with 1s on the diagonal, Λ = D2

1 and Ψ = 0.
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That is, the modified Cholesky decomposition is a particular case of a factorial model.
Lastly, we should note that the modified Cholesky decomposition transforms a restricted

problem (the constraint of definite positiveness of Σ) on an unrestricted regression problem,
since the L and Λ has no restrictions.

To show that (4.7) has statistical interpretation, suppose that y is a time ordered random
vector and let ŷt be the linear least squares predictor of yt based on its predecessors yt−1, ..., y1

and εt = yt− ŷt be its prediction error with variance σ2
t = Var(εt). Then there are unique scalars

φtj so that

yt =
t−1∑
j=1

φtjyt + εt, t = 2, ...p, (4.8)

where y1 = ε1.
Note that y could be sorted by any natural order such as time ordering and that it is clear

that the matrices T (aka Cholesky factor) and D depend on the order of the p variables in y.
Defining Φ as

Φ =


0

φ21 0

φ31 φ32 0

... ... ... 0

φp1 ... ... φp(p−1) 0

 , (4.9)

one arrives at the decomposition (4.7), where ε = (ε1, ..., εp)
′ = y−Φy is the vector of successive

uncorrelated prediction errors such as D = diag(σ2
1, ..., σ

2
p) = (I − Φ)Σ(I − Φ)′. That is,

T = (I −Φ).

4.2 Sparse covariance modeling using Cholesky decomposition

An essential question is how to estimate T andD from the data. Estimates of the coefficients
φjl can be computed easily for p ≤ n. However, in large problems, it is expected that the estimates
will be better by regularizing the Cholesky factor T . For p � n, the regression problem is
nonsingular in such a way that it becomes necessary to use shrinkage methods, which induce
sparsity in T .

The regularization of the Cholesky factor has been the subject of frequent study in the
statistical literature and several proposals have already been made. Wu and Pourahmadi (2003)
used nonparametric methods such as local polynomials to smooth the first k subdiagonals of
T , making the others equal zero. The proposed estimator was therefore based on a smoothed
and banded matrix T and the number k was chosen by AIC criterion, considering a penalized
Gaussian log likelihood.

Although the modified Cholesky decomposition does not require the response to be Normal,
most authors assume data Gaussianity. In the article of Huang et al. (2006), the authors assume
that y ∼ N (0,Σ). The proposed method consists in minimizing the log likelihood (multiplied by
-2), using a penalty based on the standard `1 norm, that is, the lasso method. The log-likelihood,
considering the ordered data vector y = (y1, ..., yp)

′ is given by
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− 2`(Σ,y) = log |Σ|+ y′Σ−1y. (4.10)

Since |Σ| = |D| =
∏p
j=1 log σ2

j and from (4.7), we have Σ−1 = T ′D−1T , (4.10) becomes

−2`(Σ,y) =

p∑
j=1

log σ2
j +

p∑
j=1

ε2
j

σ2
j

.

Considering that yj = (yj1, ..., yjn)′, j = 1, ..., p, it follows that

−2`(Σ,y) =

p∑
j=1

(
n log σ2

j +

n∑
i=1

ε2
ij

σ2
j

)
,

where εi1 = yi1 and εij = yij −
∑j−1

l=1 φjlyil, for j = 2, ..., p. For a given λ > 0, the penalized
log-likelihood, using the standard `1 norm is then

p∑
j=1

(
n log σ2

j +
n∑
i=1

ε2
ij

σ2
j

)
+ λ

p∑
j=2

j−1∑
l=1

|φjl|. (4.11)

Note that minimizing (4.11) is equivalent to minimizing

`j(σj ,φj , y1j , ..., ynj) + λP (φj) (4.12)

separately, for j = 1, ..., p, where

`j(σj ,φj , y1j , ..., ynj) =

(
n log σ2

j +
n∑
i=1

ε2
ij

σ2
j

)
,

and P (φj) =
∑j−1

l=1 |φjl|, φj = (φ1, ..., φj,j−1), with P (φ1) = 0.
The Huang et al. (2006) approach therefore introduces arbitrarily localized zeros or at least

generates shrinkage in the T elements, being more flexible than the Wu and Pourahmadi (2003)
method that introduces bands, zeroing some more "distant" subdiagonals. However, as Levina et al.
(2008) stands out, not necessarily the method proposed by them results in zeros in the precision
matrix Σ−1, that is, the sparsity would be lost.

Considering this limitation of the method of Huang et al. (2006), Levina et al. (2008) intro-
duced a new method of regularization of T , which they called Adaptive banding with a nested
Lasso penalty. In the proposed method, each equation has a different order, that is, considering
a natural ordering of the variables, each variable yj is regressed as a function of the closest
predecessors yj−k, yj−k+1, ..., yj−1, where k = kj is an order that varies between each equation
j. The method preserves sparsity in Σ−1, since some successive elements of the subdiagonals of
T are also zeroed, characterizing a banding type estimator.

The authors proposed replacing λP (φj) in (4.12) by the penalty

J0(φj) = λ

(
|φj,j−1|+

|φj,j−2|
|φj,j−1|

+
|φj,j−3|
|φj,j−2|

+ ...+
|φj,1|
|φj,2|

)
, (4.13)

considering 0/0 = 0. The effect of the penalty is that if the l-th variable is not included in the j-th
equation (φjl = 0), all subsequent variables (l−1, l−2, ..., 1) will be excluded from the regression,
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resulting in different orders k = kj . Since the penalty involves a ratio between coefficients
φj,t/φj,t−1, the measurement scale of variables can be a problem. However, for variables that are
measured considering the same scale there would be no problem, otherwise a rescaling of the
variables is required or even using different λ penalty parameters. For this reason, the authors
proposed two modifications in the penalty (4.13), they are

J1(φj) = λ

(
|φj,j−1|
|φ∗j,j−1|

+
|φj,j−2|
|φj,j−1|

+
|φj,j−3|
|φj,j−2|

+ ...+
|φj,1|
|φj,2|

)
(4.14)

J2(φj) = λ1

j−1∑
t=1

|φt,j |+ λ2

j−2∑
t=1

|φj,t|
|φj,t+1|

, (4.15)

where φ∗j,j−1 is the coefficient from regressing yj on yj−1 alone.
It is worth to note that Huang et al. (2006) and Levina et al. (2008) have used the K-fold

cross-validation method to choose λ, separating training and validation bases.
Motivated by the nested penalty of Levina et al. (2008), Leng and Li (2011) proposed a new

approach for estimating T also using different orders kj of the autoregressive Cholesky equations
obtaining a banded Cholesky factor T . The orders are obtained by minimizing a modified version
of the BIC criterion

BIC = n log |Σ̂|+
n∑
i=1

y′i(I − Φ̂)D̂−1(I − Φ̂)yi + Cn log (n)

p∑
j=1

kj , (4.16)

for kj ≤ min{n/(log n)2, j − 1}, j = 1, ..., p, and a divergent sequence Cn. Note that T and D
are obtained from the coefficients and residuals of the estimation of successive models AR (kj).

The sum in (4.16) can be developed resulting in

BIC =

p∑
j=1

(
n log σ̂2

j +
n∑
i=1

ε̂2ij
σ̂2
j

+ Cn log (n)kj

)
, (4.17)

where ε̂ij =
∑kj

l=1 φj,j−lyi,j−l. The equation (4.17) suggests that the minimization can be done
separately for each subscript j.

The article shows that the constant Cn is chosen to accommodate large dimensions, as
p increases, in addition to establishing some asymptotic properties. In their simulations, the
authors used Cn = max{log (log p), 1}, besides restricting the orders kj to [j/2], where [a], the
integer part of a.

Lastly, we should note that the variable selection and regularization methods methods pre-
sented in Chapter 2 can also be applied to estimate the coefficients from matrix Φ or the factor
T in each Cholesky equation j = 2, ..., p. In the next section we present the results of using the
Normal Gamma prior, which is more general than the Bayesian lasso, to regularize these linear
equations. We will show this in a real data application.
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4.3 Simulated and real data examples

4.3.1 Simulations

In the same way as Leng and Li (2011), 50 replications of the multivariate normal Np(0,Σi)

were performed, with the sample size of n = 100, considering three possible structures (i = 1, 2, 3)
for the Cholesky factor T and a single structure for D = diag(0.01, ..., 0.01). In addition, we
considered three numbers of variables p = 10, 100, 200. The first structure consists of a non-
sparse T matrix, but with equal values in the sub-diagonals, which decreases as it moves away
from the main diagonal (composed of 1s):

Σ1 : φj,j′ = 0.5|j−j
′|, j < j′.

The second structure consists of a sparse T matrix, containing only one sub-diagonal as
follows

Σ2 :φj,j−1 = 0.8,

φj,j′ = 0, j′ < (j − 1).

The third structure consists of a structure in which there are several orders kj , one for each
of the Cholesky sucessive equations, but with zeros arbitrarily located as

Σ3 : kj = min{b6Uc, j − 1},

U ∼ U(0, 1),

Z ∼ Bin(0.8),

with

φj,j′ = 0.5Z, (j − kj) ≤ j′ ≤ (j − 1),

φj,j′ = 0, (j − kj) > j′,

where bac denotes the largest integer less than a, U denotes the Uniform distribution and Bin
is the Binomial distribution.

Then, three methods explained in previous Section 4.2 were applied to the simulated data.
As already mentioned, the penalty parameters λ of the Huang et al. (2006) and Levina et al.
(2008) methods were obtained by the K-fold cross-validation method, with K = 5. Considering
the Gaussianity assumption for the data, the parameters are obtained considering λ which
minimizes

CV (λ) =
1

K

K∑
v=1

(
sv log |Σ̂−v|+

∑
i∈Iv

y′iΣ̂
−1
−vyi

)
, (4.18)

where Iv is the set of data subset indices Sv (validation data), sv is the size of Iv and Σ̂v is
the covariance matrix estimated using training data (S − Sv), where S is the total data set. We
considered λ = 2m, m = −2,−1.0, ..., 10 and automatically chosen the penalty with the lowest
cross validation error CV (λ).

The results for the Kullback-Leiber loss measure (L(Σ, Σ̂)) are shown in Table 4.1. The
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Kullback-Leiber loss measure is calculated by

L(Σ, Σ̂) = tr(Σ̂−1Σ)− log |Σ̂−1Σ| − p.

Structure p Lasso AB J1 FAB

mean deviation mean deviation mean deviation
Σ1 10 0.52 0.15 0.45 0.08 0.62 0.15

100 8.83 0.89 6.03 0.45 8.49 0.60
200 20.62 1.24 12.56 0.62 17.83 0.87

Σ2 10 0.33 0.12 0.29 0.11 0.22 0.10
100 6.72 0.59 2.55 0.29 2.24 0.26
200 22.17 54.19 4.91 0.45 4.44 0.41

Σ3 10 0.53 0.15 0.45 0.14 0.29 0.10
100 17.94 1.48 13.06 3.23 7.15 0.50
200 51.02 3.50 55.00 8.82 14.08 0.59

Table 4.1: Kullback-Leiber results for Lasso, Adaptative Banding (AB
J1) and Forward Adaptative Banding (FAB) - mean and standard
deviation for 50 replications of the three covariance structures

Note that the Forward Adaptive Banding (FAB) method, proposed by Leng and Li (2011),
is superior to the other methods, except for the Σ1 matrix, which is not sparse. For this matrix
the method of Levina et al. (2008) (AB, with penalty J1 as in (4.14)) is better. In addition, the
FAB method has a much lower computational cost since there is no need for cross-validation.
The lasso method of Huang et al. (2006), which introduces arbitrarily localized zeros, have the
highest Kullback-Leiber among all and even for the Σ3 structure, whose simulation has zeros
arbitrary located.

4.3.2 Empirical data application

It is well known that stock returns exhibit conditional heteroscedasticity. Thus, it makes
sense to think of models with time-varying covariance matrices. In this section, the data of 92
daily log returns of shares that compose the S&P 100 index from 02/01/2004 to 10/28/2015 (n
= 2977) will be described and the results of the Cholesky decomposition with regularization of
the coefficient matrix T using the three methods described before as well as using the Normal-
Gamma prior will be presented. Up till now, we assume that D = Dt from decomposition (4.7)
is time-varying, so regularization will be done in the standardized data yij/σ̂ij , where σ̂2

ij is the
estimate of stochastic volatility 1. Figures 4.1 and 4.2 describe the raw and the standardized
returns’ data. We see that standardization corrected the conditional heteroscedasticity.

To understand if is reasonable to think that T is constant over time, but regularized, and
D = Dt is time-varying we randomly chose m = 5 companies from the 92 presented. For these
companies, we applied the modified Cholesky decomposition to the raw data considering several
time periods. The total period of 2977 days was divided into 99 periods of approximately 30
days, resulting in Figure 4.3. Note that while the coefficients φj,l, j = 2, ..., 5; l = 1, ..., j − 1 of
the recursive regressions are more stable in time, the variances of errors terms are more volatile

1Gregor Kastner’s stochvol package was used.
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Figure 4.1: Raw data of 92 log returns
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Figure 4.2: Standardized data after estimating stochastic volatiliy

than the coefficients.
Then, the same regularization methods previously discussed were applied to the standard-

ized data. We also applied the Normal-Gamma prior, for which we have used the same prior
specification discussed above in Section 4.3.1 and in Section 2.2.2 from Chapter 2.

The Normal-Gamma prior regularization was applied to the individual Cholesky equations
stated by (4.8). That is, for each t = 2, ..., p we assume that

yt =
t−1∑
j=1

φtjyt + εt, φt,j ∼ N (0, ψt), ψt ∼ G(λ, 1/2γ2),

with y1 = ε1 and εt ∼ N (0, σ2).
We used the Gibbs sampler described in Algorithm 1 from Section 2.2.2 with 10000 iterations

(and 5000 discarded as burnin), considering the following hyperparameter settings:

σ2 ∼ IG(0.0001, 0.0001), λ ∼ E(1), γ2|λ ∼ IG(2,M/2λ),

where M is chosen to be either equal to M = 1
t−1

∑t−1
j=1 φ̂

2
tj , when the regression design matrix

X = (y1, ..., yt−1) is non singular, where φ̂tj is the least square estimate, or equal to the minimum
length least squares estimate.
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Figure 4.3: Coefficients and variances that compose matrices T e D
for the 5 randomly chosen returns

The heatmaps of the Cholesky factor T are shown in Figure 4.4. The values marked in white,
refer to the main diagonal, composed of 1s. The gray values refer to zeros. It is possible to notice
that using the method Adaptative banding with the penalty J1, the bands are more uniform than
in the method Forward adaptative banding, for this set of data.

We also note that the Normal-Gamma prior heatmap is very similar to the Lasso of Huang et al.
(2006). This is because the proposed prior method, as well the frequentist (or even Bayesian)
Lasso is not a banding method. Of course, if we assume a natural order for the variables, it is
worth to choose a banding method for estimating the covariance matrix, as the more closer are
the variables the bigger will be the covariance between them. Otherwise, allowing for arbitrarily
localized zeros in the Cholesky factor is appropriate in other situations.

This result, however, does not reveal much about the real fit to the data. Therefore, we
calculated the sum of the squares of the residuals for each of the three methods, considering
for each of the successive regressions, only the variables whose coefficients were not zeroed
(considering a threshold of 0.0001, if the coefficient is less than this threshold then it is zero).
The boxplots of the sums of the squares of the residuals are in Figure 4.5. It is noted that the
fit of both the Lasso method and the NG prior seems more appropriate for this data.
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Figure 4.4: Heatmaps for Cholesky factor T
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Chapter 5

A dynamic spike-and-slab model

In this chapter we propose a new method that accommodates time-varying sparsity, based
on spike-and-slab priors. As noted in before, there are two types of sparsity in dynamic linear
models: the vertical sparsity, which stands for time-varying subsets of relevant predictors, and
the horizontal sparsity, which allows for intermittent zeros for when each individual predictor is
not relevant at all times t. The proposed model aims to allow for vertical sparsity.

In Section 5.1, we discuss the basic formulation of the proposed model and its posterior
inference. In Section 5.2, some simulated examples are given and the results of the dynamic
spike-and-slab model is compared to some methods. Finally, we discuss empirical examples in
Section 5.3.

5.1 A dynamic spike-and-slab model

We have seen in Section 3.3.2 that both references cited have adopted very similar strategies
to induce sparsity in DLMs. Their basic approach was to rewrite the states’ equation in terms of
the scaled states β̃j,t = βj,t/ωj thus arising at the non-centered parametrization, where the effect
of the covariate Xj is divided into a fixed effect and a time-varying effect. Then, the shrinkage
of the time-varying coefficients βj,t was done by assigning priors to their standard deviations
ωj . While Belmonte et al. (2014) used the Laplace prior for shrinking the standard deviations,
Bitto and Frühwirth-Schnatter (2016) used the Normal-Gamma prior, which is more general
since the Laplace prior is a special case from the Normal-Gamma prior where the shrinking
parameter equals one.

Note that in both approaches the standard deviation ωj plays the role of relevance of the
jth predictor: small values of ωj leads to greater shrinkage of the coefficient βj,t for all times t.
That is, because the process standard deviation ωj is taken as fixed for all times t, if it is pulled
toward zero, then the (practically constant) effect of the covariateXj is significant whenever the
corresponding fixed regression effect is non-zero. In this sense, both approaches accommodates
horizontal sparsity, as the shrinkage effect of the prior for ωj is equal over all times t.

In other approaches discussed in Chapter 3 such as the time-varying dimension of Chan et al.
(2012) and the Normal-Gamma autoregressive process of Kalli and Griffin (2014), the prior struc-
tures adopted accommodates vertical sparsity since the subset of covariates which were relevant
at each time t was actually time-varying and modeled.

69
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5.1.1 Model specification

In this section we explain and define our approach based on spike-and-slab priors. Our main
contribution is developing a novel method that allows for vertical sparsity and it is applied to
dynamic regression problems. In particular, we extend the previous work of Ishwaran and Rao
(2005), which placed priors on the coefficients’ variances. In this way, our prior can be view as a
dynamic variable selection prior which induces either smoothness (through the slab) or shrinkage
towards zero (through the spike) at each time point t.

Consider the Gaussian dynamic regression model with observation equation as

yt = Xtβt + νt, νt ∼ N (0, σ2
t ), (5.1)

for t = 1, ..., T , where Xt is a (T × q) matrix of regressors, βt is a (q × 1) vector of coefficients.
We assume the following evolution equation for the scaled states β̃1:T = (β̃1, ..., β̃T )

β̃t = Gtβ̃t−1 + ηt, ηt ∼ N (0,Wt), (5.2)

for t = 2, ..., T , where

β̃t = (β1,t/
√
ψ1,t, ..., βq,t/

√
ψq,t),

Gt = diag(φ1, ..., φq),

Wt = diag((1− φ2
1), ..., (1− φ2

q)),

where the initial condition for the scaled states is β̃1 ∼ N (0, I).
The following definition specifies the generic dynamic spike-and-slab prior that can be as-

signed to the coefficients’ variances ψj,1:T in order to induce shrinkage and/or variable selection.

Definition 5.1. Dynamic spike-and-slab prior. Consider that ψj,t = Kj,tτ
2
j . The dynamic

spike-and-slab prior for βj,1:T is defined by (5.2) and by

τ2
j

iid∼ p(τ2
j |θ),

(Kj,t|Kj,t−1 = υi)
ind∼ ωj,1,iδυ1(.) + (1− ωj,1,i)δυ0(.),

ωj,1,i = p (Kj,t = υ1|Kj,t−1 = υi) ,

(5.3)

for j = 1, ..., q, t = 2, ..., T , where δx(.) is a discrete measure concentrated at value x, υi ∈
{υ0, υ1}, p(Kj,1 = υ0) = p(Kj,1 = υ1) = 1/2 and p(τ2

j |θ) can be one of the mixing distributions
discussed in Section 2.3.3.

As discussed before in Section 2.3.3, we assume that υ0 = r (i.e., the ratio between the
variances of the slab and the spike, which is a very small number less than 1) and that υ1 = 1.
Furthermore, we assume a similar structure to that presented in Equation (2.42) from Section
2.3.3. That is, the vector of parameters θ for τ2

j contains the hyperparameter Qj which is
distributed as

Qj |ωj,1,i
ind∼ IG(c0, C0/s

∗(w)), (5.4)

j = 1, ..., q, where s∗(w) = s∗(w) = c[(1−ωj,1,i)r+ωj,1,i] depends on the value of on the distribu-
tion constant c from Table 2.1 specified for τ2

j |θ and on the value of ωj,1,i = p (Kj,t = υ1|Kj,t−1 = υi).
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Because now we are talking about dynamic models and dynamic sparsity, we have a time-
varying scale ψj,t, which is taken to be ψj,t = Kj,tτ

2
j . That is, the time-varying pattern for

the scale parameter is driven by the latent variable Kj,t, which evolves as a Markov switching
process of order 1 and can assume two values υ1 = 1 or υ0 = r accordingly to the transition
matrix (which priorizes maintaining the same regime). For the other component τ2

j is placed
a prior distribution (Inverse-Gamma, Gamma or Exponential) that together with the variable
Kj,t results in a spike-and-slab prior for ψj,t that shrinks the coefficients βj,t whenever it gets
a small value through the spike component of the mixture prior. Furthermore, by defining the
hyperparameters c0 and C0 appropriately we can learn about Qj and therefore about τ2

j .
For instance, if p(τ2

j |θ) ∼ IG(ν,Qj), then

βj,t|ωj,1,i ∼ ωj,1,it2ν(0, Qj/ν) + (1− ωj,1,i)t2ν(0, rQj/ν), (5.5)

and the constant c in (5.4) is equal 1/(ν − 1). We will refer to this as the dynamic NMIG prior.
If p(τ2

j |θ) ∼ G(a, 1/2Qj), then

βj,t|ωj,1,i ∼ ωj,1,iNG(βj,t|a,Qj) + (1− ωj,1,i)(βj,t|a, r,Qj), (5.6)

and the constant c in (5.4) is equal 2a. We will refer to this as the dynamic NG prior.
Finally, if we assume that p(τ2

j |θ) ∼ E(1/2Qj), then

βj,t|ωj,1,i ∼ ωj,1,iLap(
√
Qj) + (1− ωj,1,i)Lap(

√
rQj), (5.7)

and the constant c in (5.4) is equal 2. We will refer to this as the dynamic Laplace prior.
The assumption that Qj is given a prior Qj ∼ IG(c0, C0/s

∗(w)) as defined in (5.4) makes
τ2
j also indirectly depend on the previous value of the Markov latent variable Kj,t−1 = υi. The
purpose of this is to keep the variance of the coefficients βj,t at each time point t constant across
the priors defined by equations (5.5), (5.6) and (5.7) as discussed before in Section 2.3.3.

Stationary AR(1) process. It is worth noting that each process βj,t is independent of βl,t
for any l, j ∈ {1, ..., q} and that (5.2) can be written as

βj,t =

√
ψj,t
ψj,t−1

φjβj,t−1 + εj , εj,t ∼ N (0, ψj,t(1− φ2
j )), (5.8)

for t = 2, ..., T and j = 1, ..., q, with βj,1 ∼ N (0, ψj,1). That is, β̃j,t = βj,t/
√
ψj,t, conditional on

ψj,1:T = (ψj,1, ..., ψj,T ) is

β̃j,t = φj β̃j,t−1 + ηj,t, ηj,t ∼ N (0, (1− φ2
j )),

which is a stationary AR(1) process assuming that the autoregressive parameter |φj | < 1. Thus,
by the stationary assumption, the conditional (on ψj,t) variance of β̃j,t equals 1, since

Var

(
βj,t
ψj,t

∣∣∣∣ψj,t) = Var

(
βj,t−1

ψj,t−1

∣∣∣∣ψj,t) ,
which occurs if, and only if, each βj,t|ψj,t ∼ N (0, ψj,t) with ψj,t following the process defined by
5.1.
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Markov latent variables. Note that (5.8) is inspired in the NGAR process from Kalli and Griffin
(2014). Nevertheless, we assume a Markov switching structure for ψj,t instead of the GAR pro-
cess. That is, Kj,t is a latent variable that can assume binary values (regimes) r or 1, depending
only on the previous value of Kj,t−1 = υi ∈ {r, 1}, so that, defining the density p(τ2

j |θ) from
Definition 5.1 and noting that ψj,t = Kj,tτ

2
j , we have

(ψj,t|Kj,t−1 = υi) ∼ ωj,1,ipslab(ψj |Qj) + (1− ωj,1,i)pspike(ψj |r,Qj), (5.9)

where ωj,1,i is the transition probability of the first order Markov process Kj,t to regime υ1 = 1

given that Kj,t−1 = υi ∈ {r, 1}. Thus, by adopting a regime switching model, the process ψj,t
can switch between the spike and the slab variances’ distributions according to the following
transition probabilities

Pj =

[
ωj,0,0 ωj,0,1

ωj,1,0 ωj,1,1

]
where ωj,k,i = P (Kj,t = υk|Kj,t−1 = υi) denotes the probability of Kj,t changing to regime υk
from regime υi, k, i ∈ {0, 1}. Note that ωj,0,1 = (1− ωj,1,1) and ωj,1,0 = (1− ωj,0,0).

State space representation. The Gaussian dynamic regression model with an appropriate
shrinking prior for the variances ψj,1:T = (ψj,1, ..., ψj,T ), considering q potential predictors and
T time points, depends on the following parameters

Θ = (σ2
1, ..., σ

2
T ,β1, ...,βT ,K1, ...,KT , τ

2,Q,P), (5.10)

where βt = (β1,t, ..., βq,t)
′, Kt = (K1,t, ...,Kq,t)

′, τ = (τ2
1 , ..., τ

2
q ), Q = (Q1, ..., Qq), and the

collection of transition matrices P = (P1, ...,Pq).
For a simpler specification, from now on we assume that the observation variance is constant

over time such that σ2
t = σ2. Extending the model to accommodate stochastic volatility is

straightforward. Thus, assuming constant observation variance, we have two sequences of time-
varying parameters: the coefficients β1:T and the binary variables K1:T , which refers to Section
3.3.4 where the dynamic mixture models of Gerlach et al. (2000) were discussed. Based on the
Equation (3.27), the state space representation of the proposed model is

yt = F ′t β̃t + γtut, ut ∼ N (0, 1),

β̃t = Gtβ̃t−1 + Γtvt, vt ∼ N (0, I),
(5.11)

with F ′t = (X1,t

√
ψ1,t, ..., Xq,t

√
ψq,t), γt = σ, Γt = W

1/2
t = diag

(√
(1− φ2

1), ...,
√

(1− φ2
q)
)

and Gt = diag(φ1, ..., φq), where Wt, Gt and β̃t are the same from (5.2). Thus, one can see
that matrix F ′t depends on the values of ψt which in turn depend on the binary latent variables
Kt. Thus, we can use the sampling scheme presented in Algorithm 6 from Section 3.3.4 to draw
K1:T without conditioning on β̃1:T .

Other prior specifications. In order to complete the specification, we shall assign prior
distributions to parameters σ2, φ and to the transition probabilities P in a full Bayes strategy.
For the observation variance σ2, we assume the conjugate traditional prior
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σ2 ∼ IG(aσ, bσ). (5.12)

For the AR parameters φ, we assume that each φj are independent from each other and
distributed as

φj ∼ B(aφ, bφ), (5.13)

for which we are not considering the case −1 < φj < 0. Finally, for the transition probabilities
Pj we also give independent Beta distributions as

ωj,i,i ∼ B(aω, bω), (5.14)

for j = 1, ..., q, i ∈ {0, 1}, remembering that ωj,k,i = (1− ωj,i,i), k 6= i, k, i ∈ {0, 1}.
The directed acyclic graph (DAG) that summarizes the dependencies of the proposed model

is shown in Figure 5.1.

aφ, bφ

ν, r, aτ

aω, bω

υ0, υ1

Qj

c0, C0

φj

τj

ωj,1,1 ωj,0,0
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ψj,2 ψj,3 ψj,4 ... ψj,T

β̃j,2 β̃j,3

σ2aσ, bσ

β̃j,4 ... β̃j,T

y2 y3 y4 ... yT

Figure 5.1: Dependence structure for dynamic spike-and-slab model

5.1.2 Posterior inference

The posterior distribution of the parameters can be drawn using an hybrid Gibbs sampler
with an additional Metropolis-Hastings update. The scaled states β̃1, ..., β̃T can be updated using
the FFBS algorithm within the Gibbs sampler as presented in Algorithm 5 of Section 3.2.2, while
the process K = (K1, ...,KT ) is updated using the algorithm of Gerlach et al. (2000) showed
in Algorithm 6 of Section 3.3.4. The full conditionals are given below.
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First, for the parameters τ 2 and Q note that for each j = 1, ..., q we have

p(τ2
j |Θ\τ2j ,y) ∝ p(τ2

j |θ)p(βj |τ2
j ,Kj , φj)

= p(τ2
j |θ)p(βj,1|Kj,1, τ

2
j )

T∏
t=2

p(βj,t|βj,t−1, τ
2
j ,Kj , φj),

where Θ\τ2j
denotes all the parameters specified in (5.10) except from τ2

j and y = (y1, ..., yT )′.

The term p(τ2
j |θ) is the prior of τ2

j , while the term
∏T
t=2 p(βj,t|βj,t−1, τ

2
j ,Kj , φj) is the product

of Normal densities

(βj,t|ψj,t, ψj,t−1, φj) ∼ N

(√
ψj,t
ψj,t−1

φjβj,t−1, ψj,t(1− φ2
j )

)
as in (5.8). Therefore, for the dynamic NMIG prior specified by (5.5) we have

p(τ2
j |Θ\τ2j ,y) ∝

Qνj
Γ(ν)

τ2
j

(−ν−1)
exp

{
−Qj
τ2
j

}
ψ
−1/2
j,1 exp

{
−

β2
j,1

2ψj,1(1− φ2
j )

}

× ψ−1/2
j,2 exp


−

(
βj,2 −

√
ψj,2
ψj,1

φjβj,1

)2

2ψj,2(1− φ2
j )


× (...)

× ψ−1/2
j,T exp


−

(
βj,T −

√
ψj,T
ψj,T−1

φjβj,T−1

)2

2ψj,T (1− φ2
j )


=

Qνj
Γ(ν)

τ2
j

(−ν−1)
exp

{
−Qj
τ2
j

}
(ψj,1ψj,2...ψj,T )−1/2

× exp


−

T∑
t=1

(
βj,t −

√
ψj,t
ψj,t−1

φjβj,t−1

)2

2ψj,t(1− φ2
j )


,

where we assume that E(βj,1) = 0 as defined before. Because each ψj,t = Kj,tτ
2
j , then
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p(τ2
j |Θ\τ2j ,y) ∝ τ2

j
(−ν−1)

exp

{
−Qj
τ2
j

}
(Kj,1τ

2
jKj,2τ

2
j ...,Kj,T τ

2
j )−1/2

× exp


− 1

2τ2
j

T∑
t=1

(
βj,t −

√
Kj,t

Kj,t−1
φjβj,t−1

)2

Kj,t(1− φ2
j )



= τ2
j

(−ν−T/2−1)
exp


−Qj
τ2
j

− 1

2τ2
j

T∑
t=1

(
βj,t −

√
Kj,t

Kj,t−1
φjβj,t−1

)2

Kj,t(1− φ2
j )


,

where βj,0 = E(βj,1) = 0. That is, the full conditional of τ2
j is

(τ2
j |Θ\τ2j ,y) ∼ IG

ν +
T

2
, Qj +

1

2

T∑
t=1

(
βj,t −

√
Kj,t

Kj,t−1
φjβj,t−1

)2

Kj,t(1− φ2
j )

 . (5.15)

If we assume the dynamic NG prior from (5.6), the prior for τ2
j |θ ∼ G(aτ , 1/2Qj). Then,

p(Θ\τ2j
,y) ∝ τ2

j
(aτ−T/2−1)

exp


−
τ2
j

2Qj
− 1

2τ2
j

T∑
t=1

(
βj,t −

√
Kj,t

Kj,t−1
φjβj,t−1

)2

Kj,t(1− φ2
j )


,

∝ τ2
j

(p−1)
exp

{
−

(gτ2
j + h/τ2

j )

2

}
,

with

g = 1/Qj , h =
T∑
t=1

(
βj,t −

√
Kj,t

Kj,t−1
φjβj,t−1

)2

Kj,t(1− φ2
j )

, p = aτ − T/2.

That is, the full conditional of τ2
j is

(τ2
j |Θ\τ2j ,y) ∼ GIG(p, g, h), (5.16)

where GIG(p, g, h) is the Generalized Inverse Gaussian distribution with probability density
function

p(x) =
(g/h)p/2

2Kp(
√
gh)

x(p−1) exp

{
−(gx+ h/x)

2

}
, x > 0,
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where Kp is a modified Bessel function of the second kind and g > 0, h > 0, p ∈ R.
Lastly, for the dynamic Laplace mixture prior from Equation (5.7), as the Exponential dis-

tribution is equivalent to a Gamma distribution with shape parameter equal aτ = 1, the full
conditional τ2

j is equal to

(τ2
j |Θ\τ2j ,y) ∼ GIG

1− T/2, 1/Qj ,
T∑
t=1

(
βj,t −

√
Kj,t

Kj,t−1
φjβj,t−1

)2

Kj,t(1− φ2
j )

 . (5.17)

For each parameter Qj , note by (5.4) that is given a conditional prior (as s∗(w) depends on
the parameter ωj,1,i ). Then, for the dynamic NMIG prior

p(Qj |Θ\Qj ,y) ∝ p(Qj |ωj,1,i)p(τ2
j |Qj)

=
[C0/s

∗(w)]c0

Γ(c0)
Q−c0−1
j exp

{
− [C0/s

∗(w)]

Qj

}
Qνj

Γ(ν)
(τ2
j )
−ν−1

exp

{
−Qj
τ2
j

}

∝ Q−c0−1+ν
j exp

{
−

2τ−2
j Qj + 2[C0/s

∗(w)]/Qj

2

}
,

which is a GIG(p, g, h) distribution with p = ν − c0, g = 2τ−2
j and h = 2[C0/s

∗(w)].
For the dynamic NG prior and the dynamic Laplace prior, we have

p(Qj |Θ\Qj ,y) ∝ p(Qj |ωj,1,i)p(τ2
j |Qj)

∝ Q−c0−1
j exp

{
− [C0/s

∗(w)]

Qj

}
(1/2Qj)

aτ

Γ(aτ )
(τ2
j )
aτ−1

exp

{
−
τ2
j

2Qj

}

= Q−c0−aτ−1
j exp

{
−
τ2
j /2 + [C0/s

∗(w)]

Qj

}
,

which is a IG(c0 + aτ , τ
2
j /2 + [C0/s

∗(w)]) distribution and where aτ = 1 for the Laplace prior.
For the observation variance σ2, we have

p(σ2|Θ\σ2) ∝ p(σ2|aσ, bσ)p(y|β, σ2)

∝ σ2(−aσ−1)
exp

(
− bσ
σ2

)
σ2(−T/2)

exp

{
−1

2

T∑
t=1

(yt −Xtβt)
2

σ2

}
,

which gives

(σ2|Θ\σ2 ,y) ∼ IG

(
aσ +

T

2
, bσ +

1

2

T∑
t=1

(yt −Xtβt)
2

)
. (5.18)

For the AR parameters φ, note that for each φj , j = 1, ..., q, we have
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p(φj |Θ\φj ,y) ∝ p(φj |aφ, bφ)p(βj |Kj , σ
2, τ2

j )

∝ φ(aφ−1)
j (1− φj)(bφ−1) exp


−

T∑
t=1

(
βj,t −

√
ψj,t
ψj,t−1

φjβj,t−1

)2

2ψj,t(1− φ2
j )


,

(5.19)

which is a non-standard form, thus, φj can be updated using a Metropolis-Hastings update as
follows. As φj can not assume the values 0 and 1, we generate, for each MCMC iteration m, the
candidate φ∗j using the following Beta proposal density q

(
φ∗j |φ

(m−1)
j

)
φ∗j ∼ B

(
α, ξ

(
φ

(m−1)
j

))
, ξ

(
φ

(m−1)
j

)
= α

(
1− φ(m−1)

j

φ
(m−1)
j

)
, (5.20)

where α is a tuning parameter and q
(
φ∗j |φ

(m−1)
j

)
is the density function of the Beta distribution

in (5.20). The acceptance distribution A
(
φ∗j |φ

(m−1)
j

)
is

A
(
φ∗j |φ

(m−1)
j

)
= min

1,
f
(
φ∗j

)
q
(
φ

(m−1)
j |φ∗j

)
f
(
φ

(m−1)
j

)
q
(
φ∗j |φ

(m−1)
j

)
 ,

with f
(
φ∗j

)
, f
(
φj

(m−1)
)

obtained from the full conditional in (5.19), and q
(
φ

(m−1)
j |φ∗j

)
,

q
(
φ∗j |φ

(m−1)
j

)
obtained from the proposal density in (5.20). That is, with probabilityA

(
φ∗j |φ

(m−1)
j

)
we set φ(m)

j = φ∗j , otherwise we set φ(m)
j = φ

(m−1)
j .

For each transition probabilities ωj,1,1 and ωj,0,0, that compose Pj , the full conditionals are

p(ωj,i,i|Θ\ωj,i,i ,y) ∝ p(ωj,i,i|aω, bω)p(Kj |Pj)

∝ ωj,i,i(aω−1)(1− ωj,i,i)(bω−1)
T∏
t=2

p(Kj,t|Kj,t−1 = υi)

for i = 0, 1, where we have seen that ωj,k,i = (1 − ωj,i,i). Thus, it turns out that the full
conditionals for ωj,1,1 and ωj,0,0 are

(ωj,1,1|Θ\ωj,1,1 ,y) ∼ B(aω + #{t : υ1 → υ1}, bω + #{t : υ1 → υ0}),

(ωj,0,0|Θ\ωj,0,0 ,y) ∼ B(aω + #{t : υ0 → υ0}, bω + #{t : υ0 → υ1}),

where #{t : υi → υk} denotes the number of time points from t = 2 to t = T that Kj,t switched
from value υi to υk, i, k = 0, 1 with υ1 = 1 and υ0 = r.

Finally, as already mentioned, the scaled states β̃j = (β̃j,1, ..., β̃j,T ), j = 1, .., q, can be jointly
updated via FFBS algorithm. In order to gain computational efficiency, because of independency
of β1, ...,βq, we adopt the following strategy. From Equation (5.11), we have seen that for each
t = 1, ..., T

yt = F ′t β̃t + ut = X̃1,tβ̃1,t + ...+ X̃q,tβ̃q,t + ut, ut ∼ N (0, 1),
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where X̃j,t = Xj,t

√
ψj,t and β̃j,t = βj,t/

√
ψj,t. Instead of working with matrix F ′t and with the

system matrices Γt and Gt, we can draw each βj separately in a univariate FFBS as presented
in Algorithm 7.

Algorithm 7: Univariate forward filtering backward sampling
For each iteration m = 2, ...,M :
1. Set β̃(m) = β̃(m−1).
2. Then, for each j = 1, .., q:
a) Define zt = yt −

∑
i 6=j X̃i,tβ̃

(m)
i,t , such as zt = X̃j,tβ̃j,t + ut for t = 1, ..., T .

b) Draw β̃(m)
j using the FFBS as in Algorithm 4 with the respective inputs for the

Kalman filter and smoother.

Note that the inputs Γt,Gt from (5.11), and the initial condition parameters for the states
β̃j,0 ∼ N (m0, C0), with m0 = E(βj,0) and C0 = 1, are now scalars rather than matrices.

The same strategy is applied to update variables Kj = (Kj,1, ...,Kj,T ), j = 1, .., q, which
can be jointly updated via Gerlach et al. (2000) algorithm showed in Algorithm 6 from Section
3.3.4. Because we have defined independent priors for K1, ...,Kq as in Definition 5.3, we can
also define an univariate version of this algorithm for computational reasons. This strategy is
summarized by the Algorithm 8 as follows.

Algorithm 8: Univariate version of the algorithm of Gerlach et al. (2000)
For each iteration m = 2, ...,M :
1. Set K(m) = K(m−1).
2. Then, for each j = 1, .., q:
a) Define zt = yt −

∑
i 6=j X̃i,tβ̃

(m)
i,t , such as zt = X̃j,tβ̃j,t + ut for t = 1, ..., T .

b) Draw K(m)
j using Algorithm 6 with the respective inputs.

5.2 Simulated examples

In this section we present two simulated examples where some coefficients are relevant in
some periods of time and negligible in others. The first example is due to Kalli and Griffin
(2014) and the second example is an application of the modified Cholesky decomposition where
we simulate time-varying coefficients that compose the Cholesky factor Tt = (I −Φt) and then
apply the spike-and-slab priors on each successive regression.

5.2.1 First simulation example

We generated the data using Equation (5.1) with q = 5 predictors, T = 200 and constant
observational variance σ2

t = σ2 = 1, where Xt ∼ N(0, I) and Xj,1, ..., Xj,T are independent. We
simulate the five regression coefficients as follows.

1. The first coefficient β1,t follows a stationary AR(1) process with AR parameter 0.97 and
a Normal stationary distribution with mean 2 and variance 0.25, i.e., for t = 2, ..., T

β1,t = µ1 + 0.97β1,t−1 + ε1,t, ε1,t ∼ N (0, σ2
ε ),
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where E(β1,t) = E(β1,t−1) = µ
1−φ1 = 2 and Var(β1,t) = Var(β1,t−1) = σ2

ε

1−φ21
= 0.25. Thus,

µ = 2(1− φ1) = 2(1− 0.97) = 0.06 and σ2
ε = 0.25(1− 0.972) = 0.014775. The initial value

was drawn from its stationarity distribution β1,1 ∼ N (2, 0.25).

2. The second coefficient β2,t also follows an AR(1) process with autocorrelation parameter
0.97 and a Normal marginal distribution with mean 0 and variance 0.25, but only until
the half of the sample, that is:

β2,t =

{
0.97β2,t−1 + ε2,t, ε2,t ∼ N (0, 0.014775), t ≤ 100

0, t > 100,

with the initial value drawn as β2,1 ∼ N (2, 0.25).

3. The third coefficient is always zero, except from two short periods when it equals -2:

β3,t =

{
0, t ≤ 20; 51 ≤ t ≤ 120; 151 ≤ t ≤ 200

−2, 21 ≤ t ≤ 50; 121 ≤ t ≤ 150.

4. The fourth coefficient is β4,t = 0, ∀t.

5. The fifth coefficient β5,t = 0, ∀t.

We sample from the posterior distribution using the three mentioned priors for βj,t: dynamic
NMIG, dynamic NG and dynamic Laplace with the the following hyperparameters settings: υ0 =

r = 0.005, υ1 = 1, aτ = 0.5 (for the NG prior), ν = 15, c0 = 51, C0 = 5, aσ = 0.0001, bσ = 0.0001

(improper prior) and α = 1000 (tuning parameter for Metropolis). The MCMC algorithm was
run for 20,000 iterations with half discarded as a burn-in.

The prior for autoregressive parameter is φj ∼ B(77.6, 2.4) for j = 1, ..., 5, so that it has
mean 0.97. The same choice was made for the transition probabilities ωj,0,0 and ωj,1,1 so that
both βj,t|βj,t−1 and ψj,t|ψj,t−1 evolves smoothly.

The RMSE results are shown in Table 5.1 and the fit of the models using the posterior
median are shown in Figure 5.2.

RMSE RMSE
Prior (mean) (median)

NMIG 0.3376 0.3268
NG 0.3678 0.3529

Laplace 0.3184 0.3144

Table 5.1: RMSE for the dynamic spike-and-slab priors using the
mean and the median of the sampled coefficients - simulated example 1

We note that the dynamic Laplace prior was slightly superior in terms of RMSE than the
other two priors. The dynamic NMIG prior also performs very similar, although we can see that
both the dynamic Laplace and the dynamic NG have some issues: they are much more volatile
than the NMIG prior. In fact, this is why we had to set a tight prior for Qj . From (5.4), we see
that
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Figure 5.2: Fit of the models using posterior medians

Var(Qj) =
(C0/s

∗(w))2

(c0 − 1)2(c0 − 2)
,

so that setting c0 = 51 diminishes the variance. Another important thing to note is that we should
give an appropriate value for C0, depending on the data. We know that the prior variance of the
slab at each time point t is

Varslab(βj,t) = cQj ,

where c is the constant that depends on the mixing density. For this data, the prior variance
is equal 0.105 if ωj,1,i = 0.95 and is equal 0.957 if ωj,1,i = 0.1. This means that if there is no
switch of regime (that is, probably Kj,t−1 = 1, then ωj,1,i is high), then the variance of the slab
decreases.

Because of this issue of the volatility of the NG and Laplace posterior medians, we ran a test
using a fixed value for s∗(w) = c[0.5r + 0.5] and the following settings: υ0 = r = 0.000025, υ1 =

1, aτ = 0.5 (for the NG prior), ν = 5, c0 = 4, C0 = 0.5, aσ = 0.0001, bσ = 0.0001 (improper
prior) and α = 1000 (tuning parameter for Metropolis). The MCMC algorithm was run for
30,000 iterations with half discarded as a burn-in.

The RMSE results are shown in Table 5.2 and the fit of the models using the posterior
median are shown in Figure 5.2.

One can see that in general the RMSE is lower than the previous setting. The Laplace prior
still has the lowest RMSE. Even though the RMSE is lower, we also noticed that for the third
coefficient, where there is a sudden change in its value, the flexible structure that allows s∗(w)

to depend on the value of ωj,1,i seems to adapt better.
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RMSE RMSE
Prior (mean) (median)

NMIG 0.3057 0.3178
NG 0.2996 0.3091

Laplace 0.2986 0.3022

Table 5.2: RMSE for the dynamic spike-and-slab priors using the
mean and the median of the sampled coefficients - simulated example 1
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Figure 5.3: Fit of the models using posterior medians - fixed s∗(w)

5.2.2 Second simulation example

In this second example we simulate time-varying coefficients that compose the Cholesky
factor Tt and then apply the spike-and-slab priors on each successive regression. The simulation
is done as follows. We define that the number of time points T = 240 and the number of ordered
variables that compose the vector y is q = 10.

In the Cholesky decomposition each variable is regressed on its predecessors in a dynamic
regression problem. We know by Equation (4.8) from Chapter 4 that

yi,t =
i−1∑
j=1

βi,j,tyj,t + εi,t

for i = 2, .., q, with y1,t = ε1,t.
The Cholesky factor is then

Tt = (I −Bt),

where Bt is the lower triangular matrix of coefficients for each time t with zeros in the diagonal,
that is, the matrix with entries β2,1,t, β3,1,t, β3,2,t, ..., βq,1,t, ..., βq,q−1,t. Thus, we have q(q − 1)T

parameters to be estimated.
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We define four possible processes for the time-varying coefficients and then sample from these
possibilities using predetermined probabilities.

1. A stationary AR(1) process with autoregressive coefficient φ = 0.98 and with fixed variance
σ2 = (1− φ)0.15, without an intercept term, that is

βi,j,t = φβi,j,t−1 + νi,j,t,

with νi,j,t ∼ N (0, σ2).

2. A stationary AR(1) process with autoregressive coefficient φ = 0.98 and with fixed variance
σ2 = (1− φ)0.15 until the half of the time points. Then, the coefficient is set to zero.

3. A fixed interval process similar to the third coefficient from the first simulated example as
follows

βi,j,t =

{
0, t ≤ T/8; 3T/8 < t ≤ 5T/8; t > 7T/8

−0.5, T/8 ≤ t < 3T/8; 5T/8 < t ≤ 7T/8.

4. A constant coefficient equal to zero.

In this manner, we want to give a structure to the Cholesky factor, but now allowing for
time-varying coefficients. Each coefficient βi,j,t follows one of first three processes: (1) AR(1), (2)
AR(1) with zeros, (3) fixed intervals, or (4) zeros, which are sampled using equal probabilities.
Then we build the 10 time series y1, ...,y10 as

y1,t = ε1,t

y2,t = β2,1,ty1,t + ε2,t

...

y10,t =
9∑
j=1

β10,j,tyj,t + ε10,t,

for t = 1, .., 240 and where εi,t ∼ N (0, 0.0625), ∀j = 1, .., 10.
The aim of these simulation is to see if the errors accumulate because now we are dealing with

10 variables and 9 individual equations indexed by i, each one with j = 1, ..., (i− 1) regressors.
The results for the RMSE are shown in Table 5.3. The fit of the coefficients for the last equations
(i = 10) of each of the three priors (NMIG, NG, Laplace) is presented in Figures 5.4, 5.5, 5.6,
respectively. The MCMC scheme uses 10,000 simulations with 5, 000 discarded as burn-in. The
hyperparameters were set as follows: υ0 = r = 0.005, υ1 = 1, aτ = 0.5 (for the NG prior),
ν = 25, c0 = 50, C0 = 1.5, aσ = 5, bσ = 1.5 and α = 1000 (tuning parameter for Metropolis).

We have noticed that for this data and settings, the RMSE of three models are very similar.
Indeed, the 95 % confidence intervals are also very similar for all priors, and we notice that the
fit is quite satisfactory.
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RMSE RMSE
Prior (mean) (median)

NMIG 0.2472 0.2863
NG 0.2398 0.2820

Laplace 0.2401 0.2842

Table 5.3: RMSE for the dynamic spike-and-slab priors using the
mean and the median of the sampled coefficients - simulated example 2
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Figure 5.4: 95% confidence intervals of the dynamic NMIG prior.
Median=dashed line; Real data=black; Posterior mean=red.

5.3 Empirical example

The empirical application is due to Kalli and Griffin (2014) and uses inflation data obtained
from Professor Griffin’s research page1. We use the inflation data collected by them with the

1Available in https://www.kent.ac.uk/smsas/personal/jeg28/index.htm
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Figure 5.5: 95% confidence intervals of the dynamic NG prior.
Median=dashed line; Real data=black; Posterior mean=red.

independent variable as the US quarterly inflation measure based on the Gross Domestic Prod-
uct (GDP). The data was obtained from FRED database, Federal Reserve Bank of St.Louis,
University of Michigan Consumer Survey database, Federal Reserve Bank of Philadelphia, and
Institute of Supply Management. The data set includes 31 predictors, from activity and term
structure variables to survey forecasts and previous lags. A full description of the 31 explanatory
variables can be found in Appendix. The sample period is from the second quarter of 1965 to
first quarter of 2011 with T = 182 observations.

Inflation forecasting is a frequent topic within the shrinkage in time varying parameter models
literature and was also the main subject of Belmonte et al. (2014). The size of the set of potential
variables to forecast inflation is huge and, as noted by Kalli and Griffin (2014), this is usually
split into four subsets: past inflation forecasts, where the explanatory variables are previous lags
of inflation; Phillips curve forecasts, which involve activity variables, such as economic growth
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Figure 5.6: 95% confidence intervals of the dynamic Laplace prior.
Median=dashed line; Real data=black; Posterior mean=red.

rate or output gap, unemployment rate, and lagged inflation; forecasts based on variables which
are themselves forecasts of asset prices (combination indices), term structures of nominal debt,
and consumer surveys; and forecasts based on other exogenous variables such as government
investment, the number of new private houses.

We applied the three dynamic variable selection priors to the GDP deflator data with the
following hyperparameter settings: υ0 = r = 0.05, υ1 = 1, aτ = 0.5 (for the NG prior), ν =

50, c0 = 50, C0 = .05, aσ = 31, bσ = 30σ̂2 = 4.22, with σ̂2 = 0.14 being the sum of square
residuals of the OLS estimate divided by (T−1) and α = 1000 (tuning parameter for Metropolis).
The previous Beta priors, that is, φj ∼ B(77.6, 2.4) and for the transition probabilities ωj,0,0 ∼
B(77.6, 2.4) and ωj,1,1 ∼ B(77.6, 2.4) were maintained. We ran a total of 20,000 iterations of the
MCMC scheme and we discarded 10,000 as a burn-in.

The results (the mean of the coefficients βj,t and the relevances ψj,t were compared to results
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from the NGAR process defined Kalli and Griffin (2014). We used the MATLAB code provided
by Professor Griffin in his website for the GDP inflation data after standardizing both the
response and the predictors in the same way as done by the authors. In Figures 5.7, 5.8 and 5.9
we compare the coefficients and in Figures 5.10, 5.11 and 5.12 we compare the relevances for the
16 predictors highlighted by the authors in their paper.
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Figure 5.7: Comparison between the mean of the NGAR model and
the dynamic NMIG prior coefficients. Mean NGAR=red line; Mean

NMIG=blue line; Median NMIG=black line; 95% confidence
intervals=grey area.

In general, the coefficients are quite similar and the means of the sampled coefficients from
the NGAR process is inside our prior’s confidence interval except from the expected inflation
(INF EXP) which is slightly higher for the NGAR process. We can see that INF EXP is clearly
an important predictor of the GDP deflator. It is more important in the mid 1970’s and mid
1980’s. Its coefficient is positive from the start of our sample period up to the start of the 2000s,
when it starts to approach zero. The lower band of its 95% CI suggests that it may also have a
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Figure 5.8: Comparison between the mean of the NGAR model and
the dynamic NG prior coefficients. Mean NGAR=red line; Mean

NG=blue line; Median NG=black line; 95% confidence intervals=grey
area.

negative effect on the GDP deflator. The coefficient of RGEGI growth is negative in the 1980’s,
however its effect on the GDP deflator is clearly more obvious.

Lastly, it is important to note that Laplace and NG prior result in wider confidence interval
for the coefficients than the NMIG prior relative to the NGAR process.
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Figure 5.9: Comparison between the mean of the NGAR model and
the dynamic Laplace prior coefficients. Mean NGAR=red line; Mean

Laplace=blue line; Median Laplace=black line; 95% confidence
intervals=grey area.
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Figure 5.10: Comparison between the mean of the NGAR model and
the dynamic NMIG prior relevances. Mean NGAR=red line; Mean

NMIG=blue line; Median NMIG=black line; 95% confidence
intervals=grey area.
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Figure 5.11: Comparison between the mean of the NGAR model and
the dynamic NG prior relevances. Mean NGAR=red line; Mean

NG=blue line; Median NG=black line; 95% confidence intervals=grey
area.
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Figure 5.12: Comparison between the mean of the NGAR model and
the dynamic Laplace prior relevances. Mean NGAR=red line; Mean

Laplace=blue line; Median Laplace=black line; 95% confidence
intervals=grey area.
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Chapter 6

Conclusion

In this work, we have discussed several variable selection and regularization methods within
the linear regression framework. The modified Cholesky decomposition was presented as a simple
and with good interpretation way to decompose covariance matrices in linear regression prob-
lems. In particular, we showed some existing methods to regularize the Cholesky factor, that
is, the lower triangular matrix composed by the coefficients of the regressing each variable on
its predecessors (possibly considering a natural order for the variables). Then we applied the
Normal-Gamma prior on the coefficients and compare with these methods using finance data of
returns from the S&P 100 index.

We also developed a regularization model for Gaussian dynamic regression problems in
which the sparsity pattern varies over time. Our method is somewhat similar to references like
Belmonte et al. (2014) and Bitto and Frühwirth-Schnatter (2016) as we have used the scaled
coefficients β̃j,t = βj,t/

√
ψj,t in the Gaussian DLM state equation, thus arising to what they

have called non-centered parametrization. Then, the shrinkage of the time-varying coefficients
βj,t was done by assigning priors to the scale parameters ψj,t. The main difference between these
two references and our approach is that we adopt a time-varying scaling parameter ψj,t instead
of using fixed over time standard deviations ωj as the mentioned references did.

In both approaches the standard deviation ωj plays the role of relevance of the jth predictor:
small values of ωj leads to greater shrinkage of the coefficient βj,t for all times t. In this sense,
both approaches assigns horizontal sparsity, as the shrinkage effect of the prior for ωj is equal
over all times t. While Belmonte et al. (2014) used the Laplace prior for shrinking the stan-
dard deviations, Bitto and Frühwirth-Schnatter (2016) used the Normal-Gamma prior, which is
more general since the Laplace prior is a special case from the Normal-Gamma prior where the
shrinking parameter equals one.

Thus, our method is more general as it allows for vertical sparsity, i.e., by defining time-
varying scale parameters we can have some periods of time that a predictor becomes irrelevant
and in others its coefficients is non-zero. In that way, our model is closer to Kalli and Griffin
(2014) NGAR process from Kalli and Griffin (2014). Nevertheless, we assume a Markov switching
structure for ψj,t instead of the GAR process. In fact, ψj,t is a time-varying mixture process
where the mixture weights ωj,1,i change over time. This is the reason why we have called our
prior dynamic spike-and-slab prior.

Through the introduction of latent Markov switching variables Kj,t, it was possible to vary
the sparsity structure, so that at each instant of time the scale parameters ψj,t = Kj,tτ

2
j
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could assume a different mixture distribution. We allow not only the weights ωj,1,i of the fi-
nite mixture to change, depending on the previous value of the latent variable, that is, ωj,1,i =

p(Kj,t = υ1|Kj,t−1 = υi), but also the parameter Qj of the distribution of τ2
j to change, de-

pending on the value of ωj,1,i. The parameter Qj is given an Inverted Gamma prior and also
depends on a constant c which varies according to the mixing distribution chosen. Following
Frühwirth-Schnatter and Wagner (2011), we test three priors for the coefficients βj,t: the NMIG
prior, the Normal-Gamma (NG) and the Laplace mixture prior or equivalently, three mixing
distributions for τ2

j : the Inverse-Gamma, the Gamma and the Exponential distribution, respec-
tively.

Posterior inference is done by adopting a MCMC scheme: an hybrid Gibbs Sampler, where
the scaled states β̃j,t are drawn using the FFBS algorithm and the latent variables Kj,t are
sampled using Gerlach et al. (2000) algorithm for Markov processes of order 1.

To exemplify the proposed model, we applied the three priors on simulated data where
some coefficients become irrelevant at some times. The first simulation example is due to
Kalli and Griffin (2014) and the second simulation is an exercise of using the dynamic spike-
and-slab prior on the coefficients of the Cholesky regressions. The third application is a real data
example with US inflation data.

From the results presented, we can conclude that the model works well for the simulated
Cholesky factor and that the Laplace prior is slightly better in terms of RMSE. We notice the
importance of setting the right hyperparameter values, specially for those related to parameter
Qj as we do not want the prior for Qj to have a large variance. In practice, the value should be
proportional to the magnitude of the coefficients even if the covariates are standardized.

Considering these, further research include the following topics:

• Test a Gamma prior for the parameterQj instead of the Inverted-Gamma or a Normal prior
for

√
Qj , following the work of Frühwirth-Schnatter and Wagner (2010) which criticizes

the use of the Inverse-Gamma because the posterior values are strongly influenced by the
hyperparameters.

• Construct other mixture priors such as a dynamic mixture of Student’s-t and Laplace
densities for the coefficients.

• Allow for time-varying observational variances using stochastic volatility models.

• Study time-varying sparsity for factorial models.

• Compare predictive performance with other existing methods.



Appendix

Name Description

GDP Difference in logs of real gross domestic product
PCE Difference in logs of real personal consumption expenditure
GPI Difference in logs of real gross private investment
RGEGI Difference in logs of real government consumption expendi-

ture and gross investment
IMGS Difference in logs of imports of goods and services
NFP Difference in logs non-farm payroll
M2 Difference in logs M2 (commercial bank money)
ENERGY Difference in logs of oil price index
FOOD Difference in logs of food price index
MATERIALS Difference in logs of producer price index (PPI) industrial

commodities
OUTPUT GAP Difference in logs of potential GDP level
GS10 Difference in logs of 10yr Treasury constant maturity rate
GS5 Difference in logs of 5yr Treasury constant maturity rate
GS3 Difference in logs 3yr Treasury constant maturity rate
GS1 Difference in logs 1yr Treasury constant maturity rate
PRIVATE EMPLOYMENT Log difference in total private employment
PMI MANU Log difference in PMI-manufacturing index
AHEPNSE Log difference in average hourly earnings of private non man-

agement employees
DJIA Log difference in Dow Jones Industrial Average Returns
M1 Log difference in M1 (narrow-commercial bank money)
ISM SDI Institute for Supply Management (ISM) Supplier Deliveries

Inventory
CONSUMER University of Michigan consumer sentiment (level)
UNRATE Log of the unemployment rate
TBILL3 3m Treasury bill rate
TBILL SPREAD Difference between GS10 and TBILL3
HOUSING STARTS Private housing (in thousands of units)
INF EXP University of Michigan inflation expectations (level)
LAG1, LAG2, LAG3, LAG4 The first, second, third and fourth lag

Table 6.1: Inflation Data. Sources: FRED database, Federal Reserve
Bank of St.Louis, University of Michigan Consumer Survey database,

Federal Reserve Bank of Philadelphia, and Institute of Supply
Management.
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