• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2018.tde-10052018-131627
Document
Author
Full name
Luis Enrique Benites Sánchez
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2018
Supervisor
Committee
Bolfarine, Heleno (President)
Andrade Filho, Mário de Castro
Cabral, Celso Rômulo Barbosa
Davila, Victor Hugo Lachos
Prates, Marcos Oliveira
Title in English
Finite mixture of regression models
Abstract in English
This dissertation consists of three articles, proposing extensions of finite mixtures in regression models. Here we consider a flexible class of both univariate and multivariate distributions, which allow adequate modeling of asymmetric data that have multimodality, heavy tails and outlying observations. This class has special cases such as skew-normal, skew-t, skew-slash and skew normal contaminated distributions, as well as symmetric cases. Initially, a model is proposed based on the assumption that the errors follow a finite mixture of scale mixture of skew-normal (FM-SMSN) distribution rather than the conventional normal distribution. Next, we have a censored regression model where we consider that the error follows a finite mixture of scale mixture of normal (SMN) distribution. Next, we propose a censored regression model where we consider that the error follows a finite mixture of scale mixture of normal (SMN) distribution. Finally, we consider a finite mixture of multivariate regression where the error has a multivariate SMSN distribution. For all proposed models, two R packages were developed, which are reported in the appendix.
Title in Portuguese
Mistura finita dos modelos de regressão
Keywords in Portuguese
Algoritmo EM
Dados censurados
Mistura da escala da distribuição normal assimétrica multivariada
Mistura finita
Modelo de regressão linear
Abstract in Portuguese
Esta tese composta por três artigos, visa propor extensões das misturas finitas nos modelos de regressão. Aqui vamos considerar uma classe flexível de distribuições tanto univariada como multivariada, que permitem modelar adequadamente dados assimmétricos, que presentam multimodalidade, caldas pesadas e observações atípicas. Esta classe possui casos especiais tais como as distribuições skew-normal, skew-t, skew slash, skew normal contaminada, assim como os casos simétricos. Inicialmente, é proposto um modelo baseado na suposição de que os erros seguem uma mistura finita da distribuição mistura de escala skew-normal (SMSN) ao invés da convencional distribuição normal. Em seguida, temos um modelo de regressão censurado onde consideramos que o erro segue uma mistura finita da distribuição da mistura de escala normal (SMN). E por último, é considerada um mistura finita de regressão multivariada onde o erro tem uma distribuição SMSN multivariada. Para todos os modelos propostos foram desenvolvidos dois pacotes do software R, que estão exemplificados no apêndice.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
teseLuisBenites.pdf (1.97 Mbytes)
Publishing Date
2018-06-04
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.