• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
Documento
Autor
Nome completo
Mark Andrew Gannon
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2017
Orientador
Banca examinadora
Iambartsev, Anatoli (Presidente)
Belitsky, Vladimir
Fontes, Luiz Renato Goncalves
Lebensztayn, Élcio
Pechersky, Eugene Abramovich
Título em português
Passeios aleatórios em redes finitas e infinitas de filas
Palavras-chave em português
Alcance zero
Exclusao simples
Forma produto
Probabilidade estacionaria
Processo de Markov em tempo continuo
Rede de filas
Rede de Jackson
Reversibilidade
Sistema interagente de particulas
Resumo em português
Um conjunto de modelos compostos de redes de filas em grades finitas servindo como ambientes aleatorios para um ou mais passeios aleatorios, que por sua vez podem afetar o comportamento das filas, e desenvolvido. Duas formas de interacao entre os passeios aleatorios sao consideradas. Para cada modelo, e provado que o processo Markoviano correspondente e recorrente positivo e reversivel. As equacoes de balanceamento detalhado sao analisadas para obter a forma funcional da medida invariante de cada modelo. Em todos os modelos analisados neste trabalho, a medida invariante em uma grade finita tem forma produto. Modelos de redes de filas como ambientes para multiplos passeios aleatorios sao estendidos a grades infinitas. Para cada modelo estendido, sao especificadas as condicoes para a existencia do processo estocastico na grade infinita. Alem disso, e provado que existe uma unica medida invariante na rede infinita cuja projecao em uma subgrade finita e dada pela medida correspondente de uma rede finita. Finalmente, e provado que essa medida invariante na rede infinita e reversivel.
Título em inglês
Random walks in finite and infinite queueing networks
Palavras-chave em inglês
Continuous-time Markov process
Interacting particle system
Jackson network
Product form
Queueing network
Reversibility
Simple exclusion
Stationary probability
Zero-range
Resumo em inglês
A set of models composed of queueing networks serving as random environments for one or more random walks, which themselves can affect the behavior of the queues, is developed. Two forms of interaction between the random walkers are considered. For each model, it is proved that the corresponding Markov process is positive recurrent and reversible. The detailed balance equa- tions are analyzed to obtain the functional form of the invariant measure of each model. In all the models analyzed in the present work, the invariant measure on a finite lattice has product form. Models of queueing networks as environments for multiple random walks are extended to infinite lattices. For each model extended, the conditions for the existence of the stochastic process on the infinite lattice are specified. In addition, it is proved that there exists a unique invariant measure on the infinite network whose projection on a finite sublattice is given by the corresponding finite- network measure. Finally, it is proved that that invariant measure on the infinite lattice is reversible.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2017-11-16
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2014. Todos os direitos reservados.