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Abstract

Resende, R. O. Regularity of almost minimizing sets. 2019. 120 f.

Thesis (Master) - Institute of Mathematics and Statistics, University of

São Paulo, São Paulo, 2019.

This work was motivated by the famous Plateau's Problem which

concerns the existence of a minimizing set of the area functional with

prescribed boundary. In order to solve the Plateau's Problem, we make

use of di�erent theories: the theory of varifolds, currents and locally �-

nite perimeter sets (Caccioppoli sets). Working on the Caccioppoli sets

theory, it is straightforward to prove the existence of a minimizing set

in some classical problems as the isoperimetric and Plateau's problems.

If we switch the problem to �nd the regularity that we can extract of

some minimizing set, we come across complicated ideas and tools. Al-

though, the Plateau's Problem and other classical problems are well set-

tled. Because of that, we have extensively studied the almost minimizing

condition ((λ, r)-minimizing sets) considered by Maggi ([Mag12]) which

subsumes some classical problems. We focused on the regularity theory

extracted from this almost minimizing condition.

Keywords: Caccioppoli, almost minimizing, minimizing, geometric mea-

sure theory, regularity theory, locally �nite perimeter, �nite perimeter.
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Symbols List

Ec = Rn/E

int(E) is the topological interior of E

Ē is the topological closure of E

∂E = E \ int(E)

Et = {z ∈ Rn−1 : (z, t) ∈ E}

E ⊂ Rn then 1E(x) =

{
1, x ∈ E
0, x ∈ Ec

G(u) denotes the graph of u

Lip (u) is the Lipschitz constant of u

supp f = {x ∈ dom(f) : f(x) 6= 0}
For U ⊂ Rn open set Ck(U,Rm) =

= {f : U → Rm : the i-th derivate f (i) is continuous whenever 0 ≤ i ≤ k}
For U ⊂ Rn open set Ck

c (U,Rm) = {f ∈ Ck(U,Rm) : supp f b U}
Jf is the Jacobian of f

f, g : X → Y then {x ∈ X : f(x) = g(x)} = {f = g}
B(x, r) = {y ∈ Rn : |x− y| < r}
Dr = {z ∈ Rn−1 : |z| ≤ r}
p : Rn → Rn−1 is de�ned as p(x1, ..., xn) = (x1, ..., xn−1)

q : Rn → R is de�ned as q(x1, ..., xn) = xn

u · v =
∑n

i=1 unvn where u = (u1, ..., un) , v = (v1, ..., vn)

u, v, w ∈ Rn then (u⊗ v)w = (v · w)u

‖z‖ν
.
= max {|projνz|, |projν⊥z|} where proj is the euclidean orthogonal projection

C (x, r, ν) = {y ∈ Rn : ‖y − x‖ν < r}
µ a measure, then E

µ∼ F ⇔ µ (E∆F ) = 0

µ a measure on Rn, then µxA denotes the restriction to A

sptµ = {x ∈ Rn : ∀r > 0, µ (B(x, r)) > 0} is the support of the measure µ

φ]µ is the push-forward of µ by φ

|µ| is the total variation of the measure µ

|A| is the Lebesgue measure of A

ωn = |B(0, 1) | is the volume of the ball B(0, 1)
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Introduction

Geometric measure theory (GMT) has roots going back to ancient
Greek mathematics. Ancient Greek mathematicians worked on the isoperi-
metric problem (to �nd the planar domain of given perimeter having
greatest area) which leads naturally to questions about spatial regions
and boundaries. The so-called Plateau's problem (to �nd the minimal sur-
face with prescribed boundary), named in honor of the Belgian physicist
Joseph Plateau, also belongs to the roots of GMT and has been studied
since the 18th century. Despite its elderly roots, GMT has evolved, in
the 20th century, into a modern theory which is in a con�uence zone
between Geometry and Mathematical Analysis. The name �geometric
measure theory� owes its origins to Federer's masterpiece published in
1969 ([Fed96]).

A basic idea in GMT is to generalize the classic di�erential-geometric
notion of surface in order to enlarge the set of possible solutions to
Plateau's and similar variational problems1. According to the strategy
used to generalize the notion of surface, the development of the the-
ory has taken di�erent paths, among which we may identify three main
branches:

De Giorgi: The theory of Caccioppoli sets (or locally �nite perimeter
sets), named after the Italian mathematician Renato Caccioppoli,
who introduced those sets in [Cac27]. In this formalism, a hyper-
surface is de�ned as the boundary of a Caccioppoli set. De Giorgi
made important contributions to this theory, which can be found
in [DG54], [DG55], [DG61a] and [DG61b]. We also refer the reader
to H. Federer's book ([Fed96]) and more recent references, such as
Lawrence C. Evans and Ronald F. Gariepy ([LCE92]), Leon Si-
mon ([Sim83]), Luigi Ambrosio, Nicola Fusco and Diego Pallara
([LA00]), Fanghua Lin and Xiaoping Yang ([FL03]), Enrico Giusti
([Giu84]), Francesco Maggi ([Mag12]) and Frank Morgan ([Mor00]).

Federer and Fleming: The theory of normal and integral currents ([FF60],
[Fed96]). Federer and Fleming de�ned a k-dimensional surface in
Rn as a k-current, i.e. a continuous linear functional on the space
of k-forms endowed with an inductive limit topology of Fréchet
spaces. Those objects generalize the theory of Schwartz's distribu-
tions. This method is extensively studied in [Fed96] and it gener-
alizes the theory of �nite perimeter sets (which may be identi�ed

1making it possible to apply the so-called direct method of the Calculus of Varia-

tions.
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2 0.0

with a particular type of normal currents) to codimensions bigger
than 1.

Almgren and Allard: The theory of varifolds, which was introduced
by Almgren ([ALM65]) and Allard ([All72], [All87]). They de�ned a
k-dimensional varifold as a Radon measure on Rn×Gr(n, k) where
Gr(n, k) denotes the Grassmann manifold of the k-hyperplanes in
Rn. They have also shown that the varifolds are a more general
concept than that of currents.

Each one of the above methods is adequate to study variational prob-
lems such as the classical Plateau's problem and the isoperimetric prob-
lem. In this work, we will focus on the theory of Caccioppoli sets. In this
framework, one can easily show the existence of minimal solutions to the
aforementioned problems by means of the direct method of the calculus
of variations. The study of the regularity of such solutions, however, is
really tough.

There exist certain minimizers in geometric variational problems with
volume-constraints, potential-type energies and the like, that do not sat-
isfy the usual minimality condition, i.e. without constraints. In order to
encompass such problems into the framework, it arises the interest to in-
troduce a notion of almost minimality, i.e. a relaxed notion of minimality.
There are many ways to introduce such a relaxed notion; one of them
was originally presented on a highly general context by Almgren in 1974
([Alm76]) aiming to solve elliptic variational problems with constraints.
One year after Almgren's work, Massari introduced another notion of
minimality with constraints in [Mas75]. Indeed, if we set P(E, ·) the
perimeter measure of the Cacciopoli set E and we de�ne the functional
Tg in the class of Caccioppoli sets depending on g ∈ Lp(Ω), p > n,Ω ⊂ Rn

by

Tg(E) = P(E,K) +

∫
K∩E

g(x) dx (0.1)

whereK is a compact subset of Ω, then F will be a minimizer in Massari's
concept ([Mas75]) if

Tg(F ) ≤ Tg(E)

for allK compact subset of Ω and all Caccioppoli set E such that E∆F ⊂
K. Massari's minimizers also satis�es

P(F,K) ≤ P(E,K) + ‖g‖p|E∆F |
p−1
p

Another almost minimality condition was introduced by Tamanini in
1984 ([Tam84]). Tamanini de�ned an almost minimizing set in Ω ⊂ Rn

as a Caccioppoli set F such that for all A b Ω exist t ∈ (0, dist(A, ∂Ω)
and α : (0, t) → [0,∞) non-decreasing function with limr→0+ α(r) = 0
which satisfy

P(E,B(x, r)) ≤ P(F,B(x, r)) + α(r)rn−1 (0.2)

for every x ∈ A, r ∈ (0, t) and E Caccioppoli set with E∆F b B(x, r).
In this work, we will adopt the concept of almost minimality proposed in
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[Mag12]. Instead of consider either 0.1 or 0.2, Maggi introduces a (Λ, r)-
minimality condition, which we de�ne rigorously in De�nition 1.1.

The regularity problems which will be the main goal of this work
are widely spread in the literature ([Giu84], [Mag12], [Alm76], [Mas75],
[Sim83], [LA00], [Fed96], [Tam84], [DG61b]), with some minor variations
on the de�nition of almost minimality adopted. In fact, regularity theo-
rems can be proved under weaker minimality conditions than the (Λ, r)-
minimality. For instance, Massari ([Mas75]) asserted that the minimizer
of the functional de�ned in 0.1 has reduced boundary Ω ∩ ∂∗F of class

C1, p−n
4p with the restriction on the dimension p > n ≥ 8. On the other

hand, Tamanini ([Tam84]) established that the minimizer of 0.2 has re-
duced boundary Ω ∩ ∂∗F of class C1 under some forced conditions on
α.

We aim to exploit the regularity that can be extracted from the class
of minimizers de�ned in ([Mag12]). For this purpose, the notion of reg-
ularity will come up in many ways. The main tool that we will discuss
is the excess which is used to measure the oscillation of the measure-
theoretic outer unit normal of a Caccioppoli set. The precise de�nition
of the excess can be found in De�nition 2.1. The smallness of the excess
allows us to collect technical results about the Caccioppoli set as the
Height Bound (Theorem 2.17) and the Lipschitz Approximation (Theo-
rem 3.3), which are the main tools to prove the regularity theorem that
we will presented in this work. That is, the C1,γ-regularity of the almost
minimizing sets Theorem.
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Prologue

The propose of this introductory chapter is to �x some notation and
terminology. Furthermore, we will also state some well known results on
geometric measure theory which will be used in the deployment of the
almost minimizing sets theory. For more basic notation, one can check
the Symbols List (see page v).

0.1 Functions of bounded variation

Let (U,Σ, µ) be a measurable space, then we de�ne the space of locally
p-integrable functions Lploc(U, µ), 1 ≤ p < ∞ as follows, if f : U → R is
measurable,

f ∈ Lploc(U, µ)⇔
(∫

K

|f |p dµ

) 1
p

<∞, ∀K b U

If the right side on the inequality holds for U , i.e.(∫
U

|f |p dµ

) 1
p

<∞

we write f ∈ Lp(U, µ) to denote the space of such functions. The space
Lploc(U, µ), 1 ≤ p <∞ with the following norm, f ∈ Lploc(U, µ),

‖f‖p
.
=

(∫
U

|f |p dµ

) 1
p

is a Banach Space. For the sake of brevity, we set Lploc(U, | · |) = Lploc(U)
and Lp(U, | · |) = Lp(U) for any U ⊂ Rn where | · | denotes the Lebesgue
measure on Rn.
We call the functions in L1

loc(U) (respectively, L1(U)) by locally integrable

5



6 PROLOGUE 0.2

functions (resp., integrable functions). We will use the notation, for all
A,B ⊂ U ,

A→ B

to describe that 1A → 1B in L1(U).
If U ⊂ Rn denotes an open set, we say that f ∈ L1

loc(U) has locally
bounded variation in U , if

sup

{∫
K

f(x)divφ(x) dx : φ ∈ C1
c (K,Rn), |φ| ≤ 1

}
<∞

for all K b U . The space of the locally bounded variation functions is
denoted by BVloc(U). We also establish the notation BV (U) to denote
the space of bounded variation functions, i.e. f ∈ L1(U) such that

sup

{∫
U

f(x)divφ(x) dx : φ ∈ C1
c (U,Rn), |φ| ≤ 1

}
<∞

We recall the Structure Theorem for BVloc (Theorem 5.1 in [LCE92])
which states, for each f ∈ BVloc(U), the existence of a Radon measure
µf on U and a µf -measurable function νf : U → Rn such that |νf (x)| = 1
µf -almost everywhere x ∈ U and∫

U

f(x)divφ(x) dx = −
∫
Rn
φ · νf dµf ∀φ ∈ C1

c (U,Rn)

For bounded variation functions, we have the Lower Semicontinuity The-
orem (Theorem 5.2 in [LCE92]) which establish that, if {fi}i∈N ⊂ BV (U)
and fi → f in L1

loc(U),

µf (U) ≤ lim inf
i→∞

µfi(U)

If we consider the norm, f ∈ BV (U),

‖f‖BV (U) = ‖f‖1 + µf (U)

we �nd that BV (U) ∩ C∞(U) is a dense subspace of BV (U). If we now
consider U open, bounded and with Lipschitz boundary, we can state a
sort of compactness, i.e. if {fi} ⊂ BV (U) with

sup
i
‖fi‖BV (U) <∞

we can take a subsequence {fik} and f ∈ BV (U) such that fik → f in
L1(U) (Theorem 5.5 in [LCE92]).
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0.2 Caccioppoli sets

If E,U ⊂ Rn with U an open set and 1E ∈ BVloc(U) (resp., BV (U)),
we say that E is a set of locally �nite perimeter (resp., �nite perimeter)
in U . Hereafter, we set

ν1E = νE

µ1E(·) = P(E, ·)

µE = ν1Eµ1E

where ν1E , µ1E are given by the Structure Theorem for BVloc(U) which we
mentioned before. We notice that µE is a Rn-valued Radon measure on
U . The sets of locally �nite perimeter are also called Caccioppoli sets in
many books of Geometric Measure Theory. Accordingly, we will use this
terminology. We call by perimeter measure the Radon measure P(E, ·)
on U and it holds that

P(E, ·) = |µE|(·)

i.e. the perimeter measure is the total variation of the measure µE. We
notice that

µE = D1E

where we denoted by D1E the distributional derivative of 1E. Now, we
shall prove a result that is simple calculation, but we have not seen its
proof in the literature.

Proposition 0.1. Let E be a Caccioppoli set in Rn. If F is equivalent
to E, i.e. |E∆F | = 0, it follows that
(i) F is a Caccioppoli set;
(ii) µF = µE

Proof. (i) By the de�nition of Caccioppoli set, we have

sup

{∫
E

divT (x) dx : T ∈ C1
c (Rn,Rn), sptT ⊂ K, sup

Rn
|T | ≤ 1

}
<∞

for every K ⊂ Rn compact set. Since F and E are equivalent, we �nd∫
E

divT (x) dx =

∫
F

divT (x) dx

Then, for every K ⊂ Rn compact set, we conclude that

sup

{∫
F

divT (x) dx : T ∈ C1
c (Rn,Rn), sptT ⊂ K, sup

Rn
|T | ≤ 1

}
<∞

Therefore, F is a Caccioppoli set.
(ii) Since 1F and 1E are equal as elements of L1

loc, we can ensure that
the distributional derivatives D1E and D1F will also be equal and thus
µE = µF .
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The converse of the last proposition is also true. However, we will
not prove it here. The last proposition provides a type of invariance of
µE and the perimeter measure under modi�cations on sets Lebesgue-null
sets. Since for any Caccioppoli set E in Rn we have

sptµE = {x ∈ Rn : 0 < |E ∩B(x, r) | < ωnr
n, ∀r > 0} ⊂ ∂E

we can show the existence of F
Lesbegue∼ E such that

sptµF = ∂F

and then µF = µE. If E and F are Caccioppoli sets in Rn (resp., �nite
perimeter), we have that E ∩ F and E ∪ F are also Caccioppoli sets in
Rn (resp., �nite perimeter) and it holds that

P(E ∪ F, ·) + P(E ∩ F, ·) ≤ P(E, ·) + P(F, ·)

The isoperimetric inequality in the euclidean space Rn≥2, i.e.

nω
1
n |E|

n−1
n ≤ P(E,Rn) ∀E ⊂ Rn with |E| <∞

is an indispensable tool in geometric measure theory. It can be also stated
in balls (Proposition 12.37 in [Mag12]) for any Caccioppoli set E in Rn

such that
|E ∩B(x, r) | ≤ t|B(x, r) |

whenever n ≥ 2, x ∈ Rn, r > 0, t ∈ (0, 1). Indeed, under these assump-
tions on E, exists c(n, t) depending only on n and t such that

c(n, t)|E ∩B(x, r) |
n−1
n ≤ P(E,B(x, r))

0.3 Hausdor� measure

We now set diam to be the diameter function on Rn. For k ∈ [0,∞),
the k-dimensional Hausdor� measure of Ω ⊂ Rn is de�ned as follows

Hk(Ω) = lim
δ→0
Hδ
k(Ω)

where, for δ ∈ (0,∞],

Hδ
k(Ω) =

ωk
2k

inf

{∑
i∈N

(diam(Ωi))
k : diam(Ωi) < δ,Ω ⊂

⋃
i∈N

Ωi

}
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The k-dimensional Hausdor� measure has some good properties, for in-
stance, the behavior under translation and homotheties. Indeed, ∀x ∈
Rn, λ > 0, we have

Hk(λΩ + x) = λkHk(Ω) for any Ω ⊂ Rn

Since the k-dimensional Hausdor� measure is de�ned in function of the
diameter, we can also ensure that

Hk(f(Ω)) ≤ (Lip (f))kHk(Ω)

for all Lipschitz function f and Ω ⊂ Rn. One of the main results regarding
the Hausdor� measure is that

Hn(Ω) = |Ω| ∀Ω ⊂ Rn Borel set

To �nish this section, let us state the Coarea and Area formulas. If f :
Rn → Rm and g : Rm → Rn are Lipschitz functions, n ≥ m, for each
A ⊂ Rn, B ⊂ Rm Lebesgue measurable sets, we have

(Coarea Formula)

∫
A

Jf(x) dx =

∫
Rm
Hn−m(A ∩ f−1(y)) dy

(Area Formula)

∫
B

Jg(y) dy =

∫
Rn
H0(B ∩ g−1(x)) dx

0.4 The reduced boundary

The reduced boundary ∂∗E of a Caccioppoli set E is the set of points
x ∈ Rn such that x ∈ sptµE and

νE(x) = lim
r→0+

µE(B(x, r))

P(E,B(x, r))
∈ Sn−1

The vector νE is called the measure-theoretic outer unit normal to E. We
use 0.1 and the de�nition of reduced boundary to be able to consider sets
with

∂∗E = sptµE = ∂E

One of the main theorems in geometric measure theory is the De Giorgi's
Structure Theorem (Theorem 4.4 in [Giu84]) which asserts, for a Cac-
cioppoli set E, that

µE = νEHn−1x∂∗E
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and
P(E, ·) = |µE|(·) = Hn−1 (∂∗E ∩ ·)

We de�ne the points of density t ∈ [0, 1] of a set E ⊂ Rn as follows

E(t) =

{
x ∈ Rn : lim

t→0+

|E ∩B(x, r) |
ωnrn

= t

}
Now, we recall the de�nition of the measure theoretic boundary of a set
E ⊂ Rn, i.e.

∂eE = Rn \
(
E(1) ∪ E(0)

)
For any Caccioppoli set E ⊂ Rn, the well known Federer's Theorem
states that

∂∗E ⊂ E(1/2) ⊂ ∂eE

Moreover
Hn−1 (∂eE \ ∂∗E) = 0

which can be found on Section 5.8 in [LCE92].



The almost minimizing sets

1.1 De�nition of the almost minimizing con-

dition

Let us precisely state the almost minimizing condition that we will
consider in this work.

De�nition 1.1. Let A ⊂ Rn be open and E is a Caccioppoli set (or
locally �nite perimeter set) in Rn. Then E is called a (Λ, r)−minimizing
in A if sptµE = ∂E,Λ ≥ 0, r > 0 and for all Caccioppoli set F such that
E∆F b A ∩B(x, s) , s < r, x ∈ A it holds

P(E,B(x, s)) ≤ P(F,B(x, s)) + Λ|E∆F | (1.1)

r is also called the scale and F is called competitor.

Note that the condition sptµE = ∂E is not restrictive, since we can
choose an Hn-equivalent set with this property (by Proposition 12.19 in
[Mag12]).
In the de�nition it holds |E∆F | ≤ ωns

n, i.e. the "error" factor is always
bounded above by the volume of the balls where the competitors are
di�erent from E and it decreases faster than the scale. Recalling the
De Giorgi's structure theorem (Theorem 4.4 in [Giu84]) which states
P(E, ·) = Hn−1 (∂∗E ∩ ·), it makes sense to keep in mind that the "error"
factor behaves like a higher order perturbation.
Before the examples, let us explain why it will henceforth be considered
the hypothesis Λr ≤ 1 in this work. For this purpose, suppose that E is
a (Λ, r)−minimizing set in A and F is a competitor, it follows from the
euclidean isoperimetric inequality that

|E∆F | = |E∆F |
1
n |E∆F |

n−1
n ≤ (ωns

n)
1
n
P(E∆F,Rn)

nω
1
n
n

=∗

=∗
s

n
P(E∆F,B(x, s)) ≤∗∗ s

n

(
P(F,B(x, s)) + P(E,B(x, s))

)
where (∗) follows from E∆F b B(x, s) and (∗∗) is consequence of the
perimeter property (E1, E2 being Caccioppoli sets, then P(E1 ∪ E2, ·) ≤

11



12 THE ALMOST MINIMIZING SETS 1.2

P(E1, ·) + P(E2, ·)), P(E, ·) = Hn−1 (∂∗E ∩ ·) = Hn−1 (∂eE ∩ ·) and
∂e (E∆F ) ⊂ ∂eE ∪ ∂eF . Therefore

P(E,B(x, s)) ≤ P(F,B(x, s)) + Λ|E∆F | ≤

≤ P(F,B(x, s)) + Λ
s

n

(
P(E,B(x, s)) + P(F,B(x, s))

)
It follows (

1− Λs

n

)
P(E,B(x, s)) ≤

(
1 +

Λs

n

)
P(F,B(x, s)) (1.2)

which is clearly trivial if n ≤ Λs, i.e. when the scale "s" é too large. In
the non-trivial case, Λs < n, the scale s is bounded, in general, we will
�x "1" as the upper bound for Λs intending to help with some proofs
ahead.

1.2 Basic properties of the almost minimiz-

ing sets

Proposition 1.2. Let E be a (Λ, r)−minimizing set in A, then Ec is
a (Λ, r)−minimizing set in A.

Proof. Since 1E + 1Ec ≡ 1, Ec is also a Caccioppoli set and the distribu-
tional derivatives satis�es

D1E = −D1Ec ⇒ µE = −µEc

Thus
sptµEc = sptµE = ∂E = ∂(Ec)

Now, we take F a competitor to Ec, i.e. Ec∆F b A∩B(x, s) , s < r, x ∈
A, by the de�nition of the perimeter measure of E, i.e. P(E, ·) = |D1E|(·),
we �nd that

P(Ec, ·) = P(E, ·) (1.3)

It is straightforward to verify that

Ec∆F = E∆F c (1.4)

what ensures that F c is a competitor to the almost minimality of E.
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Therefore, we have that

P(Ec,B(x, s)) = P(E,B(x, s)) ≤ P(F c,B(x, s)) + Λ|E∆F c|

Since 1.3 is valid for F in place of E, the last inequality becomes

P(Ec,B(x, s)) ≤ P(F,B(x, s)) + Λ|Ec∆F |

Let us de�ne the blow-up of a arbitrary set X ⊂ Rn at x at scale
r > 0 as follows

Ex,r =
E − x
r

Now, we aim to prove the compatibility of the blow-up with the almost
minimality condition.

Proposition 1.3. Given y ∈ Rn, r0 > 0. If E is a (Λ, r)−minimizing
set in A, we have that Ey,r0 is a

(
Λr, r

r0

)
−minimizing set in Ay,r0 .

Remark 1.4. If we consider T : Rn → Rn a linear isometry, we have
that (Proposition 2.51 in [VOL])

µT (E) = T]µE |µT (E)| = T]|µE|

We call attention to the argument of this proof which can be easily ad-
justed to ensures that, if E is a (Λ, r)−minimizing set in A, then T (E)
is a (Λ, r)−minimizing set in T (A).

Proof. Take F a Caccioppoli set with Ey,r0∆F ⊂ Ay,r0 ∩ B(x, s) , x ∈
Ay,r0 , s <

r
r0
. We set

φ(z) = r0z + y ∀z ∈ Rn

Clearly, φ is a di�eomorphism,

φ (B(x, s)) = r0B(x, s) + y (1.5)

and
φ(Ey,r0) = r0Ey,r0 + y = E (1.6)

Analogously, we prove
φ(Ay,r0) = A (1.7)

Taking into account Ey,r0∆F ⊂ Ay,r0 ∩B(x, s), we �nd that

φ(Ey,r0)∆φ(F ) b φ(Ay,r0) ∩ φ(B(x, s))

Then, by 1.5, 1.6 and 1.7,

E∆φ(F ) b A ∩ (r0B(x, s) + y) = A ∩B(φ(x), r0s)

Since x ∈ Ay,r0 and s < r
r0
, we have φ(x) ∈ A and r0s < r. Therefore,
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φ(F ) is a competitor to E, then

P(E, φ(B(x, s))) ≤ P(φ(F ), φ(B(x, s))) + Λ|E∆φ(F )| (1.8)

We intend to turn 1.8 into 1.1 for Ey,r0 . To this end, since φ is a di�eo-
morphism and |Jφ| ≡ rn0 , we ensure that

|E∆φ(F )| =1.6 |φ(Ey,r0∆F )| =
= rn0 |Ey,r0∆F |

(1.9)

Now, we focus on the term P(E, r0B(x, s) + y). Let us recall that

∂∗E − y
r0

= ∂∗
(
E − y
r0

)
= ∂∗(Ey,r0)

By the nice properties of the Hausdor� measure under translations and
hometheties (Proposition 2.49 in [LA00]), the De Giorgi's Structure The-
orem and the last inequality, we obtain that

P(E, φ(B(x, s))) =1.5= P(E, r0B(x, s) + y) =

Hn−1 (∂∗E ∩ (r0B(x, s) + y)) = rn−1
0 Hn−1

(
(
∂∗E − y

r0

) ∩B(x, s)

)
=

rn−1
0 Hn−1 (∂∗(Ey,r0) ∩B(x, s)) = rn−1

0 P(Ey,r0 ,B(x, s))

(1.10)

We can apply the same argument to �nd that

P(φ(F ), φ(B(x, s))) = rn−1
0 P(F,B(x, s))

By the last equality, 1.10 and 1.9, we can turn 1.8 into

rn−1
0 P(Ey,r0 ,B(x, s)) ≤ rn−1

0 P(F,B(x, s)) + rn0 |Ey,r0∆F |

that is
P(Ey,r0 ,B(x, s)) ≤ P(F,B(x, s)) + Λr0|Ey,r0∆F |

what conclude the proof.

1.3 Density estimates

Now, we will start to progress with the theory and some meaningful
theorems on the theory of the almost minimizing sets. One of the main
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theorems is the Density Estimates which makes it possible to prove both
the compactness and closure theorem and other further results as well.
The density estimates, by their own, put us in position to extract some
geometric information about the almost minimizing sets. Indeed, the es-
timates show that the almost minimizing sets, and its boundary, have a
quite good behavior whereas it is not obvious.

Theorem 1.5. (Density estimates) Let n ≥ 2, exists c (n) positive
constant such that for all set E which is a (Λ, r0) − minimizing in A
with Λr0 ≤ 1, it follows

1

4n
≤ |E ∩B(x, r) |

ωnrn
≤ 1− 1

4n
(1.11)

c (n) ≤ P(E,B(x, r))

rn−1
≤ 3nωn (1.12)

whenever x ∈ A ∩ ∂E, B(x, r) ⊂ A and r < r0.

Remark 1.6. The upper inequality in 1.12 is true for all x∈A, i.e. the
restriction x ∈ ∂E is not necessary. we intend to make this clear within
the proof.

Proof. The upper estimate in 1.11 is a consequence of the lower estimate
in 1.11, because Ec also is (Λ, r0) − minimizing in A (by Proposition
1.2), thus

1

4n
≤ |E

c ∩B(x, r) |
ωnrn

= 1− |E ∩B(x, r) |
ωnrn

From the estimates in 1.11 and the relative isoperimetric inequality (Propo-
sition 12.37 in [Mag12] putting t = 1− 1

4n
) that is

P(E,B(x, r)) ≥ c1 (n) |E ∩B(x, r) |
n−1
n

we can prove the lower estimate in 1.12 as follow

P(E,B(x, r))

rn−1
≥ c1 (n) |E ∩B(x, r) |n−1

n

rn−1
≥ c1 (n)

rn−1

(
ωnr

n

4n

)n−1
n

=

=
c1 (n)ω

n−1
n

n

4n−1

.
= c (n)

Therefore, it is su�cient to proof the other two inequalities. For this
purpose, �x x ∈ A, de�ne d = min {r0, dist (x, ∂A)} and m (r) = |E ∩
B(x, r) |,∀r ∈ (0, d), then

m (r) = |E ∩B(x, r) | =∗
∫ r

0

Hn−1 (E ∩ ∂B(x, t)) dt⇒

⇒ m′ (r) = Hn−1 (E ∩ ∂B(x, r))

(1.13)

for almost all r ∈ (0, d), where the equality (∗) is a consequence of the
Coarea formula (Theorem 3.12 in [LCE92]). Since µE = Hn−1x∂∗E is a
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Radon measure, it follows that, for almost all r ∈ (0, d),

Hn−1 (∂∗E ∩ ∂B(x, r)) = 0

Being r taken satisfying this equality, we aim to create a competitor
of E to use the (Λ, r0)-minimality of E. Let F = E \ B(x, r). Clearly
E∆F b B(x, s) b A,∀s ∈ (r, d), thus, by 1.2,(

1− Λr

n

)
P(E,B(x, s)) ≤

(
1 +

Λr

n

)
P(F,B(x, s)) (1.14)

Moreover, from the operations with Caccioppoli sets (Theorem 16.3 in
[Mag12]) and from the choice of r, it follows

P(F,B(x, s)) = P(E∩(B(x, r))c ,B(x, s)) =

∗︷ ︸︸ ︷
P(E, (B(x, r)c)

(1) ∩B(x, s)) +

+

∗∗︷ ︸︸ ︷
P(B(x, r) , E(1) ∩B(x, s)) +

=0︷ ︸︸ ︷
Hn−1

({
µE = µB(x,r)

}
∩B(x, s)

)
Note that in (∗), we have B(x, s) ∩ (B(x, r)c)

(1) ⊂ B(x, s) \B(x, r), and
in (∗∗) apply the De Giorgi's structure theorem to come up with

P(F,B(x, s)) ≤ Hn−1

(
E(1) ∩ ∂B(x, r)

)
+P(E,B(x, s)\B(x, r)) (1.15)

Taking s→ r+, it follows from 1.14 and 1.15 that(
1− Λr

n

)
P(E,B(x, r)) ≤

(
1 +

Λr

n

)
Hn−1

(
E(1) ∩ ∂B(x, r)

)
(1.16)

Using that Hn−1

(
E(1) ∩ ∂B(x, r)

)
≤ Hn−1 (∂B(x, r)) = nωnr

n−1, and

since
1+ Λr

n

1−Λr
n

≤ 3, by n ≥ 2 and Λr0 ≤ 1, the upper inequality in 1.12 is

done for almost all r ∈ (0, d). So, given r ∈ (0, d), we choose a increasing
sequence {ri}i∈N such that ri → r and the upper inequality in 1.12 holds
true for ri,∀i ∈ N. By the continuity from below of the measure P(E, ·)
(Theorem 1.8 in [Fol99]) and the continuity of rn−1, we obtain that

P(E,B(x, r))

rn−1
=
P(E,∪i∈NB(x, ri))

rn−1
=

limi→∞P(E,B(x, ri))

limi→∞ r
n−1
i

=

= lim
i→∞

P(E,B(x, ri))

rn−1
i

≤ 3nωn

Then, the upper inequality in 1.12 is validated for all r ∈ (0, d) and,
along with this proof, we have only used that x ∈ A. Thus, the Remark
1.6 is also veri�ed. Finally, we will prove the lower inequality in 1.11. To
this end, suppose that x ∈ A ∩ ∂E, then the function m also satis�es

0 < m (r) < ωnr
n,∀r ∈ (0, d) (1.17)

because x ∈ ∂E = sptµE. Adding
(
1− Λr

n

)
Hn−1

(
E(1) ∩ ∂B(x, r)

)
to

both sides of 1.16 and using the operations with Caccioppoli sets (The-
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orem 16.3 in [Mag12], we obtain(
1− Λr

n

)
P(E ∩B(x, r) ,Rn) ≤ 2Hn−1

(
E(1) ∩ ∂B(x, r)

)
(1.18)

By the isoperimetric inequality P(E∩B(x, r) ,Rn) ≥ nω
1
n
n |E∩B(x, r) |n−1

n ,
since 1− Λr

n
≤ 2, from 1.13 and 1.17, it follows that

nω
1
n
n

4
≤ m′ (r)(

m (r)
)1− 1

n

(1.19)

Integrating 1.19 in the interval (0, r), we get that (by Theorem 4.14 in

[Gor94])

∫ r

0

m′ (t)(
m (t)

)1− 1
n

dt =

∫ r

0

d

dt
(nm (t))

1
n dt = nm (r)

1
n , it follows

rnω
1
n
n

4
≤ nm (r)

1
n = n|E ∩B(x, r) |

1
n

Putting up the power of n the proof is done.

We recall the de�nition of the essential boundary of a Caccioppoli set
E, also called measure theoretic boundary, as follows

x ∈ ∂eE ⇔ x ∈ Rn \
(
E(1) ∪ E(0)

)
The following corollary is a stronger version of the well known Federer's
Theorem (Lemma 5.5 in [LCE92]) in the context of almost minimizing
sets. The Federer's Theorem guarantees that ∂eE and ∂∗E are Hn−1-
equivalent for any Caccioppoli set E. For the almost minimizing sets
this result can be re�ned, ensuring the equivalence between the reduced
boundary and the topological boundary. Here it is possible to conclude
that the almost minimizing sets possess a kind of extra regularity, i.e.
Hn−1-almost everywhere it is possible to de�ne a normal vector to ∂E.

Corollary 1.7. Let n ≥ 2 and E be a (Λ, r0) − minimizing set in A
with Λr0 ≤ 1. Then

Hn−1 (A ∩ (∂E \ ∂∗E)) = 0

Proof. It is su�cient to note that 1.11 ensures that ∀x ∈ A∩∂E, ∀r < r0

1

4n
≤ |E ∩B(x, r) |

ωnrn
≤ 1− 1

4n

Thus, 0 < lim sup
r→0+

|E ∩B(x, r) |
ωnrn

< 1. By de�nition of essential boundary,

we get that x ∈ A ∩ ∂eE. Therefore, A ∩ ∂E ⊂ A ∩ ∂eE. Then, since
∂∗E ⊂ ∂E, the Federer's Theorem concludes the proof.
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Corollary 1.8. Let n ≥ 2 and E be a (Λ, r0) − minimizing set in A,
with Λr0 ≤ 1, then

c (n) ≤ P(E,C (x, r, ν))

rn−1
≤
√

2
n−1

3nωn

whenever x ∈ A ∩ ∂E,
√

2r < r0,B
(
x,
√

2r
)
⊂ A.

Proof. It follows directly from 1.12, using that B(x, r) ⊂ C (x, r, ν) ⊂
B
(
x,
√

2r
)
.

1.4 Compactness theorems

In the excess theory and the approximation theorems, some construc-
tions with sequences of almost minimizing sets will naturally appear for
us. Hence, we shall work on it. For this purpose, we will extract a kind of
compactness for the space of almost minimizing sets. As a consequence of
the compactness of the sets of �nite perimeter and the density estimates,
the �rst result will ensure that for a sequence of almost minimizing sets,
under some assumptions, we can �nd a set of �nite perimeter which will
be the limit set of the sequence.

Theorem 1.9. (Pre-compactness of the space of the almost min-
imizing sets) Let n ≥ 2 and (Eh)h∈N be a sequence such that each Eh
is (Λh, rh) − minimizing in A with Λhrh ≤ 1 and lim inf

h→∞
rh > 0. Then

∀A0 b A open set with �nite perimeter, exists a set with �nite perimeter
E ⊂ A0 and a subsequence (Eh′)h′∈N such that

A0 ∩ Eh′ → E and µA0∩Eh′
∗
⇀µE (1.20)

Proof. Given A0 b A open with �nite perimeter, �x x ∈ A0 and consider
B(x, r) b A and 0 < r < lim infh∈N rh such thatHn−1 (∂∗Eh ∩ ∂B(x, r)) =
0, that is possible, since Hn−1x∂∗Eh is Radon. The operations with Cac-
cioppoli sets (Theorem 16.3 in [Mag12]) ensures the following equality

P(Eh ∩B(x, r) ,Rn) =

= P(Eh,B(x, r)(1)) + P(B(x, r) , E
(1)
h ) +Hn−1

({
νEh = νB(x,r)

})
≤

≤∗ P(Eh,B(x, r)) + P(B(x, r) ,Rn) ≤∗∗ 3nωnr
n−1 + nωnr

n−1

where (∗) follows from B(x, r)(1) = B(x, r), E
(1)
h ⊂ Rn and

Hn−1

({
νEh = νB(x,r)

})
≤ Hn−1 (∂∗Eh ∩ ∂∗B(x, r)) = 0
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while, in order to apply the density estimates (1.12) in (∗∗) and Remark
1.6, we assume that h is su�ciently large, i.e. we �xed a M ∈ N such
that r < infh≥M rh. In short, if x ∈ ∂E ∩ A0, r < lim inf

h→∞
rh, it follows

sup
h≥M
P(Eh ∩B(x, r) ,Rn) < 4nωnr

n−1 <∞ (1.21)

Since A0 has compact closure in A, we can choose a �nite family

{Bj = B(xj, rj)}Nj=1

which covers A0 with Bj b A, xj ∈ A0 and rj < lim inf
h→∞

rh. From 1.21 and

Eh ∩ Bj ⊂ Bj, we are able to use the theorem of compactness for �nite
perimeter sets (Theorem 12.26 in [Mag12]), for each j, then, applying for
j = 1, exists F1 ⊂ B1 �nite perimeter set and Eh1 subsequence such that

B1 ∩ Eh1 → F1

Now, applying for the new subsequence Eh1 , with j = 2, we got another
subsequence. Using this idea successively until j = N , we have obtained
the last subsequence Eh′ = EjN of the initial sequence and �nite perime-

ter sets {Fj ⊂ Bj}Nj=1 with

Bj ∩ Eh′ → Fj (1.22)

when h′ →∞ for each 1 ≤ j ≤ N . Finally, de�ne E = A0 ∩
(⋃N

j=1 Fj

)
.

Then, by construction

Fi ∩Bi ∩Bj
Lebesgue∼ Fj ∩Bi ∩Bj

and the family {Bj}Nj=1 covers A0. Since E is de�ned by unions and in-
tersection of sets of �nite perimeter, it has �nite perimeter. It is straight-
forward to verify the formula for the characteristic function of a �nite
union. So, in order to prove that A0 ∩ Eh′ → E, we note that

1A0∩Eh′ = 1A0∩(∪Nj=1Bj∩Eh′)
= 1A01∪Nj=1Bj∩Eh′ =

= 1A0

(
1−

∑
K⊂{1,...,N}

(−1)|K| 1∩j∈KBj∩Eh′

)
=

→1.22 1A0

(
1−

∑
K⊂{1,...,N}

(−1)|K| 1∩j∈KFj

)
=

= 1A01∪Nj=1Fj
= 1E

then A0 ∩ Eh′ → E what implies that µA0∩Eh′
∗
⇀µE.

The next theorem gives information about the limit set of a sequence
of almost minimizing sets. Indeed, if the sequence locally converges in L1

sense to a �nite perimeter set, it is possible to state that the limit set
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will be an almost minimizing set as well.

Theorem 1.10. (Closure theorem for sequence of almost mini-
mizing sets) Let n ≥ 2 and {Eh}h∈N be a sequence with each Eh be-
ing (Λh, rh) − minimizing in A, Λhrh ≤ 1, lim inf

h→∞
rh > 0. If A0 b A

is an open set with �nite perimeter and A0 ∩ Eh → E, E with �-
nite perimeter. Then E is a (Λ, r0) − minimizing set in A0, where
Λ = lim sup

h→∞
Λh, r0 = lim inf

h→∞
rh.

Proof. Let F be a competitor of E, i.e. F is a Caccioppoli with E∆F b
B(x, r)∩A0, 0 < r < lim inf

h→∞
rh

.
= r0, we aim to construct one competitor

for each Eh from F . For this purpose, let us state a claim which will be
proved later

Claim 1: If y ∈ A0, dy = min {r0, dist (y, ∂A0)}, for almost all r ∈
(0, dy), it holds

Hn−1 (∂B(y, r) ∩ ∂∗F ) = Hn−1 (∂B(y, r) ∩ ∂∗Eh) = 0,∀h ∈ N (1.23)

lim inf
h→∞

Hn−1

(
∂B(y, r) ∩

(
E(1)∆E

(1)
h

))
= 0 (1.24)

Since E∆F is compactly contained in B(x, r)∩A0, it is possible to choose
a �nite family {Bj = B(yj, rj)}Nj=1 such that yj ∈ A0 and rj ∈

(
0, dyj

)
satisfying 1.23 and 1.24 and also satisfying

E∆F b G
.
=

N⋃
j=1

Bj b B(x, r) ∩ A0 (1.25)

Now, we are able to construct the competitor of Eh that we have looked
for. De�ne

Fh =

(
Eh \G

)⋃(
G ∩ F

)
for each h ∈ N (1.26)

that is, Fh inside G is equal to F and outside G it is equal to Eh. Thus,
it follows

Eh∆Fh b B(x, r) ∩ A0 b B(x, rh) ∩ A0 (1.27)

where h is being taken su�ciently large to guarantee r < infh≥M rh and
ensure the second inclusion. Since the space of �nite perimeter sets is
closed under intersection, union and complement, we have that Fh is a
set of �nite perimeter and, since ∂G ⊂

⋃N
j=1 ∂Bj, from 1.23

Hn−1 (∂G ∩ ∂∗F ) = Hn−1 (∂G ∩ ∂∗Eh) = 0 ∀h ∈ N (1.28)

Claim 2: E(1) ∩ ∂G = F (1) ∩ ∂G
The claim and 1.24 ensure that

lim inf
h→∞

Hn−1

(
∂G ∩

(
F (1)∆E

(1)
h

))
= 0 (1.29)
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Since A0 b A, from 1.27, for each h su�ciently large, Fh is a competitor
for the (Λh, rh)-minimality of Eh in A, thus

P(Eh,B(x, r)) ≤ P(Fh,B(x, r)) + Λh|Eh∆Fh|

The equalities in 1.28 allows to apply the comparison theorems for Cac-
cioppoli sets (Theorem 16.16 in [Mag12]). Hence, it follows the equality

P(Fh,B(x, r)) = P(F,G)+P(Eh,B(x, r)\G)+Hn−1

(
∂∗G ∩

(
E

(1)
h ∆F (1)

))
Adding this equation to the minimality condition of Eh and, noting that,
since Fh ∩

(
B(x, r) \G

)
= Eh ∩

(
B(x, r) \G

)
, we have P(Eh,B(x, r) \

G) = P(Fh,B(x, r) \G), then it follows

P(Eh,B(x, r)) ≤

≤ P(F,G)+P(Fh,B(x, r)\G)+Hn−1

(
∂∗G ∩

(
E

(1)
h ∆F (1)

))
+Λh|Eh∆Fh|

thus, we �nd that

lim inf
h→∞

P(Eh,B(x, r))+lim inf
h→∞

(−P(F,G))+lim inf
h→∞

(−P(Fh,B(x, r)\G))

+ lim inf
h→∞

(−Λh|Eh∆Fh|) ≤

lim inf
h→∞

(
P(Eh,B(x, r))− P(F,G)− P(Fh,B(x, r) \G)− Λh|Eh∆Fh|

)
≤ lim inf

h→∞
Hn−1

(
∂∗G ∩

(
E

(1)
h ∆F (1)

))
=∗ 0

where in (*) we have used 1.29 and ∂∗G ⊂ ∂G. Since − lim inf
h→∞

(−ah) =

lim sup
h→∞

ah for any (ah), we obtain

lim inf
h→∞

P(Eh,B(x, r)) ≤ P(F,G) + lim sup
h→∞

P(Fh,B(x, r) \G)

+ lim sup
h→∞

Λh|Eh∆Fh|

By the de�nition of Fh (1.26), we have Eh∆Fh = G ∩ Eh∆F . Hence,
since Eh ∩ A0 → E and G b A0 (1.27), we conclude that Eh∆Fh →
G ∩ E∆F = E∆F . Then, it follows that

lim inf
h→∞

P(Eh,B(x, r)) ≤

≤ P(F,G) + lim sup
h→∞

P(Fh,B(x, r) \G) +

(
lim sup
h→∞

Λh

)
|E∆F |

(1.30)

We note that Fh → F follows directly by the de�nition of Fh and 1.25
(i.e. outside G the set F is equal to E), then µFh

∗
⇀µF . As a conse-

quence of this weak-star convergence (Theorem 1.40 in [LCE92]) and the
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compactness of B(x, r) \G, it holds that

lim sup
h→∞

P(Fh,B(x, r) \G) ≤ lim sup
h→∞

P(Fh,B(x, r) \G) ≤

≤ P(F,B(x, r) \G) =∗ P(F,B(x, r) \G)

where (*) follows from 1.23 and Hn−1 (x)∂∗F (·) = P(F, ·). The last
inequality together with P(E,B(x, r)) ≤ lim inf

h→∞
P(Eh,B(x, r)) (lower-

semicontinuity of the perimeter, Theorem 5.2.2 in [FL03]) and 1.30 im-
plies

P(E,B(x, r)) ≤ P(F,B(x, r)) +

(
lim sup
h→∞

Λh

)
|E∆F |

and the proof is done. Let me prove the claims.

Proof of Claim 1: Lets start with the proof of 1.24, to state that
1.24 is true almost everywhere in (0, dy), note that

0 =∗ lim
h→∞
|B(y, dy) ∩

(
E∆Eh

)
| =∗∗ lim

h→∞
|B(y, dy) ∩

(
E(1)∆E

(1)
h

)
| =

=∗∗∗ lim
h→∞

∫ dy

0

Hn−1

(
∂B(y, r) ∩

(
E(1)∆E

(1)
h

))
dr

where (∗) follows from the convergence of A0 ∩ Eh → E and B(y, dy) ⊂
A0, (∗∗) is directly checkable from |E∆Eh| = |E∆E

(1)
h | = |E(1)∆E

(1)
h |

and (∗ ∗ ∗) is a consequence of the coarea formula, then, by the Fatou's
lemma ∫ dy

0

lim inf
h→∞

Hn−1

(
∂B(y, r) ∩

(
E(1)∆E

(1)
h

))
≤

≤ lim
h→∞

∫ dy

0

Hn−1

(
∂B(y, r) ∩

(
E(1)∆E

(1)
h

))
dr = 0

thus, 1.24 is valid almost everywhere in the interval. Let I be the sub-
set of (0, dy) such that (2.13) is valid and denote by m be the Lebesgue
measure on the real line. Since Hn−1x∂∗(·) is a Radon measure, we have
m ({r ∈ (0, dy) : Hn−1 (∂B(y, r) ∩ ∂∗Eh) = 0}) = 0 for each h ≥ −1,
where E−1 = F . But,

J =

(
I ∩

( ⋂
h≥−1

{r ∈ (0, dy) : Hn−1 (∂B(y, r) ∩ ∂∗Eh) = 0}
))c

=

= Ic ∪
( ⋃
h≥−1

{r ∈ (0, dy) : Hn−1 (∂B(y, r) ∩ ∂∗Eh) = 0}c
)
⇒

⇒ m (J) = 0

thus, the intersection has total measure in the interval (0, dy), therefore
1.23 and 1.24 are true almost everywhere in the interval.

Proof of Claim 2: Take x ∈ ∂G ∩ E(1), then ∃U ⊂ (E∆F )
c
open
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set with x ∈ U , thus 1EbU≡ 1F bU⇒ x ∈ F (1), therefore ∂G ∩ E(1) ⊂
∂G ∩ F (1), analogous argument for the reverse inclusion.

Proposition 1.11. Let {Eh}h∈N , A0 and E as chosen in the previous
theorem, then

µA0∩Eh
∗
⇀µE (1.31)

|µEh|
∗
⇀ |µE| in A0 (1.32)

Moreover, it is true that
(1) If xh ∈ A0 ∈ ∂Eh, xh → x and x ∈ A0, then x ∈ A0 ∩ ∂E;
(2) If x ∈ A0 ∩ ∂E, then exists {xh}h∈N such that xh ∈ A0 ∩ ∂Eh and
xh → x.

Proof. Since Eh ∩ A0 → E, the convergence in 1.31 follows from the
Representation Theorem (Theorem 5.2.1 in [FL03]) which states that∫

1A′divφ dHn = −
∫
φ d(νA′µA′) for all φ ∈ C0

c (Rn) and all A′ �nite
perimeter set.

Proof of 1.32: First of all, let us suppose that |µA0∩Eh|
∗
⇀µ in A0,

we contend that µ = |µE| in A0. Indeed, it holds µ (U) ≥ |µE| (U) ,∀U
Borel set of Rn (from Proposition 4.30 in [Mag12]). To show the reverse
inequality, we will use the construction made in Theorem 1.10. Take s0 <
r0 such that x ∈ A0,B(x, s0) b A0 and �x M such that s0 < infh≥M rh.
De�ne for each h ≥M

Fh =

(
E ∩B(x, s)

)⋃(
Eh \B(x, s)

)
(1.33)

where s ∈ (0, s0) is such that

Hn−1 (∂B(x, s) ∩ ∂∗E) = Hn−1 (∂B(x, s) ∩ ∂∗Eh) = 0 h ≥M (1.34)

lim inf
h→∞

Hn−1

(
∂B(x, s) ∩

(
E(1)∆E

(1)
h

))
= 0 (1.35)

The fact that the conditions above hold for a.e. s ∈ (0, s0) follows from
the same argument in the proof of claim 1 in Theorem 1.10. On the other
hand, since Eh∆Fh b B(x, s0) b A0 b A, we have

P(Eh,B(x, s)) ≤ P(Fh,B(x, s)) + Λh|Eh∆Fh| (1.36)

Therefore, as in the proof of Theorem 1.10, by 1.34, we can use the
operations of Caccioppoli sets (Theorem 16.16 in [Mag12]) for B(x, s1) b
B(x, s) where we �xed s1 ∈ (0, s0) such that 1.35 holds true. Then

P(Fh,B(x, s)) = P(E,B(x, s1)) + P(Eh,B(x, s) \B(x, s1))

+Hn−1

(
∂B(x, s1) ∩

(
E(1)∆E

(1)
h

))
Arguing as in the proof of Theorem 1.10, by 1.35, we obtain that

lim inf
h→∞

P(Fh,B(x, s)) + lim inf
h→∞

−P(E,B(x, s1))
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+ lim inf
h→∞

−P(Eh,B(x, s) \B(x, s1)) ≤

≤ lim inf
h→∞

Hn−1

(
∂B(x, s1) ∩

(
E(1)∆E

(1)
h

))
⇒

lim inf
h→∞

P(Fh,B(x, s)) ≤ P(E,B(x, s1))+lim sup
h→∞

P(Eh,B(x, s)\B(x, s1))

We continue to follow through the steps made in Theorem 1.10. By
B(x, s) \ B(x, s1) ⊂ B(x, s) \ B(x, s1), the compactness of B(x, s) \
B(x, s1), the characterization of weak-convergence of Radon measures
(Theorem 1.40 in [LCE92]) and P(E, ∂B(x, s)) = 0 (that is 1.34), we
�nd that

lim inf
h→∞

P(Fh,B(x, s)) ≤ P(E,B(x, s))

By the minimality condition (1.36) and the last inequality, we have that

lim inf
h→∞

P(Eh,B(x, s)) + lim inf
h→∞

−Λh|Eh∆Fh| ≤

≤ lim inf
h→∞

P(Fh,B(x, s)) ≤ P(E,B(x, s))

⇒

lim inf
h→∞

P(Eh,B(x, s)) ≤ P(E,B(x, s)) + lim sup
h→∞

Λh|Eh∆Fh|

By the de�nition of Fh (1.33), we get Eh∆Fh = Eh∆E ∩B(x, s). Then,
we conclude that

lim sup
h→∞

Λh|Eh∆Fh| = lim
h→∞

Λh|Eh∆Fh| = 0

because Eh ∩ A0 → E and B(x, s) ⊂ A0. Thus,

lim inf
h→∞

P(Eh,B(x, s)) ≤ P(E,B(x, s)) (1.37)

Since B(x, s) b A0, we have that

P(Eh,B(x, s)) = |µEh∩A0| (B(x, s))

Taking into account |µA0∩Eh|
∗
⇀µ (again with Theorem 1.40 in [LCE92]),

the last equality and 1.37, we establish that

µ (B(x, s)) ≤ P(E,B(x, s)) = |µE| (B(x, s))

Since we have already proved the reverse inequality, given s0 < r0 such
that B(x, s0) b A0, for almost all s ∈ (0, s0), it follows

|µE| (B(x, s)) = µ (B(x, s)) .

Then, for almost all x ∈ sptµ∩A0, the Radon-Nikodým derivative exists
and, from the last equality, it is equal to 1, i.e.

(Dµ|µE|) ≡ 1
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Since µ ≥ |µE| in all Borel sets of Rn, it is clear that |µE| � µ, thus
|µE| has no singular part with respect to µ. Therefore, by the Lebesgue-
Besicovitch Di�erentiation Theorem

|µE| = (Dµ|µE|)µ = µ in A0

Since µEhbA0= µEh∩A0bA0 directly implies |µEh|bA0= |µEh∩A0|bA0 , we �nd

that |µA0∩Eh|
∗
⇀µ = |µE| in A0. It remains to prove the existence of

a Radon measure µ in A0 such that |µA0∩Eh|
∗
⇀µ in A0. That follows

directly from the compactness criterion for Radon measures (de la Val-
lée Poussin's theorem - Theorem 1.41 in [LCE92]). In order to apply
the aforementioned theorem, we must verify that suph≥M |µEh∩A0 | (K) <
∞,∀K compact subset of A0. Indeed, given K ⊂ A0 compact, we obtain
that

P(Eh ∩ A0, K) ≤ P(Eh ∩ A0,Rn) ≤∗ P(Eh, A0) + P(A0,Rn) ≤

≤∗∗
N∑
j=1

P(Eh, Bj) + P(A0,Rn) ≤

≤∗∗∗ 3nωn−1

N∑
j=1

rn−1
j + P(A0,Rn) ≤ 3Nnωn−1r

n−1
0 + P(A0,Rn)⇒

⇒ sup
h≥M
P(Eh ∩ A0, K) <∞

where in (∗) it was used the operations with Caccioppoli sets, in (∗∗)
it was taken an open cover of A0 by balls Bj = B(xj, rj), all of them
compactly contained in A with xj ∈ A0 ⊂ A, rj < s0 < r0 and s0 as
previously chosen. And in (∗ ∗ ∗) we have used the upper inequality in
1.12 and the Remark 1.6.

Proof of (1): For each h ∈ N, we take xh ∈ ∂Eh∩A0 with xh → x ∈
A0. Let s ∈ (0, r0),B(x, s) b A0. We set M ∈ N in view of s < infh≥M rh
and B

(
xh,

s
2

)
⊂ B(x, s). Therefore,

P(E,B(x, s)) ≥∗ lim sup
h→∞

P(Eh,B(x, s)) ≥ lim sup
h→∞

P(Eh,B(x, s)) ≥

≥ lim sup
h→∞

P(Eh,B
(
xh,

s

2

)
) ≥∗∗ c (n)

(s
2

)n−1

> 0

where, since B(x, s) is compact, (∗) follows from 1.32 and the char-
acterization of weak-convergence of Radon measures (Theorem 1.40 in
[LCE92]). Since xh ∈ ∂Eh and each Eh is a (Λ, r0) −minimizing, (∗∗)
follows from the lower density estimate in 1.12. So, by the last inequality
and the arbitrariness of s, we have that P(E,B(x, s)) > 0,∀s ∈ (0, r0),
thus, x ∈ sptµE = ∂E.

Proof of (2): We would like to highlight this argument because it is
independent of the minimality condition of the sets Eh, i.e. we will only
use the weak convergence of the Radon measures. We �x x ∈ ∂E ∩ A0
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and suppose that exists ε > 0, h ≥ 0 such that
(
sptµEh′ ∩ A0

)
∩B(x, ε) =

∅, ∀h′ ≥ h, i.e. x is not in the support of the measure µEh′ ,∀h
′ ≥

h. From 1.31 and the characterization of weak-convergence of Radon
measures (Theorem 1.40 in [LCE92]), it follows that µjE (B(x, ε)) ≤
lim inf
h′→∞

µjEh′∩A0
(B(x, ε)) = 0,∀j ∈ {1, ..., n} where we have used the fol-

lowing notation µ = (µ1, ..., µn). Thus, x /∈ sptµE = ∂E what is a
contradiction with our choice of x. Then, exists a subsequence with the
aimed properties.



Excess theory

2.1 Excess and its basic properties

In this section, we will de�ne and prove results on the Excess theory.
This theory is a fundamental point and one of the most signi�cant tools
in the regularity theory. The Geometric Measure Theory has evolved
along three main branches, they are Currents, Varifolds and Caccioppoli
sets. In all of them, the excess turns out to be the main tool used in the
regularity theory of minimal or almost minimal sets.

De�nition 2.1. Let E ⊂ Rn be a Caccioppoli, x ∈ Rn, ν ∈ Sn−1 and
r > 0. It is called cylindrical excess of E in x with direction ν in scale r
the following number

e(E, x, r, ν) =
1

rn−1

∫
C(x,r,ν)∩∂∗E

|ν − νE (y) |2

2
dHn−1 (y)

Remark 2.2. The cylindrical excess of E in x with direction ν in scale
r > 0 can be seen, intuitively, as a measure of how much the reduced
boundary of E is far from being a hyperplane passing through x with
normal vector ν inside a cylinder of radius r. If we consider the problem
of �nding the direction in which E is nearest to being a hyperplane, the
spherical excess shows the answer

De�nition 2.3. Let E ⊂ Rn be a Caccioppoli, x ∈ Rn, ν ∈ Sn−1 and
r > 0. It is called spherical excess of E in x of scale r the following
number

e(E, x, r) = min
ν∈Sn−1

1

rn−1

∫
B(x,r)∩∂∗E

|ν − νE (y)|2

2
dHn−1 (y)

Henceforth, we will prove and comment on some basic properties of
the excess which will be used recurrently in this work. Unless otherwise
explicitly stated, we will refer by excess the cylindrical excess and will
make it evident and clear when talking about the spherical excess. The
next result is the precise statement of the idea in Remark 2.2.

27
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Proposition 2.4. Let E ⊂ Rn be a Caccioppoli with sptµE = ∂E,
x ∈ ∂E, r > 0 and ν ∈ Sn−1, then

e(E, x, r, ν) = 0⇔ E∩C (x, r, ν)
Lebesgue∼ {y ∈ C (x, r, ν) : (y − x) · ν ≤ 0}

Proof. (⇐) Since both sets are equivalent, we have µE = µ{y∈C(x,r,ν):(y−x)·ν≤0}
(by Proposition 0.1) what implies

∂∗E ∩C (x, r, ν)
Hn−1∼ {y ∈ C (x, r, ν) : (y − x) · ν = 0} (2.1)

what ensures that νE = ν{y∈C(x,r,ν):(y−x)·ν=0} = ν holds Hn−1-almost ev-
erywhere in ∂∗E ∩ {y ∈ C (x, r, ν) : (y − x) · ν = 0} ∩C (x, r, ν), then it
follows from the de�nition of excess that

e(E, x, r, ν) =
1

rn−1

∫
C(x,r,ν)∩∂∗E

|ν − νE (y) |2

2
dHn−1 (y) =

=2.1 1

rn−1

∫
{y∈C(x,r,ν):(y−x)·ν=0}

|ν − ν|2

2
dHn−1 (y) = 0

(⇒) Since e(E, x, r, ν) = 0 it follows that νE = ν µE-almost everywhere
in C (x, r, ν). So, by the same argument used in the proof of Proposition
15.15 in [Mag12], there is α ∈ R such that

E ∩C (x, r, ν)
Lebesgue∼ {y ∈ C (x, r, ν) : (y − x) · ν < α} .

If α < 0 (respectively, α > 0), ∃r0 > 0 such that |E ∩ B(x, r0) | = 0
(respectively, |E ∩ B(x, r0) | = ωnr

n
0 ) what is a contradiction with the

fact that

x ∈ sptµE = ∂E = {y ∈ Rn : 0 < |E ∩B(x, r) | < ωnr
n for all r > 0}

(Proposition 3.1 in [Giu84]). Then α = 0.

Proposition 2.5. (Excess and Changes of Scale) Let E ⊂ Rn a
Caccioppoli, x ∈ Rn, r > s > 0 and ν ∈ Sn−1, then

e(E, x, s, ν) ≤
(
r

s

)n−1

e(E, x, r, ν)

Proof. Since C (x, s, ν) ⊂ C (x, r, ν), we have

1

sn−1

∫
C(x,s,ν)∩∂∗E

|ν − νE (y) |2

2
dHn−1 (y) ≤

≤ 1

sn−1

∫
C(x,r,ν)∩∂∗E

|ν − νE (y) |2

2
dHn−1 (y)

It su�ces to multiply and divide by rn−1 on the right side of the inequal-
ity.

Proposition 2.6. (Excess and Blow-up) Let E ⊂ Rn be a Cacciop-
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poli, x ∈ ∂E, r > 0 and ν ∈ Sn−1, then, for all s > 0

e(E, x, r, ν) = e

(
Ex0,s,

x− x0

s
,
r

s
, ν

)
e(E, x, r) = e

(
Ex0,s,

x− x0

s
,
r

s

)
Proof. Note that |ν − νE|2 = (ν − νE) · (ν − νE) = 2 − 2ν · νE. Let
φ (z) = sz + x0,∀z ∈ Rn, one consequence of the de�nition of push-
forward is

µE = sn−1φ]µEx0,s
|µE| = sn−1φ]|µEx0,s

| (2.2)

Putting it all together

e(E, x, r, ν) =
1

rn−1

∫
C(x,r,ν)∩∂∗E

(1− ν · νE) dHn−1 =

=∗
1

rn−1

(
|µE| (C (x, r, ν))− ν · µE (C (x, r, ν))

)
=

=∗∗
1

rn−1

(
sn−1φ]|µEx0,s

| (C (x, r, ν))− sn−1ν · φ]µEx0,s
(C (x, r, ν))

)
=

=
(s
r

)n−1
(
|µEx0,s

|
(
φ−1 (C (x, r, ν))

)
− ν · µEx0,s

(
φ−1 (C (x, r, ν))

))
=

=∗∗∗
(

1
r
s

)n−1(
|µEx0,s

|
(
C

(
x− x0

s
,
r

s
, ν

))
−ν·µEx0,s

(
C

(
x− x0

s
,
r

s
, ν

)))
=

=∗∗∗∗ e

(
Ex0,s,

x− x0

s
,
r

s
, ν

)
where (∗) is a consequence of the De Giorgi's Structure Theorem, (∗∗) fol-
lows from 2.2, (∗∗∗) it is easy to see thatC

(
x− x0,

r
s
, ν
)

= φ−1 (C (x, r, ν))
and (∗ ∗ ∗∗) it su�ces to reproduce the same argument used in the �rsts
two equalities. To prove the second equality, note that |ν − νE|2 reaches
the minimum in ν = νE, thus

e(E, x, r) = min
ν∈Sn−1

1

rn−1

(
|µE| (C (x, r, ν))− ν · µE (C (x, r, ν))

)
It holds

e(E, x, r) =
|µE| (B(x, r))

rn−1

(
1− |µE (B(x, r)) |
|µE| (B(x, r))

)
(2.3)

Note that

φ−1 (B(x, r)) = B

(
x− x0

s
,
r

s

)
With the same argument, we can conclude the proof of the second equal-
ity on the Proposition.

Proposition 2.7. Let E ⊂ Rn be a Caccioppoli, x ∈ ∂E, r > 0, ν ∈ Sn−1
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and T : Rn → Rn an isometry. Then

e(T (E), x, r, ν) = e
(
E, T−1(x), r, T−1(ν)

)
Proof. Since

e(E, x, r, ν) =
1

rn−1

(
|µE| (C (x, r, ν))− ν · νEHn−1 (∂∗E ∩C (x, r, ν))

)
µT (E) = T]µE and |µT (E)| = T]|µE| (Proposition 2.51 in [VOL]), we can
verify that

e(T (E), x, r, ν) =

1

rn−1

(
|µT (E)| (C (x, r, ν))− ν · νT (E)Hn−1 (∂∗T (E) ∩C (x, r, ν))

)
=

=∗
1

rn−1

(
T]|µE| (C (x, r, ν))−ν·T (νE◦T−1)Hn−1

(
∂∗E ∩ T−1(C (x, r, ν))

))
=

1

rn−1

(
|µE|(T−1(C (x, r, ν)))−T−1(ν)·νE◦T−1Hn−1

(
∂∗E ∩ T−1(C (x, r, ν))

))
=

= e
(
E, T−1(x), r, T−1(ν)

)
where in (*) we have used that Hn−1 (T (A)) = Hn−1 (A) for any A ⊂ Rn

which follows from the properties of the Hausdor� measure (Theorem 2.2
in [LCE92]) and that T is an isometry.

We pointed out that the reduced boundary can be seen as the regular
part of the boundary. The next result provides a new interpretation of
this fact. Indeed, if we choose a point x of the reduced boundary, the
spherical excess at x tends to zero as the scale goes to zero. Then, we
can �nd both a direction and a scale provided the excess at x is as small
as we want.

Proposition 2.8. Let E ⊂ Rn be a Caccioppoli and x ∈ ∂∗E. Then
lim
r→0+

e(E, x, r) = 0. Moreover, ∀ε > 0, ∃ν ∈ Sn−1,∃r > 0 such that

e(E, x, r, ν) ≤ ε.

Proof. By the Remark of De�nition 5.4 and (iii) of Theorem 5.14 both
in [LCE92], we have that

lim
r→0+

| µE (B(x, r))

|µE| (B(x, r))
| = |νE (x) | = 1

lim
r→0+

|µE| (B(x, r))

ωn−1rn−1
= lim

r→0+

P(E,B(x, r))

ωn−1rn−1
= 1

Joining these two limits in 2.3, it follows that limr→0+ e(E, x, r) = 0.
Moreover, given ε > 0, take r such that e(E, x, r) ≤ ε. Since

C

(
x,

s√
2
, ν

)
⊂ B(x, s)
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is valid for all s > 0, in particular, for r, we obtain that

e

(
E, x,

r√
2
, ν

)
≤

(
1
r√
2

)n−1 ∫
B(x,r)∩∂∗E

|ν − νE|2

2
dHn−1 ≤

√
2
n−1

ε

Up to now, we did not state anything about how the excess behaves
with changes of the direction. For this purpose, we will be able to state
some result only in the case of the almost minimizing sets as follows.

Proposition 2.9. (Change on the direction) If n ≥ 2, exists a con-
stant C(n) such that for all E (Λ, r0)−minimizing set in A with Λr0 ≤ 1
and for all x ∈ ∂E ∩ A,

√
2r < r0,B(x, 2r) b A, ν, ν0 ∈ Sn−1, it holds

e(E, x, r, ν) ≤ Cd (n)

(
e
(
E, x,

√
2r, ν0

)
+ |ν − ν0|2

)
Proof. Since f(x) = |x|2 is a convex function, taking x = ν0 − νE, y =
ν−ν0, t = 1

2
in the inequality f(tx+ (1− t) y) ≤ tf(x)+(1− t) f(y) and

C (x, r, ν) ⊂ C
(
x,
√

2r, ν0

)
, then

e(E, x, r, ν) ≤

2

rn−1

∫
C(x,

√
2r,ν0)∩∂∗E

(
|ν0 − νE|2

2
+
|ν − ν0|2

2

)
dHn−1 =

=∗ 2
√

2
n−1
(
e
(
E, x,

√
2r, ν0

)
+
P(E,C

(
x,
√

2r, ν0

)
)

2
(√

2r
)n−1 |ν − ν0|2

)
≤

≤∗∗ 2
√

2
n−1
(
e
(
E, x,

√
2r, ν0

)
+

3nωn−1

2
|ν − ν0|2

)
where in (∗) it was used that the function in the integral is constant
together with the De Giorgi's Structure Theorem and (∗∗) follows from
Corollary 1.8. It su�ces to take Cd (n) = 2

√
2
n−1

3nωn−1.

The next result, shortly, state that when restricted to the almost
minimizing sets, it is possible to a�rm that the excess can not be small
in two opposite directions.

Proposition 2.10. Let E be a (Λ, r0)−minimizing in A, x ∈ ∂E, ν ∈
Sn−1, r < r0,C (x, r, ν) ⊂ A, then

e(E, x, r, ν) + e(E, x, r,−ν) ≥ 2c (n)

where c (n) is the constant from the density estimates.

Proof. Note that (νE − ν) · (νE + ν) = 0, by Pitagoras' Theorem |νE −
ν|2 + |νE + ν|2 = 4|ν|2 = 4, then

e(E, x, r, ν) + e(E, x, r,−ν) =
1

rn−1

∫
∂∗E∩C(x,r,ν)

4

2
dHn−1 =
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=
2P(E,C (x, r, ν))

rn−1
≥

≥ 2P(E,B(x, r))

rn−1
≥∗ 2c (n)

where (∗) it was used the lower inequality in (2.2).

One result that will be used frequently and, usually, together with
the compactness and closure theorems, is the lower semi-continuity of
the excess. That is, what we can extract of the excess of a sequence of
almost minimizing sets under some assumptions. For this purpose, let me
state a preliminary result which deal with the continuity of the excess
under some restrictive conditions.

Proposition 2.11. Let A,A0 open sets of Rn with A0 b A,P(A0,Rn) <
∞. Suppose that {Eh}h∈N is a sequence of (Λ, r0)−minimizing sets in A
with Λr0 ≤ 1 and such that A0 ∩ Eh → E. Then, for all C (x, r, ν) b A0

satisfying
Hn−1 (∂∗E ∩ ∂C (x, r, ν)) = 0

it holds
e(E, x, r, ν) = lim

h→∞
e(Eh, x, r, ν)

Proof. We have stated in Proposition 1.11 that

µA0∩Eh
∗
⇀µE

|µA0∩Eh|
∗
⇀ |µE| in A0

By Theorem 1.40 in [LCE92], Hn−1 (∂∗E ∩ ∂C (x, r, ν)) = 0 implies

|µE| (C (x, r, ν)) = lim
h→∞
|µEh| (C (x, r, ν))

and
µE (C (x, r, ν)) = lim

h→∞
µEh (C (x, r, ν))

Since C (x, r, ν) b A0 it holds

µA0∩Eh (C (x, r, ν)) = µEh (C (x, r, ν))

Putting it all together and combining with the fact that, ∀F Caccioppoli

e(F, x, r, ν) =
1

rn−1

(
|µF | (C (x, r, ν))− ν · µF (C (x, r, ν))

)
the result follows.

Theorem 2.12. (Lower semi-continuity of the excess) Let A,A0

opens of Rn with A0 b A,P(A0,Rn) < ∞. Suppose that {Eh}h∈N is a
sequence of (Λ, r0) −minimizing sets in A with Λr0 ≤ 1 and such that
A0 ∩ Eh → E. Then, for all C (x, r, ν) b A0 it holds

e(E, x, r, ν) ≤ lim inf
h→∞

e(Eh, x, r, ν) (2.4)
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Proof. Recalling the following equalities

e(E, x, r, ν) =
1

rn−1

∫
C(x,r,ν)∩∂∗E

(1− ν · νE) dHn−1 =

=
1

rn−1

(
|µE| (C (x, r, ν))− ν · µE (C (x, r, ν))

)
By the continuity from below of the measure Hn−1x∂∗E (Theorem 1.8
in [Fol99]) and the continuity of r 7→ rn−1, it is easy to see that r 7→
e(E, x, r, ν) is left-continuous, that is

e(E, x, r, ν) = lim
s→r−

e(E, x, s, r)

Since Hn−1x∂∗E(C (x, r, ν)) < ∞, exists a sequence {rk}k∈N such that
rk → r− and Hn−1 (∂∗E ∩ ∂C (x, rk, ν)) = 0,∀k ∈ N. The changing of
scale of the excess (Proposition 2.5) yields

e(Eh, x, rk, ν) ≤
(
r

rk

)n−1

e(Eh, x, r, ν) (2.5)

From the previous proposition and the choice of the sequence {rk}k∈N, it
holds for each k

e(E, x, rk, ν) = e(Eh, x, rk, ν)

The thesis is achieved by taking the lim inf
k→∞

in the inequality (3.4), the

left-continuity of r 7→ e(E, x, r, ν) and applying the last equality.

2.2 Bounded excess consequences

In this section, our goal is to describe locally (in general, up to Hn-
equivalence) the almost minimizing sets under the assumption, which is
crucial for the development of the regularity theory, of the boundedness
of the excess. Under this assumption, how much information is it possible
to infer concerning the local regularity of both topological and reduced
boundaries? The �rst result of this section describes the almost mini-
mizing sets with bounded excess inside a cylinder. From now on, we will
always suppose that n ≥ 2 and en = (0, 0, ..., 0, 1) ∈ Rn.

Theorem 2.13. (Small-excess position) Given t0 ∈ (0, 1), exists a
positive constant ω(n, t0) such that, for all E being a (Λ, r0)−minimizing
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in C (0, 2, en) with Λr0 ≤ 1, 0 ∈ ∂E and

e(E, 0, 2, en) ≤ ω(n, t0)

it holds:
|qx| < t0 ∀x ∈ C (0, 1, en) ∩ ∂E (2.6){
x ∈ C (0, 1, en) ∩ E : qx > t0

}
= ∅ (2.7){

x ∈ C (0, 1, en) \ E : qx < −t0
}

= ∅ (2.8)

Proof. This proof will be done by contradiction. That is, given t0 ∈
(0, 1), for each constant ω(n, t0) > 0, exists E in the conditions above (in
the hypothesis of the theorem) such that E does not satisfy one of the
equations 2.6, 2.7 or 2.8. Therefore, we will take a sequence of positive
constants tending to zero, ωh (n, t0), and Eh the set in the conditions
above referent to this constant. It holds:

Λr0 ≤ 1 lim
h→∞

e(Eh, 0, 2, en) = 0 0 ∈ ∂Eh,∀h ∈ N

at least one of the equations 2.6, 2.7 or 2.8, does not hold to an in-
�nite number of Eh, otherwise the sequence will not be in�nite. Since
C
(
0, 5

3
, en
)
b C (0, 2, en) and P(C

(
0, 5

3
, en
)
,Rn) <∞, the pre-compactness

theorem (Theorem 1.9) can be applied and ensures the existence of a set
F of �nite perimeter such that, passing to a subsequence if necessary:

Eh ∩C
(

0,
5

3
, en

)
→ F

note that, since 0 ∈ ∂Eh ∩C
(
0, 5

3
, en
)
, it follows (from Proposition 1.11)

that 0 ∈ ∂F . Besides, since C
(
0, 4

3
, en
)
b C

(
0, 5

3
, en
)
, follows from the

lower semi-continuity of the excess:

e

(
F, 0,

4

3
, en

)
≤ lim inf

h→∞
e

(
Eh, 0,

4

3
, en

)
≤∗
(

3

2

)n−1

lim
h→∞

e(Eh, 0, 2, en) = 0

where, in (*), it was used the change of scale of the excess. It then follows
from Proposition 2.4 that:

F ∩C
(

0,
4

3
, en

)
Lebesgue∼

{
y ∈ C

(
0,

4

3
, en

)
: (y − 0) · en = qy ≤ 0

}
(2.9)

An in�nite quantity of Eh does not satisfy 2.6: Take a sequence
xh ∈ C (0, 1, en)∩∂Eh such that t0 ≤ |qxh| ≤ 1. Let x0 ∈ C (0, 1, en)∩∂F
the limit point of this sequence, it holds x0 ∈ C

(
0, 4

3
, en
)
∩ ∂F with

|qx0| ≥ t0. On other hand, by the equivalence in 2.9 follows:

C

(
0,

4

3
, en

)
∩ {x : qx = 0} = C

(
0,

4

3
, en

)
∩ sptµ{x:qx≤0} =
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= C

(
0,

4

3
, en

)
∩ sptµF = C

(
0,

4

3
, en

)
∩ ∂F

what contradicts the existence of x0. So, there exists ∃h0 such that ∀h ≥
h0 the set Eh satis�es 2.6. It follows that, for all A′ Borel set of Rn (by
Theorem 16.3 in [Mag12]):

P(C (0, 1, en) ∩ Eh, A′) = P(C (0, 1, en) , E
(1)
h ∩ A

′)+

+

=0, when A′={x∈C(0,1,en):t0<|qx|<1}by 2.9︷ ︸︸ ︷
P(Eh,C (0, 1, en)(1) ∩ A′) +Hn−1

({
νC(0,1,en) = νEh

}
∩ A′

)
Since

P(C (0, 1, en) , E
(1)
h ∩ {x ∈ C (0, 1, en) : t0 < |qx| < 1}) =

= Hn−1

(
∂∗C (0, 1, en) ∩ E(1)

h ∩ {x ∈ C (0, 1, en) : t0 < |qx| < 1}
)

and ∂∗C (0, 1, en) ∩C (0, 1, en) = ∅, we have that:

P(C (0, 1, en) , E
(1)
h ∩ {x ∈ C (0, 1, en) : t0 < |qx| < 1}) =

= Hn−1

({
νC(0,1,en) = νEh

}
∩ {x ∈ C (0, 1, en) : t0 < |qx| < 1}

)
= 0

. Thus, it holds P(C (0, 1, en)∩Eh, {x ∈ C (0, 1, en) : t0 < |qx| < 1}) = 0,
what ensures (*) that comes in the next equation, where we set φ ∈
C∞c ({x ∈ C (0, 1, en) : t0 < |qx| < 1}):∫

1C(0,1,en)∩Eh∇φ dx =

∫
∂∗(C(0,1,en)∩Eh)

φνC(0,1,en)∩Eh dHn−1 =

=

∫
φ dµC(0,1,en)∩Eh =∗ 0

Since {x ∈ C (0, 1, en) : t0 < |qx| < 1} is a connected open set, 1C(0,1,en)∩Eh
is constant almost everywhere in {x ∈ C (0, 1, en) : t0 < |qx| < 1} (by
Lemma 3.2 in [(au09]).

Analogously, it holds 1C(0,1,en)∩Eh is equivalent to some constant in
{x ∈ C (0, 1, en) : t0 < |qx| < 1}. By 2.9 follows 1C(0,1,en)∩Eh is equivalent
to 0, in the �rst case, and equivalent to 1, in the second case. Putting all
together:

|qx| ≤ t0 ∀x ∈ C (0, 1, en) ∩ ∂E (2.10)∣∣∣∣{x ∈ C (0, 1, en) ∩ E : qx > t0

}∣∣∣∣ = 0 (2.11)∣∣∣∣{x ∈ C (0, 1, en) \ E : qx < −t0
}∣∣∣∣ = 0 (2.12)

If exists y ∈ {x ∈ C (0, 1, en) ∩ E : qx > t0}, by 2.10, it follows that y ∈
int (E), what is a contradiction with 2.11, ensuring 2.7. The proof of 2.8
is analogous.

From the theorem above, it was possible to show where the almost
minimizing sets with bounded excess is situated or not inside a cylinder.
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As a consequence of the last result, it will be possible to prove some
formulas and then de�ne the excess measure. For this purpose, we will
prove how the perimeter measure of the cylinder can be written.

Lemma 2.14. Let r > 0 and a < b. We de�ne

C = {(x′, xn) ∈ Rn : |x′| < r, a < xn < b}

then:

µC = νHn−1x∂Dr×(a,b)+enHn−1xDr×{b}−enHn−1xDr×{a}

where ν (x) = (x′/r, 0).

Proof. Firstly, we note that

∂C =

.
=N0︷ ︸︸ ︷

(∂Dr × {a})∪̇(∂Dr × {b}) ∪̇

∪̇

.
=N︷ ︸︸ ︷

(∂Dr × (a, b))∪̇(Dr × {a})∪̇(Dr × {b})

(2.13)

and
Hn−1 (N0) = 0 (2.14)

Since N0 is a closed set and 2.14 holds true, we can say that C has
almost C1-boundary and N is the regular part of ∂E. From Theorem 9.6
in [Mag12], for every φ ∈ C1

c (Rn),∫
C

∇φ =

∫
N

φνC dHn−1

Thus, we conclude that

µC = νC Hn−1xN (2.15)

Accordingly with the de�nition of N , we obtain that

Hn−1xN= Hn−1x(∂Dr×(a,b))+Hn−1x(Dr×{a})+Hn−1x(Dr×{b}) (2.16)

It is straightforward calculation to show that

νC(x′, xn) =


(x′/r, 0), if x ∈ ∂Dr × (a, b)

en, if x ∈ Dr × {b}
−en, if x ∈ Dr × {a}

Finally, by 2.15, 2.16 and the last equality, we conclude the proof.

Theorem 2.15. If E is a Caccioppoli with 0 ∈ ∂E andM
.
= C (0, 1, en)∩

∂∗E such that ∃t0 ∈ (0, 1) satisfying:

|qx| < t0 ∀x ∈ C (0, 1, en) ∩ ∂E (2.17)∣∣∣∣{x ∈ C (0, 1, en) ∩ E : qx > t0

}∣∣∣∣ = 0 (2.18)



2.2 BOUNDED EXCESS CONSEQUENCES 37

∣∣∣∣{x ∈ C (0, 1, en) \ E : qx < −t0
}∣∣∣∣ = 0 (2.19)

Then, for all G ⊂ D1 Borel set, φ ∈ C0
c (D1) and almost all t ∈

(−1, 1), it holds:

Hn−1 (G) ≤ Hn−1

(
M ∩ p−1 (G)

)
(2.20)

Hn−1 (G) =

∫
M∩p−1(G)

νE · en dHn−1 (2.21)∫
D1

φ =

∫
M

φ (px) νE (x) · en dHn−1 (x) (2.22)∫
D1∩Et

φ =

∫
M∩{qx>t}

φ (px) νE (x) · en dHn−1 (x) (2.23)

Proof. To prove 2.22 and 2.23, it su�ces to prove for all φ ∈ C1
c (D1),

since it is possible to use the Dominated Converge Theorem together with
the density of C1

c (D1) in C0
c (D1). Since Hn−1x∂∗E is a Radon measure

and, in particular, Hn−1 (∂∗E ∩C (0, 1, en)) < ∞, it follows that, for
almost all r ∈ (0, 1):

Hn−1 (∂∗E ∩ (∂Dr × [0, 1])) = 0 (2.24)

It also holds that:∫
[t0,1]

∫
Rn−1

1E∩(D1×{s}) (y, s) dHn−1 (y) ds =∗
∫
Rn

1E∩(D1×[t0,1]) (y) dHn y =∗∗ 0

where (*) follows from the Fubini's Theorem and (**) follows from 2.18.
Therefore:

Hn−1 (E ∩ (D1 × {s})) = 0 for almost all s ∈ (t0, 1) (2.25)

Analogously:

Hn−1 (E ∩ (D1 × {t})) = Hn−1 (D1) for almost all t ∈ (−1,−t0)
(2.26)

On the other hand, since Hn−1x∂∗E is a Radon measure

Hn−1 (∂∗E ∩ (Dr × {s})) = 0

holds for almost all s ∈ R. Thus, �x r ∈ (0, 1) satisfying 2.24 and
s ∈ (t0, 1) such that 2.25 and Hn−1 (∂∗E ∩ (Dr × {s})) = 0 are satis-
�ed. Given t ∈ (−1, s) such that Hn−1 (∂∗E ∩ (Dr × {t})) = 0, de�ne
F = E ∩ (Dr × (t, s)). Since the intersection of sets with �nite perimeter
provides a set with �nite perimeter, we have that F has �nite perimeter.
By Theorem 16.16 in [Mag12]:

µF (·) = µE

(
(Dr × (t, s))∩·

)
+µ(Dr×(t,s))

(
E(1) ∩ ·

)
−

=∗0︷ ︸︸ ︷
Hn−1

({
νE = νDr×(t,s)

}
∩ ·
)



38 EXCESS THEORY 2.2

where (*) follows from:{
νE = νDr×(t,s)

}
⊂ ∂∗E ∩ ∂∗ (Dr × (t, s)) ⊂

⊂ ∂∗E ∩ (∂Dr × [0, 1] ∪ Dr × {t} ∪ Dr × {s})

together with 2.24, the choice of s and t. Note that ν (x) = px
|px| is the

normal vector to the cylinder D1 × R for all x ∈ ∂D1 × R. So, by the
previous lemma, it follows:

µ(Dr×(t,s)) (·) = enHn−1 ((Dr × {s}) ∩ ·) +

+νHn−1 ((∂Dr × (t, s)) ∩ ·)− enHn−1 ((Dr × {t}) ∩ ·)

Keeping in mind that ν (x) · en = 0, then, for almost all t ∈ (−1, s):

enµF (·) = enµE

(
(Dr × (t, s)) ∩ ·

)
+ enµ(Dr×(t,s))

(
E(1) ∩ ·

)
=

= enµE

(
(Dr × (t, s)) ∩ ·

)
+

=∗0︷ ︸︸ ︷
Hn−1

(
E(1) ∩ (Dr × {s}) ∩ ·

)
−Hn−1

(
E(1) ∩ (Dr × {t}) ∩ ·

)
=

= (en · νE)Hn−1 (∂∗E ∩ (Dr × (t, s)) ∩ ·)−Hn−1

(
E(1) ∩ (Dr × {t}) ∩ ·

)
(2.27)

where (*) follows from the choice of s (satisfying 2.25) together with{
x ∈ C (0, 1, en) ∩ E : qx > t0

}
= ∅

what is directly obtained from 2.17 and 2.18, indeed, if exists y such that

y ∈ {x ∈ C (0, 1, en) ∩ E : qx > t0}

by 2.17, it follows that y ∈ int (E), what is a contradiction with 2.18.
Given φ ∈ C1

c (D1), de�ne the following vector �eld T (x) = φ (px) en,
x ∈ Rn. Clearly divT ≡ 0, if we choose ϕ ∈ C1

c (D1) such that ϕ(x) =
1,∀x ∈ U where U is an open neighborhood of F , we obtain that∫

enφ ◦ p dµF =∗
∫
ϕenφ ◦ p dµF =

∫
ϕT · dµF =

=

∫
F

div(ϕT ) dHn =∗∗
∫
F

divT dHn = 0

where (**) follows from the choice of ϕ, i.e. ϕ ≡ 1 in F , which, since
sptµF ⊂ ∂F , also ensures (*).

Joining this equality to 2.27 ensures that, for almost all t ∈ (−1, s):

0 =

∫
∂∗E∩(Dr×(t,s))

(en · νE)φ ◦ p dHn−1−
∫
E(1)∩(Dr×{t})

φ ◦ p dHn−1

By the Dominated Convergence Theorem and taking r, s → 1− along
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suitable sequences follows, for almost all t ∈ (−1, 1), that:∫
(E(1))

t
∩D1

φ =

∫
E(1)∩(D1×{t})

φ ◦ p dHn−1 =

=

∫
∂∗E∩(Dr×(t,1))

(en · νE)φ ◦ p dHn−1 =

=

∫
M∩{qx>t}

(en · νE)φ ◦ p dHn−1

Since, by Fubini's Theorem, E
Lesbegue∼ E(1) ⇒ Et

Lesbegue∼ E
(1)
t for almost

all t, the proof of 2.23 is concluded. Taking t ∈ (−1,−t0) follows: M ∩
{qx > t} = M and, by 2.19,

(
E(1)

)
t

Lesbegue∼ Et
Lesbegue∼ D1 and the proof

of 2.22 is done. By the Cauchy-Schwarz Inequality, 2.21 implies 2.20.
Lastly, we focus on the proof of 2.21. Firstly, we prove for G′ b D1 Borel
set. For this purpose, we denote ϕε = ηε ∗ 1G′ where ε > 0 and ηε is the
standard molli�ers. Since 1G′ ∈ L1(D1), by Theorem 4.1 in [LCE92], we
have that ϕ ∈ C∞c (D1), ϕε → 1G′ Hn−1-almost everywhere in D1 as ε→ 0
and

ϕε → 1G′ in L1(D1)

Therefore, we can apply 2.22 for ϕε and ensure that

Hn−1 (G′) =

∫
D1

1G′ dHn−1 =

∫
D1

lim
n→∞

ϕ1/n dHn−1 =

=∗ lim
n→∞

∫
D1

ϕ1/n dHn−1 = lim
n→∞

∫
M

(νE · en)ϕ1/n ◦ p dHn−1

(2.28)

where in (*) we used the dominated convergence theorem. Since ϕ1/n →
1G′ Hn−1-almost everywhere in D1, by the dominated convergence the-
orem and the convergence ϕ1/n ◦ p → 1G′ ◦ p = 1p−1(G′) Hn−1-almost
everywhere in D1, we turn 2.28 into

Hn−1 (G′) = lim
n→∞

∫
M

(νE · en)φ ◦ p dHn−1 =

=

∫
M

(νE · en) lim
n→∞

ϕ1/n ◦ p dHn−1 =

∫
M∩p−1(G′)

(νE · en) dHn−1

that is 2.21 for any Borel set compactly contained in D1. In order to
conclude the proof for any Borel set G ⊂ D1, we take {Gi}i∈N a sequence
of Borel sets with Gi b D1, Gi ⊂ Gi+1 and Gi → G, thus

Hn−1 (G) =∗ lim
i→∞
Hn−1 (Gi) = lim

i→∞

∫
M∩p−1(Gi)

(νE · en) dHn−1 =

=

∫
M

lim
i→∞

1p−1(Gi)(νE · en) dHn−1 =

∫
M∩p−1(G)

(νE · en) dHn−1

in (*) we have used the continuity from below of the measure Hn−1

(Theorem 1.8 in [Fol99]).
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Corollary 2.16. (Excess measure) In the conditions of the above the-
orem, the function

ζ : 2Rn−1 → R+

de�ned by:

ζ (G) = P(E,C (0, 1, en) ∩ p−1 (G))−Hn−1 (G) =

= Hn−1

(
M ∩ p−1 (G)

)
−Hn−1 (G)

is a Radon measure in Rn−1 concentrated in D1 and such that ζ (D1) =
e(E, 0, 1, en)

Proof. The equality ζ (D1) = e(E, 0, 1, en) follows from the de�nition of
ζ, De Giorgi's Structure Theorem, i.e. P(E, ·) = Hn−1x∂∗E(·), and

e(E, x, r, ν) =
1

rn−1

(
|µE| (C (x, r, ν))− ν · µE (C (x, r, ν))

)
(2.29)

Since Rn−1 is locally compact Hausdor� space (LCH) and ζ is clearly a
Borel measure on Rn−1 �nite on compact sets, by Theorem 7.8 in [Fol99],
we conclude that ζ is a �nite Radon measure on the Borel sets of Rn−1.
Then, by the Carathéodory construction, ζ induces a exterior Radon
measure on Rn−1.

Starting from an almost minimizing set with bounded excess at the
origin, we have been building up some control of the distance, within
a cylinder centered in 0, between the topological boundary and the hy-
perplane de�ned by en. The control, which we have developed, assists
to prove the Height Bound, which, starting from a bounded excess in
a arbitrary point x0 of the boundary , allows us to bound the distance
between all points of the boundary, inside a cylinder, and x0 by the size
of the excess. In the literature, we can �nd the Height Bound stated in
euclidean spaces of dimension bigger than 2, i.e. n ≥ 2, in fact, the proofs,
which we have checked, are not completely correct. It is due to the fact
that the "Isoperimetric Inequality on Balls" is requested to be applied in
dimension n− 1, thus, it demands n− 1 ≥ 2. We are working to exhibit
a proof which includes the case n = 2. However, we have not achieved
this goal at the time of writing.

Theorem 2.17. (Height Bound) Let n ≥ 3. There exist constants
ε0 (n) , C0 (n) such that if E is (Λ, r0)−minimizing set in C (x0, 4r0, en)
with Λr0 ≤ 1, x0 ∈ ∂E and

e(E, x0, 4r0, en) ≤ ε0 (n)

then

sup

{
|qy − qx0|

r0

: y ∈ ∂E ∩C (x0, r0, en)

}
≤ C0 (n) e(E, x0, 4r0, en)

1
2(n−1)

Proof. Let me start with a reduction in the argument. Suppose that we
have proved the theorem for r0 = 1

2
and x0 = 0. Given a set E which is
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(Λ′, r)−minimizing set in C (x0, 4r, en) with x0 ∈ ∂E,Λ′r ≤ 1 and

e(E, x0, 4r, en) ≤ ε0 (n)

By Proposition 1.3, the blow-up Ex0,2r of E is a
(
Λ, 1

2

)
−minimizing set

in C (x0, 4r, en)x0,2r
= C (0, 2, en) with Λ = Λ′r, 0 ∈ ∂Ex0,2r. Moreover,

by Proposition 2.6

e(Ex0,2r, 0, 2, en) = e(E, x0, 4r, en) ≤ ε0 (n)

By our reduction, since y ∈ ∂E ∩C (x0, r, en) implies

y − x0

2r
∈ ∂Ex0,2r ∩C

(
0,

1

2
, en

)
we can a�rm that

sup

{
|qy − px0|

2r
: y ∈ ∂E ∩C (x0, r, en)

}
≤

≤ C0 (n) e(Ex0,2r, 0, 2, en)
1

2(n−1)

Therefore, it was possible to conclude the thesis of the Height Bound for
the set E. So, we reduced the proof to the case with r0 = 1

2
and x0 = 0.

Brie�y, we want to prove the existence of C0 (n) and ε0 (n) such that

|qx| ≤ C0 (n) e(E, 0, 2, en)
1

2(n−1) ∀x ∈ ∂E ∩C
(

0,
1

2
, en

)
(2.30)

whenever e(E, 0, 2, en) ≤ ε0 (n).

Claim 1: Exists t0 ∈
(
−1

4
, 1

4

)
such that, for all x ∈ C

(
0, 1

2
, en
)
∩ ∂E,

|qx− t0| ≤ C (n) e(E, 0, 2, en)
1

2(n−1) (2.31)

Since 0 ∈ ∂E implies |t0| ≤ C (n) e(E, 0, 2, en)
1

2(n−1) , from 2.31, we
obtain that

|qx| ≤ |qx− t0|+ |t0| ≤ 2C (n) e(E, 0, 2, en)
1

2(n−1)

To conclude, we de�ne C0 (n) = 2C (n).
Proof of Claim 1: First of all, assume that

ε0 (n) ≤ ω

(
n,

1

4

)
(2.32)

where the constant ω
(
n, 1

4

)
is from Theorem 2.13. If necessary, we will

appropriately reduce ε0(n). So, set M = ∂E ∩C (0, 1, en), from 2.6

|qx| ≤ 1

4
∀x ∈M (2.33)

By the change of scale in the excess (Proposition 2.5) holds e(E, 0, 1, en) ≤
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2n−1e(E, 0, 2, en), then, by the properties of the excess measure (Corol-
lary 2.16) and the Hn−1-equivalence between ∂E ∩C (0, 2, en) and ∂∗E ∩
C (0, 2, en) given by Corollary 1.7, it follows that

Hn−1

(
C (0, 1, en) ∩ ∂E ∩ p−1 (D1)

)
−Hn−1 (D1) =

= Hn−1 (M)−Hn−1 (D1) =

= ζ (D1) = e(E, 0, 1, en) ≤ 2n−1e(E, 0, 2, en)

(2.34)

As a consequence of ζ (G) ≤ e(E, 0, 1, en), we have that

Hn−1

(
M ∩ p−1 (G)

)
≤ Hn−1 (G) + e(E, 0, 1, en) (2.35)

By a standard approximation argument and the triangle inequality, 2.23
ensures the �rst inequality that follows

0 ≤ Hn−1 (M ∩ {qx > t})−Hn−1 (Et ∩ D1) ≤
≤∗ e(E, 0, 1, en) ≤ 2n−1e(E, 0, 2, en)

(2.36)

where (*) follows from 2.35 taking G = D1. Note that 2.36 holds for
almost all t ∈ (−1, 1). Now, we will de�ne a function which will ensure
the existence of t0 as it is wished. So, de�ne f : (−1, 1)→ [0,Hn−1 (M)]
as

f (t) = Hn−1 (M ∩ {qx > t})

The function f is right-continuous as a consequence of the continuity from
below of the measure Hn−1x∂∗E (Theorem 1.8 in [Fol99]) and, evidently,
f is decreasing. Moreover, f also satis�es

f (t) = Hn−1 (M) ∀t ∈ (−1,−1

4
]

f (t) = 0 ∀t ∈ [
1

4
, 1)

(2.37)

what follows directly from 2.33. We now set

t0
.
= inf

{
t ∈ (−1, 1) : f(t) ≤ Hn−1 (M)

2

}
Note that t0 ∈ (−1/4, 1/4) and t0 satis�es

f(t) ≤ Hn−1 (M)

2
∀t ∈ [t0, 1)

f(t) ≥ Hn−1 (M)

2
∀t ∈ (−1, t0)

(2.38)

Now, we contend to prove that t0 is the desired value by the Claim. To
this end, we will divide the proof into two steps.

Step one: Suppose that

f(t0) ≤
√
e(E, 0, 2, en) (2.39)
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Thus, if x ∈ C
(
0, 1

2
, en
)
∩ ∂E with qx > t0, by 2.33 and |t0| ≤ 1/4, it

holds that qx − t0 < 1
2
, then B(x,qx− t0) b C (0, 1, en) b C (0, 2, en)

what allows us to use the lower density estimate in 1.12 as follows

c (n) ≤ P(E,B(x,qx− t0))

(qx− t0)n−1 ≤∗ f (t0)

(qx− t0)n−1

where (*) follows from the inclusionB(x,qx− t0) ⊂ C (0, 1, en)∩{qx > t0}
and

P(E,C (0, 1, en) ∩ {qx > t0}) = Hn−1 (M ∩ {qx > t0})

Therefore, by our assumption (2.39), we get that

c (n) (qx− t0)n−1 ≤ f (t0) ≤
√
e(E, 0, 2, en) ∀x ∈ C

(
0,

1

2
, en

)
∩ ∂E

(2.40)
what implies

qx− t0 ≤
1

c (n)
1

n−1

e(E, 0, 2, en)
1

2(n−1) ∀x ∈ C
(

0,
1

2
, en

)
∩ ∂E (2.41)

note that, if qx ≤ t0, the inequality above (2.43) is trivial. Thus, if f
satis�es 2.39, the proof of the Claim 1 is done.

Step two: Suppose that

f(t0) >
√
e(E, 0, 2, en) (2.42)

Now, we are not able to establish the estimates in 2.40 for the constant
t0. In order to obtain an similar inequality, we shall de�ne an auxiliary
constant t1 which will satisfy 2.40 in place of t0. Furthermore, we will
prove that t1 and t0 are related as follows

t1 − t0 ≤ C0 (n) e(E, 0, 2, en)
1

2(n−1)

Therefore, we set

t1
.
= inf

{
t ∈ (−1, 1) : f(t) ≤

√
e(E, 0, 2, en)

}
Thus,

f (t) ≤
√
e(E, 0, 2, en) ∀t ∈ [t1, 1)

f (t) >
√
e(E, 0, 2, en) ∀t ∈ (−1, t1)

By our assumption (2.42) and recalling that f is decreasing, we have
that t1 > t0. Since f(1/4) = 0 (2.37), we also have t0 < 1/4. Then,
t1 ∈ (t0, 1/4). If x ∈ C

(
0, 1

2
, en
)
∩ ∂E with qx > t1, by 2.33 and the

choice of t1, it holds qx− t1 < 1
2
, then

B(x,qx− t1) b C (0, 1, en) b C (0, 2, en)
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what allows to use the lower density estimate in 1.12 as follows

c (n) ≤ P(E,B(x,qx− t1))

(qx− t1)n−1 ≤∗ f (t1)

(qx− t1)n−1

where (*) follows from the inclusionB(x,qx− t1) ⊂ C (0, 1, en)∩{qx > t1}
and

P(E,C (0, 1, en) ∩ {qx > t1}) = Hn−1 (M ∩ {qx > t1})

Therefore, by the choice of t1

c (n) (qx− t1)n−1 ≤ f (t1) ≤
√
e(E, 0, 2, en) ∀x ∈ C

(
0,

1

2
, en

)
∩ ∂E

what implies

qx− t1 ≤
1

c (n)
1

n−1

e(E, 0, 2, en)
1

2(n−1) ∀x ∈ C
(

0,
1

2
, en

)
∩ ∂E (2.43)

note that, when qx ≤ t1 the inequality above is trivial. Now, we will
prove that

t1 − t0 ≤ C0 (n) e(E, 0, 2, en)
1

2(n−1) (2.44)

To this end, by Theorem 18.11 in [Mag12], for almost all t ∈ R, Et has
�nite perimeter and we have

Hn−2 (∂∗Et∆ (∂∗E)t) = 0

from this equality we �nd that

Hn−2 (D1 ∩ ∂∗Et) = Hn−2 (D1 ∩ (∂∗E)t) =

=∗ Hn−2 ((C (0, 1, en) ∩ ∂∗E)t)
(2.45)

the equality (*) is deduced from D1∩(∂∗E)t = (C (0, 1, en) ∩ ∂∗E)t. From
the Coarea formula for locally (n−1)-recti�able (Theorem 2.93 in [LA00]
taking f = q), we deduce that∫
∂∗E∩C(0,1,en)

√
1− (νE · en)2 dHn−1 =

∫
R
Hn−2 ((C (0, 1, en) ∩ ∂∗E)t) dt

(2.46)
Thus∫

[−1,1]

Hn−2 (D1 ∩ ∂∗Et) dt =2.46
2.45

∫
C(0,1,en)∩∂∗E

√
1− (νE · en)2 dHn−1 ≤

≤∗
√

2

∫
M

√
1− νE · en dHn−1 ≤∗∗

√
2Hn−1 (M) e(E, 0, 1, en) ≤

≤2.35
√

2 (Hn−1 (D1) + 2n−1e(E, 0, 2, en))
√

2n−1e(E, 0, 2, en) ≤
≤∗∗∗

√
2n (Hn−1 (D1) + 2n−1ε0 (n))

√
e(E, 0, 2, en)

(2.47)

where (*) follows by (a− 1)2 ≥ 0 ⇒ −2a + 2 ≥ −a2 + 1 and M
Hn−1∼
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C (0, 1, en)∩∂∗E, (**) is directly from Holder's Inequality and |νE−en| =
2−2νE ·en, (***) is consequence of the boundedness of the excess. De�ne
C1 (n) =

√
2n (Hn−1 (D1) + 2n−1ε0 (n)).

Claim 2: Exists c0(n) > 0 such that, for almost all t ∈ [t0, t1)

Hn−2 (D1 ∩ ∂∗Et) ≥ c0 (n)Hn−1 (Et ∩ D1)
n−2
n−1 (2.48)

The Claim 2 combined with 2.47 yields∫
[t0,t1)

Hn−1 (Et ∩ D1)
n−2
n−1 dt ≤ C1 (n)

c0 (n)

√
e(E, 0, 2, en)

By 2.36, for almost all t ∈ [t0, t1)

Hn−1 (Et ∩ D1) ≥ Hn−1 (M ∩ {qx > t})− 2n−1e(E, 0, 2, en) ≥

≥∗
√
e(E, 0, 2, en)−2n−1e(E, 0, 2, en) ≥∗∗

√
e(E, 0, 2, en)

(
1− 2n−1

√
ε0 (n)

)
in (*) was used the choice of t1 and (**) is consequence of the boundedness
of the excess. In order to have 1− 2n−1

√
ε0 (n) > 0, if necessary, we will

reduce the size of ε0 (n). Putting together the last two inequalities, we
�nd that∫

[t0,t1)

(√
e(E, 0, 2, en)

(
1− 2n−1

√
ε0 (n)

))n−2
n−1

dt ≤ C1 (n)
√
e(E, 0, 2, en)

what ensures that

t1 − t0 ≤

.
=C0(n)︷ ︸︸ ︷
C1 (n)

c0 (n)
(

1− 2n−1
√
ε0 (n)

)n−2
n−1

e(E, 0, 2, en)
1

2(n−1)

thus, by 2.43 and the last inequality

qx− t0 ≤
(
C0 (n) +

1

c (n)
1

n−1

)
e(E, 0, 2, en)

1
2(n−1)

Applying the same arguments of both Steps one and Step two for Ec, it
is possible to conclude the same inequality for t0 − qx, thus, we �nish
the proof.

Proof of Claim 2: By 2.34, 2.36 and the choice of t0, for almost all
t ∈ [t0, t1), we have

Hn−1 (Et ∩ D1) ≤ Hn−1 (M ∩ {qx > t}) = f (t) ≤ 1

2
Hn−1 (M) ≤

≤ Hn−1 (D1) + 2n−1e(E, 0, 2, en)

2
≤ 3

4
Hn−1 (D1)
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where we reduced, if necessary, the size of ε0(n) provided that 2n−2ε0(n) ≤
Hn−1 (D1). The inequalities above allow us to use the relative isoperimet-
ric inequality (Proposition 12.37 in [Mag12]) for Et∩D1 as a Caccioppoli
in Rn−1, namely

P(Et ∩ D1,D1) ≥ c0 (n)Hn−1 (Et ∩ D1)
n−2
n−1 (2.49)

where we used both n − 1 ≥ 2 and Hn−1 coincide with the Lebesgue
measure in Rn−1. We recall that

P(Et ∩ D1,D1) ≤ P(D1,D1) + P(Et,D1) (2.50)

Since ∂∗D1 ∩ D1 = ∅ and

P(D1,D1) = Hn−2(∂∗D1 ∩ D1)

the �rst term on the right side of 2.50 is equal to 0. By the De Giorgi's
Structure Theorem, we have that

P(Et,D1) = Hn−2(∂∗Et ∩ D1)

what, by 2.49, concludes the proof of the Claim.



Approximation theorems

In this chapter, we will use the theorems that we have proved for
an almost minimizing set E, as the Height Bound and the Small-Excess
Position, to construct a Lipschitz function u such that the graph of u
satis�es some properties. For instance, one of these properties will make
it possible to locally insert the piece of the boundary of E with bounded
excess into the graph of u. Moreover, we will be able to measure, with
respect to Hn−1, how large the portion of the boundary of E will not be
contained in the graph of u. We shall prove that the function u possess
one property that will be called almost harmonicness which will allow us
to approximate the function u by harmonic functions and thus making
it possible to prove a new estimate on the excess. Henceforth, we will
use the following notations for the hypograph and epigraph of a function
u : Rn−1 → R

hypo (u) = {(z, t) ∈ Rn : t > u(z)}

epi (u) = {(z, t) ∈ Rn : t < u(z)}

3.1 Lipschitz boundary criterion

The �rst theorem shows that, if the regular part of the boundary of
a Caccioppoli set, that is, its reduced boundary, is at least of regular-
ity Lipschitz inside a cylinder, the topological boundary has the same
regularity.

Theorem 3.1. Let E be a Caccioppoli with sptµE = ∂E, 0 ∈ E. If
u : Rn−1 → R is a Lipschitz function with Lip (u) ≤ 1 and C (0, 1, en) ∩
∂∗E ⊂ G(u)∩C (0, 1, en), then C (0, 1, en)∩∂E = C (0, 1, en)∩G(u) and

47
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either

C (0, 1, en) ∩ (E \ ∂E) = C (0, 1, en) ∩ epi (u)

νE (z, u (z)) =
− (∇u (z) ,−1)√

1 + |∇u (z) |2
for almost all z ∈ D1

(3.1)

Or

C (0, 1, en) ∩ (E \ ∂E) = C (0, 1, en) ∩ hypo (u)

νE (z, u (z)) =
(∇u (z) ,−1)√
1 + |∇u (z) |2

for almost all z ∈ D1
(3.2)

Proof. Since G(u) ∩C (0, 1, en) is closed, it holds

C (0, 1, en) ∩ ∂E = C (0, 1, en) ∩ ∂∗E ⊂ G(u) ∩C (0, 1, en) (3.3)

Note that u (0) = 0, because (0, 0) ∈ ∂E. Since sptµE = ∂E, by 3.3, we
have that µE (C (0, 1, en) ∩ epi (u)) = µE (C (0, 1, en) ∩ hypo (u)) = 0.
Then, for all φ ∈ C∞c (epi (u))∫

epi(u)

1E∇φ =

∫
epi(u)∩∂∗E

φ dµE = 0

analogously for hypo (u). By the connectedness of the epigraph and the
hypograph and Lemma 3.2 in [(au09], we �nd that 1E is equivalent to a
constant in each one of them.

If these constants are equal, we deduce that 1E is constant almost
everywhere in C (0, 1, en) what provides that |µE| (C (0, 1, en)) = 0. On
the other hand, since 0 ∈ ∂E∩C (0, 1, en) = sptµE∩C (0, 1, en), we have
|µE| (C (0, 1, en)) > 0 what is an absurd. If 1E is equivalent to 1 in epi (u)
and equivalent to 0 in hypo (u), we can show that 1E will be truly equal
these constants in each respective set. Indeed, if ∃x ∈ epi (u)∩C (0, 1, en)
such that 1E (x) = 0, we have x ∈ ∂E. But C (0, 1, en) ∩ ∂E ⊂ G(u) ∩
C (0, 1, en) which is another absurd. Thus, 1E is equal to 1 in epi (u) and,
analogously, it is equal to 0 in hypo (u). It concludes the proof of the
both �rst equalities in 3.1 and 3.2. We now turn our attention to the
proof of the formulas of νE. Since they are mostly the same, we will show
the formula on 3.1. We have proved that both

C (0, 1, en) ∩ (E \ ∂E) = C (0, 1, en) ∩ epi (u)

is valid, thus, we obtain that |(E∆G(u))∩C (0, 1, en) | = 0. From 0.1, we
�nd that

µE∩C(0,1,en) = µG(u)∩C(0,1,en)

Thus, since the outer unit normal of G(u) ∩ C (0, 1, en) exists almost
everywhere, we have that

νE(x) = νG(u)(x) for almost all x ∈ C (0, 1, en) ∩G(u)

Therefore, our problem turn into the proof of the formula for the outer
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unit normal of a Lipschitz graph. To this end, if we de�ne f(z) = (z, u(z))
for all z ∈ D1, by Lemma 10.4 in [Mag12], we conclude that

Tf(z)G(u) = ∇f(z)(Rn−1)

Since ∇f(z) =
( idRn−1

∇u(z)

)
for almost all z ∈ D1, we show that

v ∈ Tf(z)G(u)⇔ ∃w ∈ Rn−1 : v = ∇f(z)w = (w,w · ∇u(z))⇔

⇔ v · (−∇u(z), 1) = 0⇔ v ∈ (−∇u(z), 1)⊥

Thus, νE(z) = (−∇u(z),1)√
1+|∇u(z)|2

for almost all z ∈ D1.

Corollary 3.2. In the conditions of the theorem above, given G ⊂ D1

Borel set, it holds

P(E,C (0, 1, en) ∩ p−1 (G)) =

∫
G

√
|∇u (z) |2 + 1 dz

Proof. From the area formula (Theorem 3.8 in [LCE92]), we have that

Hn−1 ({(z, u (z)) : z ∈ G}) =

∫
G

√
|∇u (z) |2 + 1 dz

Since C (0, 1, en)∩∂E = C (0, 1, en)∩G(u), we turn the last equality into

Hn−1x∂E(C (0, 1, en) ∩ p−1(G)) =

∫
G

√
|∇u (z) |2 + 1 dz (3.4)

In the last theorem (3.1), we have established that νE(z, u(z)) exists for
almost all z ∈ D1. As a consequence of this existence and the properties
of the Hausdor� measure under Lipschitz maps (Theorem 2.3 in [LA00]),
we obtain that

Hn−1 (f(N)) ≤ Lip (f)Hn−1 (N) = 0

where we have set f(z) = (z, u(z)) and N ⊂ D1 as the set of points where
νE(z, u(z)) does not exist. Note that (∂E \ ∂∗E) ∩ C (0, 1, en) ⊂ f(N),

therefore, ∂E ∩ C (0, 1, en)
Hn−1∼ ∂∗E ∩ C (0, 1, en) what, by 3.4, implies

that
P(E,C (0, 1, en) ∩ p−1(G)) =

= Hn−1x∂∗E(C (0, 1, en) ∩ p−1(G)) = Hn−1x∂E(C (0, 1, en) ∩ p−1(G))

=

∫
G

√
|∇u (z) |2 + 1 dz
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3.2 Lipschitzian approximation

We have developed su�cient tools to state the �rst result which pro-
vides a kind of regularity to a piece of the topological boundary of an
almost minimizing set. Indeed, if x0 ∈ ∂E is such that e(E, x0, 25r, en)
is bounded by a constant depending only on the dimension n, we will be
able to show that the piece of ∂E ∩ C (x0, r, en) with bounded excess,
i.e. M0 is a subset of the graph of a Lipschitz function Γ ∩C (x0, r, en).
Moreover, the result will state that the size of (∂E∆Γ)∩C (x0, r, en), i.e.
the piece that is not contained in the Lipschitz graph Γ∩C (x0, r, en), is
controlled by the size of the excess.

Theorem 3.3. (Lipschitzian Approximation) Let n ≥ 3, there exist
constants C1 (n) , ε1 (n) and δ0 (n) such that if E is a (Λ, r0)−minimizing
set in C (x0, 25r, en) with Λr0 ≤ 1, x0 ∈ ∂E and

25r < r0, e(E, x0, 25r, en) ≤ ε1 (n)

there exists a Lipschitz function u : Rn−1 → R with Lip (u) < 1 and

sup
Rn

|u|
r
≤ C1 (n) e(E, x0, 25r, en)

1
2(n−1) (3.5)

such that, if M = C (x0, r, en) ∩ ∂E and

M0 =

{
y ∈M : sup

0<s<8r
e(E, y, s, en) ≤ δ0 (n)

}
it holds

M0 ⊂M ∩ Γ (3.6)

where Γ = (x0 +G(u)) ∩C (x0, r, en). Moreover

Hn−1 (M∆Γ)

rn−1
≤ C1 (n) e(E, x0, 25r, en) (3.7)

Proof. Suppose that we have proved the existence of constants C1 (n) , ε1 (n)
and δ0 (n) in the case that E is a (Λ′, r′0)−minimizing set in C (0, 25, en)
with Λ′r′0 ≤ 1, 0 ∈ ∂E and

25 < r′0, e(E, 0, 25, en) ≤ ε1 (n)

Thus, if E ′ is in the conditions of the theorem, we have that, by Propo-
sition 1.3, E = E ′x0,r

is a (Λ′, r′0) −minimizing set in C (0, 25, en) with
Λ′ = Λr and r′0 = r0

r
. Moreover, we have that Λ′r′0 ≤ 1, 0 ∈ ∂E and, by

Proposition 2.6, e(E, 0, 25, en) = e(E ′, x0, 25r, en) ≤ ε1(n). Therefore, by
our assumption, exists u : Rn−1 → R with Lip (u) < 1 with the properties
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above. Taking ur(z) = ru( z
r
), we have

sup
Rn

|ur|
r

= sup
Rn
|u| ≤ C1(n)e(E, 0, 25, en)

1
2(n−1) = C1(n)e(E ′, x0, 25r, en)

1
2(n−1)

We set M ′ .= C (x0, r, en) ∩ ∂E ′ and

M ′
0
.
=

{
y ∈M ′ : sup

0<s<8r
e(E, y, s, en) ≤ δ0 (n)

}
By Proposition 2.6, it is straightforward to verify thatM ′

x0,r
= M, (M ′

0)x0,r =
M0 and Γ−x0

r
, 1
r

= (rG(u)+x0)∩C (x0, r, en) = (G(ur)+x0)∩C (x0, r, en)
.
=

Γr. Then, sinceM0 ⊂M∩Γ, we deduce thatM ′
0 ⊂M ′∩Γ−x0

r
, 1
r

= M ′∩Γr
that is 3.6. Taking into account the properties of Hn−1 with respect to
translations and homotheties (Proposition 2.49 in [LA00]) and

M ′∆Γr = (M ′ ∩ Γcr)
⋃

(M ′c ∩ Γr) =

=

(
(M ∩ Γc)

⋃
(M c ∩ Γ)

)
−x0
r
, 1
r

= (M∆Γ)−x0
r
, 1
r

we can conclude 3.7. From now on, we shall prove the theorem for E
being a (Λ′, r′0) −minimizing set in C (0, 25, en) with Λ′r′0 ≤ 1, 0 ∈ ∂E
and

25 < r′0, e(E, 0, 25, en) ≤ ε1 (n) (3.8)

To this end, take the constants ε0(n), C0(n) given by the Height Bound
(Theorem 2.17). Assume that ε1(n) ≤ ε0(n) in order to apply the Height
Bound for E (taking r0 = 25

4
and Λ = Λ′). Therefore

sup

{
|qy| : y ∈ ∂E ∩C

(
0,

25

4
, en

)}
≤ 25C0(n)

4
e(E, 0, 25, en)

1
2(n−1)

(3.9)

where we will still denote the constant 25C0(n)
4

by C0(n). Recalling 2.32
where we asked that ε0(n) ≤ ω(n, 1

4
), and, if necessary, reducing ε1(n)

in order to have e(E, 0, 2, en) ≤ (25
2

)n−1e(E, 0, 25, en) ≤ ε1(n), we are
able to apply the Small-excess position theorem (Theorem 2.13) which
provides 2.17, 2.18 and 2.19. Thus, from Corollary 2.16, we have that

0 ≤ Hn−1

(
M ∩ p−1(G)

)
−Hn−1 (G) ≤ e(E, 0, 1, en) ≤

≤ 25n−1e(E, 0, 25, en) for all G ⊂ D1 borel set
(3.10)

where we used Corollary 1.7 (because, in Corollary 2.16, M is de�ned as
C (0, 1, en) ∩ ∂∗E). Let us start the construction of the wished Lipschitz
function, �x y ∈ M0, x ∈ M and let ‖v‖en = max {|pv|, |qv|} , ∀v ∈ Rn.
It is straightforward to verify that ∂Ey,‖y−x‖en = ∂E−y

‖y−x‖en
. Therefore, since

y ∈M ⊂ ∂E, we have that

0 ∈ ∂Ey,‖y−x‖en (3.11)

By Proposition 1.3, we �nd that Ey,‖y−x‖en is a (Λy,x, ry,x)−minimizing
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set in
C
(
−y, 25‖y − x‖−1

en , en
)
with Λy,xry,x ≤ 1 where Λy,x = Λ′‖y−x‖en , ry,x =

r′0
‖y−x‖en

. Since y, x ∈ C (0, 1, en), we have that 4‖y − x‖en < 8, thus, by
the de�nition of M0 and Proposition 2.6

e
(
Ey,‖y−x‖en , 0, 4, en

)
= e(E, y, 4‖y − x‖en , en) ≤ δ0(n) (3.12)

We may assume that δ0(n) ≤ ε0(n) in order to apply the Height Bound
for Ey,‖y−x‖en . Since, by 3.8

ry,x =
r′0

‖y − x‖en
>

25

2
and C (0, 4, en) ⊂ C

(
−y, 25

‖y − x‖en
, en

)
we also have that Ey,‖y−x‖en is a (Λy,x, 1)−minimizing set in C (0, 4, en).
Then, applying the Height Bound (Theorem 2.17), we �nd that

sup
{
|qv| : v ∈ ∂Ey,‖y−x‖en ∩C (0, 1, en)

}
≤ C0(n)e

(
Ey,‖y−x‖en , 0, 4, en

) 1
2(n−1) ≤

≤ C0(n)δ0(n)
1

2(n−1)

We want to apply this inequality for x−y
‖y−x‖en

. For this purpose, it is suf-

�cient to recall that x ∈M = C (0, 1, en) ∩ ∂E. Then

|qy − qx| ≤ C0(n)δ0(n)
1

2(n−1)‖y − x‖en

Wemay consider δ0(n) < 1
C0(n)2(n−1) in order to have ‖y−x‖en = |py−px|,

by the de�nition of ‖ · ‖en . Putting it all together, we conclude that

|qy − qx| ≤

.
=Ln︷ ︸︸ ︷

C0(n)δ0(n)
1

2(n−1) |py − px| for all y ∈M0, x ∈M (3.13)

By 3.13, we can deduce that py = px implies y = x for all x, y ∈ M0.
Then, the function u : p(M0) → R given by u = q ◦ p−1 is well de�ned
and also satisfy

|u(py)− u(px)| ≤ Ln|qy − qx| ∀y, x ∈M0

From Whitney-MacShane Extension Theorem (Theorem 2.3 in [J.05]),
we �nd an extension u : Rn → R of u with Lip (u) ≤ Ln < 1. For each
x ∈M0 it holds u(px) = qx, that is

M0 ⊂ Γ = G(u) ∩C (0, 1, en) (3.14)

what concludes the proof of 3.6 provided we prove 3.5, but 3.5 can be
checked by 3.9 and truncating u. Let us prove 3.7. To this end, by the
de�nition of M0, we have that

y ∈M \M0 ⇔ y ∈M and ∃sy ∈ (0, 8) such that δ0(n) < e(E, y, sy, en)
(3.15)

Applying the Besicovitch's Covering Theorem (Theorem 1.27 in [LCE92])
for the family of balls

{
B
(
y,
√

2sy
)}

y∈M\M0
, we �nd Nn (constant de-
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pending only of n) countable families of disjoint closed balls F1, ...,FNn
such that

M \M0 ⊂
Nn⋃
i=1

⋃
B∈Fi

B

Thus we set k such that it maximizes
∑

B∈FiHn−1 (B). Denoting Fk by{
B
(
yh,
√

2sh
)}

h∈N
, we have that

Hn−1 (M \M0) ≤
Nn∑
i=1

∑
B∈Fi

Hn−1 (B) ≤

≤ Nn

∑
h∈N

Hn−1

(
B
(
yh,
√

2sh

)) (3.16)

Since yh ∈ C (0, 1, en) and sh < 8, we �nd thatB
(
yh,
√

2sh
)
⊂ C (0, 25, en).

In order to apply the density estimates (Theorem 1.5) at the inequali-
ties below, note that B

(
yh, (1 + 1

n
)
√

2sh
)
b C (0, 25, en). Recalling the

Hn−1-equivalence between ∂E and ∂∗E, we have that

Hn−1 (M \M0) ≤3.16 Nn

∑
h∈N

Hn−1

(
B
(
yh,
√

2sh

))
≤

≤ Nn

∑
h∈N

Hn−1

(
B

(
yh, (1 +

1

n
)
√

2sh

))
≤ 3nNnωn

(√
2(1+

1

n
)

)n−1∑
h∈N

sn−1
h

By 3.15, the last inequalities andM \Γ ⊂M \M0 (from ??), we conclude
that

Hn−1 (M \ Γ) ≤ Hn−1 (M \M0) ≤ 3nNnωn

(√
2(1 +

1

n
)

)n−1∑
h∈N

sn−1
h

≤
3nNnωn

(√
2(1 + 1

n
)

)n−1

δ0(n)

∑
h∈N

sn−1
h e(E, yh, sh, en)

(3.17)

Since C (yh, sh, en) ⊂ C (0, 25, en), we can state that∑
h∈N

sn−1
h e(E, yh, sh, en) ≤

∑
h∈N

∫
C(yh,sh,en)∩∂∗E

|νE − en|2

2
dHn−1 ≤

≤
∫
∪h∈NC(yh,sh,en)∩∂∗E

|νE − en|2

2
dHn−1 ≤

∫
C(0,25,en)∩∂∗E

|νE − en|2

2
dHn−1
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Thus, by 3.17, we can show that

Hn−1 (M \ Γ) ≤

.
=C1(n)︷ ︸︸ ︷

3nNn25n−1ωn

(√
2(1 + 1

n
)

)n−1

δ0(n)
e(E, 0, 25, en) (3.18)

We can calculate the area of a graph (of codimension 1) of a Lipschitz
functions (Theorem 9.1 in [Mag12]) as follows

Hn−1 (Γ \M) =

∫
p(Γ\M)

√
1 + |∇u|2 dHn−1

Recalling that Lip (u) < 1, we can conclude that

Hn−1 (Γ \M) ≤
√

2Hn−1 (p(Γ \M)) ≤
≤3.10

√
2Hn−1

(
M ∩ p−1(p(Γ \M))

) (3.19)

We now notice that x ∈ M ∩ p−1(p(Γ \M)) ⇒ x ∈ M and ∃z ∈ Γ \M
such that pz = px. If we assume x ∈ Γ, we can write x = (px, u(px)) =
(pz, u(pz)) = z that is a contradiction, because z /∈ M and x ∈ M . We
have then x ∈M \ Γ what implies

M ∩ p−1(p(Γ \M)) ⊂M \ Γ

From 3.19, the last inclusion andM∆Γ = (Γ\M)∪ (M \Γ), we conclude
the proof of 3.7 as follows

Hn−1 (M∆Γ) ≤ Hn−1 (Γ \M) +Hn−1 (M \ Γ) ≤
√

2Hn−1 (M \ Γ) +Hn−1 (M \ Γ) ≤3.18
√

2C1(n)e(E, 0, 25, en)

The next result will state that the function u, from the last theorem,
has interesting estimations over ∇u which will allow us to approximate
u by Harmonic Functions as a consequence of some results that we will
show in the next section.

Proposition 3.4. (Almost harmonicness of the approximation)
The function u and the constant C1 (n) in the last theorem also satisfy
that ∀φ ∈ C1

c (Dr)

1

rn−1

∫
Dr
|∇u|2 ≤ C1 (n) e(E, x0, 25r, en) (3.20)

1

rn−1

∣∣∣∣∫
Dr
∇u · ∇φ

∣∣∣∣ ≤ C1 (n) sup
Dr
|∇φ|

(
e(E, x0, 25r, en) + Λr

)
(3.21)

Proof. We will use the same reduction that we have done in the proof of
the Lipschitz Approximation Theorem (Theorem 3.3). By Theorem 4.3
in [Sim83] and the fact that ∂∗E and ∂E are Hn−1-equivalent, we �nd
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for Hn−1-almost everywhere x ∈M ∩ Γ that Tx∂
∗E = TxΓ what implies

νE(x) = λx
(−∇u(px), 1)√
1 + |∇u(px)|2

with λx ∈ {1,−1} (3.22)

Taking Lip (u) < 1 into account, we �nd out that∫
D1

|∇u|2 ≤
∫
p(M∩Γ)

|∇u|2 +

∫
p(M∆Γ)

|∇u|2 ≤

≤
∫
p(M∩Γ)

√
2|∇u|2√

1 + |∇u|2
+Hn−1 (p(M∆Γ))

Since Lip (p) = 1 and 3.7 holds true, due to the behavior of Hausdor�
measure under Lipschitz maps (Theorem 2.3 in [LCE92]), we can properly
estimate Hn−1 (p(M∆Γ)). Then, by Theorem 9.1 in [Mag12], we have
that ∫

D1

|∇u|2 ≤ C1(n)e(E, 0, 25, en) +

∫
M∩Γ

√
2|∇u ◦ p|2

1 + |∇u ◦ p|2

= C1(n)e(E, 0, 25, en) +

∫
M∩Γ

√
2|pνE|2

(3.23)

Since (a− 1)2 ≥ 0 implies 1− a ≥ 1−a2

2
for all a ∈ R, we can a�rm that

|νE − en|2

2
= 1− νE · en ≥

1− (νE · en)2

2
=∗ |pνE|2

where (*) follows from |νE|2 = |pνE|2 + |qνE|2. Using the last inequality
in 3.23 and the change of scale in the excess (Proposition 2.5), we can
conclude the proof of 3.20 as follows∫

D1

|∇u|2 ≤ C1(n)e(E, 0, 25, en) +

∫
M∩Γ

√
2
|νE − en|2

2
≤

≤ max{C1(n), 25n−1
√

2}e(E, 0, 25, en)

In order to prove 3.21, since 1√
1+|∇u|2

≤ 1 and 3.7 is validated, we notice

that it su�ces to prove∣∣∣∣∫
D1

∇u · ∇φ√
1 + |∇u|2

∣∣∣∣ ≤ C ′1(n) sup
D1

|∇φ|
(
Hn−1 (M∆Γ) + Λr

)
for all φ ∈ C1

c (D1). For Hn−1-almost everywhere x ∈M ∩ Γ, notice that

(νE · ∇φ)(νE · en) =
∇u(px) · ∇φ(px)

1 + |∇u(px|2
(3.24)

what follows from 3.22, we also note that we can suppose supD1
|∇φ| = 1

without loss of generality. Let us state a claim which will be proved later.
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Claim 1:∣∣∣∣∫
M

(νE · ∇φ)(νE · en)

∣∣∣∣ ≤ Cc(n)

(
Hn−1 (M∆Γ) + Λr

)
By the connectedness of p−1(z) ∩ C (0, 1, en) ,∀z ∈ D1, together with
Theorem 2.13, p(M) and D1 are Hn−1-equivalent what ensures that∣∣∣∣∫

D1

∇u · ∇φ√
1 + |∇u|2

∣∣∣∣ =

∣∣∣∣∫
p(M)

∇u · ∇φ√
1 + |∇u|2

∣∣∣∣ ≤
≤
∣∣∣∣∫
p(M\Γ)

∇u · ∇φ√
1 + |∇u|2

∣∣∣∣+

∣∣∣∣∫
p(M∩Γ)

∇u · ∇φ√
1 + |∇u|2

∣∣∣∣ ≤∗
≤ Hn−1 (M \ Γ) +

∣∣∣∣∫
p(M∩Γ)

∇u · ∇φ√
1 + |∇u|2

∣∣∣∣
where in (*) we have used that | ∇u·∇φ√

1+|∇u|2
| ≤ 1 and the behavior of the

Hausdor� measure under Lipschitz maps (Theorem 2.3 in [LCE92]). From
the last inequality and Theorem 9.1 in [Mag12], we have that∣∣∣∣∫

D1

∇u · ∇φ√
1 + |∇u|2

∣∣∣∣ ≤ Hn−1 (M \ Γ) +

∣∣∣∣∫
M∩Γ

∇u ◦ p · ∇φ ◦ p
1 + |∇u ◦ p|2

∣∣∣∣
Then, by 3.24 and with the help of Claim 1, we obtain that∣∣∣∣∫

D1

∇u · ∇φ√
1 + |∇u|2

∣∣∣∣ ≤ Hn−1 (M \ Γ) +

∣∣∣∣∫
M∩Γ

(νE · ∇φ)(νE · en)

∣∣∣∣ ≤
≤ Hn−1 (M∆Γ) + Cc(n)

(
Hn−1 (M∆Γ) + Λr

)
choosing wisely the constant depending only on the dimension n, we
conclude the proof of the proposition. Now, we turn our attention to the
proof of Claim 1.

Proof of Claim 1: We recall our assumption on φ, i.e. supD1
|∇φ| =

1, then, the Mean Value Theorem (in several variables) yields

sup
D1

|φ| ≤ sup
D1

|x| sup
D1

|∇φ| = 1

Now, we choose α ∈ C∞c ((−1, 1)) with

0 ≤ α(s) ≤ 1,∀s ∈ (−1, 1)

and

α(s) = 1,∀s ∈ [−1

4
,
1

4
]

Then, �x t ∈ (−1
5
, 1

5
) and de�ne

gt(s) = s+ tα(s),∀s ∈ R
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In order to gt be invertible on the real line, we require that |α′(s)| <
5,∀s ∈ R. Indeed, we have for each t ∈ (−1/5, 1/5) that

g′t(s) = 1 + tα′(s) > 0,∀s ∈ R

Hence, if we de�ne

ft(x) = x+ tα(qx)φ(px)en ∀x ∈ Rn

and x = (x′, xn), we obtain that ft(x
′, xn) = (x′, gtφ(x′)(xn)). For any

x′ ∈ Rn−1, t ∈ (−1/5, 1/5), since tφ(x′) ∈ (−1/5, 1/5), we have that
gtφ(x′) is invertible on R. Thus, ft is invertible as well and we note that

Jft(x) = det

(
idRn−1 0

0 g′tφ(x′)(xn)

)
= g′tφ(x′)(xn) > 0

Then, {ft}t∈(− 1
5
, 1
5

) is a one-parameter family of di�eomorphisms. In or-

der to prove that ft(E) is a competitor for the almost minimality of
E, we remind that, since ft is a di�eomorphism, ft(E) is a set of �nite
perimeter and ft(∂

∗E), ∂∗ft(E) are Hn−1-equivalent (Proposition 17.1
in [Mag12]). Denote by supp the support of a function (i.e. supp f =
{x ∈ dom(f) : f(x) 6= 0}). By the de�nition of ft, suppα b (−1, 1) and
suppφ b D1, we �nd that

supp(ft − idRn) ⊂ supp(α ◦ q) ∩ supp(φ ◦ p) b C (0, 1, en) (3.25)

whenever t ∈ (−1
5
, 1

5
). Then, we conclude that

ft(E)∆E ⊂ supp(ft − idRn) b C (0, 1, en)

Therefore, using the almost minimality condition of E, for all ∀t ∈
(−1

5
, 1

5
),

P(E,C (0, 1, en)) ≤ P(ft(E),C (0, 1, en)) + Λ′|ft(E)∆E| (3.26)

From Lemma 17.9 in [Mag12], 3.25 and the compactness of supp(α◦q)∩
supp(φ ◦ p), we obtain the existence of constants K(n) and ε0 <

1
5
such

that, for all t ∈ (−ε0, ε0),

|ft(E)∆E| ≤ K(n)|t| P(E, supp(α ◦ q) ∩ supp(φ ◦ p)) ≤

≤ K(n)|t| P(E,C (0, 1, en))

what, along with 3.26, provides

P(E,C (0, 1, en)) ≤ P(ft(E),C (0, 1, en))+

+Λ′K(n)|t| P(E,C (0, 1, en)) ∀t ∈ (−ε0, ε0)
(3.27)

Putting into account ft(∂
∗E)

Hn−1∼ ∂∗ft(E),M
Hn−1∼ ∂∗E∩C (0, 2, en) and

ft(C (0, 1, en)) = C (0, 1, en) (because of 3.25), we get that

P(ft(E),C (0, 1, en))− P(E,C (0, 1, en)) =
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= Hn−1 (∂∗ft(E) ∩C (0, 1, en))−Hn−1 (∂∗E ∩C (0, 1, en)) =

= Hn−1 (ft(∂
∗E ∩C (0, 1, en)))−Hn−1 (M)

By the area formula for countably (n− 1)-recti�able sets (Theorem 11.6
in [Mag12]), we �nd that

P(ft(E),C (0, 1, en))− P(E,C (0, 1, en)) =

=

∫
∂∗E∩C(0,1,en)

JMft dHn−1−Hn−1 (M) =

=

∫
M

(JMft − 1) dHn−1

(3.28)

whenever t ∈ (−1
5
, 1

5
). Since α(s) = 1,∀s ∈ [−1

4
, 1

4
] and qx < 1

4
, ∀x ∈ M

(from 2.6), we obtain that

ft(x) = x+ tφ(p(x))en

It is straightforward to verify that, for all v = (v′, vn) ∈ Rn,

D(ft)xv = idRnv + t(v′ · ∇φ ◦ p(x))en =

= idRnv + t(en ⊗∇φ ◦ p(x))v whenever x ∈M

Since 0 6= |∇φ ◦ p(x)| ≤ 1 and |t| < 1/5, we have |t| < |∇φ ◦ p(x)|−1.
Thus, if p1 denotes the orthogonal projection onto (νE)⊥, i.e.

p1(∇φ ◦ p) = ∇φ ◦ p− (∇φ ◦ p · νE)νE

by Lemma 23.10 in [Mag12], we �nd out that

JMft(x)− 1 = J (νE(x))⊥
(
idRn(x) + ten ⊗ φ ◦ p(x)

)
− 1 ≤

≤ tp1(∇φ ◦ p(x)) · en + L(n)|t∇φ ◦ p(x)|2

for Hn−1-a.e. x ∈ M . Note that, if |∇φ ◦ p(x)| = 0, the inequality
above is trivially veri�ed because of that JMft(x) = 1. Therefore, since
supD1

|∇φ| = 1 and en · ∇φ ◦ p = 0, we have that

JMft − 1 ≤ −t(νE · en)(νE · ∇φ) + L(n)t2

for Hn−1-a.e. x ∈M . The last inequality and 3.28 ensure that

P(ft(E),C (0, 1, en))− P(E,C (0, 1, en)) ≤

≤ −t
∫
M

(νE · en)(νE · ∇φ) dHn−1 +L(n)t2Hn−1 (M)

We can �nd a upper bound L′(n) of Hn−1 (M) by the density estimates
(Corollary 1.8), then

P(ft(E),C (0, 1, en))−P(E,C (0, 1, en)) ≤ −t
∫
M

(νE·en)(νE·∇φ) dHn−1 +L1(n)t2
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Finally, we put this inequality into 3.27 to produce, for all t ∈ (−ε0, ε0),

P(E,C (0, 1, en)) ≤ P(E,C (0, 1, en))− t
∫
M

(νE · en)(νE · ∇φ) dHn−1 +

+L1(n)t2 + Λ′K(n)|t| P(E,C (0, 1, en))

We have already noticed that Hn−1 (M) = Hn−1 (∂∗E ∩C (0, 1, en)) =
P(E,C (0, 1, en)) what guarantee that L′(n) also bounds P(E,C (0, 1, en)),
thus

t

∫
M

(νE · en)(νE · ∇φ) dHn−1 ≤ L1(n)t2 + Λ′K(n)L′(n)|t|

≤

.
=Cc(n)︷ ︸︸ ︷

max{L1(n), K(n)L′(n)}
(
t2 + Λ′|t|

)
since it holds for all t ∈ (−ε0, ε0), we have that

|t|
∣∣∣∣∫
M

(νE · en)(νE · ∇φ) dHn−1

∣∣∣∣ ≤ Cc(n)

(
t2 + Λ′|t|

)
Dividing by |t| on both sides and taking

0 < |t| < min{ε0,Hn−1 (M∆Γ) + Λ′}

we conclude the proof of the Claim.

3.3 Approximations results on harmonic func-

tions

We will gather two technical results about Harmonic Functions that
will be used together with the idea presented in the last chapter about
the almost harmonicness of the Lipschitz approximation. First of all, let
us remember the mean value property of harmonic functions, that is, v
harmonic function on B(0, 1) ⊂ Rn, then

v (x) =
∫
−

∂B(x,r)
v dHn−1 =

∫
−

B(x,r)
v, ∀B(x, r) b B(0, 1) (3.29)

the proof for this result can be found in [Fol95] (Theorem 2.8 and Corol-
lary 2.9) .
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Lemma 3.5. If v is a harmonic function in B(0, 1) and w (x) = v (0) +
x · ∇v (0) ,∀x ∈ B(0, 1), then

sup
B(0, 1

2)
|∇v| ≤ H(n)‖v‖L2(B(0,1)) (3.30)

and ∀α ∈
(
0, 1

2

]
sup
B(0,α)

|v − w|2 ≤ H(n)α2‖∇v‖L2(B(0,1))

Proof. Let v be harmonic in B(0, 1) , x ∈ B
(
0, 1

2

)
and η ∈ Sn−1. We claim

that η · ∇v is harmonic in B(0, 1), indeed

div

(
∇(η · ∇v)

)
= div

(
(∂1(η · ∇v), ..., ∂n(η · ∇v))

)
=

=
n∑
i=1

∂2
i (η · ∇v) =

n∑
i,j=1

ηj∂j∂
2
i v =

=
n∑
j=1

ηj∂j(∆v) ≡ 0

We are now able to apply the mean value property for η ·∇v (3.29), thus

|η · ∇v(x)| = 1

rnωn

∣∣∣∣ ∫
B(0,r)

η · ∇v
∣∣∣∣ =

1

rnωn

∣∣∣∣η · ∫
B(0,r)

∇v
∣∣∣∣ =

=∗
1

rnωn

∣∣∣∣η · ∫
∂B(0,r)

vνSn−1

∣∣∣∣ =
1

rnωn

∣∣∣∣ ∫
∂B(0,r)

vη · νSn−1

∣∣∣∣ ≤
≤ 1

rnωn

∫
∂B(0,r)

|vη · νSn−1 | ≤ 1

rnωn

∫
∂B(0,r)

|v(y)|Hn−1 (y)

whenever r < 1
4
what put us in position to apply in (*) the divergence

theorem (Theorem 0.4 in [Fol95]). Applying the mean value property on
the last inequality ensures that

|η · ∇v(x)| ≤ 1

rnωn

∫
∂B(0,r)

|
∫
−

B(y,r)
v(z)Hn−1 (z) |Hn−1 (y) ≤

≤ nωnr
n−1

ω2
nr

2n

∫
B(x,2r)

|v(z)|Hn−1 (z) ≤∗ H1(n)‖v‖L2(B(0,1))

where in (*) we have used the Holder's inequality (6.2 in [Fol99, p. 174]).
To conclude the proof of 3.30, it is su�ces to set η = ∇v

|∇v| . As we have

noticed above, η · ∇v is harmonic on B(0, 1), then we can apply 3.30
leading to

sup
B(0, 1

2)
|∇2v| ≤ H1(n)‖∇v‖L2(B(0,1))

By Taylor's Theorem with Lagrange Remainder, we can �nd, for all x ∈
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B(0, α), a number t ∈ (0, 1) such that

|v(x)− w(x)| ≤ C|∇2v(tx)||x|2

By the last two inequalities, the proof is concluded.

Let U ⊂ Rn be a open set, then we will denote the Sobolev space by
W 1,2(U) as in De�nition 4.2 in [LCE92].

Lemma 3.6. For every τ > 0 exists σ(τ) > 0 such that if u ∈ W 1,2 (B(0, 1))
satisfy both ‖u‖L2(B(0,1)) ≤ 1 and∣∣∣∣∫

B(0,1)

∇u · ∇φ
∣∣∣∣ ≤ σ(τ) sup

B(0,1)

|∇φ| ∀φ ∈ C∞c (B(0, 1)) (3.31)

there exists v harmonic function on B(0, 1) such that ‖∇v‖L2(B(0,1)) ≤ 1
and ∫

B(0,1)

|v − u|2 ≤ τ

Proof. By contradiction, suppose that exist τ > 0 and a sequence {uh}h∈N ⊂
W 1,2(B(0, 1)) in the conditions above with σh(τ) = 1

h
such that for every

v harmonic function with ‖∇v‖L2(B(0,1)) ≤ 1 it holds that∫
B(0,1)

|uh − v|2 > τ > 0 (3.32)

From the classical Poincaré inequality (Theorem 4.9 in [LCE92]), we have
that

‖uh −
∫
−

B(0,1)
uh‖L2∗ (B(0,1)) ≤

.
=C′2(n)︷ ︸︸ ︷

ω
1

2∗−
1
2

n C2(n) ‖∇uh‖L2(B(0,1))

SinceB(0, 1) has �niteHn measure and 2 < 2∗, we have that ‖·‖L2(B(0,1)) ≤
‖ · ‖L2∗ (B(0,1)). Then we can conclude that

‖uh −
∫
−

B(0,1)
uh‖L2(B(0,1)) ≤ C ′2(n)‖∇uh‖L2(B(0,1)) ≤∗ C ′2(n) (3.33)

where (*) follows from our assumptions on the L2(B(0, 1))-norm of uh.
Since ‖∇uh‖L2(B(0,2)) ≤ 1 and

∇(uh −
∫
−

B(0,1)
uh) = ∇uh (3.34)

we �nd that
{
uh −

∫
−B(0,1) uh

}
h∈N is bounded in W 1,2(B(0, 1)). From the

compactness of the inclusion (Theorem 4.11 in [LCE92])

W 1,2(B(0, 1)) ↪−→ L2(B(0, 1))

we can extract a subsequence of

uh −
∫
−

B(0,1)
uh
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which converges, in the L2(B(0, 1)) sense, to a function u ∈ L2(B(0, 1)).
Since ‖∇uh‖L2(B(0,2)) ≤ 1 for all h ∈ N, i.e. {∇uh}h∈N is bounded in
L2(B(0, 1)), we can apply the Banach-Alaoglu Theorem (Theorem 3.17 in
[Rud91]) and thus, up to extract a subsequence, we �nd v ∈ L2(B(0, 1))
such that ∇uh convergences in the weak-topology of L2(B(0, 1)) to v.
Since the weak-convergence directly implies the convergence in the dis-
tributional sense, we have that ∇u = v and then u ∈ W 1,2(B(0, 1)). We
also have that the norm is lower-semicontinuous, then

‖∇u‖L2(B(0,1)) ≤ lim inf
h→∞

‖∇uh‖L2(B(0,1)) ≤ 1

We want to prove that −u +
∫
−B(0,1) uh is harmonic, thereby obtaining

a contradiction from uh −
∫
−B(0,1) uh → u in L2(B(0, 1)) and 3.32. Since∫

−B(0,1) uh is constant, it is su�cient to prove that u is harmonic. To this
end, for all φ ∈ C∞c (B(0, 1)) note that∣∣∣∣ ∫

B(0,1)

∇u · ∇φ
∣∣∣∣ ≤ ∣∣∣∣∫

B(0,1)

∇u · ∇φ−
∫
B(0,1)

∇(uh −
∫
−

B(0,1)
uh) · ∇φ

∣∣∣∣+
+

∣∣∣∣∫
B(0,1)

∇(uh −
∫
−

B(0,1)
uh) · ∇φ

∣∣∣∣
By 3.31 and 3.34, we get that

∣∣∣∣∫B(0,1)
∇(uh −

∫
−B(0,1) uh) · ∇φ

∣∣∣∣ is less or
equal than 1

h
supB(0,1) |∇φ|. We recall that∫

B(0,1)

∇(u− (uh −
∫
−

B(0,1)
uh)) · ∇φ =

∫
B(0,1)

(u− (uh −
∫
−

B(0,1)
uh))∆φ

whenever φ ∈ C∞c (B(0, 1)). Then, putting the last equations into ac-
count, we conclude that∣∣∣∣∫

B(0,1)

∇u · ∇φ
∣∣∣∣ ≤ ∣∣∣∣∫

B(0,1)

(u− (uh −
∫
−

B(0,1)
uh)) · ∇φ

∣∣∣∣+
1

h
sup
B(0,1)

|∇φ|

By uh −
∫
−B(0,1) uh → u in L2(B(0, 1)), the Holder's inequality (6.2 in

[Fol99, p. 174]) and letting h → ∞ in the last inequality, we �nd that
|
∫
B(0,1)

∇u ·∇φ| = 0 for any φ ∈ C∞c (B(0, 1)). Thus, we have proved that
u is harmonic what is su�cient to conclude the proof of the lemma as
noticed before.



Regularity theory

We now aim to re�ne some estimates on the excess of an almost
minimizing set. The reverse Poincaré inequality will be required to the
re�nements that we intend to do, because of that, we shall enunciate it.
Although, the proof of reverse Poincaré inequality will not be done in
this work.
The main theorem of this chapter is, of course, the C1,γ-regularity theo-
rem which states, for each γ ∈ (0, 1/2), that the boundary of an almost
minimizing set which satis�es a boundedness condition on the excess is,
in fact, the graph of a function u ∈ C1,γ. To prove the C1,γ-regularity
theorem, we will state two results on the excess which improves what we
have done in Chapter 2. Furthermore, this results will allow us to show
that M0 is equal to M with M and M0 as they were de�ned in the Lip-
schitz Approximation (Theorem 3.3) and hence equal to the graph of a
Lipschitz function u. The C1,γ-regularity of u will outcome of the Excess
Improvement (Theorem 4.4).

4.1 Reverse Poincaré inequality

Let us introduce another concept similar with the excess that we will
call by �atness. The cylindrical �atness of a Caccioppoli set at x ∈ Rn

with respect to ν ∈ Sn−1 at the scale r > 0 is given by

f (E, x, r, ν) = inf
c∈R

1

rn−1

∫
C(x,r,ν)∩∂∗E

| (y − x) · ν − c|
r2

dHn−1 (y) (4.1)

The �atness provides one way to measure how far, in L2 distance, the
reduced boundary ∂∗E of a Caccioppoli set is from the family of hyper-
planes {y : (y−x) ·ν = c} inside the cylinder C (x, r, ν). According to the
requirements of this work, we shall prove only one property of the �atness
despite it has some properties akin to the properties of the excess.

63
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Lemma 4.1. (Flatness and Changes of Scale) If E ⊂ Rn is a Cac-
cioppoli, x ∈ Rn, r > s > 0 and ν ∈ Sn−1, then

f (E, x, s, ν) ≤
(
r

s

)n−1

f (E, x, r, ν)

Proof. Since C (x, r, ν) ⊂ C (x, s, ν) for all r > s, we have that

inf
c∈R

1

sn−1

∫
C(x,s,ν)∩∂∗E

| (y − x) · ν − c|
r2

dHn−1 (y) ≤

≤ inf
c∈R

1

sn−1

∫
C(x,r,ν)∩∂∗E

| (y − x) · ν − c|
r2

dHn−1 (y)

Multiplying the right side by rn−1

rn−1 , we conclude the proof.

We will not prove the reverse Poincaré inequality by virtue of its very
extensive proof. In the statement of the next result, the constant ω (n, t)
is the constant of the Small-excess position (Theorem 2.13).

Theorem 4.2. (Reverse Poincaré Inequality) There exists a positive
constant Cp (n) such that if E is a (Λ, r0)−minimizing in C (x0, 4r, ν)
with Λr0 ≤ 1, x0 ∈ ∂E, 4r < r0 and

e(E, x0, 4r, ν) ≤ ω

(
n,

1

8

)
then

e(E, x0, r, ν) ≤ Cp (n)

(
f (E, x0, 2r, ν) + Λr

)
(4.2)

Proof. See Theorem 24.1 in [Mag12].

4.2 Excess revisited

In this section, we will prove the Excess Improvement by Tilting what
gives a new estimate on the excess of a almost minimizing set. In short,
under the assumption that the excess of E at x0 with direction ν is
bounded, the theorem provides, for each 0 < α < 1

200
, a direction ν0 such

that the excess at x0 with direction ν0 in scales reduced by α is bounded
in terms of α and the excess at x0 with direction ν. This result is one of
the crucial steps in the proofs of the regularity theory as we will show.
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Lemma 4.3. (Excess Improvement by Tilting) Let n ≥ 3. For all
α ∈

(
0, 1

200

)
, there exist constants ε2 (n, α) and C2 (n) such that if E is

a (Λ, r0) −minimizing set in C (x0, r, ν) with Λr0 ≤ 1, r < r0, x0 ∈ ∂E
and

e(E, x0, r, ν) + Λr ≤ ε2 (n, α)

then exists ν0 ∈ Sn−1 such that

e(E, x0, αr, ν0) ≤ C2 (n)

(
α2e(E, x0, r, ν) + αΛr

)
(4.3)

Proof. Let us suppose that the Lemma is proved x0 = 0, ν = en, r = 25.
If we take E a (Λ, r0)−minimizing set in C (x0, r, ν) with Λr0 ≤ 1, r <
r0, x0 ∈ ∂E and

e(E, x0, r, ν) + Λr ≤ ε2 (n, α)

If T is the linear isometry which takes ν into en, by 1.3 and 1.4, we know
that T (Ex0,r/25) is a

(
Λr
25
, 25r0

r

)
− minimizing set in C (0, 25, en). From

2.6 and 2.7, we have that

e
(
T (Ex0,

r
25

), 0, 25, en
)

+
Λr

25
25 = e

(
Ex0,

r
25
, 0, 25, ν

)
+ Λr =

e(E, x0, r, ν) + Λr ≤ ε2 (n, α)

Therefore, exists ν0 ∈ Sn−1 such that

e
(
T (Ex0,

r
25

), 0, 25α, ν0

)
≤ C2(n)

(
α2e
(
T (Ex0,

r
25

), 0, 25, en
)

+ αΛr

)
Thus,

e
(
E, x0, αr, T

−1(ν0)
)

= e
(
T (Ex0,

r
25

), 0, 25α, ν0

)
≤

≤ C2(n)

(
α2e
(
T (Ex0,

r
25

), 0, 25, en
)

+ αΛr

)
=

= C2(n)

(
α2e(E, x0, r, ν) + αΛr

)
Then, the reduction that we have made allows us to prove the lemma only
considering that x0 = 0, ν = en, r0 > 25 and E a (Λ, r0) −minimizing
set in C (0, 25, en) with Λr0 ≤ 1, 25 < r0. Since

25
4
< r0, provided we

assume ε(n, α) ≤ ε0(n) and

e(E, 0, 25, en) + 25Λ ≤ ε2 (n, α) (4.4)

we are able to use the Height Bound (Theorem 2.17). Setting M = ∂E ∩
C (0, 1, en), we infer that

sup {|qy| : y ∈M} ≤ C0(n)e(E, 0, 25, en)
1

2(n−1) (4.5)

If necessary, we reduce the size of ε2(n, α) to be less or equal than
min{ε0(n), ε1(n)} in order to apply the Lipschtzian Approximation The-
orem (Theorem 3.3 with r = 1). Therefore, we �nd the existence of a
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Lipschitz function u : Rn−1 → Rn with Lip (u) < 1 such that satis�es

Hn−1 (M∆Γ) ≤ C1(n)e(E, 0, 25, en) (4.6)

where Γ = G(u) ∩ C (0, 1, en). Moreover, from Proposition 3.4, we also
�nd that ∫

D1

|∇u|2 ≤ C1(n)e(E, 0, 25, en)
1

2(n−1) (4.7)∣∣∣∣∫
D1

∇u · ∇φ
∣∣∣∣ ≤ C1(n) sup

D1

|∇φ|
(
e(E, 0, 25, en) + 25Λ

)
(4.8)

whenever φ ∈ C∞c (D1). Setting

K = C1(n)(e(E, 0, 25, en) + 25Λ) and u0 =
u√
K

we obtain a Lipschitz function u0 which, by 4.7 and 4.8, satis�es both

‖u0‖2
L2(D1) =

∫
D1

|∇u0|2 ≤
C1(n)e(E, 0, 25, en)

K
≤ 1

and

∣∣∣∣∫
D1

∇u0 · ∇φ
∣∣∣∣ ≤ sup

D1

|∇φ|
C1(n)

(
e(E, 0, 25, en) + 25Λ

)
√
K

≤

≤
√
K sup

D1

|∇φ|

Then u0 ∈ W 1,2(D1) and we can approximate u0, in L
2(D1)-norm, by a

harmonic function v, i.e. u0 is in the conditions of Lemma 3.6 (setting
τ = αn+3) provided we assume

√
K ≤4.4

√
C1(n)ε2(n, α) ≤ σ(αn+3)

Thus there exists v harmonic function on D1 such that ‖v‖L2(D1) ≤ 1 and∫
D1

|v − u0|2 ≤ αn+3

If we set v0 =
√
Kv, we get a harmonic function v0 on D1 with ‖v0‖L2(D1) ≤√

K and ∫
D1

|v0 − u|2 ≤ Kαn+3 (4.9)

Since 100α < 1
2
, from Lemma 3.5, we have that

sup
D100α

|v0 − w| ≤
(100α)2

ωn

≤
√
K︷ ︸︸ ︷

‖∇v0‖L2(D1) ≤

≤
√
K

(100α)2

ωn
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where w(z) = v0(0) +∇v0(0) · z, z ∈ D1. By the last inequality, 4.9 and
(a+ b)2 ≤ 2a2 + 2b2,∀a, b > 0, we conclude that∫
D100α

|u−w|2 = ‖u−w‖2
L2(D100α) ≤

(
‖u−v0‖L2(D100α)+‖v0−w‖L2(D100α)

)2

≤

≤ 2‖u− v0‖2
L2(D100α) + 2‖v0 − w‖2

L2(D100α) ≤

≤ 2Kαn+3 + 2Hn−1 (D100α)

(√
K

(100α)2

ωn

)2

=

= 2K

(
αn+3 +

2ωn−1100n+3αn+3

ω2
n

)
Therefore

1

αn+1

∫
D100α

|u− w|2 ≤ A(n)Kα2 (4.10)

where we set A(n) = 2(1 + 2ωn−1100n+3

ω2
n

). We aim to prove that

ν0 =
(−∇v0(0), 1)√
1 + |∇v0(0)|2

is the direction we have searched for. For this purpose, let us state two
claims which will be proved later.

Claim 1: If K
1

n−1 ≤ αn+3, we have that

f (E, 0, 100α, ν0) ≤ A1(n)Kα2 (4.11)

Claim 2: If we take K
1

n−1 ≤ αn+3 and ε2(n, α) suitably small, we
�nd that

e(E, 0, 100α, ν0) ≤ ω(n,
1

8
) (4.12)

We assume that K and ε2(n, α) are satisfying the requests in the Claims.
Since 100α < r0 and C (0, 100α, ν0) ⊂ C (0, 25, en), E is a (Λ, r0) −
minimizing set in C (0, 100α, ν0). Then, from 4.12, we are in the condi-
tions to apply the reverse Poincaré inequality (Theorem 4.2) and deduce
that

e(E, 0, 25α, ν0) ≤ Cp(n)

(
f (E, 0, 50α, ν0) + 25Λα

)
By 4.11, the change of scale on the �atness (Proposition 4.1) and the
last inequality

e(E, 0, 25α, ν0) ≤

≤ Cp(n)

(
f (E, 0, 50α, ν0) + 25Λα

)
≤

≤ Cp(n)

(
2n−1f (E, 0, 100α, ν0)+25Λα

)
≤ Cp(n)

(
2n−1A1(n)Kα2+25Λα

)
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Recalling the de�nition of K and α < 1
200

< 25, we get that

e(E, 0, 25α, ν0) ≤

≤

.
=C2(n)︷ ︸︸ ︷

max{Cp(n)2n−1A1(n)C1(n), Cp(n)}
(
α2e(E, 0, 25, en)+Λα2+25Λα

)
≤

≤ 2C2(n)

(
α2e(E, 0, 25, en) + 25Λα

)
what gives the wished direction and conclude the proof of the lemma.
Let us prove the claims.

Proof of Claim 1: Suppose that K
1

n−1 ≤ αn+3 and set

c0 =
v0(0)√

1 + |∇v0(0)|2

By theHn−1-equivalence of ∂E and ∂∗E inC (0, 25, en) and the de�nition
of �atness, we deduce that

f (E, 0, 100α, ν0) ≤ 1

(100α)n+1

∫
M∩C(0,100α,ν0)

|y · ν0 − c0|2Hn−1 (y)

We want to estimate the right side of the inequality in order to prove
the claim. For this purpose, we will estimate the integral in both inside
and outside the graph of u, i.e. in M ∩ Γ∩C (0, 100α, ν0) and (M \ Γ)∩
C (0, 100α, ν0).
Step 1: If y = (z, u(z)) ∈ Γ, putting the de�nitions of ν0, c0 and w into
account we �nd that

|y · ν0 − c0|2 =
| − z · ∇v0(0) + u(z)− v0(0)|2

1 + |∇v0(0)|2
=

=
|u(z)− w(z)|2

1 + |∇v0(0)|2
≤ |u(z)− w(z)|2

Therefore

1

(100α)n+1

∫
M∩Γ∩C(0,100α,ν0)

|y · ν0 − c0|2Hn−1 (y) ≤

1

(100α)n+1

∫
M∩Γ∩C(0,100α,ν0)

|u(z)− w(z)|2Hn−1 (y) ≤

≤4.10 A(n)Kα2

Step 2: We shall provided an estimate for (M \Γ)∩C (0, 100α, ν0). Keep-
ing in mind the de�nitions of ν0 and c0, we �nd that

1

(100α)n+1

∫
M\Γ∩C(0,100α,ν0)

|y · ν0 − c0|2Hn−1 (y) =
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=
1

(100α)n+1

∫
M\Γ∩C(0,100α,ν0)

| − py · ∇v0(0) + qy + v0(0)|2

1 + |∇v0(0)|2
Hn−1 (y) ≤

≤∗ 1

(100α)n+1

∫
M\Γ∩C(0,100α,ν0)

|py · ∇v0(0)|2 + |qy|2 + |v0(0)|2Hn−1 (y) ≤

≤ 1

(100α)n+1
Hn−1 (M \ Γ)

(
sup
y∈M

(
|qy|2

)
+sup
y∈M

(
|py·∇v0(0)|2

)
+|v0(0)|2

)
where in (*) we have used that 1

1+|∇v0(0)|2 ≤ 1, the triangle inequality and

(a+ b+ c)2 ≤ 2a2 + 2b2 + 2c2,∀a, b, c > 0. By 4.5, 4.6 and the de�nition
of K, we have that

1

(100α)n+1

∫
M\Γ∩C(0,100α,ν0)

|y · ν0 − c0|2Hn−1 (y) ≤

C1(n)e(E, 0, 25, en)

(100α)n+1

(
C0(n)2e(E, 0, 25, en)

1
(n−1) +

+ sup
y∈M

(
|py · ∇v0(0)|2

)
+ |v0(0)|2

)
≤

≤ A1(n)K

αn+1

(
K

1
n−1 + sup

y∈M

(
|py · ∇v0(0)|2

)
+ |v0(0)|2

)
(4.13)

where we have set A1(n) = C1(n)
100n+1 max{C0(n)2, 1}. In order to �nish this

step, we shall estimate supy∈M(|py · ∇v0(0)|2) + |v0(0)|2. Note that |py ·
∇v0(0)|2 ≤ |py|2|∇v0(0)|2 ≤ |∇v0(0)|2, then we can reduce our e�ort to
estimate |∇v0(0)|2 + |v0(0)|2. From the mean value property of harmonic
functions (3.29), we obtain

|v0(0)|2 = |
∫
−
D1

v0|2 ≤
(∫
−
D1

|v0|
)2

≤

≤∗ 1

ω2
n−1

‖v0‖2
L2(D1)

(∫
D1

1

)
=

1

ωn−1

‖v0‖2
L2(D1)

where in (*) we have used Holder's inequality (6.2 in [Fol99, p. 174]).
From 3.30, we get

|∇v0(0)|2 ≤ H(n)‖v0‖2
L2(D1)

The last two inequalities ensure that

|v0(0)|2 + |∇v0(0)|2 ≤

.
=A′(n)︷ ︸︸ ︷

2 max{ 1

ωn
,

1

ωn−1

} ‖v0‖2
L2(D1) ≤

≤ A′(n)

(
‖u− v0‖2

L2(D1) + ‖u‖2
L2(D1)

)
≤

≤4.9
4.7 A

′(n)(Kαn+3 + C1(n)e(E, 0, 25, en)
1

n−1 ) ≤ A′′(n)(Kαn+3 +K
1

n−1 )

Finally, by the last inequality, 4.13 and K
1

n−1 ≤ αn+3, we conclude the
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proof of this step as follows

1

(100α)n+1

∫
M\Γ∩C(0,100α,ν0)

|y · ν0 − c0|2Hn−1 (y) ≤

≤ A1(n)K

αn+1

(
(1 + A′′(n))K

1
n−1 + A′′(n)Kαn+3

)
≤

≤

.
=A1(n)︷ ︸︸ ︷

A1(n)(1 + A′′(n))Kα2

Proof of Claim 2: Note that 100
√

2α < r0 and B(0, 200α) b
C (0, 25, en), then, from Proposition 2.9, we �nd that

e(E, 0, 100α, ν0) ≤ Cd(n)

(
e
(
E, 0, 100

√
2α, en

)
+ |ν0 − en|2

)
By the de�nition of ν0, we �nd that

|ν0 − en|2 =
|∇v0(0)|2 + (1−

√
1 + |∇v0(0)|2)2

1 + |∇v0(0)|2
≤

≤∗ |∇v0(0)|2 +
|∇v0(0)|4

4
≤∗∗ 5

4
|∇v0(0)|2 ≤∗∗∗ C ′(n)K

where in (*) we have used that 1
1+|∇v0(0)|2 ≤ 1 and

√
1 + s−1 ≤ s

2
,∀s > 0

with |∇v0(0)|2 in place of s, in (**) and (***) we took ‖v0‖2
L2(D1) ≤ K ≤

α(n−3)(n−1) < 1 into account. Using the change of scale of the excess
(Proposition 2.5) we produce e

(
E, 0, 100

√
2α, en

)
≤ ( 25

100
√

2α
)2e(E, 0, 25, en).

Putting it all together and recalling that e(E, 0, 25, en) ≤ K
C1(n)

(from the

de�nition of K), we get that

e(E, 0, 100α, ν0) ≤ Cd(n)

(
(

25

100
√

2α
)2e(E, 0, 25, en) + C ′(n)K

)
≤

≤ Cd(n)

(
(

25

100
√

2α
)2 K

C1(n)
+ C ′(n)K

)
= KC(n, α)

what ensures the proof of the Claim 2 provided we take ε2(n, α) small
enough in order to have KC(n, α) ≤ ω(n, 1

8
).

We aim to re�ne the Excess Improvement by Tilting providing a result
such that ensures the existence of a direction ν0 with certain properties
as exhibited before and, furthermore, also enables to control the distance
of ν0 from the direction ν which has the bounded excess (that is 4.15. To
achieve this goal, we must replace the exponent 2 in 4.3 with a smaller
one 2γ (0 < γ < 1

2
). For that reason, the constant α2γ will be bigger than

α2, therefore, it makes the estimate 4.3 weaker than 4.14.

Theorem 4.4. (Excess Improvement) Let n ≥ 3. For every γ ∈
(0, 1

2
), there exist positive constants α0(n, γ) < 1, ε3(n, γ) and C3(n, γ)

such that if E is a (Λ, r0) − minimizing set in C (x0, r, ν) with Λr0 ≤
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1, r < r0, x0 ∈ ∂E and
Ex0,ν (r) ≤ ε3(n, γ)

where we have set Ex,η (s)
.
= max{e(E, x, s, ν) , Λs

αn−1+2γ
0

} for all x ∈ Rn, s >

0 and η ∈ Sn−1, then there exists ν0 ∈ Sn−1 such that

Ex0,ν0 (α1(n, γ)r) ≤ α0(n, γ)2γEx0,ν (r) (4.14)

|ν0 − ν|2 ≤ C3(n, γ)Ex0,ν (r) (4.15)

Proof. Let C2(n) be the constant provided by the Excess Improvement

by Tilting (Lemma 4.3), we de�ne α0(n, γ)
.
= min{ 1

200
, ( 1

2C2(n)
)

1
1−2γ }. For

the sake of brevity denote α0 = α0(n, γ), then Lemma 4.3 also provides

a constant ε2(n, α0) which we use to de�ne ε3(n, γ) = ε2(n,α0)
2

. Taking E
in the conditions above, since 2γ < 1, we obtain that

α0
Λr

αn−1+2γ
0

≤ α0Ex0,ν (r) ≤ α2γ
0 Ex0,ν (r)

In order to prove 4.14, it remains to exhibit ν0 such that e(E, x0, α0r, ν0) ≤
α2γ

0 Ex0,ν (r). If e(E, x0, r, ν) ≤ Λr, ν, which clearly satis�es 4.15, is the de-
sired direction. Indeed, by the Excess and Changes of Scale (Proposition
2.5), we �nd that

e(E, x0, α0r, ν) ≤ 1

αn−1
0

e(E, x0, r, ν) ≤ α2γ
0

αn−1+2γ
0

Λr ≤

≤ α2γ
0 Ex0,ν (r)

Now, we suppose that Λr ≤ e(E, x0, r, ν), then

e(E, x0, r, ν) + Λr ≤ 2e(E, x0, r, ν) ≤ 2Ex0,ν (r) ≤

≤ 2ε3(n, γ) ≤∗ ε2(n, α0)

where (*) follows from our choice of ε3(n, γ). Thus, we are in position to
apply the Excess Improvement by Tilting. Since 2C2(n) ≤ 1

α1−2γ
0

, by our

assumption, we can conclude the proof of 4.14 as follows

e(E, x0, α0r, ν0) ≤4.3 C2(n)

(
α2

0e(E, x0, r, ν) + α0Λr

)
≤

≤α0<1 2C2(n)α0e(E, x0, r, ν) ≤ 2C2(n)α0Ex0,ν (r) ≤ α2γ
0 Ex0,ν (r)

(4.16)

Let us prove that 4.15 holds true for the direction ν0 provided by the
Excess Improvement by Tilting. Taking into account that (a + b)2 ≤
2(a2 + b2), the triangle inequality furnishes

|ν − ν0|2 ≤ 2(|ν − νE|2 + |ν0 − νE|2)



72 REGULARITY THEORY 4.3

Thus, by de�nition of the excess,

|ν − ν0|2Hn−1 (∂∗E ∩C (x0, α0r, ν0)) ≤

≤ 2

∫
∂∗E∩C(x0,α0r,ν0)

(
|ν0 − νE|2 + |ν − νE|2

)
dHn−1 =

= 2(α0r)
n−1e(E, x0, α0r, ν0) + 2

∫
∂∗E∩C(x0,α0r,ν0)

|ν − νE|2 dHn−1

(4.17)

We note that
√

2α0r ≤
√

2
200
r < r < r0 implies

C (x0, α0r, ν0) ⊂ B
(
x0,
√

2α0r
)
⊂ B(x0, r) ⊂ C (x0, r, ν) (4.18)

The �rst inclusion in 4.18 makes possible to apply the Density Estimates
for Cylinders (Corollary 1.8). Since

Hn−1 (∂∗E ∩C (x0, α0r, ν0)) = P(E,C (x0, α0r, ν0))

the density estimate for cylinders ensures that

c(n)(α0r)
n−1 ≤ P(E,C (x0, α0r, ν))

By 4.18 and the last inequality, the inequality 4.17 became

c(n)(α0r)
n−1|ν − ν0|2 ≤

≤ 2(α0r)
n−1e(E, x0, α0r, ν0) + 2

∫
∂∗E∩C(x0,r,ν)

|ν − νE|2 dHn−1 =

= 2(α0r)
n−1e(E, x0, α0r, ν0) + 2rn−1e(E, x0, r, ν)

By the de�nition of Ex0,ν (r) and 4.16, we �nd that

c(n)(α0r)
n−1|ν − ν0|2 ≤ 2(α0r)

n−1α2γ
0 Ex0,ν (r) + 2rn−1e(E, x0, r, ν) ≤

≤ 2rn−1

(
αn−1

0 α2γ
0 + 1

)
Ex0,ν (r)

Set C3(n, γ)
.
=

2(α2γ
0 +α1−n

0 )

c(n)
to conclude the proof of 4.15.
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4.3 C1,γ-regularity of the almost minimizing

sets

We �nally have evolved all the needed tools to reach the main goal
of this work. For any γ ∈ (0, 1/2), we take E an almost minimizing set
and x0 ∈ ∂E, if we suppose that E content a boundedness condition
(depending on γ and the dimension n) on the excess at x0 at scale 25r,
we can exhibit a function u ∈ C1,γ whose graph coincides with ∂E in
C (x0, r, en). Moreover, the Holder constant of u will depend on the excess
at x0 at scale 25r.

Theorem 4.5. (C1,γ-regularity of the almost minimizing sets) Let
n ≥ 3. For every γ ∈ (0, 1

2
), there exist ε4(n, γ) and C4(n, γ) such that

if E is a (Λ, r0) −minimizing set in C (x0, 25r, en) with Λr0 ≤ 1, x0 ∈
∂E, 25r < r0 and

e(E, x0, 25r, en) + Λr ≤ ε4(n, γ) (4.19)

then there exists a Lipschitz function u : Rn → R with Lip (u) < 1 such
that u ∈ C1,γ(px0 + Dr),

sup
|u|
r
≤ C1(n)e(E, x0, 25r, en)

1
2(n−1) (4.20)

C (x0, r, en) ∩ ∂E = (x0 +G(u)) ∩C (x0, r, en) (4.21)

and either

C (x0, r, en) ∩ (E \ ∂E) = C (x0, r, en) ∩ (x0 + hypo (u)) (4.22)

or

C (x0, r, en) ∩ (E \ ∂E) = C (x0, r, en) ∩ (x0 + epi (u)) (4.23)

Furthermore, νE is a Holder function in C (x0, r, en) ∩ ∂E and both νE
and ∇u have Holder constant equal to C4(n,γ)

rγ

√
e(E, x0, 25r, en) + Λr.

Proof. We should use the same notation presented in the Excess Improve-
ment Theorem (Theorem 4.4), precisely Ex,η (s)

.
= max{e(E, x, s, ν) , Λs

αn−1+2γ
0

}
for all x ∈ Rn, s > 0 and η ∈ Sn−1.

Claim 1: For any x ∈ C (x0, r, en) ∩ ∂E, there exists ν(x) ∈ Sn−1

such that

Ex,ν(x) (s) ≤ C ′3(n, γ)

(
s

r

)2γ

Ex0,en (25r) ∀s ∈ (0, 12r) (4.24)

|ν(x)− en|2 ≤ C ′3(n, γ)Ex0,en (25r) (4.25)
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Ex,en (s) ≤ C ′3(n, γ)Ex0,en (25r) ∀s ∈ (0, 24r) (4.26)

Recalling the Lipschitz Approximation Theorem (Theorem 3.3), we have

M0 =

{
x ∈ C (x0, r, en) ∩ ∂E : sup

0<s<8r
e(E, x, s, en) ≤ δ0(n)

}
We require ε4(n, γ) to be smaller than both ε1(n) and δ0(n), thus exists
a Lipschitz functions u : Rn → R with Lip (u) < 1 such that 4.20 holds
true and, by 4.26,

M0 = C (x0, r, en) ∩ ∂E ⊂ G(u) ∩C (x0, r, en)

what put us in position to apply the Lipschitz Boundary Criterion (The-
orem 3.1), then

C (x0, r, en) ∩ ∂E = G(u) ∩C (x0, r, en)

and either

C (x0, r, en) ∩ (E \ ∂E) = C (x0, r, en) ∩ (x0 + hypo (u))

or
C (x0, r, en) ∩ (E \ ∂E) = C (x0, r, en) ∩ (x0 + epi (u))

holds true, that is either 4.22 or 4.23. In order to prove the Holder con-
tinuity of ∇u and νE, we set

(∇u)z,s =
1

|z + Ds|

∫
z+Ds
∇u

and we establish the last claim of this proof.
Claim 2: For any s ∈ (0, r) and z ∈ (px0 + Dr), it holds that

1

sn−1

∫
z+Ds
|∇u− (∇u)z,s|2 ≤ K(n, γ)(

s

r
)2γEx0,en (25r) (4.27)

The Claim 2 put us in position to apply the Campanato's Criterion (The-
orem 7.51 in [LA00]) and thus exists K ′(n, γ) such that

|u(z)− u(z′)| ≤ K ′(nγ)
√
Ex0,en (25r)

(
|z − z′|
r

)γ
∀z, z′ ∈ (px0 + Dr)

By the very de�nition of E , we set C ′4(n, γ) = K ′(n, γ) max{1, 25

αn−1+2γ
0

}
and then, ∀z, z′ ∈ (px0 + Dr), we have

|u(z)− u(z′)| ≤
(
C ′4(nγ)

√
e(E, x0, 25r, en) + Λr

rγ

)
|z − z′|γ (4.28)

what infers that u ∈ C1,γ(px0 +Dr). From 4.21 and the Lipschitz Bound-
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ary Criterion (Theorem 3.1), we obtain

νE(y) = ± (∇u(py),−1)√
1 + |∇u(py)|2

∀y ∈ C (x0, r, en) ∩ ∂E

Since

F : Rn−1 −→ Rn−1

w 7−→ (−w, 1)√
1 + |w|2

de�nes a Lipschitz function, if x, y ∈ C (x0, r, en) ∩ ∂E, we immediately
deduce that

|νE(x)− νE(y)| ≤ Lip (F ) |∇u(px)−∇u(py)| ≤

≤4.28 Lip (F )

(
C ′4(nγ)

√
e(E, x0, 25r, en) + Λr

rγ

)
|px− py|γ ≤

≤
(
C4(nγ)

√
e(E, x0, 25r, en) + Λr

rγ

)
|x− y|γ

where we have chosen C4(n, γ)
.
= Lip (F )C ′4(n, γ).

Proof of the Claim 1:We �x x ∈ C (x0, r, en)∩∂E, thenC (x, 24r, en) ⊂
C (x0, 25r, en) implies

e(E, x, 24r, en) ≤ (
25

24
)n−1e(E, x0, 25r, en)

Furthermore, by the de�nition of E , we have

Ex,en (24r) ≤ (
25

24
)n−1Ex0,en (25r) (4.29)

Since α0 < 1 ensures 1 < 1

αn−1+2γ
0

, we �nd that

Ex,en (24r) ≤ e(E, x, 24r, en) +
24Λr

αn−1+2γ
0

≤

≤ max{(25

24
)n−1,

24

αn−1+2γ
0

}
(
e(E, x0, 25r, en) + Λr

)
In order to apply the Excess Improvement Theorem, we choose ε4(n, γ) ≤
max{(25

24
)n−1, 24

αn−1+2γ
0

}ε3(n, γ), then, by 4.19,

Ex,en (24r) ≤ ε3(n, γ) (4.30)

what, from Theorem 4.4, provides the existence of a direction ν1(x) ∈
Sn−1 such that 4.14 and 4.15 holds true, namely

Ex,ν1(x) (24α0r) ≤ α2γ
0 Ex,en (24r)

|ν1(x)− en|2 ≤ C3(n, γ)Ex,en (24r)
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Since α0 < 1, by 4.30, we get that

Ex,ν1(x) (24α0r) ≤ Ex,en (24r) ≤ ε3(n, γ) (4.31)

Note that C (x, 24α0r, ν1(x)) ⊂ C (x, 25r, en) and thus E is (Λ, r0) −
minimizing in C (x, 24α0r, ν1(x)). Therefore, 4.31 furnishes the condi-
tions to apply the Excess Improvement at the smaller scale 24α0r and
direction ν1(x). Iterating this process, we can show the existence of a
sequence νh

.
= νh(x) ∈ Sn−1 such that

Ex,νh
(
24αh0r

)
≤ α2γh

0 Ex,en (24r) (4.32)

|νh − νh−1|2 ≤ C3(n, γ)Ex,νh−1

(
24αh−1

0 r
)

The second inequality combined with 4.32 implies that

|νh − νh−1|2 ≤ C3(n, γ)α
2γ(h−1)
0 Ex,en (24r) (4.33)

If we set ν0 = en, the inequalities 4.32 and 4.33 are valid for all h ≥ 1. Let
us prove the existence of the limit limh→∞ νh by showing that {νh}h∈N is
a Cauchy sequence. Indeed, by 4.33, for all j ≥ h ≥ 1,

|νj − νh| ≤
j∑

k=h

|νk − νk−1| ≤
j∑

k=h

√
C3(n, γ)α

2γ(h−1)
0 Ex,en (24r) ≤

≤
√
C3(n, γ)Ex,en (24r)

j∑
k=h

α
γ(h−1)
0 =

√
C3(n, γ)Ex,en (24r)

1− αγ0
α
γ(h−1)
0

Thus, α0 < 1 implies that {νh}h∈N is a Cauchy sequence. Therefore, we
can set ν(x) = limh→∞ νh. Since

|νj − νh| ≤
√
C3(n, γ)Ex,en (24r)

1− αγ0
α
γ(h−1)
0 (4.34)

we let h = 1 and j goes to ∞ and thus, by 4.29, it becomes

|ν(x)− en|2 ≤
25n−1C3(n, γ)

24n−1(1− αγ0)
Ex,en (25r)

for a suitable choice of the constant, that is exactly 4.25. Let us turn to
the proof of 4.24, we take s ∈ (0, 12r), since α0

024r = 24t and αh024r →
0, we can �nd h0 ≥ 0 such that 24rαh0+1

0 ≤ 2s < 24rαh0
0 . Evidently,

12
√

2r < r0, then, from Proposition 2.9,

e(E, x, s, ν(x)) ≤ Cd(n)

(
e
(
E, x,

√
2s, νh0

)
+ |ν(x)− νh0|2

)
≤

≤2.5 Cd(n)

(
(
24rαh0

0√
2s

)n−1e
(
E, x, 24rαh0

0 , νh0

)
+ |ν(x)− νh0|2

)
≤

≤ C ′d(n)

(
(
24rαh0

0

s
)n−1Ex,νh0

(
24rαh0

0

)
+ |ν(x)− νh0|2

) (4.35)
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By our choice of h0, we have
24rα

h0
0

s
≤ 2

α0
and thus, by 4.32,

(
24rαh0

0

s
)n−1Ex,νh0

(
24rαh0

0

)
≤ 2n−1

αn−1
0

α2γh0

0 Ex,en (24r)

≤ 2n−1

αn−1
0

(
2s

24rα0

)2γEx,en (24r) ≤4.29 C4(n, γ)(
s

r
)2γEx0,en (25r)

where we de�ned C4(n, γ) = C ′d(n) max{( 22γ25

242γα2γ
0

)n−1, 1}. Combining 4.35
and the last inequality, we �nd that

e(E, x, s, ν(x)) ≤ C4(n, γ)

(
(
s

r
)2γEx0,en (25r) + |ν(x)− νh0|2

)
(4.36)

To control the second term on the right side of the last inequality, we let
j →∞ in 4.34 and recall the choice of h0, then

|ν(x)− νh0 |2 ≤
C3(n, γ)Ex,en (24r)

(1− αγ0)2
α2γh0

0 ≤

≤ C3(n, γ)

(1− αγ0)2
(

2s

24rα0

)2γEx,en (24r) ≤

≤4.29

.
=C′4(n,γ)︷ ︸︸ ︷

25n−1C3(n, γ)22γ

(1− αγ0)224n−1+2γα2γ
0

(
s

r
)2γEx0,en (25r)

Taking C5(n, γ) equal to the maximum between C ′4(n, γ) and C4(n, γ),
by 4.36 and the last inequalities, it follows that

e(E, x, s, ν(x)) ≤ C5(n, γ)(
s

r
)2γEx0,en (25r) ∀s ∈ (0, 12r) (4.37)

Since
Λs

αn−1+2γ
0

≤ 25Λr

αn−1+2γ
0

(4.38)

by the last inequality, the de�nition of E and 4.37, we conclude that

Ex,ν(x) (s) ≤ C5(n, γ)(
s

r
)2γEx0,en (25r) ∀s ∈ (0, 12r)

Finally, we will prove 4.26. To this end, we note that 4.38 holds true for
24r in place of s and thus it su�ces to prove

e(E, x, s, en) ≤ C ′3(n, γ)e(E, x0, en, 25r) ∀s ∈ (0, 24r) (4.39)

Firstly, suppose that s ∈ [6r, 24r), then r
s
≤ 1

6
andC (x, s, en) ⊂ C (x0, 25r, en)

ensure that

e(E, x, s, en) ≤ (
25r

s
)n−1e(E, x0, 25r, en) ≤ (

25

6
)n−1e(E, x0, 25r, en)



78 REGULARITY THEORY 4.3

If, otherwise, s ∈ (0, 6r), by Proposition 2.9, we have that

e(E, x, s, en) ≤ Cd(n)

(
e
(
E, x,

√
2s, ν(x)

)
+ |ν(x)− en|2

)
We note that

√
2s < 12r. Therefore, we can take into account 4.24 and

4.25. Then

e(E, x, s, en) ≤ Cd(n)C ′3(n, γ)

((√
2s

r

)2γ

Ex0,en (25r) + Ex0,en (25r)

)
In order to �nish the proof of the Claim, note that s ∈ (0, 6r) implies
s
r
< 6.
Proof of the Claim 2: We �x s ∈ (0, r) and z ∈ (px0 + Dr), by

4.25, up to decreasing ε4(n, γ), we can henceforth assume that

1√
2
≤ qν(x) ∀x ∈ C (x0, r, en) ∩ ∂E (4.40)

Therefore, it is straightforward to conclude that

C (x, s, en) ⊂ B
(
x,
√

2s
)
⊂ C (x, 2s, ν(x))

Thus, by the set inclusions above and the de�nition of excess, we can
a�rm that∫

C(x,s,en)∩∂∗E

|νE − ν(x)|2

2
dHn−1 ≤ (2s)n−1e(E, x, 2s, ν(x)) (4.41)

whenever x ∈ C (x0, r, en)∩∂E. From 4.40, for any x ∈ C (x0, r, en)∩∂E
we have qν(x) > 0. Then, we can de�ne

X : C (x0, r, en) ∩ ∂E −→ Rn−1

x 7−→ −pν(x)

qν(x)

We note that√
1 + |X(x)|2 =

√
|pν(x)|2 + |qν(x)|2

|qν(x)|
=ν(x)∈Sn−1 1

|qν(x)|

Thus, we immediately deduce that

|X(x)| ≤ 1

pν(x) = − X(x)√
1 + |X(x)|2

qν(x) =
1√

1 + |X(x)|2

(4.42)

To infer that |X(x)| ≤ 1, we required the help of 4.40 and 1 = |ν(x)|2 =
|pν(x)|2 + |qν(x)|2. Henceforth, we assume that 4.23 holds true, if not,
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it su�ces to work with −X in place of X. Since y ∈ C (x0, r, en) ∩ ∂E
implies y = (py,qy) ∈ C (x0, r, en)∩(x0 +G(u)), the Lipschitz Boundary
Criterion (Theorem 3.1) ensures that

νE(y) = νE(py, u(qy)) = − (∇u(py),−1)√
1 + |∇u(py)|2

and thus, by 4.42, we �nd that∫
C(x,s,en)∩∂∗E

|νE(y)− ν(x)|2

2
dHn−1 (y) =

1

2

∫
C(x,s,en)∩∂∗E

∣∣∣∣− ∇u(py)√
1 + |∇u(py)|2

+
X(x)√

1 + |X(x)|2

∣∣∣∣2 dHn−1 (y) +

+
1

2

∫
C(x,s,en)∩∂∗E

∣∣∣∣ 1√
1 + |∇u(py)|2

− 1√
1 + |X(x)|2

∣∣∣∣2 dHn−1 (y)

From 4.21, we obtain that x = (z, u(z)) ∈ ∂E∩C (x0, r, en). By Theorem
9.1 in [Mag12] and the last inequalities, we deduce that∫

C(x,s,en)∩∂∗E

|νE(y)− ν(x)|2

2
dHn−1 y =

=
1

2

∫
z+Ds

∣∣∣∣− ∇u(w)√
1+|∇u(w)|2

+ X(x)√
1+|X(x)|2

∣∣∣∣2√1+|∇u(w)|2 dHn−1(w)+

+
1

2

∫
z+Ds

∣∣∣∣ 1√
1+|∇u(w)|2

− 1√
1+|X(x)|2

∣∣∣∣2√1+|∇u(w)|2 dHn−1(w)

(4.43)

We claim that∫
z+Ds
|∇u− (∇u)z,s|2 = min

v∈Rn

∫
z+Ds
|∇u− v|2 (4.44)

Since |∇u|2 and |X(x)|2 both are less or equal than 1, by 4.44, we have
that ∫

z+Ds
|∇u− (∇u)z,s|2 ≤

∫
z+Ds
|∇u−X(x)|2 ≤

≤
∫
z+Ds

∣∣∣∣ ∇u−X(x)√
1 + |X(x)|2

∣∣∣∣2√1 + |∇u|2 ≤

∫
z+Ds

∣∣∣∣ ∇u√
1+|X(x)|2

− ∇u√
1+|∇u|2

+ ∇u√
1+|∇u|2

− X(x)√
1+|X(x)|2

∣∣∣∣2√1+|∇u|2

≤
∫
z+Ds

∣∣∣∣ 1√
1 + |X(x)|2

− 1√
1 + |∇u|2

∣∣∣∣2√1 + |∇u|2+

+

∫
z+Ds

∣∣∣∣− ∇u√
1 + |∇u|2

+
X(x)√

1 + |X(x)|2

∣∣∣∣2√1 + |∇u|2
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Therefore, by 4.43, we obtain that∫
z+Ds
|∇u− (∇u)z,s|2 ≤ 2

∫
C(x,s,en)∩∂∗E

|νE(y)− ν(x)|2

2
dHn−1 y

Then, by 4.24, 4.41 and the last inequality, we �nally obtain that

1

sn−1

∫
z+Ds
|∇u− (∇u)z,s|2 ≤ 2ne(E, x, 2s, ν(x)) ≤

≤ 2nEx,ν(x) (2s) ≤ 2n−1C ′3(n, γ)

(
s

r

)2γ

Ex0,en (25r)

for all s ∈ (0, 6r), what concludes the proof of the Claim 2 (4.27). In
order to prove 4.44, we note that F (v) =

∫
z+Ds |∇u− v|

2,∀v ∈ Rn−1 is a
di�erentiable function and it is straightforward to calculate that

∇F (v) = −2

∫
z+Ds
∇u− v = 2|z + Ds|v − 2

∫
z+Ds
∇u

what implies that ∇F (v) = 0 if, and only if, v = (∇u)z,s. Then (∇u)z,s is
the unique critical point of F . Since F is a convex function, we conclude
that (∇u)z,s is the minimum point of F which ensures 4.44.
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