• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2014.tde-18032015-170430
Documento
Autor
Nome completo
José Javier Cerda Hernández
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2014
Orientador
Banca examinadora
Soukhov, Iouri Mikhailovich (Presidente)
Fontes, Luiz Renato Goncalves
Marchetti, Domingos Humberto Urbano
Proença, Rodrigo Bissacot
Zohren, Stefan
Título em inglês
Ising and Potts model coupled to Lorentzian triangulations
Resumo em inglês
The main objective of the present thesis is to investigate: What are the properties of the Ising and Potts model coupled to a CDT emsemble? For that objective, we used two methods: (1) transfer matrix formalism and Krein-Rutman theory. (2) FK representation of the q -state Potts model on CDTs and dual CDTs. Transfer matrix formalism permite us to obtain spectral properties of the transfer matrix using the Krein-Rutman theorem [KR48] on operators preserving the cone of positive func- tions. This yields results on convergence and asymptotic properties of the partition function and the Gibbs measure and allows us to determine regions in the parameter quarter-plane where the free energy converges. Second methods permite us to determine a region in the quadrant of parameters , > 0 where the critical curve for the classical model can be located. We also provide lower and upper bounds for the innite-volume free energy. Finally, using arguments of duality on graph theory and hight-T expansion we study the Potts model coupled to CDTs. This approach permite us to improve the results obtained for Ising model and obtain lower and upper bounds for the critical curve and free energy. Moreover, we obtain an approximation of the maximal eigenvalue of the transfer matrix at lower temperature.
Título em português
Modelos de Ising e Potts acoplados as triangulações de Lorentz
Palavras-chave em português
Dinâmica de triangulações causais
Medida de Gibbs
Modelo de Ising
Modelo de Ising quântico
Modelo de Potts
Representação FK
Teorema de Krein-Rutman
Resumo em português
O objetivo principal da presente tese é pesquisar : Quais são as propriedades do modelo de Ising e Potts acoplado ao emsemble de CDT? Para estudar o modelo usamos dois métodos: (1) Matriz de transferência e Teorema de Krein-Rutman. (2) Representação FK para o modelo de Potts sobre CDT e dual de CDT. Matriz de transferência permite obter propriedades espectrais da Matriz de transferência utilizando o Teorema de Krein-Rutman [KR48] sobre operadores que conservam o cone de funções positivas. Também obtemos propriedades asintóticas da função de partição e das medidas de Gibbs. Esses propriedades permitem obter uma região onde a energia livre converge. O segundo método permite obter uma região onde a curva crítica do modelo pode estar localizada. Além disso, também obtemos uma cota superior e inferior para a energia livre a volume infinito. Finalmente, utilizando argumentos de dualidade em grafos e expansão em alta temperatura estudamos o modelo de Potts acoplado as triangulações causais. Essa abordagem permite generalizar o modelo, melhorar os resultados obtidos para o modelo de Ising e obter novas cotas, superior e inferior, para a energia livre e para a curva crítica. Além disso, obtemos uma aproximação do autovalor maximal do operador de transferência a baixa temperatura.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2015-03-19
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.