• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
10.11606/T.45.2015.tde-06082015-103906
Documento
Autor
Nome completo
Tiago de Morais Montanher
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2015
Orientador
Banca examinadora
Mascarenhas, Walter Figueiredo (Presidente)
Cozman, Fabio Gagliardi
Dorea, Chang Chung Yu
Perez, José Mario Martinez
Stern, Julio Michael
Título em português
Estimação de modelos de Markov ocultos usando aritmética intervalar
Palavras-chave em português
Aritmética intervalar
Modelos de Markov ocultos
Otimização global
Resumo em português
Modelos de Markov ocultos (MMOs) são uma ferramenta importante em matemática aplicada e estatística. Eles se baseiam em dois processos estocásticos. O primeiro é uma cadeia de Markov, que não é observada diretamente. O segundo é observável e sua distribuição depende do estado na cadeia de Markov. Supomos que os processos são discretos no tempo e assumem um número finito de estados. Para extrair informações dos MMOs, é necessário estimar seus parâmetros. Diversos algoritmos locais têm sido utilizados nas últimas décadas para essa tarefa. Nosso trabalho estuda a estimação de parâmetros em modelos de Markov ocultos, do ponto de vista da otimização global. Desenvolvemos algoritmos capazes de encontrar, em uma execução bem sucedida, todos os estimadores de máxima verossimilhança globais de um modelo de Markov oculto. Para tanto, usamos aritmética intervalar. Essa aritmética permite explorar sistematicamente o espaço paramétrico, excluindo regiões que não contém soluções. O cálculo da função objetivo é feito através da recursão \textit, descrita na literatura estatística. Modificamos a extensão intervalar natural dessa recursão usando programação linear. Nossa abordagem é mais eficiente e produz intervalos mais estreitos do que a implementação padrão. Experimentos mostram ganhos de 16 a 250 vezes, de acordo com a complexidade do modelo. Revisamos os algoritmos locais, tendo em vista sua aplicação em métodos globais. Comparamos os algoritmos de Baum-Welch, pontos interiores e gradientes projetados espectrais. Concluímos que o método de Baum-Welch é o mais indicado como auxiliar em otimização global. Modificamos o \textit{interval branch and bound} para resolver a estimação de modelos com eficiência. Usamos as condições KKT e as simetrias do problema na construção de testes para reduzir ou excluir caixas. Implementamos procedimentos de aceleração da convergência, como o método de Newton intervalar e propagação de restrições e da função objetivo. Nosso algoritmo foi escrito em \textit{C++}, usando programação genérica. Mostramos que nossa implementação dá resultados tão bons quanto o resolvedor global BARON, porém com mais eficiência. Em média, nosso algoritmo é capaz de resolver $50\%$ mais problemas no mesmo período de tempo. Concluímos estudando aspectos qualitativos dos MMOs com mistura Bernoulli. Plotamos todos os máximos globais detectados em instâncias com poucas observações e apresentamos novos limitantes superiores da verossimilhança baseados na divisão de uma amostra grande em grupos menores.
Título em inglês
Estimating hidden Markov model parameters using interval arithmetic
Palavras-chave em inglês
Global optimization
Hidden Markov models
Interval arithmetic
Resumo em inglês
Hidden Markov models(HMMs) are an important tool in statistics and applied mathematics. Our work deals with processes formed by two discrete time and finite state space stochastic processes. The first process is a Markov chain and is not directly observed. On the other hand, the second process is observable and its distribution depends on the current state of the hidden component. In order to extract conclusions from a Hidden Markov Model we must estimate the parameters that defines it. Several local algorithms has been used to handle with this task. We present a global optimization approach based on interval arithmetic to maximize the likelihood function. Interval arithmetic allow us to explore parametric space systematically, discarding regions which cannot contain global maxima. We evaluate the objective function and its derivatives by the so called backward recursion and show that is possible to obtain sharper interval extensions for such functions using linear programming. Numerical experiments shows that our approach is $16$ to $250$ times more efficient than standard implementations. We also study local optimization algorithms hidden Markov model estimation. We compare Baum-Welch procedure with interior points and spectral projected gradients. We conclude that Baum-Welch is the best option as a sub-algorithm in a global optimization framework. We improve the well known interval branch and bound algorithm to take advantages on the problem structure. We derive new exclusion tests, based on its KKT conditions and symmetries. We implement our approach in C++, under generic programming paradigm. We show that our implementation is compatible with global optimization solver BARON in terms of precision. We also show that our algorithm is faster than BARON. In average, we can handle with $50\%$ more problems within the same amount of time. We conclude studying qualitative aspects of Bernoulli hidden Markov models. We plot all global maxima found in small observations instances and show a new upper bound of the likelihood based on splitting observations in small groups.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
tese.pdf (2.55 Mbytes)
Data de Publicação
2015-08-06
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.