• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
Documento
Autor
Nombre completo
Guilherme Silva Salomão
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2019
Director
Tribunal
Tal, Fabio Armando (Presidente)
Kocsard, Alejandro
Koropecki, Andrés
Robles, Alejandro Miguel Passeggi Diaz
Zanata, Salvador Addas
Título en portugués
Inexistência de difusão sublinear para uma classe de homeomorfismos do toro
Palabras clave en portugués
Conjunto de rotação
Difusão sublinear
Dinâmica topológica
Homeomorfismos do toro
Resumen en portugués
No presente trabalho iremos provar, usando a folheação de Brouwer-Le Calvez e a teoria de forcing dela derivada, que dado um homeomorfismo f do toro isotópico à identidade tal que seu conjunto de rotação é um segmento de reta com inclinação irracional e tendo 0 como um ponto extremal, então f não possui difusão sublinear na direção perpendicular à direção do conjunto de rotação
Título en inglés
Inexistence of sublinear diffusion for a class of torus homeomorphisms
Palabras clave en inglés
Rotation set
Sublinear diffusion
Topological dynamics
Torus homeomorphisms
Resumen en inglés
In the present work we will prove, using the Brouwer-Le Calvez foliation and the forcing theory derived from it, that given a torus homeomorphism f isotopopic to the identity such that its rotation set is a line segment with irrational slope and 0 is an extreme point, then f does not have sublinear diffusion in the direction perpendicular to the direction of the rotation set.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2019-07-04
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2019. Todos los derechos reservados.