• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2018.tde-20032018-090755
Documento
Autor
Nome completo
Duvan Humberto Cataño Salazar
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2018
Orientador
Banca examinadora
Chiann, Chang (Presidente)
Morettin, Pedro Alberto
Pinheiro, Aluísio de Souza
Rodríguez-caballero, Carlos Vladimir
Sáfadi, Thelma
Título em português
Modelo fatorial com cargas funcionais para séries temporais
Palavras-chave em português
Componentes principais
Estacionaridade local
Mínimos quadrados generalizados
Modelos fatoriais aproximados
Ondaletas
Resumo em português
No contexto dos modelos fatoriais existem diferentes metodologias para abordar a modelagem de séries temporais multivariadas que exibem uma estrutura não estacionária de segunda ordem, co- movimentos e transições no tempo. Modelos com mudanças estruturais abruptas e restrições rigorosas (muitas vezes irreais) nas cargas fatoriais, quando elas são funções determinísticas no tempo, foram propostos na literatura para lidar com séries multivariadas que possuem essas características. Neste trabalho, apresentamos um modelo fatorial com cargas variando continuamente no tempo para modelar séries temporais não estacionárias e um procedimento para sua estimação que consiste em dois estágios. No primeiro, os fatores latentes são estimados empregando os componentes principais das séries observadas. Em um segundo estágio, tratamos estes componentes principais como co-variáveis e as cargas funcionais são estimadas através de funções de ondaletas e mínimos quadrados generalizados. Propriedades assintóticas dos estimadores de componentes principais e de mínimos quadrados dos coeficientes de ondaletas são apresentados. O desempenho da metodologia é ilustrado através de estudos de simulação. Uma aplicação do modelo proposto no mercado spot de energia do Nord Pool é apresentado.
Título em inglês
Factor model with functional loadings for time series
Palavras-chave em inglês
Approximate factor models
Generalized least squares
Local stationarity
Principal components
Wavelets
Resumo em inglês
In the context of the factor models there are different methodologies to modeling multivariate time series that exhibit a second order non-stationary structure, co-movements and transitions over time. Models with abrupt structural changes and strict restrictions (often unrealistic) in factor loadings, when they are deterministic functions of time, have been proposed in the literature to deal with multivariate series that have these characteristics. In this work, we present a factor model with time-varying loadings continuously to modeling non-stationary time series and a procedure for its estimation that consists of two stages. First, latent factors are estimated using the principal components of the observed series. Second, we treat principal components obtained in first stage as covariate and the functional loadings are estimated by wavelet functions and generalized least squares. Asymptotic properties of the principal components estimators and least squares estimators of the wavelet coefficients are presented. The per- formance of the methodology is illustrated by simulations. An application to the model proposed in the energy spot market of the Nord Pool is presented.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tese.pdf (8.82 Mbytes)
Data de Publicação
2018-03-25
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.