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Abstract

In this thesis we study three different stochastic processes describing the brain activity. The

first one is a continuous time version of the stochastic chains with memory of variable length.

These stochastic chains take values in the set of neurons and assign, at time t, the value of the last

neuron which spiked up to time t. Moreover, we assume neurons interact through a phenomena

called chemical synapses. Briefly this means that when a neuron spikes, it loses all its membrane

potential and at same time changes the membrane potential of the neurons which are influenced

by it. Under this approach we proved the positive recurrent of the process and presented a perfect

simulation algorithm able to generate a finite sample of the process under its invariant measure.

In the second model we continue considering the chemical synapses interaction and add also an

interaction through electrical synapses. The last one happens duo to the presence of specific chan-

nels which allow the passage of ions along the the membrane of two neurons and, as consequence,

we have a sharing of potential between the neurons. Moreover, we consider also the constant lost

of potential of the neurons for the environment which push each neuron to a resting state. For this

model we study the long-run behaviour of the process with a finite number of neurons, the hydro-

dynamic limit for the system and investigate the possible invariant distributions for the limiting

process.

In the last model considered here we study the brain activity measured through EEG data. We

investigate the predictive coding principle which says that neural networks are able to learn the

statistical regularities inherent in a stimuli and reduce redundancy by removing the predictable

components of the input. To test this conjecture we propose procedures to perform statistical model

selection on the EEG data in order to retrieve structural features of stochastic sources. This is done

through a case study in which the EEG data is recorded under the effect of two different stochastic

rhythmic sources produced by two different context tree models. We present a suitable class of

stochastic processes, called here as hidden context tree models, to model EEG signals evoked by

rhythmic structures. Then, we propose a consistent statistical procedure to perform statistical

model selection in this class and in our case study.

Key words : chains with memory of variable length, piecewise deterministic Markov process,

limiting distribution, neuronal systems, hidden context tree models, statistical models selection

AMS Classification: 60K35, 60F99, 60J25
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Resumo

Nessa tese estudamos três diferentes processos estocásticos descrevendo a atividade cerebral. O

primeiro processo é uma versão a tempo cont́ınuo das cadeias estocásticas com memória de alcance

variável. Essas cadeias tomam valores no conjunto dos neurônios e assumem, no instante t, o valor

do último neurônio a disparar antes de t. Além disso, assumimos que os neurônios interagem entre

si através de fenômenos chamados sinapses qúımicas. Resumidamente isso significa que quando um

neurônio dispara perde todo seu potencial de membrana e, simultaneamente, muda o potencial

de membrana dos nerônios que influencia. Para esse processo estocásico provamos a recorrência

positiva e apresentamos um algoritmo de simulação perfeita capaz de gerar uma amostra finita

cuja ditribuição é a medida invariante do processo.

Na segunda classe de modelos continuamos considerando as sinápses qúımicas e adicionamos

ainda interação por sinápses elétricas. A última acontece devido a presença de canais espećıficos

entre dois neurônios que permitem a passagem de ı́ons ao longo de suas membranas, como con-

sequência, temos um compartilhamento de potencial entre os neurônios. Além disso, consideramos

também a constante perda de potencial dos neurônios para o meio que age empurrando o potencial

de cada neurônio a um estado de repouso. Com esses modelos estudamos o comportamento a longo

prazo do processo com um número finito de neurônios, o limite hidrodinâmico desse sistema e

investigamos a posśıvel distribuição invariante para o processo limite.

Na última classe considerada aqui estudamos a atividade cerebral medida através de dados de

EEG. Nós investigamos o prinćıpio do código preditivo que afirma que redes neurais são capazes de

aprender as regularidades estat́ısticas inerentes em um est́ımulo e reduzir a redundância removendo

as componentes previśıveis. Para testar essa conjectura, propomos um procedimento para realizar

seleção estat́ıstica de modelos em dados de EEG afim de recuperar caracteŕısticas estruturais de

fontes estocásticas. Isso é feito através de um caso de estudo em que dados de EEG são coletados

sob o efeito de duas fontes rit́ımicas estocásticas distintas produzidas por duas árvores de contextos

distintas. Nós apresentamos uma classe de modelos adequada, chamada aqui de modelos de árvore

de contextos oculta, para modelar sinais de EEG evocados por estruturas ŕıtmicas. Finalmente,

propomos um procedimento estat́ıstico consistente para fazer seleção estat́ıstica de modelos nessa

nova classe assim como no nosso caso de estudo.
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Chapter 1

Introduction

The brain is a complex network of a large number of components, the neurons. Recently much
effort has been employed to describe the brain function through numerical simulation. Although
this approach has been successfully applied for describing the behavior of single neurons, typically
a single neuron interacts with more than 104 other neurons [GK02]. Thus, a simulation-based ap-
proach, although important, does not lead to a parsimonious understanding of the key mechanisms
underlying the brain function. Even more, there are strong evidences suggesting that the brain
both represents probability distributions and performs probabilistic inference [PBML13]. For this
reason, in this thesis we address the neuronal activity in the stochastic processes framework.

We can model the brain processing in many levels, starting from the activity of a single neuron,
taking into account the physiology of each part of the cell, going up to the synchronized activity
of group of neurons (typically measured in EEG and fMRI techniques, for instance). In this thesis
we study two different levels of the neuronal activity through three different classes of models.

Neurons communicate through electrical pulses, the spikes. These pulses, also called action
potentials, are characterized by a fast and abrupt change of ions concentration in the interior of
the cell. This change can be seen through the time evolution of the membrane potential which is
the difference in voltage between the inside and outside of the cell membrane. An important fact
is that spikes of a same neuron are highly similar, implying that the shape of an action potential
does not improve the transfer of information [GK02]. For this reason, it makes sense to study the
brain activity looking at spike trains, the sequence of spiking times of a neuron in a period of time.
This is the motivation for the first two classes studied here.

In a microscopic level, we study the time evolution of the membrane potential of the neurons
through a continuous time Markov chain which is also a example of piecewise deterministic Markov
process. Still in the neurons level, we consider a continuous time version of the chains with memory
of variable length which summarize the information of the spike trains of a set of neurons. Finally,
we take into account the synchronized electrical activity of groups of neurons measured by Elec-
troencephalograph (EEG) exams, and, in this scenario, we work with a stochastic model inspired
by the analyses of experimental EEG data.

One of the earliest models in neurons was the integrate-and-fire model (IFM) [Lap07] used
to reproduce spike trains. IFM captures the notion of the membrane potential being charged by
currents flowing into it, firing an action potential and discharging, when the membrane potential
exceeds a threshold ([SGGW11]). Classically, these models are used to describe the behavior of a
single neuron inside a large network under the effect of a stochastic external input.

A more interesting approach of integrate-and-fire model was proposed by Galves and Löcherbach
in [GL13]. They introduce a discrete-time class of models which is a non Markovian system of
infinite interacting chains with memory of variable length. In their model a neuron does not spike
when its membrane potential reach a threshold, but instead with a probability depending on
its membrane potential. The authors proved the existence of the process by means of a perfect
simulation algorithm and give an upper bound for the speed of the lost of memory of the process.
A continuous time version of this class was introduced by De Masi et al. in [DMGLP15], where they

1



2 INTRODUCTION 1.0

consider the spikes as stochastic point processes whose the spiking rate depend on the membrane
potential. In [DMGLP15] it is proved that, as the number of neurons goes to infinity, the distribution
of membrane potentials becomes deterministic and is described by a limit probability density which
obeys a non-linear PDE of Hyperbolic type. This two paper inspired all models introduced here.

Our first model is a continuous time version of the stochastic chains with memory of variable
length introduced by Rissanen [Ris83]. It is also a simplified continuous version of the Galves
and Löcherbah model (GLM), for a finite set of neurons, and a particular case of the models
in [DMGLP15]. But, instead of taking into account the set of spike trains or the evolution of
membrane potentials we look at the time evolution of the spiking neurons. These stochastic chains
take values in the set of neurons and assign, at time t, the value of the last neuron which spiked up
to time t. Moreover, the interaction among neurons considered in these models happens through a
phenomena called chemical synapses. Briefly this means that when a neuron spikes, it loses all its
membrane potential and at same time changes the membrane potential of the neurons which are
influenced by it. Under this approach we proved that this process is positive recurrent and present
a perfect simulation algorithm able to generate a finite sample of the process under its invariant
measure.

In the next class we continue considering the interaction between neurons through chemical
synapses and add also interactions through electrical synapses. The last one happens when two
neurons share a same channel between their membranes. This channel allows the passage of ions
along of the two membranes and, as consequence, we have a sharing of potential between this
neurons. In this models we take into account also a continuous interaction of the neurons with the
environment. This interaction is due to leak currents which can be described as the constant lost
of potential of the neurons for the environment, pushing each one of them to a resting state. Under
all this interactions we study the long-run behavior of the process with a finite number of neurons,
the hydrodynamic limit for this system and investigate the possible invariant distributions for the
limiting process (the process we obtain by taking the number of neurons to infinity).

In the last part of this thesis we study a class of models inspired by the analysis of EEG
data. We address the probabilistic inference problem in order to investigate the predictive coding
principle which says the neural networks are able to learn the statistical regularities inherent in a
stimulus and reduce the redundancy by removing the predictable components of the input. To test
this conjecture we should be able to perform statistical model selection on EEG data and retrieve
structural features of the stochastic sources used as stimuli during the experiment. Mathematically
this implies to present a suitable class of stochastic processes, called here as hidden variable length
Markov chains, to model EEG signals evoked by stochastic rhythmic structures. Then, we propose
a consistent statistical procedure to perform statistical model selection in this class and apply the
statistical method in a simulation study.



Chapter 2

Jumping Process with Memory of
Variable Length

Although simple, the class of models studied in this chapter is a starting point for readers
who are not familiar with Galves and Löcherbah [GL13] and De Masi et al.[DMGLP15] models.
Moreover, this class helps to understand the intuition behind some proofs of the results presented
in the Chapter 3.

Neuronal signals consist of short electrical pulses, the action potentials or spikes, and they are
one of the ways neurons send information to each other. The brain activity can be represented
through spike trains of the neurons which is a sequence of spiking times of a single neuron in a
period of time [GK02]. Since we are working in continuous time, two neurons never spike together.
This implies that, if we label the neurons, we can represent the set of all spike trains by the sequence
of the spiking neurons. This is the intuition behind the class of models considered in this chapter.

We present a class of stochastic models describing the time evolution of a system of N neurons.
These stochastic chains take values in the set of neurons and assign, at time t, the value of the last
neuron which spiked up to time t.

The spiking times of a neuron are described here by point processes with rate depending on
its membrane potential . The membrane potential of a neuron can be depicted as the accumulated
activity of the system since its last spike. Besides, we consider that interactions among neurons
happen only through chemical synapses which can be described in words as follows. When a neuron
i spikes, its membrane potential is reset to the resting state, assumed here as 0. At the same time,
this spike triggers a complex chain of biochemical processing resulting in a change of potential in
the neurons which are influenced by i [GK02]. This reset of potential in the spiking neuron acts as
a renewal event making the stochastic chains with memory of variable length good candidates to
model a single neuron.

In this chapter, we assume a complete graph of interaction among the neurons, that is, each
neuron influence and it is influenced by all other neurons. Moreover, we consider that all chemical
synapses have the same weight (equal to 1). We proved the positive recurrence for the process and
present a perfect simulation algorithm which can provide a finite sample with the same distribution
of the invariant measure of the process.

In words the process evolves as follows. At time t, each neuron has a exponential clock ei, i =
1, . . . , N, whose intensity depends on its membrane potential. If the the clock associated to the
neuron i rings before everything else (if ei = min{ek, k = 1, . . . , N}), then we say the neuron i
spiked at time t+ei, and our processes assume the value i at this instant. Afterwards, we update the
membrane potential of all neurons, in consequence of the spike. That is, the membrane potential
of i becomes 0 and the membrane potential of all the others is increased by 1. After this, we start
again with new exponential clocks depending on the updated membrane potentials.

The class of stochastic chains considered here is a continuous time version of the stochastic
chains with memory of variable length introduced by Rissanen [Ris83]. Our process is a simplified
continuous version of the Galves and Löcherbah model, for a finite set of neurons, and a particular

3



4 JUMPING PROCESS WITH MEMORY OF VARIABLE LENGTH 2.1

case of the models presented in [DMGLP15].

2.1 Model definition and main results

Before defining the first model we introduce some notation and the definition of chain with
memory of variable length which is crucial for the present chapter as well as in the Chapter 4.

Through this work A denote a finite alphabet and, given two integers numbers −∞ < m ≤
n < +∞, anm denote the sequence (am, . . . , an) of symbols in A and Ak the set of all sequences of
symbols in A with length k. We write x−1

−∞ ∈ A−N for the semi-infinite sequences in A(...,−n,...,−2,−1).
We use | · | to denote the number of elements of a set and `(wnm) = n−m+ 1 to denote the length
of a string.

Fixed two strings w and v of elements of A, we denote by vw the sequence in A`(v)+`(w) obtained
by the concatenation of v and w. We say that a string v = v−1

−j is a suffix of w−1
−k if j ≤ k and

v−i = w−i for all i = 1, . . . , j. This relation will be denoted by v � w. If j < k we say that v is a
proper suffix and denote by v ≺ w.

Definition 1. A finite subset τ of A∗ :=
⋃∞
k=1A

k is an irreducible tree if it satisfies the following
conditions:

(i) Suffix Property. For no w−1
−k ∈ τ we have w−1

−k+j ∈ τ for j = 1, . . . , k − 1.

(ii) Irreducibility No string belonging to τ can be replaced by a proper suffix without violating
the suffix property.

We say that τ � τ ′ if for every w′ ∈ τ ′ there exists w ∈ τ such that w � w′. Naturally, as in
the strings case, if τ 6= τ ′ we shall write τ ≺ τ ′. Moreover, to simplify the presentation we will
assume that all the context trees τ considered here are finite and we shall denote their height by
`(τ) = max{`(w) : w ∈ τ}.

Let p = {p(· | w : w ∈ τ} be a family of probability measures on A indexed by the elements of
τ . Each element of τ will be called context and we named the pair (τ, p) probabilistic context tree.

Definition 2. A stationary stochastic chain (Xn)n∈Z taking values in A is called a chain with
memory of variable length compatible with the probabilistic context tree (τ, p), if

(i) For any m ≥ `(τ) and any sequence x−1
−m ∈ Am with P(X−1

−m = x−1
−m) > 0 it holds that

P
(
X0 = a | X−1

−m = x−1
−m
)

= p
(
a | cτ (x−1

−m)
)

(2.1)

where cτ (x−1
−m) is the only context in τ which is a suffix of x−1

−m.

(ii) No proper suffix of cτ (x−1
−m) satisfies (i).

Now we present the definition of the class of models we are interested in.

Definition 3. Let (τ, p) be a probabilistic context tree and q : τ → (0,∞) be a rate function
associated to τ . We say that (η(t))t∈R is a jumping process with memory of variable length associated
to the probabilistic context tree (τ, p) and the rate function q, taking values in a finite set of N , if
the following conditions are fulfilled.

(i) There exists a sequence of random variables (Tn)n∈Z satisfying

. . . < T−1 < T0 ≤ 0 < T1 < T2 < . . .

(ii) There exists a stochastic chain (Xn)n∈Z with memory of variable length compatible with the
probabilistic context tree (τ, p) such that

(a) P(Tn+1 − Tn > t | Xn
−∞) = e−tq(cτ (Xn

−∞)) and
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(b) η(t) = Xn if Tn ≤ t < Tn+1.

In this context we call the stochastic process (Xn)n∈Z the skeleton of (η(t))t∈R.

In what follows we give one example of JPMVL, prove its positive recurrence and present a
perfect simulation algorithm for it. Let (Xn)n∈Z be a stochastic chain with memory of variable
length, taking values in a finite set N = {1, . . . , N}, compatible with the probabilistic context tree
τ which associates

N (−∞,...,n) 3 Xn
−∞ 7→ cτ (Xn

−∞) = Xn
Ln ∈ τ, (2.2)

where Ln = sup{k ≤ n; {Xk, Xk−1, . . . , Xn} = N} is the shortest portion of the past in which each
neuron spiked at least once, and with transition probabilities given by

p(i | Xn
Ln) =

ϕ
(
Ui(n)

)∑
j∈N

ϕ
(
Uj(n)

) (2.3)

where ϕ : N → [0, 1] is a non decreasing measurable function with ϕ(0) = 0 and ϕ(u) > 0 for any
u > 0, Ui(n) =

∑
j 6=i
∑n

s=Lin
1{Xs = j} is the accumulated activity of the system since the last

spike of i and Lin = sup{k ≤ n;Xk = i} is the last spiking time of the neuron i .
Consider a sequence of random variables (Tn)n∈Z satisfying

. . . < T−1 < T0 ≤ 0 < T1 < T2 < . . .

and such that
P(Tn+1 − Tn > t | Xn

−∞) = exp
(
− t
∑
i∈N

ϕ
(
Ui(n)

))
. (2.4)

Now, if we define η(t) = Xn when Tn ≤ t < Tn+1, we have that (η(t))t∈R is a jumping process
with memory of variable length associated to the probabilistic context tree (τ, p) defined in (2.2)
and (2.3), and the rate function q : τ → (0,∞) which associates

Xn
Ln 7→

∑
i∈N

ϕ
(
Ui(n)

)
. (2.5)

In this scenario, we can think of (η(t))t∈R as the time evolution of a finite set of neurons, where
for each time t, we set η(t) = i, if i ∈ N was the last neuron which spiked before time t. Under
this approach, the sequence (Tn)n∈Z represents the spiking times of the system and Ui(n) describes
the membrane potential of the neuron i at time t ∈ [Tn, Tn+1). Looking at (2.3), we see that the
probability of a neuron i having a spike depends on the number of spikes of all other neurons in
the system since the last spike of i. This fact implies that a neuron lost memory about the past
when it spikes.

Our first result about the stochastic process (η(t))t∈R is

Theorem 1. The jumping process (η(t))t∈R with memory of variable length associated to the proba-
bilistic context tree (τ, p), satisfying (2.2) and (2.3), and with rate function q : τ → (0,∞) satisfying
(2.5) is positive recurrent.

By perfect simulation we mean generate a finite sample with the same distribution of the
invariant measure of the process. The advantage of the perfect simulation is that the whole sample
is generated from the invariant measure, we do not have to wait the convergence to it. This is the
content of the next theorem.

Theorem 2. P-a.s. there exists an algorithm (presented in Section 2.1.2 below) which returns a
sample of the unique stationary stochastic chain compatible with the jumping process with memory
of variable length defined in the Theorem 1.



6 JUMPING PROCESS WITH MEMORY OF VARIABLE LENGTH 2.1

2.1.1 The Positive Recurrence of (η(t))t∈R

The goal of this section is show that the process (η(t))t∈R is positive recurrent. To this end, we
shall look at the chain which describes the time evolution of membrane potentials of the neurons
in N .

Let (U(n))n∈Z be the stochastic process taking values in the alphabet

Ω := {(u1, . . . , uN ) ∈ NN : ui 6= uj , ∀i, j ∈ N , and ∃ k ∈ N s.t. uk = 0}

defined as U(n) = (U1(n), . . . ,UN (n)) where

Ui(n) =
∑
j 6=i

n∑
s=Lin

1{Xs = j}. (2.6)

Note that, by the definition of (U(n))n∈Z, when a neuron j spikes its membrane potential is
reset and the membrane potential of all other neurons increase in one unit. This phenomenon can
be described by the mapping ∆i : Ω→ Ω defined as

(
∆i(u)

)
j

=

{
uj + 1, if j 6= i
0, if j = i

. (2.7)

Observe that, (U(n))n∈Z is a Markov chain whose transition probabilities are given by

p(∆i(u) | u) =
ϕ(ui)
N∑
j=1

ϕ(uj)

, ∀i ∈ N . (2.8)

Example 2.1. Suppose that X7
−5 = 3514231352431 is a sample of the chain with memory of

variable length compatible with the probabilistic context tree (τ, p) given by (2.3) and (2.2) (see
figure 2.1).

n

Xn

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7· · · · · ·

Figure 2.1: Example of the time evolution of the process (Xn)n∈Z for a system with 5 neurons

In this case, the evolution of the membrane potentials of the chain is given by:

U0 = (3, 1, 0, 2, 4) U4 = (3, 0, 2, 6, 1)

U1 = (0, 2, 1, 3, 5) U5 = (4, 1, 3, 0, 2)

U2 = (1, 3, 0, 4, 6) U6 = (5, 2, 0, 1, 3)

U3 = (2, 4, 1, 5, 0) U7 = (0, 3, 1, 2, 4)

By the definition of (U(n))n∈Z in the equation (2.6), it is clear that there is a function HX→U :
τ → Ω which define the process (U(n))n∈Z from the process (Xn)n∈Z. On the other hand, the
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function HU→X : Ω→ N defined as

HU→X(u) =
∑
i∈N

i · 1{u(i) = 0}, (2.9)

describe the process (Xn)n∈Z from the process (U(n))n∈Z.
Although we can recover the information between the two processes without ambiguity both

functions are not one-to-one. Indeed, it is not difficult to find examples of context which are different
only in two coordinates, by a permutation between them, having the same potentials vector as
image of HX→U. For instance, both contexts w = 5421321 and w = 5412321 have (0, 1, 2, 5, 6)
as correspondent vector of potentials. On the other hand, each vector of potentials with the i-th
coordinate equal to 0 has i as image of the mapping HU→X . Using this we can verify the next
implication.

Proposition 2.1. If the Markov chain (U(n))n∈Z with transition probabilities given by (2.8) is
positive recurrent, then the stochastic process (Xn)n∈Z with memory of variable length compatible
with the probabilistic context tree (τ, p) defined in (2.2) and (2.3) is positive recurrent.

Proof. Suppose that X0 = i and U(0) = u with ui = 0 and define the stopping times T i→i =
inf{n ≥ 1 : Xn = i} and T u→u = inf{n ≥ 1 : U(n) = u}, the first time after zero that the processes
(Xn)n∈Z and (U(n))n∈Z return to the state i and u, respectively. Now, observe that

Ei[T i→i] =
∑
k≥1

P(T i→i = k | X(0) = i) ≤
∑
k≥1

P(T u→u = k | U(0) = u) = Eu[T u→u] <∞

The proposition above implies that in order to prove the positive recurrence of (Xn)n∈Z it is
enough prove it for the process (U(n))n∈Z. For this purpose, we will introduce another process
(Ũ(n))n∈Z. Then we will finally argue that the recurrence of (Xn)n∈Z implies the recurrence of
(η(t))t∈R.

Since (η(t))t∈R is a continuous time process, two neurons never spike at the same time. More-
over, the fact that each spike of a neuron changes the membrane potential of all others by the
same amount implies that two different neurons never have the same amount of potential. As a
consequence, ordering the neurons by the time of its last spiking time is the same as to order them
by the membrane potentials (from the maximum to the minimum). This rearrangement gives birth
to the process (Ũ(n))n∈Z.

Formally, consider the Markov process (Ũ(n))n∈Z, taking values in

Ω̃ := {(ũ1, ũ2, . . . , ũN ) ∈ NN : 0 = ũ1 < ũ2 < . . . < ũN},

defined, for each n ∈ Z, by

Ũ(n) = σn(U(n)) :=
(
Uσ(1)(n), . . . ,Uσ(N)(n)

)
, (2.10)

where σn : N → N is the permutation such that Uσ(1)(n) < Uσ(2)(n) < . . . < Uσ(N)(n).

Now, consider a sequence of random variables (Ĩn)n∈Z, taking values in the alphabet {1, . . . , N}.
In words, Ĩn is the coordinate in Ũ(n− 1) of the neuron which spiked at time n, or equivalently,
the coordinate in Ũ(n− 1) of the potential which was reset at time n. Mathematically,

Ĩn = i⇐⇒ Ũi(n− 1) = Uk(n− 1) and Uk(n) = 0. (2.11)

To understand this definition, we give the following example

Example 2.2. Consider the sample X7
−5 of a chain with memory of variable length associated

to the probabilistic context tree (τ, p) given in the example 2.1. In this case, by the definition of
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(Ũ(n))n∈Z and (Ĩn)n∈Z we have:

U4 = (3, 0, 4, 6, 1)
σ4−→ Ũ4 = (0, 1, 2, 3, 6)

U5 = (4, 1, 3, 0, 2)
σ5−→ Ũ5 = (0, 1, 2, 3, 4) Ĩ5 = 5

U6 = (5, 2, 0, 1, 3)
σ6−→ Ũ6 = (0, 1, 2, 3, 5) Ĩ6 = 4

U7 = (0, 3, 1, 2, 4)
σ7−→ Ũ7 = (0, 1, 2, 3, 4). Ĩ7 = 5

For instance, when n = 7, ordering by using the last spiking time implies L1
7 < L3

7 < L4
7 < L2

7 < L5
7.

With this, we can define the permutation σ : I → I given by σ(1) = 1, σ(2) = 3, σ(3) = 4, σ(4) = 2
and σ(5) = 5. This is described in the figure 2.2 below

n

Xn

1

2

3

4

5

3 4 5 6 7

L1
7

L2
7

L3
7

L4
7

L5
7

n

Xn

3 4 5 6 7

1

3

4

2

5

σ7−→

Figure 2.2: Example of ordination by the last spiking time criterion.

An important feature of the arranged process in that, for any non-null configuration of the
process, if the process Ĩn is equal to N in N − 1 consecutive spiking times, then, in the (N − 1)-th
step, the process Ũn will be in the state (0, 1, . . . , N − 1). Formally,

Lemma 2.1. Given any symbol u ∈ Ω, suppose that Ũ(n) = ũ. If Ĩk = N , for k = n+ 1, . . . , n+
N − 1, then Ũ(n+N − 1) = (0, 1, . . . , N − 1).

Proof. Indeed, the event tIk = N for k = n + 1, . . . , n + N − 1, implies the following sequence of
implications

Ũn = (ũ1, ũ2, ũ3, ũ4, . . . , ũN ) ⇒ Ũn+1 = (0, ũ1 + 1, ũ2 + 1, ũ3 + 1, . . . , ũN−1 + 1)

⇒ Ũn+2 = (0, 1, ũ1 + 2, ũ2 + 2, . . . , ũN−2 + 2)

...

⇒ Ũn+N−1 = (0, 1, 2, 3, . . . , N − 1).

This lemma will be important in the prove of the following proposition.

Proposition 2.2. The stochastic process (Ũ(n))n∈Z defined in (2.10) is positive recurrent.

Proof. Given any ordered configuration ũ ∈ Ω̃, the probability of the neuron with the greatest
potential having a spike at time n is

P( Ĩn = N | Ũ(n− 1) = ũ) =
ϕ (ũn−1(N))∑N
i=1 ϕ (ũn−1(i))

≥ ϕ (ũn−1(N))

Nϕ (ũn−1(N))
=

1

N
, (2.12)

where the inequality is justified by the fact of ϕ being a non decreasing function.
In order to conclude the proof we shall define a coupling between the random variables (Ĩn)n∈Z

and a random variable with geometric distribution of parameter p = (1/N)N−1.
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Consider the random variable K taking values in N \ {0} defined as

K = inf

k ≥ 1 :

k(N−1)⋂
i=(k−1)(N−1)+1

{ξi ≤ 1/N}

 ,

where (ξn)n∈Z is a sequence of i.i.d random variables with uniform distribution in [0, 1). Under
this assumptions, we have that K is a random variable with geometric distribution of parameter
p = (1/N)N−1, therefore P(K <∞) = 1.

We can coupling the random variable K with the sequence (Ĩn)n∈Z on following way

(i) For each ũ ∈ Ω̃ define a partition (J ũi )i=1,...,N of interval [0, 1) as

J ũ1 = [0, p(N | ũ)), J ũ2 = [p(N | ũ), p(N | ũ) + p(1 | ũ)),

J ũk+1 =

[
p(N | ũ) +

k−1∑
i=1

p(i | ũ), p(N | ũ) +
k∑
i=1

p(i | ũ)

)
; k = 3, . . . , N − 1.

(ii) Define the function G : Ω̃× [0, 1)→ {1, . . . , N} by

G(ũ, z) = N · 1{J ũ1 }(z) +
N−1∑
i=2

(i− 1)1{J ũi }(z);

(iii) Define for all n ≥ 1, Ĩn = G(Ũ(n− 1), ξn).

Now, let T̃ (0,1,...,N) be the the time of first return after zero of the process (Ũ(n))n∈Z to the symbol
(0, 1, . . . , N). In this case,

T̃ (0,1,...,N) = inf{n ≥ 1 : Ũ(n) = (0, 1, . . . , N)}.

By the coupling above and the inequality (2.12) we have that

{K = k} =⇒
k(N−1)⋂

i=(k−1)(N−1)+1

{Ĩi = N},

and, by the remark 2.1, this implies that T̃ (0,1,...,N) ≤ K(N − 1).

Before prove the positive recurrence of (U(n))n∈Z we need the following lemma,

Lemma 2.2. Given u ∈ Ω, define T u→u = inf{n ≥ 1 : U(n) = u}. Then for all permutation
σ : {1, . . . , N} → {1, . . . , N} on the coordinates of u, it holds that

E(T u→u | U(0) = u) = E(T σ(u)→σ(u) | U(0) = σ(u)).

Proof. Indeed for any u, v ∈ Ω and any permutation σ : {1, . . . , N} → {1, . . . , N}, p(u | v) =
p(σ(u) | σ(v)). Then for any k ≥ 1,

P(T u→u = k | U(0) = u) =
∑

u1...,uk−1: ui 6=u
p(u1 | u) . . . p(u | uk−1)

=
∑

v1...,vk−1: vi 6=σ(u)

p(v1 | σ(u)) . . . p(σ(u) | vk−1)

= P(T σ(u)→σ(u) = k | U(0) = σ(u)). (2.13)

Analogously, for all ũ ∈ Ω̃ define T̃ ũ→ũ = inf{n > 0 : Ũ(n) = ũ} the time of first return after 0
of the process (Ũ(n))n∈Z to the state ũ. It not difficult see that
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Lemma 2.3. For any vector u ∈ Ω, define ũ ∈ Ω̃ the ordered vector. The event when the process
(U(n))n∈Z return to u for the first time at same time that the process (Ũ(n))n∈Z return to ũ also
for the first time has positive probability. Formally,

P(T̃ ũ→ũ = T u→u | U(0) = u) > 0.

Theorem 3. The stochastic Markov chain (U(n))n∈Z whose the transition probabilities are given
by (2.8) is positive recurrent. In particular, we have that the stochastic chain (Xn)n∈Z with memory
of variable length compatible with the probabilistic context tree (τ, p), where τ is given by (2.2) and
p by (2.3), is positive recurrent.

Proof. First of all, observe that, since (U(n))n∈Z is an irreducible and aperiodic Markov process,
it is enough to prove that E(T u→u | U(0) = u) <∞, for u ∈ Ω ∩ Ω̃.

Let u ∈ Ω ∩ Ω̃, σ : {1, . . . , N} → {1, . . . , N} be a permutation and define T σ = inf{n ≥ 1 :
U(n) = σ(u)}, then it holds that

E(T̃ u→u | Ũ(0) = u) =
∑
σ

P(U(0) = σ(u) | Ũ(0) = u)E(T̃ u→u | U(0) = σ(u)). (2.14)

But, using that P(A ∩B) ≤ P(A) and the Lemma 2.2, we have that

E(T̃ u→u | U(0) = σ(u)) ≥
∑
k≥1

k · P(T̃ u→u = k, T̃ u→u = T σ | U(0) = σ(u))

= P(T̃ u→u = T σ | U(0) = σ(u))E(T σ | U(0) = σ(u))

where in the equality use used that P(T̃ u→u = k | T̃ u→u = T σ) = P(T σ = k). Finally, using Lemma
2.2 and replacing the last inequality in (2.14), we get

E(T̃ u→u | Ũ(0) = u)

≥
∑
σ

P(U(0) = σ(u) | Ũ(0) = u)P(T̃ u→u = T u→u | U(0) = u)E(T u→u | U(0) = u)

= P(T̃ u→u = T u→u | U(0) = u)E(T u→u | U(0) = u).

Then, the Lemma 2.3 implies that E(T u→u | U(0) = u) <∞.

In the next theorem we finally prove that the positive recurrence of the skeleton (Xn)n∈Z implies
the positive recurrence of the jumping process with memory of variable length (η(t))t∈R. For this
end, we need introduce two sequences of stopping times (T η,i)i∈N and (TX,i)i∈N which are the first
return time after zero of the processes (η(t))t∈R and (Xn)n∈Z to the symbol i. Formally,

T η,i = inf{t > 0 : η(t) = i} and TX,i = inf{n ≥ 1 : Xn = i}. (2.15)

Theorem 4. Let (η(t))t∈R be the jumping process with memory of variable length associated to
the probabilistic context tree (τ, p) given by (2.2) and (2.3), and (Xn)n∈Z be its skeleton . For any
i ∈ N , considering T η,i and TX,i as in (2.15), it holds that

E
[
T η,i | η(0) = i

]
≤ 1

N−1∑
l=0

ϕ(l)

E
[
TX,i | X(0) = i

]
.

In particular, the stochastic jumping process (η(t))t∈R is positive recurrent.

Proof. First of all, observe that for any time after each neuron having spiked at least once the
minimum spiking rate of the system becomes

∑N−1
l=1 ϕ(l) := q0. Moreover, the proof of Proposition
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2.2 implies that the event each neuron spike at least once happens with probability 1. Therefore
we shall assume, without lost of generality, that at time 0 the spiking rate of the system is at least
q0. Now, denoting T η,i and TX,i, respectively by T η and TX , and E[A | η(0) = i] = Ei[A] it holds,

Ei[T η] =

∞∑
k=1

Ei[T η = Tk | Tk <∞]Ei[Tk <∞]

≤ 1

q0

∞∑
k=1

Ei[η(Tk) = i | Tk <∞]

Seeing that Ei[η(Tk) = i | Tk <∞] = E[X(k) = i | X(0) = i], we finish the proof.

Since the Markov chain (U(n))n∈Z is positive recurrent suppose that µ is an invariant measure
for process. The Lemma (2.2) and the Käc’s Lemma implies that following result.

Lemma 2.4. Let µ be an invariant measure of the chain of potentials (U(n))n∈Z whose the tran-
sition probabilities are given by (2.8). For any u ∈ Ω and for any permutation σ of {1, . . . , N}, it
is truth that

µ(u) = µ(σ(u)).

The next corollary states that, if we generate the processes (U(n))n∈Z and (Ũ(n))n∈Z in the same
space of probabilities, given an ordered configuration ũ of the process (Ũ(n))n∈Z, the probability
of the non-ordered process being in a permutation of ũ is uniform in the set of all permutations of
{1, . . . , N}.

Corollary 2.1. Suppose that U(0) = u0, where u0 was chosen using the invariant measure µ of the
process (U(n))n∈Z. Then, for any n ≥ 0, conditioned on Ũ(n) = ũ, U(n) is chosen with distribution
uniform in the set of all possible permutations of {1, . . . , N}. In other words,

P(U(n) = σ(u) | Ũ(n) = ũ) = 1/N !,

for any n ≥ 0 and all σ permutation of {1, 2, · · · , N}.

Proof. Indeed, for any n ≥ 0,

P(U(n) = σ(u) | Ũ(n) = ũ) =
P(U(n) = σ(u))∑N !
i=1 P(U(n) = σi(u))

=
µ(σ(u))∑N !
i=1 µ(σi(u))

=
1

N !
,

where the last equality comes from the lemma (2.4).

This corollary give us an idea of how we could to do a perfect simulation of the process (η(t))t∈R.

2.1.2 Perfect Simulation

The goal of this section is present an algorithm able to generate, for any −∞ < m < n <∞, a
sample Xm, . . . , Xn of the stationary process (η(t))t∈R.

Let (η(t))t∈R be a jumping process with memory of variable length associated to the probabilistic
context tree (τ, p) defined in (2.2) and (2.3) and the rate function q described in (2.5). Fixed the
two constants −∞ < m < n <∞, consider a sequence of i.i.d random variables (ξ)n∈Z and define
the event

θ[m,n] = sup

{
k ≤ m−N :

k+N−1⋂
l=k

{ξl < 1/N}

}
. (2.16)

Observe that in the Proposition 2.2 we proved that P(θ[m,n] < −∞) = 1. Moreover,

θ[m,n] =⇒ Ĩθ[m,n] = . . . = Ĩθ[m,n]+N−1 = N

=⇒ {X(θ[m,n]), . . . , X(θ[m,n] +N − 1)} = N ,
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where the sequence (Ĩn)n∈Z is the one defined in (2.11), and this implies that the process (Xn)n∈Z
loses memory at θ[m,n].

Define, for each w ∈ τ , the following partition of the interval [0, 1)

JX(1 | w) =
[
0, p(1 | w)

)
and JX(i | w) =

[ i−1∑
k=1

p(k | w),
i∑

k=1

p(k | w)
)
, (2.17)

for i = 2, . . . , N . By construction, λ(JX(i | w)) = p(i | w), where λ denote the Lebesgue measure
in the the interval [0, 1).

In order to construct of the jumping process (η(t))t∈R we need define two functions. The first
one is a function F : [0, 1)×N−N → I which give us a time evolution of the skeleton of (Xn)n∈Z,
given whole the past

F (z, x−1
−∞) =

∑
i∈N

i · 1{z ∈ JX(i | cτ (x−1
−∞)}. (2.18)

Note that, if we define Xn+1 = F (ξn+1, X
n
−∞), then

P(F (ξn+1, X
n
−∞) = i) = P(ξn+1 ∈ JX(i | cτ (Xn

−∞)) = p(i | cτ (Xn
−∞)). (2.19)

So, we can generate a sample of the chain (Xn)n∈Z using the function f and the partitions JX as
in (2.18).

Now, consider a second function G : [0, 1)×N−N × R→ N × R defined as

G(z, xn−∞, t) =
(
F (z, xn−∞) , t− 1

q(cτ (xn−∞))
log z

)
. (2.20)

Then, the algorithm is given by

Theorem 5 (Existence and uniqueness). P-a.s for all −∞ < m ≤ n < +∞, the Algorithm ??
returns a sample of the unique stationary chain compatible with the jumping process (η(t))t∈R with
memory of variable length associated to the probabilistic context tree (τ, p), satisfying (2.2) and
(2.3), and with rate function q : τ → (0,∞) satisfying (2.5).

Compatibility proof. Since θ[m,n] is finite and by definition of τ , for all n ∈ Z, always holds that
cτ (Xn+1

−∞ ) � cτ (Xn
−∞)Xn+1, this implies that θ[m + 1, n] ≤ θ[m,n], for all m ≤ n. Therefore, the

sample which the Algorithm ?? returns{
(X(ξθ[m,n]), T (ξθ[m,n])), (X(ξθ[m,n]+1), T (ξθ[m,n]+1)), . . . , (X(ξn), T (ξn))

}
is the same sample which we obtain using the whole past, and we can define it recursively for
θ[m,n] ≤ j ≤ n by using that

(Xj , Tj) =
(
F (ξj , X

j−1
θ[m,n]) , Tj−1 −

1

q(cτ (Xj−1
θ[m,n]))

log ξj

)
. (2.21)

We need to show (X(ξn))n∈Z is a chain with memory of variable length compatible with the
probability tree (τ, p), as in the assumption of theorem, and also the sequence of random variables
(Tn(ξn)−Tn−1(ξn−1))n∈Z have exponential distribution with rate q(cτ (Xn

−∞)), when Xn
−∞ is given.

First of all, observe that, since the random variables (ξn)n∈Z are independent

E[1{X(ξ0) = i} | ξ−1
−∞] = E[1{ξ0 ∈ JX(i | cτ (X(ξ−1

−∞)))} | ξ−1
−∞]

= E[1{ξ0 ∈ JX(i | cτ (X(ξ−1
−∞)))}]

= p(i | cτ (X(ξ−1
−∞))),
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what implies that E[1{X(ξ0) = i} | ξ−1
−∞] is F(X(ξ−1

−∞))-measurable. Thus, since F(X(ξ−1
−∞)) ⊂

F(ξ−1
−∞), we get that

E
[
1{X(ξ0) = i} | X(ξ−1

−∞)
]

= E
[
E[1{X(ξ0) = i} | ξ−1

−∞] | X(ξ−1
−∞)

]
= p(i | cτ (X(ξ−1

−∞))).

In other words, P(X(ξ0) = i | X(ξ−1
−∞)) = p(i | cτ (X(ξ−1

−∞))) and (X(ξn))n∈Z is a chain with
memory of variable length compatible with the probability tree (τ, p).

Now, by definition, for all θ[m,n] ≤ j ≤ n

P(Tj+1(ξj+1)− Tj(ξj) > t | ξj−∞) = P
(
− 1

q(cτ (Xj
−∞))

log ξj+1 > t
∣∣∣ ξj−∞)

= P
(
ξj+1 < exp{−tq(cτ (Xj

−∞))}
∣∣∣ ξj−∞)

= exp{−tq(cτ (Xj
−∞))}.

Therefore, E
[
1{Tj+1(ξj+1)− Tj(ξj) > t} | ξj−∞

]
is F(X(ξj−∞))-measurable and the following equal-

ities are true

P
(
Tj+1(ξj+1)− Tj(ξj) > t | X(ξj−∞)

)
= E

[
E
[
1{Tj+1(ξj+1)− Tj(ξj) > t} | ξj−∞

]
| X(ξj−∞)

]
= E

[
1{Tj+1(ξj+1)− Tj(ξj) > t} | ξj−∞

]
= exp{−tq(cτ (Xj

−∞))}.

For the next step we need define in a equivalent way the stopping time θ[n], for any n ≥ 0.

Stationarity proof. Define ξ = (ξn)n∈Z ∈ [0, 1)Z. It is enough to show that (U(Tξ))n = (U(ξ))n+1

where T : [0, 1)Z → [0, 1)Z is the translation operator T (ξn) = ξn+1. In order to clean the nota-
tion, we will denote the translated sequence as ξ′ = (Tξj)j∈Z and its respective stopping time as
θ′[m,n] = θ[m,n](ξ′).

Note that, the following sequence of implication are truth

θ[n+ 1] = m+ 1 ⇐⇒ m+ 1 = sup

m ≤ n+ 1 :

m+N⋂
j=m+1

{ξj ≤ 1/N}


⇐⇒ m = sup

m ≤ n :

m+N−1⋂
j=m

{ξ′j ≤ 1/N}


⇐⇒ θ′[n] = m.

Therefore, θ′[n] = θ[n+ 1]− 1.
Now, assume that U(ξ)θ[n+1] = σ({0, . . . , N}) and U(ξ′)θ′[n] = σ′({0, . . . , N}) where σ and

σ′ are both permutations of {0, 1, . . . , N}. So, we can suppose, without lost of generality, that,
U(ξ′)θ′[n] = σ

(
U(ξ)θ[n+1]

)
but then, U(ξ′)θ[n+1]−1 = σ

(
U(ξ)θ[n+1]

)
for some σ permutation of

{0, . . . , N}.
Suppose that U(ξ′)j = σ (U(ξ)j−1), for all θ[n+ 1] ≤ j ≤ l, and remember that (U(n))n∈Z is a
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Markov chain with memory of length 1, then

U(ξ′)l =
∑
j∈N

∆j(U(ξ′)l−1)1{ξ′l ∈ JU(j | U(ξ′)l−1)}

=
∑
j∈N

∆j (σ(U(ξ)l)) 1{ξl+1 ∈ JU(j | σ(U(ξ)l))}

=
∑
j∈N

σ
(
∆σ−1(j)(U(ξ)l)

)
1{ξl+1 ∈ JU(σ−1(j) | σ(U(ξ)l))}

= σ(U(ξ)l+1).

Thus, by the Lemma 2.4, for all l ≥ θ[n+ 1]− 1

P
(
U(ξ′)j | U(ξ′)j−1

)
= P (σ(U(ξ)j+1) | σ(U(ξ)j)) = P (U(ξ)j+1 | U(ξ)j) .

Moreover, if U(ξ′)l = σ(U(ξ)l+1) then, ϕ
(∑

j∈N U(ξ′)l(j)
)

= ϕ
(∑

j∈N U(ξ)l+1(j)
)

and (Tl+1−
Tl)(ξ

′)
D
= (Tl+2 − Tl+1)(ξ) where

D
=, means the equality in distribution.



Chapter 3

A model for neural activity in the
absence of external stimuli

3.1 Introduction

We study the behavior of a system of interacting neurons in the absence of external stimuli our
goal being (i) to determine the long-run behavior of the process with a finite number of neurons,
(ii) to study the hydrodynamic limit for this system and (iii) to investigate the possible invariant
distributions for the limiting process (the process we obtain by taking the number of neurons
to infinity). Our system is composed of N neurons whose state at time t ≥ 0 is specified by
U(t) = (U1(t), . . .UN (t)), with U(t) ∈ RN+ . For each neuron i = 1, . . . , N and each time t ≥ 0, Ui(t)
represents the membrane potential of neuron i at time t. We consider two kinds of interactions
among neurons and also a constant interplay between neurons and the environment.

More precisely, the neurons interact via electrical and chemical synapses. Electrical synapses
are due to so-called gap-junction channels between neurons which induce a constant sharing of
potential, pushing the system towards its average value. By contrast, chemical synapses are point
events which can be described as follows. Each neuron spikes randomly at rate ϕ(U) ≥ 0 which
depends on its membrane potential U, we suppose ϕ a non decreasing function, positive at U >
0 and both integrable and vanishing at 0 (in agreement with the assumption of non external
stimuli). When neuron i spikes, its membrane potential is immediately reset to a resting potential
0. Simultaneously, the neurons which are influenced by neuron i receive an additional positive value
to their membrane potential. This value may vary for each pair of neurons. Moreover, in the whole
time, the neurons loose potential to the environment, due to leakage channels which pushes down
the membrane potential of each neuron toward zero. This outgoing constant flow of potential is
defined as leak currents. For technical details we refer the reader to Gersnter and Kistler (2002).

Our system is inspired by the one introduced in Galves and Löcherbach (2013) and De Masi
et al. (2014). This model is an example of piecewise-deterministic Markov processes (PDPs) intro-
duced by Davis [Dav84]. Such processes combine random jump events, the chemical synapses, with
deterministic continuous evolutions, in our case due both to electrical synapses and the leak cur-
rent. The PDPs have been used also to model neuronal systems by other authors, see for instance
the papers [?], [DMGLP15], [FL14] and [RT14].

Chemical synapses and leakage make the system non-conservative. Moreover, there is an evident
competition between the incoming energy induced by the spikes and the outgoing energy induced
by leak currents. Therefore it is natural to ask about the limiting behavior of the system as time
t→∞. The results presented in Theorem 8 and Theorem 9 provide a complete description of the
asymptotic distribution of the process with a finite number of neurons. The theorem 8 states that
under the presence of the leakage then almost surely there are only a finite number of spikes and
the system converges to an “inactive global state” interpreted as “brain sleep”. When the leakage
is absent we prove that the process is Harris-Recurrent, whenever the initial configuration is non
null. This is the content of the Theorem 9.

15
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We then, in the Theorem 10, derive an hydrodynamic equation for the process as the number of
neurons N diverges. More specifically, it is shown that the distribution of the membrane potentials
becomes deterministic and it is described by a density ρt(u) which is proved to obey a nonlinear
PDE. For this we work under the mean-field assumption, that is, whenever a neuron spikes it adds
the value 1/N to the membrane potential of all other neurons.

Finally, we investigate the possible invariant measures for the limiting process. We show, in
the Theorem 11, that the limiting process has exactly two invariant measures. In Theorem 12, we
provide conditions for extinction or not of this limiting process.

3.2 Model definition and main results

Let N = {1, · · · , N} be a finite set of neurons, for some fixed integer N ≥ 1 and consider the

family of non-negative synaptic weights (Wi→j)i,j∈N ∈ R
(N2 )
+ such that Wi→i = 0 for all i ∈ N . The

value Wi→j corresponds to the value added to the membrane potential of neuron j whenever the
neuron i spikes.

We consider a continuous time Markov process

U(t) = (U1(t), . . . ,UN (t)), t ≥ 0,

taking values in RN+ , whose infinitesimal generator is given for any smooth test function f : RN+ → R,
by

Lf(u) =
∑
i∈N

ϕ(ui)[f(∆i(u))− f(u)]− λ
∑
i∈N

(
∂f

∂ui
(u)[ui − ū]

)
− α

∑
i∈N

(
∂f

∂ui
(u)[ui]

)
, (3.1)

where, for all i ∈ N , ∆i : RN+ → RN+ is defined by

(∆i(u))j =

{
uj +Wi→j , if j 6= i
0, if j = i

,

λ, α ≥ 0 are positive parameters modelling, respectively, the strength of electrical synapses and the
leakage effect, ū = 1

N

∑N
i=1 ui and

Assumption 3.1. ϕ is a non-decreasing real-valued function satisfying the conditions ϕ(0) = 0
and ϕ(u) > 0 for u > 0.

The assumption 3.1 implies that external stimuli are not considered. This is a consequence of
the condition ϕ(0) = 0. In addition, from the neurobiological point of view, it is reasonable to
assume that ϕ is a non-decreasing function since an addition in the membrane potential increases
the probability of a spike to occur.

The first term in (3.1) depicts how the chemical synapses are incorporated in our model. Neurons
whose potential is u spike at rate ϕ(u). Intuitively this means that for any initial configuration
u ∈ RN+ of the membrane potentials

P(U(t) = ∆i(u) | U(0) = u) = ϕ(ui)t+ o(t), as t→ 0

Thus, the function ϕ is called firing or spiking rate of the system.
The second and third terms in (3.1) represent the electrical synapses and the leak current

respectively. They describe the deterministic time evolution of the system between two consecutive
spikes. More specifically, in an interval of time [a, b], without occurrence of spikes in the whole
system, the membrane potential of neuron i ∈ N obeys the following ordinary differential equation

d

dt
Ui(t) = −αUi(t)− λ(Ui(t)− Ū(t)). (3.2)
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Notice that the first term of the right-hand side of (3.2) pushes simultaneously all neurons to the
resting state, while the second term tends to attract the neurons to the average potential.

Our first theorem proves the existence of the process.

Theorem 6. Let ϕ : R+ → R+ be any function satisfying the Assumption 3.1. For any N ≥ 1 and
any u ∈ RN+ there exists a unique strong Markov process Uu(t) taking values in RN+ starting from
u whose generator is given by (3.1).

Proof. Let Ni(t), t ≥ 0, be the simple point process on R+ which counts the jump events of neuron
i ∈ N up to time t. Define Ei =

∑
j 6=iWi→j and E = maxi∈N Ei and, following De Masi et al.

(2014), consider the following random variable, for all t > 0,

k(t) =
∑
i∈N

∫ t

0
1{Uu

i (s−) ≤ 2E}dNi(s).

The random variable k(t) counts the number of spikes of neurons whose the potential is at most
2E up to time t.

Suppose Ui fires at time t, in this case

Ūu(t) =
1

N

∑
j 6=i

(
Uu
j (t−) +Wi→j

)
= Ūu(t−) +

1

N

(
Ei −Uu

i (t−)
)
.

Now, using the expression of Ū(t) above and adapting the proof of Theorem 1 of De Masi et al
(2014), we have the following inequalities for all t > 0,

Ūu(t) ≤ Ūu(0) +
E

N
k(t), EN(t) ≤ NŪ(0) + 2Ek(t) and ||Uu(t)|| ≤ (N + 1)||Uu(0)||+ 2Ek(t),

where ||Uu(t)|| = maxi∈N Uu
i (t).

Since we can bound Ek(t) by a Poisson process of intensity Nϕ(2E), the second inequality
above shows that number of jumps of the process is finite almost surely on any finite time interval.
To conclude the proof just note that the construction of the process can be achieved by gluing
together trajectories given by the deterministic flow between successive jump times. This procedure
is feasible since the number of jumps of the process is finite on any finite interval.

Now, we shall present an elementary argument which shows that for all leakage rate α large
enough and if the firing rate ϕ is globally Lipschitz with ϕ(0) = 0, the system goes extinct. This
result was the starting point of this paper. The idea of this proof was taken from discussions with
Galves and Löcherbach. The result is the following.

Theorem 7. For any N ≥ 1, α ≥ 0, λ ≥ 0 and c-Lipschitz function ϕ : R+ → R+ such that c > 0
and ϕ(0) = 0, the following inequality holds, for all t ≥ 0 and u ∈ RN+ ,

E[Ūu(t)] ≤ ūet(α∗c−α),

where α∗ = max
k∈N

∑
j∈N Wj→k. In particular, if α > α∗c, then the process goes extinct.

Proof. For each i ∈ N , plugging f = πi in (3.1), where πi is the projection onto the i-th coordinate,
we have

d

dt
E[Uu

i (t)] =
∑
j∈N

Wj→iE[ϕ(Uu
j (t))]− E[Uu

i (t)ϕ(Uu
i (t))]− αE[Uu

i (t)]− λE[Uu
i (t)− Ūu(t)].

Summing over all i ∈ N and then using that ϕ is a non-negative c-Lipschitz function such that
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ϕ(0) = 0, it follows that

d

dt
E[Ūu(t)] ≤ (α∗c− α)E[Ūu(t)].

Therefore applying the Grownwall’s lemma to the inequality above we finish the proof.

Even assuming that the firing rate ϕ satisfies only the Assumption 3.1, we claim that for any
fixed number of neurons, the presence of the leak current is a necessary and sufficient condition for
the extinction of the process. In fact, we shall prove a stronger result. It states that, if there is the
leakage, there will be only a finite number of spikes eventually almost surely. On the other hand,
it is shown that, excluding the trivial initial configuration, the system is ergodic when there is no
leakage. In particular, this results generalize the Theorem 7 above.

In order to state our main result, we need to introduce some extra notation and new assumption.

Assumption 3.2. Assume that there exists a constant r > 0 such that

r∫
0

ϕ(u)

u
du < +∞.

For each neuron i ∈ N , let T i1 = inf{s > 0 : Ui(s) = 0} be the first spiking time of neuron i
and for each k ≥ 2, let T ik = inf{s > T ik−1 : Ui(s) = 0} be the k-th spiking time of neuron i. Then,
the first and the k-th spiking time of the system are defined respectively by

T1 = inf
i∈N

T i1 and Tk = inf
i∈N ,m≥1

{T ik > Tm−1}, k ≥ 2. (3.3)

Our main theorem is given below.

Theorem 8. Let (Uu(t))t≥0 be the Markov process, with Uu(0) = u ∈ R+, whose the infinitesimal
generator is given by (3.1) and Tk be as defined in (3.3). Assume that ϕ satisfies the Assumptions
3.1 and 3.2 with r > max

i∈N

∑
j∈N

Wj→i. Then for any α > 0 and λ ≥ 0,

P
(∑
k≥1

1{Tk <∞} <∞
)

= 1.

Corollary 3.1. Under the same hypothesis of Theorem 8, for all i ∈ N and u ∈ RN+ , it holds

lim
t→+∞

Uu
i (t) = 0 a.s.

In particular, the delta of Dirac at the point 0N , δ0N , is the unique invariant measure for the process
in the presence of leak currents.

Example 3.1 (Mean-field type of interactions). Suppose that Wi→j = N−1 for all i, j ∈ N , i 6= j.
In this case, maxi

∑
iWi→j = (N −1)/N < 1. In this case the hypothesis of Theorem 8 are fulfilled

if, for instance, the spiking rate ϕ satisfies

1∫
0

ϕ(u)

u
du < +∞.

It remains to analyse what happens in the long-run behavior of the system in the absence of the
leakage. This is the content of the next result which require an assumption on the interaction graph
induced by the synaptic weights (Wi→j)i,j∈N . We shall assume also that each neuron influence and
it is influenced by at least one other neuron. Formally,
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Assumption 3.3. For each neuron i ∈ N there exist at least two neurons j, j′ ∈ N \ {i} such
that Wi→j > 0 and Wj′→i > 0.

Theorem 9. Let (Uu(t))t≥0 be the Markov process, with Uu(0) = u, whose the infinitesimal gen-
erator is given by (3.1) with α = 0. Under the Assumptions 3.1 and 3.3, for all u ∈ RN+ \ {0N},
the process (Uu(t))t≥0 is Harris Recurrent. In particular, in this case the process (Uu(t))t≥0 does
not go extinct.

3.3 Proof of Theorem 8

In what follows we shall drop de superscript u from Uu(t) unless some confusion may arises.
First of all, observe that, from the equation (3.2), for any time t ∈ [Tn, Tn+1),

Ui(t) = Ui(Tn)e−(α+λ)(t−Tn) + Ū(Tn)e−α(t−Tn)
(
1− e−λ(t−Tn)

)
. (3.4)

We shall explore this equation many times.
We start giving a lower bound to the probability of having no spikes when the system starts

with a initial condition small enough.

Proposition 3.1. Let (U(t))t∈R be the Markov process whose the generator is given by (3.1),
‖U(t)‖ = max{Ui(t), i ∈ N} be the maximum potential of the system at time t and T1 as defined
in (3.3). Suppose that ϕ satisfies the Assumptions 3.1 and 3.2. If α > 0, then

P(T1 =∞ | ‖U(0)‖ < r) ≥ e−
N
α

∫ r
0
ϕ(u)
u
du > 0.

Proof. By the equation (3.4), we have, for all 0 ≤ t < T1, the following inequality

‖U(t)‖ ≤ r[e−(α+λ)t + e−αt(1− e−λt)] = re−αt. (3.5)

Using the inequality above and the non-decreasing assumption on ϕ, we have

P(T1 > t | ‖U(0)‖ < r) ≥ exp

{
−
∫ t

0
Nϕ(‖U(s)‖)ds

}
≥ exp

{
−N
α

∫ r

re−αt

ϕ(u)

u
du

}
. (3.6)

Therefore, taking t to infinite, the result follows.

Lemma 3.1. For any fixed u ∈ RN+ , with ‖u‖ > R0 > 0, there exists t0 = t0(u) > 0 such that
∀t ≥ t0 it holds that

P
(
‖U(t)‖ ≤ R0 | U(0) = u

)
≥ exp {−Nϕ(‖u‖)t0} > 0 (3.7)

Proof. First of all, observe that by equation (3.4), for all i ∈ N , we get for t < T1

‖Ui(t)‖ ≤
(
‖ui‖ − ū

)
e−αt + ūe−αt = ‖ui‖e−αt.

Taking t0 = − 1
α log R0

‖u‖ we have that, ∀t ≥ t0

P
(
‖U(t0)‖ ≤ R0 | U(0) = u

)
≥ P

(
T1 > t0 | U(0) = u

)
≥ exp {−Nϕ(‖u‖)t0} .
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Proposition 3.2. Under the same hypothesis of Proposition 3.1. For θ < (α+ λ)−1, it holds that

P(T1 > θ | ‖U(0)‖ > r) ≤ e−θϕ(β) < 1,

where β = β(θ) = r(1− (α+ λ)θ) > 0.

Proof. Indeed,

P(T1 > θ | ‖U(0)‖ > r) ≤ exp

{
−
∫ θ

0
ϕ(‖U(s)‖)ds

}
. (3.8)

Moreover, by (3.4) for all 0 < s ≤ θ is true that

‖U(s)‖ ≥ ‖U(0)‖e−(α+λ)s ≥ re−(α+λ)s ≥ r(1− (α+ λ)θ). (3.9)

From (3.8) and (3.9) we deduce the desired inequality

P(T1 > θ | ‖U(0)‖ ≥ r) ≤ e−θϕ(β) < 1.

Remark 3.1. To prove the last result we use only the lower bound of ‖U(0)‖. So that the same
result remain true if we suppose a upper bound for it. Thereafter, when necessary we shall use the
last proposition in the form

P
(
T1 > θ | r < ‖U(0)‖ ≤ R0

)
≤ e−θϕ(β) < 1.

The next result claims that even when the maximum potential is large, but smaller than R0,
there is a positive probability of all potentials become smaller that r after a fix time T > 0.

Before state the result, we shall define some new variables. Let (Sm)m≥1 be the sequence of
spiking neurons of the system. The event {Sm = i} means that the Ui(Tm) = 0. Besides, for a
given u, define the sequence vk = vk(u), in the following way: v0 = u and for k = 1, . . . , N ,

(vk)i =
(
ui +

k∑
j=1

Wj→i

)
1{i>k} +

k∑
j=i+1

Wj→i1{i<k} i = 1 . . . , N.

Remark 3.2. An important fact here is that, by definition, ‖vN (u)‖ ≤ maxi∈N
∑

j∈N Wj→i, for

any u ∈ RN+ .

We shall prove the next lemma for a specific sequence of spikes, but the same result remain
true for any sequence S1, . . . , SN such that {S1, . . . , SN} = N . The proof can be adapted changing
the sequence v(u) depending on the order of the spikes.

Lemma 3.2. For any fixed u ∈ RN+ conditioning to the event S = {Sk = k, k = 1, . . . , N}

Uu
i (Tk) =

(
vk(u)

)
i
+Rθ(u, T

k
1 ), k = 1 . . . , N,

where T k1 = (T1 . . . , Tk) and Rθ(u, T
k
1 ) is a function of T k1 = (T1, . . . Tk) and u which goes to zero

when θ → 0.

Proof. The proof is made by induction in k and since u is fixed, we shall omit the argument u in
Rθ and v. Define, for commodity T0 = 0, and consider the event

Mθ =
{
Tk − Tk−1 < θ, k = 1, . . . , N

}
.

In words, Mθ is the event in which the first k inter-spikes intervals have length smaller than θ.



3.3 PROOF OF THEOREM ?? 21

Note that, given Mθ ∩ S, making use of the series expansion of the exponential function in the
equation (3.4), we have that U1(T1) = 0 and we can write, for all i = 2, . . . , N,

Ui(T1) = W1→i +
(
ui − ū

)(
1 +Rθ(T1)

)
+ ū
(
1 +Rθ(T1)

)
= (v0)i +Rθ(T1)

Suppose that, for a fixed k = 2, . . . , N − 1, the lemma is true. So, in particular we have that
Ū(Tk) = v̄k + Rθ(T

k
1 ). Now, by hypothesis, Uk+1(Tk+1) = 0 and, using the same arguments as

before, for all i 6= k

Ui(Tk+1)

= Wk+1→i +
(
(vk)i − v̄k +Rθ(T

k
1 )
)(

1 +Rθ(T
k+1
1 )

)
+ (v̄k +Rθ(T

k
1 ))
(
1 +Rθ(T

k+1
1 )

)
= (vk+1)i +Rθ(T

k+1
1 )

Proposition 3.3. Consider (U(t))t∈R the Markov process whose the generator is given by (3.1),
‖U(t)‖ and T1 as in proposition 3.1. Suppose that ϕ satisfies the Assumption 3.1 and α > 0. If
r > max

i∈N

∑
j∈N

Wj→i, then there exists T > 0 such that, for all R0 > 0,

P
(
‖U(T )‖ < r | r ≤ ‖U(0)‖ ≤ R0

)
> 0.

Proof. Define τ0 = 0 and for k ≥ 1, τk is the k-th spike of the neuron with the largest potential,
formally,

τk = inf
{
t > τk−1 :

⋃
i∈N
{‖U(t−)‖ = Ui(t

−),Ui(t) = 0}
}
. (3.10)

Now, take θ < (α+ λ)−1 (this is possible since α > 0). By the proposition 3.2, and its Remark, it
holds that

P
(
T1 < θ, T1 = τ1 | r ≤ ‖U(0)‖ ≤ R0

)
≥
(

1− e−θϕ(β)
) 1

N
.

Define Rθ = max{Rθ(u, T k1 ) : ‖u‖ ≤ R0} and, if necessary, take a smaller θ in such a way that
r > maxi∈N

∑
j∈N Wj→i + Rθ (it is possible since Rθ(u, T

k
1 ) → 0 when θ → 0). Now, consider

T0 = 0, T = Nθ and the following sequence of events

A1 = {T1 < θ, T1 = τ1, ‖U(T1)‖ < r, T2 > T},

and for l = 2 . . . , N ,

Al =
{
∩lk=1 {Tk < Tk−1 + θ, Tk = τk, },∩l−1

k=1{‖U(Tk)‖ > r}, ‖U(Tl)‖ < r, Tl+1 > T
}
.

The event Ak corresponds to the following situation. At the first k − 1 consecutive spikes of the
maximum, there always exists at least one neuron whose potential is larger than r. But at k-th
spike of the maximum of all membrane potentials get less than r and no more spikes happen up
to time T .

From the definitions of θ and the events Ak we have

{‖U(T )‖ < r} ⊇
N⋃
k=1

Ak.

Wherefore, it suffices to compute the probability of each event Ak above, conditioned to the

event {‖U(0)‖ > r}. Now, defining β0 =
(
1− e−θϕ(β)

)
1
N , and β1 = exp

{
−N
α

∫ r
re−αNθ

ϕ(u)
u du

}
, by
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the proposition 3.2 and the inequality (3.6), it follows that

P(A1 | r ≤ ‖U(0)‖ ≤ R0) > β0β1P(‖U(T1)‖ < r | r ≤ ‖U(0)‖ ≤ R0, T1 < θ, T1 = τ1).

Similarly, we have

P(A2 | r ≤ ‖U(0)‖ ≤ R0) > β2
0β1P(‖U(T1)‖ > r | ‖r ≤ ‖U(0)‖ ≤ R0, T1 < θ, T1 = τ1)

×P(‖U(T2)‖ < r | ‖U(T1)‖ > r, T2 < T1 + θ, T2 = τ2).

Thus, summing the two inequalities above and using that A1 ∩ A2 = ∅ and that P(A) +
P(Ac)P(B) ≥ P(B), we get the following lower bound for A1 ∪A2,

P(A1 ∪A2 | r ≤ ‖U(0)‖ ≤ R0) > β2
0β1P(‖U(T2)‖ < r | ‖U(T1)‖ > r, T2 < T1 + θ, T2 = τ2).

Proceeding in this way for the other terms, we obtain that

P(‖U(T )‖ < r | r ≤ ‖U(0)‖ ≤ R0)

> βN0 β1P
(
‖U(TN )‖ < r | ‖U(TN−1)‖ > r,∩Nk=1{Tk < Tk−1 + θ, Tk = τk}

)
.

On the other hand, by definition of AN , is clear that AN ⊆ Mθ ∩ S, where Mθ and S were
defined in the proof of Lemma 3.2. Then by the Lemma 3.2 and the choose of θ, it follows that

Ui(T ) ≤
N∑

j=i+1

Wj→i +Rθ < r, i = 1, . . . , N − 1, and UN (T ) = Rθ < r

so that,

P
(
‖U(T )‖ < r | ‖U(TN−1)‖ > r,∩Nk=1{Tk < Tk−1 + θ, Tk = τk}

)
= 1.

As a consequence of proposition 3.3 we have

Corollary 3.2. Le T > 0 be the positive constant given by the proposition 3.3. Define the stopping
times R1 = inf{n ≥ 1; ‖U(nT )‖ ≤ r} and Rk = inf{n ≥ Rn−1; ‖U(nT )‖ ≤ r} for all k ≥ 2. Then,
under the same hypothesis of the proposition 3.3,

∞∑
k=1

1{Rk <∞} =∞ P− a.s.

Proof of Theorem 8. For this proof we must define the following stopping times: K1 = inf{n ≥ 1 :
Tn > R1T}, J1 = inf{n ≥ 1 : RnT > TS1}, and for k ≥ 2, Kk = inf{n > Jk−1 : Tn > RJk−1

T} and
Jk = inf{n ≥ 1 : RnT > TSk−1

}. From corollary 3.2 all these stopping times are well defined. Now,
from Theorem 6 and the definition of Kk

1 = P

( ∞⋂
k=1

∞⋃
i=1

{Ti > RkT}

∣∣∣∣∣
∞⋂
i=1

{Ti <∞}

)
= P

( ∞⋂
k=1

{Kk <∞}

∣∣∣∣∣
∞⋂
i=1

{Ti <∞}

)
.

Thus, ∩∞k=1{Tk <∞} implies ∩∞k=1{Kk <∞}.
On the other hand, by proposition 3.1, one knows that

P

(
n⋂
k=1

{Kk <∞}

)
≤
(

1− e−
N
α

∫ r
0
ϕ(u)
u
du
)n
,

which converges to 0 when n diverges.
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3.4 Proof of Theorem 9

To simplify the proof of the theorem 3.4 we shall split it into several steps. The main part of
the argument is to find a recurrent regeneration set B in sense that

(i) if we write TB = inf{t > 0 : Uu(t) ∈ B}, then P(TB < ∞|U(0) = u) = 1, for each u ∈
RN+ \ {0N}, and

(ii) there exist t∗ > 0, ε > 0 and a probability measure ν on RN+ such that

Pt∗(u,A) := P(Uu(t∗) ∈ A) ≥ εν(A), u ∈ B,

for all measurable set A ∈ B(RN+ ).

Usually, Markov processes with a regeneration set are called Harris chains. For such processes an
invariant measure always exits, see for instance [Asm03].

In what follows, for any positive real number a > 0 we use the notation Ra(x), meaning that
there exists a constant l > 0 such that |Ra(x)| ≤ la for all x. When a function satisfies such
condition it is called a function of order a. Note that we are not specifying the domain in which
the function R is defined on.

For each ε > 0 define the following event

Mε = {T1 < ε, Tk − Tk−1 < ε, k = 2, · · · , N},

and consider again the event S = {Sk = k, k = 1, . . . , N}.
The first lemma below says that, conditioning on the eventMε∩S, when ε is sufficiently small the

process evolves, modulo an error of small order, as in the case without electrical synapses (λ = 0).
Before stating this lemma we need to introduce a finite sequence of potential configurations.

Consider the sequence (vk)k=0,...,N with vk ∈ RN+ given by

v0 =
( N∑
j=2

Wj→1,

N∑
j=3

Wj→2, . . . ,WN→N−1, 0
)
, (3.11)

and for 1 ≤ k ≤ N, (vk)k = 0 and for i 6= k,

(vk)i =
( k∑
j=i+1

Wj→i

)
1{i<k} +

(
(v0)i +

k∑
j=1

Wj→i

)
1{i>k}.

Lemma 3.3. Fix δ > 0. If U(0) = u ∈ B(v0, δ), then conditioning on Mε∩S, for each k = 1, · · · , N,
the following equalities hold:

(i) Ui(Tk) = (vk)i +
k∑

r=i+1
λ(Tr − Tr−1)di(r − 1) +Rδε(T

k
1 , u) +Rε2(T k1 , u), if i < k;

(ii) Ui(Tk) = (vk)i +
k∑
r=1

λ(Tr − Tr−1)di(r − 1) +Rδ(u) +Rδε(T
k
1 , u) +Rε2(T k1 , u), if i > k;

(iii) Ū(Tk) = v̄k +Rδ(u) +Rε(T
k
1 , u), if k < N and Ū(TN ) = v̄0 +Rε(T

N
1 , u),

where di(m) = v̄m − (vm)i, T0 = 0 and T k1 = (T1, . . . , Tk). Furthermore, all the partial derivatives
of the remainder functions Rδε(T

k
1 , u), Rε2(T k1 , u) above are either of order δ or ε.

Proof. The proof is given by induction on k. On the event Mε ∩ S, we have that U1(T1) = 0 and
for each i = 2, . . . , N and U(0) = u ∈ B(v0, δ),

Uu
i (T1) = W1→i + Ū(0) + (1− λT1 +Rε2(T1))

(
(v0)i +Rδ(u)− Ū(0)

)
= (v1)i + λT1di(0) +Rδ(u) +Rεδ(T1, u) +Rε2(T1, u),
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where in the first equality we have used the expansion series of the exponential function.
Thus, from the expression of Uu

i (T1) above, we conclude that

Ū(T1) = v̄1 + λT1
1

N

N∑
i=2

di(0) +Rδ(u) +Rεδ(T1, u) +Rε2(T1, u)

= v̄1 +Rδ(u) +Rε(T1, u).

In addition, it is easy to check that all remainders functions above have partial derivatives with
respect to T1 and all of them are either Rδ or Rε functions. Therefore (i), (ii) and (iii) it is verified
for k = 1.

Now, suppose that (i), (ii) and (iii) hold for some fixed 1 < k < N . As before, on the event
Mε ∩ S, we have Uu

k+1(Tk+1) = 0 and, for i < k + 1, by the inductive hypothesis,

Uu
i (Tk+1) = Wk+1→i + Ū(Tk) + (1− λ(Tk+1 − Tk) +Rε2(Tk−1, Tk))(Ui(Tk)− Ū(Tk))

= (vk+1)i +

k+1∑
r=i+1

λ(Tr − Tr−1)di(r − 1) +Rδε(T
k+1
1 , u) +Rε2(T k+1

1 , u)

Using the same argument for the case when i > k + 1, we get (ii) for k + 1. Using again the
inductive hypothesis and looking at the expression written in the first equality of the membrane
potential, it is readily seen that the remainder functions possesses partial derivatives with to Tl,
for l = 1, . . . , k + 1 and they are either of order δ or ε.

Finally, summing Ui(Tk+1) over all neurons i = 1, . . . , N

Ū(Tk+1) = v̄k+1 +Rε(T
k+1
1 , u) +Rδ(u).

Note that vN = v0, thus, from the previous lemma it follows the

Corollary 3.3. Under the same assumptions of Lemma 3.3, if T = Nε < TN+1 then for each
i = 1, . . . , N , the following equality is verified

Uu
i (T ) = (v0)i + λ(T − TN )di(0) +

N∑
r=i+1

λ(Tr − Tr−1)di(r − 1) +Rδε(T
N
1 , u) +Rε2(TN1 , u).

Remark 3.3. In order to simplify the notation, we shall denote the map γ0 : Mε → RN+ by γ0(tN1 ) =
(γ0

1(tN1 ), . . . , γ0
N (tN1 )) where, γ0

N (tN1 ) = (v0)N + λ(T − tN )dN (0) and for each i = 1, . . . , N − 1,

γ0
i (tN1 ) = (v0)i + λ(T − tN )di(0) +

N∑
r=i+1

λ(tr − tr−1)di(r − 1).

By Corollary 3.3, conditioning on the event Mε ∩ S ∩ {T < TN+1}, T = Nε, we have the following
representation for all U(0) = u ∈ B(v0, δ),

Uu(T ) = γ0(TN1 ) +Rδε(T
N
1 , u) +Rε2(TN1 , u),

where both Rδε(T
N
1 , u) and Rε2(TN1 , u) are multivalued functions whose the L1-norms are remain-

ders functions of order δε and ε2 respectively.
Define, for all k ∈ N , mk =

∑
j∈N Wk→j the total amount of potential the neuron k insert in

the system each time it has a spike. We need this notation a cup of time in the proofs of the this
chapter. Moreover, by the Assumption 3.3 we know that mk > 0 for any k ∈ N . Using this and
the fact that v̄k ≥ mk/N we get the following corollary
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Corollary 3.4. For each u ∈ B(v0, δ), the absolute value of the determinant of the Jacobian of
map Mε 3 tN1 7→ γu(tN1 ) = γ0(tN1 ) +Rδε(t

N
1 , u) +Rε2(tN1 , u), is given by

|Jγu(tN1 )| = λN
N∏
i=1

v̄i +Rε(t
N
1 , u) +Rδ(t

N
1 , u),

which, under the Assumption 3.3, is different from zero for δ and ε small enough for all (tN1 ) ∈Mε

and u ∈ B(v0, δ).

We shall use this representation to show that our process, at time T = Nε, satisfies a localized
Doeblin condition (see proposition 3.4). Before proving this proposition, we need an extra lemma.
Here again the non-decreasing assumption on ϕ is important.

Lemma 3.4. Let fu(t1, . . . , tN ) = fu,(T1,...,TN ),(S1=1,...,SN=N)(t1, . . . , tN ) denote the joint density
of (T1, . . . , TN ) with (S1, . . . , SN ) restricted to the event S, when the starting configuration is u.
Under the Assumption 3.3, it holds that for any 0 < δ < (v0)1 there exists a constant C1 > 0 such
that for all u ∈ B(v0, δ),

fu(t1, . . . , tN ) ≥ C1, for (t1, . . . , tN ) ∈Mε.

In particular, there exist ε > 0 and a constant C2 > 0 such that for u ∈ B(v0, δ) and T = Nε,

PT (u,B(v0, δ)) ≥ C2ε
N > 0.

Proof. (i) Since Pu(T1 > t) = exp
[
−
∫ t

0

∑N
j=1 ϕ(Uu

j (s))ds
]
, we immediately see that the density

function of T1 with S1 = 1 given that U(0) = u is

fT1,S1=1|u(t1) = ϕ(Uu
1(t1)) exp

[
−
∫ t1

0

N∑
j=1

ϕ(Uu
j (s))ds

]
, for t1 ≥ 0. (3.12)

Since u ∈ B(v0, δ) and δ < (v0)1 (we can find such δ because the Assumption 3.3 implies (v0)1 > 0),
we know that there exist positive constants c1

1 and c1
2 such that c1

1 < u1 and for all j = 1, . . . , N ,
uj < c1

2, thus c1
1/N < ū < c1

2. But then for all u ∈ B(v0, δ) and j = 1, . . . , N , we have that
Uj(s) = ū(1− e−λs) + uje

−λs < c1
2, for all 0 ≤ s < T1. Thus, using that ϕ is non-decreasing, from

the previous inequality and the identity (3.12) it follows that fT1,S1=1|u(t1) ≥ ϕ(c1
1)e−t1Nϕ(c12).

Now, from the definition of the process one easily sees that the density function of the increment
T2 with S2 = 2 given T1 = t1, S1 = 1 and U(0) = u, for t2 > t1, is

fT2,S2=2|T1=t1,S1=1,u(t2) = ϕ(U
∆1(Uu(t1))
2 (t2)) exp

−∫ t2

t1

N∑
j=1

ϕ(U
∆1(Uu(t1))
j (s))ds

 . (3.13)

Note that if we denote K = maxi,j∈N Wi→j then, for all j ∈ N ,

∆1(Uu(t1))j = W1→j + Uu
j (t−1 ) < K + c1

2 := c2
2.

Moreover, we have that Ū(T1) > m1/N which is greater than zero by the Assumption 3.3. Therefore,
for all t1 < t2 < T2,

U2(t2) > (m1/N)(1− e−λ(t2−t1)) := c2
1,

From these two inequalities, using again the monotonicity of ϕ and that the average potential is
constant between successive jumps it follows that there exist positive constants c2

1 and c2
2 such that

fT2,S2=2|T1=t1,S1=1,u(t2) ≥ ϕ(c2
1)e−(t2−t1)Nϕ(c22), for t2 > t1. Proceeding in this manner we obtain
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sequences (cn1 )n=1,...,N−1 and (cn2 )n=1,...,N−1 satisfying for k = 2, . . . , N ,

fTk,Sk=k|Tk−1=tk−1,Sk−1=k−1,...,T1=t1,S1=1,u(tk) ≥ ϕ(ck−1
1 )e−(tk−tk−1)Nϕ(ck−1

2 ),

where tk > tk−1 > . . . > t1 ≥ 0. Thus, we have that, over Mε, the product of these conditional
densities is strictly positive, finishing the proof.

Proposition 3.4. (Localized Doeblin Condition) Under the Assumption 3.3, for any u ∈ B(v0, δ),
there exists a non negative function hu such that for all measurable sets A ∈ B(R+

N \ {0N}),

PT (u,A) ≥
∫
A
hu(v)dv.

Moreover, there exist a measurable set I, with positive Lebesgue measure, and a constant C3 > 0
such that hu(v) ≥ C31I(v) for all u ∈ B(v0, δ).

Proof. For each u ∈ B(v0, δ), as in Corollary 3.4 let us call γu : Mε → Iu , the map

γu(tN1 ) = γ0(tN1 ) +Rδε(t
N
1 ) +Rε2(tN1 ),

where Iu = γu(Mε). From the corollaries 3.3, 3.4 and the remark 3.3, it follows that for each
u ∈ B(v0, δ), conditioning to Mε ∩ S, the random vector Uu(T ) has a density hu, where

hu(v) =

{
fu(gu(v)) | Jgu(v) | , if v ∈ Iu
0 otherwise,

with gu : Iu →Mε being the inverse of γu. This concludes the first part of the proposition.
The proof of second part is more delicate and requires some work. From Corollary 3.4 and

Lemma 3.4 part (i) it suffices to prove that there exists a set I such that I ⊂ ∩u∈B(v0,δ)Iu.
Now, consider the event Bε defined by

Bε = S ∩
{

(i− 1)ε+
ε

4
< Ti < iε− ε

4
, i = 1, · · · , N

}
,

define I = γ0(Bε) and fix v ∈ I. We want to show that for all u ∈ B(v0, δ) there is an vector
tN1 = tN1 (u) = (t1(u), . . . , tN (u)) ∈Mε such that γu(tN1 ) = v. To this end, we introduce the function
F (s, tN1 ) = v − γ0(tN1 ) − s[Rδε(tN1 , u) + Rε2(tN1 , u)], for s ∈ [0, 1] and tN1 ∈ Mε. Note that we need
to show the existence of vector tN1 ∈Mε such that F (1, tN1 ) = 0. This means that we need to study
the equation F (s, tN1 ) = 0 with tN1 as function of s. To ease the notation, from now on we will write
t instead of tN1 .

Note that by the definition of I, there exists t0 ∈ Bε such that F (0, t0) = 0. Besides, t = t(s) is
solution of the equation F (s, t) = 0 if and only if it satisfies

0 = −Dγ0(t(s)) · dt(s)
ds
− [Rδε(t(s), u) +Rε2(t(s), u)]− s[DRδε(t(s), u) +DRε2(t(s), u)] · dt(s)

ds

or equivalently,[
−Dγ0(t(s))− s

(
DRδε(t(s), u) +DRε2(t(s), u)

)]
· dt(s)
ds

= Rδε(t(s), u) +Rε2(t(s), u), (3.14)

where Df(·) stands for the differential operator of f . By corollary 3.4, the linear operator inside
the brackets is invertible and the function on the right hand side is of order δε + ε2 whose the
derivative is of order δ + ε. Therefore, it follows that t = t(s) is a solution of (3.14) if and only if
it is the solution of the ODE of the form

d

ds
t(s) = H(s, t(s)), t(0) = t0, (3.15)
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where the derivative of H with respect to t exists and it is of order δ+ ε. In particular, it is limited
and therefore the ODE has unique solution t = t(s) for all s such that t(s) ∈Mε. Since t(s) moves
as H which is of order δε+ ε2 and the initial condition t0 is at a distance of order ε of Mε, we have
that t(1) ∈Mε, decreasing both δ and ε if necessary. Hence, we have that I ⊂ ∩u∈BIu.

Now, in order to obtain the desired regenerative set B it remains to control excursion out of
B = B(v0, δ). We start proving

Lemma 3.5. There exists a measurable set A such that supu∈A E[T+
A | U(0) = u] < ∞, where

T+
A = {t > TAc : U(t) ∈ A} is the time of the first return to A after an exit, and

E[TA | U(0) = u] ≤ C(u1 + . . .+ uN ) <∞,

for all u ∈ Ac, where C is a positive constant. Moreover, B = B(v0, δ) ⊆ A for all δ sufficiently
small and there exists a constant D > 0 such that A ⊆ [0, D]N .

Proof. Define V (u) =
∑N

i=1 ui, for all u ∈ RN+ , and mi =
∑

j 6=iWi→j . We notice then that LV (u) =∑N
i=1 ϕ(ui)[mi−ui], where L is the generator of the process (U(t))t≥0 given in (3.1). Set LV (v0) = L,

recall the definition of v0 in (3.11), and put a = min{−1, 2L}. We claim that the set A = {u ∈
RN+ : LV (u) > a} fulfils the desired conditions.

Indeed, since Mt = V (U(t))− V (U(0))−
∫ t

0 LV (U(s))ds is a martingale with M0 = 0, and TA
is a stopping time, we have that Mt∧TA is a martingale and

E[V
(
U(t ∧ TA)

)
| U(0) = u]− V (u) = E

[ ∫ t∧TA

0
LV (U(s))ds | U(0) = u

]
. (3.16)

Now, take u ∈ Ac, so that E
[ ∫ t∧TA

0 LV (U(s))ds | U(0) = u
]
≤ aE[t∧TA | U(0) = u] which, together

with (3.16), implies that E[t ∧ TA | U(0) = u] ≤ CV (u), for all t ≥ 0, where C = −a−1 > 0. Since
E[t ∧ TA | U(0) = u] ≥ tP(TA > t | U(0) = u), it follows that P(TA < ∞ | U(0) = u) = 1 and that
E[TA | U(0) = u] ≤ CV (u) = C(u1 + . . .+ uN ).

Consider the configuration u = (m1/2, . . . ,mN/2), then LV (u) =
∑

i∈N ϕ(mi/2)mi/2 > 0.
Since LV is a continuous function and limu→∞ LV (u) = −∞, it follows that there exists D > 0
such that A ⊆ [0, D]N . Since LV (v0) = L > a, using again the continuity of LV we conclude that
B(v0, δ) ⊂ A for all δ small enough.

Finally, given u ∈ A, call v = Uu(TAc). Since ||u|| ≤ D, we have that ||v|| ≤ D+maxi,jWi→j :=
K, so that by the strong Markov property

E[T+
A | U(0) = u] ≤ sup

v/∈A:|v|≤K
E[TA | U(0) = v] ≤ CNK.

We shall now use the lemma above to prove

Lemma 3.6. Let B = B(v0, δ). For all δ sufficiently small and any u ∈ RN+ \ {0N},

P[TB <∞ | U(0) = u] = 1. (3.17)

The proof is made using the same arguments as in the Lemma 3.4 and for this reason we shall
be more direct.

Proof. Notice that at the first spike time T1,

||U(T1)|| ≥ Ū(T1) =
1

N

N∑
i=1

Ui(T1) ≥ 1

N
min{mi, i ∈ N} := b > 0.
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Since for each u ∈ RN+ \ {0N}, P(T1 < ∞ | U(0) = u) = 1, by the Markov property we may prove
(3.17) for all u ∈ RN+ such that ui > b, for some i = 1, . . . , N. Moreover, since the process (U(t))t≥0

reaches A almost surely (the set A given by Lemma 3.16) we may check the equality (3.17) for all
u ∈ A such that ui > b, for some i = 1, . . . , N. Therefore, we will prove that (3.17) holds for all
u ∈ A with u1 > b, being the other cases treated likewise.

Define T0 = 0 and consider the event Bε = {Tk−1 + ε/2 < Tk < Tk−1 + ε, Sk = k, k = 1 . . . , N}.
Since u ∈ A with u1 > b, for all s < T1, U1(s) > b/N and, by the Lemma 3.5, Uu

j (s) < D, for
any j ∈ N . Now, observe that, as in Lemma 3.4, the joint density of T1 and S1 = 1 given that
U(0) = u ∈ A, is the function described in 3.12. Therefore, if t1 satisfies the conditions on Bε, then
fT1,S1=1|u(t1) > ϕ(b/N)e−(ε/2)Nϕ(D) > 0.

If T1 = t1 > ε/2 we have that U2(t1) > b/n(1− e−t(ε/2)) +W1→2 := c2
1 > 0, Ū(t1) > m1/N and,

for all j ∈ N , it holds that Uj(s) < D + K := c2
2. Arguing as in the Lemma 3.4, we consider the

joint density of T2 and S2 = 2 given that T1 = t1, S1 = 1 and U(0) = u ∈ A, defined in 3.13 can be
bounded below by ϕ(c2

1)e−(ε/2)ϕ(c22) if t1 and t2 fulfils the conditions asked in Bε.
Applying the argument other N−2 times we show that there exist two sequences (cn1 )n=1,...,N−1

and (cn2 )n=1,...,N−1 such that, for n = 2, . . . , N , if (t1, . . . , tk) fulfils the conditions imposed in Bε

fTk,Sk=k|Tk−1=tk−1,Sk−1=k−1,...,T1=t1,S1=1,u(tk) > ϕ(ck−1
1 )e−(ε/2)Nϕ(ck−1

2 ).

Therefore, under Bε, the product of these conditional densities is strictly positive and, for any
u ∈ A, it holds that

PT
(
u,B(v0, δ)

)
> 0,

which finishes the proof.

Proof of Theorem 3.4. It is an immediate consequence of Proposition 3.4 and Lemma 3.6.

3.5 Hydrodynamic Limit under Mean-Field Assumption

We now study what happens with the interacting system UN (t) as N →∞. For simplicity, we
will assume that all neurons behave similarly, leading to a mean field description. This means we
assume that for all i 6= j, Wi→j = N−1. We stress that the model considered here with α = 0 (that
is without leakage currents) is exactly the one studied in De Masi et al. (2014). Therefore, it is
straightforward to apply the techniques developed in that paper to derive a limit equation for the
system as N → 0. The limit equation is obtained by showing that the distribution of membrane
potentials becomes deterministic and it is described by a limit density function ρt(u) which is
proved to obey the non linear PDE

∂ρt(u)

∂t
+
∂[V (u, ρt)ρt(u)]

∂u
= −ϕ(u)ρt(u), t > 0, u > 0, (3.18)

where V (u, ρt) = −αu− λ(u− ūt) + pt, and for each t ≥ 0,

ūt =

∫ ∞
0

uρt(u)du, pt =

∫ ∞
0

ϕ(u)ρt(u)du (3.19)

are respectively the limit average potential and the limit spiking rate of the system. The boundary
conditions of (3.18) are specified by

ρ0(u) = v0(u), ρt(0) = v1(t), (3.20)
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v0(u) is determined by the problem v0(u) = ψ0(u), while v1(t) has to be derived together with
(3.18). It turns out that the expression of v1(t) is given by

v1(t) =
pt

λūt + pt
, (3.21)

so that the function ρt(u) may not be continuous, unless that ψ(0) = p0

λū0+p0
. Thus a weak formu-

lation of (3.18) is needed.

Definition 4. A real valued function R+ ×R+ 3 (t, u) 7→ ρt(u) is a weak solution of (3.18)-(3.20)
if for all smooth functions φ(u), R+ 3 t 7→

∫∞
0 φ(u)ρt(u)du is continuous in t, differentiable in t > 0

and

∂

∂t

∫ ∞
0

φ(u)ρt(u)du−
∫ ∞

0
φ′(u)V (u, ρt)ρt(u)du− φ(0)V (0, ρt)v1(t)

= −
∫ ∞

0
ϕ(u)φ(u)ρt(u)du, (3.22)∫ ∞

0
φ(u)ρ0(u)du =

∫ ∞
0

φ(u)v0(u)du,

where V (u, ρt) = −uα− λ(u− ūt) + pt, with ūt and pt as in (3.19).

The solution of (3.22) can be computed explicitly by the method of characteristics. Character-
istics are curves along which the PDE reduces to an ODE. They are defined by the equation

dx(t)

dt
= V (x(t), ρt).

The solution of the ODE above on the interval [s, t], with value u at s is denoted by Ts,t(u), u ∈ R+,
and it has the following expression:

Ts,t(u) = e−(α+λ)(t−s)u+

∫ t

s
e−(α+λ)(t−h)[λūh + ph]dh. (3.23)

Before stating precisely the result, we recall that the process is denoted by

UN (t) = (UN
1 (t), . . . ,UN

N (t)), t ≥ 0,

and notice also that we may identify UN (t) with its empirical distribution

µNt = N−1
N∑
i=1

δUNi (t). (3.24)

In this way, the process UN (t), t ≥ 0, may be viewed as an element of a Skorokhod space t 7→ µNt ∈
D(R+,S ′), where S is the Schwartz space of all smooth functions φ : R+ → R. For any fixed T > 0,
we denote the restriction of the process to [0, T ] by µN[0,T ] ∈ D([0, T ],S ′) and write PN[0,T ] to denote

its law on D([0, T ],S ′). Finally we assume that

Assumption 3.4. For all N , UN
i (0) are i.i.d random variables distributed according to ψ0(u)du

on R+. The density function ψ0 has compact support [0, R0] and also satisfies

(i) ψ0 > 0 on [0, R0) and ψ0 ≡ 0 on [R0,∞).

(ii) ψ(u) ≥ c(u−R0)2, c > 0 in an left neighbourhood of R0.

The result is the following.
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Theorem 10. Grant Assumptions 3.1 and 3.4, for any fixed T > 0,

PN[0,T ]
w→ P[0,T ], (3.25)

(weak convergence in D([0, T ],S ′)) as N → ∞, where P[0,T ] is the law on D([0, T ],S ′) supported
by the distribution valued trajectory ωt given by

ωt(φ) =

∫ ∞
0

φ(u)ρt(u)du, t ∈ [0, T ], φ ∈ S.

Here, ρt(u) is the unique weak solution of (3.18)-(3.20) with v0 = ψ0 and v1 given by (3.21).
Moreover, ρt(u) is a continuous function of (t, u) in R+ × R+ \

{
(T0,t(0), t) : t ∈ R+

}
where it is

differentiable in t and u and its derivatives satisfy (3.18). Furthermore, for any t ≥ 0, ρt(u) has
compact support in u and

ρt(0, r) =
pt

λrūt + pt
and

∫ ∞
0

ρt(u)du = 1.

Its explicit expression for u ≥ T0,t(0), is:

ρt(u) = ψ0

(
T−1

0,t (u)
)

exp

{
−
∫ t

0

[
ϕ
(
T−1
s,t (u)

)
− α− λ

]
ds

}
,

and for u = Ts,t(0) for some 0 < s ≤ t,

ρt(u) =
ps

ps + λūs
exp

{
−
∫ t

s
[ϕ (Ts,h(0))− α− λ]dh

}
.

Proof. The proof is, with minor modifications, analogous to the one provided in the Theorem 2 of
[DMGLP15].

In the next section, we investigate the possible invariant for the limiting process.

3.6 Long-run behavior of the Limiting Process

In this section we study the long-run behavior of the limiting process. The solution ρt(u) of
(3.18)-(3.20) can be interpreted as the density of the membrane potential Ut of a single neuron
evolving within a system of infinite neurons. The process (U(t))t≥0 is a time-inhomogeneous Markov
process whose time dependent generator L = (Lt)t≥0 is such that for any t ≥ 0 and any smooth
function f : R+ → R,

Ltf(u) = ϕ(u)[f(0)− f(u)] + f ′(u)[pt − αu− λ(u− ūt)]. (3.26)

We start investigating the possible invariant measures for the limiting process (U(t))t≥0. It is shown
that (U(t))t≥0 possesses exactly two invariant measures.

Theorem 11. Grant Assumption (3.1), let α, λ ≥ 0. The process (U(t))t≥0 admits exactly two
invariant measures. The first one is δ0. The second one is given by

(i) if either α > 0 or λ > 0, we have that

ρ(u) =
p

p− λ(u− ū)− αu
exp

(
−
∫ u

0

ϕ(v)

p− λ(v − ū)− αv
dv

)
1{

0≤u< p+λū
α+λ

}, (3.27)

where p > 0 and ū > 0 are such that
∫∞

0 ϕ(u)ρ(u)du = p and
∫∞

0 uρ(u)du = ū.
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(ii) If α = λ = 0, then

ρ(u) = exp

(
− 1

p

∫ u

0
ϕ(v)dv

)
, (3.28)

where p > 0 is such that
∫∞

0 ϕ(u)ρ(u)du = p.

In either cases,
∫∞

0 ρ(u)du = 1.

Proof. It follows from Theorem 8 of [FL14].

By Theorem 11 we have that the limiting process admits two invariant regimes and in what
follows we investigate the behavior of the system (U(t))t≥0 as t→∞.

Assumption 3.5. (i) ϕ ∈ C2(R+) is a convex increasing function satisfying

sup
u≥1

[ϕ′(u)/ϕ(u) + ϕ(u)/ϕ′(u)] <∞.

(ii) It holds that lim supu→∞[ϕ′(u)/ϕ(u) < 1].

(iii) There are ξ ≥ 1, ζ ≥ ξ − 1 and some constants 0 < c < C such that

cuξ ≤ ϕ(u) ≤ C(uξ−1 + uζ).

Theorem 12. Grant Assumption (3.1), let α, λ ≥ 0 and (U(t))t≥0 be the the process whose gen-
erator is given by (3.26).

(i) Assume additionally Assumption 3.5-(i) and that the function ψ0 appearing in Assumption
3.4 satisfies ψ0(0) = 1,

∫∞
0 ϕ2(u)ψ0(u)du < ∞ and

∫∞
0 |ψ

′
0(u)|du < ∞. Let α = λ = 0 and

denote by ρ(t) the law of U(t) and write ρ(du) = ρ(u)du for the invariant probability measure
defined in (3.28). Then we have

lim
t→∞
||ρ(t)− ρ||TV = 0,

where ||·||TV denotes the total variation distance. In particular, the process does not go extinct
almost surely.

(ii) Let α = 0 and λ > 0 and assume Assumptions 3.5 itens (i), (ii) and (iii). Suppose also that∫∞
0 uψ0(u)du > 0 and

∫∞
0 uζ+1ψ0(u)du <∞. Then U(t) does not go to 0 as t→∞.

(iii) (Stability of the invariant measure δ0) Let α > 0 and λ ≥ 0 and let Rα be a positive number
such that ϕ(u) ≤ uα/2, for all u ≤ Rα. If ϕ′(0) < α and the support of ψ0 is included in
[0, Rα], then U(t) goes to 0 exponentially fast. In particular, U(t) goes extinct.

(iv) Let α > 0 and λ ≥ 0. If ϕ′(0) > α and
∫∞

0 uψ0(u)du > 0, then U(t) does not go to 0 as
t→∞.

Proof. (i)-(ii) It follows respectively from the Proposition 9 and Proposition 11 of [FL14].
(iii) Indeed, since U(t) = 0 at each spiking time Tn = t and between consecutive spikes U(t)

follows (3.23), then

U(t) ≤ e−(α+λ)tU(0) +

∫ t

0
e−(α+λ)(t−h)[λūh + ph]dh.

Now let rt be the the rightmost point of the support of ρt(u). Then, from inequality above we
deduce that

rt ≤ e−(α+λ)tr0 +

∫ t

0
e−(α+λ)(t−h)[λrh + ϕ(rh)]dh. (3.29)
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Define τ = inf{t > 0 : rt > Rα}. For t < τ , we have from (3.29) that

rt ≤ e−(α+λ)tr0 +

∫ t

0
(λ+ α/2)e−(α+λ)(t−h)rhdh.

By iterating the above inequality n times we have that there exists a constant C > 0 such that

rt ≤ e−(α+λ)tr0

( n−1∑
k=0

[(α/2 + λ)t]k

k!

)
+ C

[(α/2 + λ)t]n

n!
,

so that by taking n → ∞ we have rt ≤ e−α/2tr0. Since r0 ≤ Rδ, it follows that τ = ∞ and
log(U(t)) ≤ log(rt) ≤ −α/2, for all t ≥ 0, concluding the proof of (iii).

(iv) Since ϕ′(0) > α, we may find δ > 0 and Rδ > 0 small enough such that for all u ≤ Rδ,
ϕ(u)− αu > δu. Decreasing Rδ if necessary, we may suppose that for all u ≤ Rδ,

ϕ(u)(1− u)− αu > cδu, (3.30)

where c is a positive constant sufficiently small.
Now, suppose by contradiction that U(t) goes in law to 0 as t→∞. In particular, we have that

E[U(t)]→ 0 as t→∞. As a consequence of the continuity of ρt(u) we may deduce that here exists
t0 such that for all t ≥ t0, rt ≤ Rδ, where rt is the rightmost point of the support of ρt(u).

Finally, notice that

d

dt
E[U(t)] = E[L(U(t))]

= E[ϕ(U(t))]− E[ϕ(U(t))U(t)]− αE[U(t)]

=

∫ ∞
0

[ϕ(u)(1− u)− αu]ρt(u)du. (3.31)

Thus, from (3.30) and (3.31), we get that d
dtE[U(t)] ≥ cδE[U(t)], and therefore, E[U(t)] ≥ ecδtE[U(0)].

Therefore, since E[U(0)] > 0, it follows U(t) can not go in law to 0 as t→∞, which is a contradic-
tion.



Chapter 4

Hidden Variable Length Markov
Chains

Is the brain a statistician? The Predictive coding principle postulates that neural networks
learn the statistical regularities inherent in the natural world and reduce redundancy by removing
the predictable components of the input, transmitting only what is not predictable [HR11]. The
neuroscience community has provided considerable evidences suggesting that the brain at different
scales is consistent with the predictive coding principle. For instance, at the microscopic scale,
neurons in the visual cortex respond to different types of stimuli depending on their spatial location.
Neurons in the primary visual cortex (V1) respond to bars of different orientation, while those
located at areas V2 and V4 respond to more complex shapes. This selectiveness effect can be
understood by means of a hierarchical model of predictive coding [RB99]. Indeed, knowing that
visual system is hierarchically structured and that its connections are reciprocal, Rao and Ballard
proposed that higher-level areas predict lower-level input through feedback connections, whereas
lower-level areas signal the difference between actual neural activity and the higher-level predictions
[JRBB06]. After training this neural network model on image patches taken from natural scenes,
they have found that the response selectivities of the model neurons resembled the ones of the
neurons in the visual system, corroborating the predictive coding hypothesis.

At the macroscopic scale the predictive coding has been investigated, for instance, in the rhyth-
mic perception domain by means of electroencephalographic (EEG) recording of brain signals
[WLvW+11] [WCD12]. The signal collected through this technique is a summation of electrical
activity in the brain and contains spontaneous fluctuations that complicate the analysis of a spe-
cific effect of interest (Buzski, 2006). Traditionally, experimental protocols try to overcome this
difficulty with a large number of repetitions of the same stimulus (Lopes da Silva, 2006). The
average of the attempts associated with that stimulus presentation allows to identify a specific
response (event related response, ERP). Using this approach, it was shown that auditory stimuli
are associated with evoked potentials occurring between 50ms and 200ms after their presentation
that predominate in the primary auditory regions (electrodes T3, T4, T7, T8). Also, the expecta-
tion of the occurrence of an auditory stimulus generates a modulation of brain activity happening
around 200 ms after the activity commonly evoked by the presence of the stimulus. This activity,
recorded predominantly in frontocentral electrodes in the scalp, was called ”mismatch negativity”
(Ntnen et al., 2007; Bendixen, 2009). The mismatch negativity is frequently interpreted in terms
of predictive coding. The auditory system would acquire an internal model of regularities in the
auditory inputs that are used to generate weighted predictions about the incoming stimuli. If these
predictions differ from actual stimulus, it results in a mismatch signal [WCD12].

All the results presented in this chapter are motivated by the investigation of the predictive
coding at the rhythmic perceptual level within the framework of stochastic process. Specifically,
it is proposed a stochastic modelling-based paradigm to address the question of how to retrieve
structural features of stochastic rhythmic sources from EEG data. This is done through a case
study in which the EEG data is driven by two different random sources whose rhythmic random
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sequences are produced by first considering a fixed structure - (2,1,1) or (2,1,0,1) - the symbol 2
meaning a strong beat, 1 a weak beat and 0 a silence unit, and then omitting each weak beat 1
independently of the past with a fixed probability. We stress that the mathematical framework
developed here may be applied to many others situations.

To formulate mathematically the question posed above, we present a suitable class of stochastic
processes, herein called hidden variable length Markov chains (HVLMC), to model EEG signals
evoked by random rhythmic structures. Next, we propose a consistent statistical procedure to
perform statistical model selection in the class of hidden variable length Markov chains. This is
the main contribution of this chapter. We also present a simulation study where we apply this
statistical procedure in a example.

Informally, a hidden variable length Markov chain is a bivariate stochastic process
(
(Xn, Yn)

)
n∈Z

in which:

(i) the state sequence (Xn)n∈Z, usually not observed, is a stochastic chain with memory of
variable length compatible with a probabilistic context tree (τ, p) and

(ii) the observable sequence (Yn)n∈Z is such that the distribution of Yn+1 given the joint past
history (Xn

−∞, Y
n
−∞) = (xn−∞, y

n
−∞) depends only on cτ (xn−∞), the context in τ associated to

the sequence of symbols xn−∞.

Notice that the item (ii) above implies, in particular that, conditionally on the state sequence
(Xn)n∈Z, the observable process (Yn)n∈Z is a sequence of independent variables.

To the best of our knowledge, the hidden variable length Markov models appeared first in
Wang and Liu in 2006 as a novel and general approach for time-series data mining [WZF+06]. As
an application in real data, Wang and Liu applied this approach to mine four kinds of patterns from
3D motion capture data, which is typical for the high-dimensionality and complex dynamics. A
slightly different version of HVLMC’s have been recently studied in [Dum14]. In Dumont’s version,
the state sequence (Xn)n∈Z is a stochastic chain with memory of variable length (as above) while
the observable sequence (Yn)n∈Z is such that the distribution of Yn+1 given the joint past history
(Xn
−∞, Y

n
−∞) = (xn−∞, y

n
−∞) depends only on xn, rather than cτ (xn−∞). Under these assumptions,

Dumont has proposed an estimator of the context tree of the hidden Markov process, which needs
no prior upper bound on the depth of the context tree, proving its consistency trough information-
theoretic mixtures inequalities.

The notion of hidden variable length Markov models provided above naturally generalize the
hidden Markov models introduced by Baum and co-authors in the late 1960s. Indeed, the hidden
Markov models are obtained in the particular case in which the state sequence (Xn)n≥0 is a k-order
Markov chain for some positive integer number k. Herein instead, the state sequence is considered
to be a variable length Markov chain, a more parsimonious stochastic process introduced in 1983
by Rissanen. For a didactic introduction on hidden Markov models with applications in speech
recognition we refer the reader to Rabiner (1889).

In our case study, the state process (Xn)n∈Z plays the role of the rhythmic sources, while the
observable process (Yn)n∈Z plays the role of the associated EEG signals driven by the auditory
stimuli produced by these sources. In this scenario, the item (ii) means that the EEG activity
driven by two stimuli coming from the same auditory sound, but occupying distinct positions in
the structure, may have different laws. In other terms, we postulate that the EEG signal is not a
function of the acoustic features of the auditory stimuli, it depends actually on the position relative
to the structure occupied by these auditory stimuli.

Our problem of finding structural characteristics in the EEG signals means we have to deal
with a “context tree estimation” in functional data. Our statistical procedure borrows the ideas
both from the Algorithm Context introduced by Rissanen in 1983 and random projections in-
troduced in [CAFR06] by Cuesta-Albertos and co-authors. In a nutshell, the method of random
projections states that, under suitable conditions, a distribution on an infinite dimensional space
is determined by just one randomly chosen projection. Instead of facing the problem related to
infinite-dimensional objects, we choose at random a Gaussian process, project the objects in it,
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solve the problem, and, then, translate the solution to the original infinite-dimensional space. Doing
this we replace our sample of EEG data to an one dimensional sample. The way the Algorithm
Context works can be summarized as follows. Given a sample produced by a chain with variable
memory, we start with a maximal tree of candidate contexts for the sample. The branches of this
first tree are then pruned starting from the leaves towards the root until we obtain a minimal tree
of contexts well adapted to the sample [GL08]. Our method consists in applying the algorithm con-
text to the one dimensional projected data obtained after projecting the EEG data in a randomly
selected Gaussian direction.

4.1 Random rhythmic sources and Hidden VLMC Definition

We shall now formulate precisely the question of how to retrieve structural features of a random
source through EEG signals driven by a sample produced by this source. We start describing how
to generate a sample of each one of the rhythmic random sources considered here. Both sources
produce random sequences of strong beats, weak beats and silence units. We encode by 2 a strong
beat, 1 a weak beat and 0 a silence unit, so that the alphabet of two sources is the set A = {0, 1, 2}.
The first stochastic rhythmic source is called Ternary or Waltz . Its algorithm of the generation
can be describe as follows:

(i) Consider the deterministic sequence (wn)n∈Z

. . . 2 1 1 2 1 1 2 1 1 2 . . .

(ii) Fix ε > 0 and denote by (ξn)n∈Z a sequence of i.i.d Bernoulli random variables such that

P(ξn = 0) = 1− P(ξn = 1) = ε. (4.1)

The parameter ε is the omission probability of the weak beats. The ternary random source (Wn)n∈Z
is then defined by

Wn = G(wn, ξn),

where the function G : A × {0, 1} → A is such that G(2, ξn) = 2 and G(1, ξn) = ξn. This means
that the Ternary random source (Wn)n∈Z is obtained by first considering a deterministic sequence
(wn)n∈Z and then replacing in a i.i.d way, with probability ε, each weak beat 1 by a silence unit
0. Observe, in particular, that all strong beats are never erased. It is easily checked that the
process (Wn)n∈Z defined above is a stochastic chain with memory of variable length in the sense of
Definition 1. Its context tree is depicted in figure 4.1(a), and its family of transition probabilities
is given in Table 4.1 below. For instance, it is easy to check that the transition probabilities

Contexts(w) p(0|w) p(1|w) p(2|w)

2 ε 1− ε 0
21 ε 1− ε 0
11 0 0 1
01 0 0 1
20 ε 1− ε 0
10 0 0 1
00 0 0 1

Table 4.1: Contexts and transition probabilities on the alphabet A = {0, 1, 2}, for the ternary random source.

associated to context 2 are p(0|2) = ε, p(1|2) = 1− ε and p(2|2) = 0. Indeed, in the deterministic
sequence (wn)n∈Z after each a strong beat 2 there is always a weak beat 1 which can be erased,
becoming a 0, with probability ε or kept with probability 1− ε. It is not difficult also to compute
the transition probabilities associated to contexts 00 and 10:

p(0|00) = p(0|01) = 0, p(1|00) = p(1|01) = 0 and p(2|00) = p(2|01) = 1.
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In fact, both strings 00 and 01 were originally a string 11 which had, consecutively, the two symbols
1 and only the second symbol 1 erased by chance. Moreover, in the deterministic sequence after
two consecutive weak beats 11 there is always a strong beat 2 which is never erased.

00 10 20 01 11 21

2

(a) Ternary context tree

000 100 200

10 20 01 21

2

(b) Quaternary context tree

Figure 4.1: Context trees of the rhythmic random sources

The second stochastic rhythmic source is called Quaternary or Samba. This source can be
generated through the following algorithm:

(i) Consider the deterministic sequence (sn)n∈Z

. . . 2 1 0 1 2 1 0 1 2 1 0 1 2 . . .

(ii) Let the parameter ε > 0 and the process (ξn)n∈Z defined as in (4.1). The Quaternary random
source (Sn)n∈Z is then defined by

Sn = H(sn, ξn),

where the function H : A×{0, 1} → A is such that H(2, ξn) = 2, H(0, ξn) = 0 and H(1, ξn) = ξn. In
other terms, the Quaternary random source (Sn)n∈Z is obtained by first considering a deterministic
sequence (sn)n∈Z and then replacing in a i.i.d way each weak beat 1 for a silence unit 0, with
probability ε.

As in the Ternary source, all strong beats 2 are not erased. However, differently from the ternary
source, the symbol 0 may be either a constitutive silence or a erased weak beat . The constitutive
silence corresponds to the case H(0, ξn) = 0, while erased weak beats correspond to the cases
H(1, ξn) = ξn in which ξn = 0. In other words, the symbol 0 in the Samba source may have been
the symbol 0 or a symbol 1 which was erased, in the deterministic sequence. Moreover, it may be
easily checked that (Sn)n∈Z defined above is a stochastic chain with memory of variable length
whose the context tree is depicted in the Figure ?? and the family of transition probabilities is
provided in Table 4.2 below. It is easy also to compute the transition probabilities associated to

Contexts(w) p(0|w) p(1|w) p(2|w)

2 ε 1− ε 0
21 ε 1− ε 0
01 0 0 1
20 ε 1− ε 0
10 ε 1− ε 0
000 0 0 1
100 0 0 1
200 ε 1− ε 1

Table 4.2: Contexts and transition probabilities on the alphabet A = {0, 1, 2}, for the quaternary random
source.
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contexts 000 and 01:

p(0|000) = p(0|10) = 0, p(1|000) = p(1|10) = 0 and p(2|000) = p(2|10) = 1.

In fact, the string 000 comes from a string 101 which had the two weak beats erased, while the
string 01 was also 01 in the deterministic sequence. Moreover, in both cases after the sequences
101 and 01 in the deterministic sequence there is always a strong beat 2 which is never erased.

Notice we may identify each EEG recording associated to a given realization from one of the
rhythmic sources as a stochastic process (Yn)n∈Z in which

Yn =
(
Yn(t) : t ∈ [0, T ]

)
is the EEG signal correspondent to the n-th acoustic stimulus generated by the stochastic source.
Knowing the realization of the random source, we marked each one of the acoustic stimulus onsets
according to the following convention (see figure 4.2):

• V 2 is a strong beat,

• V 1a is the first weak beat (the one coming from after the symbol 2),

• V 1b is the second weak beat,

• V 0 is a constitutive silence unit (present only in the Quaternary source), and

• Miss is a erased weak beat.

By doing this, we may ask, for instance, whether the law of EEG signals associated to V 1a is differ-
ent from the law of those correspondent to V 1b. Both V 1a and V 1b correspond to weak beats, but
they are completely different from the structural point of view. In fact, in the Quarternary rhythm
V 1a always comes from a V 2, while V 1b always comes from a V 0. In the ternary source, again V 1a
always comes from a V 2, but now V 1b comes from either a V 1a or Miss. In the Quaternary random
source we may also ask the same question but instead of considering the two types of weak beats,
V 1a and V 1b, we consider the two types of silence units, V 0 and Miss. Any difference of these
laws would provide significant evidences that it is possible to retrieve structural characteristics of a
stochastic source in the EEG signals driven by a sample produced by this source. In mathematical
terms, this would suggest the law of Yn is not a function only of the symbol Xn produced by the
source at time n but rather it possibly depends of a portion of the past Xn, Xn−1, . . . . This is the
motivation for considering the class of hidden variable length Markov chains which we shall now
define.

Figure 4.2: Example of a EEG sample driven by the Quaternary source. In this figure v2 (blue) denote a
strong beat, v1a and v1b (black) the first and second weak beats, v0 (green) the constitutive silence unit and
miss (orange) is how we represent a weak beat which was erased.
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Definition 5. Let the pair (F,F) be a measurable space. The bivariate stochastic chain (Xn, Yn)n∈Z
taking values in A× F is a hidden variable length Markov chain compatible with the probabilistic
context tree (τ, p) and the family (Qw : w ∈ τ) of transition probabilities on (F,F), if the following
conditions are satisfied,

(i) (Xn)n∈Z is a stochastic chain with memory of variable length associated to (τ, p) and

(ii) for any m,n ∈ Z with m ≤ n, any string xnm−`(τ)+1 ∈ A
n+m+`(τ) and any sequence Im, . . . , In

of F-measurable sets,

P
(
Ym ∈ Im, Ym+1 ∈ Im+1, . . . , Yn ∈ In|Xn

m−`(τ)+1 = xnm−`(τ)+1

)
=

n∏
k=m

Qcτ (xk
k−`(τ)+1

)(Ik),

where `(τ) is the height of the context tree τ (here assumed to be finite) and cτ (xkk−`(τ)+1)

is the context in τ assigned to the string of symbols xkk−`(τ)+1.

Notice that the item (ii) above implies, in particular, that conditionally on the state sequence
(Xn)n∈Z, the observable process (Yn)n∈Z is a sequence of independent variables such that the
distribution of Yn given the sequence of symbols Xn

−∞ depends only on cτ (Xn
−∞).

In our case study, we may, for example, consider the set of EEG signals as the set F = L2([0, T ])
of all real-valued square-integrable functions in [0, T ] and F is the Borel sigma-algebra of F . For a
moment let us consider we have a sample S1, . . . Sn produce by the Quaternary source. We write
In(21) and In(01) to denote the set of indexes m such that the context assigned to Sm1 is 21 and
01 respectively. Thus, if we model the bivariate process (Sn, Yn)n∈Z as a HVLMC, we can denote

EEG signals associated to V 1a by {Y (21)
k , k ∈ In(21)} and similarly the EEG signals associated to

V 1b by {Y (01)
k , k ∈ In(01)}. In addition, we have that the sample {Y (21)

k , k ∈ In(21)} was generated

by the probability measure Q21, while the other sample {Y (01)
k , k ∈ In(01)} was generated by the

probability measure Q01. Indeed, all sequences of symbols produced by Sn ending with 21 have
context 21, while those ending with 01 have context 01, see the context tree ??. Moreover, it must
hold that Q21 6= Q01, otherwise 1 would be a context in the context tree of the Quaternary source.
Thus, if the EEG signals associated to the Quaternary source really carry some structure of this

source, we would expect that the sub-samples {Y (21)
k , k ∈ In(21)} and {Y (01)

k , k ∈ In(01)} are
produced by different laws. Therefore, we translate the problem of retrieving structural features of
a random source in the EEG signals driven by a sample produced by this source into two sample
hypothesis testing problem of infinite-dimensional random variables.

Motivated by the question of how retrieve structural features from EEG signals driven by a
random source we pose the following problem in a more general setting. Namely, given a finite
sample (Xn

1 , Y
n

1 ) of HVLMC associated to a probabilistic context tree (τ, p), being τ a general but
finite tree, and a family (Qw : w ∈ τ) of transition probabilities on (F,F), how to estimate the
context tree τ based on functional sample Y n

1 . This problem requires in particular to deal with
statistical analysis of functional data. We shall solve this problem for two different cases.

The first case consists in considering a simpler scenario in which F = R, F = B(R) is the Borel
σ-algebra of the open sets of R, and for each w ∈ τ , Qw = N (0, σ2

w) is normal distribution with
mean 0 and variance σ2

w. Although simple we shall see that this case is similar to second case we
deal with, where F = L2([0, T ]), F = B(R) is the Borel σ-algebra of F and w ∈ τ , Qw is a general
probability measure on F satisfying mild assumptions. In order to treat the second case we borrow
ideas from the random projective method introduced in Cuesta-Albertos et al. (2006).

4.1.1 Observable process with Normal distribution with 0 mean and variance
depending on the context

Throughout the section we work on
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Assumption 4.1. F = R, F = B(R) is the Borel sigma-algebra of the open sets of R, and for
each w ∈ τ , Qw = N (0, σ2

w) is normal distribution with mean 0 and variance σ2
w.

Assume we are given a sample (Xn
1 , Y

n
1 ) of a hidden variable length Markov chain associated

to a probabilistic context tree (τ, p) and family (Qw : w ∈ τ) of transition probabilities on (F,F).
Let d be any integer number such that 1 ≤ d < n. For any finite string w ∈ ∪dk=1A

k, we define the
set of indexes In(w) = {d ≤ m ≤ n : Xm

m−`(w)+1 = w} and we write Nn(w) to denote the number
of occurrences of the string w in the sample Xn

1 , i.e,

Nn(w) =
n∑

m=d

1{Xm
m−`(w)+1 = w}.

Notice that, by definition, Nn(w) = |In(w)|. Our task is then to estimate the context tree τ based
on the sample Y n

1 and the variables In(w) for all strings w ∈ ∪dk=1A
k. For each string w ∈ ∪dk=1A

k,

we write Y (w) = {Y (w)
k , k ∈ In(w)} to denote the observable sub-sample induced by the string

w.We need also the following assumption.

Assumption 4.2. For each w ∈ τ , if the following set

Λτw :=
{
s ∈ τ \ {w} : `(s) = `(w), s−i = w−i, i = 1, . . . , `(w)− 1

}
6= ∅

then there exists s ∈ Λτw such that σ2
s 6= σ2

w.

Fixed a sample (Xn
1 , Y

n
1 ), for any string w ∈ ∪dk=1A

k, with Nn(w) > 0, the log-Likelihood
function of the sub-sample Y (w) induced by w, conditioning on Xn

1 , is given by

logLw(Y n
1 |Xn

1 ) = −Nn(w)

2

[
log(2π) + 1 + log(σ̂2

w,n)
]
, (4.2)

where

σ̂2
w,n =

1

Nn(w)

∑
k∈In(w)

(Yk − µ̂w,n)2 and µ̂w,n =
1

Nn(w)

∑
k∈In(w)

Yk.

Definition 6. We will say the irreducible tree τ is admissible for the sample (Xn
1 ), if `(τ) ≤ d,∑

a∈ANn(wa) > 0 for any w ∈ τ and for any j = d, . . . , n − 1 there exists a context w ∈ τ such

that w � Xj
1 .

If τ is admissible for the sample (Xn
1 ), the log-Likelihood function of Y n

1 with respect to τ ,
given the realization Xn

1 , is

logLτ (Y n
1 | Xn

1 ) =
∑
w∈τ

logLw(Y n
1 | Xn

1 )

= −n
2

[
log(2π) + 1

]
− 1

2

∑
w∈τ

Nn(w) log(σ̂2
w,n). (4.3)

The next theorem is main tool to control the fluctuations of the likelihood Lτ (Y n
1 |Xn

1 ).

Theorem 13. Suppose that (Xn
1 , Y

n
1 ) is a sample of an ergodic HVLMC compatible with the

probabilistic context tree (τ∗, p∗) with τ∗ finite d ≥ `(τ∗) and family (Qw : w ∈ τ) of transition
probabilities satisfying assumptions 4.1 and 4.2. Then, the following results hold eventually almost
surely as n→∞:

(i) Underestimation. For any admissible context tree τ ≺ τ∗ there exists a positive constant
c(τ∗, τ) such that

logLτ∗(Y
n

1 | Xn
1 )− logLτ (Y n

1 | Xn
1 ) ≥ c(τ∗, τ)n (4.4)
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(ii) Overestimation. For any admissible context trees τ � τ ′ with τ ′ � τ∗ there exists a positive
constant c(τ ′, τ) such that

logLτ (Y n
1 | Xn

1 )− logLτ ′(Y
n

1 | Xn
1 ) ≤ c(τ, τ ′)(log n)2. (4.5)

In the proof of the Theorem 13 we shall use the following Lemma which can be easily checked.

Lemma 4.1. Given a context w ∈ τ∗ and any string s ∈ ∪d−`(w)
k=1 Ak, it holds true:

σ2
sw := lim

n→∞
σ̂2
sw,n = σ2

w and σ2
w =

∑
s∈A

p(sw)

p(w)
σ2
sw.

Proof of Theorem 13. (i). We shall prove for the case when τ∗ differs of τ for only one branch, in
one step backward in the past. Formally this means that, there exists a string w ∈ τ such that for
each a ∈ A, if p(aw) > 0, then aw ∈ τ∗.

Observe that, using (4.3), the inequality (4.4) can be rewritten as

−1

2

∑
a∈A

Nn(aw) log(σ̂2
aw,n) +

1

2
Nn(w) log(σ̂2

w,n) ≥ c n.

By the ergodic theorem, for any string w, Nn(w)/n→ p(w) almost surely as n→∞. Therefore, it
is enough to show that

−
∑
a∈A

p(aw) log(σ2
aw) + p(w) log(σ2

w) > 0. (4.6)

But, using the Jensen inequality and the second equality of Lemma 4.1, we have

−
∑
a∈A

p(aw) log(σ2
aw) ≥ −p(w) log

(∑
a∈A

p(aw)

p(w)
σ2
aw

)
= −p(w)σ2

w. (4.7)

The equality in (4.7) holds if and only if, for all a ∈ A, σ2
aw =

∑
a∈A

p(aw)
p(w) σ

2
aw = σ2

w. This implies

that w ∈ τ∗ which contradicts the fact τ ≺ τ∗.

(ii). Without lost of generality, we will assume that the difference between τ and τ ′ is given in
only one branch, in one more step on the past. That is, as before, there exists a string w ∈ τ ′ such
that, for each a ∈ A with p(aw) > 0, aw ∈ τ . Now, using this, the definition of the log-Likelihood,
the Lemma 4.1 and the fact that log x ≤ x− 1 if x > 0, we have that the left size of (4.5) can be
bounded above by

−1

2

∑
a∈A

Nn(aw) log(σ̂2
aw,n) +

1

2
Nn(w) log(σ2

w) ≤ 1

2

∑
a∈A

Nn(aw)
|σ2
aw − σ̂2

aw,n|
σ̂2
aw,n

. (4.8)

We will first show that the sequence (tn)n≥0, where tn = C(log n)2, for some constant C, satisfies

P
(
|σ2
n,aw − σ̂2

aw,n| > tn i.o
)

= 0. (4.9)

Define σ̃2
aw,n = 1

Nn(aw)

∑
k∈In(aw) Y

2
k and observe that, writing t = tn, we can upper bound the last

probability by

P
(
|σ2
aw − σ̃2

aw,n| > t/2
)

+ P
(
(µ̂aw,n)2 > t/2

)
. (4.10)

We will show that the second term in (4.10) goes to 0 almost surely when n goes to infinity,
but the same arguments can be applied to show that the first term in (4.10) goes to 0 as well.



4.1 RANDOM RHYTHMIC SOURCES AND HIDDEN VLMC DEFINITION 41

Define, for k ∈ In(aw), the sequence of random variables

Z
(L)
k =


L, if Yk ≥ L
Yk, if − L < Yk < L
−L, if − L ≤ Yk.

Notice that, since Yk has symmetric distribution in relation to 0, for each k ∈ In(aw), it follows

that E[Z
(L)
k ] = 0. Now, using the random variables Z

(L)
k , observe that the second term in (4.10)

can be rewritten and upper bounded by

E
[
P
( 1

Nn(aw)

∑
k∈Nn(aw)

Yk >
√
t/2
∣∣Nn(aw)

)]
≤ E

[
P
( 1

Nn(aw)

∑
k∈In(aw)

Z
(L)
k >

√
t/2
∣∣Nn(aw)

)]
+ E

[ ∑
k∈In(aw)

P
(
Yk 6= Z

(L)
k

)]
.

Now, since Y (aw) are i.i.d random variables, so are Z
(L)
k . Then using the Hoeffding’s inequality, a

large deviation inequality for normal distributed random variables and the fact that Nn(aw) ≤ n,
the last inequality can be upper bounded by

E
[

exp
{
− tNn(aw)

2L

}]
+

2n√
2πσ2

aw

1

L
exp

{
− L2

2σaw

}
. (4.11)

Now, take L = (2σaw(2 + γ) log n)1/2, t = (1+γ)2L logn
Nn(aw) , where γ > 0. In this case, from the

expression above we get that

P
(
(µ̂aw,n)2 > t/2

)
≤ exp

{
− (1 + γ) log n

}
+

2n√
2πσ2

aw

1

L
exp

{
− L2

2σaw

}
and therefore, ∑

n≥1

P
(
(µ̂aw,n)2 > t/2

)
<∞. (4.12)

Applying the Borel-Cantelli lemma we deduce (4.9). Now, it remains to check the the first term
of 4.10 is also summable in n. As before, for k ∈ In(aw) consider the sequence of random variables

Z
(L)
k =


L, if Y 2

k − σ2
aw ≥ L,

Y 2
k − σ2

aw, if − L < Y 2
k − σ2

aw < L,
−L, if − L ≤ Y 2

k − σ2
aw.

The expected value of Z
(L)
k is also equal to 0. Therefore, proceeding exactly as before, we can show

that, taking tn = (1+γ)2L logn
Nn(aw) but now with L = 2σaw(2 + γ) log n, where γ > 0, it holds that∑

n≥1

P
(
|σ2
aw − σ̃2

aw,n| > tn

)
<∞.

Using (4.12) and the inequality above we conclude that∑
n≥1

P
(
|σ2
n,aw − σ̂2

aw,n| > tn
)
<∞, (4.13)

where tn = (1+γ)2L logn
Nn(aw) and L = 2σaw(2 + γ) log n with γ > 0.

Defining C ′ = (1/2) min{σ2
aw, a ∈ A}, by the strong consistence of the maximum likelihood
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estimator, we know that

P
( ⋂
a∈A
{σ̂2

aw > C ′} for all n large enough
)

= 1. (4.14)

Therefore, by (4.13) and (4.14) we deduce that (4.8) is upper bounded, eventually almost surely
as n→∞, by

C log2 n,

for some constant C > 0, what proves (4.5).

The Theorem 13 give us a idea of how to estimate the context tree, since the growing of the
log-Likelihood in relation to the number of contexts change at the true context tree. For any finite
string w ∈ ∪d−1

k=1A
k, we define

∆n(w) =
1

2

∑
a∈A

Nn(aw) log
σ̂2
w,n

σ̂2
aw,n

. (4.15)

Notice that ∆n(w) is the log-likelihood ratio statistic for testing the consistency of the sample
with the context tree τ against the alternative that it is consistent with τ ′ = τ \ {w} ∪a∈A {aw}.

Definition 7. For any c > 0, given the sample (Y n
1 , X

n
1 ), our context tree estimator is given by

τ̂n,c(Y
n

1 | Xn
1 ) =

{
w ∈ Ad1 : Nn(w) > 0, ∆n

(
w−1
−`(w)+1

)
≥ α(c, n) and

∆n(sw) ≤ α(c, n) for all s ∈ Ad−`(w) with Nn(sw) > 0
}
.(4.16)

where α(c, n) = c (log n)2.

As a consequence of the Theorem 13, we have the consistency of the estimator τ̂n,c(Y
n

1 | Xn
1 ).

Corollary 4.1. Suppose that (Xn
1 , Y

n
1 ) is a sample of an ergodic HVLMC compatible with the

probabilistic context tree (τ∗, p∗) with τ∗ finite d ≥ `(τ∗) and family (Qw : w ∈ τ) of transition
probabilities satisfying assumptions 4.1 and 4.2. Denoting τ̂n,c = τ̂n,c(Y

n
1 | Xn

1 ), it holds

lim
n→∞

P
(
τ̂n,c 6= τ∗

)
= 0.

4.1.2 Algorithm and simulation study

In this section, we provide an algorithm to compute the estimator τ̂n,c(Y1|Xn
1 ). Assume it is

given a sample (Xn
1 , Y

n
1 ) of an ergodic HVLMC compatible with the probabilistic context tree

(τ∗, p∗) with τ∗ finite d ≥ `(τ∗) and family (Qw : w ∈ τ) of transition probabilities satisfying
assumptions 4.1 and 4.2. The algorithm can be described informally as follows.

(i) Start with the complete tree of depth d, that is, τ = {w ∈ Ad : Nn(w) > 0}.

(ii) Choose any w ∈ τ and compute the statistics ∆n(w−1
−`(w)+1) given in (4.15).

(a) If the value of this statistics is less than α(c, n), we remove from τ all strings aw−1
−`(w)+1,

a ∈ A, and repeat step (ii) for this new tree.

(b) If, on the other hand, the statistics is greater than α(c, n), then w is a context. We then
start again from the step (ii) choosing a different element of τ .

Formally, define Vτ,w =
{
s ∈ τ : `(s) = `(w) = `, s−i = w−i, i = 1, . . . , `(w)− 1

}
. In words, Vτ,w is

the subset of τ correspondent to the strings which are in the same branch as the string w. Now,
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remember that A∗ denote the set of all finite sequences of elements of A and consider the function
Hτ : τ → A∗ ∪ τ given by:

Hτ (w) = {w−1
−`(w)+1} ∪ {w

′ ∈ τ : w′ /∈ Vτ,w}.

In words, Hτ (w) returns a context tree generated by replacing the leaf w and the leaves in its branch
by one single leaf w−1

−`(w)+1 (see Figure 4.3). The pseudo-algorithm to estimate the context tree

w

branch of w

(a) τ (b) Hτ (w)

Figure 4.3: Example of the effect of the function Hτ (w) in a tree τ

from a sample (Xn
1 , Y

n
1 ) of an ergodic HVLMC (Xn, Yn)n∈Z is given below. In the pseudo-algorithm

write τ [s] to denote the s-th element of τ .
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Our goal now is to apply the proposed algorithm in the following example. We consider the
ternary random source (Wn)n∈N, taking values in A = {0, 1, 2}, compatible to the context tree
defined in the figure 4.1(a) whose associated family of transition probability is given in the left
table of 4.3 . We then take the observable sequence (Yn)n∈Z whose family of transition probabilities
is given in the right table of 4.3.

Waltz VLMC

context (w) p(0|w) p(1|w) p(2|w)

2 0.2 0.8 0
21 0.2 0.8 0
20 0.2 0.8 0
11 0 0 1
10 0 0 1
01 0 0 1
00 0 0 1

Waltz Hidden VLMC

context (w) Qw

2 N (0, 2)
21 N (0, 4)
20 N (0, 7)
11 N (0, 1.7)
10 N (0, 2.5)
01 N (0, 7)
00 N (0, 6)

Table 4.3: Transition probabilities of Waltz Hidden VLMCs simulation

In the left side table we present for each context the transition probabilities for the next symbol on the
Waltz VLMC. In the right side table we show the distribution assign to each context in the Waltz Hidden
VLMC.

We consider samples of size 10 000, 20 000 and 30 000. For each sample size we simulate 100
samples. Then, for each sample we estimate the context tree by using the Algorithm ?? with the
constant c = 1/2. In the Table 4.4, we present the proportion of time the Waltz context tree was
correctly identified by the algorithm for 100 simulated sequences of sizes 10 000, 20 000 and 30 000.

Sample size Proportion

2 000 0.02
5 000 0.56
10 000 1

Table 4.4: Proportion of correct estimations of the Waltz context tree

We highlight two important considerations about the estimation method. The first one is a
natural observation about the family of normal distributions (Qw)w∈τ . Since our estimator is based
on empirical variances, the higher the variances in the family of normal distributions the higher
the sample size required to estimate correctly the context tree.

The second one concerns the size of the sub-samples induced by the strings. Observe that,
considering the transitions probability of the VLMC as in the table 4.3 we have that E[Nn(10)] =
n(0.053) and E[Nn(00)] = n(0.013), while E[Nn(21)] = n(0.266) and E[Nn(11)] = n(0.213). There-
fore, the sub-samples induced by 00 and 10 are quite smaller than the one induced by 21 and 11.
This implies that the branch which contains the context 00 may need a greater sample size to be
correctly estimated.

4.2 Hierarchical hidden context tree model

Throughout the section we work on

Assumption 4.3. F = L2([0, T ]), F = B(R) is the Borel sigma-algebra of F and w ∈ τ , Qw
is a general probability measure on F have all absolute moments finite and satisfy the Carleman’s
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condition, i.e, for each n ∈ N and w ∈ τ , mn(w) :=
∫
||y||nQw(dy) is finite and∑

n≥1

m−1/n
n (w) =∞. (4.17)

Assume we are given a sample (Xn
1 , Y

n
1 ) of a hidden variable length Markov chain associated

to a probabilistic context tree (τ, p) and family (Qw : w ∈ τ) of transition probabilities on (F,F).
Our task again is to estimate the context tree τ from the sample Y n

1 and the variables In(w),
w ∈ ∪dk=1A

k, being `(τ) ≤ d < n.
To perform such estimation, we shall use a method inspired by the random projective method

introduced in Cuesta-Albertos et al. (2006). In that paper, it has been shown that, under suitable
conditions, a randomly chosen projection determines a distribution on a infinite-dimensional space.
We use the following version of this theorem.

Theorem 14 (Cuesta-Albertos & Fraiman & Ransford (2006)). Let L2[0, T ] be set all square
integrable functions and < ·, · >L2 its correspondent inner product. Let Y1 and Y2 be random
elements on L2[0, T ] such that L(Y1) satisfies that Carleman’s condition, and B = (B(t))t∈[0,T ] a
Brownian Motion independent of Y1 and Y2. Define the random variables RY1 = 〈Y1, B〉L2 and
RY2 = 〈Y2, B〉L2 . If L(RY1) = L(RY2) for almost all realizations of a Brownian Motion B =
(B(t))t∈[0,T ], then L(Y1) = L(Y2).

As a byproduct we obtain the following result.

Corollary 4.2. Let Y1 and Y2 be random elements of L2[0, T ] such that the L(Y1) satisfies the
Carleman’s condition. Define the real random variables

V (Y1) =

∫ T

0

∫ T

0
Y1(t)Y1(s) min{s, t}dsdt and V (Y2) =

∫ T

0

∫ T

0
Y2(t)Y2(s) min{s, t}dsdt.

If L(V (Y1)) = L(V (Y2)), then L(Y1) = L(Y2).

Proof. The random variables RY1 and RY2 are Gaussian random variables with mean 0 and ran-
dom variance V (Y1) and V (Y2) respectively. Indeed, since B is a standard Brownian motion, it
follows that E[RY1 |Y1] = 0, E[R2

Y1
|Y1] = V (Y1) and RY1 |Yn ∼ N (0, V (Y1)). Thus integrating the

conditional RY1 |Y1 with respect to the law L(Y1) we get that the distribution RY1 is Gaussian
random variables with mean 0 and random variance V (Y1). In short, we write RY1 ∼ N(0, V (Y1))
and RY2 ∼ N(0, V (Y2)). In particular, it follows that L(RY1) and L(RY2) do not depend on the
particular realization of the Brownian Motion B = (B(t))t∈[0,T ]. Now if L(V (Y1)) = L(V (Y2)),
then L(RY1) = L(RY2) and the Theorem 14 implies that L(Y1) = L(Y2).

In the previous section, to estimate the context tree τ we, for each finite string w of length
at most d, compared the likelihood consistency of the sample Y n

1 with the context tree that w
is considered as a context against the tree which consider as contexts all the strings aw, a ∈ A.
But here, since we do not posses a closed formula for the likelihood functions we shall proceed
differently. We shall, for each string w ∈ ∪dk=1A

k and any pair (a, b) ∈ A2, compare if the law
which generated the sample Y (as) = {Yk, k ∈ In(as)} is equal to the law which generate the sample
Y (bs) = {Yk, k ∈ In(bs)}, where s = w−1

−`(w)+1. If for all pairs (a, b) ∈ A2, a 6= b the samples Y (as)

and Y (bs) have the same law, we expect that w is not a context. By Corollary 4.2, to test whether the
two samples Y (bw) = {Yk, k ∈ In(bs)} and Y (as) = {Yk, k ∈ In(as)} come from the same distribution
or not, we may test if the samples R(as) = {Rk, k ∈ In(as)} and R(bs) = {Rk, k ∈ In(bs)} come
or not from the same distribution, where the variables Rk are obtained by projecting the Yk into
independent Brownian motions.

The bivariate process (Xn, Rn)n∈Z is a “hierarchical” HVLMC. Given that cτ (Xn
1 ) = w, we

choose Yn according to Qw and then we choose Rn as a normal distribution with mean 0 and
variance V (Yn), that is, Rn ∼ Qw ◦ V −1 where the function V is given in the Corollary 4.2. More
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precisely, the distribution of Rn for any sequence xn−∞ of elements of A and measurable set I of R,
may be written as

P
(
Rn ∈ I | Xn

−∞ = xn−∞
)

=

∫
L2

∫
I

1√
2πV (y)

e
− r2

2V (y)2 drQcτ (xn−∞)(dy)

=

∫ ∞
0

∫
I

1√
2πv

e−
r2

2v2 drQ̃cτ (xn−∞)(dv) (4.18)

with Q̃cτ (xn−∞) = Qcτ (xn−∞) ◦ V −1 where for any y ∈ L2([0, T ]),

V (y) =

∫ T

0

∫ T

0
min{s, t} y(s)y(t)dsdt. (4.19)

This is the motivation to define the following class of models:

Definition 8. The bivariate process (Xn, Rn)n∈Z is a hierarchical hidden variable length Markov
chain (HHVLMC) taking values in A × R, associated to the probabilistic context tree (τ, p) and
the family {Qw : w ∈ τ} of transition probabilities on B(R+), if

(i) (Xn)n∈Z is a stochastic chain with memory of variable length associated to (τ, p) and

(ii) for any m,n ∈ Z with m ≤ n, any string xnm−`(τ)+1 ∈ A
n+m+`(τ) and any sequence Im, . . . , In

of B(R)-measurable sets,

P
(
Rm ∈ Im, . . . , Rn ∈ In | Xn

m−`(τ)+1 = xnm−`(τ)+1

)
=

n∏
k=m

∫ ∞
0

∫
Ik

fv(r)Qcτ (xk
k−`(τ)+1

)(dv),

(4.20)
where for each r ∈ R and v ∈ R+, fv(r) = 1/

√
2πv2 exp{−r2/2v}.

We recall that our task is to estimate the context tree τ from the functional sample Y n
1 and

the variables In(w), w ∈ ∪dk=1A
k, being `(τ) ≤ d < n. But as we saw in the last paragraph, we

may reduce this context tree estimation from the one dimensional projected sample Rn1 and the
variables In(w). In the sequel we assume an additional hypothesis which is a generalization of the
Assumption 4.2.

Assumption 4.4. Given w = w−1
−j−1 ∈ τ if Λτw = {s ∈ τ : s � w−1

−j} 6= ∅ then there exists
s, s′ ∈ Λτw such that Qs 6= Qs′ .

The idea behind the assumption above is that, given a context w = w−1
−j−1 ∈ τ if for all s, s′ ∈ Λτw

we have Qs = Qs′ , then we can replace all the contexts in Λτw by only one context w−1
−j with the

associated distribution Qw without lost of information about the prediction of the process.
Generically the estimator can be described as follows. Given a string w ∈ ∪dk=1A

k, we define
s = w−1

−`(w)+1 and compare for any pair of symbols a, b ∈ A if the samples R(as) = {Rk, k ∈ In(as)}
and R(bs) = {Rk, k ∈ In(bs)} have or not common law. If for all a, b the samples R(bs) = {Rk, k ∈
In(bs)} and R(as) = {Rk, k ∈ In(as)} have the same law, then w is surely not a context. To perform
this sequence of hypothesis tests we use the Kolmogorov-Simirnov (KS) statistics. Specifically, for
any a, b ∈ A, w ∈ ∪dk=1A

k and s = w−1
−`(w)+1, the KS test statistics for the samples R(bs) = {Rk, k ∈

In(bs)} and R(as) = {Rk, k ∈ In(as)} is given by

D(w)
n (a, b) =

√
Nn(as)Nn(bs)

Nn(as) +Nn(bs)
sup
t∈R
|F (as)
n (t)− F (bs)

n (t)|, (4.21)

where s = w−1
−`(w)+1, F

(as)
n is the empirical distribution obtained from the sample R(as) and in the

same way, F
(bs)
n is the empirical distribution obtained from the sample R(bs). Therefore, in our
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statistical procedure we will say that w is not a context if Dw
n (a, b) is small enough for all a, b ∈ A.

Otherwise we say that w is context.
The big advantage of this test is that, in the case w ∈ ∪dk=1A

k is not a context , then the dis-

tribution of D
(w)
n (a, b) for any a, b ∈ A is a free distribution. Moreover, the asymptotic distribution

of D
(w)
n (a, b) is know to be for all t > 0

lim
n→∞

P(D(w)
n (a, b) ≤ t) = 1− 2

∞∑
k=1

(−1)k+1e−2k2t2 . (4.22)

Therefore, given a level α, we can find cα such that

lim
n→∞

P(D(w)
n (a, b) > cα) = α.

Furthermore, the test is consistent, i.e, when w is a context we have that

lim
n→∞

P(D(w)
n (a, b) > cα) = 1.

For any string w ∈ ∪dk=1A
k, define

∆n(w) = max
a,b∈A

D(w)
n (a, b).

Definition 9. For any c > 0, given the sample (Xn
1 , R

n
1 ) our context tree estimator is given by

τ̂n,c(R
n
1 | Xn

1 ) =
{
w ∈ Ad1 : Nn(w) > 0,∆n

(
w−1
−`(w)+1

)
> c and

∆n(sw) ≤ c for all s ∈ Ad−`(w) with Nn(sw) > 0
}
. (4.23)

The next result we show that our estimator is a weakly consistent in the sense that for any
α ∈ (0, 1], there exits a constant cα > 0 such with probability going to 1 as the sample size n
diverges it holds that τ̂n,c � τ and with probability going to α it holds that τ̂n,c � τ .

Proposition 4.1. Let (Xn
1 , Y

n
1 ) be a sample produced by HHVLMC associated to the probabilistic

context tree (τ∗, p∗) and family (Qw : w ∈ τ∗) of transition probabilities on B(R+) satisfying the
Assumption 4.4. For any α ∈ (0, 1], there exists a constant cα > 0 such that

lim
n→∞

P(τ̂n,cα � τ∗) = 1 and lim
n→∞

P(τ̂n,cα � τ∗) = α.

Proof. Indeed, notice that

P
(
τ̂n,cα ≺ τ∗

)
≤
∑
w∈τ∗

P
(

∆n(w−1
`(w)+1) ≤ cα

)
Now, for any w ∈ τ∗, by Assumption 4.4 we know that there exits a ∈ A such that Qw 6= Qas with
s = w−1

−`(w)+1. Then, by definition of ∆n(w) it follows that

P
(

∆n(s) ≤ cα
)
≤ P

(
D(s)
n (w−`(w), a) ≤ cα

)
which goes to 0 as n→∞ because of the consistence of the Kolmogorov-Smirnov test.

Now assume that there exits w′ � w and w ∈ τ∗ such that w′ ∈ τ̂n,cα . Notice that defining
s = (w′)−1

`(w′)+1, we have

P
(
∆n(s) > cα

)
≤

∑
a,b∈A:a6=b

P
(
D(s)
n (a, b) > cα

)
. (4.24)



48 HIDDEN VARIABLE LENGTH MARKOV CHAINS 4.3

Now to conclude the proof, we need to choose cα such that the sum over all w′ � w with w ∈ τ∗
of the term in the right-hand side of (4.24) is less than α, in the limit as n→∞. This is possible
thanks to (4.22).

4.3 Order Estimation

In this last section we address the problem of context tree estimation for the class of Hidden
Context Tree models with Gaussian and Poissonin observables. The estimator we propose here does
not require an upper bound on the depth of the context tree. In the main Theorem of this section,
Theorem 16, the strong consistency of this estimator is proven. Our proof relies on information-
theoretic-like mixture inequalities in the same spirit of [CGG09] and [Dum14].

Let (Xn)n∈Z be a stochastic chain with memory of variable length compatible with a probabilis-
tic context tree (τ, p). Define the process (Zn)n∈Z taking values in τ by Zn = cτ (Xn

−∞). Our first
result shows that if for all n, Zn+1 is suffix of ZnXn+1, then the HCT order estimation problem is
equivalent to HMM order estimation problem. Following [RST96], we call the stochastic chains with
memory of variable length (Xn)n∈Z satisfying this property of probabilistic suffix automata. Before
stating precisely this result, we give two examples. The first example shows that both rhythmic
random sources Samba and Waltz satisfy the probabilistic suffix automata property. The second
example provides an simple context tree τ which is not a probabilistic suffix automata.

Example 4.1 (probabilistic suffix automata). Let τ be either τwaltz or τsamba (see figure 4.1(b)).
Any stochastic chain with memory of variable length (Xn)n∈Z compatible with (τ, p), for any family
of transition probabilities p, is a probabilistic suffix automata.

Example 4.2 (non probabilistic suffix automata). Let τ be the context tree τ = {0, 001, 101, 11}.
Any stochastic chain with memory of variable length (Xn)n∈Z compatible with (τ, p), for any family
of transition probabilities p, is not a probabilistic suffix automata. Indeed, if Zn = 0 and Xn+1 = 1,
then Zn+1 is not a suffix of ZnXn+1.

In words, the next result states the following. In the case where the stochastic chain with memory
of variable length (Xn)n∈Z is associated to a probabilistic suffix automata, them the problem of
estimating the number of contexts of τ is equivalent to the problem of estimating the alphabet of
a stochastic Markov chain of order 1.

Proposition 4.2. Let (Xn, Yn)n∈Z be a hidden stochastic chain with memory of variable length. Let
(Zn)n∈Z be the the stochastic process defined for each n ∈ Z by Zn = cτ (Xn

−∞). Suppose (Xn)n∈Z is
a probabilistic suffix automata, then HCT order estimation problem for (Xn, Yn)n∈Z is equivalent
to the HMM order estimation problem for (Zn, Yn)n∈Z.

Proof. The probabilistic suffix automata assumption on (Xn)n∈Z implies immediately that (Zn)n∈Z
is a order 1 Markov chain. Since, conditionally on Xn

−∞, the distribution of Yn depends only
cτ (Xn

−∞) = Wn, the result follows immediately.

In the sequel, we address the HCT order estimation problem in the general setup for two
classical examples of observable processes, namely, the cases for Poissonian observable distributions
and Gaussian observable distributions with know variance.

Given a context tree τ , the set of transition parameters is defined as

Θt,τ =
{
p ∈ R|A|×|τ | : p =

(
p(a|w)

)
a∈A,w∈τ s.t. p(a|w) ≥ 0 and ∀ w ∈ τ,

∑
a∈A

p(a|w) = 1
}
, (4.25)

while the set of parameters is given by

Θτ =
{

(p, µ) ∈ R|A|×|τ | × R|τ | : p ∈ Θt,τ , µ = (µw)w∈τ

}
. (4.26)
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Take any pair of parameters θ = (p, µ) ∈ Θτ , and define Pθ the probability distribution under
which (Xn)n∈Z is a stochastic chain with memory of variable length compatible with (τ, p) and for
any m,n ∈ Z with ∞ < m ≤ n <∞ and any sequence Im, . . . , In of B(R+)-measurable intervals,

P
(
Ym ∈ Im, Ym+1 ∈ Im+1, . . . , Yn ∈ In | Fn

)
=
∏
w∈τ

∏
k∈In(w)

Qw(Ik),

where for each w ∈ τ , In(w) = {k ≤ n : cτ (Xk
−∞) = w} is the set of indexes in which the observable

process is chosen according to Qw which, in the Gaussian case, is Qw(dy) = gµw(y)dy with

gµw(y) =
1√
2πσ

exp
{
− (y − µw)2

2σ2

}
, (4.27)

and, in the Poissonian case, is Qw(dk) = gµw(k)γ(dk), k ∈ N, γ =
∑∞

k=0 δk with

gµw(k) =
e−µwµkw
k!

. (4.28)

In what follows, we fix a finite sample of the observable process Y0, . . . , Yn = Y n
0 of a hidden context

tree model with true parameter θ? for a given context tree τ? associated with the stochastic chain
with memory of variable length (Xn)n∈Z such that (Xn

n−`(τ?)+1)n∈Z is a stationary and irreducible
Markov chain.

Let τ be any context tree whose length is finite, i.e, ` = `(τ) < ∞, and consider a probability
measure ν on A`. For each pair of parameters θ = (p, µ) ∈ Θτ , x

−1
−` ∈ A` and xn0 ∈ An+1, the

conditional likelihood of the sample xn0 given the initial sequence of symbols x−1
−` is defined by

Lθ(x
n
0 |x−1
−` ) = Lp(x

n
0 |x−1
−` ) =

∏
a∈A

∏
w∈τ

p(a|w)Nn(w), (4.29)

where Nn(w) is the number of occurrences of the context w in the sample xn−`. Similarly, given
the string yn0 ∈ Bn+1 we define the conditional likelihood of the given realization of state sequence
xn−l ∈ An+1+` by

Lθ(y
n
0 |xn−`) = Lµ(yn0 |xn−`) =

∏
w∈τ

∏
k∈βn0 (w)

gµw(yk), (4.30)

where In0 (w) = {0 ≤ k ≤ n : cτ (xk−`) = w}. Finally, the likelihood of the sample yn0 ∈ Bn+1 is
defined then by

Lθ(y
n
0 ) =

∑
x−1
−l ∈Al

∑
xn0∈An+1

ν(x−1
−l )Lθ(x

n
0 |x−1
−l )Lθ(y

n
0 |xn−l). (4.31)

The statistical criterion we propose is motivated by the minimum description length (MDL)
principle [Ris78].

Definition 10. Given the sample yn0 ∈ Bn+1, the estimated context tree is denoted by τ̂n and is
selected through the criterion

τ̂n = arg min
τ contex tree

[
− sup
θ∈Θτ

logθ(y
n
0 ) + pen(n, τ)

]
, (4.32)

where pen(n, τ) is the penalty term which depends on n and the context tree τ .

Notice that, if we take a permutation σ of {1, . . . , |A|} and define the tree context tree

σ(τ) = {σ(w) : w ∈ τ},

where for each w = w−1
−k ∈ τ , σ(w) =

(
σ(w−k) . . . σ(w−1)

)
, then the distribution of (Yn)n∈Z does

not change. For this reason, we need to introduce the following definition.
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Definition 11. If τ and τ ′ are two context tree, we say that τ and τ ′ are equivalent, and denote
it by τ ∼ τ ′, if there exists a permutation σ of A such that σ(τ) = τ ′.

To give some insights of the above definition we provide two examples.

Example 4.3. The context tree τ = {0, 01, 11} and τ ′ = {1, 10, 00} are equivalent. It is easy to
check that σ(τ) = τ ′, if the permutation σ is such that σ(1) = 0 and σ(0) = 1.

Example 4.4. The context tree τ = {0, 1} and τ ′ = {0, 01, 11} are not equivalent. In fact,
the equivalence property implies that equivalent trees have the same number of contexts. Since
|τ | = 2 6= 3 = |τ ′|, we see that τ � τ ′.

Our task in to find penalty terms which ensure the strong consistency of τ̂n, that is such that
Pθ?-eventually almost surely τ̂n ∼ τ?. In order to do that, we shall first compare the difference of
maximum likelihood of Y n

0 and a specific mixture distribution we define below.
Given a context tree τ and λ > 0, let πτ,λ = πτ be a prior probability on Θτ such that the

following conditions hold:

(i) the vectors p and µ are independent;

(ii) ν is the uniform distribution on A`, i.e, for all x−1
−` ∈ A

`, ν(x−1
−` ) = 1/|A|`,

(iii) if pw = (p(a|w))a∈A, then the vectors (pw)w∈τ are independently Dirichlet D(1/2, . . . , 1/2)
distributed,

(iv) the sequence (µw)w∈τ is i.i.d such that µw ∼ N (0, λ) in the Gaussian case, and µw ∼
Gamma(λ, 1/2) in the Poissonian case.

The mixture measure KTτ on Bn+1 is defined then by

KTτ (yn0 ) =

∫
Θτ

Lθ(y
n
0 )πτ (dθ). (4.33)

The following result provides a comparison between the maximum log-likelihood logLθ(y
n
0 ) and

the mixture measure define above KTτ (yn0 ), for each yn0 ∈ Bn+1. In what follows, z(n) and |z|(n) are
the maximum of z0, . . . , zn and |z0|, . . . , |zn|, respectively.

Theorem 15. Grant conditions (i)-(iv), for any given finite context tree τ , n ≥ 0 and yn0 ∈ Bn+1,
the following inequalities hold true:

(i) define αn,τ = (|A|−1)
2 |τ | log(n+ 1) + (`(τ) + 1) log |A|, then

0 ≤ sup
θ∈Θτ

logLθ(y
n
0 )−KTτ (yn0 ) ≤ αn,τ + sup

θ∈Θτ

max
xn−`∈A`

log
Lθ(y

n
0 |xn−`)

KTτ (yn0 |xn−`)
, (4.34)

(ii) For Gaussian observables,

sup
θ∈Θτ

max
xn−`∈A`

log
Lθ(y

n
0 |xn−`)

KTτ (yn0 |xn−`)
≤ |τ |

2
log
(

1 +
(n+ 1)λ2

|τ |

)
+
|z|2(n)|τ |

2λ2
. (4.35)

(iii) For Poissonian observables,

sup
θ∈Θτ

max
xn−`∈A`

log
Lθ(y

n
0 |xn−`)

KTτ (yn0 |xn−`)
≤ |τ |

2
log
(n+ 1

|τ |

)
+ |τ |λz(n) +

|τ |
2

(1 + λ− log 2λ). (4.36)
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Proof. Given yn0 ∈ Bn+1, we have

sup
θ∈Θτ

log
Lθ(y

n
0 )

KTτ (yn0 )
= `(τ) logA+ sup

θ∈Θτ

log

∑
x−1
−`∈A`

Lθ(y
n
0 |x
−1
−` )∑

x−1
−`∈A`

KTτ (yn0 |x
−1
−` )

≤ `(τ) logA+ sup
θ∈Θτ

max
x−1
−`∈A`

log
Lθ(y

n
0 |x
−1
−` )

KTτ (yn0 |x
−1
−` )

(4.37)

Since Lθ(y
n
0 |x
−1
−` ) =

∑
xn0∈An+1 Lθ(x

n
0 |x
−1
−` )Lθ(y

n
0 |xn−`), it follows by definition that

KTτ (yn0 |x−1
−` ) =

∑
xn0

KTτ (xn0 |x−1
−` )KTτ (yn0 |xn−`).

Thus, by (4.37), we deduce that

sup
θ∈Θτ

log
Lθ(y

n
0 )

KTτ (yn0 )
≤ `(τ) logA+ sup

θ∈Θτ

max
xn−`∈A`+n+1

log
Lθ(x

n
0 |x
−1
−` )Lθ(y

n
0 |xn−`)

KTτ (xn0 |x
−1
−` )KTτ (yn0 |xn−`)

≤ `(τ) logA+ sup
θ∈Θτ

max
xn−`∈A`+n+1

log
Lθ(x

n
0 |x
−1
−` )

KTτ (xn0 |x
−1
−` )

+ sup
θ∈Θτ

max
xn−`∈A`

log
Lθ(y

n
0 |xn−`)

KTτ (yn0 |xn−`)

By proposition 2.4.4 of Gassiat (2011), we have

sup
θ∈Θτ

max
xn−`∈A`+n+1

log
Lθ(x

n
0 |x
−1
−` )

KTτ (xn0 |x
−1
−` )

≤ (|A| − 1)

2
|τ | log(n+ 1) + log |A|,

so that it follows

sup
θ∈Θτ

log
Lθ(y

n
0 )

KTτ (yn0 )
≤ (|A| − 1)

2
|τ | log(n+ 1) + (`(τ) + 1) logA+ sup

θ∈Θτ

max
xn−`∈A`

log
Lθ(y

n
0 |xn−`)

KTτ (yn0 |xn−`)
,

proving (4.34). It remains prove items (ii) and (iii). We shall first prove the item (ii). In this case,
since the maximum-likelihood estimator for mw is m̂n,w = Nn(w)/(n+ 1), it follows that

Lθ(y
n
0 |xn−`) ≤

1

(σ
√

2π)n+1

∏
w∈τ

exp
{
−
∑

k∈In0 (w) z
2
k

2σ2
−
Nn(w)m̂2

w,n

2σ2

}
. (4.38)

After some simple algebraic manipulations, we also deduce that

KTθ(y
n
0 |xn−`) =

1

(σ
√

2π)n+1

∏
w∈τ

∫ ∞
−∞

1

λ
√

2π
exp

{
− m2

2λ2
− 1

2σ2

∑
k∈In0 (w)

(zk −m)2
}
dm

=
1

(σ
√

2π)n+1

∏
w∈τ

1√
1 +Nn(w)λ

2

σ2

exp
{
−
∑

k∈In0 (w) z
2
k

2σ2
+

N2
n(w)m̂2

w,n

2σ2(Nn(w) + σ2

λ2 )

}
.

From (4.38) and equality above, we get that

Lθ(y
n
0 |xn−`)

KTτ (yn0 |xn−`)
≤
∏
w∈τ

√
1 +Nn(w)

λ2

σ2
exp

{∑
w∈τ

Nn(w)m̂2
w,n

2σ2(1 + Nn(w)λ2

σ2 )

}
. (4.39)
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To upper bound the first term of the product above we use Jensen inequality,

∏
w∈τ

√
1 +Nn(w)

λ2

σ2
≤
(

1 +
(n+ 1)λ2

|τ |

)|τ |/2
,

and to upper bound the second term we first notice that

Nn(w)

1 +Nn(w)λ2/σ2
=

1

σ2/Nn(w) + λ2
σ2 ≤ σ2

λ2
,

which implies that

exp
{∑
w∈τ

Nn(w)m̂2
w,n

2σ2(1 + Nn(w)λ2

σ2 )

}
≤ exp{ 1

2λ2

∑
w∈τ

m̂2
w,n} ≤ exp{max

w∈τ
m̂2
w,n

|τ |
2λ2
}.

Using also that maxw∈τ m̂
2
w,n ≤ |z|2(n), we finally obtain that

sup
θ∈Θτ

max
xn−`∈A`

log
Lθ(y

n
0 |xn−`)

KTτ (yn0 |xn−`)
≤ |τ |

2
log
(

1 +
(n+ 1)λ2

|τ |

)
+
|z|2(n)|τ |

2λ2
.

Thus, we have verified inequality (4.35). To prove (4.36), we start noticing that in this case

Lθ(y
n
0 |xn−`) ≤

1∏n
k=0(yk)!

∏
w∈τ

exp
{
−Nn(w)m̂w,n(1− log m̂w,n, )

}
, (4.40)

where m̂w,n = Nn(w)/(n + 1) is the maximum-likelihood estimator of mw. Writing precisely the
expression of the the conditional likelihood Lθ(y

n
0 |xn−`), we easily deduce that

KTθ(y
n
0 |xn−`) =

1∏n
k=0(zk)!

∏
w∈τ

∫ ∞
0

√
λ

Γ(1/2)
m(m̂w,nNn(w)−1/2) exp

{
−m(Nn(w) + λ)

}
dm

=
1∏n

k=0(zk)!

∏
w∈τ

√
λ

π

Γ(m̂w,nNn(w) + 1/2)

(Nn(w) + λ)(Nn(w)m̂w,n+1/2)
,

(4.41)

so that we get

Lθ(y
n
0 |xn−`)

KTθ(y
n
0 |xn−`)

≤
∏
w∈τ

√
π

λ
exp

{−Nn(w)m̂n,w(1− log m̂n,w) + (Nnm̂n,w + 1/2) log(Nn(w) + λ)

Γ(Nn(w)m̂w,n + 1/2)

}
.

(4.42)
By Robbins-Stirling approximation formula, we have that

Γ(Nn(w)m̂w,n + 1/2) ≥
√

2π exp{−Nn(w)m̂w,n − 1/2}(Nn(w)m̂w,n + 1/2)Nn(w)m̂w,n ,

and, therefore, applying this bound to inequality (4.42) and making some computations, we con-
clude that

Lθ(y
n
0 |xn−`)

KTθ(y
n
0 |xn−`)

≤
∏
w∈τ

√
e

2λ
exp

{1

2
logNn(w) + (Nn(w)m̂n,w + 1/2) log

(
1 +

λ

Nn(w)

)}
. (4.43)

Now, applying Jensen Inequality, we have that∑
w∈τ

logNn(w) ≤ |τ | log
( 1

|τ |
∑
w∈τ

Nn(w)
)

= |τ | log
(n+ 1

|τ |

)
,
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and using the inequality log z ≤ z − 1, valid for all z > 0, it follows that∑
w∈τ

(Nn(w)m̂n,w + 1/2) log
(

1 +
λ

Nn(w)

)
≤ z(n)λ|τ |+

λ|τ |
2
.

Plugging these two inequalities into (4.42), we obtain the desired inequality (4.36).

For any given α > 0, n ≥ 0 and context tree τ , we set the penalty term as

penα(n, τ) =

|τ |∑
k=1

(|A| − 1)k + α

2
log(n+ 1) +An,τ +Bn,τ + Cn,τ , (4.44)

where the terms An,τ and Bn,τ are given respectively by

An,τ =

|τ |∑
k=1

ak,τ , Bn,τ =

|τ |∑
k=1

bk,τ

where for each k ≥ 1 and context tree τ ,

ak,τ =
|τ |
2

log
(

1 +
(k + 1)λ2

|τ |

)
and in the Gaussian case,

bk,τ = (`(τ) + 1) log |A| and Cn,τ = 5λ2|τ |(|τ |+ 1) log(n+ 1), (4.45)

while in the Poissonian Case,

bk,τ = `(τ + 1) log |A| and Cn,τ =
log(n+ 1)√
log log(n+ 1)

, (4.46)

We now prove that the strong consistency of the estimator τ̂n.

Theorem 16. Let penα(n, τ) be the penalty term defined in (4.44) with α > 2, where in the
Gaussian case bk,τ and Cn,τ are given in (4.45), and in the Poissonian case bk,τ and Cn,τ are as in
(4.46). If the sample Y n

0 was generate by a hidden stochastic chain with memory of variable length
with parameters (τ?, θ?) then τ̂n ∼ τ?, Pθ?-eventually almost surely.

Proof. We shall prove only the consistency for the Gaussian case, being the Poissonian case treated
similarly. We shall start showing that |τ̂n| ≤ |τ?|, Pθ?-eventually almost surely. By Borel-Cantelli
lemma, it is enough to prove that

∞∑
n=1

Pθ?(|τ̂n| > |τ?|) <∞.

Since
Pθ?
(
|τ̂n| > |τ?|

)
≤ Pθ?

(
|τ̂n| > |τ?|, Gn ≤ tn

)
+ Pθ?

(
Gn > tn

)
,

and by Lemma 3 of Gassiat (2009), Pθ?
(
Gn > tn

)
= O

(
(n+ 1)−3/2

)
, we only have to prove that

∞∑
n=1

Pθ?
(
|τ̂n| > |τ?|, Gn ≤ tn

)
<∞. (4.47)

For that sake, take a context tree τ such that |τ | > |τ∗| and assume that τ̂n = τ. Then, by definition,
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it follows that
logLθ?(Y

n
0 ) ≤ sup

θ∈Θτ

logLθ(Y
n

0 ) + penα(n, τ?)− penα(n, τ). (4.48)

The Theorem 15 implies then that the right-hand side of the inequality above is bounded (we also
use that KTτ (Y n

0 ) ≤ 1 and λ = 1/2) by

∆n,τ = αn,τ +
|τ |
2

log
(

1 +
(n+ 1)λ2

|τ |

)
+ 2|Y |2(n)|τ |+ penα(n, τ?)− penα(n, τ)

= −
|τ |−1∑

k=|τ?|+1

[(|A| − 1)

2
log(n+ 1) + ak,τ + bk,τ

]
− α

2
(|τ | − |τ?|)

+(Cn,τ? − Cn,τ ) + 2|Y |2(n)|τ |.

Thus, defining Gn = |Y |2(n) and tn = 5σ2 log(n + 1), we have, by the equality above, that condi-

tionally on {Gn ≤ tn},
∆n,τ ≤ −

α

2
(|τ | − |τ?|) log(n+ 1), (4.49)

so that by (4.48) and (4.49), it follows also that

Pθ?
(
τ̂n = τ,Gn ≤ tn

)
≤

∫
zn0 ∈Bn+1

Lθ?(z
n
0 )

KTτ (zn0 )
1
{

log
Lθ?(z

n
0 )

KTτ (zn0 )
, Gn ≤ tn

}
KTτ (zn0 )µ(dzn0 )

≤ (n+ 1)−
α
2

(|τ |−|τ?|).

Since,

Pθ?
(
|τ̂n| > |τ?|, Gn ≤ tn

)
≤

∞∑
t=|τ∗|+1

CT (t)(n+ 1)−
α
2

(t−|τ?|),

where CT (t) is the number of context tree with exactly t contexts, and CT (t) ≤ 16t (Lemma 2 of
Garivier ), we deduce that

Pθ?
(
|τ̂n| > |τ?|, Gn ≤ tn

)
≤ O((n+ 1)−α/2),

which implies (4.47), if α > 2. The part that |τ̂n| ≥ |τ?|, Pθ?-eventually almost surely is corollary
of Theorem 2 of Leroux 1992, see also Gassiat (2009) and Dumont 2011.
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