• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.45.2019.tde-11032019-160302
Documento
Autor
Nombre completo
Natalia Andrea Milla Pérez
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2018
Director
Tribunal
Paula, Gilberto Alvarenga (Presidente)
Ferrari, Silvia Lopes de Paula
Labra, Filidor Edilfonso Vilca
Novelli, Cibele Maria Russo
Rojas, Manuel Jesus Galea
Título en portugués
Métodos de estimação baseados na função de verossimilhança para modelos lineares elípticos
Palabras clave en portugués
Máxima verossimilhança perfilada modificada
Máxima verossimilhança restrita
Métodos robustos
Modelos exponencial potência
Modelos lineares elípticos
Modelos mistos
Modelos t-Student
Resumen en portugués
O objetivo desta tese é estudar métodos de estimação baseados na função de verossimilhança em modelos mistos lineares elípticos. Derivamos inicialmente os métodos de máxima verossimilhança, máxima verossimilhança restrita e de máxima verossimilhança perfilada modificada para o modelo linear normal. Estendemos os métodos para os modelos lineares elípticos e encontramos diferenças entre as equações resultantes de cada método. A principal motivação deste trabalho é que o método de máxima verossimilhança restrita tem sido aplicado para obter estimadores menos viesados para os componentes de variância-covariância, em contraste com os estimadores de máxima verossimilhança. O método tem sido muito utilizado em modelos com estruturas de variância-covariância como é o caso dos modelos mistos lineares. Assim, procuramos estender o método para os modelos mistos lineares elípticos bem como comparar com outros procedimentos de estimação, máxima verossimilhança e máxima verossimilhança perfilada modificada. Estudamos em particular os modelos mistos lineares com erros t-Student e exponencial potência.
Título en inglés
Estimation methods based on the likelihood function in Elliptical Linear Models
Palabras clave en inglés
Linear elliptical models
Mixed models
Modified profile maximum likelihood
Power exponencial models
Restricted maximum likelihood
Robust methods
Student-t models
Resumen en inglés
The aim of this thesis is to study estimation methods based on the likelihood functions in elliptical linear mixed models. First, we review the modified profile maximum likelihood and the restricted maximum likelihood methods as well as the traditional maximum likelihood method in normal linear models. Then, we extend the methodologies for elliptical linear models and we compare the estimating equations derived for each method. The main motivation of the work is that the restricted maximum likelihood method has been largely applied in normal linear mixed models in order to reduce the bias of the maximum likelihood variance-component estimators. So, we intend to investigate the possible extension for elliptical linear mixed models as well as to compare with the modified profile maximum likelihood and the maximum likelihood methods. Particular studies for Student-t and power exponential linear mixed models are presented.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
TeseNMPerez.pdf (8.29 Mbytes)
Fecha de Publicación
2019-04-02
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.