• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2008.tde-08072008-110122
Documento
Autor
Nome completo
Iracema Hiroko Iramina Arashiro
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2008
Orientador
Banca examinadora
Lima, Antonio Carlos Pedroso de (Presidente)
Cancho, Vicente Garibay
Louzada Neto, Francisco
Singer, Julio da Motta
Valença, Dione Maria
Título em português
Modelo multi-estados markoviano não homogêneo com efeitos dinâmicos
Palavras-chave em português
coeficiente dependente do tempo
estimador de crivo
modelos multi-estados.
Resumo em português
Modelos multi-estados têm sido utilizados para descrever o comportamento de unidades amostrais cuja principal resposta é o tempo necessário para a ocorrência de seqüências de eventos. Consideramos um modelo multi-estados markoviano, não homogêneo, que incorpora covariáveis cujos efeitos podem variar ao longo do tempo (efeitos dinâmicos), o que permite a generalização dos modelos usualmente empregados. Resultados assintóticos mostram que procedimentos de estimação baseados no método histograma crivo convergem para um processo gaussiano. A metodologia proposta mostra-se adequada na modelagem de dados reais para comparação de desenvolvimento de recém-nascidos pré-termo com os a termo. Estudos com dados gerados artificialmente confirmam os resultados teóricos obtidos.
Título em inglês
Non-homogeneous Markov models with dynamic effects.
Palavras-chave em inglês
Histogram sieves
multi state models
time-dependent coefficient.
Resumo em inglês
Multi-state models have been used to describe the behavior of sample units where the principal response is the time needed for the occurrence of a sequence of events. We consider a non-homogeneous Markovian multi-state model that incorporates covariates with time-dependent coefficient (dynamic effects), generalizing models usually employed. The asymptotic results show that the estimators based on the method of histogram sieves converge to a Gaussian process. The proposed methodology revels adequated for modeling data related to the comparison of developement of preterm infants with term infants. The studies with artificially generated data confirm the asymptotic results.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Iracema_tese_corr.pdf (607.33 Kbytes)
Data de Publicação
2008-08-07
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.