• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2018.tde-11102018-152033
Documento
Autor
Nome completo
Guaraci de Lima Requena
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2018
Orientador
Banca examinadora
Campos, Adriano Polpo de (Presidente)
Barrera, Junior
Diniz, Juliana Belo
Saraiva, Erlandson Ferreira
Trinca, Luzia Aparecida
Título em português
Predições estatísticas para dados politômicos
Palavras-chave em português
Classificação
Dados categóricos
Fatoração
Regressão multinomial
Transtorno obsessivo-compulsivo
Resumo em português
Este trabalho generaliza a partição da distribuição de Bernoulli multivariada em distribuições de Bernoulli e como esta partição leva a um modelo de regressão e a um classificador para dados politômicos. Como ponto de partida, desejamos explicitar a função de ligação para os modelos de regressão multinomial e escrevê-la a partir de funções de distribuição, como feito no caso binomial, a fim de flexibilizá-la para além da logito usual. Para isso, estudamos as fatorações da Bernoulli multivariada em Bernoullis, bem como a multinomial em binomiais, a fim de explicitar como as funções de distribuição podem desempenhar um papel na ligação entre o espaço das covariáveis e o vetor de probabilidades. Basu & Pereira (1982) exploram tais fatorações em um problema de não resposta e Pereira & Stern (2008) as generalizam para uma classe de fatorações. Este trabalho propõe uma simplificação tanto da regressão multinomial - agregando a flexibilidade do caso binomial -, quanto da classificação politômica, no sentido de decompor o problema politômico em dicotômicos através da generalização da classe de fatorações. Um problema computacional surge pois tal classe pode ter um número muito grande de elementos distintos de acordo com o número de categorias e, assim, duas propostas são feitas para buscar uma que minimiza os riscos de classificação binomial envolvidos, passo-a-passo. A motivação para este trabalho é apresentada a fim de se estudar as performances de tais modelos de regressão e classificadores. Partimos de um problema da área médica, mais especificamente em transtorno obsessivo-compulsivo, em que desejamos classificar um indivíduo a fim de obter um fenótipo mais puro de tal transtorno e de modelá-lo a fim de buscar as covariáveis que estão relacionadas com tal fenótipo, a partir de um conjunto de dados reais.
Título em inglês
Statistical predictions for polytomous data
Palavras-chave em inglês
Categorical data
Classification
Factorization
Multinomial regression
Obsessive-compulsive disorder
Resumo em inglês
This work explores a partition of the multivariate Bernoulli distribution in Bernoulli distributions and how this partition leads to a regression model and to a classifier for polytomous data. As starting point, we want to make explicit the link function for multinomial regression models and write it from distribution functions, as in the binomial case, in order to flexibilize it beyond the usual logit. For that, we study the factorizations of the multivariate Bernoulli in Bernoullis, as well as the multinomial in binomials, in order to make explicit as the distribution functions may play a role in the linkage between the space of covariates and the vector of probabilities. Basu and Pereira (1982) explore these factorizations in a nonresponse problem and Pereira and Stern (2008) generalize them to a class of factorizations. Thus, this work proposes a simplification of the multinomial regression - adding the flexibility from the binomial case -, and of the polytomous classification, decomposing de polytomous problem in dichotomous through the generalization of the class of factorizations. At this point, a computational problem arises because the amount of factorizations may be very large according to the number of categories and then we propose two approaches to seek a factorization that minimize the involved binomial classification risks, step-by-step. The motivation for this work is presented in order to study the performance of such regression models and classifiers. We start from a medical problem, more precisely in obsessive-compulsive disorder, in which we want to classify a patient in order to get a more pure phenotype of such disorder and model it in order to seek the related covariates, from a real dataset.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-10-23
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.