• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2015.tde-31032015-113754
Document
Author
Full name
Joao Fernando Schwarz
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Futorny, Vyacheslav (President)
Kochloukov, Plamen Emilov
Mariano, Hugo Luiz
Title in Portuguese
Problema de Noether não-comutativo
Keywords in Portuguese
Anéis de operadores diferenciais
Grupos de pseudo-reflexão
Problema de Noether
Teoria de invariantes não-comutativa
Abstract in Portuguese
Neste trabalho, temos o objetivo de introduzir o Problema de Noether Clássico e sua versão não- comutativa introduzida por J. Alev e F. Dumas em [AD06]. Discutiremos os principais casos co- nhecidos nos quais os problemas têm solução positiva, observando um forte paralelo entre os casos comutativo e não-comutativo. Cobriremos os tópicos preliminares necessários para entendimento dos enunciados: álgebras de Weyl, anéis de operadores diferenciais, extensões de Ore, localização em domínios não-comutativos, e corpos de Weyl. No Capítulo 5 deste trabalho, o aluno apresenta duas contribuições originais, obtidas em colaboração com seu orientador V. Futorny e F. Eshmatov: o Teorema 5.5, que é um resultado folclórico sobre invariantes de ações livres de grupos finitos no anel de operadores diferenciais de variedades afins; e o Teorema 5.6, que até onde sabemos é iné- dito, sobre invariantes dos Corpos de Weyl sob a ação de grupos de pseudo-reflexão. Todo material algébrico preliminar para a demonstração destes dois teoremas é incluído no texto da dissertação: um básico de teoria de invariantes, vários resultados da teoria de grupos de pseudo-reflexão, alguns conceitos básicos de geometria algébrica e álgebra comutativa, e uma discussão detalhada do quo- ciente de variedades afins sob ação de grupos finitos.
Title in English
Noncommutative Noether´s problem
Keywords in English
Noether´s problem
Noncommutative invariant theory
Pseudo-reflection groups
Rings of differential operators
Abstract in English
In this work we aim to introduce the Classical Noether´s Problem, and its noncommutative version introduced by J. Alev and F. Dumas in [AD06]. We discuss the most well known cases of positive solution of these problems, pointing out a strong similarity between the cases of positive solution for the classical and noncommutative versions of the Problem. We cover the preliminary topics to understand the statement and solutions of these problems: Weyl algebras, differential operators rings, Ore extensions, noncommutative localization, and Weyl Skew-Fields. In the Chapter 5 of this dissertation, the student shows two original contributions, obtained in collaboration with his advisor V. Futorny and F. Eshmatov: Theorem 5.5, a result belonging to the folklore of the area of differential operators, describing its invariants under the free action of a finite group on an affine variety; and Theorem 5.6, about the invariants of the Weyl skew-fields under the action of pseudo-reflection groups. As far as we know, this result is new. All preliminary algebraic facts to prove these two facts are included in the body of this text. It includes some basic facts on invariant theory, many results about pseudo-reflection groups, some basic concepts of algebraic geometry and commutative algebra, and a detailed discussion of the quotient of an affine variety under the action of a finite group.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2015-06-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.