• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2013.tde-21012015-214244
Documento
Autor
Nome completo
Bruno de Paula Jacóia
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2013
Orientador
Banca examinadora
Tello, Jorge Manuel Sotomayor (Presidente)
Garcia, Ronaldo Alves
Zanata, Salvador Addas
Título em português
Estabilidade estrutural dos campos vetoriais seccionalmente lineares no plano
Palavras-chave em português
Campos de vetores lineares por partes
Compactificação de Poincaré
Estabilidade estrutural
Resumo em português
Estudamos uma classe de campos de vetores seccionalmente lineares no plano denotada por X. Tais campos aparecem frequentemente em modelos matemáticos aplicados à engenharia. Baseados no trabalho de J. Sotomayor e R. Garcia [SG03], impondo condições sobre as singularidades, órbitas periódicas e separatrizes, definimos um conjunto de campos de vetores que são estruturalmente estáveis em X. Provamos que esse conjunto é aberto, denso e tem medida de Lebesgue total em X, o qual é um espaço vetorial de dimensão finita.
Título em inglês
Structural stability of piecewise-linear vector fields in the plane
Palavras-chave em inglês
Piecewise-linear vector fields
Poincaré compactification
Structural stability
Resumo em inglês
We study a class of piecewise-linear vector fields in the plane denoted by X. These vector fields appear often in mathematical models applied to Engineering. Based on Jorge Sotomayor and Ronaldo Garcia paper [SG03], we impose conditions on singularities, periodic orbits and separatrices, to define a set of vector fields structurally stable in X. We give a proof that this set is open, dense and has full Lebesgue measure in X, that is a finite dimensional vector space.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2015-04-08
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.