• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2010.tde-18082010-122313
Documento
Autor
Nome completo
Andre Ricardo Belotto da Silva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2010
Orientador
Banca examinadora
Tello, Jorge Manuel Sotomayor (Presidente)
Garcia, Ronaldo Alves
Salomão, Pedro Antonio Santoro
Título em português
Análise das bifurcações de um sistema de dinâmica de populações
Palavras-chave em português
Bifurcação
Bogdanov-Takens
Bogdanov-Takens degenerado
Centros organizadores
Elíptica-nilpotente
Foco-nilpotente
Função resposta Holling IV
Hopf
Lotka-Volterra
Predador-presa
Resumo em português
Nesta dissertação, tratamos do estudo das bifurcações de um modelo bi-dimensional de presa-predador, que estende e aperfeiçoa o sistema de Lotka-Volterra. Tal modelo apresenta cinco parâmetros e uma função resposta não monotônica do tipo Holling IV: $$ \left\{\begin \dot=x(1-\lambda x-\frac{\alpha x^2+\beta x +1})\\ \dot=y(-\delta-\mu y+\frac{\alpha x^2+\beta x +1}) \end ight. $$ Estudamos as bifurcações do tipo sela-nó, Hopf, transcrítica, Bogdanov-Takens e Bogdanov-Takens degenerada. O método dos centros organizadores é usado para estudar o comportamento qualitativo do diagrama de bifurcação.
Título em inglês
Bifurcation analysis of a system for population dynamics
Palavras-chave em inglês
Bifurcation
Bogdanov-Takens
Degenerate Bogdanov-Takens
Holling IV response funciton
Hopf
Lotka-Volterra
Nilpotent eliptic
Nilpotent focus
Organising centers
Predator-prey
Resumo em inglês
In this work are studied the bifurcations of a bi-dimensional predator-prey model, which extends and improves the Volterra-Lotka system. This model has five parameters and a non-monotonic response function of Holling IV type: $$ \left\{\begin \dot=x(1-\lambda x-\frac{\alpha x^2+\beta x +1})\\ \dot=y(-\delta-\mu y+\frac{\alpha x^2+\beta x +1}) \end ight. $$ They studied the sadle-node, Hopf, transcritic, Bogdanov-Takens and degenerate Bogdanov-Takens bifurcations. The method of organising centers is used to study the qualitative behavior of the bifurcation diagram.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2011-05-12
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.