• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2012.tde-10032013-125846
Documento
Autor
Nome completo
Karin Ayumi Tamura
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2012
Orientador
Banca examinadora
Giampaoli, Viviana (Presidente)
Botter, Denise Aparecida
Cysneiros, Francisco José de Azevêdo
Diaz, Maria Del Pilar
Noveli, Cibele Maria Russo
Título em português
Métodos de predição para modelo logístico misto com k efeitos aleatórios
Palavras-chave em português
efeitos aleatórios
modelo logístico misto
predição
Resumo em português
A predição de uma observação futura para modelos mistos é um problema que tem sido extensivamente estudado. Este trabalho trata o problema de atribuir valores para os efeitos aleatórios e/ou variável resposta de novos grupos para o modelo logístico misto, cujo objetivo é predizer respostas futuras com base em parâmetros estimados previamente. Na literatura, existem alguns métodos de predição para este modelo que considera apenas o intercepto aleatório. Para a regressão logística mista com k efeitos aleatórios, atualmente não há métodos propostos para a predição dos efeitos aleatórios de novos grupos. Portanto, foram propostas novas abordagens baseadas no método da média zero, no melhor preditor empírico (MPE), na regressão linear e nos modelos de regressão não-paramétricos. Todos os métodos de predição foram avaliados usando os seguintes métodos de estimação: aproximação de Laplace, quadratura adaptativa de Gauss-Hermite e quase-verossimilhança penalizada. Os métodos de estimação e predição foram analisados por meio de estudos de simulação, com base em sete cenários, com comparações de diferentes valores para: o tamanho de grupo, os desvios-padrão dos efeitos aleatórios, a correlação entre os efeitos aleatórios, e o efeito fixo. Os métodos de predição foram aplicados em dois conjuntos de dados reais. Em ambos os problemas os conjuntos de dados apresentaram estrutura hierárquica, cujo objetivo foi predizer a resposta para novos grupos. Os resultados indicaram que o método MPE apresentou o melhor desempenho em termos de predição, entretanto, apresentou alto custo computacional para grandes bancos de dados. As demais metodologias apresentaram níveis de predição semelhantes ao MPE, e reduziram drasticamente o esforço computacional.
Título em inglês
Prediction methods for mixed logistic regression with k random effects
Palavras-chave em inglês
mixed logistic model
prediction
random effects
Resumo em inglês
The prediction of a future observation in a mixed regression is a problem that has been extensively studied. This work treat the problem of assigning the random effects and/or the outcome of new groups for the mixed logistic regression, in which the aim is to predict future outcomes based on the parameters previously estimated. In the literature, there are some prediction methods for this model that considers only the random intercept. For the mixed logistic regression with k random effects, there is currently no method for predicting the random effects of new groups. Therefore, we proposed new approaches based on average zero method, empirical best predictor (EBP), linear regression and nonparametric regression models. All prediction methods were evaluated by using the estimation methods: Laplace approximation, adaptive Gauss-Hermite quadrature and penalized quasi-likelihood. The estimation and prediction methods were analyzed by simulation studies, based on seven simulation scenarios, which considered comparisons of different values for: the group size, the standard deviations of the random effects, the correlation between the random effects, and the fixed effect. The prediction methods were applied in two real data sets. In both problems the data set presented hierarchical structure, and the objective was to predict the outcome for new groups. The results indicated that EBP presented the best performance in prediction terms, however it has been presented high computational cost for big data sets. The other methodologies presented similar level of prediction in relation to EBP, and drastically reduced the computational effort.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2013-03-19
 
AVISO: O material descrito abaixo refere-se a trabalhos decorrentes desta tese ou dissertação. O conteúdo desses trabalhos é de inteira responsabilidade do autor da tese ou dissertação.
  • TAMURA, Karin Ayumi, and GIAMPAOLI, Viviana. New prediction method for the mixedlogistic model applied in a marketing problem. Computational Statistics and Data Analysis, 2013. http://dx.doi.org/10.1016/j.csda.2013.04.006.
  • TAMURA, Karin Ayumi, and GIAMPAOLI, Viviana. Comparison of prediction methods for mixed logistic regression. In International Workshop on Statistical Modelling, 27, Praga, 2012.
  • TAMURA, Karin Ayumi, and GIAMPAOLI, Viviana. Prediction for an observation in a new cluster for Multilevel Logistic Regression considering k random coefficients. In International Workshop on Statistical Modelling, 26, Valência, 2011.
  • TAMURA, Karin Ayumi, e GIAMPAOLI, Viviana. Modelo Logístico Misto com k efeitos aleatórios: uma proposta para estimação e predição. In SINAPE, 20, João Pessoa, 2012.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.