
	
	

	
On	Rayner	Rngs	of	Formal	Power	Series	

	
	
	
	

Geovani	Pereira	Machado	
	
	
	
	

	
	
	
	
	
	
	

	
DOCTORAL	THESIS	PRESENTED	TO	THE	

INSTITUTE	OF	MATHEMATICS	AND	STATISTICS	
OF	THE	UNIVERSITY	OF	SÃO	PAULO	

TO	ACHIEVE	THE	TITLE	OF	
DOCTOR	OF	SCIENCE	

	
	
	
	

	
	
	
	
	
	

	
Program:	Doctoral	degree	in	Mathematics	

Supervisor:	Prof.	Dr.	Rogério	Augusto	dos	Santos	Fajardo	
	

	
	

	
São	Paulo	

November	2022	



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



	
	

	
On	Rayner	Rngs	of	Formal	Power	Series	

	
	
	
	
	
	
	

This	version	of	the	thesis	contains	the	corrections	and	modifications	suggested	
by	the	Thesis	Committee	during	the	defence	of	the	original	version	of	the	work,	
which	was	held	online	in	09/01/2023.	A	copy	of	the	original	version	is	available	

at	the	Institute	of	Mathematics	and	Statistics	of	the	University	of	São	Paulo.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	





To my parents,
who sparked my severe thirst for knowledge.





Acknowledgements

First and foremost, I wish to thank my supervisor, Prof. Rogério Augusto
dos Santos Fajardo, for his support and guidance during my doctoral program.
His vast experience and keen attention to detail were immensely invaluable to the
making of this work, and I am honoured to have been supervised by him.

I would like to thank the examiners of this thesis who have had the
opportunity to express to me their criticism of the first submitted version.
In alphabetical order, these are the Profs. Aline de Souza Lima, Dessislava
Hristova Kochloukova, Hércules de Araújo Feitosa, Hugo Luiz Mariano,
Raul Antonio Ferraz and Ricardo Bianconi. Their perceptive comments and
suggestions were very useful for improving the exposition of the material, and
such inputs have led to many revisions of the text. Special thanks to Prof. Hugo
Luiz Mariano for producing a detailed commented version of the work containing
many technical annotations and advice.

I must also express my gratitude and love toward my wonderful wife,
Karolina, whose enduring love and tolerance provide the collectedness and
self-assurance necessary to allow me to indulge my academic passion. I feel the
same gratefulness toward my parents and my sister, who always stand by my side
with their advice, endless patience and encouragement.





“One Ring to rule them all, One Ring to find them,
One Ring to bring them all, and in the darkness bind them”.

[J. R. R. Tolkien (225)]





Abstract

Rayner rngs are rngs (rings without unity) whose elements are formal power
series

X

g2G

xgXg, where the coefficients lie in a rng R and the exponents lie in an

additive ordered group G, such that the support {g 2 G | xg 6= 0R} belongs to
a predetermined ideal J on G constrained by a set of axioms. The work presents
an inspection of the interplay between the algebraic, topological and categorical
properties of the Rayner rngs, the rngs R of coefficients and the ordered groups
G of exponents, studying the Rayner rngs under varied theoretical perspectives
and seeking universal relations between them. Two key topologies on these
structures are systematically analysed, the so-called weak and strong topologies,
and a version of the Intermediate Value Theorem is obtained for the weak
topology. Special attention is given to rngs of Levi-Civita, Puiseux and Hahn
series, which are prominent instances of Rayner rngs.

Keywords: Intermediate Value Theorem, formal power series, Levi-Civita series,
Puiseux series, Hahn series, Rayner series.





Resumo

Os rngs de Rayner são rngs (anéis sem unidade) cujos elementos são séries
formais de potências

X

g2G

xgXg, onde os coeficientes pertencem a um rng R e

os expoentes pertencem a um grupo ordenado aditivo G, tais que o suporte
{g 2 G | xg 6= 0R} pertence a um predeterminado ideal J sobre G que satisfaz
um conjunto de axiomas. O trabalho apresenta uma inspeção das relações diretas
entre as propriedades algébricas, topológicas e categóricas dos rngs de Rayner,
dos rngs R de coeficientes e dos grupos ordenados G de expoentes, estudando os
rngs de Rayner sob diferentes perspectivas teóricas e buscando relações universais
entre eles. Duas topologias essenciais nessas estruturas são sistematicamente
analisadas, as topologias forte e fraca, e uma versão do Teorema do Valor
Intermediário é obtida para a topologia fraca. Atenção especial é dada aos rngs
de séries de Levi-Civita, Puiseux e Hahn, os quais são instâncias proeminentes de
rngs de Rayner.

Descritores: Teorema do Valor Intermediário, séries de potências formais, séries de
Levi-Civita, séries de Puiseux, séries de Hahn, séries de Rayner.





Résumé

Les rngs de Rayner sont des rngs (anneaux sans élément unité) dont les éléments
sont des séries formelles

X

g2G

xgXg, où les coefficients appartiennent à un rng R et

les exposants appartiennent à un groupe ordonné additif G, telle que le support
{g 2 G | xg 6= 0R} appartient à un idéal prédéterminé J sur G qui vérifie un
ensemble de propriétés. La thèse présente une étude de l’interaction entre
les propriétés algébriques, topologiques et catégorielles des rngs de Rayner,
les rngs R de coefficients et les groupes ordonnés G d’exposants, étudiant les
rngs de Rayner sous des perspectives théoriques variées et recherchant des
relations universelles entre eux. Deux topologies clés sur ces structures sont
systématiquement analysées, les topologies dites faible et forte, et une version du
Théorème des Valeurs Intermédiaires est obtenue pour la topologie faible.
Une attention particulière est accordée aux rngs des séries de Levi-Civita,
Puiseux et Hahn, qui sont des exemples importants des rngs de Rayner.

Mots clés: Théorème des Valeurs Intermédiaires, séries formelles, séries de
Levi-Civita, séries de Puiseux, séries de Hahn, séries de Rayner.
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C1_C2

C1 or C2
(Inclusive) disjunction of the conditions C1 and C2, which is
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is true.

C1^C2

C1 and C2
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C1 is true precisely when C2 is true.
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2 Membership relation of Set Theory.



akak+1 . . . ak+n 2 A Conjunction of the n+ 1 conditions

ak 2 A, ak+1 2 A, . . . , ak+n 2 A .

C(x1...xn) (8x1...xn2A)

(8x1...xn2A) C(x1...xn)
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one choice of the variables x1 . . . xn 2 A. In this thesis,
the existential quantifier 9 shall appear to the right side of
the condition it is refering to whenever the whole closed
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in C (x1 . . . xn) (9x1 . . . xn 2 A). When the closed quantified
condition is displayed outside the text, the 9-part is to appear
on the left side, such as in

(9x1 . . . xn 2 A) C (x1 . . . xn) .



⇢ Non-strict inclusion relation between sets.

( Strict or proper inclusion relation between sets.

62, 6⇢, 6(, etc. Negations of the membership, non-strict inclusion and strict
inclusion relations, respectively.

{F (x)}
P (x)

{F (x) | P (x)}
Set-builder notation. It defines a set of objects of the

form F (x) for objects x which satisfy the property P (x).
The formal systems which axiomatise Set Theory (ZF, ZFC,
NBG, etc.) limit the options of properties P (x) which can be
used to define a set. Countable sets are sometimes described
element by element via the notations {x1, x2, . . . , xn, . . . }

or {x1x2 . . . xn . . . }.

A� B (Asymmetric) difference between the sets A and B, given by

A� B :=
n
x 2 A

... x 62 B
o
.

; Empty set, given by

; :=
n
x
... x 6= x

o
.



N Set of natural numbers:

N := {1, 2, 3, 4, . . . } .

N0 Set whose elements are the number zero and the natural
numbers:

N0 := {0, 1, 2, 3, 4, . . . } .

Z Set of integers:

Z := {. . . ,�2,�1, 0, 1, 2, . . . } .

Q Set of rational numbers:

Q := {p/q | p 2 Z and q 2 Z� {0}} .

R Set of real numbers.

R Set of extended real numbers, which is the set given by
R := R [ {�1,1}, where �1 and 1 are objects that do not
belong to R, endowed with the extension of the usual order



on R so that �1 <1 and �1 < x <1 (8x 2 R). We also
set 1/1 := 0. The elements �1 and 1 are said to be the
infinite elements of R.

C Set of complex numbers.

{Xi}P (i)

{Xi | P (i)}
Despite being essentially equal to the set-builder notations,

these representations often denote a family, that is, a function

whose domain or set of indices is I :=
n
i
... P (i)

o
and whose

rule of association is i 7! Xi. When inserted within symbolic
mathematical expressions, in the presence of other symbols
(such as 2, ⇢, \, etc.), those notations convey the underlying
set they represent. In all other occurrences, it will always be
explicitly mentioned in the text if these notations represent a
set or a family.

[

i2I

Ai

[
{Ai}i2I

Union of the family of sets {Ai}i2I , given by

[

i2I

Ai :=
n
x
... (9i 2 I) x 2 Ai

o
.

\

i2I

Ai

\
{Ai}i2I

Intersection of the family of sets {Ai}i2I , given by

\

i2I

Ai :=
n
x
... (8i 2 I) x 2 Ai

o
.



Dom (R) Domain of the binary relation R, given by

Dom (R) :=
n
x
... (9y) (x, y) 2 R

o
.

Im (R) Image of the binary relation R, given by

Im (R) =
n
y
... (9x) (x, y) 2 R

o
.

R�1 Inverse relation of the binary relation R, given by

R�1 :=
n
(x, y)

... (y, x) 2 R
o
.

R hAi Image of A under the binary relation R, given by

R hAi :=
n
y
... (9x 2 A) (x, y) 2 R

o
.

In particular, the image of A under the inverse of R, that is,
the set R�1 hAi, is called the preimage of A under R, and
the preimage of a singleton {y} under R is called the fibre of
y under R;

R � S Composition of the binary relation R with another binary
relation S, given by

R � S :=
n
(x, z)

... (9y) ((x, y) 2 S ^ (y, z) 2 R)
o
.



If n 2 N, then the iterated composition

n timesz }| {
R �R � · · · �R

shall be denoted by Rn.

A/⌘ Quotient of the set A modulo the equivalence relation ⌘ on A,
given by

A/⌘ :=
n
x/⌘

... x 2 A
o

where x/⌘ := ⌘h{x}i.

f : A! B Functional notation. It reads ‘f is a function of type A! B’
and it conveys that f is a function whose domain is A and
whose codomain is B. That means that f ⇢ A⇥ B and that
f satisfies the condition

(8x 2 A) (9!y 2 B) (x, y) 2 f.

AB Set of functions of type A! B, where A and B are sets.

idA Identity function of type A! A, given by

(8x 2 A) idA(x) := x .



Y

i2I

Ai Cartesian product of the family of sets {Ai}i2I , given by

Y

i2I

Ai :=
n
f : I !

[

i2I

Ai

... (8i 2 I) f (i) 2 Ai

o
.

akak+1ak+2...

{an}n2[k,1)Z
{an}

(Infinite) sequence of objects, defined in Definition 1.35.
It can be denoted in a term-by-term fashion, such as
in akak+1ak+2 . . . , or in a family-like notation, such as
in {an}n2[k,1)Z

. Regarding the term-by-term notation, we shall
include commas between the objects of a sequence only if their
absence affects the readability of the individual terms of
the sequence. Analogously, we shall sometimes omit the
commas when denoting infinitely countable sets, for instance in
{akak+1ak+2 . . . }. As for the family-like notation {an}n2[k,1)Z

,
we shall only consider the case k = 1 in this thesis, and the
condition n 2 N shall be dropped from the subscript of the
notation {an}n2N, producing the simplified version {an}.

akak+1 . . . ak+n Finite sequence of objects, defined in Definition 1.35.
We shall include commas between the objects of a finite
sequence with an indeterminate number of terms (e.g. with
n terms) only if their absence affects the readability of the
individual terms of the sequence. Analogously, when the
number of terms is indeterminate and there is no risk
of confusion, we shall omit the commas when denoting finite
sets and ordered n-tuples, such as in {akak+1 . . . ak+n} and
(akak+1 . . . ak+n), respectively.



A1 [ A2 [ · · · [ An [ · · · Countable union of the sequence of sets A1A2 . . . An . . . .

A1 \ A2 \ · · · \ An \ · · · Countable intersection of the sequence of sets A1A2 . . . An . . . .

A1 ⇥ A2 ⇥ · · ·⇥ An Finite Cartesian product of the finite sequence of sets
A1A2 . . . An, given by

A1⇥A2⇥· · ·⇥An :=
n
(a1a2 . . . an)

... a1 2 A1, a2 2 A2, . . . , an 2 An

o
.

In the case A := A1 = A2 = · · · = An, that finite Cartesian
product shall be denoted by A

n
⇥.

R ��S Restriction of the n-ary relation R to the set S, given by

R ��S := R \ S
n
⇥ .

That restriction shall be denoted by R �� (S) when the set S is
indicated by a large expression.

f �S Restriction of the n-ary function f of type

f : A1 ⇥ A2 ⇥ · · ·⇥ An ! B

to the set S, given by

f �S := f \ (S
n
⇥⇥ B) .

That restriction shall be denoted by f � (S) when the set S is
indicated by a large expression.



P (A) Power set of the set A, given by

P (A) :=
n
x
... x ⇢ A

o
.

|A| Cardinal of the set A, which is the smallest ordinal ↵ that is
equipotent to A, that is, it is the smallest ordinal ↵ such that
there is a bijective function f : A! ↵.

↵+ Cardinal successor of the cardinal ↵, which is the smallest
cardinal that is greater than ↵.

P↵(A) Set of subsets S of the set A such that |S| < ↵, where ↵ is
a cardinal.



Preface

November, 2022 Geovani Pereira Machado

At the onset of 2021, whilst the Covid-19 global pandemic was raging in
full force, I initiated the efforts to take on the challenge of writing a doctoral thesis.
Inspired by the momentous success of the modern theory of Real Analysis on Rn,
which has crucial applications to Physics, Probability Theory and other branches
of Mathematics, I wondered if there is a non-Archimedean extension of R which
can support an analytic theory that is somewhat analogous to Real Analysis,
possibly also being applicable to other areas of study.

My previous major academic experience had been on the area of
non-Archimedean Analysis through a master’s dissertation on Non-standard
Analysis (148), where the non-Archimedean field of hyperreal numbers,
denoted by ⇤R, was considered among other things. The main advantage of
working with ⇤R stems from the Transfer Principle, which states that the
same first-order sentences with bounded quantifiers are true for R and ⇤R.
Unfortunately, all known constructions of ⇤R (in ZFC) essentially depend on
a non-principal ultrafilter U on N, and the existence of such U cannot be
demonstrated without the Axiom of Choice, that is, U cannot be constructively
determined. Indeed, no matter what non-principal ultrafilter U on N one
may “choose”, there will always be infinitely many undecidable questions about
the elements of ⇤R, for one can never fully determine which subsets of N belong
to U . Thus, one cannot really perform computations involving hyperreal numbers
in the same sense that one does on R, since most elements of the former numeric
system are shrouded in obscurity and undecidability. Progress has been made
in devising a constructive sheaf-theoretic version of Non-standard Analysis
(172, 173), albeit by changing the notion of model in order to regain the full
Transfer Principle, but still it remains unclear if it is possible to formulate an



Analysis on the hyperreals in a way that satisfactorily extends the celebrated
theory of Analysis on Rn and stands on its own.

Intrigued by those drawbacks concerning ⇤R, I considered other non-
Archimedean extensions of R on which appealing analytical considerations had
been drawn in the literature. The first one I encountered which showed some
promising analytical results is the field of surreal numbers, denoted by No,
conceived by John Horton Conway and introduced by Donald Ervin Knuth
in 1974 (113). In fact, No extends not only R but also ⇤R, and it contains all
ordinal numbers. As it happens, by defining a new non-local notion of topology
on No, the new emergent notions of limits and derivatives become well-behaved
enough so that the Intermediate Value Theorem and the Extreme Value
Theorem hold for certain functions (196). Moreover, the usual transcendental
functions have been defined on No, extending their classical counterparts.
Many issues still need to be resolved in order to obtain a broad theory of
Analysis on No, such as finding a consistent definition of integration of functions
of type No

n
! No, but there is hope for future developments.

After having stumbled upon a few other investigations in that direction
which failed to meet my expectations, including the studies on the non-
commutative rational series (15) and the superreal fields (64), I learned of the
existence of a non-Archimedean field extension of R on which a compelling and
sophisticated theory of Differential and Integral Calculus has gradually been
developed since the late 19th century. Furthermore, that number field has
some important applications in Computer Science, mainly on the area of
Computational Differentiation. That structure, formulated in 1893 by the Italian
mathematician Tullio Levi-Civita (1873-1941) and currently denoted by R,
is called the real Levi-Civita field (139, 140) and I reckon it is the
non-Archimedean field extension of R which is closest to having its own complete
Analysis. As a matter of fact, it is known that many classical results of Analysis
on Rn hold true for R

n when their assumptions are slightly modified, including
the Intermediate Value Theorem, the Extreme Value Theorem, the Mean Value
Theorem and Taylor’s Theorem (17, 20, 24, 26, 28, 209, 210, 208). On top
of that, a comprehensive Measure Theory on R

n has been conceived, enabling



multiple integrals of functions of type R
n
! R to be suitably defined so that

both the Fundamental Theorem of Calculus and Fubini’s Theorem hold
true (202, 160, 205, 73, 211, 74). Those results are possible by way of exploiting
the properties of two peculiar topologies on R.

Each element of R is a formal power series x =
X

q2Q

xqXq, where xq2 R for

each q 2 Q and where the support supp (x) is left-finite in Q. At first sight,
the choices of the sets R and Q to be the respective sets of coefficients and
exponents of those formal series are unjustified, and it is reasonable to wonder
about what would the theoretical implications be if those choices were altered.
It turns out that by replacing R with a rng (ring without unity) R and replacing
Q with an ordered group G, one sets up a rng whose elements are formal power
series x =

X

g2G

xgXg whose coefficients xg are elements of R and whose supports

supp (x) are left-finite in G. I call that structure a Levi-Civita rng, denoting it
by

lf

R [[XG]]. Although analytical considerations ignited the initial inspiration that
gave rise to the research theme, an Analysis on

lf

R [[XG]] cannot be properly
contemplated before the (topological) rng structure of

lf

R [[XG]] has been
established and sufficiently appreciated. With that setting in mind, I commenced
investigating the direct connections between the algebraic (and topological)
properties of the rng

lf

R [[XG]], the (topological) rng R and the ordered group G,
studying the Levi-Civita rngs under varied perspectives and seeking universal
relations between them. After having achieved some preliminary success in
deriving a few interesting results, it was provisionally proposed that the thesis
would mainly concern the fundamentals of the theory of Levi-Civita rngs,
reserving the analytical explorations for subsequent works, and the writing
process effectively began in March, 2021.

Most original theorems and propositions present in the final product of
the thesis were originally conceived solely concerning the Levi-Civita rngs,
as planned at the outset. However, as I scanned through the literature that could
help me unravel the matter of algebraic closure in situations where

lf

R [[XG]] is
a field, I came across a couple articles by Francis J. Rayner (181, 182) which
allowed me to understand that the Levi-Civita rngs actually belong to a more



general class of structures, which I call Rayner rngs, and that realisation led me
to consider expanding the objectives of the work to include a comparative study
of the properties of distinct types of Rayner rngs. A close inspection of
preliminary proofs of several results showed that such undertaking was feasible,
and, after pondering the fact that other prominent non-Archimedean rngs are
actually instances of Rayner rngs, such as the rngs of Puiseux series (178, 179, 8)
and the rngs of Hahn series (92, 150, 145), it became clear that such
generalisation would considerably enrich the scope of the thesis without
overshadowing the remarkable properties of the Levi-Civita rngs. Accordingly,
it was decided that that reformation would be performed and its implementation
marked the completion of the production in November, 2022.

The method of exposition chosen for the work proceeds from the general to
the particular. On these terms, Chapters 1 and 2 introduce the basic definitions
and results on magmas and rngs under algebraic, topological, order-theoretic and
categorical perspectives, laying the theoretical foundations on which the main
subject matter of the composition, the Theory of Rayner Rngs, is developed in
Chapters 3 and 4. Supplementarily, Appendix A provides a historically-grounded
introduction to the Tarski-Grothendieck axiomatisation of Set Theory, which is
adequate to avoid foundational issues concerning proper classes, and Appendix B
serves as a reference to a number of basic definitions of Category Theory.

The logical framework of each chapter consists of definitions and theorems,
and these are the parts upon which the author wishes to place emphasis.
Less important results and those which can easily be deduced from the theorems
appear in the text as propositions, lemmas and corollaries. Occasionally,
assumptions are included in order to take the validity of some frequently
recurrent hypotheses of the theory as given, effectively simplifying the phrasing
of considerations. Statements of results taken from literature always appear
accompanied by references to the works from which they are taken. Lastly, plural
first-person pronouns (we, us, our, etc.) are employed throughout the text so as
to instill upon the reader the feeling that he and the author are working together
as his reading progresses, potentially enhancing his learning experience.



Introduction

Triggered by the customary use of infinitesimal and infinite quantities in
the works of Cavalieri (52, 53) and Leibniz (137), inspired by the Cantor’s theory
of transfinite numbers (49) and instigated by Veronese’s suggestions in the
geometric treatise (230) on the possibility of the existence of line segments
with infinitesimal and infinite lengths, the young Italian mathematician
Tullio Levi-Civita (1873-1941) brought forth in (139) the system of generalised
hyperbolic numbers (numeri generali iperbolici), which he denoted by I.
In that work, he defines addition and multiplication operations along with an
order on I, rendering it a non-Archimedean (totally) ordered field structure that
extends the real number system. Furthermore, he indicates how power series with
coefficients in I can be used to define transcendental functions on subsets of I,
and he reveals how the derivatives of those functions can be obtained. Ever since
that publication, many mathematicians independently rediscovered Levi-Civita’s
number system, such as Berz (16), Laugwitz (131), Neder (164) and
Ostrowski (170), and many have considerably advanced the research on the
theme, most notably Berz (17, 18, 19, 20) and Shamseddine (200, 207, 211, 208).

During the course of the 20th century, the ordered field at issue eventually
came to be almost universally denoted by R and called the real Levi-Civita field,
as its elements were called the real Levi-Civita numbers. Moreover, a robust
Measure Theory on R

n was conceived (23, 202, 160, 205, 73, 211), giving rise to a
definition of multiple integrals for functions of type R

n
! R so that refurbished

versions of many theorems of the classical theory of integration on Rn hold, such as
the Fundamental Theorem of Calculus and Fubini’s Theorem.

A real Levi-Civita number is a formal power series x =
X

q2Q

xqXq with real

coefficients whose support supp (x) := {q 2 Q | xq 6= 0} is left-finite in Q,
that is, it is a family x = {xq}q2Q in R such that for each q0 2 Q, there is only a



finite number of elements q of supp (x) so that q 6 q0. That implies that
each support supp (x) for x 2 R is a countable well-ordered subset of Q
(cf. Proposition 3.10, Item (c)), say supp (x) = {q1q2 . . . qn . . . }, and the number
x is denoted by a countable formal sum

x = xq1X
q1 + xq2X

q2 + · · ·+ xqn
Xqn + · · · .

The addition operation on R is given by (x+ y)
q
:= xq + yq and the

multiplication operation on R is given by (xy)
q
:=
X

r,s2Q
r+s=q

xrys. It turns out that this

multiplication is well-defined, since the left-finiteness of supp (x) and supp (y) in
Q implies that the sum

X

r,s2Q
r+s=q

xrys has only a finite number of non-zero terms

(cf. Lemma 1.75). The careful reader shall notice that these operations are
analogous to the usual addition and multiplication operations on polynomials,
except that, in this case, we are dealing with a potentially infinite number of
terms and with rational exponents. The left-finiteness property also implies
that each support supp (x) has a least element ms (x) :=

Q
min {supp (x)} in Q

whenever x 6= 0, and the image of x under ms (x) is denoted by pc (x) := xms(x).
As a special case, we define pc (0) := 0. The order < on R is defined so that for
all x, y 2 R, the conditions x < y and pc (y � x) > 0 are equivalent.

Note that X,X2,X3, . . . is a decreasing sequence of infinitesimal numbers
in R (Definition 2.42), and X�1,X�2,X�3, . . . is an increasing sequence of infinite
numbers in R. With that setting, one may prove that R is a non-Archimedean
ordered field (cf. Theorems 3.67 and 3.82), just as Levi-Civita did in 1893. The set
R of real numbers is identified with a subset of R via injection x 7! xX0, and this
injection is an immersion between ordered rings. Thus, we may write R ⇢ R.

The order on R canonically defines a topology on R, which is called the
strong topology on R and shall be denoted by

R
St for the sake of this introduction.

Another topology of the utmost importance for the theory is generated by the basic
open sets of the form

Sr(x) :=
�
y 2 R |

R
max
q61/r

|yq � xq| < r
 

2



for x 2 R and r 2 (0,1)R, which is called the weak topology on R and shall be
denoted by

R
Wt for now. One may prove that

R
Wt ⇢

R
St and that R is a topological

field when endowed with its strong topology (cf. Theorems 4.2 and 4.15).

Since each element of R is a family x = {xq}q2Q in R with indices in Q,
it is advantageous to write the indices of a family in R in the lower-left corner,
such as in ix, reserving the lower-right corner to the elements of Q. Hence,
we define ixq as being the q-image of the i-term of the family {ix}i2I in R,
that is, ixq := (ix)q. As usual, the upper-right indices are reserved to
denoting powers. A sequence {nx} in R is regular if the union

[

n2N

supp (nx) is

left-finite in Q.

With these definitions and conventions, we present, without proofs,
a couple of interesting analytical results concerning R for the sake of motivation.
The reader should not worry too much about the details, for the following results
are shown here just to give him or her a general sense of how the Analysis on R

has been developed.

Theorem A (Criterion of
R
St-convergence for power series in R). (17, 200)

Let {na} be a sequence in R, let
� :=

R
lim sup
n!1

�ms (na)
n

,

and take a fixed 0x 2 R. For each x 2 R, we have:

. If ms (x� 0x) > �, then the power series
1X

n=0

na (x� 0x)
n is absolutely 1

R
St-convergent;

. If ms (x� 0x) < �, or if ms (x� 0x) = � and �ms(na)
n

> � for infinitely many

natural numbers n, then the power series
1X

n=0

na (x� 0x)
n is

R
St-divergent.

1 A series
1X

n=1

na in R is absolutely ⌧-convergent (resp. absolutely ⌧-divergent) if the

series
1X

n=1

|na| is ⌧ -convergent (resp. ⌧ -divergent), where ⌧ is a topology on R.

3



Theorem B (Criterion of
R
Wt-convergence for power series in R). (17, 200)

Let {na} be a sequence in R, let � be defined as in Theorem A, suppose x and 0x

are elements of R so that 2 ms (x� 0x) = �, suppose that the sequence {nb} in R

given by nb := na · Xn� is regular, and let r be the positive extended real number
given by

r :=

8
>><

>>:

1
R

sup
q2Q

� R
lim sup
n!1

|nbq|
1/n
� if the denominator is non-zero ,

1 otherwise .

. If |(x� 0x)�| < r, then the power series
1X

n=0

na (x� 0x)
n is absolutely

R
Wt-convergent;

. If |(x� 0x)�| > r, then the power series
1X

n=0

na (x� 0x)
n is

R
Wt-divergent.

Corollary. (17, 200) Let {an} be a sequence in R and let ⌘ 2 R be the radius of

convergence of the series
1X

n=0

anx
n for x 2 R. For all x 2 R so that 3

|x| is less than

⌘ and is not infinitely close to ⌘, the series
1X

n=0

anx
n is absolutely

R
Wt-convergent.

Proof. Considering the definitions of �, {nb} and r from Theorems A and B,
in this situation we have

� =
R

lim sup
n!1

�ms (na)
n

=
R

lim sup
n!1

0

n
= 0

and nb = na · Xn� = na · X0 = na, and since the union
[

n2N

supp (nb) =
[

n2N

supp (na) = {0}

2 This implicitly entails the supposition that � 2 Q.
3 We assume that x <1 (8x 2 R), and x ⇠ 1 precisely when x is infinite in R.
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is left-finite in Q, the sequence {nb} is regular. Moreover, since
R

sup
q2Q

� R
lim sup
n!1

|nbq|
1/n
�
=

R
sup
q2Q

� R
lim sup
n!1

|naq|
1/n
�
=

R
lim sup
n!1

|na0|
1/n=

R
lim sup
n!1

|na|
1/n=

1

⌘

from the classical theory of power series on Rn, we get r = ⌘. Let x be an element
of R so that |x| is less than ⌘ and is not infinitely close to ⌘. If ms (x) > 0, then

the series
1X

n=0

anx
n is absolutely

R
St-convergent (Theorem A), and, accordingly, it is

absolutely
R
Wt-convergent. Since x is finite, we have ms (x) > 0 (cf. Theorem 3.82,

Item (n)), and we may assume that ms (x) = 0 from now on. Hence, x is of the form

x = x0X0 + xq1X
q1 + xq2X

q2 + · · ·

= x0 + xq1X
q1 + xq2X

q2 + · · ·

= x0 + (infinitesimal terms) ,

where x0 6= 0 and where q1q2 . . . is the finite sequence of positive elements of the
support supp (x). Note that

|x| = |x0|+ (infinitesimal terms)

and |x0| 6= ⌘, for otherwise |x| would be infinitely close to ⌘. If ⌘ =1, then |x0| < ⌘

by definition, and if ⌘ <1, then ms (⌘ � |x|) = 0 and

⌘ � |x0| = ⌘0 � |x|0 = (⌘ � |x|)0 = pc (⌘ � |x|) > 0

since |x| < ⌘, implying |x0| < ⌘. Therefore, the power series
1X

n=0

anx
n is

absolutely
R
Wt-convergent (Theorem B).

The Corollary above justifies the extension of several real-analytic
transcendental functions of type R! R to functions of type Fin (R)! Fin (R),
where Fin (R) is the set of finite real Levi-Civita numbers. As examples,
the power series

e
x=

1X

n=0

xn

n!
, cos (x) =

1X

n=0

(�1)n
x2n

(2n)!
and cosh (x) =

1X

n=0

x2n

(2n)!

define functions of type Fin (R)! Fin (R) which suitably extend their

5



classical counterparts, where the infinite sums are taken with respect to the weak
topology

R
Wt on R.

A numerical system analogous to R is obtained by allowing the coefficients
of the formal series to take complex values. That system is called the
complex Levi-Civita field, being denoted by C, and its elements are called the
complex Levi-Civita numbers. Such numbers may be seen as ordered pairs of
real Levi-Civita numbers via the bijection

X

q2Q

zqXq
7�!

⇣X

q2Q

Re (zq)Xq,
X

q2Q

Im (zq)Xq

⌘
.

Note that we have R ⇢ C, but, unlike R, the field C is non-orderable, since the
non-orderable field C may be identified with a subfield of C via the injective
homomorphism z 7! zX0. Moreover, one may prove that C is algebraically closed
(cf. Corollary 3.73), and it has been shown that a few key theorems of
Complex Analysis hold for C, for instance Cauchy’s Integral Formula (20).

As a matter of fact, the property of left-finiteness is not the only constraint
that one may impose upon the supports of formal series as a means to generate
noteworthy non-Archimedean extensions of a division ring K, as it turns out.
First considered by Newton (147, 91) and then further developed by Puiseux
in 1850 (178, 179), the so-called Puiseux series are the formal power series
x =

X

n2[n0,1)Z

xn/dX
n/d with coefficients in K, where n0 2 Z and d 2 N. These series

constitute a division ring extension of K, and they have important applications
in Complex Analysis and Algebraic Geometry, mainly the implications of the
Newton-Puiseux Theorem for the study of algebraic curves (4). Note that the
supports of the Puiseux series are subsets of Q of the form {n0/d0, n1/d1, n2/d2, . . . },
where n0n1n2 . . . is a sequence of integers and d0d1d2 . . . is a bounded sequence
of natural numbers. Another prominent power series extension of K was
introduced by Hahn in 1907 as he studied Hilbert’s Second Problem on the
question of the consistency of the axioms of Peano arithmetic (92). Considering a
commutative ordered group G, the Hahn series are the formal power series
x =

X

g2G

xgXg with coefficients in K whose supports supp (x) are well-ordered
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in G, and they form a division ring. Later, Mal’cev (153) and Neumann (145)
generalised Hahn’s construction to the case where G is non-commutative.
These approaches have a wide range of applications, but unfortunately neither of
them seem to support an analytic theory that is somewhat resemblant to
Real Analysis, in contrast to the Levi-Civita fields.

The same procedure that gave rise to those power series extensions of
division rings can be generalised and unified into a single framework. As Rayner
showed in 1968 (181, 182), if a general set J of subsets of a commutative ordered
group G is constrained by a particular set of axioms, then the set of formal
power series x =

X

g2G

xgXg with coefficients in a division ring K and with support

supp (x) in J forms a division ring extension of K, and if moreover K is ordered,
then that formal power series field can also be ordered. In addition,
that structure is algebraically closed whenever K is an algebraically closed field
and G is divisible.

We shall see that Rayner’s construction can be generalised even further,
provided that one is not solely interested in working with division rings or fields.
First off, not all of Rayner’s axioms are strictly necessary so as to generate
interesting power series rngs (rings without unity), and, by adjusting one of
these axioms, one need not assume that the group of exponents G is
commutative, matching Mal’cev’s and Neumann’s findings on the Hahn fields.
Along these lines, in full generality, one may take a rng R, an ordered group G

and a set J of subsets of G constrained by a fresh set of axioms, and then one
may consider the set of formal power series with coefficients in R whose supports
belong to J . As we shall confirm in Chapter 3, that set is a rng when endowed
with addition and multiplication operations akin to the ones defined for R.
We shall call such rng a Rayner rng, denoting it by

J
R [[XG]], and we shall call

the set J a Rayner ideal on G. Several variations of axioms upon J were
studied by Krapp, Kuhlmann and Serra (117), as they correlated each type of
ideal J to its corresponding algebraic impact on the rng

J
R [[XG]].

In essence, this thesis aims to determine the direct connections between the
properties of the Rayner rng

J
R [[XG]], the rng R, the ordered group G and the

7



Rayner ideal J , confronting the task under algebraic, topological and categorical
perspectives. That entails that the work must touch upon varied areas
of Mathematics, most crucially Group Theory, Category Theory, Topology,
Valuation Theory, Rng Theory and Field Theory. Chapters 1 and 2 and
Appendices A and B are designed to get the reader up to speed on these subjects,
at least on the topics that eventually play a role on the text. The main substance
of the thesis takes place in Chapters 3 and 4, where the former lays the algebraic
and categorical foundations of the Theory of Rayner Rngs and the latter dissects
two key topologies on Rayner rngs, the so-called weak and strong topologies.

On that footing, the conceptual machinery of Krapp, Kuhlmann and Serra’s
Theory of Rayner Ideals is expanded (Definitions 3.1 and 3.17), some key
algebraic and topological results from literature are generalised (Theorems 3.61,
3.78, 3.82, 4.2, 4.15 and 4.19), and some incipient concepts (Definitions 3.51, 3.85
and 4.26) are produced. The most original results of this work, which genuinely
expand the body of knowledge for researchers in the field, are the following:

. Theorem 1.84;

. Proposition 3.11;

. Proposition 3.14;

. Proposition 3.18;

. Proposition 3.39;

. Proposition 3.52;

. Proposition 3.53;

. Theorem 3.54;

. Theorem 3.56;

. Corollary 3.57;

. Theorem 4.2,
Items (j) and (k);

. Theorem 4.15,
Items (i), (j)
and (q);

. Theorem 4.21;

. Theorem 4.23;

. Theorem 4.28.

As a bonus, in Section 4.4 we present a generalisation of the notion of
order-convexity for subsets of

J
R [[XG]], making it possible for a new version

of the Intermediate Value Theorem to be obtained for the weak topology
(Theorem 4.28). Most of the Theory of Rayner Rngs is presented through an
unprecedented lens in this work, and that is by virtue of the recurring use of the
Notational Device 3.42, which is inspired on some notations of the utmost
importance in Asymptotic Analysis.
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1
Magmas

Operations are rules which assign to each pair of elements of a set an
element of the same set, and they are indispensable and paramount to the
assessment of virtually all areas of Mathematics. In Algebra, they are sorted out
and examined in depth, acting as foundational building blocks of that area
of study, while in non-algebraic settings they are studied in the presence of
additional structures, such as orders, topologies and valuations, where they are
meant to be compatible with those structures in some sense.

In this chapter, we shall present a compendium of definitions and results
concerning mathematical operations, narrowing focus to the topics that will be
relevant to our study of Rayner rngs.

1.1 Magmas

A set endowed with an operation on it receives a name brought
forth in 1970 by Bourbaki (32, 240) that has never really crossed into
mainstream usage. Since no other suggestion has achieved that status, and
since the series of textbooks entitled Eléments de mathématique has been highly
influential since the mid-20th century, we shall work with Bourbaki’s term.

Definition 1.1. A magma is a set M endowed with a function
f : M ⇥M !M . That function is said to be the operation of M , and
whenever no particular notation is attributed to the operation f of M , we shall
denote it in accordance with the following guidelines:

. If M is commutative, that is, if f (x, y) = f (y, x) (8x, y 2M), then f is
denoted by + or +M (additive notation) in parallel with denoting the
images f (x, y) by x+ y;

. If M is not necessarily commutative 1, then f is denoted by ⇥ or ⇥M

1 That is, either M is not commutative or we do not have enough information to tell if it is
commutative or not.



(multiplicative notation, standard) in parallel with denoting the images
f (x, y) by xy or x · y.

We have the following notations and terminology:

. A homomorphism of type M ! N is a function � : M ! N between
magmas such that

(8x, y 2M) � (xy) = � (x)� (y) ;

. The image of a homomorphism � : M ! N between magmas is the
submagma of N whose underlying set is the image Im (�) of the function �.

That image might be denoted by
Mag

Im(�) to emphasise its magma structure;

. A submagma of M is a magma M 0 such that M 0
⇢M and ⇥M 0 ⇢ ⇥M .

That is equivalent to stating that xy 2M 0 (8x, y 2M 0);

. A magma is trivial if it has only one element. Otherwise, the magma
is non-trivial;

. An element 0 of M is a zero element in M if x · 0 = 0 · x = 0 (8x 2M).
One notices that there can be at most one zero element in M ;

. Let A and B be two subsets of M . We shall denote by AB the set

AB := {xy | x 2 A and y 2 B} ,

and if M is denoted additively, then that set shall be denoted by A+B and
shall be given by

A+B := {x+ y | x 2 A and y 2 B} ;

. The centre of M is the set denoted 2 by Z (M) and given by

Z (M) := {x 2M | (8y 2M) xy = yx} ;

. A magma M is commutative if Z (M) = M , that is, if xy = yx (8x, y 2M).
2 The letter ‘Z’ in this notation comes from the German word ‘Zentrum’, which means centre.
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When applying an operation upon three or more elements of a general
magma M , the result may depend on the order on which the elements
are considered. That is the case, for instance, of the vector cross-product ⇥
on R3, which allows for two terms of the forms x⇥ (y ⇥ z) and (x⇥ y)⇥ z

to differ for infinitely many choices of x, y, z 2 R3. However, that is not the case
for the majority of magmas we will assess.

Definition 1.2. A semigroup is a magma M whose operation is associative,
that is, it is such that x (yz) = (xy) z (8x, y, z 2M). We have the following
notations and terminology:

. One can easily notice that every functional composition of homomorphisms
between semigroups is a homomorphism. Hence, such functions form a
category whose composition operation is the usual functional composition,
and that category is denoted by SGrp;

. Let x be an element of M and let n be a natural number. The n-th power

of x (in M) is the element denoted by xn and given by xn :=
n timesz }| {

x · x · · · x. If M
is denoted additively, then that element is called the n-th multiple of x

(in M), being denoted by nx and given by nx :=

n timesz }| {
x+ x+ · · ·+ x ;

. Let A be a subset of M and let n be a natural number. We shall denote by
An the set An := {xn

| x 2 A}, and if M is denoted additively, then that set
shall be denoted by nA and shall be given by nA := {nx | x 2 A}. Note that

An
⇢

n timesz }| {
A · A · · ·A and those two sets are not equal in general;

. Let S be a subset of M . The subsemigroup of M generated by S is
the smallest subsemigroup of M that contains S, and it shall be denoted
by SGrpspan

M

(S). It is easy to check that SGrpspan
M

(S) is given by

SGrpspan
M

(S) = {s1 · s2 · · · sn | s1s2 . . . sn is an inhabited finite sequence in S} ;

. The semigroup M is divisible if, for every x 2M and for every n 2 N,
there is a y 2M such that x = yn.
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Example 1.3. The number sets N, N0, Z, Q, R and C are commutative
semigroups when endowed with their usual addition operations or their usual
multiplication operations. The number 0 is a zero element of the semigroups
(N0,⇥N0), (Z,⇥Z), (Q,⇥Q), (R,⇥R) and (C,⇥C). The semigroups (Q,+Q),
(R,+R), (C,+C) and (C,⇥C) are divisible.

Proposition 1.4. (57) Let M be a semigroup. The centre Z (M) of M is a
subsemigroup of M .

Proof. Note that if x, y 2 Z (M), then for each z 2M we get xyz = xzy = zxy,
which gives us xy 2 Z (M).

Some magmas contain a distinguished element, which is defined by the fact
that it does not change the elements of the magma when operated upon them.

Definition 1.5. A magma M is unital if it has an identity element, that is,
if it has an element e such that xe = x = ex (8x 2M). That being so, it is a
standard exercise to prove that e is unique. Whenever no particular notation is
attributed to the identity element of M , we shall denote it in accordance with the
following guidelines:

. If the operation of M is denoted multiplicatively (standard case), then the
identity element of M is denoted by 1M ;

. If the operation of M is denoted additively, then the identity element of M
is denoted by 0M .

We have following notations and terminology concerning unital magmas:

. A homomorphism � : M ! N between unital magmas is unital if we
have � (1M) = 1N ;

12



. The kernel of a homomorphism � : M ! N between unital magmas
denoted additively is the fibre ��1h{0N}i, which is denoted by Ker (�);

. Let I be a set. The support of a family x = {xi}i2I 2
IM is the subset of

I denoted by supp (x) and given by

supp (x) := {i 2 I | xi 6= 1M} ;

. A monoid is a unital semigroup. One can easily notice that every
functional composition of unital homomorphisms between monoids is a
unital homomorphism. Hence, such functions form a category whose
composition operation is the usual functional composition, and that
category is denoted by Mon;

. The image
Mag

Im(�) of a unital homomorphism � : M ! N between monoids
is a submonoid of N . Thus, that image might be denoted by

Mon

Im (�) to
emphasise its monoid structure;

. Suppose M is a monoid and let x 2M . An element y of M is a
left-inverse (resp. right-inverse, inverse) of x in M if yx = 1M

(resp. xy = 1M , xy = 1M = yx). The element x is left-invertible
(resp. right-invertible, invertible) in M if there is a left-inverse
(resp. right-inverse, inverse) of x in M . If x is invertible in M , then its
inverse is unique and is denoted by x�1, and if M is denoted additively,
then that element is denoted by �x;

. Suppose M is a monoid, let x 2M and let Px := {n 2 N | xn = 1M}.

The order of x (in M) is the extended natural number denoted by
⇥M

/O (x)

and given by

⇥M

/O (x) :=

8
<

:
min (Px) if Px 6= ; ,

1 if Px = ; ;

13



. Suppose M is a monoid and let NM :=
n
n 2 N

... xn = 1M (8x 2M)
o

.
The characteristic of M is the number denoted by Char (M) and
given by

Char (M) :=

8
<

:
min (NM) if NM 6= ; ,

0 if NM = ; .

Example 1.6. The number sets N0, Z, Q, R and C are monoids when endowed
with their usual addition operations, the number 0 being their common
identity element, and the number sets N, N0, Z, Q, R and C are monoids when
endowed with their usual multiplication operations, the number 1 being their
common identity element. All these monoids have characteristic zero, and their
non-identity elements have infinite order.

Historically, by far the most important type of monoid is the one whose
elements are invertible, and that concept has been closely related to the notion
of symmetry ever since Évariste Galois proposed it in 1830 as he tackled the
problem of solvability of algebraic equations by radicals. To us, that concept will
be critical due to the fact that it generalises as far as possible the traits of the
arithmetic operation of addition, especially when the interplay between positive
and negative numbers is taken into consideration.

Definition 1.7. A group is a monoid G whose elements are invertible. We have
following notations and terminology:

. One can easily notice that every functional composition of unital
homomorphisms between groups is a unital homomorphism. Hence, such
functions form a category whose composition operation is the usual
functional composition, and that category is denoted by Grp;

14



. The inversion function on a group G is the function
⇥G

Inv : G! G that

associates every element x to its inverse
⇥G

Inv (x) := x�1 in G. It is easy to

check that
⇥G

Inv is an involution on G, that is, it is a bijective function that is
its own inverse;

. For each subset S of G, we denote by S�1 the image of S with respect to the

inversion function
⇥G

Inv, that is, we have

S�1 :=
⇥G

Inv hSi = {x�1 | x 2 S} ;

. Let G be a group and let S be a subset of G. The subgroup of G generated
by S is smallest subgroup of G that contains S, and it shall be denoted
by Grpspan

G

(S). It is easy to check that Grpspan
G

(S) is given by (Definition 1.2)

Grpspan
G

(S) =
SGrpspan

G

(S [ S�1 [ {1G}) .

Example 1.8. The number sets Z, Q, R and C are groups when endowed with
their usual addition operations, and the number sets Q� {0}, R� {0} and C� {0}

are groups when endowed with their usual multiplication operations.

Proposition 1.9. (34)

(a) If � : G! H is a homomorphism between groups, then � is unital;

(b) The kernel Ker (�) of a homomorphism � : G! H between groups is a
subgroup of G.

Proof. We leave the proof of item (b) to the reader.

(a) Note that

1H = � (1G · 1G) (� (1G))
�1 = � (1G)� (1G) (� (1G))

�1 = � (1G) .
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Proposition 1.10. (183) Let M be a semigroup. The following statements
are equivalent:

. Every element of M is left-invertible;

. Every element of M is right-invertible;

. M is a group.

1.2 Quotients in Mon

One may easily notice that the function of type Mon! Set (Example B.17;
Definition 1.5) that associates each monoid to its universe set and associates each
homomorphism between monoids to itself is a faithful functor (Definition B.25).
Thus, Mon is a Set-concrete category (Definition B.42) when endowed with
that function.

In this section, we shall appreciate how quotients are produced in the
category Mon (Definition B.46).

Definition 1.11. Let M be a monoid. A congruence relation on M is an
equivalence relation ⌘ on M such that for all x, x0, y, y0 2M so that x ⌘ x0

and y ⌘ y0, we have xy ⌘ x0y0.

Example 1.12. Consider the monoid N0 of non-negative integers with its usual
addition operation, let n 2 N be fixed, and let

N0
⌘
n

be the relation of congruence

modulo n, that is,
N0
⌘
n

is the binary relation on N0 defined so that for all x, y 2 N0,

the condition x
N0
⌘
n
y means that n divides x� y. One may easily check that

N0
⌘
n

is a

congruence relation on N0. Analogously, one may define a relation Z
⌘
n

of congruence
modulo n on the monoid Z of integers with its usual addition operation, which is
also a congruence relation on Z in the sense of Definition 1.11.
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Example 1.13. (174) Let M be a monoid and let ⌘1 and ⌘2 be the equivalence
relations on the product monoid M ⇥M (Example 1.18) given by

(x1, y1) ⌘1 (x2, y2), x1 = x2 and (x1, y1) ⌘2 (x2, y2), y1 = y2 .

Both ⌘1 and ⌘2 are congruence relations on M ⇥M .

Proposition 1.14. (65, 183) Let M be a monoid. If ⌘ is a congruence relation
on M , then the quotient set M/ ⌘ is a monoid when endowed with the
multiplication on M/ ⌘ given by (x/ ⌘) (y/ ⌘) := (xy) / ⌘. That monoid is a
quotient of M modulo ⌘ in Mon (Definition B.46).

Proof. We leave the verification that those operations are well-defined to
the reader, as well as the fact that M/ ⌘ is a monoid. Let � : M !M/ ⌘ be
the canonical quotient function in Set associated to the quotient M/ ⌘

(Example B.48), which is clearly a homomorphism between monoids. Thus, we
have ⌘ =

�eq (Definition B.45). Consider any monoid N and any homomorphism
f : M ! N so that ⌘ ⇢ feq, and let f : M/ ⌘! N be the quotient lowering of f
in Set, which is given by f (x/ ⌘) := f (x). If x and y are elements of M , then

f ((x/ ⌘) (y/ ⌘)) = f ((xy) / ⌘) = f (xy) = f (x) f (y) = f (x/ ⌘) f (y/ ⌘) ,

proving that f is a homomorphism. The uniqueness of f follows from the
universal property of quotients in Set. Therefore, we have proved that � is a
quotient morphism in Mon associated to the quotient M/ ⌘ .

Example 1.15. Let n be a fixed natural number and take the congruence relations
N0
⌘
n

and Z
⌘
n

on the monoids (N0,+N0) and (Z,+Z), respectively (Example 1.12).
The quotient monoids

(N0,+N0) /
N0
⌘
n
= {0/

N0
⌘
n
, 1/

N0
⌘
n
, . . . , (n� 1) /

N0
⌘
n
}

and

(Z,+Z) /
Z
⌘
n
= {0/

Z
⌘
n
, 1/

Z
⌘
n
, . . . , (n� 1) /

Z
⌘
n
}
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are clearly isomorphic, and they are denoted by Z/nZ. It turns out that Z/nZ is
a commutative group for all n 2 N.

1.3 Limits in Mon

Monoids give rise to other monoids via the universal property encoded by
the categorical notion of limit (Definition B.31).

Proposition 1.16. (2) The category Mon is complete (Definition B.33).

Proof. Let F : I !Mon be a functor and let
Mon

U : Mon! Set be the forgetful
functor of Mon (Definition B.42). Let � = {�i : S

Set

�! F (i)}
i2I0

be the canonical

construction of the limit cone over
Mon

U � F : I ! Set with vertex S (Example B.34,
Item (a)), that is, S is defined as the set of cones � = {�i : {;}

Set

�! F (i)}
i2I0

over
Mon

U � F : I ! Set, all with the common vertex {;}, and � = {�i : S
Set

�! F (i)}
i2I0

is the family of morphisms in Set given by �i(�) := �i(;). Endow S with the
multiplication on it given by (�µ)

i
(;) := �i (;)µi (;). One can easily verify that S is

a monoid and that each function �i is a homomorphism of type S Mon

�! F (i). Finally,
consider a monoid M and a cone µ = {µi : M

Mon

�! F (i)}
i2I0

over F , which may

also be seen as a cone over
Mon

U � F , and let µ : M Set

�! S be the limit lifting of µ
along � in Set. That means that for each i 2 I0, the digraph

S

�i

✏✏

M
µi

//

µ

77

F (i)

in Set commutes, and for all x, y 2M , we obtain

�i (µ (xy)) = µi (xy) = µi (x)µi (y) = �i (µ (x)) �i (µ (y)) = �i (µ (x)µ (y)) ,

implying µ (xy) = µ (x)µ (y) and proving that µ is a homomorphism. Thus,
the cone � satisfies the desired universal property in Mon.
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Analogous proofs to that of Proposition 1.16 show that many other
categories of magma-like objects are complete, such as the categories SGrp

and Grp. We shall see how the most notable limits take form in Mon.

Example 1.17. The simplest example of a limit in Mon is its terminal object
(Definition B.37), which happens to be the trivial monoid 1 := {1}, since for every
monoid M there is exactly one homomorphism of type M ! {1}. It is easy to
check that 1 is also the initial object in Mon.

Example 1.18. (2) Let {Mi}i2I be a family of monoids. The Cartesian product of
sets

Y

i2I

Mi is a product of {Mi}i2I in Mon (Definition B.38) when endowed with

the multiplication operation on it given by {ri}i2I {si}i2I := {risi}i2I , where the

projections �j :
MonY

i2I

Mi !Mj are the usual functions given by �j ({ri}i2I) := rj for

each j 2 I. The monoid
Y

i2I

Mi might be denoted by
MonY

i2I

Mi to emphasise that it

is a product in Mon. If the index set I is finite, then the product
MonY

i2I

Mi is also a

coproduct of {Mi}i2I in Mon.

Notation 1.19. Let {Mi}i2I be a family of monoids and let {⌘i⇢Mi ⇥Mi}i2I

be a family of congruence relations. By abuse of language, we denote by
Y

i2I

⌘i

the binary relation on the Cartesian product
Y

i2I

Mi given by

x
⇣Y

i2I

⌘i

⌘
y :, (8i 2 I) xi ⌘i yi

for all x, y 2
Y

i2I

Mi, which is clearly a congruence relation on the product

monoid
MonY

i2I

Mi. In particular, if M is a monoid and if ⌘ is a congruence relation
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on M such that Mi = M (8i 2 I) and ⌘i = ⌘ (8i 2 I), then the congruence

relation
Y

i2I

⌘i on
MonY

i2I

Mi = IM shall be denoted by I
⌘.

With these notations established, the following lemma shows that products
preserve quotients modulo congruence relations in Mon. That result will turn
out to be useful in Section 3.6.

Lemma 1.20. Let {Mi}i2I be a family of monoids, let {⌘i⇢Mi ⇥Mi}i2I be a
family of congruence relations and let {◆i : Mi !Mi/ ⌘i}i2I be the canonical

family of quotient homomorphisms. The product
MonY

i2I

(Mi /⌘i) is a quotient of

MonY

i2I

Mi modulo
Y

i2I

⌘i in Mon (Definition B.46) whose quotient homomorphism is

the function denoted by
MonY

i2I

◆i :
MonY

i2I

Mi !

MonY

i2I

(Mi /⌘i) and given by

⇣MonY

i2I

◆i
⌘
({xi}i2I) := {◆i (x)}i2I .

Proof. Let N be a monoid and let f :
MonY

i2I

Mi ! N be a homomorphism so that

Y

i2I

⌘i ⇢
Uf

eq (Definition B.45). If f :
MonY

i2I

(Mi /⌘i)! N is a homomorphism such

that the digraph
MonY

i2I
Mi

f
//

MonY

i2I
◆i

✏✏

N

MonY

i2I
(Mi /⌘i)

f

::
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commutes, then for all {xi}i2I 2

MonY

i2I

Mi, we have

f ({xi}i2I) = f
⇣⇣MonY

i2I

◆i
⌘
(x)
⌘
= f ({xi/ ⌘i}i2I) .

Indeed, the function f :
MonY

i2I

(Mi /⌘i)! N given by f ({xi/ ⌘i}i2I) := f ({xi}i2I) is

well-defined since
Y

i2I

⌘i ⇢
Uf

eq, and it is easy to see that it is a unital homomorphism

between monoids.

Example 1.21. (2) Let f, g : M ! N be two unital homomorphisms
between monoids. The submonoid E := {x 2M | f (x) = g (x)} of M is an
equaliser of f and g in Mon (Definition B.40), where the equaliser morphism
eq (f, g) : E Mon

�!M is the canonical inclusion between sets. The monoid E might
be denoted by

Mon

Eq (f, g) to emphasise that it is an equaliser in Mon.

Example 1.22. (2) Let f : M ! P and g : N ! P be two unital homomorphisms
between monoids. The subset

P := {(x, y) 2M ⇥N | f (x) = g (y)}

of the product monoid M ⇥N (Example 1.18) forms a submonoid of M ⇥N and
it is a pullback of f and g in Mon (Definition B.41), where the pullback
morphisms f : P Mon

�! N and g : P Mon

�!M are given by f (x, y) := y and
g (x, y) := x. In other words, the monoid P is a fibred product of M and N with
respect to f and g in Mon, and it might be denoted by M

Mon

⇥
f,g

N to emphasise

that it is a fibred product in Mon.

The following lemma describes a peculiar property of limit cones in Mon,
and it will come in handy in Section 3.6.
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Lemma 1.23. Let F : I !Mon be a functor and suppose that
� = {�i : L

Mon

�! F (i)}
i2I0

is a limit cone over F . If x and y are elements of L

so that �i (x) = �i (y) (8i 2 I0), then x = y.

Proof. Let � = {�i : S
Mon

�! F (i)}
i2I0

be the limit cone over F constructed in the
proof of Proposition 1.16. Since limits are unique up to unique isomorphism,
there is a unique isomorphism ↵ : L Mon

�! S such that the digraph

L
�i

''

↵

✏✏

F (i)

S

�i

77

in Mon commutes for all i 2 I0. By the hypothesis, we have

(8i 2 I0) (↵ (x))
i
(;) = �i (↵ (x)) = �i (x) = �i (y) = �i (↵ (y)) = (↵ (y))

i
(;) ,

implying (↵ (x))
i
= (↵ (y))

i
(8i 2 I0), ↵ (x) = ↵ (y) and x = y.

1.4 Preordered and ordered sets

Often in systematic investigations, it is imperative to possess a precise
abstract characterisation of how the elements of certain sets are arranged relative
to each other. This goal is achieved mainly by means of the notions of preorder,
partial order and (total) order, which are special binary relations that emerge
in almost every area of Mathematics with essential applications to the formal,
natural and social sciences. The field of Order Theory provides a deep
examination of those notions, and its most basic concepts are presented in the
following definitions.
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Definition 1.24. Let X be a set, let <⇢ X ⇥X be a binary relation on X and let

6 :=< [ {(x, x) | x 2 X} .

. The relation < is irreflexive (on X) if x 6< x (8x 2 X);

. The relation < is transitive (on X) if it satisfies the condition

(8x, y, z 2 X) ((x 6 y and y 6 z)) x 6 z) ;

. The relation < is a preorder (on X) if it is irreflexive and transitive.
A preordered set is a set X endowed with a preorder < on it. Whenever
no particular notation is attributed to the underlying preorder of a
preordered set X, that preorder shall be denoted by < or <X . An interval
in a preordered set X is a subset of X of one of the forms:

(a, b)
X
:= {x 2 X | a < x < b} ; (a,!)

X
:= {x 2 X | x > a} ;

[a, b]
X
:= {x 2 X | a 6 x 6 b} ; ( , b)

X
:= {x 2 X | x < b} ;

[a, b)
X
:= {x 2 X | a 6 x < b} ; [a,!)

X
:= {x 2 X | x > a} ;

(a, b]
X
:= {x 2 X | a < x 6 b} ; ( , b]

X
:= {x 2 X | x 6 b} ,

where a, b 2 X. In case X is an ordered subset of (R, <R), the intervals
(a,!)

X
, ( , b)

X
, [a,!)

X
and ( , b]

X
are denoted by (a,1)

X
, (�1, b)

X
,

[a,1)
X

and (�1, b]
X

, respectively;

. The relation < is strictly transitive (on X) if it satisfies the condition

(8x, y, z 2 X) ((x < y and y < z)) x < z) .

Note that the strict transitivity implies the regular transitivity;

. The relation < is total (on X) if it satisfies the condition

(8x, y 2 X) (x 6 y or y 6 x) ;

. The relation < is a partial order (on X) if it is irreflexive and
strictly transitive. Note that every partial order on X is a preorder on X.
A partially ordered set is a set X endowed with a partial order < on it;
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. The relation < is an order (on X) if it is irreflexive, strictly transitive
and total. An ordered set is a set X endowed with an order < on it;

. The relation < is directed (on X) if X 6= ; and for all x, y 2 X, there is a
z 2 X such that x 6 z and y 6 z;

. A subset S of a preordered set X is (<-)order-convex (in X) if for any
x, y 2 S so that x < y, we have (x, y)

X
⇢ S;

. The set X is (<-)order-dense if for all x, y 2 X so that x < y, there is a
z 2 X such that x < z < y;

. A subset S of X is (<-)order-dense (in X) if for all x, y 2 X so that
x < y, there is an s 2 S such that x 6 s 6 y. Note that X is order-dense
in itself;

. A subset S of X is strictly (<-)order-dense (in X) if for all x, y 2 X so
that x < y, there is an s 2 S such that x < s < y. Therefore, the set X is
order-dense if, and only if, it is strictly order-dense in itself.

Example 1.25. Let X be a set and consider the set P (X) of subsets of X.
The (non-strict) dominance relation on P (X) is the binary relation � on
P (X) such that for all A,B 2 P (X), the condition A � B is equivalent to the
existence of an injective function of type A ! B, and that relation is transitive
and total. The relation

� := � � {(A,A) | A 2 P (X)}

on P (X) is a directed preorder relation on P (X), and the relation

⇠ := � � {(A,B) | A and B are non-equipotent subsets of X}

is a directed partial order on P (X).
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Structure-preserving functions between preordered sets often provide us with
valuable information on the nature of the preorders under consideration:

Definition 1.26. Let X be a preordered set.

. Suppose Y is another preordered set. A function f : X ! Y is increasing
(resp. decreasing, non-strictly increasing, non-strictly decreasing)
if the condition x < y (resp. x < y, x 6 y, x 6 y) implies f (x) < f (y)

(resp. f (x) > f (y), f (x) 6 f (y), f (x) > f (y)) for all x, y 2 X. A function
f : X ! Y is monotone (resp. non-strictly monotone) if it is increasing
or decreasing (resp. non-strictly increasing or non-strictly decreasing);

. Every functional composition of two increasing functions between ordered
sets is increasing. Thus, such functions form a category whose objects are
the ordered sets and whose composition operation is the usual functional
composition, and that category shall be denoted by SetOrd;

. A preordered (resp. ordered) subset of X is a preordered (resp. ordered)
set X 0 such that X 0 ⇢ X and <X0 ⇢<X .

Some concepts allow us to describe how the subsets of a preordered set stand
in relation to the whole structure:

Definition 1.27. Let X be a preordered set and let S be a subset of X.

. An upper bound (resp. lower bound) of S (in X) is an element x of X
such that s 6 x (resp. x 6 s) for all x 2 S. A subset S of X is bounded
above (resp. bounded below) in X if it has an upper bound
(resp. lower bound) in X, and otherwise it is unbounded above
(resp. unbounded below);

. A greatest element (resp. least element) of S is an element x of S that
is an upper bound (resp. lower bound) of S in X;

25



. A supremum (resp. infimum) of S (in X) is an upper bound
(resp. lower bound) x of S in X such that x 6 y (resp. y 6 x) for every
upper bound (resp. lower bound) y of S in X. If X is ordered and if S has
a supremum (resp. infimum), then that supremum (resp. infimum) is
unique and it is denoted by X

sup (S) (resp.
X

inf (S));

. A subset S of X is cofinal (resp. strictly cofinal) in X if for every x 2 X

there is an s 2 S such that x 6 s (resp. x < s). The cofinality of X is the
cardinal number denoted by cf (X) and given by

cf (X) :=
Card

min {|S| | S is a cofinal subset of X} ;

. A subset S of X is coinitial (resp. strictly coinitial) in X if for every
x 2 X there is an s 2 S such that s 6 x (resp. s < x). The coinitiality
of X is the cardinal number denoted by ci (X) and given by

ci (X) :=
Card

min {|S| | S is a coinitial subset of X} .

Some elementary types of preordered and ordered sets will turn out to be
quite useful at a later point:

Definition 1.28.

. A well-ordered set is an ordered set X such that every inhabited subset
of X has a least element;

. A subset S of an ordered set X is well-ordered in X if the ordered set
(S,<X \ (S ⇥ S)) is well-ordered. The set of well-ordered subsets of X shall
be denoted by

wo

P(X);

. A preordered set X satisfies the Supremum Property if every inhabited
subset of X that has an upper bound in X has a supremum in X;

. A linear continuum is an order-dense ordered set X with more than one
element that satisfies the Supremum Property.
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Example 1.29. The set R of real numbers with its usual order is the archetypal
example of a linear continuum, but there are other linear continua that are not
isomorphic to any interval in R. For instance, consider the closed long ray (84),
defined as the Cartesian product L := !1 ⇥ [0, 1)R endowed with the order < on
it so that for all (↵, x) , (�, y) 2 L, the condition (↵, x) < (�, y) is equivalent to
stating that either ↵ < �, or ↵ = � and x < y. One may prove that L is a
linear continuum that is not isomorphic to [0,1)R as an ordered set,
since cf ([0,1)R) = ! and cf (L) = !1.

Proposition 1.30. Every increasing function f : X ! Y between ordered sets
is injective.

Proof. If x and y are two elements of X so that x < y, then f (x) < f (y), and,
in particular, we have f (x) 6= f (y).

Proposition 1.31. (106) Let X be a well-ordered set. There is a unique ordinal
↵ and a unique function f : X ! ↵ such that f is an isomorphism between the
ordered sets X and ↵.

Lemma 1.32. (176) An ordered set X is well-ordered if, and only if, every sequence
in X has a non-strictly increasing subsequence.

Proof. If X is inhabited and not well-ordered, then there is an inhabited subset
S of X that does not have a least element and one can easily obtain a decreasing
sequence in X. Suppose X is well-ordered and suppose {xn} is a sequence in X.
We shall recursively construct a non-strictly increasing subsequence of {xn}

as follows. Let n1 be the least natural number such that xn1 is the least element
of the set S := {xn | n 2 N}, and if the finite sequence n1n2 . . . nk has already
been defined, then let nk+1 be the least natural number in the interval (nk,1)N
such that xnk+1

is the least element of the set {xn | n 2 (nk,1)N}. Thus,
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the subsequence {xnk
}
k2N of {xn} is non-strictly increasing by construction,

and that proves the lemma.

In some circumstances, it is convenient to artificially incorporate a greatest
element to an ordered set:

Definition 1.33. Let X be an ordered set and let _ be an arbitrary object that
does not belong to X. The superior extension of X, denoted by

^

X, is the
set

^

X:= X [ {_} endowed with the binary relation <^

X
on

^

X given by

<^

X
:=<X [ (X ⇥ {_}). Thus,

^

X is an ordered set with a greatest element _.
In case X is an ordered subset of (R, <R), the object _ is usually denoted by 1.

Example 1.34. The set R of real numbers has no greatest element, and its superior
extension

^

R has an additional element 1, which is the greatest element of
^

R.

1.5 Nets and topological spaces

The intuitive notion of neighbourhood of a point appears in many
branches of Mathematics, especially in geometric and analytical settings, and its
roots may be traced back to antiquity. As the Renaissance period witnessed the
beginnings of the Differential and Integral Calculus, the need for a compendious
understanding of that concept became apparent in the mathematical community,
since it is closely related to the notion of continuity. Later on, amidst a
widespread desire to put Mathematics on a firm basis during the course of the
19th century, Riemann’s work on algebraic functions and on the foundations of
geometry led him to formulate a study program to investigate “[...] a part of the
theory of magnitudes which is independent of the theory of measurement and in
which the magnitudes are considered not as existing independently of their
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position nor as expressible in terms of a unit of measurement, but as regions in
a manifold” (186). That program extended through the early 20th century and
was pursued by many researchers, most notably Hilbert (99), reaching its
highpoint with the work of Hausdorff (95), who formulated the general notion of
neighbourhood practically as it is understood today, extracting the essence of the
concept and formulating the definition of a topological space. The study
of these spaces was first called Analysis Situs and eventually renamed
(General) Topology (etymologically, “science of place”), and it is one of the
main pillars of modern Mathematics.

In this section, we shall present a compendium of definitions and results
concerning topological spaces, narrowing focus to the topics that will be relevant
to our study of Rayner rngs. We begin with the definition of a net, developed by
Moore and Smith in 1922 (161), which is a generalisation of the notion of sequence
that turns out to be more appropriate for general topological considerations.

Definition 1.35. Let X be a set. A net in X is a family {x�}�2⇤ in X, where ⇤

is a directed preordered set. We have the following notations and terminology:

. Suppose X is a preordered set. A net {x�}�2⇤ in X is increasing
(resp. decreasing, monotone, non-strictly increasing, non-strictly
decreasing, non-strictly monotone) if it is so as a function of
type ⇤! X (Definition 1.26);

. A net {x�}�2⇤ is a subnet of a net {yµ}µ2M in X if there is a non-strictly
increasing net {µ�}�2⇤ in M that is cofinal in M and is such that
x� = yµ�

(8� 2 ⇤). In other words, a subnet of {yµ}µ2M is a net of the form
{yµ�

}
�2⇤, where {µ�}�2⇤ is a non-strictly increasing net in M that is

cofinal in M ;

. A net {x�}�2⇤ in X is residual in a subset S of X if there is a �0 2 ⇤ such
that x� 2 S (8� 2 [�0,!)⇤);

. A net {x�}�2⇤ in X is frequent in a subset S of X if, for all �0 2 ⇤, there is
a � 2 [�0,!)⇤ such that x� 2 S;
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. A sequence in X is a net in X of the form {xn}n2[k,!)Z
, where k 2 Z.

Alternative notations for sequences may be found in List of Symbols: {an};

. A finite sequence in X is a net in X of the form {xn}n2[k,l]Z
,

where k, l 2 Z and k 6 l. Alternative notations for finite sequences may be
found in List of Symbols: akak+1 . . . ak+n;

. A sequence {xn} is a subsequence of a sequence {yn} in X if there is an
increasing sequence {kn} in N such that xn = ykn (8n 2 N). In other words,
a subsequence of {yn} is a sequence of the form {ykn}, where {kn} is an
increasing 3 sequence in N.

The model of excellence for Riemann’s envisaged “theory of magnitudes” was
attained by means of the following definition:

Definition 1.36. Let X be a set. A topology on X is a set ⌧ of subsets of X
such that the following three conditions are satisfied:

(T0) ;, X 2 ⌧ ;

(T1) For every family {Si}i2I in ⌧ , we have
[

i2I

Si 2 ⌧ ;

(T2) For every finite sequence S1S2 . . . Sn in ⌧ , we have S1 \ S2 \ · · · \ Sn 2 ⌧ .

A topological space is a set X endowed with a topology ⌧ on X. Whenever no
particular notation is ascribed in the context to the topology of X, that shall be
denoted by ⌧X . We have the following notations and terminology:

. A ⌧X-open set is an element of ⌧X , and a ⌧X-closed set is the complement
of an element of ⌧X in X. A ⌧X-clopen set is a subset of X that is both
⌧X-open and ⌧X-closed;

3 Note that if {ykn} is a subsequence of {yn}, then the sequence {kn} in N is (strictly) increasing,
implying that it is cofinal in N. Hence, every subsequence of {yn} is a subnet of {yn}. On the
other hand, a subnet of {yn} of the form {ykn} is not necessarily a subsequence of {yn},
since the sequence {kn} in N is only required to be non-strictly increasing.
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. A ⌧X-neighbourhood of an element x of X is a subset S of X such that
there is a ⌧X-open set U so that x 2 U ⇢ S;

. A ⌧X-subspace of X is a topological space X 0 such that X 0 ⇢ X and
⌧X0 = {G \X 0 | G 2 ⌧X}. The topology ⌧X0 is the restriction of ⌧X

to X 0 and it shall be denoted by ⌧X �X0 or ⌧X � (X 0);

. A function f : X ! Y between topological spaces is continuous
if f�1hUi 2 ⌧X (8U 2 ⌧Y ). One can easily notice that every functional
composition between two continuous functions is continuous. Hence,
such functions form a category whose composition operation is the usual
functional composition and that category is denoted by Top;

. The isomorphisms in Top are called homeomorphisms and they are the
bijective functions f : X ! Y between topological spaces such that both
f and f�1 are continuous;

. A net {x�}�2⇤ in X ⌧X-converges to an element x of X, or symbolically
x�

⌧X

�!
�2⇤

x, if {x�}�2⇤ is residual in every ⌧X-neighbourhood of x. In that
case, we also say that x is a ⌧X-limit (point) of the net {x�}�2⇤;

. A net {x�}�2⇤ in X ⌧X-clusters at an element x of X, or symbolically
x�

⌧X99K
�2⇤

x, if {x�}�2⇤ is frequent in every ⌧X-neighbourhood of x. That turns
out to be equivalent to the existence of a subnet {x�µ

}
µ2M of {x�}�2⇤ so

that x�µ

⌧X

�!
µ2M

x. In that case, we also say that x is a ⌧X-cluster point of
the net {x�}�2⇤.

We shall assume in this thesis that the reader is already familiar with a
handful of basic topological terms, such as the notions of basis, subbasis, open
covering, isolated point, etc.

We will make use of particular classes of topological spaces:
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Definition 1.37. Let X be a topological space.

. The space X is discrete if every subset of X is ⌧X-open;

. The space X is T2 or Hausdorff if, for any two distinct points x and y

in X, there are two disjoint⌧X-open sets U and V such that x 2 U and y 2 V ;

. The space X is R2 or regular if, for every ⌧X-closed set F and for
every x 2 X � F , there are disjoint ⌧X-open sets U and V such that F ⇢ U

and x 2 V ;

. The space X is T3 if it is R2 and T2;

. The space X is R 5/2 or completely regular if, for every inhabited ⌧X-closed
set F and for every x 2 X � F , there is a continuous function f : X ! R
such that f (x) = 0 and f hF i = {1};

. The space X is T 7/2 or Тихонов 4 if it is R 5/2 and T2;

. The space X is first-countable if every point x of X has a countable local
⌧X-system of neighbourhoods;

. The space X is second-countable if it has a countable basis;

. The space X is separable if it has a countable ⌧X-dense subset;

. The space X is connected if it is not a disjoint union of two inhabited
⌧X-open sets. Otherwise, X is disconnected;

. The space X is totally disconnected if every inhabited connected subspace
of X is a singleton;

. The space X is perfect if it has no ⌧X-isolated points;

. The space X is countably compact if every sequence in X has a
⌧X-cluster point;

4 According to the widely adopted ISO 9:1995 system, the Russian name ‘Тихонов’ should be
transliterated into the Latin alphabet as ‘Tihonov’, but it may be found in mathematical
publications written in the English language variously rendered as ‘Tychonoff’, ‘Tychonov’,
‘Tikhonov’, ‘Tichonov’, etc.
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. The space X is compact if every net in X has a ⌧X-cluster point;

. The space X is locally compact if every point in X has a ⌧X-closed,
compact neighbourhood;

. The space X is Lindelöf if every ⌧X-open covering of X has a countable
subcovering;

. The space X is zero-dimensional if it has a basis whose elements are
all ⌧X-clopen.

Proposition 1.38. (241) Every T2, zero-dimensional topological space is
totally disconnected.

Proof. Let X be an inhabited, T2, zero-dimensional topological space, let S be
an inhabited subspace of X and suppose there are two distinct elements x and y

in S. Since X is T2, there is a ⌧X-neighbourhood U of x so that y 62 U , and since
x is zero-dimensional, there is a ⌧X-clopen set A so that x 2 A ⇢ U . Hence,
the intersections S \ A and S \ (X � A) are ⌧S-open subsets of S that cover S,
the former containing x and the latter containing y, implying that S

is disconnected.

Proposition 1.39. (241) Every second-countable topological space is Lindelöf
and separable.

Proposition 1.40. (241) Let X be a topological space and let ⇠ be the binary
relation on X such that for all x, y 2 X, the condition x ⇠ y holds if, and only if,
there is a connected subspace S of X so that x, y 2 S.

. The relation ⇠ is an equivalence relation on X;

. All equivalence classes of ⇠, that is, all connected components of X,
are ⌧X-closed and are maximal connected subspaces of X.
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Proposition 1.41. (241, 44) Let X be a topological space. If {Si}i2I is a family
of connected subspaces of X so that Si \ Sj 6= ; (8i, j 2 I), then the union

[

i2I

Si is

a connected subspace of X.

Proposition 1.42. (241, 44, 162) Let X be a connected topological space and
let Y be a topological space. If f : X ! Y is a continuous function, then f hXi is
a connected subspace of Y .

The Cartesian product of the universe sets of a family of topological spaces
may be equipped with a natural topology:

Definition 1.43. Let {Xi}i2I be a family of topological spaces. The product
topology on

Y

i2I

Xi is the smallest topology ⌧ on the Cartesian product
Y

i2I

Xi

such that every canonical projection

8
><

>:

⇡i :
⇣Y

i02I

Xi0 , ⌧
⌘
! Xi

⇡i ({xi0}i02I) := xi (8i 2 I)

is continuous, and that topology shall be denoted by
TopY

i2I

⌧Xi
. One often assumes

that
Y

i2I

Xi is endowed with its product topology, except when otherwise stated.

It can be easily verified that the space
⇣Y

i2I

Xi,
TopY

i2I

⌧Xi

⌘
is a product of the family

{Xi}i2I in Top (Definition B.38).

Proposition 1.44. (241) Let {Xi}i2I be an inhabited family of connected
topological spaces. The product space

Y

i2I

Xi is connected.
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Distance measurements between pairs of points naturally give rise to
topological spaces, perhaps the most noteworthy ones. In abstract topological
frameworks, distances are described by a particular set of axioms:

Definition 1.45. Let X be a set.

. A metric on X is a function d : X ⇥X ! [0,1)R such that for
all x, y, z 2 X, we have:

(M1) d (x, y) 6 d (x, z) + d (z, y) ;

(M2) d (x, y) = d (y, x) ;

(M3) d (x, y) = 0 if, and only if, x = y.

. An ultrametric on X is a metric d : X ⇥X ! [0,1)R on X such that

(8x, y, z 2 X) d (x, y) 6 max {d (x, z) , d (z, y)} ;

. A metric space (resp. ultrametric space) is a set X endowed with
a metric (resp. ultrametric) on it. Whenever no particular notation is
ascribed in the context to the metric of X, that shall be denoted by dX ;

. The metric topology induced by a metric d on X is the topology on X

generated by the basic open sets

B
d

r
(x) := {y 2 X | d (x, y) < r}

for x 2 X and r 2 (0,1)R. That topology shall be denoted by t (d).
A topological space X is said to be metrizable (resp. ultrametrizable)
if there is a metric (resp. ultrametric) d on X such that ⌧X = t (d);

. Let d : X ⇥X ! [0,1)R be a metric on X.

– A sequence {xn} in X is d-Cauchy if for every ✏ 2 (0,1)R, there is an
N 2 N such that d (xm, xn) < ✏ (8m,n 2 [N,1)N);

– A metric d : X ⇥X ! [0,1)R on X is complete if every d-Cauchy
sequence on X t (d)-converges in X. A metric space is complete if its
metric is complete.
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Example 1.46. The function d : C⇥ C! [0,1)R given by

d (x1 + iy1, x2 + iy2) :=
q
(x1 � x2)

2 + (y1 � y2)
2

is a well-known complete metric on C, and it induces the usual topology on C,
which is second-countable, T 7/2, perfect and locally compact.

Proposition 1.47. (241) Let X be a metric space. The following conditions
are equivalent:

. X is second-countable;

. X is Lindelöf;

. X is separable.

Theorem 1.48 (Urysohn’s Metrisation Theorem). (227) A second-countable
topological space is metrizable if, and only if, it is T3.

1.6 The order topology

An order on a set naturally induces a topology on that set:

Definition 1.49. Let X be an ordered set. The order topology on X, which shall
be denoted by

X

Ordt, Ordt(X) or Ordt(X,<X), is the topology on X generated by
the subbasis of intervals of the forms ( , x)

X
and (x,!)

X
for x 2 X.

Note that if a and b are two elements of X, then the interval (a, b)
X

is
X

Ordt-open, since (a, b)
X
= (a,!)

X
\ ( , b)

X
. Intervals of the forms [a, b]

X
,

[a, b)
X

and (a, b]
X

may also be
X

Ordt-open depending on the situation.
For instance, if X has a least element xmin and a greatest element xmax, then the
interval [xmin, xmax]X = X is clearly

X

Ordt-open.
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Example 1.50. The order topology on R coincides with the usual metric topology,
which is induced by the metric of Example 1.46 restricted to R⇥ R.

Proposition 1.51. (100, 171) If X is an ordered set, then the order topology
X

Ordt
is T2.

Proof. Let x and y be two distinct elements of X so that x < y. If (x, y)
X
= ;,

then ( , y)
X
\ (x,!)

X
= (x, y)

X
= ;, x 2 ( , y)

X
and y 2 (x,!)

X
, and if there

is a z 2 (x, y)
X

, then ( , z)
X
\ (z,!)

X
= ;, x 2 ( , z)

X
and y 2 (z,!)

X
, thus

proving the proposition.

Example 1.52. Let X and Y be the ordered sets

X := [0, 1]R [ {
p
2} [ [2, 3]R and Y := [0,

p
2]R [ [

p
3, 2]R ,

which are endowed with the induced orders inherited from the usual order on R,
and let A := Q \X and B := Q \ Y . It is easy to check that A is order-dense in X

but is not
X

Ordt-dense in X, while B is
Y

Ordt-dense in Y but is not order-dense
in Y .

Proposition 1.53. Let X be an order-dense ordered set with more than
one element, and let S be a subset of X. The following conditions are equivalent:

(a) S is order-dense in X;

(b) S is strictly order-dense in X;

(c) S is
X

Ordt-dense in X.

Proof. Clearly, we have (b))(a).

(a))(c): Suppose S is an inhabited order-dense subset of X, let x be an arbitrary
element of X and let U be an

X

Ordt-neighbourhood of x. Thus, there are
finite sequences a1 . . . am and b1 . . . bm in X so that m,n 2 N0 and such that

x 2
m\

i=1

(ai,!)
X
\

n\

j=1

( , bi)X ⇢ U .
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If U = X, then we have S \ U = S 6= ;. Assume U 6= X, which directely
implies that we cannot have m = 0 = n. Thus, without loss of generality,
we may assume m 6= 0. Since X

max
i2[1,m]N

ai < x and since X is order-dense,

there is a y 2 X such that X

max
i2[1,m]N

ai < y < x, and, given that S is

order-dense in X, there is an s 2 S such that y 6 s 6 x, which gives us
(8i 2 [1,m]N) ai 6 X

max
i2[1,m]N

ai < y 6 s 6 x and (8j 2 [1, n]N) s 6 x < bj ,

implying that s 2 U and proving that S is
X

Ordt-dense in X.

(c))(b): If S is
X

Ordt-dense in X and if x and y are elements of X so that x < y,
then, since the

X

Ordt-open interval (x, y)
X

is inhabited, there is an s 2 S

that belongs to (x, y)
X

.

Proposition 1.54. (163, 217) Let X be an ordered set. The order topology
X

Ordt
is connected if, and only if, X is a linear continuum. In that case, every
order-convex subspace of X is connected.

1.7 Topological magmas

The operation of a magma may be appointed as a continuous function
when the universe set of the magma is endowed with a topology on it.
That prompts a blending of two major pillars of Mathematics, viz. Algebra
and Topology, yielding profound insights with far-reaching implications in a
myriad of areas of study.

As strange as it may seem, a few fundamental results which appear to
be purely algebraic in nature have only ever been proved by means of
topological arguments, whereupon the continuity of most functions is assumed
and the notion of limit is readily employed. For instance, for model-theoretic
reasons it turns out that no proof of the Fundamental Theorem of Algebra that
eschews the use of topological concepts can be conceived, despite the attempts of
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many first-class mathematicians (114). This suggests that Algebra and Topology
feed off each other, and perhaps all areas of Mathematics are in such intertwined
relationship.

Bearing those considerations in mind, let us proceed to the basic
definitions:

Definition 1.55. A topological magma is a magma M endowed with a
topology ⌧ on it such that the operation

⇥M : (M, ⌧)⇥ (M, ⌧)! (M, ⌧)

is continuous. In the case of topological groups, one also assumes that the

canonical inversion function
⇥M

Inv : (M, ⌧M)! (M, ⌧M) is continuous. Whenever no
particular notation is ascribed in the context to the topology of M , that shall be
denoted by ⌧M . We have the following notations and terminology:

. A topological submagma (resp. subgroup) of M is a topological
magma (resp. group) M 0 such that (M 0,⇥M) is a submagma (resp. subgroup)
of (M,⇥M) and such that (M 0, ⌧M 0) is a topological subspace of (M, ⌧M);

. A metric ⇢ : G⇥G! [0,1)R on a commutative group G is invariant if
we have

(8x, y, z 2 G) ⇢ (x, y) = ⇢ (x+ z, y + z) ;

. Let G be a commutative topological group.

– A net {x�}�2⇤ in G is ⌧G-Cauchy (with respect to +G) if, for every
⌧G-neighbourhood U of 0G, there is a �U 2 ⇤ such that

(8�1,�2 2 [�U ,!)⇤) x�1 � x�2 2 U ;

– The topology ⌧G is complete 5 (with respect to +G), or the
commutative topological group G is complete, if every ⌧G-Cauchy net
in G is ⌧G-convergent;

5 Technically speaking, the topology ⌧G is induced by a uniform structure on G that is
compatible with the underlying group structure of G, and that implied uniform space is
complete (33, 111). We shall bypass the details of the general theory of uniform spaces,
defining the Cauchy nets and the complete spaces only when dealing with commutative
topological groups.
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– The topology ⌧G is sequentially complete (with respect to +G),
or the commutative topological group G is sequentially complete,
if every ⌧G-Cauchy sequence in G is ⌧G-convergent.

Example 1.56. The group (C,+C) is a topological group and the monoid
(C,⇥C) is a topological monoid when both are endowed with the usual topology
on C (Example 1.46).

Proposition 1.57. (33, 67) Let G be a topological group.

(a) For each g 2 G, the functions x 7! gx and x 7! xg of type G! G

are homeomorphisms;

(b) The inversion function
⇥G

Inv : G! G is a homeomorphism;

(c) A homomorphism � : G! H between topological groups is continuous if, and
only if, it is continuous at 1G.

Proposition 1.58. (107, 33, 241) Let G be a commutative topological group.

(a) Every ⌧G-convergent net in G is ⌧G-Cauchy;

(b) If {x�}�2⇤ is a ⌧G-Cauchy net in G and if x 2 G is so that x�

⌧G99K
�2⇤

x,

then x�

⌧G

�!
�2⇤

x (Definition 1.36).

Proposition 1.59. (169) If a commutative topological group G is first-countable
and sequentially complete, then it is complete.

Proof. Let {x�}�2⇤ be a ⌧G-Cauchy net in G and let {Un} be a countable
⌧G-system of neighbourhoods of 0G. For each n 2 N, there is a �n2 ⇤ such that
x� � xµ2 Un (8�, µ 2 [�n,!)⇤). In fact, the fact that ⇤ is directed implies that
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we may recursively choose each �n so that the sequence {�n} is non-strictly
increasing. Thus, it is easy to check that the sequence {x�n

} is ⌧G-Cauchy in G,
and, by supposition, there is an x 2 G so that x�n

⌧G

�!
n!1

x. We shall prove

that x�

⌧G

�!
�2⇤

x. Let k 2 N be arbitrary. Since the addition operation of G is

continuous, there is an n 2 N such that Un+ Un⇢ Uk, and, since x�n

⌧G

�!
n!1

x, there
is an m 2 [n,1)N such that x�m

2 x+ Un, that is, x�m
� x 2 Un. Finally, since

�m > �n, we obtain

(8� 2 [�m,!)⇤) x�� x = (x�� x�m
) + (x�m

� x) 2 Un+ Un ⇢ Uk ,

which proves the proposition.

In fact, Osborne considered Proposition 1.59 for T2 topological groups that
are not necessarily commutative. Nevertheless, he assumes the space is T2 just for
the sake of simplicity, and that condition is not employed at all in the argument.
We took the liberty of dropping that assumption, and we presented a simplified
version of his proof, designed specifically for the case in which the topological
group G is commutative.

Proposition 1.60. (233) Let G be a commutative topological group and suppose
there is an invariant metric on G such that ⌧G = t (⇢). The topological group G is
complete if, and only if, the metric ⇢ is complete.

Proof. Suppose G is complete, let {xn} be a ⇢-Cauchy sequence in G and let U

be a ⌧G-neighbourhood of 0G. Since ⌧G = t (⇢), there is an ✏ 2 (0,1)R such that
B
⇢

✏
(0G) ⇢ U and there is an N 2 N such that

(8m,n 2 [N,1)N) ⇢ (xm� xn, 0G) = ⇢ (xm� xn + xn, 0G + xn) = ⇢ (xm, xn) < ✏ ,

which gives us

(8m,n 2 [N,1)N) xm� xn 2 B
⇢

✏
(0G) ⇢ U ,
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implying that the sequence {xn} is ⌧G-Cauchy. Thus, there is an x 2 G such
that xn

⌧G

�!
n!1

x, that is, xn

t(⇢)
�!
n!1

x, proving that ⇢ is complete.

Conversely, suppose ⇢ is complete. Since we have assumed that G

is metrizable, it is first-countable, and it suffices to prove that it is sequentially
complete (Proposition 1.59). Let {xn} be a ⌧G-Cauchy sequence in G and let
✏ 2 (0,1)R be arbitrary. There is a ⌧G-neighbourhood U of 0G such that
U ⇢ B

⇢

✏
(0G) and there is an N 2 N such that

(8m,n 2 [N,1)N) xm� xn 2 U ⇢ B
⇢

✏
(0G) ,

which gives us

(8m,n 2 [N,1)N) ⇢ (xm, xn) = ⇢ (xm� xn, xn� xn) = ⇢ (xm� xn, 0G) < ✏ ,

implying that the sequence {xn} is ⇢-Cauchy. Thus, there is an x 2 G such
that xn

t(⇢)
�!
n!1

x, that is, xn

⌧G

�!
n!1

x, proving that G is sequentially complete.

Proposition 1.61. (175, 111) Every topological group is R 5/2 (Definition 1.37).

1.8 Ordered magmas

An order relation may be invariant with respect to a magma operation,
and that invariance may be exploited in order to extract key information on both
the order and the operation. Thus, it is natural to consider a magma endowed
with an order on it, especially when these components are compatible in a sense:

Definition 1.62. An ordered magma is a magma M endowed with an order
on it, denoted by < or <M , such that

(8a, b, x 2M) (a < b) (xa < xb and ax < bx)) .

We have the following notations and terminology:
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. An ordered submagma of M is an ordered magma M 0 such that the
magma (M 0,⇥M 0) is a submagma of (M,⇥M) and such that the ordered set
(M 0, <M 0) is an ordered subset of (M,<M);

. An ordered semigroup (resp. ordered monoid, ordered group, etc.)
is an ordered magma whose underlying magma is a semigroup (resp. monoid,
group, etc.);

. Let M be an ordered magma denoted additively. The superior extension
of M is the superior extension

^

M of the underlying ordered set in M

(Definition 1.33) endowed with an addition operation +^

M
:
^

M ⇥
^

M!
^

M

given by

x+^

M
y :=

8
<

:
x+M y if x, y 2M ,

_ if x = _ or y = _ .

Note that
^

M is not an ordered magma in general, for if x, y 2
^

M are so
that x < y, then we have 6

x + _ = _ 6< _ = y + _ .

Example 1.63.

(a) The semigroup (N,+N) is an ordered semigroup when endowed with its
usual order;

(b) The monoid (N0,+N0) is an ordered monoid when endowed with its
usual order, but none of the monoids (N0,⇥N), (Z,⇥Z), (Q,⇥Q), (R,⇥R) is
an ordered monoid when endowed with its usual order. Note that 1 < 2,
but 1 · 0 = 0 = 2 · 0;

(c) The groups (Z,+Z), (Q,+Q) and (R,+R) are ordered groups when endowed
with their usual orders.

6 However, for all x, y, z 2
^
M , the condition x 6 y implies z + x 6 z + y and x + z 6 y + z.

Thus, one might say that
^
M is a non-strictly ordered magma.

43



Example 1.64. (9, 66, 237) We shall provide an example of a non-commutative
ordered group. Let ` 2 [2,1)N be fixed. The Baumslag-Solitar group
BS (1, `) = BS` is the set

BS` := {f 2 RR | (9k 2 Z) (9c 2 Z [1/`]) (8x 2 R) f (x) = `kx+ c}

endowed with the operation of functional composition, where (cf. Definition 2.46)

Z [1/`] := {p (1/`) | p is a polynomial with integer coefficients} ⇢ Q .

We leave to the reader the verification that BS` is a countable, non-commutative
group whose identity element is the identity function idR. It turns out that BS` is
generated by the functions t,m : R! R given by t (x) := x+ 1 and m (x) := `x,
and since m 6= f 2 (8f 2 BS`), the group BS` is not divisible (Definition 1.2).
The Baumslag-Solitar groups play important roles in Combinatorial Group
Theory and Geometric Group Theory.

We shall define an order on BS` that is invariant under functional
composition. For each f 2 BS`, denote by kf 2 Z and cf 2 Z [1/`] the numbers so
that f (x) = `kfx+ cf (8x 2 R). Let @ be the binary relation on BS` defined so
that for all f, g 2 BS`, the condition f @ g means that f 6= g and the strict
inequality7

1
p
2
det

 
`kg cg

`kf cf

!
< `kg� `kf

holds. That relation is clearly irreflexive and strictly transitive on BS`. To see
that it is total, note that

p
2 is irrational, implying that the equality

1
p
2
det

 
`kg cg

`kf cf

!
= `kg� `kf

holds if, and only if, both sides are zero, and that happens precisely when f = g.
Hence, if f, g 2 BS` are distinct, then either

1
p
2
det

 
`kg cg

`kf cf

!
< `kg� `kf or

1
p
2
det

 
`kg cg

`kf cf

!
> `kg� `kf ,

7 The choice of the factor 1/
p
2 on the left hand side of the inequality is designed to simplify a

few calculations in Example 1.71. For the purposes of the present example, that factor can
be replaced by any other positive irrational number.
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that is, either f @ g or g @ f , proving that @ is an order on BS`. One may
straightforwardly prove that an element f 2 BS` is @-positive if, and only if,
f (
p
2) >

p
2. Accordingly, the elements t and m are @-positive, and since

1
p
2
det

 
` 0

1 1

!
=

`
p
2

8
<

:
> `� 1 if ` 2 {2, 3} ,

< `� 1 if ` > 4 ,

we have idR@ m @ t if ` 2 {2, 3}, and idR@ t @ m if ` > 4.

We are to prove that @ is invariant under functional composition.
Let f, g 2 BS` be so that f @ g, and let h 2 BS`. Computing the compositions
f � h and g � h on an argument x 2 R, we have

(f � h) (x) = `kf (`khx+ ch) + cf = `kf+khx+ (`kf ch + cf )

(g � h) (x) = `kg (`khx+ ch) + cg = `kg+khx+ (`kgch + cg) ,

and thus we obtain

1
p
2
det

 
`kg�h cg�h

`kf�h cf�h

!
=

1
p
2

⇣
`kg+kh

⇣
`kf ch + cf

⌘
� `kf+kh

⇣
`kgch + cg

⌘⌘

=
`kh
p
2
det

 
`kg cg

`kf cf

!

< `kh
⇣
`kg � `kf

⌘
= `kg�h � `kf�h ,

that is, f � h @ g � h. The proof that h � f @ h � g is analogous, thus proving that
BS` is a non-commutative ordered group when endowed with @. This order is by
no means unique, and, in fact, there are infinitely many invariant orders on BS`.
In forthcoming examples, we shall denote @ by <, by abuse of language, and we
shall always assume that the group BS` is endowed with that order. Additionally,
we shall denote the operation of BS` additively, that is, a composition f � g

between two elements f and g in BS` shall be denoted by f + g, and the identity
function idR shall also be denoted by 0BS` .
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Proposition 1.65. (189) Let M be a non-trivial ordered monoid and
let x 2M � {1M}.

(a) The sequence {xn
} is monotone, being increasing if x > 1M and decreasing

if x < 1M . In particular, we have
⇥M

/O (x) =1 and the ordered monoid M

is infinite;

(b) If M is an ordered group, then the sequence {xn
} has no

M

Ordt-cluster point;

(c) For every natural number n and for every subset S of M , the function
f : S ! Sn given by f (x) := xn is an isomorphism between ordered sets.

Proof.

(a) If x 2 (1M ,!)
M

(resp. x 2 ( , 1M)
M

), then we have

x = x · 1M < x · x = x2 = x · x · 1M < x · x · x = x3 < · · ·

(resp. x = x · 1M > x · x = x2 = x · x · 1M > x · x · x = x3 > · · · ) .

(b) Suppose M is an ordered group and that the sequence {xn
}

M

Ordt-clusters
at a point y 2M . Assume x > 1M without loss of generality. Hence,
x�1< 1M , x�1y < y < xy, and there are infinitely many natural numbers n

such that xn
2 (x�1y, xy), that is, x�1y < xn < xy. Take two of those

numbers, m and n, so that n > m+ 2. Thus, we have x�1y < xm < xy and

xy = xx (x�1y) < xxxm = xm+2 < xm+3 < xm+4 < · · · < xn < xy ,

which is absurd, proving the item.

(c) If x and y are elements of S so that x < y, then

f (x) =
n timesz }| {

x · x · · · x <
n timesz }| {

y · y · · · y = f (y) ,

proving that f is increasing, and since f is surjective, it is an isomorphism
between ordered sets (Proposition 1.30).

Lemma 1.66. (97, 144, 188) Let M be an ordered magma. If A and B are two
well-ordered subsets of M , then AB is a well-ordered subset of M .
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Proof. The result is immediate if A = ; or B = ;. Suppose A and B are
inhabited, let {xn} be a sequence in AB and for each natural number n, let an be
the least element of A such that there is a bn 2 B so that xn = anbn. Since A

is well-ordered, there is an increasing function � : N! N such that the
subsequence {a�(n)} of {an} is non-strictly increasing (Lemma 1.32), and since B

is well-ordered, there is an increasing function � : N! N such that the
subsequence {b�(�(n))} of {b�(n)} is non-strictly increasing. Thus, the sequences
{a�(�(n))} and {x�(�(n))} are non-strictly increasing, proving that AB is
well-ordered.

Proposition 1.67. (168) Every ordered group G is a topological group when
endowed with its order topology.

Proposition 1.68. (111) If G is a non-trivial subgroup of (R,+R), then either G

is order-dense in R or G is of the form rZ for r 2 (0,1)R.

Consider two natural numbers, m and n so that m < n. We know

that n 6 mn, that is, we have n 6
n timesz }| {

m+m+ · · ·+m , and, in particular, it is
possible to add m to itself a finite number of times so that the new quantity is
greater than n. The same happens with the positive rational numbers, since if we
take p/q, r/s 2 Q so that p, q, r, s 2 N and p/q < r/s, then we have rq 6 sprq and

r

s
6 p

q
· rq =

rq timesz }| {
p

q
+

p

q
+ · · ·+

p

q
.

The oldest known work dealing with that property is Euclid’s widely
praised Elements, an enormously influential series of thirteen books on Geometry
dated from 300 BC, in which the ancient Greek mathematician defines in
Book 5, Definition 4 (72):

Magnitudes are said to have a ratio with respect to one
another which, being multiplied, are capable of exceeding
one another.
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In the 19th century, that property came to be called the Archimedean Property
due to the fact that Archimedes made repeated use of it to solve many problems
in Geometry (96), and the mathematical systems that satisfy that property are said
to be Archimedean. Magnitudes a and b that do not “have a ratio with respect
to one another” are said to be infinitesimal with respect to each other, and,
as it turns out, if a positive number a is infinitesimal with respect to 1, then a is
smaller than every positive real number, being called an infinitesimal (number).
Archimedes himself systematically used infinitesimals as a heuristic tool to “guess”
the correct formulas for the volume and surface area of many geometric solids,
but he did not regard these methods as rigorous proofs.

Many structures in modern Mathematics are non-Archimedean, and their
study is called Non-Archimedean Analysis, area of which this work treats in
regard to the theory of Rayner Rngs in Chapters 3 and 4.

Definition 1.69. Let M be an ordered monoid.

. The Archimedean relation on M is the binary relation on M denoted
by A or

M

A and defined so that for all x, y 2M , the condition xA y

amounts to saying that there is an n 2 N such that x 6 y 6 xn,
or xn 6 y 6 x, or y 6 x 6 yn or yn 6 x 6 y. One can easily check that A

is an equivalence relation on M ;

. The Archimedean classes of M are the equivalence classes associated to
the equivalence relation A , and, in particular, the trivial Archimedean
class of M is the class 1M/A = {1M} of the element 1M . Each non-trivial
Archimedean class S of M is an order-convex subsemigroup of M that is
either contained in (1M ,!)

M
or contained in ( , 1M)

M
. It is positive if

S ⇢ (1M ,!)
M

and it is negative if S ⇢ ( , 1M)
M

;

. An ordered monoid M is Archimedean if it has at most one positive
Archimedean class and at most one negative Archimedean class. Otherwise,
it is non-Archimedean;
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. The partial order of Archimedean distribution on M is the binary
relation on M denoted by ⌧ or ⌧M and defined so that for all x, y 2M ,
the condition x⌧ y amounts to saying that x < y and the elements x and
y do not belong to the same Archimedean class of M . One can directly
show that ⌧ is a partial order on M .

The function given by S 7! S�1 defines a one-to-one correspondence
between the positive and the negative Archimedean classes of an ordered
group G. Thus, we have that G is Archimedean if, and only if, it has at most one
positive Archimedean class.

Example 1.70. The ordered group (R,+R, <R) of real numbers is Archimedean.
The ordered group (⇤R,+⇤R, <⇤R) of hyperreal numbers (192, 148) and the
ordered group (No,+No, <No) of surreal numbers (113) are non-Archimedean.

Example 1.71. Consider the non-commutative ordered group BS`, denoted
additively (Example 1.64). We shall prove that BS` is non-Archimedean in the
case ` > 4, leaving the cases ` = 2 and ` = 3 to the reader. Consider the element
f 2 BS` given by f (x) = `x� `, which may also be given by f = (�` t) +m.
Note that f is positive, since we have

f (
p
2) = `

p
2� ` = ` (

p
2� 1) >

p
2

for ` > 4. Let n be any natural number. One may inductively show that the

function nf is given by (nf) (x) = `nx�
nX

i=1

`i, and since

1
p
2
det

0

@
1 1

`n �
nX

i=1

`i

1

A = �
p
2 `n�

1
p
2
`n�1� · · ·�

1
p
2
`2�

1
p
2
` < 1� `n ,

we have nf < t (8n 2 N), thus proving that nf and t belong to distinct positive
Archimedean classes of BS`.

The outcome of Example 1.71 holds true if the Baumslag-Solitar ordered
group BS` is replaced by any other non-commutative ordered group, as the
following theorem attributed to Hölder reveals:
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Theorem 1.72 (Hölder’s Theorem). (129, 115, 80) Every Archimedean ordered
group G is isomorphic to an ordered subgroup of (R,+R, <R). In particular, every
Archimedean ordered group is commutative.

Since the inversion function
⇥G

Inv : G! G on an ordered group G is an
involution on G (Definition 1.7), and since the conditions x > 1G and x�1 < 1G

are equivalent for all x 2 G, it is natural to choose the positive element of the set
{x, x�1} and think of it as a kind of distance between the element x and the
identity element 1G. Thus, we have the following definition:

Definition 1.73. Let G be an ordered group. The absolute value function
G

Abs : G! G on G is the function given by
G

Abs (x) = |x| :=
G

max {x, x�1} .

Thus, we have x, x�16 |x| (8x 2 G).

Proposition 1.74. (37) Let G be an ordered group. For all x, y 2 G, we have:

. |1G| = 1G;

. |x| = |x�1|;

. ||x|| = |x|;

. |x| > 1G;

. |x|�16 x 6 |x|;

. |x|�1 6 x�16 |x|;

. x > 1G if, and only if, |x| = x;

. x 6 1G if, and only if, |x| = x�1;

. |x| = 1G if, and only if, x = 1G.

Suppose G is commutative, thus being denoted additively.

. |x+ y| 6 |x|+ |y| (Triangular Inequality);

. |x+ y| = |x|+ |y| if, and only if, x, y > 0G or x, y 6 0G;

. ||x|� |y|| 6 |x� y|.
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The upcoming couple of lemmas will be quite useful in Chapter 3:

Lemma 1.75. (188, 92) Let G be an ordered group and let A and B be two
well-ordered subsets of G. For each g 2 G, the set

Pg := {(a, b) 2 A⇥ B | ab = g}

is finite.

Proof. Suppose Pg is infinite and let {(an, bn)} be an injective sequence in Pg.
Thus, anbn = g (8n 2 N), and if p, q 2 N are indices so that ap = aq, then
apbp = g = aqbq, which implies bp = bq, (ap, bp) = (aq, bq) and p = q, proving that
the sequence {an} is injective. Analogously, one may show that the sequence {bn}

is injective as well. Since A is well-ordered, there is an increasing subsequence
{ani

}
i2N of {an} (Lemma 1.32), and if i, j 2 N are so that i < j and bni

6 bnj
,

then ani
< anj

and we get
g = ani

bni
< anj

bni
6 anj

bnj
= g ,

which is absurd. Thus, the sequence {bni
}
i2N in B is decreasing, contradicting the

fact that B is well-ordered.

Lemma 1.76. Let G be a non-trivial ordered group.

(a) |(1G,!)
G
| = |G|;

(b) If cf (G) = !, then we have

|{{gn} 2
NG | {gn} is increasing and cofinal in G}| = |G|

! .

Proof.

(a) The function
⇥G

Inv : G! G (Definition 1.7) is a bijection such that
⇥G

Inv h(1G,!)
G
i = ( , 1G)G, implying that |(1G,!)

G
| = |( , 1G)G|. Since

the set

G = (1G,!)
G
[ ( , 1G)G [ {1G} ,
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is infinite, the interval (1G,!)
G

is infinite, and we have

|G| = |(1G,!)
G
[ ( , 1G)G [ {1G}|

= |(1G,!)
G
|+ |( , 1G)G|+ |{1G}|

= |(1G,!)
G
| .

(b) Since cf (G) = !, there is a cofinal sequence {gn} in G, and since G is
unbounded above, we may assume without loss of generality that the
sequence {gn} is increasing. Taking a fixed {pn} 2 N (1G,!)

G
, we shall

check that the sequence {xn} := {gnp1p2 · · · pn�1} in G is increasing and
cofinal in G. Indeed, for every natural number n, we have

xn = gnp1p2 · · · pn�1 = gnp1p2 · · · pn�11G < gn+1p1p2 · · · pn�1pn = xn+1 ,

proving that {xn} is increasing. Moreover, if g is an element of G, then there
is an n 2 N such that g 6 gn, and we get

g 6 gn= gn

n�1 timesz }| {
1G1G · · · 1G < gnp1p2 · · · pn�1= xn ,

showing that {xn} is cofinal in G. Let

f : N (1G,!)
G
�! {{xn} 2

NG | {xn} is increasing and cofinal in G}

be the function given by f ({pn}) := {gnp1p2 · · · pn�1}. That function is
clearly injective, and, from item (a), we obtain

|G|
! = |(1G,!)

G
|
!

= |
N (1G,!)

G
|

6 |{{gn} 2
NG | {gn} is increasing and cofinal in G}|

6 |
NG| = |G|

! .

Proposition 1.77. Let G be a commutative ordered group that has no least
positive element 8. For each x 2 (0G,!)

G
and for each n 2 N, there is a

y 2 (0G,!)
G

such that ny < x.
8 That is, we have ci ((0G,!)G) > !.
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Proof. Suppose we have defined a finite sequence y1y2 . . . yn in (0G,!)
G

such
that kyk < x (8k 2 [1, n]N). If (n+ 1) yn < x, then set yn+1 := yn. Otherwise,
consider the case (n+ 1) yn > x and take a yn+1 2 (0G,!)

G
such that

yn+1 < x� nyn. Thus, if (n+ 1) yn+1 > x, then we get

x 6 (n+ 1) yn+1 < (n+ 1) (x� nyn) = (n+ 1) x� n (n+ 1) yn ,

implying n (n+ 1) yn < nx and (n+ 1) yn < x, which is absurd. Therefore, we have
just recursively defined a sequence {yn} in (0G,!)

G
such that kyk < x (8k 2 N).

Corollary 1.78. If G is a commutative ordered group, then the order topology
G

Ordt is T 7/2.

Proof. Immediate consequence of Propositions 1.51, 1.61 and 1.67.

1.9 �-Valued commutative groups

Sometimes it is convenient to endow a commutative group A with an
additional function, called a �-valuation on A, introduced to represent the
notion of order of magnitude of the elements of A, where such orders lie in an
ordered set �. That concept was first formally defined by Kürschák in 1913 in
connection to Hensel’s theory of p-adic numbers (128), but long before that
Kummer systematically employed Z-valuations on the field Q (⇣), where ⇣ 6= 1 is
a p-th root of unity and p is an odd prime, as he arduously attempted to prove
Fermat’s Last Theorem for decades (121, 122, 123, 124, 40). Valuations have
found applications in many areas of Mathematics, such as Algebraic Geometry,
Algebraic Number Theory and Commutative Algebra. As we shall expose later
on in detail, they lie at the heart of the Theory of Rayner Rngs.
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Definition 1.79. Let � be an ordered set and let A be a commutative group.
A �-valuation on A is a surjective function v : A!

^

� (Definition 1.62) that
satisfies the following properties for all x, y 2 A:

(V1) v (x� y) >
^
�

min {v (x) , v (y)}; (V2) v (x) =_ if, and only if, x = 0A.

A �-valued commutative group is a commutative group A endowed with a
�-valuation v : A!

^

� on A. When no particular notation is attributed to the
�-valuation of A, that shall be denoted by vA. We have the following notations
and terminology:

. A �-valued commutative subgroup of A is a �-valued commutative
group A0 such that the group (A0,⇥A0) is a subgroup of (A,⇥A) and such
that vA0 ⇢ vA;

. The value set of A is the set �;

. A ball in A is a subset B of A such that the following condition is satisfied:

(8x, y 2 B) (8z 2 A) (v (x� z) > v (x� y)) z 2 B) ;

. For each � 2
^

�, we define the sets

OA

�
= OvA

�
= O� := {x 2 A | v (x) > �}

oA
�
= ovA

�
= o� := {x 2 A | v (x) > �} ,

which we shall call the big-O set of value � and the little-O set of
value �, respectively. These notations are inspired by the big-O and
little-O notations from the theory of Asymptotic Analysis.

Example 1.80. (104, 112) Let p be a prime number. For each non-zero rational
number x, there is a unique integer nx such that x may be written in the form
x = pnx (a/b), where a and b are non-zero integers coprime to p. The p-adic
Z-valuation on Q is the function vp : Q!

^

Z given by

vp(x) :=

8
<

:
nx if x 6= 0 ,

1 if x = 0 .

54



We shall check that vp is a Z-valuation on the commutative group (Q,+Q). It is
clear that Axiom (V2) holds for vp, and this function is surjective since
we have vp (pn) = n (8n 2 Z). Take two arbitrary non-zero rational numbers
x and y, and take four non-zero integers a, b, c and d coprime to p such that
x = pnx (a/b) and y = pny (c/d). Thus, we get

x� y = pnx
a

b
� pny

c

d
= pmin{nx,ny}

⇣pnx�min{nx,ny}ad� pny�min{nx,ny}bc

bd

⌘
,

and if pnx�min{nx,ny}ad � pny�min{nx,ny}bc = pme, where m 2 N0 and e 2 Z � {0}

so that e is coprime to p, then we obtain

vp(x� y) = min {nx, ny}+m > min {nx, ny} = min {vp(x) , vp(y)} ,

proving that Axiom (V1) holds for vp.

Moreover, consider the function up : Q! [0,1)R given by

up(x) :=

8
<

:
e
�vp(x) if x 6= 0 ,

0 if x = 0 .

Note that for all x 2 Q� {0} and all r 2 (0,1)R, we have

vp(x) = � log (up(x)) and {z 2 Q | up (z) < r} = ovp� log(r) .

The function up satisfies the following properties for all x, y 2 Q:

(N1) up(x� y) 6 max {up(x) , up(y)}; (N2) up(x) = 0 if, and only if, x = 0.

In general, taking into consideration a commutative group A, the functions
u : A! [0,1)R for which Axioms (N1) and (N2) hold are called ultranorms
on A. Thus, when � is an ordered subset of R, the �-valuations v : A!

^

� on A

and the ultranorms u : A! [0,1)R on A may be regarded as dual concepts,
though with the caveat that one must adjust the ordered set � so as to ensure
that the �-valuations are surjective. In mathematical practice, small values of
u (x) are interpreted as meaning that x is close to the identity element 0A,
and big values of v (x) are interpreted as meaning that x has a low order
of magnitude. Accordingly, although both notions are essentially interchangeable,
they are used in different contexts.
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Proposition 1.81. (39, 216, 229, 135, 136) Let � be an ordered set and let A be
a �-valued commutative group.

(a) (8x 2 A) v (�x) = v (x);

(b) (8x, y 2 A) v (x+ y) >
^
�

min {v (x) , v (y)};

(c) (8x 2 A) (8n 2 Z� {0}) v (nx) > v (x);

(d) If x, y 2 A are such that v (x) 6= v (y), then v (x� y) =
^
�

min {v (x) , v (y)};

(e) If x 2 A and m 2 Z� {0} are such that mx = 0A, and if n 2 Z� {0} is so
that gcd (m,n) = 1, then we have v (nx) = v (x);

(f) For all ↵, � 2 �, we have:

. o↵ ⇢ O↵;

. �O↵= O↵;

. �o↵= o↵;

. O↵ + O� ⇢ Omin{↵,�};

. o↵ + o� ⇢ omin{↵,�}.

(g) For each � 2 � and for each x 2 A, we have

(8y 2 x+ O�) x+ O� = y + O� and (8y 2 x+ o�) x+ o� = y + o� .

Also, the sets x+ O� and x+ o� are balls in A;

(h) If B1 and B2 are two balls in A so that B1 \B2 6= ;, then B1 ⇢ B2

or B2 ⇢ B1;

(i) For all ↵, � 2 � and all x, y 2 A such that (x+ O↵) \ (y + O�) 6= ;,
the conditions x+ O↵ ⇢ y + O� and ↵ > � are equivalent;

(j) For all ↵, � 2 � and all x, y 2 A such that (x+ o↵) \ (y + o�) 6= ;,
the conditions x+ o↵ ⇢ y + o� and ↵ > � are equivalent;

(k) If B is a ball on A, if x 2 B and if y 2 A� B, then B \ (y + ov (x� y)) = ;.
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Proof. These items have rather easy proofs, except for item (h) whose proof is
little trickier. We present some of those arguments here so the reader can get a
taste of how they look like.

(a) We have

v (�x) = v (0A � x)

>
^
�

min {v (0A) , v (x)}

= v (0A � (�x))

>
^
�

min {v (0A) , v (�x)} = v (�x) .

(d) Assume v (y) > v (x) without loss of generality. We must prove
that v (x� y) = v (x). Suppose otherwise. Thus, since

v (x� y) >
^
�

min {v (x) , v (y)} = v (x) ,

we get
v (x� y) > v (x) = v (x� y + y) >

^
�

min {v (x� y) , v (y)} .

With that in mind, note that if v (x� y) 6 v (y), then v (x� y) > v (x� y),
which is absurd. Hence, we obtain

v (x� y) > v (y) > v (x) >
^
�

min {v (x� y) , v (y)} = v (y) ,

which is absurd, proving the item.

(g) Let y 2 x+ O�. Thus, we have v (y � x) > �, and if z 2 x+ O�,
then v (z � x) > �, and, since

v (y � z) = v ((y � x) + (x� z)) >
_

�
min {v (y � x) , v (x� z)} ,

we have v (y � z) > �, proving the inclusion x+ O� ⇢ y + O�. The proof of
the opposite inclusion and the proof of the equation x+ o� = y + o�
are analogous. Lastly, if a, b 2 x+ O� and c 2 A are so that
v (a� c) > v (a� b), then, since

v (a� b) = v ((a� x) + (x� b)) >
^
�

min {v (a� x) , v (x� b)} > � ,
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we get v (a� c) > � and c 2 a+ O� = x+ O�, proving that x+ O� is a ball
in A. The proof that x+ o� is a ball in A is analogous.

(i) Suppose ↵ > � and x+ O↵ 6⇢ y + O�. Thus, we have O↵ ⇢ O� and
y + O� ⇢ x+ O↵ by items (g) and (h), implying y � x 2 y � x+ O↵ ⇢ O�.
If z 2 x+ O↵, then we get

z = y + (z � x) + (x� y) 2 y + O↵ + O� ⇢ y + O�

and y + O� = x+ O↵ 6⇢ y + O�, which is absurd, proving the sufficient
condition of the item.

Suppose x+ O↵ ⇢ y + O� and ↵ < �. We have x� y 2 O�, and,
since the function v is surjective, there is a z 2 A such that v (z) = ↵,
implying z 2 O↵ �O�. Since x+ O↵ ⇢ y + O�, we get x+ z 2 y + O� and

z 2 y � x+ O� ⇢ O� + O� ⇢ O� ,

which is absurd, thus proving the item.

Let � be an ordered set and let A be a �-valued commutative group.
We are to show that the set

B := {x+ o� | x 2 A and � 2 �}

is a (synthetic) basis of a topology on A. Let x, y 2 A, let ↵, � 2 � and take an
arbitrary element z in the intersection (x+ o↵) \ (y + o�). We may assume
without loss of generality that ↵ > �. Thus, we have x+ o↵ ⇢ y + o� by Item (i)
of Proposition 1.81, and we have

(x+ o↵) \ (y + o�) = x+ o↵ = z + o↵

by Item (f) of Proposition 1.81, proving that B is the basis of a topology ⌧B on A.
Furthermore, that fact and Item (f) of Proposition 1.81 readily imply that,
for each x 2 A, the family of sets {x+ o�}�2� is a local ⌧B-basis of x.
These considerations allow us to make the following definition:
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Definition 1.82. Let � be an ordered set and let A be a �-valued
commutative group. The topology on A induced by the �-valuation vA

is the topology on A generated by the basis {x+ o� | x 2 A and � 2 �},

which shall be denoted by
A

Valt or
vA

Valt.

Proposition 1.83. (39, 233, 226) Let � be an ordered set and let A be a �-valued
commutative group.

(a) Every ball in A is
A

Valt-closed;

(b) For each � 2 � and each x 2 A, the set x+ O� is
A

Valt-open;

(c) If � has no greatest element, then
A

Valt is perfect (Definition 1.37);

(d) The topology
A

Valt is T2, zero-dimensional and totally disconnected.

Proof. Item (a) is a direct consequence of Item (k) of Proposition 1.81.

(b) If y is an element of x+ O�, then (Proposition 1.81, Item (f))

y � x+ o� ⇢ O� + o� ⇢ O� + O� ⇢ O� ,

which implies y 2 y + o� ⇢ x+ O�.

(c) Consider a basic
A

Valt-open neighbourhood x+ o� of an element x 2 A,
where � 2 �. Since � has no greatest element, there is a � 2 � so
that � > �, and since vA is surjective, there is a y 2 A so that v (y) = �,
which gives us y 2 x+ o� and y 6= x. Thus, x is not

A

Valt-isolated and the
topology

A

Valt is perfect.

(d) The topology
A

Valt is zero-dimensional by items (a) and (b). If x and y are
two distinct elements of A, then x 2 x+ ov(y�x), y 62 x+ ov(y�x),
and (Proposition 1.81, Item (k))

(x+ ov(y�x)) \ (y + ov(y�x)) = ; ,

proving that
A

Valt is T2 and totally disconnected (Proposition 1.38).
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It turns out that the problem of metrizability of valuation topologies on
�-valued commutative groups depends only on the cofinality of �:

Theorem 1.84. Let � be an ordered set and let A be a �-valued
commutative group. The following conditions are equivalent:

(a) The topology
A

Valt is metrizable;

(b) The topology
A

Valt is ultrametrizable;

(c) cf (�) 6 !.

Furthermore, if those conditions hold, then there is an invariant ultrametric ⇢

on A such that
A

Valt = t (⇢).

Proof. Item (b) clearly implies (a).

(a))(c): Suppose the topology
A

Valt is metrizable and let ⇢ be a metric on A

compatible with it. For each r 2 (0,1)R there is a �r 2 � such that
o�r ⇢ B

⇢

r
(0A). We shall prove that the sequence {�1/n} is cofinal in �.

Let � 2 �. Then, there is an r0 2 (0,1)R such that B
⇢

r0
(0A) ⇢ o�, and,

assigning a natural number n so that 1/n < r0, we have
o�1/n ⇢ B

⇢

1/n
(0A) ⇢ B

⇢

r0
(0A) ⇢ o� ,

leading up to �1/n > �.

(c))(b): Suppose cf (�) 6 !, let {�n} be a non-strictly increasing, cofinal sequence
in �, and, for each distinct x, y 2 A, let hx, yi 2 N0 be the number

hx, yi :=

8
<

:
0 if vA(x� y) < �1 ,

max {n 2 N | vA(x� y) > �n} otherwise.

Define the function ⇢ : A⇥ A! [0,1)R given by

⇢ (x, y) :=

8
<

:
0 if x = y ,

e
�hx,yi if x 6= y .

Thus, ⇢ 6 1, and, for all x, y 2 A, we have ⇢ (x, y) = ⇢ (y, x) and the
conditions ⇢ (x, y) = 0 and x = y are equivalent. Take arbitrary distinct
elements x, y, z 2 A. If ⇢ (x, z) = 1 or ⇢ (z, y) = 1, then we have

⇢ (x, y) 6 1 = max {⇢ (x, z) , ⇢ (z, y)} .
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If ⇢ (x, z) , ⇢ (z, y) < 1, then hx, zi , hz, yi > 0 and vA(x� z) , vA(z � y) > �1,
resulting in

vA(x� y) = vA(x� z + z � y)

>
^

�

min{vA(x� z) , vA(z � y)}

>
^

�

min{�hx,zi, �hz,yi}

= �min{hx,zi,hz,yi} ,

and hx, yi > min {hx, zi , hz, yi}, which gives us

⇢ (x, y) = e
�hx,yi 6 exp (�min {hx, zi , hz, yi}) = max {⇢ (x, z) , ⇢ (z, y)} .

Hence, the function ⇢ is an ultrametric on A, and it is straightforward to
check that it is invariant on A.

Lastly, we shall show that the identity function on A,
id : (A,

A

Valt)! (A, t (⇢)), is a homeomorphism. Take a fixed a 2 A.
Note that if r 2 (0,1)R, if n 2 N is so that n > log (r�1), and
if x 2 a+ o�n , then we have vA(x� a) > �n and hx, ai > n > log (r�1),
implying

⇢ (x, a) = e
�hx,ai < e

� log(r�1) = r

and a+ o�n ⇢ B
⇢

r
(a). On the other hand, if � 2 �, if n 2 N is so that � 6 �n,

and if x 2 B
⇢

e�n(a), then we have ⇢ (x, a) = e
�hx,ai < e

�n, hx, ai > n and

vA(x� a) > �hx,ai > �n > � ,

implying x 2 a+ o� and B
⇢

e�n(a) ⇢ a+ o�. Therefore, the identity function
id is a homeomorphism and the ultrametric ⇢ is compatible with

A

Valt.

Theorem 1.84 can be generalised to the case of �-valued groups that are not
necessarily commutative (149).
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2
Rngs

The most fundamental operations of Arithmetic are the addition and
multiplication operations, and they have pervaded throughout nearly all
mathematical considerations since prehistoric times (197, 42). In fact, all
other arithmetic operations, viz. the subtraction, division, exponentiation and
n-th root operations, may be defined in terms of those two primal concepts.
In the late 19th century and the early 20th century, the essence of the interplay
between those two functions was drawn and extensively studied by several
mathematicians, culminating in Fraenkel and Noether’s definition of a ring as it
is understood today (75, 76, 167), which is an abstract set endowed with two
operations that satisfy the basic laws of Arithmetic. The study of these
structures is called Ring Theory, and it has far-reaching applications
in a wealth of areas, most crucially in Algebraic Number Theory and
Algebraic Geometry. In non-algebraic settings, rings are studied in the presence
of additional structures, such as orders, topologies, valuations and derivations,
where they are meant to be compatible with those structures in some sense.

We will adopt Jacobson’s term ‘rng’ 1 (105) in this thesis to refer to the
structures that are analogous to rings, except for the fact that the existence of an
identity element for multiplication is not assumed. The term was derived by
dropping the letter ‘i’, which one may consider to stand for the word ‘identity’,
from the word ‘ring’. We shall consider rngs quite often, and the use of that
distinguished denomination is meant to avoid the use of the lengthy and
ambivalent expressions ‘ring without identity’ or ‘ring with no identity’,
which can be sporadically found in mathematical works.

1 It is pronounced rung.



In this chapter, we shall present a compendium of definitions and results
concerning rngs, narrowing focus to the topics that will be relevant to our study
of Rayner rngs.

2.1 Rngs

We begin with some basic definitions concerning rngs:

Definition 2.1. A rng is a set R endowed with two operations on it,
+ = +R : R⇥R! R and ⇥ = ⇥R : R⇥R! R, the former always denoted
additively and the latter always denoted multiplicatively, such that:

(R0) (8x, y, z 2 R) (x+ y) z = xz + yz and x (y + z) = xy + xz ;

(R1) (R,+R) is a commutative group;

(R2) (R,⇥R) is a semigroup.

That being the case, the operation + is called the addition of R and the
operation ⇥ is called the multiplication of R. We have the following notations
and terminology:

. A subrng of R is a rng R0 such that the group (R0,+R0) is a subgroup of
(R,+R) and such that the semigroup (R0,⇥R0) is a subsemigroup of (R,⇥R);

. A homomorphism of type R! S between rngs is a homomorphism
� : (R,+R)! (S,+S) between groups that is also a homomorphism
� : (R,⇥R)! (S,⇥S) between semigroups. Every functional composition
of two homomorphisms between rngs is a homomorphism. Hence, such
functions form a category whose composition operation is the canonical
functional composition, and that category is denoted by Rng;
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. The kernel of a homomorphism � : R! S is the fibre ��1h{0S}i, which is
denoted by Ker (�). That fibre is a subrng of R and it might be denoted by
Rng

Ker(�) to emphasise its rng structure;

. Let I be a set. The support of a family x = {xi}i2I 2
IR is the subset of I

denoted by supp (x) and given by

supp (x) := {i 2 I | xi 6= 0R} ;

. The image of a homomorphism � : R! S between rngs is the subrng of S
whose underlying set is the image Im (�) of the function �. That image

might be denoted by
Rng

Im(�) to emphasise its rng structure;

. The characteristic of R is the characteristic of the underlying additive
monoid (R,+R) (Definition 1.5), and it is denoted by Char (R);

. The centre of R is the centre of the semigroup (R,⇥R), and it is denoted
by Z (R);

. A rng is trivial if 0R is its only element. Otherwise, it is non-trivial;

. A rng R has no zero divisors if for all x, y 2 R the condition xy = 0R

implies x = 0R or y = 0R.

Example 2.2. For each natural number n, the number set nZ, endowed with its
usual addition and multiplication operations, is a commutative rng of
characteristic zero and with no zero divisors. If m and n are natural numbers so
that m divides n, then nZ is a subrng of mZ.

Example 2.3. Let n be a natural number, let R be a rng, let Mn(R) be the set
of n⇥ n matrices with entries in R and let Tn(R) be the set of n⇥ n

65



strictly-upper triangular matrices with entries in R. Thus, the elements of Mn(R)

and Tn(R) are of the forms

0

BBBBBB@

r11 r12 · · · r1n

r21 r22 · · ·
...

...
...

. . .
...

rn1 · · · · · · rnn

1

CCCCCCA
and

0

BBBBBB@

0R r12 · · · r1n
. . .

. . .
...

. . . rn�1,n

0R

1

CCCCCCA
,

respectively, where rij 2 R (8i, j 2 [1, n]N) and where all empty spaces within the
second matrix represent the zero element of R. Both Mn(R) and Tn(R) are rngs
of characteristic Char (R) when endowed with the usual matrix addition and
matrix multiplication operations. They are not commutative in general, even
when the rng R is commutative, and they have zero divisors if n > 2, for if we
take an r 2 R� {0R}, then we get

0

BBB@

0R r

. .
.

0R

1

CCCA
Tn(R) = {0} ,

where 0 is the zero matrix.

Example 2.4. Every commutative group G may be seen as a rng, provided
that one considers the trivial multiplication operation on G, given
by xy := 0G (8x, y 2 G). That rng is not ring when G is non-trivial. If R is a rng,
then the multiplication operation of the matrix rng T2(R) (Example 2.3)
is trivial.

Most rngs that are of importance contain identity elements for their
multiplication operations:
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Definition 2.5. A ring is a rng such that the semigroup (R,⇥R) is a monoid.
We have the following notations and terminology:

. The multiplicative identity (element) of R is the identity element of
the monoid (R,⇥R), and it is denoted by 1R;

. A subring of a rng S is a subrng of S that is a ring. It is worth noting
that a subrng of a rng can be a ring (Example 2.10), and a subring of a
ring may contain a multiplicative identity element distinct from that of the
larger ring (Example 2.11);

. A homomorphism � : R! S between rings is unital if � (1R) = 1S.
Every functional composition of two unital homomorphisms between rings
is a unital homomorphism. Hence, such functions form a category whose
composition operation is the canonical functional composition, and that
category is denoted by Ring;

. An element x of a ring R is a unit in R if it has a multiplicative inverse
in R, that is, if there is a y 2 R so that xy = 1R = yx. If x is a unit in R,
then its multiplicative inverse is unique and is denoted by x�1;

. A division ring is a non-trivial ring K such that every non-zero element
of K is a unit. That being so, one notices that (K � {0K} ,⇥K �K�{0K}) is a
group and K has no zero divisors;

. A field is a commutative division ring.

Example 2.6. Given a natural number n, the rng nZ (Example 2.2) is a ring if,
and only if, n = 1. In that case, the number 1 is the multiplicative identity
element of 1Z = Z, and Z is not a field. For each m 2 [2,1)N, the rng mZ is a
subrng of Z that is not a ring.

Example 2.7. The number sets Q, R and C are fields of characteristic zero
when endowed with their usual addition and multiplication operations.

Example 2.8. The system of quaternions, denoted by H, is a non-commutative
division ring first described by Hamilton in 1843 (93).
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Example 2.9. Let n be a natural number, let R be a ring and consider the
matrix rngs introduced in Example 2.3. The rng Tn(R) is not a ring, and the rng
Mn(R) is a ring whose multiplicative identity is the so-called identity matrix:

In :=

0

BBBBB@

1R

1R
. . .

1R

1

CCCCCA
.

Example 2.10. Let R and S be the following subrngs of M2(R):

R :=

( 
x 0

0 0

!
| x 2 R

)
and S :=

( 
x y

0 0

!
| x, y 2 R

)
.

Thus, R is a subring of S with identity element

 
1 0

0 0

!
, but it is easy to check

that S is not a ring. In fact, R is isomorphic to the field R of real numbers.

Example 2.11. (228) The set

T :=

( 
x x

x x

!
| x 2 R

)

forms a subring of the ring M2(R), and its multiplicative identity element is the

matrix

 
1/2 1/2
1/2 1/2

!
, which is distinct from the 2⇥ 2 identity matrix I2 =

 
1 0

0 1

!
.

Example 2.12. The set C of matrices of the form

 
a �b

b a

!
for a, b 2 R forms a

subfield of the 2⇥ 2 matrix ring M2(R) that is isomorphic to C via the

isomorphism a+ bi 7!

 
a �b

b a

!
. Thus, the multiplicative identity of C is the

identity matrix I2.
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Proposition 2.13. (56, 103, 83)

(a) If R is a rng, then we have

(8x 2 R) 0R ·x = x ·0R = 0R and (8x, y 2 R) �(xy) = (�x) y = x (�y) ;

(b) A ring R is trivial if, and only if, 0R = 1R;

(c) If � : R! S is a homomorphism between rngs, then � (0R) = 0S;

(d) If � : K ! L is a homomorphism between division rings, then � is unital,
that is, � (1K) = 1L.

Proof. Items (c) and (d) are direct consequences of Item (a) of Proposition 1.9.

(a) For all x 2 R, we have
x · 0R = x (0R + 0R) = x · 0R + x · 0R ,

which gives us
0R = x · 0R � x · 0R = x · 0R + x · 0R � x · 0R = x · 0R .

The proof of 0R · x = 0R is analogous.

(b) If R is a trivial ring, then 1R 2 R = {0R} and 0R = 1R. Conversely,
if 0R = 1R, then

(8x 2 R) x = x · 1R = x · 0R = 0R

by item (a), which immediately gives us R = {0R}.

We have defined that 0R and 1R are the respective identity elements of the
addition and multiplication operations of a ring R. We shall extend those notations,
providing meaning to the term xR when x is an integer and providing meaning to
xK when x is a rational number and K is a division ring.
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Definition 2.14. Let R be a ring.

. For each n 2 N, we define

nR :=

n timesz }| {
1R + 1R + · · ·+ 1R = n1R ;

. For each n 2 ( , 0)Z, we define nR := � (�n)
R
;

. For each subset S of Z, we define SR := {nR | n 2 S}.

Let K be a division ring.

. For all p, q 2 Z so that qK 6= 0K , we define (p/q)
K
:= pKq

�1
K

. Note that
if r 2 Z � {0}, then the term (pr/qr)

K
may not be well-defined, for we may

have (qr)
K
= 0K . Thus, one may not switch between equivalent fractions in

the notation (p/q)
K

;

. For each subset S of Q, we denote by SK the set

SK := {(p/q)
K

| p, q 2 Z, qK 6= 0K and p/q 2 S} .

Example 2.15. Let n be a natural number and let S be a subset of Z. The set
SMn(R) is given by

SMn(R) =

8
>>>>><

>>>>>:

0

BBBBB@

k

k
. . .

k

1

CCCCCA
| k 2 S

9
>>>>>=

>>>>>;

.

Example 2.16. Let S be a subset of Q and consider the field C (Example 2.12).
The set SC is given by

SMn(R) =

( 
q 0

0 q

!
| q 2 S

)
.
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Proposition 2.17. (34, 83) Let R be a non-trivial ring and let K be a
division ring.

(a) Z (R) is a commutative subring
of R;

(b) ZR is a subring of R contained
in Z (R);

(c) QK is a subfield of K contained
in Z (K).

Proof.

(a) We know that Z (R) is a subsemigroup of (R,⇥R) (Proposition 1.4).
If x, y 2 Z (R), then for all z 2 R, we get (Proposition 2.13, Item (a))

(�x) z = � (xz) = � (zx) = z (�x)

and
(x+ y) z = xz + yz = zx+ zy = z (x+ y) ,

implying �x, x+ y 2 Z (R) and proving the item.

(b) Firstly, 1R is clearly the multiplicative identity of ZR, and if n 2 Z, then

�nR = � (� (�n)
R
) = (�n)

R
2 ZR .

Considering two numbers m,n 2 Z� {0} so that m 6 n, then we have
three cases:

1. Case m,n > 0: Since +R is associative on R, we get

mR + nR =

✓ m timesz }| {
1R + · · ·+ 1R

◆
+

✓ n timesz }| {
1R + · · ·+ 1R

◆
= (m+ n)

R
2 ZR ,

and since ⇥R is left-distributive over +R, we get

mR · nR = mR ·

✓ n timesz }| {
1R + · · ·+ 1R

◆
=

n timesz }| {
mR + · · ·+mR = (mn)

R
2 ZR .
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2. Case m < 0 < n: We get

mR + nR = �

✓ �m timesz }| {
1R + · · ·+ 1R

◆
+

✓ n timesz }| {
1R + · · ·+ 1R

◆
= (n� (�m))

R
2 ZR ,

and, by case 1, we get

mR · nR = � (�m)
R
· nR = � ((�m)n)

R
= � (�mn)

R
= (mn)

R
2 ZR .

3. Case m,n < 0: By case 1, we get

mR + nR = � ((�m)
R
+ (�n)

R
) = � (� (m+ n))

R
= (m+ n)

R
2 ZR ,

and, by case 1 and by Item (a) of Proposition 2.13, we get

mR · nR = (� (�m)
R
) (� (�n)

R
) = (�m)

R
(�n)

R
= ((�m) (�n))

R
= (mn)

R
2 ZR .

Therefore, we have shown that

mR + nR = (m+ n)
R
2 ZR and mR · nR = (mn)

R
2 ZR

for all m,n 2 Z, proving that ZR is a subring of R. Lastly, if n 2 N and
if x is an element of R, then, drawing from the fact that ⇥R is left and
right-distributive over +R, we obtain

nR · x =

✓ n timesz }| {
1R + · · ·+ 1R

◆
x =

n timesz }| {
xR + · · ·+ xR= x

✓ n timesz }| {
1R + · · ·+ 1R

◆
= x · nR

and

(�n)
R
x = [� (� (�n))

R
]x = �nR · x = �x · nR = x [� (� (�n))

R
] = x (�n)

R
,

proving that ZR ⇢ Z (R).

(c) Firstly, we show that the set QK is closed under ⇥K , leaving the
(tedious but rather straightforward) proof that it is closed under +K to
the reader. Consider any two elements (p/q)

K
and (p0/q0)

K
of QK .

Since qK 6= 0K 6= q0
K

, we have (qq0)
K
= qKq0K 6= 0K and, by item (b),

we obtain

(p/q)
K
(p0/q0)

K
= pKq

�1
K

p
0
Kq
0�1
K

= pKp
0
Kq
�1
K

q
0�1
K

= (pp0)
K
(qq0)�1

K
= ((pp0)/(qq0))

K
2 QK .
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Thus, QK is a subring of K. Furthermore, note that if (p/q)
K
6= 0K ,

then pK , qK 6= 0K and

(p/q)
K
(q/p)

K
= pKq

�1
K
qKp

�1
K

= 1K ,

that is, (p/q)�1
K

= (q/p)
K
2 QK , showing that QK is a division ring.

We show that QK ⇢ Z (K). Let (p/q)
K

be an element of QK and let x

be any element of K. By item (b), we have

q�1
K
x = q�1

K
xqKq

�1
K

= q�1
K
qKxq

�1
K

= xq�1
K

and
(p/q)

K
x = pKq

�1
K
x = pKxq

�1
K

= xpKq
�1
K

= x (p/q)
K

,

proving that (p/q)
K
2 Z (K).

2.2 Quotients in Rng

One may effortlessly notice that the function of type Rng!Mon

(Example B.17) that associates each rng R to its underlying additive monoid
(R,+R) and associates each homomorphism between rngs to itself is a faithful
functor (Definition B.25). Thus, the category Rng is a Mon-concrete category
(Definition B.42) when endowed with that function. Moreover, since Mon is a
Set-concrete category (Section 1.2), it is clear that Rng may also be seen as a
Set-concrete category.

In this section, we shall appreciate how quotients are produced in the
category Rng (Definition B.46).

Definition 2.18. Let R be a rng. A congruence relation on R is an equivalence
relation ⌘ on R such that for all x, x0, y, y0 2 R so that x ⌘ x0 and y ⌘ y0, we have
x+ y ⌘ x0 + y0 and xy ⌘ x0y0.
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Proposition 2.19. (12, 102) Let R be a rng. If ⌘ is a congruence relation on R,
then the quotient R/⌘ in Set is a rng when endowed with the addition and
multiplication operations on it given by

(x/⌘) + (y/⌘) := (x+ y) /⌘ and (x/⌘) (y/⌘) := (xy) /⌘ .

That rng is a quotient of R modulo ⌘ in Rng (Definition B.46) whose quotient
morphism is the canonical function � : R Set

�! R/⌘.

Proof. We leave the verification that those operations are well-defined to
the reader, as well as the fact that R/⌘ is a rng. Let � : R! R/⌘ be the
canonical quotient function of that type in Set (Example B.48), which is clearly
a homomorphism between rngs. Thus, we have ⌘ =

�eq (Definition B.45).
Consider any rng S and any homomorphism f : R! S so that ⌘ ⇢ feq, and let
f : R/⌘! S be the quotient lowering of f in Set, which is given
by f (x/⌘) := f (x). If x and y are elements of R, then

f ((x/⌘) + (y/⌘)) = f ((x+ y) /⌘) = f (x+ y) = f (x)+f (y) = f (x/⌘)+f (y/⌘)

and

f ((x/⌘) (y/⌘)) = f ((xy) /⌘) = f (xy) = f (x) f (y) = f (x/⌘) f (y/⌘) ,

proving that f is a homomorphism. The uniqueness of f follows from the
universal property of quotients in Set. Therefore, we have proved that � is a
quotient morphism in Rng associated to the quotient R/⌘ .

A congruence relation on a rng R is usually indirectly specified by a subset
of R that satisfies a few requirements:

Definition 2.20. Let R be a rng. A left (resp. right) ideal in R is a subgroup
I of (R,+R) such that the inclusion RI ⇢ I (resp. IR ⇢ I) holds. Note that the
left (resp. right) ideals in R also happen to be subrngs of R. An ideal in R is a
left and right ideal in R.
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The following proposition shows that there is a one-to-one correspondence
between the ideals in R and the congruence relations on R:

Proposition 2.21. Let R be a rng. A subset I of R is an ideal in R if, and
only if, the binary relation

⌘
I

:= {(x, y) 2 R⇥R | y � x 2 I}

is a congruence relation on R. In that case, we have I = 0R/⌘
I

.

Proof. Suppose ⌘
I

is a congruence relation on R. Hence, if i and j are elements
of I and if r is an element of R, then i, j ⌘

I

0R, r ⌘
I

r and we get

i± j ⌘
I

0R ± 0R = 0R , ri ⌘
I

r · 0R = 0R and ir ⌘
I

0R · r = 0R ,

that is, i± j 2 I and ri, ir 2 I, proving that I is an ideal in R.

Conversely, suppose the set I is an ideal in R. Thus, since 0R 2 I,
we have x ⌘

I

x (8x 2 R), and if x, y and z are three elements of R so
that x ⌘

I

y ⌘
I

z, then y � x, z � y 2 I and

z � x = (z � y) + (y � x) 2 I + I ⇢ I

that is, x ⌘
I

z, proving that ⌘
I

is an equivalence relation on R. Moreover, if x, x0,
y and y0 are four elements of R so that x ⌘

I

x0 and y ⌘
I

y0, then

(x0 + y0)� (x+ y) = (x0 � x) + (y0 � y) 2 I + I ⇢ I

and

x0y0 � xy = x0y0 � (xy0 + x0y � xy)� xy + (xy0 + x0y � xy)

= (x0 � x) (y0 � y) + x (y0 � y) + (x0 � x) y

2 II +RI + IR ⇢ I

that is, x+ y ⌘
I

x0 + y0 and xy ⌘
I

x0y0. Therefore, ⌘
I

is a congruence relation on R.
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Example 2.22. If m and n are natural numbers so that m divides n, then nZ is
an ideal in the commutative rng mZ, and the congruence relation ⌘

nZ
is the usual

relation of congruence modulo n on mZ (cf. Example 1.12), that is, ⌘
nZ

is the
binary relation on mZ defined so that for all x, y 2 mZ, the condition x ⌘

nZ
y

means that n divides x� y. We shall examine three particular cases:

(a) Let p be a prime number and consider the case where m = 1 and n = p.
The quotient rng Z/pZ has p elements:

Z/pZ =
�
0/⌘

pZ
, 1/⌘

pZ
, . . . , (p� 1) /⌘

pZ

 
,

where 1/⌘
pZ

is the multiplicative identity element of Z/pZ. Given that,
we shall show that it is a field. If x 2 [1, p� 1]Z, then gcd (x, p) = 1 and
there are y, q 2 Z so that xy + pq = 1, implying xy ⌘ 1 mod p, that is,
�
x/ ⌘

pZ

� �
y/ ⌘

pZ

�
=
�
1/ ⌘

pZ

�
, proving that the class y/ ⌘

pZ
is the multiplicative

inverse of x/ ⌘
pZ

in Z/pZ. Thus, Z/pZ is a field, and it is usually denoted
by Fp.

(b) Consider the case m = 2 and n = 4. The quotient 2Z/4Z has two elements:

2Z/4Z =
�
0/⌘

4Z
, 2/⌘

4Z

 
= {{. . . ,�4, 0, 4, . . . } , {. . . ,�2, 2, 6, . . . }} .

Let A := 0/ ⌘
4Z

and B := 2/ ⌘
4Z

. Thus, we have

A+ A = A ; B + A = B ; AA = A ; BA = A ;

A+B = B ; B +B = A ; AB = A ; BB = A .

It turns out that 2Z/4Z is isomorphic to the finite commutative group
Z/2Z (Example 1.15) endowed with its trivial multiplication operation
(Example 2.4). In particular, 2Z/4Z is not a ring.

(c) Consider the case m = 2 and n = 6. Now, the quotient 2Z/6Z has three
elements:

2Z/6Z =
�
0/⌘

6Z
, 2/⌘

6Z
, 4/⌘

6Z

 

= {{. . . ,�6, 0, 6, . . . } , {. . . ,�4, 2, 8, . . . } , {. . . ,�2, 4, 10, . . . }} .
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Let A := 0/ ⌘
6Z

, B := 2/ ⌘
6Z

and C := 4/ ⌘
6Z

. Thus, we have

A+ A = A ; B + A = B ; C + A = C ; AA = A ; BA = A ; CA = A ;

A+B = B ; B +B = C ; C +B = A ; AB = A ; BB = C ; CB = B ;

A+ C = C ; B + C = A ; C + C = B ; AC = A ; BC = B ; CC = C .

It turns out that C is a multiplicative identity element of the quotient
rng 2Z/6Z, and the function f : 2Z/6Z! Z/3Z given by

f (A) := 0/ ⌘
3Z
, f (B) := 2/ ⌘

3Z
and f (C) := 1/ ⌘

3Z

is an isomorphism between rings, implying that 2Z/6Z is a field by case (a).

The lemma below will come in handy in Section 3.6:

Lemma 2.23. The canonical forgetful functor
Rng

U : Rng!Mon of the
Mon-concrete category Rng sends quotients modulo ideals in Rng to quotients
modulo congruence relations in Mon (Definition B.50).

Proof. Let R be a rng, let I be an ideal in R whose associated congruence
relation on R is denoted by ⌘

I

(Proposition 2.21), suppose Q is a quotient of R

modulo I in Rng with quotient morphism ◆ : R
Rng

�! Q and let � : R
Rng

�! R/I be
the canonical quotient morphism of that type (Proposition 2.19). Since quotients
are unique up to unique isomorphism, there is a unique isomorphism
↵ : Q

Rng

�! R/I such that the digraph
Q

↵

✏✏

R

◆

77

�
&&

R/I

in Rng commutes. Note that ⌘
I

is a congruence relation on the monoid UR,

while UR/I is precisely the canonical construction of the quotient of UR modulo
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⌘
I

in Mon with quotient morphism
Rng

U (�) : UR Mon

�! UR/I (cf. the proof of
Proposition 1.14). Finally, since

(8i 2 I0)
Rng

U (�) =
Rng

U (↵ � ◆) =
Rng

U (↵) �
Rng

U (◆)

and since the morphism
Rng

U (↵) : UQ Mon

�! UR/I is an isomorphism between

monoids (Proposition B.30), we have that
Rng

U (◆) : UR Mon

�! UQ is a quotient
morphism of UR modulo ⌘

I

in Mon (Remark B.47).

2.3 Limits in Rng

Rngs give rise to other rngs via the universal property encoded by the
categorical notion of limit (Definition B.31).

Proposition 2.24. (2) The categories Rng and Ring are complete.

Proof. For each of these categories, the argument here is analogous to the proof
of Proposition 1.16, only now we are dealing with two operations on each object
of the category.

We shall see how the most notable limits take form in Rng.

Example 2.25. The simplest example of a limit in Rng is its terminal object
(Definition B.37), which happens to be the trivial rng {0}, since for every rng R

there is exactly one homomorphism of type R! {0}. It is easy to check that {0}
is also the initial object in Rng, which is why the rng {0} is usually denoted by 0.
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Example 2.26. (2) Let {Ri}i2I be a family of rngs. The Cartesian product of setsY

i2I

Ri is a product of {Ri}i2I in Rng (Definition B.38) when endowed with the

addition and multiplication operations on
Y

i2I

Ri given by

{ri}i2I + {si}i2I := {ri + si}i2I and {ri}i2I {si}i2I := {risi}i2I ,

where the projections �j :
RngY

i2I

Ri ! Rj are the usual product projections given by

�j ({ri}i2I) := rj for each j 2 I. Thus, the rng
Y

i2I

Ri might be denoted by
RngY

i2I

Ri.

Example 2.27. (2) Let f, g : R! S be two homomorphisms between rngs.
The kernel Ker (f � g) (Definition 2.1) is an equaliser of f and g in Rng

(Definition B.40), where the equaliser morphism eq (f, g) : Ker (f � g)
Rng

�! R is
the canonical inclusion between sets. Thus, the rng Ker (f � g) might be denoted

by
Rng

Eq (f, g).

Example 2.28. (2) Let f : R! T and g : S ! T be two homomorphisms
between rngs. The subset

P := {(x, y) 2 R⇥ S | f (x) = g (y)}

of the product rng R⇥ S (Example 2.26) forms a subrng of R⇥ S and it is a
pullback of f and g in Rng (Definition B.41), where the pullback morphisms
f : P

Rng

�! S and g : P
Rng

�! R are given by f (x, y) := y and g (x, y) := x.
In other words, the rng P is a fibred product of R and S with respect to f and g

in Rng, and it might be denoted by R
Rng

⇥
f,g

S.

The following lemma will be useful in Section 3.6:

Lemma 2.29. The canonical forgetful functor
Rng

U : Rng!Mon of the
Mon-concrete category Rng sends limits in Rng to limits in Mon

(Definition B.36).

79



Proof. Let F : I ! Rng be a functor, suppose � = {�i : L
Rng

�! F (i)}
i2I0

is a
limit cone over F with vertex L, and let � = {�i : S

Rng

�! F (i)}
i2I0

be the
canonical construction of the limit cone over F with vertex S (Theorem 2.24).
Since limits are unique up to unique isomorphism, there is a unique isomorphism
↵ : L

Rng

�! S such that the digraph
L

�i

''

↵

✏✏

F (i)

S

�i

77

in Rng commutes for all i 2 I0. Note that the cone
Rng

U (�) :=
�Rng

U (�i) : US Mon

�! UF(i)
 
i2I0

is precisely the canonical construction of the limit cone of
Rng

U � F : I !Mon

(cf. the proof of Proposition 1.16). Finally, since

(8i 2 I0)
Rng

U (�i) =
Rng

U (�i � ↵) =
Rng

U (�i) �
Rng

U (↵)

and since
Rng

U (↵) : UL Mon

�! US is an isomorphism (Proposition B.30), the cone
Rng

U (�) =
�Rng

U (�i) : UL Mon

�! UF(i)
 
i2I0

is a limit cone over
Rng

U � F : I !Mon with vertex UL (Remark B.32).

2.4 Topological rngs

The operations of a rng may be appointed as continuous functions when the
universe set of the rng is endowed with a topology on it.

Definition 2.30. A topological rng R is a rng endowed with a topology ⌧ on
it such that (R,+R, ⌧) is a topological group and (R,⇥R, ⌧) is a topological
semigroup. That amounts to saying that the operations

+R : (R, ⌧)⇥ (R, ⌧)! (R, ⌧) ,
+R

Inv : (R, ⌧)! (R, ⌧) and ⇥M : (R, ⌧)⇥ (R, ⌧)! (R, ⌧)
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are continuous. Whenever no particular notation is ascribed in the context to the
topology of R, that shall be denoted by ⌧R. We have the following terminology:

. A topological subrng of R is a topological rng R0 such that the rng
(R0,+R0 ,⇥R0) is a subrng of (R,+R,⇥R) and such that the topological space
(R0, ⌧R0) is a subspace of (R, ⌧R);

. A topological ring is a topological rng whose underlying rng is a ring;

. A topological division ring is a topological ring R whose underlying ring
is a division ring and whose multiplicative inversion operation

⇥R

Inv : (R� {0R} , ⌧ � (R� {0R}))! (R,� {0R} , ⌧ � (R� {0R}))

is continuous;

. A topological field is a topological division ring whose underlying ring is
a field.

Example 2.31. The number fields Q, R and C are topological fields when endowed
with their usual topologies.

Example 2.32. Let {Ri}i2I be a family of topological rngs and let
RngY

i2I

Ri be its

product rng (Example 2.26). Consider the product topology ⌧ :=
TopY

i2I

⌧Ri
on

RngY

i2I

Ri

(Definition 1.43). If f, g 2
RngY

i2I

Ri and if {f�}�2⇤ and {g�}�2⇤ are two nets in
RngY

i2I

Ri

so that f�
⌧

�!
�2⇤

f and g�
⌧

�!
�2⇤

g, then we have

(8i 2 I) f�(i)
⌧Ri

�!
�2⇤

f (i) and g�(i)
⌧Ri

�!
�2⇤

g (i) ,

and since for each i 2 I the operations +Ri
: Ri ⇥Ri ! Ri and ⇥Ri

: Ri ⇥Ri ! Ri

are continuous with respect to ⌧Ri
, we get

(8i 2 I) f�(i) + g�(i)
⌧Ri

�!
�2⇤

f (i) + g (i) and f�(i) g�(i)
⌧Ri

�!
�2⇤

f (i) g (i) ,
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implying f�+ g�
⌧

�!
�2⇤

f + g and f�g�
⌧

�!
�2⇤

fg and proving that the operations of
RngY

i2I

Ri are continuous with respect to ⌧ . Thus,
RngY

i2I

Ri is a topological rng when

endowed with ⌧ .

2.5 Ordered rngs

An order relation may be invariant with respect to the addition operation of
a rng, but invariance is not expected for the multiplication operation whatsoever.
For instance, in the case of the ring Z endowed with its usual order, we note
that 1 < 2 and 1 · (�1) 6< 2 · (�1). Alternatively, a wide range of arithmetic-like
considerations arise from the assumption that any product of two positive elements
of a rng is positive.

Definition 2.33. An ordered rng is a rng R endowed with an order < on it
such that (R,+R, <) is an ordered commutative group and such that (0R,!)(R,<)

is a subsemigroup of (R,⇥R). Whenever no particular notation is attributed to
the order <, it shall be denoted by <R. We have the following notations
and terminology:

. An ordered subrng of R is an ordered rng R0 such that the rng
(R0,+R0 ,⇥R0) is a subrng of (R,+R,⇥R) and such that the ordered set
(R0, <R0) is an ordered subset of (R,<R);

. A rng is orderable if there is an order on it that turns it into an ordered rng.
Otherwise, it is non-orderable;

. The positive cone of R is the interval (0R,!)
R
;

. The absolute value function on R is the absolute value function
(R,+R)

Abs on
the ordered group (R,+R) (Definition 1.73) and it shall be denoted by

R

Abs.
Thus, we have

R

Abs (x) = |x| =
G

max {x,�x} and x,�x 6 |x| for all x 2 R.
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Proposition 2.34. (234, 29, 59) Let R be an ordered rng.

(a) (8x, y 2 R) |xy| = |x| |y| ;

(b) R has no zero divisors;

(c) (8x 2 R� {0R}) x2 > 0R ;

(d) If R is non-trivial and if x 2 R� {0R}, then the sequence {nx}

is monotone, being increasing if x > 0R and decreasing if x < 0R.
In particular, we have Char (R) = 0 (Definition 2.1) and the rng R is
infinite and unbounded above and below in that case;

(e) If R is a non-trivial ordered ring, then nR > 0R (8n 2 N).

Proof.

(a) If x, y > 0R, then xy > 0R and |xy| = xy = |x| |y|. If x > 0R and y < 0R,
then �y > 0R and � (xy) = x (�y) > 0R (Proposition 2.13, Item (a)),
which gives us

|xy| = � (xy) = x (�y) = |x| |y| .

Finally, if x, y < 0R, then �x,�y > 0R and
xy = � (� (xy)) = � ((�x) y) = (�x) (�y) > 0R ,

which gives us
|xy| = xy = (�x) (�y) = |x| |y| .

(b) If x and y are two non-zero elements of R, then |x| , |y| > 0R and
|xy| = |x| |y| > 0R by item (a), which gives us xy 6= 0R and proves the item.

(c) If x > 0R, then clearly x2 > 0R, and if x < 0R, then �x > 0R and
x2 = (�x) (�x) > 0R .

(d) Since the ordered monoid (R,+R, <R) is non-trivial, the result follows from
Item (a) of Proposition 1.65.

(e) We have 0R 6= 1R (Proposition 2.13, Item (b)) and 1R = 12
R
> 0R by

item (c). Moreover, the sequence {n1R} = {nR} is increasing by item (d)
and we have nR > 1R > 0R (8n 2 N).
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Example 2.35. The number rings Z, Q and R are ordered rings when endowed
with their usual orders. The number field C is well-known to be non-orderable.
In fact, if < is an order on C so that (C, <) is an ordered field, then 1 = 12> 0

and �1 = i2> 0 (Proposition 2.34, Item (c)), implying 1 > 0 = 1� 1 > 1 + 0 = 1,
which is absurd.

Example 2.36. Let p be a prime number. The finite field Fp (Example 2.22) is
non-orderable. As a matter of fact, if < is an order on Fp so that (Fp, <) is an
ordered field, then 1/ ⌘

pZ
=
�
1/ ⌘

pZ

�2
> 0/ ⌘

pZ
(Proposition 2.34, Item (c)), and we get

0/ ⌘
pZ

= p/ ⌘
pZ

=

p timesz }| {
1/ ⌘

pZ
+ 1/ ⌘

pZ
+ · · ·+ 1/ ⌘

pZ
> 0/ ⌘

pZ
,

which is absurd.

Example 2.37. Let n be a natural number and let R be a rng. The matrix rngs
Mn(R) and Tn(R) (Example 2.3) are non-orderable since they have zero divisors
(Proposition 2.34, Item (b)).

It is possible to define a compatible order on a rng by specifying its set of
positive elements, provided that such set meets certain criteria:

Definition 2.38. A synthetic positive cone in a rng R is a subset P of R that
is closed under addition, closed under multiplication and is such that the sets �P ,
P and {0R} form a partition of R.

Proposition 2.39. (58) Let R be a rng. The function given by

P 7! {(x, y) 2 R⇥R | y � x 2 P}

is a one-to-one correspondence between the set of synthetic positive cones in R and
the set of orders on R that are compatible with the rng structure of R. The inverse
of that correspondence is given by < 7! (0R,!)(R,<).
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The terminology introduced in Definition 1.69, which relates to the
Archimedean Property on ordered monoids, naturally extends to the theory of
ordered rngs R, where all definitions are considered with respect to the
underlying additive ordered monoids (R,+R, <R):

Definition 2.40. Let R be an ordered rng.

. The Archimedean relation on R is the Archimedean relation
(R,+R,<)

A on
the ordered group (R,+R, <) (Definition 1.69) and it shall be denoted by
A or

R

A . Accordingly, for all x, y 2 R, the condition xA y amounts to
saying that there is an n 2 N such that

x 6 y 6 nx , or nx 6 y 6 x , or y 6 x 6 ny or ny 6 x 6 y ;

. The Archimedean classes of R are the equivalence classes associated to
the equivalence relation A , and, in particular, the trivial Archimedean
class of R is the class 0R/A = {0R} of the element 0R. Each non-trivial
Archimedean class S of R is an order-convex subsemigroup of (R,+R, <)

that is either contained in (0R,!)
R

or contained in ( , 0R)R. It is
positive if S ⇢ (0R,!)

R
and it is negative if S ⇢ ( , 0R)R;

. An ordered rng R is Archimedean if it has at most one positive
Archimedean class. Otherwise, it is non-Archimedean;

. The partial order of Archimedean distribution on R is the partial
order of Archimedean distribution ⌧(R,+R,<) on the ordered group
(R,+R, <) (Definition 1.69) and this partial order shall be denoted by ⌧
or ⌧R.

Example 2.41. The ordered rings Z, Q and R are the archetypal examples of
Archimedean ordered rings.

In the case of an ordered ring R, it is useful to classify the elements of R
according to where they stand relative to the Archimedean class of the
multiplicative identity 1R of R:
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Definition 2.42. Let R be a non-trivial ordered ring.

. An element x 2 R is infinitesimal in R if |x|⌧ 1R. Note that 0R is
infinitesimal in R;

. An element x 2 R is infinite in R if |x|� 1R. Otherwise, it is finite in R;

. An element x 2 R is appreciable in R if x is neither infinitesimal nor infinite
in R;

. The relation of infinite proximity on R is the binary relation on R

denoted by ⇠ or R

⇠ and defined so that for all x, y 2 R, the condition x ⇠ y

is equivalent to saying that the difference x� y is infinitesimal in R.
That binary relation is an equivalence relation on R;

. Two elements x, y 2 R are infinitely close in R if x ⇠ y;

. The monad of an element x 2 R is the equivalence class x/ ⇠.

Example 2.43. Consonant with Example 1.70, we have that the ordered field
(⇤R,+⇤R,⇥⇤R, <⇤R) of hyperreal numbers and the ordered field (No,+No,⇥No, <No)

of surreal numbers are non-Archimedean. Thus, they contain infinitesimal and
infinite elements.

2.6 �-Pseudovalued rngs

�-Valuations (Section 1.9) find their greatest application in Mathematics
when they are considered on rings and fields. In fact, in most publications,
one usually assumes that � is a commutative ordered group, and, taking R to be
a ring, one considers �-valuations v : R!

^

� that are �-valuations on the
commutative group (R,+R) in the sense of Definition 1.79 and that translate
products in R to sums in �. We shall work with a slightly more general setting:
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Definition 2.44. Let � be an ordered magma denoted additively and let R be
a rng. A �-pseudovaluation (resp. �-valuation) on R is a �-valuation
v : R!

^

� on the commutative group (R,+R) (Definition 1.79) such that

(8x, y 2 R) v (xy) > v (x) + v (y) (resp. v (xy) = v (x) + v (y)) .

A �-pseudovalued (resp. �-valued) rng is a rng R endowed with a
�-pseudovaluation (resp. �-valuation) on R. Whenever no particular notation is
attributed to the �-pseudovaluation of R, it shall be denoted by vR. The value
set of R is the set � (Definition 1.33).

Example 2.45. Let p be a prime number and consider the Z-valued
commutative group (Q,+Q, vp) of Example 1.80. We shall prove that this
structure becomes a Z-valued field when the usual multiplication operation on Q
is considered. Effectivelly, if x = pnx (a/b) and y = pny (c/d) are two non-zero
rational numbers, then xy = pnx+ny ac

bd
, and, since ac and bd are non-zero integers

coprime to p, we obtain
vp (xy) = nx + ny = vp (x) + vp (y) ,

proving that (Q,+Q,⇥Q, vp) is a Z-valued field.

2.7 Polynomial Rngs and algebraically closed fields

An algebraic equation is an equation of the form p (x) = q (x), where p

and q are any two polynomials in an unknown variable x, and they were,
almost exclusively, the object of study of all algebraists up until the 19th century.
The long history of their study is fascinating, most crucially including ancient
Greek philosophers who struggled to accept the nature of irrational numbers,
a number of medieval Hindu and Arab mathematicians who developed the theory
of quadratic equations, a couple of Italian mathematicians who solved the cubic
in the 16th century and an underrated French prodigy in the early 19th century
who revealed an upper bound for the degree of algebraic equations that have
general solutions by radicals (40).
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Since the dawn of modern Mathematics, the notion of a polynomial has
been significantly generalised, so that the coefficients of a polynomial need not be
numbers of any kind as long as they belong to a ring-like structure:

Definition 2.46. Let R be a rng. The polynomial rng with coefficients in
R is the set denoted by R [X] and given by

R [X] := {p 2 N0R | supp (p) is finite} ,

being endowed with the addition and multiplication operations on it given by

(p+ q)
n
:= pn + qn and (pq)

n
:=

X

u,v2N0
u+v=n

puqv .

Clearly, R [X] is a rng that is a ring if, and only if, R is a ring. We have the
following notations and terminology:

. Each polynomial p 2 R [X] is almost invariably denoted by a finite formal

sum p =
nX

i=0

piXi, where n is any upper bound of supp (p) in N0;

. The n-th degree coefficient of a polynomial p 2 R [X] is the element pi

of R. A polynomial may only have a finite number of non-zero coefficients;

. The independent coefficient of a polynomial p 2 R [X] is its 0-th
degree coefficient, p0. The constant term of p is the polynomial p0X0;

. For each n 2 N0 and each r 2 R, the polynomial p 2 R [X] given by

pm :=

8
<

:
r if m = n ,

0R if m 2 N0 � {n}

is denoted by rXg, and if n 6= 0 and r 6= 0R, then that polynomial p is called
the n-th degree monomial with coefficient r. A non-zero polynomial p is
the actual sum of the finite sequence of monomials pi1X

i1 , pi2X
i2 , . . . , pinXin

with respect to the addition on R [X] defined above, where {i1i2 . . . in} is the
support of p;

. If R is a ring, then for each n 2 N0, the element 1RXn of R [X] is denoted
by Xn. The element X1 is denoted by X;
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. For each r 2 R, the constant polynomial with value r is the element
rX0 of R [X] and it is denoted by r, by abuse of language. In particular,
the element 0RX0 is called the zero polynomial in R [X] and it is denoted
by 0R, and if R is a ring, then the element 1RX0 is denoted by 1R;

. The degree of a non-zero polynomial p 2 R [X] is the greatest element
of supp (p), and it is denoted by deg (p);

. Let r 2 R and let p 2 R [X]. The r-image of a polynomial p =
nX

i=0

piXi in

R [X] is the element of R denoted by p (r) and given by the finite

sum p (r) :=
nX

i=0

pir
i. The element r is a root of p in R if p (r) = 0R.

Example 2.47. Let R be a rng, let x 2 R and let n 2 N. The n-th roots of x

(in R) are the elements y 2 R so that yn= x. They are called square roots of
x in the case n = 2, and cubic roots of x in the case n = 3. If R is a ring,
the n-th roots of x in R are precisely the roots of the polynomial Xn

� x in R.
The number �1 has no square roots in R, but it has two square roots in C, viz. i
and �i.

Example 2.48. Let k 2 N0 and let p be a prime number. It follows from
Fermat’s Little Theorem (141, 62) that all elements of the finite field Fp

(Example 2.22) are roots of the pk-th degree polynomial Xp
k

� X 2 Fp [X].

Definition 2.49. A field K is algebraically closed if every polynomial in
K [X] of positive degree has at least one root in K.

Example 2.50. The number fields Q and R are not algebraically closed, but the
field C is.

Example 2.51. The field ⇤R of hyperreal numbers (192, 148) is not
algebraically closed, but the field ⇤C of hypercomplex numbers is.
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Example 2.52. The field No of surreal numbers (113) is not algebraically closed.

Example 2.53. No finite field is algebraically closed. As a matter of fact,
if K = {x1x2 . . . xn} is a finite field, then the polynomial

(X� x1) (X� x2) · · · (X� xn) + 1K 2 K [X]

has no roots in K.

2.8 Differential rings

Given a ring R, an endomorphism on R may possess certain features
in common with the derivative operator on the ring C

1(R) of infinitely
differentiable functions. Those endomorphisms, called derivations, were first
researched by Ritt in 1932 (191), as he made significant breakthroughs in the
study of the geometry of differential equations on fields of characteristic zero,
founding the powerful area known today as Differential Algebra. This area
brought on profound implications on a number of different parts of Mathematics,
being further specialised in a handful of fascinating subareas such as Differential
Galois Theory and Differential Algebraic Geometry, and it has found a few
applications in modern Computer Algebra.

Definition 2.54. Let R be a ring. A derivation of R is an endomorphism
@ : (R,+R)

Grp

�! (R,+R) such that Leibniz’s Product Rule is satisfied:

(8x, y 2 R) @ (xy) = (@x) y + x (@y) .

A differential ring is a ring R endowed with a finite number of non-zero
derivations of R. We shall assume that R has only one underlying derivation,
which will be denoted by @R.
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Example 2.55. The classical differential operator d/dx : C1(R)! C
1(R) on

the ring C
1(R) of infinitely differentiable functions of type R! R is the archetypal

example of a derivation (of C1(R)).

Example 2.56. Let R be a ring. The function D : R [X]! R [X] given by

D
⇣ nX

i=0

piXi

⌘
:=

nX

i=1

ipiXi�1

is a derivation of the polynomial ring R [X]. Note that that function artificially
mimics the formula for calculating derivatives of polynomial functions of
type R! R.

Proposition 2.57. (195, 11) Let A be a ring and let @ : A! A be a derivation
of A.

(a) @A (1A) = 0A;

(b) If x1 . . . xn 2 A, then

@A (x1 · · · xn) =
nX

i=1

x1 · · · xi�1@A (xi) xi+1 · · · xn ;

(c) If A is commutative, then

(8x 2 A) (8n 2 N) @A (xn) = nxn�1@A (x)

and

(8x, y 2 A) (8n 2 N) @n
A
(xy) =

nX

k=0

✓
n

k

◆
@n�k
A

(x) @k
A
(y) .
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3
Rayner Rngs of Formal Power Series

With the theoretical apparatus presented in Chapters 1 and 2 available,
we are ready to address our Theory of Rayner Rngs, which is the main subject
of this thesis. In this chapter, we shall formally establish the framework of
that theory, defining the notion of a Rayner ideal on an ordered group and
the notion of a Rayner rng, and then proving a set of algebraic, categorical,
order-theoretical and differential-algebraic results related to these notions.
Moreover, we shall consider special types of Rayner ideals which lead to a few
prominent structures in Non-Archimedean Mathematics.

3.1 Rayner ideals

As mentioned in the Introduction, the elements of a Rayner rng will be
defined to be formal power series x =

X

g2G

xgXg with coefficients in a rng R and

with exponents in an ordered group G (Definition 3.26), so that the addition and
multiplication operations on the set of these series are to be defined as

x+ y =
X

g2G

xgXg +
X

g2G

ygXg :=
X

g2G

(xg + yg)Xg

and

xy =
⇣X

g2G

xgXg

⌘⇣X

g2G

ygXg

⌘
:=
X

p2G

✓ X

g,h2G
g+h=p

xgyh

◆
Xp .

As Rayner pointed out in 1968, for the coefficients
X

g,h2G
g+h=p

xgyh of a product xy

of x and y to be well-defined as finite sums in R, one has to assume that the
set of possible supports of these power series, which we shall denote by J ,



contains only well-ordered subsets of G, and if one is to expect that the set of formal
power series with supports in J to be closed under those operations, then further
constraints must be imposed upon J . We call the set J a Rayner ideal 1 on G,
and, in this section, we shall examine its fundamental properties.

Since the elements of the ordered group G are meant to appear as
exponents of the formal variable X in the power series that define the elements of
Rayner rngs, and since it is convenient to render the traditional Product of
Powers Rule XgXh = Xg+h as valid, the ordered group G shall always be denoted
additively whenever one or more ideals on G are taken into consideration.

Definition 3.1.

. An ideal on a set J is an inhabited set J of subsets of J such that the
following two conditions are satisfied:

(I1) (8A 2 J ) (8B 2 P (J)) (B ⇢ A) B 2 J ) ;

(I2) (8A,B 2 J ) (A [ B 2 J ) .

An ideal J on J is proper if J ( P (J), otherwise it is improper. It is
easy to check that the set of P!(J) of finite subsets of J is an ideal on J ,
and, if J is an ordered set, then the set

wo

P(J) of well-ordered subsets of J
(Definition 1.28) is an ideal on J ;

. Let J be an ideal on a set J . A subideal (resp. proper subideal) of J is
an ideal S on J such that S ⇢ J (resp. S ( J );

. An ideal J on an ordered set J is incremental if every subset S of J such
that S \ ( , j]

J
2 J (8j 2 J) is an element of J ;

. Let  be a cardinal number. An ideal J on a set J is -dominated
if |A| <  (8A 2 J );

1 Rayner himself called that set a field family with respect to G. We took the liberty of
renaming the concept in his honor.
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. An ideal J on an ordered set J is cofinal if every infinite element of J is
cofinal in J ;

. An ideal on a group G is spanning if Grpspan
G

(
S
J ) = G (Definition 1.7);

. An ideal on a group G is well-balanced if for all A 2 J and all g 2 A,
there is a B 2 J such that �g 2 B;

. An arithmetic Rayner ideal on an ordered group G is an ideal J on G

that is a subideal of
wo

P(G) and is such that A+B 2 J (8A,B 2 J );

. A full Rayner ideal on an ordered group G is an ideal J on G that is a
subideal of

wo

P(G) and is such that the following two conditions are satisfied:

(F1) (8A 2 J ) (8g 2 G) A+ g, g + A 2 J ;

(F2) (8A 2 J ) A ⇢ [0G,!)
G
)

SGrpspan
G

(A) 2 J (Definition 1.2).

Rayner considered solely what we call here a spanning full Rayner ideal
on G (181, 182), and Krapp, Kuhlmann and Serra (117) took into account several
variations of axioms upon J . Both assessments dealt exclusively with the case in
which the ordered group G is commutative. The abstraction of the scenario so
as to include non-commutative groups G, as well as the notions of incremental,
-dominated, cofinal, well-balanced and arithmetic Rayner ideals on G, are novel
in this work.

Proposition 3.2. Let J be an ordered set and let G be an ordered group.

(a) If J is a cofinal ideal on J , then J is cf (J)+-dominated;

(b) If there is a cofinal ideal J on J that has an infinite element, then cf (J) 6 !;

(c) An arithmetic Rayner ideal J on G is spanning and well-balanced if, and only
if, {g} 2 J (8g 2 G). In that case, Axiom (F1) holds for J ;

(d) (117) Every full Rayner ideal J on G is arithmetic.
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Proof. Item (a) is straightforward. We shall prove the remaining items.

(b) Let S be an infinite element of J and let C be an infinitely countable subset
of S. Thus, we have C 2 J , and, since the ideal J is cofinal, the set C is
cofinal in J , which gives us cf (J) 6 !.

(c) If {g} 2 J (8g 2 G), then the ideal J is clearly well-balanced and we have
Grpspan
G

(
S

J ) =
Grpspan
G

(G) = G, that is, J is spanning. Conversely, suppose J

is spanning and let g be an element of G. Thus, there is a finite sequence
A1A2 . . . An in J and also a finite sequence g1g2 . . . gn in G such that
±gi 2 Ai (8i 2 [1, n]N) and g = g1 + g2 + · · ·+ gn. Since J is well-balanced,
we may assume that gi 2 Ai (8i 2 [1, n]N), and we have

{g} ⇢ A1 + A2 + · · ·+ An 2 J ,

which implies {g} 2 J . Finally, if A is an element of J , then we get

A+ g = A+ {g} 2 J and g + A = {g}+ A 2 J .

(d) Suppose A and B are inhabited elements of J , let gA be the least element
of A and let gB be the least element of B. Then, (�gA) + A,B + (�gB) 2 J

(Axiom (F1)) and

((�gA) + A) [ (B + (�gB)) 2 J

implying (Axiom (F2))

S :=
SGrpspan

G

((�gA) + A) [ (B + (�gB)) 2 J

since (�gA) + A,B + (�gB) ⇢ [0G,!)
G
. If x 2 A and y 2 B, then we have

(�gA) + (x+ y) + (�gB) = ((�gA) + x) + (y + (�gB)) 2 S

and x+ y 2 gA + S + gB, proving the inclusion A+B ⇢ gA + S + gB 2 J

(Axiom (F1)) and A+B 2 J .

The proofs of several upcoming results depend upon the requirement that
every element of G must be allowed to appear as an exponent of the formal
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variable X in the construction of the elements of a Rayner rng. Thus, the author
reckons that it is reasonable to assume the validity of that condition for all
Rayner ideals considered in our discussions:

Assumption 3.3. From now on, we are only to consider ideals J on a set J that
satisfy P!(J) ⇢ J . That implies that all arithmetic Rayner ideals on a group G

are assumed to be spanning and well-balanced on G.

Proposition 3.4. Let G be a non-trivial ordered group.

(a) The set P!(G) of finite subsets of G is an !-dominated arithmetic Rayner
ideal on G that is neither incremental nor full;

(b) The set
wo

P(G) of well-ordered subsets of G is an incremental full Rayner ideal
on G.

Proof. Item (a) is elementary and its proof shall be omitted.

(b) We leave to the reader the simple proof that
wo

P(G) is an ideal on G.
Taking that into account, we know that

wo

P(G) is an arithmetic Rayner ideal
on G (Lemma 1.66) and Axiom (F1) of Definition 3.1 holds for

wo

P(G)

(Proposition 3.2, Item (c)). If S is a subset of G such that the condition
S \ ( , g]

G
2

wo

P(G) (8g 2 G) holds, if U is an inhabited subset of S and if
u is an element of U , then ( , u]

U
is an inhabited subset of S \ ( , u]

G

and it is clear that the least element of ( , u]
U

is also the least element
of U . Thus, the ideal

wo

P(G) on G is incremental.

It remains to prove that
wo

P(G) satisfies Axiom (F2). Suppose A is a
well-ordered subset of G contained in [0G,!)

G
. We are to prove that the

semigroup SGrpspan
G

(A) is well-ordered in G. Since SGrpspan
G

(A) ⇢
SGrpspan

G

(A [ {0G}),

we may assume, without loss of generality, that we have 0G 2 A.
By Proposition 1.31, there is a unique ordinal � and there is a unique
isomorphism � : A! � between ordered sets. We shall prove the desired
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result by transfinite induction on �. It is trivially true for � = 0. Suppose it
holds true for every well-ordered subset of G contained in [0G,!)

G
that is

isomorphic in OrdSet to an ordinal less than �. Let S be an inhabited
subset of SGrpspan

G

(A), take a fixed element s of S, let a1a2 . . . an be a finite

sequence in A such that s = a1 + a2 + · · ·+ an and let g :=
G

max
i2[1,n]N

ai. Thus,

s 6 ng and note that the restriction

� � ( , g)
A
: ( , g)

A
! � (g)

is an isomorphism between ordered sets. Since � (g) < �, the semigroup
SGrpspan

G

(( , g)
A
) is well-ordered in G by the inductive hypothesis.

We are to show that S has a least element. If g = 0G, then s = 0G is
clearly the least element of S. Let us assume that g > 0G. Consider an
element x of the interval ( , s]

S
and let p1p2 . . . pk be a finite sequence in A

such that x = p1 + p2 + · · ·+ pk. If i1i2 . . . im are the indices in [1, k]N such
that piu > g (8u 2 [1,m]N), then m 6 n, for otherwise we would have
m > n and

x =
⇣ i1�1X

i=1

pi
⌘
+ pi1 +

⇣ i2�1X

i=i1+1

pi
⌘
+ pi2 + · · ·+ pim +

⇣ kX

i=im+1

pi
⌘

> 0G + g + 0G + g + · · ·+ g + 0G

= mg > ng > s ,

which is absurd. Therefore, since

(8i 2 [1, k]N � {i1i2 . . . im}) pi < g ,

we obtain 2

x =
⇣ i1�1X

i=1

pi
⌘
+ pi1 +

⇣ i2�1X

i=i1+1

pi
⌘
+ pi2 + · · ·+ pim +

⇣ kX

i=im+1

pi
⌘

2

n occurrences of Az }| {
SGrpspan

G

(( , g)
A
) + A +

SGrpspan
G

(( , g)
A
) + A + · · ·+ A +

SGrpspan
G

(( , g)
A
) .

2 The fact 0G 2 ( , g]A ⇢
SGrpspan

G

(( , g]A) ensures that the conclusions that follow hold true

if m < n� 1, or i1 = 1, or im = n or even if ij + 1 = ij+1 for some j 2 [1,m� 1]N.
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That last set above, which we denote by P , is well-ordered in G since the
Rayner ideal

wo

P(G) on G is arithmetic. We have proved that ( , s]
S
⇢ P , and,

thus, the interval ( , s]
S

has a least element which is clearly the least element
of S, proving that SGrpspan

G

(A) is well-ordered and concluding our induction.

Example 3.5. The sets P!(Z,+Z, <Z), P!(Q,+Q, <Q), P!(R,+R, <R) and
P!(BS`) (Example 1.64) are !-dominated arithmetic Rayner ideals on the
respective ordered groups (Z,+Z, <Z), (Q,+Q, <Q), (R,+R, <R) and BS`, and
they are neither incremental nor full (Proposition 3.4, Item (a)). They are
trivially cofinal, for they contain no infinite elements.

Example 3.6. The set
wo

P(Z,+Z, <Z) is an incremental full Rayner ideal on the
ordered group (Z,+Z, <Z) (Proposition 3.4, Item (b)), and, given that every infinite
well-ordered subset of Z is cofinal in Z, this Rayner ideal is cofinal.

Example 3.7. The sets
wo

P(Q,+Q, <Q),
wo

P(R,+R, <R) and
wo

P(BS`) are incremental
full Rayner ideals on the respective ordered groups (Q,+Q, <Q), (R,+R, <R) and
BS` (Proposition 3.4, Item (b)). These ideals are not cofinal, since, for instance,
the sets (cf. Example 1.71)

{�1/n | n 2 N} ⇢ Q ⇢ R and {n ((�` t) +m) | n 2 N} ⇢ BS`

are infinite well-ordered subsets that are not cofinal in their respective
ordered groups. Moreover, the ideals

wo

P(Q,+Q, <Q) and
wo

P(BS`) are !1-dominated
as Q and BS` are countable, and the ideal

wo

P(R,+R, <R) is !1-dominated since
every well-ordered subset of R is countable (33).

Example 3.8. Let ↵ be an ordinal number and consider the set No↵ of surreal
numbers with birthdays less than ↵. One can easily show that cf (No↵) = cf (↵),
and a result proved by Dries and Ehrlich (69) reveals that if ↵ is of the form 3 !�,
3 Ordinals of this form are said to be additively indecomposable.
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where � is any ordinal, then No↵ forms a commutative ordered group when
endowed with its usual addition operation and its usual order. In particular,
we have cf (No!1) = cf (!1) = !1, and, given that !1 = !!1 (38, 89), it turns out
that the ideal P!(No!1) is the only cofinal ideal on the ordered group No!1

(Proposition 3.2, Item (b)), and it is an !-dominated arithmetic Rayner ideal
on No!1 that is neither incremental nor full (Proposition 3.4, Item (a)).

3.2 Left-finiteness of subsets and ideals

As first pointed out by Levi-Civita in 1893 (139), a particular class of subsets
of Q is closely related to some arithmetic systems of formal power series that
exhibit many striking properties of analytical character, and, in fact, many classical
results of Analysis on Rn hold true for those systems when their assumptions are
slightly modified. Such class of subsets of ordered sets is of the utmost importance
to our Theory of Rayner Rngs, and it shall be introduced in this section.

Definition 3.9. A subset S of an ordered set X is left-finite in X if we have

(8x 2 X) |S \ ( , x]
X
| < ! .

The set of left-finite subsets of X shall be denoted 4 by
lf

P (X). An ideal on X is
left-finite if it is contained in

lf

P (X).

Proposition 3.10. (17, 200) Let X be an ordered set.

(a) If S is a left-finite subset of X, then S is left-finite in itself;

(b) The set
lf

P (X) of left-finite subsets of X is an ideal on X (Definition 3.1)
that contains P!(X) as a subideal;

4 The letters ‘lf’ in this notation stand for ‘left-f inite’.
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(c) A subset S of X is left-finite in X if, and only if, it is either finite or
isomophic to ! and (strictly) cofinal in X;

(d) An ideal J on X is left-finite if, and only if, it is cofinal. In that case, J is
a subideal of

wo

P(X) that is !1-dominated, and if J has an infinite element,
then cf (X) = ! (Definition 1.27);

(e) If {xn} is a sequence in X whose image {xn | n 2 N} is infinite and
left-finite in X, then the sequence {xn} is not

X

Ordt-convergent;

(f) If G is a non-Archimedean ordered group, and if J is a left-finite ideal on G,
then Axiom (F2) (Definition 3.1) does not hold for J .

Proof. All claims are trivially obvious in the case X = ;. Assume X 6= ; in the
following proofs.

(a) Note that

(8x 2 S) S \ ( , x]
S
= ( , x]

S
⇢ S \ ( , x]

X
,

implying that S \ ( , x]
S

is finite for all x 2 S.

(b) Clearly, we have P!(X) ⇢
lf

P (X) and the set
lf

P (X) is closed under subsets.
Take A,B 2

lf

P (X). For all x 2 X, we have

(A [B) \ ( , x]
X
= (A \ ( , x]

X
) [ (B \ ( , x]

X
) ,

that is, the set (A [B) \ ( , x]
X

is the union of two finite sets, and,
therefore, it is finite, proving that A [B 2

lf

P (X).

(c) Suppose S is a left-finite subset of X. Firstly, we shall prove that S is
well-ordered. Let W be an inhabited subset of S and let w be an element
of W . Since S is left-finite in X, the set W is left-finite in X (item (b)),
and if w1 . . . wn is the increasing finite sequence of elements of the
intersection W \ ( , w]

X
, then one can easily conclude that w1 is the least

element of W . Hence, S is well-ordered, and, by Proposition 1.31, there is
an ordinal  such that S is isomorphic to . Since S is left-finite in itself
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(item (a)), the ordinal  is also left-finite in itself, implying  6 !, because
otherwise we would have ! <  and

 \ ( ,!]

= [0,!]


= ! + 1 ,

which is not a finite set. Finally, if S is infinite and bounded above in X,
then it is contained in an interval of the form ( , b]

X
for b 2 X and the

intersection S \ ( , b]
X
= S is infinite, contradicting the left-finiteness of S

in X.

Conversely, suppose S is a subset of X that is isomophic to ! and is
cofinal in X. Thus, we may identify S with !, for instance writing ! ⇢ X,
and, since ! is cofinal in X, for every x 2 X there is a finite ordinal n such
that x 6 n, which implies that the intersection ! \ ( , x]

X
is contained in

the finite interval [0, n]
!
, proving that S is left-finite in X.

(d) By item (c), we know that every left-finite ideal on X is a subideal of
wo

P(X)

that is cofinal and !1-dominated, and if it has an infinite element,
then cf (X) = !. Suppose J is a cofinal ideal on X and suppose S is an
infinite element of J . Thus, S is cofinal in X, and if X has a greatest
element xmax, then xmax2 S and S � {xmax} is an infinite element of J

that is not cofinal in X, which is absurd. Thus, X has no greatest element.
If x is an arbitrary element of X and if the intersection S \ ( , x]

X

is infinite, then S \ ( , x]
X

is an infinite element of J , and, since J

is cofinal, S \ ( , x]
X

is cofinal in X and x is the greatest element of X,
which is absurd. Therefore, for all x 2 X the intersection S \ ( , x]

X

is finite, proving that S is left-finite in X and the ideal J is left-finite.

(e) Suppose x is an element of X such that xn

X
Ordt

�!
n!1

x. If x is the greatest element
of X, then the intersection

{xn | n 2 N} \ ( , x]
X
= {xn | n 2 N}

is finite, which is absurd. Hence, x is not the greatest element of X and
there is a y 2 X such that x < y, implying that the interval ( , y)

X
is a

bounded above
X

Ordt-neighbourhood of x. Since xn

X
Ordt

�!
n!1

x, the sequence {xn}

is bounded above in X, which is absurd by item (c).
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(f) Take g, h 2 (0G,!)
G

such that ng < h (8n 2 N). Since the set
SGrpspan

G

({g}) \ ( , h]
G
= {ng | n 2 N} \ ( , h]

G
= {ng | n 2 N}

is infinite, the span SGrpspan
G

({g}) is not left-finite in G. Thus, SGrpspan
G

({g}) 62 J

since J is left-finite, proving that Axiom (F2) does not hold for J .

Proposition 3.11. Let G be a non-trivial ordered group.

(a) The equation P!(G) =
lf

P (G) holds if, and only if, cf (G) > !;

(b) The equation
lf

P (G) =
wo

P (G) holds if, and only if, G is isomorphic to the
ordered group (Z,+Z, <Z).

Proof.

(a) The negation of that equation is equivalent to the existence of an infinite
left-finite subset of G, which, in turn, is equivalent to cf (G) = !

(Proposition 3.10, Item (d)).

(b) If S is an infinite well-ordered subset of Z whose least element is m and if
n is an arbitrary integer, then S \ ( , n]Z ⇢ [m,n]Z, implying that the
set S is left-finite in Z and proving the sufficient condition of the item.
Suppose that

lf

P (G) =
wo

P (G). If G is non-Archimedean, then there are two
positive elements g and h of G such that ng < h (8n 2 N). In that case,
the set {ng | n 2 N} is well-ordered in G and is not left-finite in G,
contradicting the supposition. Hence, the ordered group G is Archi-
medean and can be identified with an ordered subgroup of (R,+R, <R)

(Theorem 1.72). Lastly, if G has no greatest negative element, then there is
an increasing sequence {gn} in (�1, 0)

G
, which is absurd since in that case

the countable set {gn | n 2 N} would be well-ordered in G and would not
be left-finite in G. Thus, G is not order-dense in R (Proposition 1.53) and
is isomorphic to (Z,+Z, <Z) (Proposition 1.68).

103



Example 3.12.
lf

P (Z,+Z, <Z) =
wo

P(Z,+Z, <Z) (Proposition 3.11, Item (b)).

Example 3.13. Taking into account the fact that the ordered group No!1

(Example 3.8) has uncountable cofinality !1, we obtain P!(No!1) =
lf

P (No!1)

(Proposition 3.11, Item (a)).

Proposition 3.14. Let G be a non-trivial ordered group.

(a) The set
lf

P (G) of left-finite subsets of G is an incremental arithmetic Rayner
ideal on G (Definition 3.1);

(b) The set
lf

P (G) is a full Rayner ideal on G if, and only if, G is isomorphic to
an ordered subgroup of (R,+R, <R).

Proof.

(a) If S is a subset of G such that S \ ( , g]
G
2

lf

P (G) (8g 2 G), then,
since each intersection S \ ( , g]

G
is left-finite and bounded above in G,

then each S \ ( , g]
G

is finite (Proposition 3.10, Item (c)), proving that
the ideal

lf

P (G) on G is incremental.

Suppose A and B are two inhabited left-finite subsets of G, let a0 and
b0 be the least elements of A and B, respectively, and let g be any element
of G. If x 2 A+B is so that x 6 g, and if a 2 A and b 2 B are such
that x = a+ b, then a+ b0 6 a+ b 6 g and a0 + b 6 a+ b 6 g, implying

a 2 A \ ( , g + (�b0)]G and b 2 B \ ( , (�a0) + g]
G
.

Thus, that proves the inclusion

(A+B) \ ( , g]
G
⇢ (A \ ( , g + (�b0)]G)⇥ (B \ ( , (�a0) + g]

G
) ,

and, since the set on right-hand side is finite, the set (A+B) \ ( , g]
G

is finite, showing that A+B 2
lf

P (G).
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(b) If G is not isomorphic to an ordered subgroup of (R,+R, <R), then G is
non-Archimedean (Theorem 1.72) and the necessary condition of the item
follows from Item (f) of Proposition 3.10. Suppose G is an ordered
subgroup of (R,+R, <R). By item (a), the set

lf

P (G) is a subideal of
wo

P(G)

on G that satisfies Axiom (F1) of Definition 3.1 (Proposition 3.2, Item (c)).
Hence, it remains to show that Axiom (F2) also holds for

lf

P (G). Let A be
an inhabited left-finite subset of G contained in (0G,!)

G
, let a0 be the

least element of the set A and let g be a fixed element of G. Since G

is Archimedean, there is a least natural number n0 such that g 6 n0a0.
If a1a2 . . . ak is any finite sequence in A such that a1 + a2 + · · ·+ ak 6 g,
then we get

ka0 =

k timesz }| {
a0 + a0 + · · ·+ a0 6 a1 + a2 + · · ·+ ak 6 g 6 n0a0 ,

which implies k 6 n0. Thus, we obtain

SGrpspan
G

(A) \ (�1, g]
G
⇢

✓ n0[

k0=1

k
0 timesz }| {

A+ A+ · · ·+ A

◆
\ (�1, g]

G

=
n0[

k0=1

✓✓ k
0 timesz }| {

A+ A+ · · ·+ A

◆
\ (�1, g]

G

◆
,

proving that SGrpspan
G

(A) \ (�1, g]
G

is finite and proving that SGrpspan
G

(A) 2
lf

P (G).

Example 3.15. The sets
lf

P (Q,+Q, <Q) and
lf

P (R,+R, <R) are incremental full
Rayner ideals on the respective ordered groups (Q,+Q, <Q) and (R,+R, <R)

(Proposition 3.14, Item (b)), and they are cofinal and !1-dominated subideals of
the respective ideals

wo

P(Q,+Q, <Q) and
wo

P(R,+R, <R) (Proposition 3.10,
Item (d)).

Example 3.16. The set
lf

P (BS`) is an incremental arithmetic Rayner ideal
on BS` (Proposition 3.14, Item (a)). That ideal is not full, given that BS` is
non-Archimedean (Proposition 3.10, Item (f)).

105



3.3 Puiseux ideals

A class of Rayner ideals that is closely connected to the left-finite ideals and
has several applications in Complex Analysis and Algebraic Geometry shall be
discussed here, and we shall do so with a high degree of generality.

Definition 3.17. Let G be an ordered group.

. A Puiseux ordered subgroup of G is an ordered subgroup H of G that
is cofinal in G and is such that the following condition holds:

(8g 2 G) (9n 2 N) ng 2 H .

Let H be a Puiseux ordered subgroup of G.

. For every natural number n, we denote by
1/n

PH(G) the set of subsets S of G
such that nS is a left-finite subset of H;

. The Puiseux ideal on G over H is the union
[

n2N

1/n

PH(G), and it shall be

denoted 5 by
bd

PH(G).

The literature concerning Puiseux series draws attention solely to the case
in which the set of exponents G is equal to Q, and the author believes that that
is due to two reasons: all known applications of those series stem from that case,
and it is not so straightforward to see how a generalisation to an arbitrary group
G can be achieved. Our Definition 3.17 explores the fact that the support of a
classical Puiseux series is a set of the form {n0/d0, n1/d1, n2/d2, . . . } ⇢ Q, where
n0n1n2 . . . is a sequence of integers and d0d1d2 . . . is a bounded sequence
of natural numbers so that the sequence n0/d0, n1/d1, n2/d2, . . . is increasing.
Thus, by multiplying all elements of that set by a common multiple of all
numbers in the bounded sequence d0d1d2 . . . , one obtains a set that is clearly
5 The letters ‘bd’ in this notation stand for ‘bounded denominators’.
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left-finite in Z, and that shows that the classical Puiseux series are defined by the
Puiseux ideal

bd

PZ(Q,+Q, <Q) over Z, in our terminology. Other Puiseux ideals
(Examples 3.20 and 3.21) also give rise to interesting Rayner rng structures,
as we shall attest in due course (Examples 3.69, 3.70 and 3.81).

Proposition 3.18. Let G be an ordered group and let H be a Puiseux ordered
subgroup of G.

(a) Each set
1/n

PH(G) for n 2 N is a subideal of
lf

P (G) on G. In particular,
1/n

PH(G) is !1-dominated and cofinal;

(b)
⇣
8A 2

1/n

PH(G)
⌘
(8m 2 N) (mn)A 2

lf

P (H) ;

(c) The set
bd

PH(G) is a subideal of
lf

P (G) on G. In particular,
bd

PH(G) is
!1-dominated and cofinal.

Suppose G is commutative in the following items.

(d) Each set
1/n

PH(G) for n 2 N is an arithmetic Rayner ideal on G;

(e) The set
bd

PH(G) is an arithmetic Rayner ideal on G;

(f) Each set
1/n

PH(G) for n 2 N and the set
bd

PH(G) are full Rayner ideals on G

if, and only if, G is isomorphic to an ordered subgroup of (R,+R, <R).

Proof.

(a) We leave the proof that
1/n

PH(G) is an ideal6 on G to the reader. We shall

prove that
1/n

PH(G) ⇢
lf

P (G). Take an element A 2
1/n

PH(G). The function
f : A! nA given by f (x) := nx is an isomorphism between ordered sets

6 Recall that Assumption 3.3 is in force.
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(Proposition 1.65, Item (c)), implying that A is either finite or isomorphic
to ! (Proposition 3.10, Item (c)). Moreover, since nA is cofinal in H and
since H is cofinal in G, the set nA is cofinal in G, and if g is an arbitrary
element of G, then there is an s 2 A so that ng 6 ns, which gives us g 6 s

and proves that A is cofinal in G. Hence, A is left-finite in G.

(b) Note that (Proposition 3.14, Item (a))

(mn)A = m (nA) ⇢

m timesz }| {
nA+ nA+ · · ·+ nA 2

lf

P (H) .

(c) By item (a), we know that
bd

PH(G) is closed under subsets and is contained
in

lf

P (G). Let m and n be two natural numbers and take two elements

A 2
1/m

PH(G) and B 2
1/n

PH(G). We shall prove that A [ B 2
bd

PH(G).
We have mA, nB 2

lf

P (H) and (mn)A, (mn)B 2
lf

P (H) by item (b),
implying

(mn) (A [ B) = (mn)A [ (mn)B 2
lf

P (H)

and proving the item.

(d) Take two elements A and B of
1/n

PH(G). Then nA, nB 2
lf

P (H), and, since
(Proposition 3.14, Item (a))

n (A+B) = nA+ nB 2
lf

P (H)

we have A+B 2
1/n

PH(G).

(e) Take two natural numbers m and n and two elements A 2
1/m

PH(G)

and B 2
1/n

PH(G). Then mA, nB 2
lf

P (H) and (mn)A, (mn)B 2
lf

P (H) by
item (b), implying (Proposition 3.14, Item (a))

(mn) (A+B) = (mn)A+ (mn)B 2
lf

P (H)

and A+B 2
1/(mn)

PH(G).

(f) If G is not isomorphic to an ordered subgroup of (R,+R, <R), then G is
non-Archimedean (Theorem 1.72) and the necessary condition of the item
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follows from item (a) and Item (f) of Proposition 3.10. Suppose G is an

ordered subgroup of (R,+R, <R). By items (d) and (e), the sets
1/n

PH(G) and
bd

PH(G) are subideals of
wo

P(G) on G that satisfy Axiom (F1) of Definition 3.1
(Proposition 3.2, Item (c)). Hence, it remains to show that Axiom (F2)

also holds for
1/n

PH(G) and
bd

PH(G), and given that
bd

PH(G) =
[

n2N

1/n

PH(G),

it suffices to prove the result for
1/n

PH(G). Take an element A of
1/n

PH(G)

contained in [0G,!)
G
. Thus, nA 2

lf

P (H) and nA ⇢ [0G,!)
H

. Since
lf

P (H)

is a full Rayner ideal on H (Proposition 3.14, Item (b)), we have

n
SGrpspan

G

(A) =
SGrpspan

H

(nA) 2
lf

P (H) ,

which gives us SGrpspan
G

(A) 2
1/n

PH(G) and proves the item.

Example 3.19. The classical Puiseux ideal is the ideal
bd

PZ(Q,+Q, <Q) over Z.
It is a full Rayner ideal on the ordered group (Q,+Q, <Q) that is !1-dominated
and cofinal (Proposition 3.18).

In general, Puiseux ideals are not incremental. For instance, for each
q 2 (0,1)Q let Sq be the finite set

Sq :=
�
n+

1

n
| n 2 N and n+

1

n
6 q
 

and let S :=
[

q2(0,1)Q

Sq. Since one may not express the elements of S so that the set

of their denominators is bounded, the set S is not an element of
bd

PZ(Q,+Q, <Q),
but clearly we have

(8q 2 Q) S \ ( , q]Q = Sq 2 P!(Q,+Q, <Q) ⇢
bd

PZ(Q,+Q, <Q) ,

proving that the classical Puiseux ideal
bd

PZ(Q,+Q, <Q) is not incremental.
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Example 3.20. Let d := d1d2 . . . dk be a fixed finite sequence of
natural numbers, and let Dd be the set

Dd :=
n n

de11 de22 · · · dek
k

| n 2 Z and e1e2 . . . ek 2 N0

o
.

It is easy to check that Dd is an ordered subgroup of (Q,+Q, <Q) in which Z is a
Puiseux ordered subgroup. Thus, the set

bd

PZ(Dd) is a full Rayner ideal on Dd that
is !1-dominated and cofinal (Proposition 3.18), and its elements are of the form
{n0/h0, n1/h1, n2/h2, . . . }, where n0n1n2 . . . is a sequence of integers and h0h1h2 . . .

is a bounded sequence of natural numbers so that each hi is of the
form hi = de11 de22 · · · dek

k
for e1e2 . . . ek 2 N0 and so that the sequence

n0/h0, n1/h1, n2/h2, . . . is increasing.

Example 3.21. Let P be the set

P :=
n n

p1p2 · · · pk
| n 2 Z and p1p2 . . . pk is a finite sequence of distinct primes

o
,

where the product p1p2 · · · pk equals 1 in the case k = 0, as usual. It is easy to
check that P is an ordered subgroup of (Q,+Q, <Q) in which Z is a Puiseux
ordered subgroup. Thus, the set

bd

PZ(P) is a full Rayner ideal on P that is
!1-dominated and cofinal (Proposition 3.18), and its elements are of the form
{n0/h0, n1/h1, n2/h2, . . . }, where n0n1n2 . . . is a sequence of integers and h0h1h2 . . .

is a bounded sequence of natural numbers so that each hi is of the form
hi = p1p2 · · · pk for distinct primes p1p2 . . . pk and so that the sequence
n0/h0, n1/h1, n2/h2, . . . is increasing.

From now on, in the examples, the addition operation and the order of the
ordered groups G = (Z,+Z, <Z), G = (Q,+Q, <Q) and G = (R,+R, <R) will be
left implicit whenever we write the Rayner ideals P!(G),

wo

P(G),
lf

P (G) and
bd

PH(G)

(where H is a Puiseux ordered subgroup of G). Thus, for instance, the Rayner ideals
P!(Z,+Z, <Z),

wo

P(Q,+Q, <Q),
lf

P (R,+R, <R) and
bd

PZ(Q,+Q, <Q) will be denoted
simply by P!(Z),

wo

P(Q),
lf

P (R) and
bd

PZ(Q), respectively.
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3.4 Rayner monoids and Rayner rngs

Consider a monoid M , an ordered set J , a subideal J of
wo

P(J) on J and the
set of families

L := {x 2 JM | supp (x) 2 J } ,

where the support supp (x) is defined in Definition 1.5. The following proposition
shows that L naturally inherits a monoid structure from M whose operation is
defined pointwise.

Proposition 3.22. Let M be a monoid, let J be an ordered set, let J be a
subideal of

wo

P(J) on J and consider the function ⇥L : L⇥ L!
JM given

by (x⇥Ly)j := xjyj.

(a) (8x, y 2 L) supp (x⇥L y) ⇢ supp (x) [ supp (y) ;

(b) ⇥L is of type L⇥ L! L;

(c) The set L is a submonoid of the power monoid JM when endowed with the
operation ⇥L.

Proof. We leave the proof of item (c) to the reader.

(a) If j 62 supp (x) [ supp (y), then (x⇥Ly)j = xjyj = 1M · 1M = 1M , that is,
j 62 supp (x⇥Ly).

(b) For all x, y 2 L, we have supp (x) [ supp (y) 2 J and supp (x⇥L y) 2 J

by item (a), resulting in x⇥L y 2 L.

Proposition 3.22 sets the scene for the following definition:
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Definition 3.23. Let M be a monoid, let J be an ordered set and let J be a
subideal of

wo

P(J) on J . The (J -)Rayner monoid with coefficients in M and
indices in J is the monoid denoted by

J
M [[XJ ]] and given by

J
M [[XJ ]] := {x 2 JM | supp (x) 2 J } ,

whose multiplication operation is given by (xy)
j
:= xjyj. Note that the constant

family with value 1M and with indices in J is the identity element of
J
M [[XJ ]].

If M is denoted additively, then
J
M [[XJ ]] shall also be denoted additively,

resulting that the operation of
J
M [[XJ ]] is given by (x+ y)

j
:= xj + yj in

that case.

Even though the elements x of
J
M [[XJ ]] are technically functions of

type J !M , they shall always be regarded as families x = {xj}j2J in M in
this work. Thus, if j is an element of J , then the j-image of x shall not be
denoted by x (j), but instead by xj.

Example 3.24. The elements of the Rayner monoid
P!(J)

M [[XJ ]] are the families
x = {xj}j2J in M whose supports supp (x) = {j 2 J | xj 6= 1M} are finite.

If R is a rng, if G is an ordered group and if J is an arithmetic Rayner
ideal on G, then we shall denote the Rayner monoid

J

(R,+R) [[XG]] simply
by

J
R [[XG]]. One can easily observe that

J
R [[XG]] is a commutative group whose

identity element is the constant family {0R}g2G. Furthermore, since J ⇢
wo

P(G),

note that for all x, y 2
J
R [[XG]] and all p 2 G, the sum

X

g,h2G
g+h=p

xgyh in R has only a

finite number of non-zero summands (Lemma 1.75). It turns out that that fact
and the assumption that J is arithmetic can be explored to define a
multiplication operation on

J
R [[XG]] so that it becomes a rng. The following

proposition shows how that can be accomplished.

112



Proposition 3.25. (181, 117) Let R be a rng, let G be an ordered group, let J be
an arithmetic Rayner ideal on G and consider the function

J
⇥ :

J
R [[XG]]⇥

J
R [[XG]]! GR

given by

(x
J
⇥ y)

p
:=
X

g,h2G
g+h=p

xgyh .

(a) (8x, y 2
J
R [[XG]]) supp (x

J
⇥ y) ⇢ supp (x) + supp (y) ;

(b)
J
⇥ is of type

J
R [[XG]]⇥

J
R [[XG]]!

J
R [[XG]];

(c) The Rayner monoid
J
R [[XG]] is a rng when endowed with the multiplication

operation
J
⇥.

Proof.

(a) If p 62 supp (x) + supp (y), then

(x
J
⇥ y)

p
=
X

g,h2G
g+h=p

xgyh =
X

g,h2G
g+h=p

0R = 0R ,

that is, p 62 supp (x
J
⇥ y).

(b) Let x, y 2
J
R [[XG]]. Since J is arithmetic, we have supp (x) + supp (y) 2 J

and supp (x
J
⇥ y) 2 J by item (a).

(c) From now on, let us denote a term of the form x
J
⇥ y simply by xy, let

x, y, z 2
J
R [[XG]] and let p 2 G. The multiplication operation

J
⇥ is associative,

since we have

(x (yz))
p
=
X

a,h2G
a+h=p

xa

✓ X

b,c2G
b+c=h

ybzc

◆

=
X

a,b,c2G
a+b+c=p

xaybzc

=
X

g,c2G
g+c=p

✓ X

a,b2G
a+b=g

xayb

◆
zc = ((xy) z)

p
,
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and it is also left-distributive over the addition operation of
J
R [[XG]], since

we have

(x (y + z))
p
=
X

g,h2G
g+h=p

xg (yh + zh) =
X

g,h2G
g+h=p

(xgyh + xgzh) = (xy + xz)
p
.

The proof of the right-distributivity is analogous.

The rng structure discussed in Item (c) of Proposition 3.25 is the main object
of study of this thesis, and it can finally be formally defined:

Definition 3.26. Let R be a rng, let G be an ordered group and let J be an
arithmetic Rayner ideal on G. The (J -)Rayner rng with coefficients in R and
exponents in G is the Rayner monoid

J
R [[XG]] endowed with the multiplication

operation given by (xy)
p
:=
X

g,h2G
g+h=p

xgyh. Each element of the rng
J
R [[XG]] is said to

be a (J -)Rayner power series with coefficients in R and exponents in G.
We have the following notations and terminology:

. The generalised polynomial rng with coefficients in R and exponents
in G is the P!(G)-Rayner rng

P!(G)

R [[XG]] = {x 2 GR | supp (x) is finite} ,

and it is denoted by R [XG]. Note that R [XG] is a subrng of
J
R [[XG]], and the

polynomial rng R [X] (Definition 2.46) can be canonically identified with a
subrng of R [XZ];

. Suppose G is commutative and let H be a Puiseux ordered subgroup of G.
The Puiseux rng with coefficients in R and exponents in G over H

is the
bd

PH(G)-Rayner rng
bd
P H(G)

R [[XG]] = {x 2 GR | (9n 2 N) (n supp (x) is left-finite in H)} ,

and it is denoted by
bd

RH[[XG]];

114



. The Levi-Civita rng with coefficients in R and exponents in G is the
lf

P (G)-Rayner rng
lf
P(G)

R [[XG]] = {x 2 GR | supp (x) is left-finite in G} ,

and it is denoted by
lf

R [[XG]];

. The Hahn rng with coefficients in R and exponents in G is the
wo

P(G)-Rayner rng
wo
P(G)

R [[XG]] = {x 2 GR | supp (x) is well-ordered in G} ,

and it is denoted by R [[XG]]. Note that
J
R [[XG]] is a subrng of R [[XG]].

The main kinds of Rayner ideals shown in this chapter, along with
their properties and their corresponding Rayner rngs, are summarised in the
following table:

Table 3.1: Rayner ideals, their properties and their corresponding Rayner rngs.

Rayner ideal
Is it

arithmetic?
Is it full?

Is it
incremental?

Its
corresponding
Rayner rng

Polynomial ideal
P!(G)

Yes No No
Generalised

polynomial rng
R [XG]

Puiseux ideal
bd

PH(G)
Yes if G is

commutative

Yes if, and only if,
G is isomorphic to
an ordered subgroup

of the reals

Not
necessarily

Puiseux rng
bd

RH[[XG]]

Levi-Civita ideal
lf

P (G)
Yes

Yes if, and only if,
G is isomorphic to
an ordered subgroup

of the reals

Yes
Levi-Civita rng

lf

R [[XG]]

Hahn ideal
wo

P(G)
Yes Yes Yes

Hahn rng
R [[XG]]
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Example 3.27. The classical Puiseux field is the Puiseux rng
bd

CZ[[XQ]] . Thus,
it is a Rayner rng, and we will verify that it is a field in Section 3.8.

Example 3.28. The real Levi-Civita field is the Levi-Civita rng
lf

R [[XQ]], and,
similarly, the complex Levi-Civita field is the Levi-Civita rng

lf

C [[XQ]]

(cf. Introduction). Thus, they are both Rayner rngs, and we will verify that they
are fields in Section 3.8.

Example 3.29. The field of Hahn series with coefficients in a field K and
exponents in a commutative group G is the Hahn rng K [[XG]] which was first
studied by Hahn in 1907 (92). We will verify that this Rayner rng is a field in
Section 3.8.

Example 3.30. The field of Laurent series is the Hahn rng C [[XZ]] which
was (officially 7) discovered by Laurent in 1843 (132), and it is fundamental to
the study of Complex Analysis due to the fact that holomorphic functions on
open regions in C have Laurent series expansions centred on their non-essential
singularities. That Rayner rng structure is also a Levi-Civita rng since we
have

lf

C [[XZ]]= C [[XZ]] (Example 3.12).

A handful of additional notations are quite helpful in dealing with Rayner
rngs and their elements:

List of Notations 3.31. Let R be a rng, let G be an ordered group and let J

be an arithmetic Rayner ideal on G.

. For each subset S of R containing the zero element 0R, we denote the set
{x 2 GS | supp (x) 2 J } by

J
S [[XG]]. As special cases, we denote the sets

P!(G)

S [[XG]] ,
lf
P(G)

S [[XG]] ,
bd
PH(G)

S [[XG]] and
wo
P(G)

S [[XG]]

by S [XG],
lf

S [[XG]],
bd

SH[[XG]] and S [[XG]], respectively, where H is a
Puiseux ordered subgroup of G;

7 Weierstraß may have already studied it in 1841 but did not publish his findings at the time.
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. Given g 2 G and x 2
J
R [[XG]], we shall sometimes denote a term of the

form xg by x JgK, especially when the group element g is indicated by a
large expression. In these situations, the standard subscript notation xg

looks rather cumbersome and should be avoided;

. Each element x of the Rayner rng
J
R [[XG]] is also denoted by a formal

power series x =
X

g2G

xgXg;

. Let I be any set, let f : I ! G be an injective function so that Im (f) 2 J ,
and let {cg}g2Im(f) be a family in R. The family x = {xg}g2G in R given by

xg :=

8
<

:
cg if g 2 Im (f) ,

0R if g 2 G� Im (f)

is denoted by
X

i2I

cf(i)Xf(i). The support of that power series is clearly

contained in the image Im (f), thus being an element of J (Definition 3.1,
Axiom (I1)), and we have x 2

J
R [[XG]]. There is an additional twist to

this notation: quite often the condition i 2 I is expressed by an equivalent
condition P (i), and that alternative form often leaves the set I implicit.
Thus, the newly defined element x of

J
R [[XG]] may also be denoted

by
X

P (i)

cf(i)Xf(i), where P (i), i 2 I (cf. Example 3.33);

. For each x 2
J
R [[XG]], we define x_ := 0R, where _ is the greatest element

of
^

G (Definition 1.62). Note that, although one may write the term x_,
that does not mean that _ is in the domain Dom (x) = G. Indeed,
it is not. That non-mandatory supplemental definition of x_ is merely
pragmatical and it comes in handy in a few situations to reduce the
number of logical cases in some proofs;
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. For all g 2 G and all r 2 R, the element x of
J
R [[XG]] given by

xg0 :=

8
<

:
r if g0 = g ,

0R if g0 2 G� {g}

is denoted by rXg (see Assumption 3.3);

. For each subset S of R and for each subset H of G, we denote the set
{sXh

| s 2 S and h 2 H} by S {Xh
}
h2H ;

. If R is a ring, then for each g 2 G, the element 1RXg of
J
R [[XG]] is denoted

by Xg;

. For each r 2 R, the element rX0G of
J
R [[XG]] is denoted by r, by abuse

of language. In particular, the element 0RX0G is denoted by 0R, and, if R is
a ring, then the element 1RX0G is denoted by 1R.

Example 3.32. Take the three Rayner rngs
lf

R [[XQ]] (Example 3.28), R [[XQ]]

and C [[XZ]] (Example 3.30), and consider the following three formal power series:

x := 1 + 2X1/2+ (
p
2 + 1)X + (

p
3 + 1)X3/2+ · · ·+ (

p
n+ 1)Xn/2+ · · ·

y := (X�1+ X�1/2+ X�1/3+ X�1/4+ · · ·+ X�1/n+ · · · ) + X3

z := iX�3� X2
� iX5

Their supports are the subsets of Q given by supp (x) = {n/2 | n 2 N0},
supp (y) = {�1/n | n 2 N} [ {3} and supp (z) = {�3, 2, 5}, which happen to be
well-ordered subsets of Q. Thus, we have x, y 2 R [[XQ]] and z 2 C [[XZ]], while
x, y 62 C [[XZ]] and z 62 R [[XQ]], since supp (x) and supp (y) have non-integer
elements and since z has imaginary coefficients. The ordered set supp (x) is
isomorphic to the ordinal ! and is cofinal in Q, implying that it is left-finite in Q
(Proposition 3.10, Item (c)) and x 2

lf

R [[XQ]]. Regarding y, the ordered set
supp (y) is neither isomorphic to ! nor cofinal in Q, which gives us that supp (y)

is not left-finite in Q and y 62
lf

R [[XQ]]. Finally, we have z 62
lf

R [[XQ]] since it has
imaginary coefficients.
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Example 3.33. Consider the functions

f : {a3 + b3 + c3 | a, b, c 2 N}! Q
and

g : {p prime | p = 4n+ 1 (9n 2 N)}! Z

given by f (n) := n/3 and g (p) := p2, which are clearly injective, and it is easy to
verify that Im (f) 2

lf

P (Q) and Im (g) 2
wo

P(Z). Thus, we can employ an item of
our List of Notations 3.31 to define the following power series

x :=
X

n is a sum
of three cubes

nXn/3= 3X + 10X10/3+ 17X17/3+ 24X8+ · · · 2
lf

R [[XQ]]

and
y :=

X

p is a prime of
the form 4n+1

p
pXp

2
=
p
5X25+

p
13X169+

p
17X289+ · · · 2 R[[XZ]] ,

where the expressions for the coefficients of x and y were arbitrarily chosen.

Proposition 3.34. (181, 117) Let R be a rng, let G be an ordered group and let
J be an arithmetic Rayner ideal on G.

(a) The function of type R!
J
R [[XG]] given by r 7! rX0G = r is an injective

homomorphism. Thus, we shall identify R with a subrng of
J
R [[XG]] via

that function, writing R ⇢
J
R [[XG]];

(b)
J

{0R} [[XG]] = {0R} and
J
R [[X{0G}]]

Rng

⇠= R;

(c) The products rx and xr, between an element r of R and an element x

of
J
R [[XG]], are computed pointwise. That is, we have

rx =
X

x2G

rxgXg and xr =
X

x2G

xgrXg ;

(d) If R is a ring, then
J
R [[XG]] is an R-module when endowed with the left

R-action � : R ⇥
J
R [[XG]]!

J
R [[XG]] on

J
R [[XG]] given by � (r, x) := rx.

Proof. The proofs are straightforward and are left to the reader.
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Item (b) of Proposition 3.34 shows that the cases in which R or G are
trivial add no insight to the purposes of our discussion. From now on, we make
the following assumption:

Assumption 3.35. The rng R and the ordered group G are non-trivial, that is,
they have more than one element.

Thus, by Proposition 1.65, the ordered group G is infinite and unbounded
above and below. In particular, we have cf (G) > !.

Corollary 3.36. Let R be a rng and let G be an ordered group.

(a) The Levi-Civita rng
lf

R [[XG]] is equal to the generalised polynomial
rng R [XG] if, and only if, cf (G) > !;

(b) The Levi-Civita rng
lf

R [[XG]] is equal to the Hahn rng R [[XG]] if,
and only if, G is isomorphic to the ordered group (Z,+Z, <Z).

Proof. Since R and G are non-trivial, the corollary is nothing but a rewording of
Proposition 3.11.

Example 3.37. We have R [XNo!1 ]=
lf

R [[XNo!1 ]] ( R [[XNo!1 ]] for all rngs R,
since cf (No!1) = !1 > ! and since No!1 is not isomorphic to the ordered group
(Z,+Z, <Z) (Example 3.8; Corollary 3.36). Hence, every element of

lf

R [[XNo!1 ]] is
a generalised polynomial, but infinitely many elements of R [[XNo!1 ]] are not.

Example 3.38. We have R [XBS` ] (
lf

R [[XBS` ]] ( R [[XBS` ]] for all rngs R, since
cf (BS`) = ! and since BS` is not isomorphic to the ordered group (Z,+Z, <Z).
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Proposition 3.39. Let R be a rng, let S be a subset of R containing 0R and let
G be an ordered group. We have:

|S[XG]| =
Card

max {|S| , |G|} and |
lf

S [[XG]]| =

8
<

:
(

Card

max {|S| , |G|})
!> 2! if cf (G) = ! ,

Card

max {|S| , |G|} > !1 if cf (G) > ! .

Proof. Since |P!(G)| = |G| (38), we get

|S [XG]| =
���
[

F2P!(G)

{x 2 GS | supp (x) = F}

���

= |S| · |P!(G)|

=
Card

max {|S| , |G|} ,

and if cf (G) > !, then the supports of the elements of
lf

S [[XG]] are finite
(Corollary 3.36, Item (a)), and we get

|
lf

S [[XG]]| = |S [XG]| =
Card

max {|S| , |G|} .

This being the case, we have |G| > cf (G) > !, which conveys |G| > !1 and
implies |

lf

S [[XG]]| > !1. Suppose cf (G) = !, and let

f : {{gn} 2
NG | {gn} is increasing and cofinal in G}⇥

NS !
lf

S [[XG]]

be the function given by

(f ({gn} , {rn}))g :=

8
<

:
rn if g = gn ,

0R if g 2 G� {gn} .

Then, f is bijective, and, by Lemma 1.76, we get

|
lf

S [[XG]]| = |{{gn} 2
NG | {gn} is increasing and cofinal in G}| · |

NS|

= (
Card

max {|S| , |G|})
!

> !! = 2! .
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3.5
J

R [[XG]] as a G-pseudovalued rng

Given a Rayner rng
J
R [[XG]], the least element of the support supp (x) of each

x 2
J
R [[XG]] has a special significance to the theory, and so does the coefficient of

x associated to that least element. The reason why that is so is the subject of
this section.

We have the following notations and terminology:

Definition 3.40. Let R be a rng, let G be an ordered group and let J be an
arithmetic Rayner ideal on G.

. The min-supp function on
J
R [[XG]] is the function Jms :

J
R [[XG]]!

^

G

given by

Jms (x) :=

8
><

>:

G

min (supp (x)) if x 2
J
R [[XG]]� {0R} ,

_ if x = 0R ;

. The primary coefficient of an element x of
J
R [[XG]] is the element of R

denoted by pc (x) and given by pc (x) := x Jms(x)
. Note that the conditions

Jms (x) = _, pc (x) = 0R and x = 0R are equivalent.

With that, if x is an element of the Rayner rng
J
R [[XG]] with support

supp (x) = {g1g2g3 . . . } so that g1< g2< g3< · · · , then we have

Jms (x) = Jms (xg1X
g1+ xg2X

g2+ xg3X
g3+ · · · ) = g1

and
pc (x) = pc (xg1X

g1+ xg2X
g2+ xg3X

g3+ · · · ) = xg1 .

The min-supp function Jms :
J
R [[XG]]!

^

G turns out to be the primary
connection between Valuation Theory and the Theory of Rayner Rngs, and it is
the most important function of the latter theory.
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Theorem 3.41. (181) Let R be a rng, let G be an ordered group and let J be
an arithmetic Rayner ideal on G. The min-supp function Jms :

J
R [[XG]]!

^

G is a
G-pseudovaluation on the rng

J
R [[XG]] (Definition 2.44).

Proof. By definition, the conditions Jms (x) =_ and x = 0R are equivalent for
all x 2 R. Let x, y 2 R� {0R}. To begin with, suppose we have

Jms (x� y) <

^

G

min {
Jms (x) , Jms (y)} .

Thus, we get x� y 6= 0R, Jms (x� y) <
Jms (x), Jms (x� y) <

Jms (y), and

0R 6= (x� y) Jms(x�y)
= x Jms(x�y)

� y Jms(x�y)
= 0R � 0R = 0R ,

which is absurd, proving the inequality

Jms (x� y) >
^

G

min {
Jms (x) , Jms (y)} .

Now, suppose we have Jms (xy) < Jms (x) + Jms (y). If g and h are elements of
G so that g + h =

Jms (xy) and xg yh 6= 0R, then we obtain xg 6= 0R 6= yh,
Jms (x) 6 g and Jms (y) 6 h, implying

Jms (x) + Jms (y) 6 g + h =
Jms (xy) < Jms (x) + Jms (y) ,

which is absurd, proving that the condition g + h =
Jms (xy) implies xg yh = 0R.

Therefore, we obtain

0R 6= (xy) Jms(xy)
=
X

g,h2G
g+h=

Jms(xy)

xg yh = 0R ,

which is also absurd, establishing the inequality Jms (xy) > Jms (x) + Jms (y).

Since Jms :
J
R [[XG]]!

^

G is a G-pseudovaluation on
J
R [[XG]], big values of

Jms (x) 2
^

G are intuitively interpreted as meaning that the element x 2
J
R [[XG]]

has a low order of magnitude, as usual in Valuation Theory. In particular, if r is
a fixed element of R, then note that Jms (rXg) = g (8g 2 G), implying that the
higher the exponent g of the formal variable X, the lower the order of magnitude
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of the term rXg becomes. That heuristic interpretation shall agree with the
results of Section 3.10, where an order on

J
R [[XG]] will be defined whenever R is

an ordered rng.

Notational Device 3.42. Let R be a rng, let G be an ordered group and let
J be an arithmetic Rayner ideal on G. We introduce a couple notational devices
which make our lines of reasoning a little more flexible and versatile:

(a) Let g be an element of
^

G. With the intention of shifting the notations O
Jms
g

and o
Jms
g

(Definition 1.79) toward the usual big-O and little-O notations from
the theory of Asymptotic Analysis, from now on those sets shall be denoted
by

J
O (Xg) and Jo (Xg), respectively. Thus, we have

J
O (Xg) := {x 2

J
R [[XG]] |

Jms (x) > g} = {x 2
J
R [[XG]] | (8h 2 ( , g)

G
) xh = 0R}

and

Jo (Xg) := {x 2
J
R [[XG]] |

Jms (x) > g} = {x 2
J
R [[XG]] | (8h 2 ( , g]

G
) xh = 0R} ;

(b) (89-notation) Let X be a set, let R be a binary relation on X, take any
m+ n subsets O1O2. . . Om, P1P2. . . Pn subsets of

J
R [[XG]] of the forms

J
O (Xg) or Jo (Xg), and take two functions:

u1 : O1⇥O2⇥ · · ·⇥Om! X and u2 : P1⇥ P2⇥ · · ·⇥ Pn! X

The condition

(81x 2 O1) · · · (8mx 2 Om) (91y 2 P1) · · · (9ny 2 Pn) u1 (1x . . . mx)Ru2 (1y . . . ny)

shall often be denoted by

u1 (O1O2. . . Om) Ṙ u2 (P1P2. . . Pn) ,

where the images u1 (O1O2. . . Om) and u2 (P1P2. . . Pn) above are computed
according to the particular definitions of the functions u1 and u2 as if the
n-tuples (O1O2. . . Om) and (P1P2. . . Pn) were elements of the Cartesian
products O1⇥O2⇥ · · ·⇥Om and P1⇥ P2⇥ · · ·⇥ Pn, respectively. We are
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not to swap the left-hand side with the right-hand side of this notation,
even if the relation R is symmetric on X. If the function u1 (resp. u2) is
constant with value a 2 X, then this notation is written simply as

aṘ u2 (P1P2. . . Pn) (resp. u1 (O1O2. . . Om) Ṙa) ,

and it actually means

(91y 2 P1) · · · (9ny 2 Pn) aR u2 (1y . . . ny)

(resp. (81x 2 O1) · · · (8mx 2 Om) u1 (1x . . . mx)Ra) .

Lastly, if both functions u1 and u2 are constant with respective values a

and b, then we may write aṘb, which just means aRb.

Typically, the functions u1 and u2 in item (b) are not explicitely mentioned in
the context and it is up to the reader to figure out what they are.

In order to get the reader up to speed on how Notational Device 3.42 is to
be employed in practice, we provide a few examples:

Example 3.43. Let g be an element of
^

G and take two elements x and y

of
J
R [[XG]]. We may write the condition x

.
= y +

J
O (Xg), which can also be

expressed as x
.
= u

�J
O (Xg)

�
where the function u :

J
O (Xg)!

J
R [[XG]] is given

by u (z) := y + z, and that would mean that there is a z 2
J
O (Xg) such

that x = y + z, that is, x� y 2
J
O (Xg). Note that in the case y = 0R, we have

that the conditions x
.
=

J
O (Xg) and x 2

J
O (Xg) are equivalent, and they may be

written interchangeably.

Example 3.44. Let g, h 2
^

G so that g < h. We may write the condition
Jms
�Jo (Xg) +

J
O (Xh)

�
>̇ g, which can also be expressed as u

�Jo (Xg) ,
J
O (Xh)

�
>̇ g

where the function u :
Jo (Xg)⇥

J
O (Xh)! G is given by u (1x, 2x) :=

Jms (1x+ 2x),

125



and that would mean

(81x 2
Jo (Xg))

�
82x 2

J
O (Xh)

� Jms (1x+ 2x) > g ,

which actually holds true.

Example 3.45. Let g, h 2
^

G so that g < h, let x, y, z 2
J
R [[XG]] and let r 2 R.

We may write the compound condition

xg <̇ (y +
Jo (Xg))

g

.
=
�
z +

J
O (Xh) +

Jo (Xg)
�
g
6̇ r ,

which can broken up into three parts:

. xg <̇ (y +
Jo (Xg))

g
: This can also be expressed as xg <̇ u (

Jo (Xg)), where the
function u :

Jo (Xg)! R is given by w (s) := (y + s)
g
, and that would mean

xg < (y + s)
g
(9s 2

Jo (Xg)). That is true if, and only if, xg < yg ;

. (y +
Jo (Xg))

g

.
=
�
z +

J
O (Xh) +

Jo (Xg)
�
g

: Note that this condition can also

be expressed as u1(
Jo (Xg))

.
= u2

�J
O (Xh) ,

Jo (Xg)
�
, where the functions

u1 :
Jo (Xg)! R and u2 :

J
O (Xh)⇥

Jo (Xg)! R

are given by u1(s) := (y + s)
g

and u2(1s, 2s) := (z + 1s+ 2s)g, and that
would mean

(8s 2
Jo (Xg))

�
91s 2

J
O (Xh)

�
(92s 2

Jo (Xg)) (y + s)
g
= (z + 1s+ 2s)g .

That is true if, and only if, yg = zg;

.
�
z +

J
O (Xh) +

Jo (Xg)
�
g
6̇ r : Note that this condition can also be expressed

as u2

�J
O (Xh) ,

Jo (Xg)
�
6̇ r, where u2 was defined above, and that

would mean
�
81s 2

J
O (Xh)

�
(82s 2

Jo (Xg)) (z + 1s+ 2s)g 6 r .

That is true if, and only if, zg 6 r.

Therefore, the whole compound condition is equivalent to xg < yg = zg 6 r.
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The following proposition shows that the 89-notation is transitive in a
manner of speaking:

Proposition 3.46. Let X be a set, let R1R2. . .Rk,R be binary relations on X

so that Rk� · · · �R2�R1⇢ R, let m0m1 . . .mk be numbers in N0 and let
{Oj

i
} j2[0,k]Z
i2[1,mj ]N

be a double family of subsets of
J
R [[XG]] of the forms

J
O (Xg)

or Jo (Xg). If 8
{uj : O

j

1⇥ · · ·⇥Oj

mj
! X}

j2[0,k]Z
is a finite sequence of functions

and if the compound condition

u0(O
0
1. . . O

0
m0

) Ṙ1u1(O
1
1. . . O

1
m1

) Ṙ2· · · Ṙkuk(O
k

1 . . . O
k

mk
)

is true, then u0(O0
1. . . O

0
m0

) Ṙ uk(Ok

1 . . . O
k

mk
).

Proof. Straightforward induction on k.

We shall not make specific reference to Proposition 3.46 when it is invoked in
the rest of this work. For instance, still in this section, that proposition is essential
in the proofs of Subitems 2, 5 and 7 of Item (b) of Theorem 3.47.

If x is any element of
J
R [[XG]], if {g↵}↵<�

is the increasing ordinal sequence
of elements of the well-ordered set supp (x), and if we define g� :=_, then we
have x

.
=

J
O
�
X

Jms(x)� and

(8� < �) x
.
=
⇣X

↵6�

xg↵
Xg↵

⌘
+

J
O (Xg�+1)

.
=
⇣X

↵6�

xg↵
Xg↵

⌘
+

Jo (Xg�) .

In particular, by taking � = 0 we obtain

x
.
= pc (x)X

Jms(x)+
J
O (Xg1)

.
= pc (x)X

Jms(x)+
Jo
�
X

Jms(x)� .

8 In the case mj = 0, we assume that Oj
1⇥ · · ·⇥O

j
mj

:= {;} (empty product), Oj
1. . . O

j
mj

= ;

and uj (O
j
1. . . O

j
mj

) = uj(;) 2 X.

127



Theorem 3.47. Let R be a rng, let G be an ordered group and let J be an
arithmetic Rayner ideal on G.

(a) For all x, y 2
J
R [[XG]], we have

(xy) J Jms (x) + Jms (y)K = pc (x) pc (y) ,

and if Jms (x) 6 Jms (y) and (x± y) Jms(x)
6= 0R, then we have

Jms (x± y) =
Jms (x) and pc (x± y) = pc (x)± y Jms(x)

;

(b) For all g, h 2 G, for all r, s 2 R� {0R} and for all x 2
J
R [[XG]], we have:

1. Jo (Xg) (
J
O (Xg);

2.
J
O (Xg)

J
O (Xh)

.
=

J
O (Xg+h);

3. Jo (Xg)
Jo (Xh)

.
=

Jo (Xg+h);

4.
J
O (Xg)

Jo (Xh)
.
=

Jo (Xg+h)

and
Jo (Xg)

J
O (Xh)

.
=

Jo (Xg+h);

5. x
J
O (Xg)

.
=

J
O
�
X

Jms(x)+g
�

and
J
O (Xg)x

.
=

J
O
�
Xg+

Jms(x)�;

6. x
Jo (Xg)

.
=

Jo
�
X

Jms(x)+g
�

and
Jo (Xg)x

.
=

Jo
�
Xg+

Jms(x)�;

7. r
J
O (Xg)± s

J
O (Xh)

.
=

J
O
⇣
X

^

G

min{g,h}
⌘

and
J
O (Xg) r ±

J
O (Xh) s

.
=

J
O
⇣
X

^

G

min{g,h}
⌘
;

8. r
Jo (Xg)± s

Jo (Xh)
.
=

Jo
⇣
X

^

G

min{g,h}
⌘

and
Jo (Xg) r ±

Jo (Xh) s
.
=

Jo
⇣
X

^

G

min{g,h}
⌘
;

9. The sets
J
O (Xg) and Jo (Xg) are subrngs of

J
R [[XG]] if, and only if,

we have g > 0G.

Proof.

(a) One can easily ascertain that all results are valid in the particular cases in
which x = 0R or y = 0R. Assume x, y 6= 0R. If g and h are elements of G so
that g + h =

Jms (x) + Jms (y) and xg yh 6= 0R, then we have g > Jms (x)
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and h > Jms (y). Moreover, if g >
Jms (x) or h >

Jms (y), then we get
Jms (x) + Jms (y) = g + h >

Jms (x) + Jms (y) ,

which is absurd, proving that the conditions g + h =
Jms (x) + Jms (y) and

xg yh 6= 0G imply g =
Jms (x) and h =

Jms (y). Hence, we obtain

(xy) J Jms (x) + Jms (y)K =
X

g,h2G
g+h=

Jms(x)+ Jms(y)

xgyh = x Jms(x)
y Jms(y)

= pc (x) pc (y) .

Lastly, if conditions Jms (x) 6 Jms (y) and (x± y) Jms(x)
6= 0R are satisfied,

then we get Jms (x) 6 Jms (x± y) 6 Jms (x) (Proposition 1.81, Item (b)),
implying Jms (x± y) =

Jms (x) and

pc (x± y) = (x± y) Jms(x)
= x Jms(x)

± y Jms(x)
= pc (x)± y Jms(x)

.

(b) We prove the subitems 1, 2, 5 and 7, leaving the proofs of the remnants to
the reader. Keep in mind that Jms is a G-pseudovaluation on

J
R [[XG]]

(Theorem 3.41).

1. If x .
=

Jo (Xg), then Jms (x) > g, and, in particular, we have Jms (x) > g

and x
.
=

J
O (Xg), giving us the non-strict inclusion Jo (Xg) ⇢

J
O (Xg).

Since R is non-trivial (Assumption 3.35), there is an r 2 R� {0R}.
Hence, we have rXg

2
J
O (Xg)�

Jo (Xg) and Jo (Xg) (
J
O (Xg).

2. We have
Jms
�J
O (Xg)

J
O (Xh)

�
>̇ Jms

�J
O (Xg)

�
+

Jms
�J
O (Xh)

�
>̇ g + h ,

which implies
J
O (Xg)

J
O (Xh)

.
=

J
O (Xg+h).

5. By subitem 2, we obtain

Jms
�
x

J
O (Xg)

� .
=

Jms
�J
O
�
X

Jms(x)� J
O (Xg)

�
>̇ Jms (x) + g ,

which implies x
J
O (Xg)

.
=

J
O
�
X

Jms(x)+g
�
. The proof of the condition

J
O (Xg) x

.
=

J
O
�
Xg+

Jms(x)� is analogous.
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7. Since Jms (r) = Jms (s) = 0G, we obtain

Jms
�
r

J
O (Xg)± s

J
O (Xh)

�
>̇

^

G

min
� Jms

�
r

J
O (Xg)

�
,

Jms
�
s

J
O (Xh)

� 

.
=

^

G

min
� Jms

�J
O (X0G+g)

�
,

Jms
�J
O (X0G+h)

� 

by subitems 2 and 5, which gives us the first desired result. The proof

of
J
O (Xg) r ±

J
O (Xh) s

.
=

J
O
⇣
X

^

G

min{g,h}
⌘

is analogous.

Proposition 3.48. (181, 117) Let R be a rng, let G be an ordered group and let
J be an arithmetic Rayner ideal on G.

(a) R is a ring if, and only if,
J
R [[XG]] is a ring. In that case, 1R = 1RX0G is the

multiplicative identity of
J
R [[XG]];

(b) If R and G are commutative, then
J
R [[XG]] is commutative. The converse

holds when the multiplication operation of R is non-trivial (Example 2.4);

(c) R has no zero divisors if, and only if,
J
R [[XG]] has no zero divisors.

In that case, we have

(8x, y 2
J
R [[XG]])

Jms (xy) = Jms (x) + Jms (y) ,

that is, Jms is a G-valuation on the rng
J
R [[XG]].

(d) If
J
R [[XG]] is a division ring, then so is R.

Proof.

(a) If R is a ring, then 1R = 1RX0G is clearly the multiplicative identity
of

J
R [[XG]]. Conversely, if u is the multiplicative identity of

J
R [[XG]],

then we have (Proposition 3.34, Item (c))

(8r 2 R) r = ru =
X

g2G

rugXg and r = ur =
X

g2G

ugrXg ,
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implying ru0G = r = u0Gr (8r 2 R) and, thus, proving that u0G is the
multiplicative identity of R.

(b) The proof of the necessary condition is straightforward. If
J
R [[XG]] is

commutative and if r and s are two elements of R so that rs 6= 0R, then R

is also commutative since it is identified with a subrng of
J
R [[XG]]

(Proposition 3.34, Item (a)), and, taking any two elements g and h in G,
we get

rsXg+h = (rXg) (sXh) = (sXh) (rXg) = srXh+g ,

implying g + h = h+ g and proving that G is commutative.

(c) If
J
R [[XG]] has no zero divisors, then R has no zero divisors since it is

identified with a subrng of
J
R [[XG]] (Proposition 3.34, Item (a)). Suppose R

has no zero divisors and let x and y be two non-zero elements of
J
R [[XG]].

Thus, we have (Theorem 3.47, Item (a))

(xy) J Jms (x) + Jms (y)K = pc (x) pc (y) 6= 0R ,

which implies that ms (xy) 6 Jms (x) + Jms (y) and xy 6= 0R. The opposite
inequality arises from the fact that Jms is a G-pseudovaluation on

J
R [[XG]]

(Definition 2.44).

(d) If
J
R [[XG]] is a division ring and if r is a non-zero element of R, then R is a

ring by item (a), and r has an inverse x in
J
R [[XG]], which gives us

rx = 1R = xr and (Proposition 3.34, Item (c))

rx0G =
⇣X

g2G

rxgXg

⌘

0G

= (rx)0G = 1R = (xr)0G =
⇣X

g2G

xgrXg

⌘

0G

= x0Gr ,

that is, x0G is the multiplicative inverse of r in R, proving that R is a
division ring.

Example 3.49. The classical Rayner rngs
lf

R [[XQ]],
bd

CZ[[XQ]] and C [[XZ]] are
commutative rings with no zero divisors (Proposition 3.48, Items (a), (b) and (c)).
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Example 3.50. Let R be a rng and let J be an arithmetic Rayner ideal on BS`.
The Rayner rng

J
R [[XBS` ]] is non-commutative, even if the rng R is commutative

(Proposition 3.48, Item (b)). For instance, if r is a non-zero element of R, then
we have

(rXt) (rXm) = r2Xt+m
6= r2Xm+t= (rXm) (rXt)

since t+m 6= m+ t.

3.6 Generating functors

The process of construction of the Rayner rngs gives rise to a few functors,
and the properties of these functors are discussed in this section.

The reader who is not comfortable with the employment of large categories
(Example B.17) is referred to Appendix A, and Appendix B is designed to help
the reader not acquainted with the basic definitions of Category Theory,
especially with the notions of limit, colimit and quotient.

Definition 3.51. Let S be a subcategory of SetOrd. A system of ideals on
S is a family {JJ}J2S0

of sets such that the following axioms hold:

(S1) For each ordered set J in S0, the set JJ is an ideal on J ;

(S2) For every morphism r : J S

�! K and every S 2 JK , we have r�1hSi 2 JJ .

If S and S
0 are subcategories of SetOrd so that S is a subcategory of S0,

and if {JJ}J2S00
is a system of ideals on S

0, then the subfamily {JJ}J2S0
is a

system of ideals on S.

Proposition 3.52. The families

{P!(J)}J2SetOrd0
, {

wo

P(J)}
J2SetOrd0

and {
lf

P (J)}
J2SetOrd0

are systems of ideals on SetOrd.
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Proof. Let r : J ! K be an increasing function between ordered sets. Thus, r is
injective (Proposition 1.30) and so is the restriction

r � (r�1hSi) : r�1hSi ! r hJi \ S

for every subset S of K. If S is a finite (resp. well-ordered) subset of K, then
r hJi \ S is finite (resp. well-ordered), which implies that r�1hSi is a finite
(resp. well-ordered) subset of J . If S is a left-finite subset of K and if j is a fixed
element of J , then note that

r�1hSi \ ( , j]
J
⇢ r�1hS \ ( , r (j)]

K
i ,

and since S \ ( , r (j)]
K

is finite, the preimage r�1hS \ ( , r (j)]
K
i and the set

r�1hSi \ ( , j]
J

are finite, proving that r�1hSi is left-finite in J .

Proposition 3.53. Let S be a subcategory of SetOrd and let {JJ}J2SetOrd0
be

a system of ideals on S. The function U : Sop
⇥Mon!Mon (Definition B.21)

given by 9
8
><

>:
U (J,M) :=

JJ

M [[XJ ]]

(U (r : K SetOrdop

�! J,� : M Mon

�! N) (x))
j
:= � (xr(j))

is a functor (Definition B.25).

Proof. In order to show that U is well-defined, first we need to prove that the
family {� (xr(j))}j2J is in the JJ -Rayner monoid

JJ

N [[XJ ]], where x 2
JK

M [[XK ]]

and where r : K Sop

�!J and � : M Mon

�! N are morphisms. If j is an element of the
support supp ({� (xr(j))}j2J), then � (xr(j)) 6= 1N , xr(j) 6= 1M and r (j) 2 supp (x),
proving the inclusion

supp ({� (xr(j))}j2J) ⇢ r�1hsupp (x)i .

9 Note that the ordered pair (r,�) is a morphism of type (K,M)! (J,N) in the
product category S

op
⇥Mon, which implies that the image U (r,�) is a morphism of

type
JK

M [[XK ]]Mon
�!

JJ

N [[XJ ]].
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Hence, since we have r�1hsupp (x)i 2 JJ (Definition 3.51, Axiom (S2)), we get
supp ({� (xr(j))}j2J) 2 JJ and {� (xr(j))}j2J 2

JJ

N [[XJ ]], as intended.

Additionally, we must show that the function U (r,�) :
JK

M [[XK ]]!
JJ

N [[XJ ]] is
a unital homomorphism. Indeed, for all x, y 2

JK

M [[XK ]] and all j 2 J , we have

(U (r,�) (1M))
j
= � ((1M)

r(j)) = � (1M) = 1N = (1N)j
and

(U (r,�) (xy))
j
= � ((xy)

r(j)) = � (xr(j)yr(j)) = (U (r,�) (x))
j
(U (r,�) (y))

j
,

that is, U (r,�) (1M) = 1N and U (r,�) (xy) = U (r,�) (x) U (r,�) (y), proving that
U (r,�) is a unital homomorphism between monoids. Therefore, the function U

is well-defined.

Consider morphisms K r
�! J

s
�! F and M

�

�! N
�

�! P in S
op and Mon,

respectively. For all x 2
JK

M [[XK ]] and all f 2 F , we have

[(U (s,�) � U (r,�)) (x)]
f
= � ((U (r,�) (x))

s(f)) = � (� (xr(s(f)))) = (U (s � r,� � �) (x))
f
.

Hence, U (s � r,� � �) = U (s,�) � U (r,�) and U is a functor.

Theorem 3.54. Let J be an ordered set, let J be an ideal on J and let
M : Mon!Mon be the function given by

8
<

:
M (M) :=

J
M [[XJ ]]

(M (� : M Mon

�! N) (x))
j
:= � (xj) .

(a) The function M is a functor;

(b) The functor M preserves object-finite limits in Mon (Definition B.36).
In particular, M is left-exact;

(c) The functor M preserves quotients modulo congruence relations in Mon

(Definition B.50).
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Proof.

(a) Let S be the subcategory of SetOrd whose only object is J and whose
only morphism is the identity function idJ : J ! J . Thus, the singleton
family {J }

J2S0
is a system of ideals on S, and, taking the functor

U : Sop
⇥Mon!Mon described in Proposition 3.53, it is easy to check

that the function M defined in the statement of the theorem is actually
given by M (M) = U (J,M) and M (�) = U (idJ ,�), implying that M is
a functor.

(b) Let I be an object-finite category, let F : I !Mon be a functor and suppose
� = {�i : L

Mon

�! F (i)}
i2I0

is a limit cone over F (Definition B.31). We shall
prove that the cone

M (�) := {M (�i) : M (L) Mon

�!M (F (i))}
i2I0

=
�
M (�i) :

J
L [[XJ ]] Mon

�!

J

F (i) [[XJ ]]
 
i2I0

over the composition M � F : I !Mon is a limit cone. Suppose that
� =

�
�i : V

Mon

�!

J

F (i) [[XJ ]]
 
i2I0

is another cone over the functor M � F ,
and, for each j 2 J and each i 2 I0, let �i,j : V ! F (i) be the function
given by �i,j (x) := (�i (x))j. It is easy to verify that each function
�i,j is a homomorphism between monoids, implying that each family
�j := {�i,j : V

Mon

�! F (i)}
i2I0

is a cone over F . With that, for each j 2 J ,
let �j : V Mon

�! L be the limit lifting of �j along �. That means that for each
j 2 J and for each i 2 I0, the digraph

L

�i

✏✏

V
�i,j

//

�j

77

F (i)

in Mon commutes. If there is a homomorphism � : V Mon

�!
J
L [[XJ ]] such that

the digraph
J
L [[XJ ]]

M(�i)
✏✏

V
�i

//

�

77

J

F (i) [[XJ ]]
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in Mon commutes for all i 2 I0, then for all x 2 V and all j 2 J we get

(8i 2 I0) �i (�j (x)) = �i,j (x) = (�i (x))j = [M (�i) (� (x))]j = �i ((� (x))j)

implying the equation (� (x))
j
= �j (x) by Lemma 1.23. Indeed, the unital

homomorphism � : V Mon

�!
JL given by � (x) := {�j (x)}j2J is such that

M (�i) � � = �i. It only remains to prove that � is of type V Mon

�!
J
L [[XJ ]].

Let x be an element of V and suppose j is an element of J such that
(� (x))

j
= �j (x) 6= 1L. Finally, again by Lemma 1.23 there is an i 2 I0

so that
(�i (x))j = �i,j (x) = �i (�j (x)) 6= �i (1L) = 1F(i) ,

proving that supp (� (x)) ⇢
[

i2I0

supp (�i (x)) and supp (� (x)) 2 J .

(c) Let ⌘ be a congruence relation on a monoid M , let ◆ : M Mon

�!M/ ⌘

be the canonical quotient homomorphism of that type and let t be the
binary relation on

J
M [[XJ ]] given by t := J

⌘ ��
� J
M [[XJ ]]

�
(Notation 1.19;

List of Symbols: R ��S). It is easy to check that t is a congruence relation

on
J
M [[XJ ]] so that t =

M(◆)

eq . We shall prove that
J

(M/ ⌘) [[XJ ]] is a
quotient of

J
M [[XJ ]] modulo t in Mon with quotient homomorphism

M (◆) :
J
M [[XJ ]] Mon

�!

J

(M/ ⌘) [[XJ ]] .

Consider another monoid N and a homomorphism f :
J
M [[XJ ]] Mon

�! N so
that t ⇢ feq. For each S 2 J , let fS : JM Mon

�! N be the homomorphism
given by fS ({xj}j2J) := f ({yj}j2J), where {yj}j2J is the family in M

given by

yj :=

8
<

:
xj if j 2 S ,

1M if j 2 J � S .

The function fS clearly satisfies J
⌘ ⇢

fSeq, and, thus, we may take its quotient
lowering fS : J (M/ ⌘) Mon

�! N modulo J
⌘ along the quotient morphism J ◆
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(Lemma 1.20). That means that for each S 2 J , the digraph

J
M

fS
//

J
◆

✏✏

N

J (M/ ⌘)
fS

77

in Mon commutes. If f :
J

(M/ ⌘) [[XJ ]] Mon

�! N is a homomorphism such
that the digraph

J
M [[XJ ]]

f
//

M(◆)
✏✏

N

J
(M/ ⌘) [[XJ ]]

f

77

in Mon commutes, then for all X 2
J

(M/ ⌘) [[XJ ]] and all x 2
J
M [[XJ ]] so

that Xj = xj/ ⌘ (8j 2 J) and supp (X) = supp (x), we have

f (X) = f (M (◆) (x)) = f (x) = fsupp(X)(x) = fsupp(X)(
J ◆ (x)) = fsupp(X)(X) .

Indeed, the function f :
J

(M/ ⌘) [[XJ ]]! N given by f (X) := fsupp(X)(X)

is a homomorphism, and that proves the item.

In the proof of Item (c) above, we provided an abstract category-theoretic

definition of the quotient lowering f :
J

(M/ ⌘) [[XJ ]] Mon

�! N of f modulo t, but it
is quite easy to describe how that function actually operates on its arguments.
Take an X 2

J

(M/ ⌘) [[XJ ]]. Each Xj for j 2 J is an equivalence class Xj = xj/⌘,
where xj is an element of Xj, and it is clear that supp (X) ⇢ supp (x),
where x := {xj}j2J . Thus, since t ⇢ feq, we have fsupp(X) (x) = f (x) and

f (X) = fsupp(X)(X) = fsupp(X) (J ◆ (x)) = fsupp(X) (x) = f (x) ,

that is, the function f stands for the transformation {xj/⌘}j2J 7! f ({xj}j2J).
The advantage of working with the more abstract category-theoretic approach in
defining f is twofold: such procedure leaves no doubt that f is well-defined, and it
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reveals information related to f which shall be useful in the proof of Item (c) of
Theorem 3.56, such as the equations

(8S 2 J ) fS �
J ◆ = fS and f �M (◆) = f .

Proposition 3.55. Let R be a rng, let G be an ordered group and let J be an
arithmetic Rayner ideal on G. If I is an ideal in R, then the set

J
I [[XG]] is an

ideal in the rng
J
R [[XG]].

Proof. The set
J
I [[XG]] is clearly a subgroup of (

J
R [[XG]] ,+). Take any two

elements x 2
J
I [[XG]] and y 2

J
R [[XG]]. Thus, for all p 2 G, we get

(xy)
p
=
X

g,h2G
g+h=p

xgyh 2
X

g2supp(x)
h2supp(y)
g+h=p

IR ⇢
X

g2supp(x)
h2supp(y)
g+h=p

I ⇢ I ,

implying xy 2
J
I [[XG]] and

J
I [[XG]] ·

J
R [[XG]] ⇢

J
I [[XG]]. The proof of the inclusion

J
R [[XG]] ·

J
I [[XG]] ⇢

J
I [[XG]] is analogous, showing that

J
I [[XG]] is an ideal

in
J
R [[XG]].

Theorem 3.56. Let G be an ordered group, let J be an arithmetic Rayner ideal
on G and let R : Rng! Rng be the function given by

8
<

:
R (R) :=

J
R [[XG]]

(R (� : R
Rng

�! S) (x))
g
:= � (xg) .

(a) The function R is a functor of type Rng! Rng;

(b) The functor R preserves object-finite limits in Rng (Definition B.36).
In particular, R is left-exact;

(c) The functor R preserves quotients modulo ideals in Rng (Definition B.50).
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Proof.

(a) If one were to ignore the multiplication operations within the rngs, then
R essentially would become the functor M described in Theorem 3.54.
Thus, the only possible barrier to the desired result is that
for each homomorphism � : R

Rng

�! S between rngs, the function
R (�) :

J
R [[XG]]!

J
S [[XG]] must be multiplication-preserving. Indeed, for all

x, y 2
J
R [[XG]] and all p 2 G, we have

(R (�) (xy))
p
= � ((xy)

p
)

= �

✓ X

g,h2G
g+h=p

xgyh

◆

=
X

g,h2G
g+h=p

(R (�) (x))
g
· (R (�) (y))

h

= (R (�) (x) · R (�) (y))
p
.

(b) Let I be an object-finite category, let F : I ! Rng be a functor and suppose
� = {�i : L

Rng

�! F (i)}
i2I0

is a limit cone over F (Definition B.31). We shall
prove that the cone

R (�) := {R (�i) : R (L)
Rng

�! R (F (i))}
i2I0

=
�
R (�i) :

J
L [[XG]]

Rng

�!

J

F (i) [[XG]]
 
i2I0

over the composition R � F : I ! Rng is a limit cone. Suppose that
� =

�
�i : V

Rng

�!

J

F (i) [[XG]]
 
i2I0

is another cone over R � F . Disregarding
the multiplication operations on all rngs for now, note that � is a limit cone
over the composition

Rng

U � F : I !Mon (Lemma 2.29), and the cone

M (�) :=
�
M (�i) :

J
L [[XG]] Mon

�!

J

F (i) [[XG]]
 
i2I0

is a limit cone over M �

Rng

U � F : I !Mon (Theorem 3.54, Item (b)),

where
Rng

U : Rng!Mon is the canonical forgetful functor of that type.
For each g 2 G and each i 2 I0, let �i,g : V

Mon

�! F (i) be the morphism
given by �i,g (x) := (�i (x))g, let �g : V Mon

�! L be the limit lifting of the cone
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�g := {�i,g : V
Mon

�! F (i)}
i2I0

along � and let � : V Mon

�!
J
L [[XG]] be the limit

lifting of � along M (�). That implies that for all i 2 I0 and all g 2 G,
the digraphs

L

�i

✏✏

V
�i,g

//

�g

77

F (i)

and

J
L [[XG]]

M(�i)=R(�i)
✏✏

V
�i

//

�

77

J

F (i) [[XG]]

in Mon commute, and, by the proof of Item (b) of Theorem 3.54,
the morphism � may be given by � (x) := {�g (x)}g2G. Note that for all
x 2 V and all g 2 G, we have

(8i 2 I0) �i ((� (x))g) = �i (�g(x)) = �i,g(x) = (�i(x))g .

Taking the multiplication operations on all rngs into account again,
it happens that the proof of the item hinges on whether the function � is
multiplication-preserving or not. For all i 2 I0, all p 2 G and all x, y 2 V ,
we get

�i ((� (xy))p) = (�i (xy))p

= (�i (x)�i (y))p

=
X

g,h2G
g+h=p

(�i (x))g (�i (y))h

=
X

g,h2G
g+h=p

�i ((� (x))g)�i ((� (y))h)

= �i ((� (x)� (y))p) ,

implying � (xy) = � (x)� (y) (Lemma 1.23) and proving the item.

(c) Let I be an ideal in a rng R, let ◆ : R Rng

�! R/I be the canonical quotient
homomorphism and let J

⌘
I

be the congruence relation on the rng
J
R [[XG]]

induced by the ideal
J
I [[XG]] (Proposition 3.55). It is easy to verify that
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we have J
⌘
I

=
R(◆)

eq . We shall prove that
J

(R/I) [[XG]] is a quotient of
J
R [[XG]]

modulo
J
I [[XG]] in Rng with quotient homomorphism

R (◆) :
J
R [[XG]]

Rng

�!

J

(R/I) [[XG]] .

Consider another rng R0 and a homomorphism f :
J
R [[XG]]

Rng

�! R0 so
that J

⌘
I

⇢
feq. Disregarding the multiplication operations on all rngs for now,

note that the morphisms ◆ : R Mon

�! R/I and

M (◆) :
J
R [[XG]] Mon

�!

J

(R/I) [[XG]]

are quotient morphisms in Mon (Lemma 2.23; Theorem 3.54, Item (c)).
For each S 2 J , let fS : GR Mon

�! R0 be the homomorphism given by
fS ({xg}g2G) := f

⇣X

g2S

xgXg

⌘
, let fS : G (R/I) Mon

�! R0 be the quotient low-

ering of fS modulo GI along the quotient morphism G◆ (Lemma 1.20) and

let f :
J

(R/I) [[XG]] Mon

�! R0 be the quotient lowering of f along M (◆).
That means that for each S 2 J , the digraphs

G
R

fS
//

G
◆

✏✏

R0

G (R/I)
fS

77

and

J
R [[XG]]

f
//

M(◆)
✏✏

R0

J
(R/I) [[XG]]

f

77

in Mon commute, and, by the proof of Item (c) of Theorem 3.54,
the morphism f may be given by f (X) := fsupp(X)(X). Note that for all

X 2
J

(R/I) [[XG]] and all x 2
J
R [[XG]] so that Xg = xg/ ⌘ (8g 2 G), we have

f (X) = fsupp(X)(X) = fsupp(X)(
G◆ (x)) = fsupp(X)(x) ,

and if supp (X) = supp (x), then we obtain f (X) = fsupp(x)(x) = f (x).
Taking the multiplication operations on all rngs into account again,
it happens that the proof of the item hinges on whether the function f is
multiplication-preserving or not. Consider X, Y 2

J

(R/I) [[XG]] and take
any two x, y 2

J
R [[XG]] so that Xg = ◆ (xg) (8g 2 G), Yg = ◆ (yg) (8g 2 G),

supp (X) = supp (x) and supp (Y ) = supp (y). Thus, we have the inclusion
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supp (XY ) ⇢ supp (xy), and if p is an element of the difference set
supp (xy)� supp (XY ), then

◆ ((xy)
p
) = ◆

✓ X

g,h2G
g+h=p

xgyh

◆
=
X

g,h2G
g+h=p

◆ (xg) ◆ (yh) =
X

g,h2G
g+h=p

XgYh = (XY )
p
= 0R/I

and (xy)
p
⌘
I

0R, which gives us the conditions xy
J
⌘
I

X

p2supp(XY )

(xy)
p
Xp and

f (xy) = f
⇣ X

p2supp(XY )

(xy)
p
Xp

⌘
since J

⌘
I

⇢
feq. Lastly, we have

f (XY ) = fsupp(XY )(xy)

= f
⇣ X

p2supp(XY )

(xy)
p
Xp

⌘

= f (xy)

= f (x) f (y)

= fsupp(X)(x) fsupp(Y )(y)

= f (X) f (Y ) ,

and that proves the item.

Corollary 3.57. Let G be an ordered group, let J be an arithmetic Rayner ideal
on G, let R, S, T,R1 . . . Rn be rngs, let f, g : R

Rng

�! S, p : R
Rng

�! T and
q : S

Rng

�! T be homomorphisms and let I be an ideal in R. Regarding the functor
R : Rng! Rng defined in the statement of Theorem 3.56, we have:

(a)

J✓ RngY

i2[1,n]N

Ri

◆
[[XG]]

Rng

⇠=
RngY

i2[1,n]N

J
Ri [[XG]] ;

(b)
J

�Rng

Eq(f, g)
�
[[XG]]

Rng

⇠=
Rng

Eq(R (f) ,R (g)) ;

(c)
J

�Rng

Ker (f)
�
[[XG]]

Rng

⇠=
Rng

Ker (R (f)) ;

(d)
J�

R
Rng

⇥
p,q

S
�
[[XG]]

Rng

⇠=
J
R [[XG]]

Rng

⇥
R(p),R(q)

J
S [[XG]] ;

(e)
J

�
R

Rng

/ I
�
[[XG]]

Rng

⇠=
J
R[[XG]]

Rng

/
J
I [[XG]] ;

(f)
J

�Rng

Im(f)
�
[[XG]] �

Rng

Im(R (f)) , and equality
holds if f is injective.
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Proof. Items (a)-(e) are direct consequences of Theorem 3.54, and item (f) is the
only one that still needs to be proved.

(f) The proof of the inclusion
J

�Rng

Im(f)
�
[[XG]] �

Rng

Im(R (f)) is straightforward.
We shall prove the opposite inclusion. Suppose f is injective and take an

element y 2

J
�Rng

Im(f)
�
[[XG]]. Thus, for each g 2 G, there is a xg 2 R such

that yg = f (xg), and that defines a family x := {xg}g2G in R. If g 2 G is
such that xg 6= 0R, then yg = f (xg) 6= 0S = f (0R) since f is injective,

implying supp (x) ⇢ supp (y), x 2
J
R [[XG]] and y = R (f) (x) 2

Rng

Im(R (f)).

Taking into consideration the fact that the notion of a kernel of a
homomorphism between rngs is defined uniquely and not up to isomorphism
(Definition 2.1), we leave to the reader the verification that the isomorphism
relation of Item (c) of Corollary 3.57 can be replaced by an equality relation.

Example 3.58. A short exact sequence in Rng is a digraph in Rng of the form

0 // R
f
// S

g
// T // 0 ,

where the outer morphisms are the constant zero morphisms (Example 2.25),
f : R! S is an injective homomorphism, and g : S ! T is a surjective
homomorphism such that Im (f) = Ker (g). Since the functor R : Rng! Rng

preserves kernels and injective images (Corollary 3.57, Items (c) and (f)),
the digraph

0 //

J
R [[XG]]

R(f)
//

J
S [[XG]]

R(g)
//

J
T [[XG]] // 0

is also a short exact sequence in Rng. For instance, take an ideal I in a rng R

(Definition 2.20), and consider the digraph

0 // I
f
// R

g
// R/I // 0

in Rng, where f : I ! R is the canonical immersion given by f (x) := x and
where g : R! R/I is the canonical quotient function given by g (x) := x/⌘

I
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(Propositions 2.19 and 2.21). Thus, we have Im (f) = I = Ker (g), showing that
that digraph is a short exact sequence, and so is the digraph

0 //

J
I [[XG]]

R(f)
//

J
R [[XG]]

R(g)
//

J

(R/I) [[XG]] // 0 .

It is easy to verify that R (f) is the canonical immersion of that type, and R (g)

is the quotient function of that type (Theorem 3.56, Item (c)).

In particular, taking R = Z and I = pZ, where p is a prime (Example 2.22,
Case (a)), we get the following short exact sequence in Rng:

0 //

J

(pZ) [[XG]]
R(f)

//

J
Z [[XG]]

R(g)
//

J
Fp [[XG]] // 0 .

Example 3.59. Let G be an ordered group, let J be an arithmetic Rayner ideal
on G, let n1n2 . . . nk be a finite sequence of pairwise coprime numbers in [2,1)N,
and let N := n1n2 · · ·nk. By the Chinese Remainder Theorem (37, 14), we have

Z/NZ
Rng

⇠= (Z/n1Z)⇥ (Z/n2Z)⇥ · · ·⇥ (Z/nkZ) ,

and by Item (a) of Corollary 3.57, we obtain
J

(Z/NZ) [[XG]]
Rng

⇠=
J

(Z/n1Z) [[XG]]⇥
J

(Z/n2Z) [[XG]]⇥ · · ·⇥

J

(Z/nkZ) [[XG]] .

3.7 The fixed point theorem

We shall address a fixed point theorem that is a valuable tool for proving
some theorems concerning

J
R [[XG]] when the Rayner ideal J is incremental

(Definition 3.1). It was first posited by Shamseddine regarding the real
Levi-Civita field (200), and the proof that we shall present here is nothing but a
generalisation of his proof written in different notations.

We begin by introducing an efficient way of denoting families in
J
R [[XG]]:
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Notation 3.60. Since each element of
J
R [[XG]] is a family x = {xg}g2G in R with

indices in G, it is advantageous to write the indices of a family in
J
R [[XG]] in the

lower-left corner, such as in ix, reserving the lower-right corner to the elements
of G. Hence, we define ixg as being the g-image of the i-term of the family {ix}i2I
in

J
R [[XG]], that is, ixg := (ix)g. As usual, the upper-right indices are reserved to

denoting powers.

Theorem 3.61 (Fixed Point Theorem). Let R be a rng, let G be an ordered
subgroup of (R,+R, <R), let J be an incremental arithmetic Rayner ideal on G,
let g0 2 G and let k 2 (0,1)

G
. If f :

J
O (Xg0)!

J
O (Xg0) is a function such that

�
81x, 2x 2

J
O (Xg0)

�
(8g 2 [g0,1)

G
)
�
1x

.
= 2x+

J
O (Xg)) f (1x)

.
= f (2x) +

J
O (Xg+k)

�
,

then f has a unique fixed point in
J
O (Xg0).

Proof. Let 0a 2
J
O (Xg0) be arbitrary and let {na} be the recursively defined

sequence in
J
O (Xg0) given by na := f (n�1a). Employing the hypothesis and

Subitem 7 of Item (b) of Proposition 3.47, one inductively obtains the results

(8m 2 N) ma
.
= m�1a+

J
O (Xg0+(m�1)k)

and
(8m 2 N) (8n 2 [0,m]N0

) ma
.
= na+

J
O (Xg0+nk) .

Let x = {xg}g2G be the family in R given by xg := mg
ag, where mg is the

smallest natural number so that g 6 g0 + (mg � 1) k. Note that the number
mg exists inasmuch as G is Archimedean. Also, we have mg0 = 1 and
g < g0 +mgk (8g 2 G). If p and g are two elements of G so that p 6 g, then we
get mp 6 mg and

mg
ap

.
=
�
mp

a+
J
O (Xg0+mpk)

�
p

.
= mp

ap = xp .

In particular, since for each g 2 G we have mg
a 2

J
R [[XG]] and

supp (x) \ (�1, g]
G
⇢ supp (mg

a) 2 J ,
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and since the ideal J is incremental, we obtain x 2
J
R [[XG]], x .

= mg
a+

Jo (Xg) and

x
.
= 1a+

Jo (Xg0)
.
=

J
O (Xg0). Furthermore, for each g 2 [g0,1)

G
, we get

f (x)
.
= f (mg

a)+
J
O (Xg+k)

.
= mg+1a+

J
O (Xg+k)

.
= mg

a+
J
O (Xg0+mgk)+

J
O (Xg+k) ,

leading us to

(f (x))
g

.
=
�
mg
a+

J
O (Xg0+mgk) +

J
O (Xg+k)

�
g

.
= mg

ag = xg ,

proving that f (x) = x.

It remains to show that x is unique. Suppose y is another fixed point of f
in

J
O (Xg0). Clearly, we have Jms (x� y) > g0, and, since x

.
= y +

J
O
�
X

Jms(x�y)�,
we get

x = f (x)
.
= f (y) +

J
O
�
X

Jms(x�y)+k
� .
= y +

J
O
�
X

Jms(x�y)+k
�
,

implying Jms (x� y) > Jms (x� y) + k, Jms (x� y) =1 and x = y.

The reader is invited to check that the statement and proof of the
Fixed Point Theorem, as presented above, work well when all big-O sets are
replaced by little-O sets.

Note that the Fixed Point Theorem is valid for both the Hahn and
Levi-Civita rngs, in particular, since the Rayner ideals associated to those
structures are incremental (Proposition 3.4, Item (b); Proposition 3.14, Item (a)).

Example 3.62. Consider the setting of Theorem 3.61, additionally assuming
that R is a ring, and consider the function h :

J
O (Xg0)!

J
R [[XG]] given by

h (x) := x · Xk + Xg0 = Xk
· x+ Xg0 .

Note that for all x .
=

J
O (Xg0) we have (Theorem 3.47, Item (b))

h (x) = x · Xk + Xg0 .
=

J
O (Xg0+k) +

J
O (Xg0)

.
=

J
O (Xg0) +

J
O (Xg0)

.
=

J
O (Xg0) ,
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proving that the function h is of type
J
O (Xg0)!

J
O (Xg0), and if 1x, 2x 2

J
O (Xg0)

and g 2 [g0,1)
G

are so that 1x
.
= 2x+

J
O (Xg), then

h (1x)� h (2x) = (1x · Xk + Xg0)� (2x · Xk + Xg0) = (1x� 2x) · Xk .
=

J
O (Xg+k) ,

that is, h (1x)
.
= h (2x) +

J
O (Xg+k). By the Fixed Point Theorem, the function h

has a unique fixed point u in
J
O (Xg0), that is, there is a unique u

.
=

J
O (Xg0)

so that
u = u · Xk + Xg0 = Xk

· u+ Xg0 ,

which, by rearranging the terms and multiplying by X�g0 , gives us

u (X�g0� X�g0+k) = 1R = (X�g0� X�g0+k) u .

Therefore, the unique fixed point of h turns out to be the inverse of
X�g0� X�g0+k in

J
R [[XG]].

3.8 Conditions for
J

R [[XG]] to be a division ring or an

algebraically closed field

We know that a ring R is a division ring whenever the Rayner ring
J
R [[XG]]

is a division ring (Proposition 3.48, Item (d)), but the converse of that implication
does not always hold (Example 3.71). We shall employ a couple of powerful results
available in literature to ascertain that the converse statement actually does hold
in an imperative case, and to establish sufficient conditions for

J
R [[XG]] to be an

algebraically closed field (Definition 2.49).

The following proposition was first proved by Hahn in 1907 for commutative
ordered groups G, and it was later generalised by Mal’cev and Neumann in the
late 1940s:

147



Proposition 3.63. (153, 145, 92) If K is a division ring (resp. a field) and if G
is an ordered group, then the Hahn ring K [[XG]] is a division ring (resp. a field).

Example 3.64. The Hahn rings H [[XZ]], H [[XQ]], H [[XR]] and H [[XBS` ]] are
division rings (Example 2.8).

Example 3.65. The Hahn rings

Q[[XZ]],Q [[XQ]] ,Q [[XR]] ,Q [[XBS` ]] ,R [[XZ]] ,R [[XQ]] ,R [[XR]] ,R [[XBS` ]]

C [[XZ]] ,C [[XQ]] ,C [[XR]] and C [[XBS` ]]

are all fields.

We shall show that the statement of Proposition 3.63 is valid for all Rayner
rings generated by full Rayner ideals, not just for the Hahn rings. For that, we need
the following lemma:

Lemma 3.66. (145, 92) Let K be a division ring and let G be an ordered group. If x
is a unit in the Hahn ring K [[XG]] such that x0G = 1K and supp (x) ⇢ [0G,!)

G
,

then (x�1)0G = 1K and supp (x�1) ⇢
SGrpspan

G

(supp (x)).

Proof. Since supp (x�1) is well-ordered in G, there is a unique ordinal � and a
unique increasing family {p↵}↵<�

whose image is supp (x�1) (Proposition 1.31).
We shall prove that p↵2

SGrpspan
G

(supp (x)) (8↵ < �) by transfinite induction on ↵.

Firstly, since supp (x) ⇢ [0G,!)
G
, note that

(1K)p0 = (xx�1)
p0
=
X

g,h2G
g+h=p0

xg (x
�1)

h
= x0G (x�1)

p0
= 1K · (x�1)

p0
= (x�1)

p0
6= 0K ,

implying p0= 0G2
SGrpspan

G

(supp (x)), supp (x�1) ⇢ [0G,!)
G

and (x�1)0G = 1K .

Suppose that ↵ is an ordinal number in the interval (0, �)On such that
p�2

SGrpspan
G

(supp (x)) (8� < ↵) and take the increasing finite sequence of ordinal
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numbers ↵1↵2 . . .↵n such that p↵1p↵2 . . . p↵n
are the elements of the finite

image set (Lemma 1.75)

pr2 h{(g, h) 2 supp (x)⇥ supp (x�1) | g + h = p↵}i ,

where pr2 : supp (x) ⇥ supp (x�1) ! supp (x�1) is the canonical projection given
by pr2 (g, h) := h. Since ↵n= ↵, we have

0K = (1K)p↵ = (xx�1)
p↵
=
X

g,h2G
g+h=p↵

xg (x
�1)

h
= x0G (x�1)

p↵
+

n�1X

i=1

x Jp↵+ (�p↵i
)K (x�1)

p↵i

,

which gives us
n�1X

i=1

x Jp↵+ (�p↵i
)K (x�1)

p↵i

= � (x�1)
p↵
6= 0K ,

implying that there is an i 2 [1, n� 1]N such that p↵+ (�p↵i
) 2 supp (x). Finally,

we obtain
p↵2 supp (x) + p↵i

⇢ supp (x)+
SGrpspan

G

(supp (x)) ⇢
SGrpspan

G

(supp (x)) ,

and that concludes our induction.

Theorem 3.67. (181, 117) If K is a division ring (resp. a field), if G is an
ordered group and if J is a full Rayner ideal on G, then the Rayner ring

J
K[[XG]]

is a division ring (resp. a field).

Proof. By Proposition 3.48, we know that
J
K[[XG]] is a ring with no zero divisors.

Let x 2
J
K[[XG]]� {0K} and let

x⇤ :=
�
(pc (x))�1 X�

Jms(x)� x
.
=
�
(pc (x))�1 X�

Jms(x)� �pc (x)X
Jms(x) +

Jo
�
X

Jms(x)��

.
= 1K +

J
O
�
X�

Jms(x)� Jo
�
X

Jms(x)�

.
= 1K +

Jo(X0G) .

If x⇤ is a unit in
J
K[[XG]], then, since

x =
�
(pc (x))X

Jms(x)� x⇤ ,
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the element
(x⇤)�1

�
(pc (x))�1 X�

Jms(x)�

is the multiplicative (bilateral) inverse of x in
J
K[[XG]]. Hence, we may assume,

without loss of generality, that x
.
= 1K +

Jo (X0G). Since the Hahn ring K [[XG]] is
a division ring (Proposition 3.63), the element x has an inverse x�1 in K [[XG]],
and, by Lemma 3.66, we have (x�1)0G = 1K and

supp (x�1) ⇢
SGrpspan

G

(supp (x)) 2 J ,

implying supp (x�1) 2 J and x�1 2
J
K[[XG]].

Corollary 3.68. Let K be a division ring (resp. a field), let G be an ordered
group and let H be a Puiseux ordered subgroup of G.

(a) If G is isomorphic to an ordered subgroup of (R,+R, <R), then the Puiseux
ring

bd

KH[[XG]] is a division ring (resp. a field);

(b) The Levi-Civita ring
lf

K [[XG]] is a division ring (resp. a field) if,
and only if, the ordered group G is isomorphic to an ordered subgroup
of (R,+R, <R).

Proof. If G is isomorphic to an ordered subgroup of (R,+R, <R), then the
arithmetic Rayner ideals

lf

P (G) and
bd

PH(G) on G are full (Proposition 3.14,
Item (b); Proposition 3.18, Item (f)), implying that

lf

K [[XG]] and
bd

KH[[XG]] are
division rings (Theorem 3.67). It remains to prove the necessary condition of
item (b):

(b) Suppose G is not isomorphic to an ordered subgroup of (R,+R, <R),
that is, suppose G is non-Archimedean (Theorem 1.72), take two positive
elements g0 and h0 of G so that ng0 < h0 (8n 2 N), and consider
the element

x := 1K � Xg0 2
lf

K [[XG]] ⇢ K [[XG]] .

Since the Hahn ring K [[XG]] is a division ring (Proposition 3.63), we know
that x has an inverse in K [[XG]], which happens to be the Hahn series

y :=
X

n2N0

Xng0 = 1K + Xg0+ X2g0+ X3g0+ · · ·+ Xng0+ · · · .
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One may verify that y = x�1 simply by computing the products xy and yx,
and we leave that simple task to the reader. Note that the support
supp (y) = {0G, g0, 2g0, 3g0, . . . } is not cofinal in G, and, therefore, is not
left-finite in G, implying that y 62

lf

K [[XG]]. Lastly, since the inverse of x is
unique in the division ring K [[XG]], it follows that the element x is not a
unit in

lf

K [[XG]], proving that
lf

K [[XG]] is not a division ring.

Example 3.69. Considering the division ring H of quaternions as the ring of
coefficients (Example 2.8), we have that the Levi-Civita rings

lf

H [[XZ]],
lf

H [[XQ]]

and
lf

H [[XR]], and the Puiseux rings
bd

HZ[[XQ]],
bd

HZ[[XDd ]] and
bd

HZ[[XP ]]

(Examples 3.20 and 3.21), are all division rings.

Example 3.70. The Levi-Civita rings
lf

Q [[XZ]] ,
lf

Q [[XQ]] ,
lf

Q [[XR]] ,
lf

R [[XZ]] ,
lf

R [[XQ]] ,
lf

R [[XR]] ,
lf

C [[XZ]] ,
lf

C [[XQ]] , and
lf

C [[XR]] ,

and the Puiseux rings
bd

QZ[[XQ]] ,
bd

QZ[[XDd ]] ,
bd

QZ[[XP ]] ,
bd

RZ[[XQ]] ,
bd

RZ[[XDd ]] ,
bd

RZ[[XP ]]
bd

CZ[[XQ]] ,
bd

CZ[[XDd ]] and
bd

CZ[[XP ]] ,

are all fields.

Example 3.71. Let ↵ be an ordinal of the form !�, where � is a countable
ordinal greater than 1, and consider the ordered group No↵ of surreal numbers
with birthdays less than ↵ (Example 3.8). Since we have

cf (No↵) = cf (↵) 6 |↵| = ! ,

we get the strict inclusions (Proposition 3.11)

P!(No↵) (
lf

P (No↵) (
wo

P (No↵) and Q [XNo↵ ] (
lf

Q [[XNo↵ ]] ( Q [[XNo↵ ]] .

Thus, the ring
lf

Q [[XNo↵ ]] is an instance of a non-polynomial Levi-Civita ring that
is not a field but has coefficients in a field (Corollary 3.68, Item (b)).
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Making use of the Fixed Point Theorem (Theorem 3.61), we exhibit an
alternative proof of Theorem 3.67 in the special case in which G is an ordered
subgroup of (R,+R, <R) and the Rayner ideal J is incremental. That proof is
largely inspired by Shamseddine’s proof that the ring R =

lf

R [[XQ]] is a field (200).

Proof of Theorem 3.67 for a special case. Let K be a division ring, let G be an
ordered subgroup of (R,+R, <R) and let J be an incremental arithmetic Rayner
ideal on G. Just as we noted in the proof of Theorem 3.67, we may assume, without
loss of generality, that x

.
= 1K +

Jo (X0G). If x = 1K , then x is its own inverse.
Suppose x 6= 1K and let y := x� 1K

.
=

Jo (X0). By Proposition 1.10, it is enough
to prove that there is a z 2

J
K[[XG]]� {0K} such that (1K + z) (1K + y) = 1K .

This is equivalent to the equation z = �zy � y. Let f :
J
O
�
X

Jms(y)�
!

J
K[[XG]] be

the function given by f (z) := �zy � y. Accordingly, we must find a fixed point z

of the function f . For any z 2
J
O
�
X

Jms(y)�, we have

�f (z) = zy + y
.
=

J
O
�
X

Jms(z)� J
O
�
X

Jms(y)�+
J
O
�
X

Jms(y)� .
=

J
O
�
X

Jms(y)� ,

which points to the inclusion f
⌦J
O
�
X

Jms(y)�↵
⇢

J
O
�
X

Jms(y)�. If g 2 [
Jms (y) ,1)

G

and if 1z, 2z 2
J
O
�
X

Jms(y)� are so that 1z
.
= 2z +

J
O (Xg), then we get

1zy
.
=
�
2z +

J
O (Xg)

�
y

.
= 2zy +

J
O
�
Xg+

Jms(y)�

and f (1z)
.
= f (2z) +

J
O
�
Xg+

Jms(y)�. Therefore, by the Fixed Point Theorem

(Theorem 3.61), there is a unique z 2
J
O
�
X

Jms(y)� such that f (z) = z, implying

that 1K + z is the multiplicative left inverse of x in
J
K[[XG]] and proving that

J
K[[XG]] is a division ring.

The following theorem was first proved by Puiseux in 1850 for the
Puiseux fields, then proved by Mac Lane in 1939 for the Hahn fields, and it
was later generalised by Rayner in 1968:
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Theorem 3.72. (178, 150, 181) If K is an algebraically closed field of
characteristic zero, if G is a divisible, commutative ordered group and if J is
a full Rayner ideal on G, then the Rayner field

J
K[[XG]] is algebraically closed.

Corollary 3.73. (178, 150, 181) Let K be an algebraically closed field of
characteristic zero.

(a) If G is a divisible, commutative ordered group, then the Hahn field K [[XG]]

is algebraically closed;

(b) If G is isomorphic to a divisible ordered subgroup of (R,+R, <R) and if H
is a Puiseux ordered subgroup of G, then the Levi-Civita field

lf

K[[XG]] and
the Puiseux field

bd

KH [[XG]] are algebraically closed.

Proof. The Rayner ideal
wo

P(G) on G is always full (Proposition 3.4, Item (b)),
and the Rayner ideals

lf

P (G) and
bd

PH(G) on G are full when G is isomorphic to an
ordered subgroup of (R,+R, <R) (Proposition 3.14, Item (b); Proposition 3.18,
Item (f)).

Example 3.74. The Hahn fields C [[XQ]] and C [[XR]], the Levi-Civita fields
lf

C [[XQ]] and
lf

C [[XR]], and the Puiseux field
bd

CZ[[XQ]] are algebraically closed.

3.9 Conditions for
J

R [[XG]] to have n-th roots

In this section, we shall discuss a property regarding n-th powers in
Rayner rngs, and we shall establish conditions under which an element of a
Rayner field

J
K[[XG]] has n-th roots (Example 2.47).
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Proposition 3.75. Let R be a rng, let G be a commutative ordered group, let J
be an arithmetic Rayner ideal on G and let g0 2 G be fixed. If 1x, 2x 2

J
O (Xg0)

and g 2 [g0,!)
G

are so that 1x
.
= 2x+

J
O (Xg), then we have

(8n 2 N) 1x
n .
= 2x

n +
J
O (Xg+(n�1)g0) .

Proof. The statement is certainly true for n = 1. Suppose it is true for a natural
number n. Since g0 6 g and since G is commutative, we have

g + ((n+ 1)� 1) g0 = g + ng0 = g + g0 + (n� 1) g0 6 2g + (n� 1) g0 ,

resulting in

1x
n+1 = 1x

n
1x

.
=
�
2x

n +
J
O (Xg+(n�1)g0)

� �
2x+

J
O (Xg)

�

.
= 2x

n+1 +
J
O (Xg+ng0) +

J
O (Xg+ng0) +

J
O (X2g+(n�1)g0)

.
= 2x

n+1 +
J
O (Xg+((n+1)�1)g0)

inasmuch as 2xn .
=

J
O (Xng0) (Proposition 3.47, Item (b), Subitem 2), proving the

lemma by induction.

Corollary 3.76. Let R be a rng, let G be a commutative ordered group and let
J be an arithmetic Rayner ideal on G. If 1x, 2x 2

J
O (X0G) are so that

1x
.
= 2x+

Jo (X0G), then 1xn .
= 2xn +

Jo (X0G) for all n 2 N.

Proof. The condition 1x
.
= 2x+

Jo (X0G) implies g :=
Jms (1x� 2x) > 0G and

1x
.
= 2x+

J
O (Xg), entailing

(8n 2 N) 1x
n .
= 2x

n +
J
O (Xg+(n�1)·0)

.
= 2x

n +
J
O (Xg)

.
= 2x

n +
Jo (X0) .

The proofs of Lemma 3.77 and Theorem 3.78 below are largely inspired by
Shamseddine’s proofs of similar results concerning the real Levi-Civita field (200).
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Lemma 3.77. Let K be a field, let G be an ordered subgroup of (R,+R, <R),
let J be an incremental arithmetic Rayner ideal on G and let n 2 N.
For all c

.
=

Jo (X0G), there is a unique solution x
.
=

Jo (X0G) for the algebraic
equation 1K + c = (1K + x)n. Furthermore, we have Jms (c) = Jms (x).

Proof. That algebraic equation may be rewritten as c =
nX

k=1

✓
n

k

◆
xk and as

x =
�
c�

nX

k=2

⇣
n

k

⌘
x
k

�
/n. Thus, we can regard x as a fixed point of the function

f :
J
O
�
X

Jms(c)�
!

J
K[[XG]] given by f (u) :=

�
c�

nX

k=2

⇣
n

k

⌘
u
k

�
/n. We shall employ

the Fixed Point Theorem (Theorem 3.61) to prove that such element x exists.
For each u 2

J
O
�
X

Jms(c)�, we have

c�
nX

k=2

✓
n

k

◆
uk .

=
J
O
�
X

Jms(c)�+
nX

k=2

J
O
�
Xk

Jms(c)� .
=

J
O
�
X

Jms(c)� ,

implying the conditions f (u)
.
=

J
O
�
X

Jms(c)� and f
⌦J
O
�
X

Jms(c)�↵
⇢

J
O
�
X

Jms(c)�.

If 1u, 2u 2
J
O
�
X

Jms(c)� and g 2 [
Jms (c) ,1)

G
are so that 1u

.
= 2u+

J
O (Xg), then

we get (Proposition 3.75)
nX

k=2

✓
n

k

◆
1u

k .
=

nX

k=2

✓
n

k

◆�
2u

k +
J
O
�
Xg+(k�1) Jms(c)�� .

=
nX

k=2

✓
n

k

◆
2u

k +
J
O
�
Xg+

Jms(c)� ,

which straightforwardly entails f (1u)
.
= f (2u) +

J
O
�
Xg+

Jms(c)�. Hence, by the

Fixed Point Theorem, there is a unique fixed point x
.
=

J
O
�
X

Jms(c)� of f .
If y .

=
Jo (X0G) is another solution for the algebraic equation in the statement of

the lemma, then, since

c =
nX

k=1

✓
n

k

◆
yk

.
= y

⇣
nK +

n�1X

k=1

J
O
�
Xk

Jms(y)�⌘ .
= y

�
nK +

J
O
�
X

Jms(y)�� ,

we obtain (Proposition 3.48, Item (c))
Jms (c) .

=
Jms (y) + Jms

�
nK +

J
O
�
X

Jms(y)�� .
=

Jms (y)

and y
.
=

J
O
�
X

Jms(c)�, which implies x = y and proves that x is the only solution for
the equation in Jo (X0G).
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Theorem 3.78. Let K be a field, let G be an ordered subgroup of (R,+R, <R),
let J be an incremental arithmetic Rayner ideal on G and let n 2 N. A non-zero
element x of

J
K[[XG]] has an n-th root in

J
K[[XG]] if, and only if, we have

Jms(x)/n 2 G and pc (x) has an n-th root in K. In that case, there is a unique
y

.
=

Jo (X0) such that the set of n-th roots of x in
J
K[[XG]] is given by

�
kX

J
ms(x)/n (1K + y) | k 2 K and kn = pc (x)

 
.

Proof. Since K is a field, the element x may be written in the form

x = pc (x) X
Jms(x) (1K + c) ,

where we have c
.
=

Jo (X0). Let y
.
=

Jo (X0) be the unique element such that
1K + c = (1K + y)n (Lemma 3.77). If Jms(x)/n 2 G and if k is an n-th root of
pc (x) in K, then the element kX

J
ms(x)/n (1K + y) is an apparent n-th root of x

in
J
K[[XG]].

Conversely, suppose w is an n-th root of x in
J
K[[XG]]. Thus, w 6= 0K , and

we have (Proposition 3.48, Item (c))
Jms (x) = Jms (wn) = n

Jms (w) ,

implying Jms(x)/n =
Jms (w) 2 G and resulting that we may write w in the form

w = pc (w) X
J
ms(x)/n (1K + y1) ,

where y1
.
=

Jo (X0). Being that the ring
J
K[[XG]] is commutative (Theorem 3.48),

from x = wn we obtain
pc (x) (1K + c) = (pc (w))n (1K + y1)

n .

On account of
pc (x) (1K + c)

.
= pc (x) + Jo (X0)

and (Corolary 3.76)

(pc (w))n (1K + y1)
n .
= (pc (w))n (1K +

Jo (X0))
.
= (pc (w))n + Jo (X0) ,

we get pc (x) = (pc (w))n, which immediatly implies that 1K + c = (1K + y1)
n

and y1 = y.

For the scenario specified in the statement of Theorem 3.78, note that x and
pc (x) have the same number of n-th roots in

J
K[[XG]] and K, respectively.
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Example 3.79. Since the ideal
wo

P(Z) is an incremental full Rayner ideal on Z
(Proposition 3.4, Item (b)), and since there are three cubic roots of unity in C,
we have that the element 1 + X of the Hahn field C [[XZ]] has three cubic roots of
unity x, x0 and x00 in C [[XZ]] (Theorem 3.78). Let us calculate by brute force the
first coefficients of one of these roots. After a few simple calculations, we have

x3 = x3
0 + 3x2

0x1X + (3x2
0x2 + 3x0x

2
1)X2 + (3x2

0x3 + 6x0x1x2 + x3
1)X3

+ (3x2
0x4 + 6x0x1x3 + 3x0x

2
2 + 3x2

1x2)X4 + · · · ,

and since x3 = 1 + X, we obtain the system of equations

x3
0 = 1 3x2

0x3 + 6x0x1x2 + x3
1 = 0

3x2
0x1 = 1 3x2

0x4 + 6x0x1x3 + 3x0x2
2 + 3x2

1x2 = 0

3x2
0x2 + 3x0x2

1 = 0

The equation x3
0 = 1 has three solutions for x0 in C, namely 1, e2⇡i/3 and e

4⇡i/3.
For x0 = 1, we can recursively obtain the following results for x1, x2, x3 and x4:

x0 = 1 , x1 =
1

3x2
0

=
1

3
, x2 =

�3x0x2
1

3x2
0

= �
1

9
, x3 =

� (6x0x1x2 + x3
1)

3x2
0

=
5

81

x4 =
� (6x0x1x3 + 3x0x2

2 + 3x2
1x2)

3x2
0

= �
10

243
.

Note that one could indefinitely go on calculating the coefficients x5x6x7x8 . . . in
the same fashion. Hence, one of the cubic roots of 1 + X in C [[XZ]] is given by
the power series

x = 1 +
1

3
X�

1

9
X2+

5

81
X3
�

10

243
X4+ · · · = 1 · X

J
ms(1+X)/3 (1 + y) ,

where y := 1
3 X� 1

9 X2+ 5
81 X3

�
10
243 X4+ · · · , and the other two cubic roots of

1 + X in C [[XZ]] are given by

x0 = e
2⇡i/3X

J
ms(1+X)/3 (1 + y) = e

2⇡i/3+
e
2⇡i/3

3
X�

e
2⇡i/3

9
X2+

5 e2⇡i/3

81
X3
�
10 e2⇡i/3

243
X4+· · ·

and

x00 = e
4⇡i/3X

J
ms(1+X)/3 (1 + y) = e

4⇡i/3+
e
4⇡i/3

3
X�

e
4⇡i/3

9
X2+

5 e4⇡i/3

81
X3
�
10 e4⇡i/3

243
X4+· · · .
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Note that x is also a cubic root of 1 + X in the Hahn field Q [[XZ]], but since the
primary coefficient pc (1 + X) = 1 has only one cubic root in Q, we obtain that x

is the only cubic root of 1 + X in Q [[XZ]].

Corollary 3.80. Let K be a field and let G be an ordered subgroup of
(R,+R, <R) and let J be an incremental arithmetic Rayner ideal on G. If every
Xg
2

J
K[[XG]] for g 2 G has an n-th root in

J
K[[XG]] for each n 2 N, then the

group G is divisible and dense in R.

Proof. For each g 2 G and each n 2 N, we have g/n 2 G, confirming the
divisibility of G. Since every subgroup of (R,+R) of the form rZ for r 2 (0,1)R
is not divisible, the group G is dense in R by Theorem 1.68.

Corollary 3.80 shows that we cannot remove the hypothesis that G is
divisible in Theorem 3.72.

Example 3.81. The Hahn fields Q[[XZ]], R [[XZ]] and C [[XZ]], the Levi-Civita
fields

lf

Q [[XZ]],
lf

R [[XZ]] and
lf

C [[XZ]], and the Puiseux fields
bd

QZ[[XDd ]],
bd

QZ[[XP ]],
bd

RZ[[XDd ]],
bd

RZ[[XP ]],
bd

CZ[[XDd ]] and
bd

CZ[[XP ]], do not have n-th roots for some
natural numbers n 2 N, since the ordered groups Z, Dd and P are not divisible.
In particular, those fields are not algebraically closed.

3.10
J

R [[XG]] as an ordered rng

Taking into account an ordered rng R, the Rayner rng
J
R [[XG]] naturally

inherits an order-dense ordered rng structure from the order of R, and the
induced order on it places higher weight on the powers of X with low exponents
in G, matching the notion of order of magnitude on

J
R [[XG]] resultant from the

G-pseudovaluation Jms (Section 3.5). Furthermore, when R is an ordered ring,
the Rayner ring

J
R [[XG]] is non-Archimedean. These facts are established in the

following theorem:
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Theorem 3.82. Let R be an ordered rng, let G be an ordered group and let J be
an arithmetic Rayner ideal on G.

(a) The set
P := {x 2

J
R [[XG]] | pc (x) > 0R}

is a synthetic positive cone in the rng
J
R [[XG]] (Definition 2.38).

Let P

< be the order on
J
R [[XG]] that corresponds to the synthetic positive cone P

in that rng (Theorem 2.39).

(b) For all x, y 2
J
R [[XG]], we have x

P

< y if, and only if, xµx,y
< yµx,y

, where
µx,y 2

^

G is given by µx,y :=
Jms (x� y);

(c) For all r, s 2 R, the conditions r
P

< s and r <R s are equivalent;

(d) If x, y 2
J
R [[XG]] are elements so that 0R

P6 x
P6 y or y

P6 x
P6 0R, then

Jms (x) > Jms (y);

(e) If x, y, z 2
J
R [[XG]] are elements so that 0R

P6 x
P6 y

P6 z or z
P6 y

P6 x
P6 0R,

and if Jms (x) = Jms (z), then Jms (x) = Jms (y) = Jms (z);

(f) If x, y, z 2
J
R [[XG]] are elements so that x

P6 y
P6 z, then the equality

µxz =
^

G

min {µxy, µyz} holds;

(g) For each g 2 G, the sets
J
O (Xg) and Jo (Xg) are P

<-order-convex;

(h) If n 2 N and if x, y 2
J
R [[XG]]� {0R} are elements so that x

P6 y
P6 nx or

nx
P6 y

P6 x, then Jms (x) = Jms (y) and pc (x)
R

A pc (y);

(i) Each non-trivial Archimedean class of (
J
R [[XG]],

P

<) can be uniquely written
in the form AXg +

Jo (Xg), where A is a non-trivial Archimedean class
of R and where g 2 G. In particular, the ordered rng

J
R [[XG]] is

non-Archimedean;

(j) The ordered rng (
J
R [[XG]],

P

<) is order-dense (Definition 1.24);

(k) If the ideal J is left-finite (Definition 3.9), then the set R [XG] of
generalised polynomials is strictly order-dense in the ordered Rayner
rng (

J
R [[XG]],

P

<).
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Suppose R is an ordered ring and take any x 2
J
R [[XG]].

(l) If r and s are two infinitely close elements of R (Definition 2.42), then they
are infinitely close in the ordered Rayner ring

J
R [[XG]];

(m) If Jms (x) > 0G, then the element x is infinitesimal in the ordered Rayner
ring (

J
R [[XG]],

P

<);

(n) If Jms (x) < 0G, then the element x is infinite in the ordered Rayner
ring (

J
R [[XG]],

P

<).

Lastly, suppose R is an Archimedean ordered ring.

(o) The converses of items (m) and (n) are valid;

(p) For each x 2
J
R [[XG]], we have Jms (x) = 0G if, and only if, the element x is

appreciable in the ordered Rayner ring (
J
R [[XG]],

P

<);

(q) Two elements r and s in R are infinitely close in the ordered Rayner ring
(
J
R [[XG]],

P

<) if, and only if, they are equal.

Proof. The proofs of items (b), (c) and (l) are immediate, item (e) follows from
item (d), and item (i) follows from item (h). Item (p) is a direct consequence of
items (m), (n) and (o). We shall prove the remaining items.

(a) We have 0R 62 P , and since pc (�x) = �pc (x) (8x 2 R), the intersection
P \ (�P ) is empty. If x is a non-zero element of the rng

J
R [[XG]],

then pc (x) 2 R� {0R}, and we either have pc (x) < 0R or pc (x) > 0R,
that is, we have pc (�x) = �pc (x) > 0R or pc (x) > 0R, implying that
x 2 (�P ) [ P [ {0R} and proving that the sets �P , P and {0R} form a
partition of

J
R [[XG]]. One may easily check that P is closed under the

addition of
J
R [[XG]]. If x and y are elements of P , then pc (x) , pc (x) > 0R,

and since every ordered rng has no zero divisors (Proposition 2.34,
Item (b)), we obtain (Proposition 3.47, Item (a))

pc (xy) = (xy) Jms(xy)
= (xy) J Jms (x) + Jms (y)K = pc (x) pc (y) > 0R ,

which gives us xy 2 P and proves that P is a synthetic positive cone
in

J
R [[XG]].
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(d) It suffices to prove the assertion for the case 0R
P6 x

P6 y. If x = 0R, then
Jms (x) = _ > Jms (y). Suppose 0R

P

< x. Thus, we have pc (x) , pc (y) > 0R

and pc (y � x) > 0R. If Jms (x) < Jms (y), then we have (Proposition 3.47,
Item (a))

pc (x)� y Jms(x)
= pc (x� y) = � pc (y � x) 6 0R ,

implying pc (x) 6 y Jms(x)
, y Jms(x)

6= 0R, and Jms (y) 6 Jms (x) < Jms (y), which
is absurd, proving the item.

(f) Since x
P6 y

P6 z, we get x� z
P6 y � z

P6 0R and 0R
P6 y � x

P6 z � x,
implying µyz, µxy > µxz by item (d). On the other hand, we have

µxz =
Jms (z � x) >

^
G

min {
Jms (z � y) ,

Jms (y � x)} =
^
G

min {µyz, µx,y} > µxz ,

since Jms is a G-pseudovaluation on
J
R [[XG]].

(g) Take x, y, z 2
J
R [[XG]] so that x

P6 y
P6 z. Thus, 0R

P6 y � x
P6 z � x, and by

item (d) we get that Jms (y � x) > Jms (z � x) and y
.
= x+

J
O
�
X

Jms(z�x)�.

If x, z
.
=

J
O (Xg) for some g 2 G, then z � x

.
=

J
O (Xg) and Jms (z � x) > g,

which implies

y
.
= x+

J
O
�
X

Jms(z�x)� .
=

J
O (Xg) +

J
O
�
X

Jms(z�x)� .
=

J
O (Xg) ,

proving that the set
J
O (Xg) is P

<-order-convex. The proof that Jo (Xg) is
P

<-order-convex is analogous.

(h) It suffices to prove the assertion for the case x
P6 y

P6 nx. Note that that
implies 0R

P6 x. Since Jms (x) = Jms (nx), we have Jms (x) = Jms (y) by
item (e). Furthermore, note that

� pc (x) + pc (y) = � pc (x� y) = pc (y � x) > 0R
and

n pc (x)� pc (y) = pc (nx� y) > 0R ,

resulting in pc (x) 6 pc (y) 6 n pc (x) and pc (x)
R

A pc (y);
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(j) and (k) Let x and y be two distinct elements of
J
R [[XG]] so that x

P

< y, let r be
a fixed positive element of R and let p be a fixed element of G so
that p >

Jms (y � x). Thus, we have

x
P

<
⇣X

g<p

xgXg

⌘
+ (xp + r)Xp P

< y .

In particular, if J is left-finite, then the intersection supp (x) \ ( , p)
G

is
finite and we get ⇣X

g<p

xgXg

⌘
+ (xp + r)Xp

2 R [XG] .

(m) If Jms (x) > 0G, then we have

(8n 2 N) pc (1R � n |x|) = 1R > 0R ,

that is, 0R
P

< n |x|
P

< 1R (8n 2 N), implying that the element x is
infinitesimal in (

J
R [[XG]],

P

<).

(n) If Jms (x) < 0G, then we have

(8n 2 N) pc (|x|� nR) = |pc (x)| > 0R ,

that is, n1R = nR

P

< |x| (8n 2 N), implying that the element x is infinite
in (

J
R [[XG]],

P

<).

(o) Suppose x is a non-zero infinitesimal element in the ordered ring
(
J
R [[XG]],

P

<), and suppose Jms (x) 6 0G. We shall derive a contradiction
from those suppositions. We have n |x|

P

< 1R (8n 2 N), and, by item (n),
we have Jms (x) = 0G=

Jms (n |x|) (8n 2 N), which gives us

(8n 2 N) Jms (1R � n |x|) >
^
G

min {
Jms (1R) ,

Jms (n |x|)} = 0G .

If there is an n 2 N so that (1R � n |x|)0G = 0R, then n |pc (x)| = 1R and

(1R � (n+ 1) |x|)0G = (1R)0G � n |x|0G � |x|0G

= 1R � n |pc (x)|� |pc (x)|

= � |pc (x)| < 0R ,
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implying pc (1R � (n+ 1) |x|) = � |pc (x)| < 0R and 1R
P

< (n+ 1) |x|, which
is absurd by the suppositions. Thus, we have

(8n 2 N) (1R � n |x|)0G 6= 0R and Jms (1R � n |x|) = 0G ,

implying

(8n 2 N) 1R � n |pc (x)| = (1R � n |x|)0G = pc (1R � n |x|) > 0R ,

that is, pc (x) is non-zero and infinitesimal in R, contradicting the
assumption that R is Archimedean. The proof of the converse of item (n)
is analogous.

(q) If r � s is infinitesimal in (
J
R [[XG]],

P

<), then, by item (o), we have
Jms (r � s) > 0G and

0R = (r � s)0G = r0G � s0G = r � s .

From now on, whenever R is an ordered rng, we shall assume that the Rayner
rng

J
R [[XG]] is endowed with the order P

< on it defined in Theorem 3.82, and we
shall say that

J
R [[XG]] is an ordered Rayner rng. In addition, the order P

< shall
be denoted just by <, and, with the intention of evading the cumbersome notations

(x, y)J
R[[XG]]

, [x, y]J
R[[XG]]

, [x, y)J
R[[XG]]

, etc.

for intervals in
J
R [[XG]], these shall be plainly denoted by (x, y), [x, y], [x, y), etc.

Corollary 3.83. Let R be a rng, let G be an ordered group and let J be an
arithmetic Rayner ideal on G. The rng

J
R [[XG]] is orderable if, and only if, the

rng R is orderable.

Example 3.84. All Rayner rings of the forms
J
C [[XG]] and

J
H [[XG]] are

non-orderable, for the rings C and H are non-orderable.
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3.11 The pure part function

An element of an ordered Rayner ring
J
R [[XG]] may be infinitely close to an

element r of R, and that element r may not be unique in general. This issue shall
be addressed here. First, we need a few definitions:

Definition 3.85. Let R be an ordered ring, let G be an ordered group and let J
be an arithmetic Rayner ideal on G. We have the following notations and
terminology:

. An element x of
J
R [[XG]] is near-pure if there is an r 2 R such that x ⇠ r,

where ⇠ is the relation of infinite proximity on the ordered ring
J
R [[XG]]

(Definition 2.42). Such r is unique if R is Archimedean (Proposition 3.82,
Item (q)). The set of near-pure elements of

J
R [[XG]] shall be denoted by

NP (R,G) or
J

NP(R,G) in this section;

. Suppose R is Archimedean. The pure-part function relative to
J
R [[XG]] is

the function
pp =

Jpp
R,G

: NP (R,G)! R

that associates each near-pure element x in
J
R [[XG]] to the unique element

pp (x) of R such that x ⇠ pp (x).

The reader acquainted with the theory of Non-standard Analysis may
notice that the pure-part function pp : NP (R,G)! R is an analogue of the
standard-part function st : Fin (⇤R)! R, where Fin (⇤R) is the set of finite
hyperreals (Definition 2.42). In their own ways, each of these functions provides
an essential connection between two distinct mathematical realms.

Example 3.86. The pure-part function pp : NP (R,G)! R cannot be defined
when the ordered ring R is non-Archimedean. For instance, take R := ⇤R, G := Q
and take a positive infinitesimal hyperreal a. Thus, we have

(8n 2 N) |n (X� 0)| = nX < 1 and n |a� X| = na� nX < 1 (8n 2 N) ,

which gives us 0 ⇠ X ⇠ a in
J
R [[XG]], that is, X is infinitely close to two distinct

elements of ⇤R.
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Proposition 3.87. Let R be an ordered ring, let G be an ordered group and let
J be an arithmetic Rayner ideal on G.

(a) NP (R,G) =
J
O (X0G) ; (b) NP (R,G) is a subring of

J
R [[XG]].

Suppose R is Archimedean.

(c) The pure part function pp : NP (R,G)! R is a surjective, non-strictly
increasing, unital homomorphism between ordered rings such that
pp (x) = x0G (8x 2 NP (R,G)) ;

(d) Ker (pp) = Jo (X0G) and
J
O (X0G)/

Jo (X0G)
Ring

⇠= R.

Proof. Item (b) is a consequence of item (a) and Subitem 9 of Item (b) of
Theorem 3.47. Item (d) follows directly from item (c), Item (o) of Theorem 3.82
and the First Isomorphism Theorem (Appendix B, Theorem B.49). We shall
prove the remaining items.

(a) If x
.
=

J
O (X0G), then x

.
= x0G+

Jo (X0G) and x ⇠ x0G (Theorem 3.82,
Item (m)). Suppose x is an element of NP (R,G) and take an r in R so
that x ⇠ r. Thus, x� r is infinitesimal in

J
R [[XG]], and, in particular,

x� r is not infinite in
J
R [[XG]], implying Jms (x� r) > 0G (Theorem 3.82,

Item (n)) and x
.
= r +

J
O (X0G)

.
=

J
O (X0G).

(c) The function pp is surjective, given that pp (r) = r (8r 2 R). Take two
elements x and y of NP (R,G) =

J
O (X0G). Thus, we have x

.
= x0G+

Jo (X0G),
x ⇠ x0G (Theorem 3.82, Item (m)) and pp (x) = x0G , which gives us
pp (1R) = (1R)0G = 1R in particular. Moreover, note that

pp (x+ y) = (x+ y)0G = x0G+ y0G = pp (x) + pp (y) ,

and
xy

.
= (x0G+

Jo (X0G)) (y0G+
Jo (X0G))

.
= x0Gy0G+

Jo (X0G+0G) +
Jo (X0G+0G) +

Jo (X0G+0G)
.
= x0Gy0G+

Jo (X0G) ,

which implies pp (xy) = x0Gy0G = pp (x) pp (y) and proves that pp is a
unital homomorphism. Lastly, if pp (y) < pp (x), then

(x� y)0G = x0G� y0G = pp (x)� pp (y) > 0R ,
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and, since
Jms (x� y) >

^

G

min {
Jms (x) , Jms (y)} > 0G ,

we obtain Jms (x� y) = 0G and y < x, proving that the function pp is
non-strictly increasing.

3.12
J

R [[XG]] as a differential ring

We shall introduce a derivation of Rayner rings, and, although not much
will result from that derivation in this work, the author felt the need to notify
the reader about its existence, so that he or she may be inspired to draw their
own mathematical conclusions out of it. In Computer Science, specifically on the
area of Computational Differentiation, that derivation has been successfully
utilised in order to provide a practical method for the computation of
derivatives (21, 19, 207).

Proposition 3.88. Let R be a commutative ring, let G be an ordered subgroup of
(R,+R, <R) so that 10 1R 2 G, let J be an arithmetic Rayner ideal on G and let
@ = @

R,G

:
J
R [[XG]]!

J
R [[XG]] be the function given by (@x)

g
:= (g + 1R) xg+1R.

(a) The function @ is a derivation of
J
R [[XG]] (Definition 2.54);

(b) (8r 2 R) @r = 0R ;

(c) (8g 2 G) @
�J
O (Xg)

� .
=

J
O (Xg�1R) and @ (

Jo (Xg))
.
=

Jo (Xg�1R) ;

(d) @
�J
O (X0G)

� .
=

Jo (X�1R) ;

(e) (8x 2
J
R [[XG]])

Jms (@x) 6= �1R ;

(f) If R has no zero divisors and if x 2
J
R [[XG]] is so that Jms (x) 6= 0G= 0R,

then we have Jms (@x) = Jms (x)� 1R.

Proof. Item (b) follows immediately from the definition of @. We shall prove the
remaining items.
10 Note that we also have 0R= 0G2 G.
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(a) Take x and y in
J
R [[XG]] and take a g in G. Note that

(@ (x+ y))
g
= (g + 1R) (x+ y)

g+1R

= (g + 1R) xg+1R + (g + 1R) yg+1R

= (@ (x))
g
+ (@ (y))

g
,

and since the ring R is commutative, we have

(@ (xy))
g
= (g + 1R) (xy)g+1R

=
X

p,q2G
p+q=g+1R

(p+ q) xpyq

=
X

p,q2G
(p�1R)+q=g

(pxp) yq +
X

p,q2G
p+(q�1R)=g

xp (qyq)

=
X

s,q2G
s+q=g

((s+ 1R) xs+1R) yq +
X

p,t2G
p+t=g

xp ((t+ 1R) yt+1R)

= (@x · y + x · @y)
g

proving that @ is a derivation of
J
R [[XG]].

(c) If h is an element of G so that h 6 g � 1R, then h+ 1R 6 g and

[@ (
Jo (Xg))]

h

.
= (h+ 1R) (

Jo (Xg))
h+1R

.
= (h+ 1R) · 0R= 0R ,

which shows that @ (Jo (Xg))
.
=

Jo (Xg�1). If x is an element of
J
R [[XG]] so

that x
.
=

J
O (Xg), then x is of the form rXg+

Jo (Xg) and we get

@x
.
= @ (rXg) + @ (

Jo (Xg))
.
= grXg�1R +

Jo (Xg�1R)
.
=

J
O (Xg�1R) .

(d) If x is an element of
J
R [[XG]] so that x

.
=

J
O (X0G), then x is of the form

rX0G+
Jo (X0G) and we get

@x
.
= @ (rX0G) + @ (

Jo (X0G))
.
= 0G · rX�1R +

Jo (X�1R) .
=

Jo (X�1R)

by item (c).

(e) If x is an element of
J
R [[XG]] so that Jms (@x) = �1R, then we get

0R 6= (@x)�1R = (�1R + 1R) x�1R+1R = 0R · x0R = 0R ,

which is absurd.
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(f) Suppose R has no zero divisors and suppose x is an element of
J
R [[XG]] so

that Jms (x) 6= 0G= 0R. The desired result is certainly true in the case x = 0R.
Assume x 6= 0R. Thus, we have

(@x) Jms(x)�1R
=

Jms (x) x Jms(x)
=

Jms (x) pc (x) 6= 0R

given that Jms (x) 6= 0G= 0R 6= pc (x), implying Jms (@x) 6 Jms (x)� 1R and
Jms (@x) = Jms (x)� 1R by item (c).

Example 3.89. Let K be a field of characteristic zero, let G be an ordered
subgroup of (K,+K , <K) so that 1K 2 G and let J be an arithmetic Rayner ideal
on G so that the subset (N0)K of K (Definition 2.14) is an element of J .
The derivation @ :

J
R [[XG]]!

J
R [[XG]] of Proposition 3.88 has the trivial fixed

point @ 0R = 0R, but it also has non-trivial ones. Consider the element

e :=
X

n2N0

1K
(n!)

K

XnK = 1K +X+
1K
2K

X2K+
1K
6K

X3K+ · · ·+
1K

(n!)
K

XnK + · · · 2
J
K [[XG]] .

For all g 2 G� ([�1,1)Z)K , we have that g + 1K 62 (N0)K= supp (e) and
(@e)

g
= (g + 1K) eg+1K = 0K , and for all g 2 ([�1,1)Z)K so that g = nK for

some n 2 [�1,1)Z, we have

eg+1K = enK+1K = e(n+1)
K
=

1K
((n+ 1)!)

K

=

8
><

>:

1K if n = �1 ,

1K
(nK+1K)(n!)

K

if n > 0 ,

implying

(@e)
g
= (g + 1K) eg+1K = (nK+ 1K) eg+1K =

8
><

>:

0K if n = �1 (i.e. g = �1K) ,

1K
(n!)

K

if n > 0 .

Therefore, we have supp (@e) = (N0)K and @e =
X

n2N0

1K
(n!)

K

XnK = e. We leave to

the reader the proof that every fixed point of @ is of the form re for r 2 K.
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4
The Strong and the Weak Topologies on
Rayner Rngs

In this chapter, we shall systematically examine two highly remarkable
topologies on Rayner rngs

J
R [[XG]], the so-called strong and weak topologies

on
J
R [[XG]], where the latter can only be defined when R has an ordered

rng structure. We shall study these topologies with a high degree of generality,
discussing their properties for all Rayner rngs and specifying how they interact
with the algebraic structure of

J
R [[XG]].

4.1 The strong topology on
J

R [[XG]]

We begin with a study of the so-called strong topology on
J
R [[XG]], which

we shall define below. Strong topologies are key for the development of analytical
theories on the classical Hahn, Puiseux and Levi-Civita fields, and the most
consequential conclusions of that kind concern the latter fields (cf. Introduction).
Such results are truly startling, since the strong topologies happen to be
zero-dimensional and totally disconnected, which are properties that one would
definitely not expect from a topology that is suited for analytical considerations.

Definition 4.1. Let R be a rng, let G be an ordered group and let J be an
arithmetic Rayner ideal on G. The strong topology on

J
R [[XG]] is the

topology
J
ms

Valt on
J
R [[XG]] induced by the G-pseudovaluation Jms :

J
R [[XG]]!

^

G



(Definition 1.82), and it is denoted by
J
St or

J
St
R,G

. Thus, the strong topology is
generated by the basis that is formed by the sets

x+
Jo (Xg) = {y 2

J
R [[XG]] | (8h 2 ( , g]

G
) yh = xh}

for x 2
J
R [[XG]] and g 2 G.

g0 g1 g2 g3 g g4 g5

G

R

Figure (1): Absolute graphical
representation of the basic

J
St-open set x+ o (Xg).

g0 g1 g2 g3 g g4 g5

G

R

Figure (2): Relative graphical
representation of the basic

J
St-open set x+ o (Xg).

Visual aids are often helpful when dealing with topological problems, and,
taking that into account, we provide here two graphical representations of the
basic

J
St-open set x+

Jo (Xg), depicted in Figures (1) and (2), which may facilitate
the reader’s comprehension of what is transpiring as he or she follows the proofs
of the theorems. These pictures surely do help the author considerably. We shall
explain how they are meant to be understood in the following paragraphs.

Let the family {g↵}↵<�
be the increasing ordinal sequence of elements of

the support supp (x), and consider Figure (1). For each h 2 G and for
each y 2

J
R [[XG]], let us call the ordered pair (h, yh) the point of y with

exponent h and with coefficient yh, and let us call the intersection point of
the R-axis with the G-axis the origin of our graph. The G-axis embodies the
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ordering of the exponents of the points, that is, it depicts how the order <G of G
arranges the elements of G relative to each other, where the exponent of the
origin must be an arbitrary element h0 2 G that is less than g0 = ms (x) and g.
The particular choice of h0 is unimportant for our purposes. The R-axis, which is
orthogonal to the G-axis, measures the coefficients of the points, so that the
distance between a point (h, yh) and the G-axis is directly proportional to the
absolute value |yh|, and so that the points that lie above (resp. below, on) the
G-axis have positive (resp. negative, zero) coefficients in R. The points (g↵, xg↵

)

of x with exponents in supp (x) are drawn as dots in the graph 1, and the points
(h, xh) = (h, 0R) of x for h 2 ( , g]

G
� supp (x) are represented by a bold ray

drawn over the G-axis with starting point (g, 0R) that extends endlessly in the
negative direction of the G-axis and that gets occasionally interrupted whenever
it arrives at an element of supp (x).

Consider an arbitrary element y of the basic
J
St-open set x +

Jo (Xg). Since
yh = xh (8h 2 ( , g]

G
), all points of y must coincide with the points of x up to the

exponent g, including g itself, and, therefore, there is no freedom for the points of
y in that region of the graph. On the other hand, for exponents h greater than g,
the points of y are completely free to reside anywhere within the shaded area drawn
on the right hand side of the dotted, vertical line h = g. Thus, the combination of
the bold ray, the dots and the shaded area represent all possible elements of the
set x+

Jo (Xg). We call this type of graph an absolute graphical representation

of x+
Jo (Xg). Note that one may add more basic

J
St-open sets to that graph,

provided that one appropriately discriminates the points belonging to different sets,
and that is the reason why these representations are optimal for situations in which
two or more basic

J
St-open sets are considered simultaneously.

Whenever only one basic
J
St-open set x+

Jo (Xg) is considered 2, it is
preferable to make use of the neater representation depicted in Figure (2), which
we shall describe. For each h 2 G and each y 2

J
R [[XG]], let us call the ordered

1 The set supp (x) is infinite in general, but, of course, only a finite number of dots can actually
be drawn in the graph. A handful of them is enough to convey the idea of the representation.

2 Or at least only one at a time, not two or more simultaneously.
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pair (h, yh � xh) the x-relative point of y with exponent h and with
x-relative coefficient yh � xh. As with Figure (1), the G-axis still embodies the
ordering of the exponents of the points, and the exponent of the origin must still
be any arbitrary element h0 2 G that is less than g0 = ms (x) and g. But now,
the R-axis measures the differences between the coefficients of the points of y

and the coefficients of the points of x, so that the distance between an x-relative
point (h, yh � xh) and the G-axis is directly proportional to the absolute
value |yh � xh|, and so that the points that lie above (resp. below, on) the G-axis
have positive (resp. negative, zero) x-relative coefficients in R, that is, the points
that lie above (resp. below, on) the G-axis have coefficients that are greater than
(resp. lower than, equal to) the coefficients of the corresponding points of x.
The x-relative points (g↵, xg↵

� xg↵
) = (g↵, 0R) of x with exponents in supp (x)

are drawn as dots on the G-axis, and the x-relative points (h, xh � xh) = (h, 0R)

of x for h 2 ( , g]
G
� supp (x) are represented by a bold ray drawn over the

G-axis with starting point (g, 0R) that extends endlessly in the negative direction
of the G-axis and that gets occasionally interrupted whenever it arrives at an
element of supp (x).

Taking into consideration the arbitrary element y of x+
Jo (Xg) once more,

we have yh � xh = 0R (8h 2 ( , g]
G
), implying that all x-relative points of y

must be on the G-axis up to the exponent g, including g itself, and, therefore,
there is no freedom for the x-relative points of y in that region of the graph.
On the other hand, for exponents h greater than g, the x-relative points of y are
completely free to reside anywhere within the shaded area drawn on the right
hand side of the dotted, vertical line h = g. Thus, the combination of the
bold ray, the dots and the shaded area represent all possible elements of the
set x+

Jo (Xg), with the caveat that those abstractions are all centred at x in
a sense. We call this type of graph a relative graphical representation
of x+

Jo (Xg).

In the following theorem, we shall cover the fundamental properties of the
strong topology on Rayner rngs:
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Theorem 4.2. Let R be a rng, let G be an ordered group and let J be an arithmetic
Rayner ideal on G.

(a) For each x 2
J
R [[XG]], the sets
�
x+

J
O (Xg) | g 2 G

 
and {x+

Jo (Xg) | g 2 G}

are local
J
St-bases of x which consist of

J
St-clopen sets;

(b) If {�x}�2⇤ is a net in
J
R [[XG]] and if x is an element of

J
R [[XG]] such

that �x
J
St

�!
�2⇤

x, then for each g 2 G, the net {�xg}�2⇤ in R is eventually
constant at the value xg;

(c) If the ideal J is left-finite (Definition 3.1), then for each x 2
J
R [[XG]] of

infinite support 3, we have
NX

n=1

xgn
Xgn

J
St

�!
N!1

x, where {gn} is the increasing

sequence of elements of supp (x). In particular, the set of generalised
polynomials R [XG] is

J
St-dense in

J
R [[XG]] in that case;

(d)
J
R [[XG]] is a topological rng when endowed with the topology

J
St;

(e) The topology
J
St is T 7/2, perfect, zero-dimensional and totally disconnected;

(f) The
J
St-subspace of

J
R [[XG]] induced by the subset R is discrete;

(g) If D is an
J
St-dense subset of

J
R [[XG]], then |R| , |G| 6 |D|. In particular,

if
J
St is separable, then R and G are countable;

(h) If J is left-finite and if R and G are countable, then
J
St is separable;

(i) If the rng R has at least one positive element r0 so that
+R

/O (r0) =1

(Definition 1.5), then no inhabited
J
St-open subspace of

J
R [[XG]] is countably

compact. In that case, the topology
J
St is neither countably compact nor

locally compact;

(j) If
J
St is complete (Definition 1.55), then J is incremental (Definition 3.1);

3 Recall that the existence of an infinite element S of J implies cf (G) = ! and |S| = !

(Proposition 3.2, Item (b)).
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(k) The following conditions are equivalent:

.
J
St is metrizable;

.
J
St is ultrametrizable;

. cf (G) = ! .

If those conditions hold, then there is an invariant ultrametric ⇢ on
J
R [[XG]]

such that
J
St = t (⇢), and, furthermore, if J is incremental, then we may

also assume that ⇢ is complete.

Proof. Item (e) is an immediate consequence of item (d), Proposition 1.61 and
Item (d) of Proposition 1.83. We shall prove the remaining items.

(a) We know that for each g 2 G, the sets x+
J
O (Xg) and x+

Jo (Xg) are
J
St-clopen (Propositions 1.81 and 1.83) and the set {x+

Jo (Xg) | g 2 G}

is clearly a local
J
St-basis of x. It remains to prove that the set

�
x+

J
O (Xg) | g 2 G

 
is a local

J
St-system of neighbourhoods of x. Indeed,

if x+
Jo (Xg) is a basic open

J
St-neighbourhood of x and if h is any element

of the ordered group G so that h > g, then we have the inclusion
x+

J
O (Xh) ⇢ x+

Jo (Xg), thus proving the item.

(b) If �x
J
St

�!
�2⇤

x and if g is an element of G, then there is a �0 2 ⇤ such that

we have �x
.
= x+

Jo (Xg) (8� 2 [�0,!)⇤), and that implies the condition
�xg = xg (8� 2 [�0,!)⇤).

(c) From the comments after Proposition 3.46, we have

(8N 2 N)
NX

n=1

xgn
Xgn .

= x+
Jo (XgN ) ,

and the result follows from the fact that the sequence {gn} is cofinal in G

(Proposition 3.10, Item (d));

(d) The proofs that the addition and the additive inversion functions on
J
R [[XG]] are continuous with respect to

J
St are straightforward consequences

of Subitem 8 of Item (b) of Proposition 3.47, and they are left to
the reader. We shall prove that the multiplication on

J
R [[XG]] is continuous

with respect to
J
St. Take a basic

J
St-neighbourhood xy +

Jo (Xg) of a
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product xy, where x, y 2
J
R [[XG]] and g 2 G, and let h be an element of G

such that

h >

8
>>>>>><

>>>>>>:

G

max {(�
Jms (x)) + g, g + (�

Jms (y)) , |g|} if x 6= 0R 6= y ,
G

max {g + (�
Jms (y)) , |g|} if x = 0R 6= y ,

G

max {(�
Jms (x)) + g, |g|} if x 6= 0R = y ,

|g| if x = 0R = y .

In any case, we have
Jms (x) + h > g , h+

Jms (y) > g and 2h > 2 |g| > g .

Hence, if x0, y0 2
J
R [[XG]] are so that x0

.
= x+

Jo (Xh) and y0
.
= y +

Jo (Xh),
then we get

x0y0
.
= (x+

Jo (Xh)) (y +
Jo (Xh))

.
= xy +

Jo
�
Xh+

Jms(y)�+ Jo
�
X

Jms(x)+h
�
+

Jo (X2h)
.
= xy +

Jo (Xg) ,

in view of the calculations
Jo (Xh)

J
O
�
X

Jms(y)� .
=

Jo
�
Xh+

Jms(y)� and
J
O
�
X

Jms(x)� Jo (Xh)
.
=

Jo
�
X

Jms(x)+h
�
,

and that concludes the proof.

(f) Let g0 be a fixed positive element of G and take an arbitrary r 2 R.
We shall show that R \ (r +

Jo (Xg0)) = {r}. If r0 2 R is such that
r0

.
= r +

Jo (Xg0) and r0 6= r, then 0G =
Jms (r0 � r) > g0, which is absurd,

and that proves the item.

(g) Let D be an
J
St-dense subset of

J
R [[XG]], let r0 be a fixed positive element

of R, let g0 be a fixed positive element of G and take the following families
of

J
St-open sets:

P := {r0Xg +
Jo (Xg+g0)}

g2G and Q := {r +
Jo (Xg0)}

r2R .

If g 2 G and if x .
= r0Xg+

Jo (Xg+g0), then Jms (x) = g, showing that the family
P is disjoint. Similarly, if r 2 R and if x .

= r +
Jo (Xg0), then x0G = r, showing

that the family Q is disjoint. Thus, since any element of P or of Q contains
at least one element of D, we have |G| = |P | 6 |D| and |R| = |Q| 6 |D|.
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(h) Since R and G are countable, the set of generalised polynomials R [XG] is
countable (Proposition 3.39), and since J is left-finite, the set R [XG] is
J
St-dense in

J
R [[XG]] by item (c).

(i) Suppose r0 is a positive element of R so that
+R

/O (r0) =1, let U be an
inhabited

J
St-open subspace of

J
R [[XG]], let x 2 U be arbitrary and let

g 2 G be so that g > 0G and x+
Jo (Xg) ⇢ U . Consider the sequence

{x+ nr0X2g
}
n2N in x+

Jo (Xg) and suppose it has an
J
St-cluster point y

in
J
R [[XG]]. Hence, there are infinitely many natural numbers n such that

x+ nr0X2g .
= y +

Jo (X3g), implying

x2g + nr0 = (x+ nr0X2g)2|g|
.
= (y +

Jo (X3g))2g
.
= y2g ,

but, since
+R

/O (r0) =1, that cannot be true for two distinct values of n and
we have a contradiction. Therefore, the sequence {x+ nr0X2g

}
n2N has no

J
St-cluster points in

J
R [[XG]], entailing that U and ClJ

St

(U) are not

countably compact. In particular, the set U is not
J
St-relatively compact in

J
R [[XG]] and the topology

J
St is not locally compact.

(j) Suppose S is a subset of G such that

(8h 2 G) Sh := S \ ( , h]
G
2 J ,

let r be a fixed non-zero element of the rng R and consider the net

{hs}h2G :=
nX

g2Sh

rXg

o

h2G

in
J
R [[XG]]. If Jo (Xp) is a basic

J
St-open neigh-

bourhood of 0R, then for all h, h0 2 [p,!)
G

so that h > h0, we have
Sh� Sh0 ⇢ (h0, h]

G
and

hs� h0s =
X

g2Sh

rXg
�

X

g2S
h0

rXg =
X

g2Sh�Sh0

rXg .
=

Jo (Xh
0
)
.
=

Jo (Xp) ,

proving that the net {hs}h2G is
J
St-Cauchy. Thus, the completeness of

J
St

implies that there is an l 2
J
R [[XG]] such that hs

J
St

�!
h2G

l. Each net {hsg}h2G
for g 2 G� S is constant at the value 0R and each net {hsg}h2G for g 2 S

is eventually constant at the value r. Therefore, by item (b) we have
S = supp (l) 2 J , proving that J is incremental.
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(k) By Proposition 1.60 and Theorems 3.41 and 1.84, it suffices to prove that
J
St is complete when cf (G) = ! and J is incremental. Let {gn} be an
increasing, cofinal sequence in G and let {ns} be an

J
St-Cauchy sequence

in
J
R [[XG]]. For each h 2 G, let bhc be the smallest natural number such

that h 6 gbhc, and for each k 2 N, let c (k) be a natural number such that

(8m,n 2 [c (k) ,1)N) ms
.
= ns+

Jo (Xgk) .

In fact, the numbers c (k) shall be chosen so that the sequence {c (k)}
k2N is

increasing. Let l : G! R be the function defined by lh := c(bhc)sh. Thus,
if h, h0 2 G are so that h 6 h0, then bhc 6 bh0c, c (bhc) 6 c (bh0c),

c(bhc)s
.
= c(bh0c)s+

Jo (Xgbhc), and, as h 6 gbhc, we get
lh = c(bhc)sh = c(bh0c)sh ,

leading up to

(8h0 2 G) supp (l) \ ( , h0]
G
⇢ supp (c(bh0c)s) 2 J .

Therefore, since the ideal J is incremental, we have l 2
J
R [[XG]] and

l
.
= c(bh0c)s+

Jo (Xh
0
) (8h0 2 G), which implies that ns

J
St99K

n!1
l and ns

J
St

�!
n!1

l

(Proposition 1.58, Item (b)).

Example 4.3. Let R be a rng, let G be an ordered group and let J be an
arithmetic Rayner ideal on G. Every polynomial function

8
><

>:

p :
�J
R [[XG]] ,

J
St
�
!
�J
R [[XG]] ,

J
St
�

p (x) := naxn+ n�1axn�1+ · · ·+ 1ax+ 0a

is continuous (Theorem 4.2, Item (d)).

Example 4.4. The strong topologies (Example 1.64)
J
St
R,Z

,
J
St
C,Z

,
J
St
R,Q

,
J
St
C,Q

,
J
St
Z,R

,
J
St
Q,R

,
J
St
R,R

,
J
St
C,R

,
J
St

R,BS`
and

J
St

C,BS`

are not separable, where J is any arithmetic Rayner ideal on each respective
ordered group of exponents (Theorem 4.2, Item (g)). In particular, the strong
topologies on the classical Hahn, Levi-Civita and Puiseux fields are not separable.
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Example 4.5. The strong topologies on the Hahn rings Z [[XZ]] and Q [[XZ]],
the strong topologies on the Levi-Civita rings

lf

Z [[XQ]],
lf

Q [[XQ]],
lf

Z [[XBS` ]]

and
lf

Q [[XBS` ]] and the strong topologies on the Puiseux rings
bd

ZZ[[XQ]] ,
bd

QZ[[XQ]] ,
bd

ZZ[[XDd ]] ,
bd

QZ[[XDd ]] ,
bd

ZZ[[XP ]] and
bd

QZ[[XP ]] (Examples 3.20
and 3.21) are separable (Theorem 4.2, Item (h)).

Example 4.6. The strong topologies
J
St
Z,Z

,
J
St
Q,Z

,
J
St
R,Z

,
J
St
C,Z

,
J
St
Z,Q

,
J
St
Q,Q

,
J
St
R,Q

,
J
St
C,Q

,
J
St
Z,R

,
J
St
Q,R

,
J
St
R,R

,
J
St
C,R

,
J
St

Z,BS`
,

J
St

Q,BS`

,
J
St

R,BS`
and

J
St

C,BS`

are neither countably compact nor locally compact, where J is any arithmetic
Rayner ideal on each respective ordered group of exponents (Theorem 4.2,
Item (i)).

Example 4.7. The strong topologies on a Rayner rng R [XG] of generalised
polynomials and on a Puiseux rng of the form

bd

RZ[[XQ]] are not complete, where
R is any rng and G is any ordered group (Theorem 4.2, Item (j); See comment
before Example 3.20).

Example 4.8. Since we have cf (Z) = cf (Q) = cf (R) = cf (BS`) = !, the strong
topologies on the Hahn rngs of the forms R [[XZ]], R [[XQ]], R [[XR]]

and R [[XBS` ]], and the strong topologies on the Levi-Civita rngs of the forms
lf

R [[XZ]],
lf

R [[XQ]],
lf

R [[XR]] and
lf

R [[XBS` ]], are all completely ultrametrizable by
invariant ultrametrics, where R is any rng (Theorem 4.2, Item (k)).

Example 4.9. Combining the results from the Examples 4.5 and 4.8, we get
that the strong topologies on the Hahn rings Z [[XZ]] and Q [[XZ]], and the
strong topologies on the Levi-Civita rings

lf

Z [[XQ]],
lf

Q [[XQ]],
lf

Z [[XBS` ]] and
lf

Q [[XBS` ]] are all polish topologies, that is, they are completely metrizable
and separable. Polish topological spaces play important roles in Descriptive
Set Theory (127), Measure Theory (30) and Probability Theory (108, 30).

The following theorem shows that the strong topology on an ordered Rayner
rng coincides with the order topology on it:
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Proposition 4.10. Let R be an ordered rng, let G be an ordered group and let J
be an arithmetic Rayner ideal on G.

(a) Ordt (
J
R [[XG]]) =

J
St;

(b) For all x 2
J
R [[XG]] and all positive r0 2 R, the set {[x� r0Xg, x+ r0Xg]}

g2G

of
J
St-closed intervals in

J
R [[XG]] is a local

J
St-system of neighbourhoods of x;

(c) Every non-trivial Archimedean class in
J
R [[XG]] is

J
St-open;

(d) No inhabited
J
St-open subspace of

J
R [[XG]] is countably compact. In that case,

the topology
J
St is not countably compact nor locally compact.

Proof. Item (d) is a direct consequence of Item (i) of Theorem 4.2.

(a) We shall show that the identity function

id : (
J
R [[XG]] ,Ordt (

J
R [[XG]]))!

�J
R [[XG]] ,

J
St
�

is a homeomorphism. Take an element x in
J
R [[XG]]. If x+

Jo (Xg) is a basic
J
St-neighbourhood of x, and if y is an element of the open interval
(x� rX2|g|, x+ rX2|g|), then we have that �rX2|g|<y � x<rX2|g| and
Jms (y � x) > 2 |g| > g (Theorem 3.82, Item (g)). Thus, we have proved the
inclusion (x� rX2|g|, x+ rX2|g|) ⇢ x+

Jo (Xg) for that case, and that proves
the continuity of id.

Consider an open interval (a,!) containing x, which is a subbasic
neighbourhood of x with respect to the order topology Ordt (

J
R [[XG]]),

let ga :=
Jms (x� a) and take a y

.
= x+

Jo (Xga). Hence, we have

Jms (y � a) >
^
G

min {
Jms (y � x) ,

Jms (x� a)} = ga ,

and, since (y � a)
ga
= (x� a)

ga
> 0R, we get Jms (y � a) = ga and a < y,

proving the inclusion x+
Jo (Xga) ⇢ (a,!). Analogously, if (a, b) is an

interval containing x, then one can show that x+
Jo (Xmax{ga,gb}) ⇢ (a, b),

where gb :=
Jms (b� x). Therefore, the inverse id�1 is continuous and the

proof is complete.
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(b) Firstly, we shall prove that each closed interval [x� r0Xg, x+ r0Xg] is an
J
St-neighbourhood of x. In fact, if y is an element of

J
R [[XG]] so that

y
.
= x+

Jo (Xg), then
Jms (y � x± r0Xg) > min {

Jms (y � x) ,
Jms (r0Xg)} = g

and
(y � x± r0Xg)

g

.
= (

Jo (Xg)± r0Xg)
g

.
= ±r0 6= 0R ,

implying Jms (y � x± r0Xg) = g and y � x� r0Xg < 0R < y � x+ r0Xg,
that is, �r0Xg < y � x < r0Xg. Thus, we have proved that the inclusion
x+

Jo (Xg) ⇢ [x� r0Xg, x+ r0Xg] holds, and that proves that the interval
[x� r0Xg, x+ r0Xg] is an

J
St-neighbourhood of x.

Let x+
Jo (Xg) be an

J
St-basic neighbourhood of x and let r0 be a fixed

positive element of R. If y is an element of the closed interval
[x� r0X2|g|, x+ r0X2|g|], then we have that �r0X2|g|6y � x6r0X2|g| and
Jms (y � x) > 2 |g| > g (Theorem 3.82, Item (g)). Hence, we have just
proved the inclusion [x� r0X2|g|, x+ r0X2|g|] ⇢ x+

Jo (Xg), thus proving
the item.

(c) Note that each non-trivial Archimedean class in
J
R [[XG]] can be uniquely

written in the form
AXg+

Jo (Xg) =
[

r2A

(rXg+
Jo (Xg)) ,

where A is a non-trivial Archimedean class in R and where g is an element
of G (Theorem 3.82, Item (i)).

4.2 The weak topology on
J

R [[XG]]

As we have seen in Section 4.1, the strong topology
J
St is defined on all

Rayner rngs. Interestingly, when
J
R [[XG]] is an ordered Rayner rng, a coarser

(or weaker, smaller) topology on the set
J
R [[XG]], called the weak topology

on
J
R [[XG]], is also fundamental for the development of analytical theories on

structures of that kind, especially concerning the convergence of power series
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with coefficients in the real and complex Levi-Civita fields (cf. Introduction).
We shall define that coarser topology for a general ordered Rayner rng and we
shall examine its fundamental properties in this section.

Definition 4.11. Let R be an ordered rng, let G be an ordered group and let
J be an arithmetic Rayner ideal on G. The weak topology on

J
R [[XG]] is the

topology on
J
R [[XG]] generated by the subbasis consisting of the sets of the form

W
g

r
(x) := {y 2

J
R [[XG]] | (8h 2 ( , g]

G
) |yh � xh| < r }

for x 2
J
R [[XG]], r 2 (0R,!)

R
and g 2 G, and that topology shall be denoted by

J
Wt or

J
Wt
R,G

.

Just as we did in Section 4.1 with reference to the strong topology
on

J
R [[XG]], we shall provide here two graphical representations of the subbasic

J
Wt-open set W

g

r
(x), depicted in Figures (3) and (4), which may facilitate the

reader’s comprehension of what is transpiring as he or she follows the proofs of
the theorems. We shall explain how they are meant to be understood in the
following paragraphs.

g0 g1 g2 g3 g g4 g5

r
G

R

Figure (3): Absolute graphical
representation of the subbasic

J
Wt-open set Wg

r
(x).

g0 g1 g2 g3 g g4 g5

r
G

R

Figure (4): Relative graphical
representation of the subbasic

J
Wt-open set Wg

r
(x).
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Let the family {g↵}↵<�
be the increasing ordinal sequence of elements of

the support supp (x), and consider Figure (3). The G-axis, the R-axis, the dots
and the shaded area drawn on the right hand side of the dotted, vertical
line h = g here play the same roles they played in the absolute graphical
representation of the basic

J
St-open set x+

Jo (Xg) (Section 4.1, Figure (1)).
The novelties here are twofold: first, for each ↵ < �, the points (g↵, s) for
s 2 (xg↵

� r, xg↵
+ r)

R
are represented by a vertical, bold line segment drawn with

length 2r and with (g↵, xg↵
) as its midpoint; and second, the points (h, s) for

h 2 ( , g]
G
� supp (x) and s 2 (�r, r)

R
are represented by a shaded, horizontally

extending area that has vertical extension 2r, is centred at the G-axis, and is
drawn in the graph on the left hand side of the dotted, vertical line h = g,
extending endlessly in the negative direction of the G-axis and occasionally
getting interrupted whenever it arrives at points with exponents in supp (x).

Now, consider an arbitrary element y of the subbasic
J
Wt-open set W

g

r
(x).

Since |yh� xh| < r (8h 2 ( , g]
G
), we have

(8h 2 ( , g]
G
� supp (x)) yh2 (�r, r)

R

and
(8h 2 ( , g]

G
\ supp (x)) yh2 (xh� r, xh+ r)

R
.

This precisely means that, up to the exponent g, including g itself, the points of y
either lie in the shaded, horizontally extending area or on one of the vertical, bold
line segments we have described above. Thus, the combination of the vertical, bold
line segments, the horizontally extending area on the left hand side of the vertical
line h = g and the shaded area on the right hand side of that same line represent
all possible elements of the set W

g

r
(x), conveying that there is some restricted

freedom for the coefficients of the points of y with exponents less or equal to g, and
there is unhindered freedom for the coefficients of the points of y with exponents
greater than g. We call this type of graph an absolute graphical representation
of W

g

r
(x). Note that one may add more subbasic

J
Wt-open sets to that graph,

provided that one appropriately discriminates the points belonging to different sets,
and that is the reason why these representations are optimal for situations in which
two or more subbasic

J
Wt-open sets are considered simultaneously.
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Whenever only one subbasic
J
Wt-open set W

g

r
(x) is considered 4, it is

preferable to make use of the neater representation depicted in Figure (4), which
we shall describe. The G-axis, the R-axis, the dots and the shaded area drawn on
the right hand side of the dotted, vertical line h = g here play the same roles
they played in the relative graphical representation of the basic

J
St-open set

x+
Jo (Xg) (Section 4.1, Figure (2)). Additionally, here the points (h, s) for

h 2 ( , g]
G

and s 2 (�r, r)
R

are represented by a shaded, horizontally extending
area that has vertical extension 2r, is centred at the G-axis, and is drawn in the
graph on the left hand side of the dotted, vertical line h = g, extending endlessly
in the negative direction of the G-axis.

Taking into consideration the arbitrary element y of Wg

r
(x) once more, since

|yh� xh| < r (8h 2 ( , g]
G
), all x-relative points of y up to the exponent g,

including g itself, must reside in the shaded, horizontally extending area on the
left hand side of the dotted, vertical line h = g, representing the fact that there is
some restricted freedom for the coefficients of the points of y in this region of
the graph, as long as they do not stray too far from the corresponding
coefficients of x. On the other hand, the coefficients of the points of y with
exponents greater than g are completely free to assume any values in R

whatsoever. Thus, the combination of the horizontally extending area on the left
hand side of the vertical line h = g and the shaded area on the right hand side of
that same line represent all possible elements of the set W

g

r
(x), with the caveat

that those abstractions are all centred at x in a sense. We call this type of graph
a relative graphical representation of W

g

r
(x).

If the reader properly understood how Figures (1)-(4) are meant to be taken,
then, by comparing Figures (1) and (3) (resp. (2) and (4)), he or she should
be able to notice that x+

Jo (Xg) ⇢ W
g

r
(x) straightaway, since all relevant points

(resp. relevant x-relative points) of the former representation are contained in
the latter.

Before proceeding with the properties of
J
Wt, we must first consider a

special class of functions which becomes relevant whenever the arithmetic Rayner
4 Or at least only one at a time, not two or more simultaneously.
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ideal J on G is left-finite. To start with, note that for each x 2
J
R [[XG]],

the intersection supp (x) \ ( , g]
G

is finite in that case, and, thus, the set
{|xh| | h 2 ( , g]

G
} is finite as well, implying that it has a maximum in the

interval [0R,!)
R
.

Definition 4.12. Let R be an ordered rng, let G be an ordered group and let J

be a left-finite arithmetic Rayner ideal on G (Definition 3.9). The g-amplitude
function on

J
R [[XG]] is the function p

g :
J
R [[XG]]! [0R,!)

R
that is given

by p
g(x) :=

R

max
h2( ,g]

G

|xh|.

When J is left-finite, the subbasic
J
Wt-open sets W

g

r
(x) may be written in

the form

W
g

r
(x) = {y 2

J
R [[XG]] | pg(y � x) < r } = x+ (pg)�1h[0R, r)Ri .

Proposition 4.13. Let R be an ordered rng, let G be an ordered group and let J
be a left-finite arithmetic Rayner ideal on G.

. For all g1, g2 2 G so that g1 6 g2, we have p
g1 6 p

g2;

. (8x, y, z 2
J
R [[XG]]) (8g 2 G) p

g(x+ y) 6 p
g(x) + p

g(y) ;

. (8x 2
J
R [[XG]]) (8r 2 R) (8g 2 G) pg(rx) = |r| pg(x) and p

g(xr) = p
g(x) |r| .

Proof. The proofs of these items are entirely straightforward and are left to
the reader.

Example 4.14. The reader familiar with the notion of a seminorm on a vector
R-space may have noticed that in the case R = R each g-amplitude function
p
g :

J
R [[XG]]! [0,1)R is actually a seminorm on the vector R-space

J
R [[XG]]

(cf. Proposition 3.34, Item (d)).
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In the two following theorems, we shall cover the fundamental properties of
the weak topology on ordered Rayner rngs:

Theorem 4.15. Let R be an ordered rng, let G be an ordered group and let J be
an arithmetic Rayner ideal on G.

(a) Let {�x}�2⇤ be a net in
J
R [[XG]] and let x be an element of

J
R [[XG]].

. If �x
J
Wt

�!
�2⇤

x, then �xg

R
Ordt

�!
�2⇤

xg (8g 2 G);

. If �x
J
Wt99K

�2⇤
x, then �xg

R
Ordt99K
�2⇤

xg (8g 2 G).

(b) The converses of the subitems of item (a) hold true if the union
[

�2⇤

supp (�x)

is finite;

(c) The topology
J
Wt is T2.

(d)
J
Wt ⇢

J
St ;

(e) The order topology
R

Ordt is the subspace topology on R induced by
J
Wt;

(f) R is
J
Wt-closed;

(g) The additive inversion of
J
R [[XG]] is a continuous function of type

�J
R [[XG]] ,

J
Wt
�
!
�J
R [[XG]] ,

J
Wt
�
;

(h) If ci ((0R,!)
R
) 6 ! and if cf (G) = !, then

J
Wt is first-countable;

(i) If J is !1-dominated (Definition 3.1) and if
J
Wt is separable, then

R

Ordt is
separable and G is countable;

(j) The ordered rng R has a least positive element rmin if, and only if,
we have

J
Wt =

J
St. In that case, we have W

g

rmin
(x) = x+

Jo (Xg) for each
x 2

J
R [[XG]] and each g 2 G;
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(k) Every countably compact
J
Wt-subspace of

J
R [[XG]] has empty

J
Wt-interior.

In particular, the weak topology
J
Wt is neither countably compact nor

locally compact;

(l) Take the elements x 2
J
R [[XG]], r1, r2 2 (0R,!)

R
and g1, g2 2 G. We have

W
g1
r1
(x) ⇢ W

g2
r2
(x) if, and only if, g1 > g2 and r1 6 r2.

Suppose the ordered rng R has no least positive element and the ideal J

is left-finite.

(m) For each x 2
J
R [[XG]], the sets of the form W

g

r
(x) for g 2 G and r 2 (0R,!)

R

constitute a local
J
Wt-basis of x;

(n) For all x, y 2
J
R [[XG]] so that x < y, each of the following intervals

( , y) , ( , y] , (x, y) , [x, y) , (x, y] , [x, y] , (x,!) and [x,!)

in
J
R [[XG]] contains not one inhabited

J
Wt-open set. In particular, these

intervals are neither
J
Wt-open nor

J
Wt-closed.

(o) The addition operation of
J
R [[XG]] is a continuous function of type

�J
R [[XG]] ,

J
Wt
�
⇥
�J
R [[XG]] ,

J
Wt
�
!
�J
R [[XG]] ,

J
Wt
�
;

(p) The topology
J
Wt is T 7/2;

(q)
J
Wt is first-countable if, and only if, we have ci ((0R,!)

R
) = ! = cf (G).

Proof. The items (c) and (f) are immediate consequences of item (a) and
Proposition 1.51. Item (p) follows from Proposition 1.61 and items (c), (g)
and (o).

(a) Take a fixed g 2 G. If �x
J
Wt

�!
�2⇤

x, then for each r 2 (0R,!)
R
, there is a �0 2 ⇤

such that

(8� 2 [�0,!)⇤) (8h 2 ( , g]
G
) |�xh � xh| < r ,
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which, in particular, implies |�xg� xg| < r (8� 2 [�0,!)⇤) and gives

us �xg

R
Ordt

�!
�2⇤

xg. If �x
J
Wt99K

�2⇤
x, then there is a subnet {�µ

x}
µ2M of {�x}�2⇤ such

that �µ
x

J
Wt

�!
µ2M

x, implying �µ
xg

R
Ordt

�!
µ2M

xg (8g 2 G) and �xg

R
Ordt99K
�2⇤

xg (8g 2 G).

(b) Suppose �xg

R
Ordt

�!
�2⇤

xg (8g 2 G), suppose the union
[

�2⇤

supp (�x) is finite, and

let g1g2 . . . gn be the increasing finite sequence of elements of that union.
Note that for all � 2 ⇤ and all h 2 G� {g1 . . . gn}, we have �xh= xh= 0R,
which immediately gives us |�xh� xh| = 0R. Let r 2 (0R,!)

R
be arbitrary.

For each index element i 2 [1, n]N, there is an element �i2 ⇤ such that
|�xgi
� xgi

| < r (8� 2 [�i,!)⇤), and, since ⇤ is directed, there is a �02 ⇤

such that �0> �i (8i 2 [1, n]N). Thus, we have

(8� 2 [�0,!)⇤) (8h 2 G) |�xh � xh| < r ,

implying, in particular, that for every element g in G, we have

�x 2 W
g

r
(x) (8� 2 [�0,!)⇤), which gives us �x

J
Wt

�!
�2⇤

x. The proof of the
converse of the second subitem of item (a) is analogous.

(d) Let U be a
J
Wt-open set and let x be an element of U . Thus, there are

1y 2y . . . ny 2
J
R [[XG]], r1r2 . . . rn 2 (0R,!)

R
and g1g2 . . . gn 2 G such that

x 2
n\

i=1

W
gi
ri
(iy) ⇢ U . Let g := max

i2[1,n]N
gi and let z be an element of x+

Jo (Xg).

Since zh= xh (8h 2 ( , g]
G
), for each i 2 [1, n]N we have

(8h 2 ( , gi]G) |iyh� zh| = |iyh� xh| < ri ,

that is, z 2
n\

i=1

W
gi
ri
(iy), proving the inclusion x+

Jo (Xg) ⇢
n\

i=1

W
gi
ri
(iy) ⇢ U

and proving that U is
J
St-open.

A clever, alternative way of proving item (d) is to show (or just
notice) that each subbasic

J
Wt-open set Wg

r
(x) may be written as the union

W
g

r
(x) =

[

y2Wg

r (x)

(y +
Jo (Xg)) 2

J
St ,
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and that readily implies that every
J
Wt-open set is

J
St-open. The reader is

encouraged to compare Figures (1) and (3) (or Figures (2) and (4)) in order
to grasp the reason why the equation above holds true.

(e) Consider the identity function

id : (R,
R

Ordt)!
�
R,

J
Wt�R

�

and let r 2 R be fixed. The inverse function id�1 is continuous by item (a).
If the intersection R \W

g

s
(x) is a subbasic

J
Wt�R-neighbourhood of r

so that we have g > 0G (without loss of generality), then we get
|xh| < s (8h 2 ( , g]

G
� {0G}) and |r � x0G | < s, and one can easily

check 5 that (x0G� s, x0G+ s)
R
⇢ R \W

g

s
(x), proving that id is continuous.

(g) Let x be a fixed element of
J
R [[XG]] and let U be a

J
Wt-neighbourhood

of �x. Thus, there are 1y 2y . . . ny 2
J
R [[XG]], r1r2 . . . rn2 (0R,!)

R
and

g1g2 . . . gn2 G such that �x 2
n\

i=1

W
gi
ri
(iy) ⇢ U . That means that for

every i 2 [1, n]N, we have

(8h 2 ( , gi]) |xh � (�iyh)| = |(�x)
h
� iyh| < ri ,

which implies x 2
n\

i=1

W
gi
ri
(�iy). If z is another element of

n\

i=1

W
gi
ri
(�iy), then

for every i 2 [1, n]N, we have

(8h 2 ( , gi]) |(�z)
h
� iyh| = |zh � (�iyh)| < ri ,

that is, we have that �z 2
n\

i=1

W
gi
ri
(iy), and we obtain the inclusions

�

n\

i=1

W
gi
ri
(�iy) ⇢

n\

i=1

W
gi
ri
(iy) ⇢ U , thus proving the item.

(h) If {rn} is a coinitial sequence in (0R,!)
R
, if {gn} is a cofinal sequence in G

and if x is an element of
J
R [[XG]], then the sequence {W

gn
rn
(x)} is clearly a

countable local
J
Wt-basis of x.

5 In order to help the understanding of the situation, the reader is encouraged to sketch the
absolute and relative graphical representations of the subbasic

J
Wt-open set Wg

s(x), just as we
did in Figures (3) and (4).
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(i) Let D be a countable
J
Wt-dense subset of

J
R [[XG]], let S := {x0G | x 2 D}

and let E :=
[

x2D

supp (x). The set S is countable, and, since the ideal J

is !1-dominated, we have

|E| =
���
[

x2D

supp (x)
��� 6 |D|! 6 !! = ! ,

that is, E is countable. If r is an arbitrary element of R, then there is a

sequence {nx} in D such that nx
J
Wt

�!
n!1

rX0G , implying nx0G

R
Ordt

�!
n!1

r by

item (a) and showing that S is
R

Ordt-dense in R. Likewise, if g is an element
of G and if r0 is a non-zero element of R, then there is a sequence {nx} in

D such that nx
J
Wt

�!
n!1

r0Xg, and that gives us nxg

R
Ordt

�!
n!1

r0 6= 0R by item (a).
In that case, there are infinitely many natural numbers n such that
nxg 6= 0R and g 2 supp (nx) ⇢ E, proving that G = E and that G

is countable.

(j) Suppose that the ordered rng R has no least positive element. We shall
prove that the basic

J
St-open set Jo (X0G) is not

J
Wt-open. Consider a basic

J
Wt-open neighbourhood

n\

i=1

W
gi
ri
(ix) of 0R, let r be a positive element of R

less than each ri and let g be a negative element of G less than each gi and

each Jms (ix). Since 0R2
n\

i=1

W
gi
ri
(ix), we have |ixh| < ri (8h 2 ( , gi]) for

each i 2 [1, n]N. Thus, considering the element rXg of
J
R [[XG]], one notices

that rXg
2

n\

i=1

W
gi
ri
(ix)�

Jo (X0G), proving that Jo (X0G) is not
J
Wt-open.

Conversely, suppose R has a least positive element rmin, take an
element x of

J
R [[XG]] and let g be a fixed element of G. Note that

W
g

rmin
(x) � x+

Jo (Xg). If y is an element of W
g

rmin
(x), then we get

|yh� xh| < rmin (8h 2 ( , g]
G
), that is, yh= xh (8h 2 ( , g]

G
), implying

y
.
= x+

Jo (Xg) and proving that the equation W
g

rmin
(x) = x+

Jo (Xg)

holds true. Therefore, since x and g are arbitrary, we have
J
Wt �

J
St and

J
Wt =

J
St by item (d).
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(k) Suppose A is a
J
Wt-subspace of

J
R [[XG]] whose

J
Wt-interior has an element x,

let U =
n\

i=1

W
gi
ri
(ix) be a basic

J
Wt-neighbourhood of x contained in A, let r

be a fixed non-zero element of R and let gmax :=
G

max
i2[1,n]N

gi. If the sequence

n⇣ X

g6gmax

xgXg

⌘
+ nrX2|gmax|

o

n2N

⇢ U

has a
J
Wt-cluster point y in

J
R [[XG]], then we get nr

R
Ordt99K
n!1

y2|gmax| by item (a),

which is absurd (Proposition 1.65, Item (b)). Hence, the
J
Wt-subspaces A

and Cl J
Wt

(A) are not countably compact.

(l) One can easily see that the conditions g1 > g2 and r1 6 r2 imply
W

g1
r1
(x) ⇢ W

g2
r2
(x). Suppose this last inclusion holds. If g1 < g2, then we get
⇣X

g<g2

xgXg

⌘
+ (xg2 + r2)Xg2 2 W

g1
r1
(x)�W

g2
r2
(x) ,

which is absurd, proving that g1 > g2. Likewise, if r1 > r2, then we get
⇣X

g<g2

xgXg

⌘
+ (xg2 + r2)Xg2 +

⇣ X

g2<g6g1

xgXg

⌘
2 W

g1
r1
(x)�W

g2
r2
(x) ,

which is absurd, proving that r1 6 r2.

(m) Take a basic
J
Wt-neighbourhood

n\

i=1

W
gi
ri
(ix) of x, let g :=

G

max
i2[1,n]N

gi and let r be

a positive element of R so that r <
R

min
i2[1,n]N

(ri� p
gi(x� ix)). If y is an element

of Wg

r
(x), then for each i 2 [1, n]N, we have

(8h 2 ( , gi]G) |yh � ixh| 6 |yh � xh|+ |xh � ixh| < r + p
gi(x� ix) < ri ,

which gives us W
g

r
(x) ⇢

n\

i=1

W
gi
ri
(ix), thus proving the item.

(n) We shall prove the item only for the intervals whose left endpoints are equal
to x. Let I be one of these intervals and take arbitrary z 2 I, r 2 (0R,!)

R

and g 2 G. We are to show that Wg

r
(z) 6⇢ I, which implies the desired result
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by item item (m). Let r0 be a positive element of R less than r and let g0 be
an element of G less than g, Jms (x) and Jms (z). Consider the element

w := �r0Xg
0
+
X

h2supp(z)
h6g

(r0 + zh)Xh .

Thus, we get pg(w � z) = r0 < r and w 2 W
g

r
(z), while on the other hand we

have Jms (w � x) = g0 and

pc (w � x) = wg0 � xg0 = �r
0 < 0R ,

that is, w < x, implying w 62 I. Therefore, we obtain W
g

r
(z) 6⇢ I, proving

the item.

(o) Let x and y be two fixed elements of
J
R [[XG]] and consider a basic

J
Wt-neighbourhood W

g

r
(x+ y) of x+ y (item (m)). Take a positive element

r0 of R so that 2r0 < r (Proposition 1.77). If u and v are elements of
J
R [[XG]] so that u 2 W

g

r0(x) and v 2 W
g

r0(y), then we have

(8h 2 ( , g]
G
) |(u+ v)

h
� (x+ y)

h
| 6 |uh � xh|+ |vh � yh| < 2r0 < r ,

implying W
g

r0(x) +W
g

r0(y) ⇢ W
g

r
(x+ y) and proving the item.

(q) The sufficient condition follows from item (h). Suppose that
J
Wt is

first-countable and let {Un} be a countable
J
Wt-system of neighbourhoods

of 0R. By item (m), for each n 2 N there are gn2 G and rn2 (0R,!)
R

such
that W

gn
rn
(0R) ⇢ Un. Moreover, for all g 2 G and r 2 (0R,!)

R
, there is an

n 2 N so that W
gn
rn
(0R) ⇢ Un⇢ W

g

r
(0R), leading up to gn> g and rn6 r by

item (l). Therefore, the sequence {gn} is cofinal in G and the sequence {rn}

is coinitial in (0R,!)
R
, proving that ci ((0R,!)

R
) = ! = cf (G).

Example 4.16. The weak topologies
J
Wt
Z,Z

,
J
Wt
Q,Z

,
J
Wt
R,Z

,
J
Wt
Z,Q

,
J
Wt
Q,Q

,
J
Wt
R,Q

,
J
Wt
Z,R

,
J
Wt
Q,R

,
J
Wt
R,R

,
J
Wt
Z,BS`

,
J
Wt
Q,BS`

and
J
Wt
R,BS`

are all first-countable, where J is any arithmetic Rayner ideal on each respective
ordered group of exponents (Theorem 4.15, Item (h)).
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Example 4.17. Since the ordered field of hyperreal numbers ⇤R (Example 2.43)
is not separable with respect to its order topology, since every arithmetic Rayner
ideal on an ordered subgroup of (R,+R, <R) is !1-dominated (Example 3.7), and
since the set R is uncountable, we have that the weak topologies on the ordered
Rayner rngs of the forms

⇤R [[XG]] ,
lf⇤R [[XG]] ,

bd⇤RZ[[XG]] ,
J
R [[XR]]

are not separable, where G is any ordered subgroup 6 of (R,+R, <R), R is any
ordered rng and J is any arithmetic Rayner ideal on R (Theorem 4.15, Item (i)).

Example 4.18. Since the ordered ring Z has the number 1 as its least
positive element, the weak topology coincides with the strong topology on every
ordered Rayner ring of the form

J
Z [[XG]], where G is any ordered group and J is

any arithmetic Rayner ideal on G (Theorem 4.15, Item (j)).

As it happens, some ordered Rayner rings become topological vector spaces
when endowed their canonical left action (cf. Proposition 3.34, Item (d)), as we
shall demonstrate in the following theorem. Our proof of that fact is nothing but
a generalisation of Shamseddine’s proof that the real Levi-Civita field is a
topological vector R-space (203), written in different notations.

Theorem 4.19. Let K be an ordered division ring, let G be a cofinal ordered
subgroup of (K,+K , <K) and let J be a left-finite arithmetic Rayner ideal on G.

(a) The sets of the form

S
g(x) := {y 2

J
K [[XG]] | pg(y � x) < g�1}

for x 2
J
K [[XG]] and g 2 (0K ,!)

G
constitute a local

J
Wt-basis of x;

(b) Take the elements x 2
J
K [[XG]] and g, h 2 G. We have S

g(x) ( S
h(x) if, and

only if, g > h;
6 Of course, we also assume that Z is a Puiseux ordered subgroup of G in the case of the Puiseux

rng
bd⇤RZ[[XG]].
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(c)
� J
K [[XG]],

J
Wt
�

is a topological vector K-space when endowed with the
left action

� : (K,
K

Ordt)⇥
� J
K [[XG]],

J
Wt
�
!
� J
K [[XG]],

J
Wt
�

given by (� (r, x))
g
= (rx)

g
:= rxg.

Proof.

(a) Note that each set of the form S
g(x) = W

g

g�1(x) is
J
Wt-open. Take a basic

J
Wt-open neighbourhood W

g

r
(x) of x (Theorem 4.15, Item (m)). Since G is

cofinal in K, there is a g02 G such that K

max {g, r�1} 6 g0, and if z is an
element of Sg0(x), then we get

p
g(z � x) =

K

max
h2( ,g]

|zh � xh| 6 K

max
h2( ,g0]

|zh � xh| < g�10 6 r ,

which gives us z 2 W
g

r
(x). Hence, we have S

g0(x) ⇢ W
g

r
(x), thus proving

the item.

(b) The condition g > h clearly implies S
g(x) ⇢ S

h(x). If S
g(x) ( S

h(x)

and g 6 h, then S
g(x) ( S

h(x) ⇢ S
g(x), which is absurd, proving the

necessary condition of the item. On the other hand, if g > h, then
g�1< h�1 and note that

⇣X

g0<h

xg0Xg
0
⌘
+ (xh + g�1)Xh

2 S
h(x)� S

g(x) ,

which implies S
g(x) 6= S

h(x), proving the item.

(c) We know that
J
K [[XG]] is a vector K-space when endowed with the

action � (Proposition 3.34, Item (d)). We shall prove that � is continuous.
Let r 2 K and x 2

J
K [[XG]] be fixed elements and let S

g(rx) be a basic
J
Wt-neighbourhood of rx (item (a)). Note that we have 2K 6= 0K 6= 4K

(Proposition 2.17) and also 2K , 2
�1
K
, 4K , 4

�1
K
2 Z (K) (Proposition 2.17).
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The proof shall be divided in three cases:

. Suppose that r = 0K= p
g(x). Thus, if r0 2 (�1K , 1K)K and if

x02 S
g(x), then we get (Proposition 4.13)

p
g(r0x0) = |r0| pg(x0) < p

g(x0) 6 p
g(x0 � x) + p

g(x) = p
g(x0 � x) < g�1 ,

implying r0x02 S
g(0K) = S

g(rx) and proving that

�h(�1K , 1K)K ⇥ S
g(x)i ⇢ S

g(rx) .

. Suppose that r = 0K 6= p
g(x) and let r0 be the positive element of K

given by

r0 :=
K

min
n 1K

2K
,
g�1(pg(x))�1

2K

o
.

If r02 (�r0, r0)K and if x02 S
g(x), then

p
g(r0x0) 6 p

g(r0 (x0 � x)) + p
g(r0x)

= |r0| pg(x0 � x) + |r0| pg(x)

<
1K
2K

g�1 +
g�1(pg(x))�1

2K
p
g(x) = g�1 ,

implying r0x0 2 S
g(0K) = S

g(rx) and proving that

�h(�r0, r0)K ⇥ S
g(x)i ⇢ S

g(rx) .

. Suppose that r 6= 0K , let g0 be a positive element of G greater than 2g

and 2g |r|, and let r0 be the positive element of K given by

r0 :=

8
<

:

1K
2K

if pg(x) = 0K ,
K

min { 1K
2K

, g
�1(pg0 (x))�1

4K
} otherwise.

Note that g0> 2g > g. Finally, if we take any r02 (r � r0, r + r0)K
and x02 S

g0(x), then we get

|r0 � r| pg0(x) <

8
<

:
r0 · 0K = 0K < g

�1

4K
if pg (x) = 0K ,

r0 pg0(x) 6 g
�1(pg0 (x))�1

4K
p
g0(x) = g

�1

4K
otherwise.
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and

p
g(r0x0 � rx) = p

g((r0 � r) (x0 � x) + (r0 � r) x+ r (x0 � x))

6 |r0 � r| pg0(x0 � x) + |r0 � r| pg0(x) + |r| pg0(x0 � x)

<
1K
2K

g�10 +
g�1

4K
+ |r| g�10

<
1K
2K

g�1

2K
+

g�1

4K
+ |r|

|r|�1 g�1

2K
= g�1 ,

implying r0x02 S
g(rx) and proving that

�h(r � r0, r + r0)K ⇥ S
g0(x)i ⇢ S

g(rx) .

Example 4.20. The underlying additive groups of the ordered Rayner fields

Q[[XZ]], R[[XZ]],
lf

Q [[XQ]],
lf

R [[XQ]],
lf

R [[XR]],
bd

QZ [[XQ]],
bd

RZ [[XQ]],
bd

QZ [[XDd ]],
bd

RZ [[XDd ]],
bd

QZ [[XP ]] and
bd

RZ [[XP ]]

are all topological vector spaces when endowed with their respective weak
topologies and their respective canonical left actions (Theorem 4.19, Item (c)).

4.3 Conditions for
J

Wt to be metrizable and separable

In this section, we shall prove a theorem that provides equivalent conditions
for the weak topology

J
Wt to be metrizable and separable in the case in which the

arithmetic Rayner ideal J on G is left-finite.

Theorem 4.21. Let R be an ordered rng that has no least positive element,
let G be an ordered group and let J be a left-finite arithmetic Rayner ideal
on G. The following conditions are equivalent:

(a)
J
Wt is metrizable and separable;

(b)
J
Wt is second-countable;

(c)
J
Wt is separable;

(d)
R

Ordt is separable and |G| = !.
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Proof. The result (a))(b) follows from Proposition 1.47, we have (b))(c) by
Proposition 1.39 and we have (c))(d) by Item (d) of Proposition 3.10 and Item (i)
of Theorem 4.15.

(d))(a): The underlying idea of the proof is to show that the topology
J
Wt is

second-countable and then apply Item (p) of Theorem 4.15, Theorem 1.48
and Proposition 1.47 to conclude that

J
Wt is metrizable and separable.

Let S be a countable
R

Ordt-dense subset of R containing 0R. We shall show
that the sets W

g

r
(q) for q 2 S [XG], g 2 G and r 2 (0R,!)

S
form a

countable basis of
J
Wt. Firstly, there is only a countable number of

these sets, given that the sets S [XG], G and (0R,!)
S

are countable

(Proposition 3.39). Take a basic
J
Wt-open neighbourhood W

g

r
(x) of an

arbitrary element x 2
J
R [[XG]]. Let r0 be a positive element of R so

that 2r0 < r (Proposition 1.77), let r1 be an element of the inhabited
intersection S \ (0R, r0)R, and, for each element h 2 supp (x) \ ( , g]

G
,

let qh be an element of the inhabited intersection S \ (xh � r1, xh + r1)R.
Lastly, let q :=

X

h2supp(x)
h6g

qhXh
2 S [XG]. By construction, we have x 2 W

g

r1
(q),

and for each y 2 W
g

r1
(q) and each h 2 ( , g]

G
, we get

|yh � xh| 6 |yh � qh|+ |qh � xh| < r1 + r1 < r0 + r0 < r ,

that is, y 2 W
g

r
(x), implying the inclusion W

g

r1
(q) ⇢ W

g

r
(x) and proving that

J
Wt is second-countable (Theorem 4.15, Item (m)).

Example 4.22. Since the ordered fields Q and R have no least positive element
and are separable with respect to their order topologies, and since the sets Z, Q,
BS`, Dd and P are countable, we have that the weak topologies on the ordered
Rayner rings

Q [[XZ]] , R [[XZ]] ,
lf

Q [[XQ]] ,
lf

R [[XQ]] ,
lf

Q [[XBS` ]] ,
lf

R [[XBS` ]] ,
bd

QZ[[XQ]] ,
bd

RZ[[XQ]] ,
bd

QZ[[XDd ]] ,
bd

RZ[[XDd ]] ,
bd

QZ[[XP ]] and
bd

RZ[[XP ]]

are all metrizable and separable.
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4.4 Conditions for
J

Wt to be connected; An Intermediate

Value Theorem

In this section, we shall consider the property of connectedness in relation
to the weak topology

J
Wt on an ordered Rayner rng

J
R [[XG]], and such

considerations shall naturally lead us to a new version of the Intermediate Value
Theorem for

J
Wt that is valid when R are J satisfy certain conditions.

Theorem 4.23. Let R be an ordered rng, let G be an ordered group and let J be
an arithmetic Rayner ideal on G. If

J
Wt is connected, then

R

Ordt is connected.
Conversely, if

R

Ordt is connected and J is left-finite, then we have:

(a) The
J
Wt-subspaces of

J
R [[XG]] of the forms x+

Jo (Xg) and x+
J
O (Xg) for

x 2
J
R [[XG]] and g 2 G are connected. In particular, the topology

J
Wt is

connected;

(b) The basic
J
Wt-open subspaces W

g

r
(x) are connected;

(c) For all x, y 2
J
R [[XG]] so that x < y, the

J
Wt-subspaces of

J
R [[XG]] given by

the intervals

( , y) , ( , y] , (x, y) , [x, y) , (x, y] , [x, y] , (x,!) and [x,!)

are connected.

Proof. Since the canonical 0G-projection pr0G :
�J
R [[XG]] ,

J
Wt
�
! (R,

R

Ordt) given

by pr0G (x) := x0G is continuous (Theorem 4.15, Item (a)), if
J
Wt is connected,

then
R

Ordt is connected (Proposition 1.42). Assume
R

Ordt is connected and the
Rayner ideal J is left-finite in the following items.

(a) and (b): It suffices to prove the items for x = 0R (Theorem 1.57, Item (a)).
Consider the two

J
Wt-subspaces S :=

Jo (Xg) and W := W
g

r
(0R) of

J
R [[XG]],

where g 2 G and r 2 (0R,!)
R
, let

1x, 2x 2 R [XG] \ S and 1y, 2y 2 R [XG] \W
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be generalised polynomials, let

g1g2 . . . gm 2 supp (1x) [ supp (2x) and h1h2 . . . hn 2 supp (1y) [ supp (2y)

be the respective increasing finite sequences of elements of those unions and
let k be the greatest number in the interval [1, n]N such that hk 6 g.
Consider the functions

f : (R,
R

Ordt)
m
⇥
!
�
S,

J
Wt�S

�

and
g : ((�r, r)

R
,

R

Ordt�(�r,r)
R
)
k
⇥
⇥ (R,

R

Ordt)
n�k
⇥
!
�
W,

J
Wt�W

�

given by
f (r1 . . . rm) :=

mX

i=1

riXgi and g (r1 . . . rn) :=
nX

i=1

riXhi .

Those functions are continuous (Theorem 4.15, Item (b)) and their domains
are connected (Propositions 1.44 and 1.54), implying that the image Im (f)

forms a connected
J
Wt�S-subspace of S and the image Im (g) forms a

connected
J
Wt�W -subspace of W (Proposition 1.42). Since 1x, 2x 2 Im (f)

and 1y, 2y 2 Im (g), and since 1x, 2x, 1y, 2y were arbitrarily taken, we have

R [XG] \ S ⇢ C1 and R [XG] \W ⇢ C2 ,

where C1 is the
J
Wt�S-connected component that extends Im (f) and where

C2 is the
J
Wt�W -connected component that extends Im (g). Since C1 is

J
Wt�S-closed and C2 is

J
Wt�W -closed (Proposition 1.40), and since J

is left-finite, we get (Theorem 4.2, Item (c))

S = ClJ
St�S
(R [XG] \ S) ⇢ Cl J

Wt�S
(R [XG] \ S) ⇢ C1

and
W = ClJ

St�W
(R [XG] \W ) ⇢ Cl J

Wt�W
(R [XG] \W ) ⇢ C2 ,

leading up to C1 = S and C2 = W and proving that the topologies
J
Wt�S

and
J
Wt�W are connected. The proof that the topology

J
Wt�J

O(Xg)
is

connected is analogous. Lastly, since Jo (Xs1) \
Jo (Xs2) 6= ; (8s1, s2 2 G) and

J
R [[XG]] =

[

s2G

Jo (Xs), the topology
J
Wt is connected (Proposition 1.41).

(c) Firstly, we shall prove that the interval ( , y) forms a connected
J
Wt-subspace of

J
R [[XG]]. Let us denote µuv :=

Jms (v � u) for all
u, v 2 R [XG], and let a, b 2 R [XG] \ ( , y) be two fixed generalised
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polynomials so that a < b. Thus, we have the inequality a < b < y and

µay =
^

G

min {µab, µby} (Theorem 3.82, Item (f)). Let g1g2 . . . gm and
h1h2 . . . hn be the increasing finite sequences of elements of the finite sets

(supp (a) [ supp (b)) \ (µay,!)
G

and (supp (a) [ supp (b)) \
� ^

G

max {µab, µby} ,!
�
G
,

respectively. We define a function f in three possible ways depending on
how the elements µay, µab and µby are arranged in G:

Case 1. If µay = µab = µby, then let

f : ( , yµay
)
R
⇥R

n
⇥ �!

�
( , y) ,

J
Wt�( ,y)

�

be the function given by

f (r, t1 . . . tn) :=
⇣ X

g<µay

ygXg

⌘

| {z }
=
X

g<µay

agXg =
X

g<µay

bgXg

+ rXµay +
⇣ nX

i=1

tiXhi

⌘
.

Case 2. If µay = µby < µab, then let

f : R⇥R
n
⇥ �!

�
( , y) ,

J
Wt�( ,y)

�

be the function given by

f (r, t1 . . . tn) :=
⇣ X

g<µab

agXg

⌘

| {z }
=
X

g<µab

bgXg

+ rXµab +
⇣ nX

i=1

tiXhi

⌘
.

Case 3. If µay = µab < µby, then let

f : ( , yµay
)
R
⇥R

m
⇥ �!

�
( , y) ,

J
Wt�( ,y)

�

be the function given by

f (r, s1 . . . sm) :=
⇣ X

g<µay

ygXg

⌘

| {z }
=
X

g<µay

agXg =
X

g<µay

bgXg

+ rXµay +
⇣ mX

i=1

siXgi

⌘
.
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In any case, the function f is continuous (Theorem 4.15, Item (b)) and its
domain is connected (Propositions 1.44 and 1.54), implying that both the
image Im (f) and its

J
Wt �( ,y)-closure Cl J

Wt�( ,y)

(Im (f)) form connected
J
Wt�( ,y)-subspaces of ( , y) (Proposition 1.42 and 1.40).

In Case 1 and Case 2, we clearly have a, b 2 Im (f), and we have
a 2 Im (f) in Case 3. We shall show that b 2 Cl J

Wt�( ,y)

(Im (f)) in Case 3.

In consideration of the assumption that the order topology
R

Ordt is
connected, it is clear that R has no least positive element. If W

g

r
(b) is a

basic
J
Wt-neighbourhood of b so that g > µay (without loss of generality),

and if r0 is a positive element of R so that r0 < r, then we have

(8h 2 G� {µay}) (f (bµay
� r0, bg1 . . . bgm))h = bh

and
|(f (bµay

� r0, bg1 . . . bgm))µay

� bµay
| = |(bµay

� r0)� bµay
| = r0 < r ,

which gives us f (bµay
� r0, bg1 . . . bgm) 2 W

g

r
(b) and proves that the

condition b 2 Cl J
Wt�( ,y)

(Im (f)) holds in Case 3.

Since a and b were arbitrarily taken, we have R [XG] \ ( , y) ⇢ C,
where C is the

J
Wt�( ,y)-connected component that extends Im (f). Since C

is
J
Wt�( ,y)-closed, and since J is left-finite, we get (Theorem 4.2, Item (c))

( , y) = ClJ
St�( ,y)

(R [XG] \ ( , y)) ⇢ Cl J
Wt�( ,y)

(R [XG] \ ( , y)) ⇢ C ,

leading up to C = ( , y) and proving that the topology
J
Wt�( ,y) is

connected. The proof that
J
Wt�(x,!) is connected is analogous.

Note that y 2 ClJ
St

(( , y)) ⇢ Cl J
Wt

(( , y)) (Theorem 4.10, Item (a)).

Thus, the interval ( , y] is a connected
J
Wt-subspace of

J
R [[XG]], and so

is the interval [x,!) by the same token. Lastly, the four intervals
(x, y) = (x,!) \ ( , y), [x, y) = [x,!) \ ( , y), (x, y] = (x,!) \ ( , y]

and [x, y] = [x,!) \ ( , y] are all connected
J
Wt-subspaces of

J
R [[XG]].
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Example 4.24. Since the ordered field R is connected with respect to its
order topology, the weak topologies on the ordered Rayner rings

R [[XZ]],
lf

R [[XQ]] ,
lf

R [[XR]] ,
lf

R [[XBS` ]] ,
bd

RZ[[XQ]] ,
bd

RZ[[XDd ]] and
bd

RZ[[XP ]]

are connected (Theorem 4.23, Item (a)).

The standard proof of the classical Intermediate Value Theorem on R
relies on two crucial facts: every interval [a, b]R in R is a connected topological
subspace of R, and, in turn, every connected subspace of R is order-convex
in R (Definition 1.24). The argument goes as follows: taking a continuous
function f : [a, b]R ! R so that f (a) < f (b) and taking an intermediate element
y 2 (f (a) , f (b))R, we have that the image f h[a, b]Ri is a connected subspace
of R (Proposition 1.42), implying that it is also order-convex in R, and, hence,
we finally obtain y 2 f h[a, b]Ri, that is, there is a c 2 (a, b)R so that 7 y = f (c).

It is reasonable to project that the same strategy may work to derive a
version of the Intermediate Value Theorem for the weak topology

J
Wt. We already

know that every interval in
J
R [[XG]] is a connected

J
Wt-subspace of

J
R [[XG]] when

the order topology
R

Ordt on R is connected and the Rayner ideal J is left-finite
(Theorem 4.23, Item (c)). With that, now we would need only to show that every
connected

J
Wt-subspace of

J
R [[XG]] is order-convex in

J
R [[XG]] in that case.

Unfortunately, that statement is false, as the following example shows:

Example 4.25. Consider the real Levi-Civita field R =
lf

R [[XQ]]. The basic
lf
P(Q)

Wt
R,Q

-open subspace W
1
2(0) is connected (Theorem 4.23, Item (b)), we have

0, 1 2 W
1
2(0), but the positive infinitesimal 2X is not in W

1
2(0). Thus, the set

W
1
2(0) is not order-convex in R.

It turns out that, by controlling the order of magnitude of the elements of
a connected

J
Wt-subspace C and by relaxing the notion of order-convexity

for subsets of
J
R [[XG]], we shall be able to prove that C is order-convex in

a sense.
7 Note that c 62 {a, b}, for f (c) = y 62 {f (a) , f (b)}.
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Definition 4.26. Let R be an ordered rng, let G be an ordered group, let J be
an arithmetic Rayner ideal on G and let g0 be a fixed element of G. A subset S

of
J
R [[XG]] is order-convex (in

J
R [[XG]]) modulo Jo (Xg0) if for all x, y 2 S so

that x < y and for every z 2 (x, y), there is a z0 2 S such that z0 .= z +
Jo (Xg0).

One may intuitively think that the notion of order-convexity modulo
Jo (Xg0) for the set S essentially means that any intermediate element z between
two elements x < y of S is “fairly close” to an element z0 of S, so that the order
of magnitude of the difference z0 � z is strictly lower than the order of magnitude
of an element of the form rXg0 . For instance, if R is an ordered ring and
if g0 > 0G, then z is infinitely close to z0 in

J
R [[XG]] (Definition 2.42).

Proposition 4.27. Let R be an ordered rng that has no least positive element,
let G be an ordered group, let J be an arithmetic Rayner ideal on G and let g0 be
a fixed element of G. If C is a connected

J
Wt-subspace of

J
R [[XG]] contained

in
J
O (Xg0), then C is order-convex modulo Jo (Xg0).

Proof. Take x, y 2 C so that x < y and suppose there is a z 2 (x, y) such that
(z +

Jo (Xg0)) \ C = ;. Since x < z < y, we have z 2
J
O (Xg0) (Theorem 3.82,

Items (d) and (e)), and since C ⇢
J
O (Xg0), we get wg0 6= zg0 (8w 2 C). For each

w 2 C \ ( , z) (resp. w 2 C \ (z,!)), let r (w) be a positive element of R such
that r (w) < zg0 � wg0 (resp. r (w) < wg0 � zg0), and consider the

J
Wt�C-open sets

U and V given by

U := C \
[

w2C\( ,z)

W
g0

r(w)(w) and V := C \
[

w2C\(z,!)

W
g0

r(w)(w) .

Note that C = U [ V , x 2 U and y 2 V . If u 2 U \ V , then there are
1w 2 C \ ( , z) and 2w 2 C \ (z,!) such that u 2 W

g0

r(1w)(1w) \W
g0

r(2w)(2w),
which implies

ug0 � 1wg0 6 |ug0 � 1wg0 | < r (1w) , 2wg0 � ug0 6 |ug0 � 2wg0 | < r (2w)
and

ug0 < 1wg0 + r (1w) < zg0 < 2wg0 � r (2w) < ug0 ,

which is absurd. Therefore, U and V are disjoint, inhabited,
J
Wt�C-open sets that

cover C, contradicting the connectedness of C.
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Theorem 4.28 (An Intermediate Value Theorem for
J
Wt). Let R be an ordered

rng that has no least positive element, let G be an ordered group, let J be an
arithmetic Rayner ideal on G and let g0 be a fixed element of G. If C is a connected
J
Wt-subspace of

J
R [[XG]], if

f :
�
C,

J
Wt�C

�
!
�J
O (Xg0) ,

J
Wt�J

O(Xg0 )

�

is a continuous function, and if a and b are elements of C so that f (a) < f (b),
then for every y 2 (f (a) , f (b)) there is a c 2 C such that f (c)

.
= y +

Jo (Xg0).

Proof. The image f hCi is a connected
J
Wt-subspace of

J
R [[XG]] contained

in
J
O (Xg0) (Proposition 1.42), and therefore it is order-convex modulo Jo (Xg0)

(Proposition 4.27).

Example 4.29. Consider the real Levi-Civita field R =
lf

R [[XQ]] and, omitting the
ideal

lf

P (Q) in the big-O and little-O notations, consider the function

f : (O (X0) ,Wt �O(X0))! (O (X0) ,Wt�O(X0))

given by f (x) := x0, where Wt is the weak topology on R. Note that f

is continuous, given that for all x 2 O (X0) we have

(8g 2 [0,1)Q) (8r 2 (0,1)R) f hWg

r
(x)i = (x0 � r, x0 + r)

R
⇢ W

g

r
(x0) = W

g

r
(f (x)) .

Thus, since R has no least positive element, since O (X0) is a connected
Wt-subspace of R (Theorem 4.23, Item (a)), and since Im (f) ⇢ O (X0),
the Intermediate Value Theorem we have just proved holds for f . In particular,
we have f (0) = 0 < 2 = f (2), and the element 1 + X, which clearly is not in the
image Im (f), is in the interval (0, 2)R. Hence, according to the theorem,
there must be a c 2 O (X0) so that f (c)

.
= 1 + X + o (X0). Indeed, any c in the

set 1 + o (X0) will do.

The example above is certainly rather eccentric, and it may be taken as
a peripheral curiosity. Unfortunately, other non-trivial examples of applications
of Theorem 4.28 are hard to find at this stage of the discussion. Other versions
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of the Intermediate Value Theorem that are much more applicable to ordinary
situations were obtained for the classical Hahn, Levi-Civita and Puiseux fields (209,
210, 208, 16), but these theorems are not directly related to the weak topologies
on these ordered Rayner fields, and they are strict, in the sense that the functions
f of which they concern assume every value in the interval (f (a) , f (b)).
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Final Considerations

In the current research, we have generalised Rayner’s work on power series
fields in order to obtain a general class of power series rngs, and we have
determined several direct connections between the properties of the Rayner
rng

J
R [[XG]], the rng R, the ordered group G and the Rayner ideal J on G.

Our work builds on the works of many mathematicians over the span of almost
two centuries, too many to mention in full in these final considerations, which
include Puiseux, Levi-Civita, Hahn, Mac Lane, Rayner, Berz, Shamseddine,
Krapp, Kuhlmann and Serra. Their studies provide much information on the
mathematical systems of formal power series considered in this thesis, and we
have sought not only to address some of the gaps they had left in their
considerations, but also to expand the domain of applicability of the theory.

The need to generalise Rayner’s construction emanates from the realisation
that infinitely many Rayner rngs that are not fields have rich mathematical
structures, and many of such structures had not been previously considered in
the literature. Our approach consists in providing generalisations to many basic
definitions and results concerning the Theory of Rayner Ideals and the Theory of
Levi-Civita Fields, and it also employs new simplifying notations that bring out
the arithmetic and valuation-theoretic elements of the discussion. The scarcity of
existing research on Rayner fields was the sole limiting factor in the development
of this thesis, but thankfully Krapp, Kuhlmann and Serra’s work was detailed
and thorough enough to provide a solid basis for investigations on the subject.

We shall conclude with some suggestions for future research. Several ideas
presented below were kindly hinted by Prof. Hugo Luiz Mariano.

. Let R be a rng, let G1G2 . . . Gn be a finite sequence of ordered groups, and
let J1J2 . . .Jn be a finite sequence so that each Ji is an arithmetic Rayner
ideal on Gi. The product group G1⇥G2⇥ · · ·⇥Gn is a partially ordered



group when endowed with the partial order < such that the condition
(g1g2 . . . gn) < (h1h2 . . . hn) is equivalent to the conjunction of gi 6 hi (8i)

and gi < hi (9i). Let J = JJ1J2...Jn
be the set of subsets S of the product

G1⇥G2⇥ · · ·⇥Gn such that for all g12 G1, g22 G2, . . . and gn2 Gn,
we have

(8i 2 [1, n]N) {g 2 Gi | (g1 . . . gi�1, g, gi+1 . . . gn) 2 S} 2 Ji .

Consider the iteratively constructed Rayner rng

J
R [[XG1⇥G2⇥···⇥Gn]] :=

. .
.
Jn

⇣
· · ·

⇣ J2� J1

R [[XG1
1 ]]
�
[[XG2

2 ]]
⌘
· · ·

⌘
[[XGn

n
]] .

An element of this rng is a function of type Gn!
Gn�1 (Gn�2 · · · (G1R)),

which, by iteratively applying n� 1 times the Currying natural isomor-
phism A (BC)

Set

⇠= A⇥BC, may be regarded as a family x = {xg1g2...gn}
gi2Gi(8i)

in R so that its support

supp (x) := {(g1g2 . . . gn) 2 G1⇥G2⇥ · · ·⇥Gn | xg1g2...gn 6= 0R}

belongs to the set J . Hence, the element x may be represented as a
multivariate Rayner series

x =
X

gi2Gi(8i)

xg1g2...gn Xg1
1 Xg2

2 · · ·Xgn

n
,

the set J may be called an arithmetic Rayner ideal on the product
G1⇥G2⇥ · · ·⇥Gn, and the Rayner rng

J
R [[XG1⇥G2⇥···⇥Gn]] may be called a

multivariate Rayner rng. We may define the Levi-Civita ideal
lf

P (G1⇥G2⇥ · · ·⇥Gn) := Jlf

P(G1),
lf

P(G2),...,
lf

P(Gn)

and the Hahn ideal
wo

P (G1⇥G2⇥ · · ·⇥Gn) := Jwo

P (G1),
wo

P (G2),...,
wo

P (Gn)

on G1⇥ G2⇥ · · · ⇥ Gn. Note that the theory presented in Section 3.1 does
not provide an axiomatisation for J , since the product G1⇥ G2⇥ · · · ⇥ Gn

is not totally ordered.
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A generalisation of the Hahn rngs was obtained by Ribenboim in 1990
for the case in which the exponents of the formal power series lie in a
partially ordered monoid M (187, 188). In his approach, a so-called
generalised formal power series is a family x = {xm}m2M whose
support is Artinian and narrow in M , meaning that every sequence
in supp (x) has a non-strictly increasing subsequence (cf. Lemma 1.32).
Denoting by

An

P (M) the set of Artinian and narrow subsets of M , it is easy
to check that J ⇢

An

P (G1⇥G2⇥ · · ·⇥Gn) and
lf

P (G1⇥G2⇥ · · ·⇥Gn) ⇢
wo

P (G1⇥G2⇥ · · ·⇥Gn) =
An

P (G1⇥G2⇥ · · ·⇥Gn) .

All these constructions suggest that it might be possible to obtain an
axiomatisation of the Theory of Rayner Ideals that accounts for ideals
on partially ordered groups (or perhaps even monoids). One immediate
possibility would be to say that an arithmetic Rayner ideal on a
partially ordered group G is an ideal J on G that is a subideal of

An

P(G)

and is such that A+B 2 J (8A,B 2 J ). If all details lined up perfectly,
then such development would lead to a significant expansion of the scope
of the Theory of Rayner Rngs.

. Let K be a field and let G be a divisible ordered group. One may prove
that K [[XG]] (i) = (K (i)) [[XG]], where K (i) is the splitting field of the
polynomial X2 + 1 over K. As Alling noted in 1962, a corollary of that fact
is that if K is real-closed, then the Hahn field K [[XG]] is real-closed (3).
Similar results are likely to hold true for at least some Rayner fields other
than the Hahn fields.

. We have not dealt with the notion of Euclidean fields in the main body of
this work. These are the ordered fields K such that every positive element
of K has a square root in K (Example 2.47). By Theorem 3.78, if K is an
Euclidean field, if G is a 2-divisible ordered subgroup of (R,+R, <R) and if
J is an incremental full Rayner ideal on G, then the ordered field

J
K[[XG]]

is Euclidean. This conclusion also holds for some full Rayner ideals J that
are not incremental. For instance, if x =

X

n2[2n0,1)Z

xn/dX
n/d is a positive element
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of the ordered Puiseux field
bd

RZ[[XQ]], where the denominator d has been
chosen so that the index n begins at an even number, and if y =

X

n2[n0,1)Z

yn/dX
n/d

is a positive square root of x in
bd

RZ[[XQ]], then we obtain
X

n2[2n0,1)Z

xn/dX
n/d= x = y2 =

X

n2[2n0,1)Z

✓ X

p+q=n

p,q>n0

yp/d yq/d

◆
Xn/d ,

implying

(8n 2 [2n0,1)Z) xn/d =
X

p+q=n

p,q>n0

yp/d yq/d =
n�n0X

p=n0

yp/d y(n�p)/d

and that the coefficients of y are recursively given by

y(n�n0)/d =

8
>><

>>:

p
x2n0/d if n = 2n0 ,

1

2
p
x2n0/d

⇣
xn/d �

n�n0�1X

p=n0+1

yp/d y(n�p)/d

⌘
if n 2 (2n0,1)Z .

Thus, the positive square root y of x indeed exists and belongs to
bd

RZ[[XQ]],
proving that the ordered Puiseux field

bd

RZ[[XQ]] is Euclidean. On the
other hand, the positive square root X1/4 of the positive element X1/2 of the
ordered Puiseux field

bd

RZ[[XP ]] (Example 3.21) does not belong to
bd

RZ[[XP ]],
showing that

bd

RZ[[XP ]] is not Euclidean. Therefore, perhaps the assumption
that J is incremental in the statement of Theorem 3.78 could be replaced
by a weaker hypothesis on J , one that is fulfilled by

bd

PZ(Q) and not
by

bd

PZ(P). Furthermore, since Theorem 3.78 is a direct consequence of the
Fixed Point Theorem (Theorem 3.61), it is possible that J does not have
to be incremental there too.

. An ultraproduct is a model-theoretic construction that takes an indexed
family of models of a mathematical theory, along with an ultrafilter on the
set of indices of that family, and gives as a result another structure of the
same kind. The first-order properties of an ultraproduct are the ones that
hold for “most” members of the family, in a sense, while its higher-order
properties can be quite different from those of its generating structures.
The most renowned example of an ultraproduct is the ordered field of
hyperreal numbers ⇤R (192), which is a non-Archimedean ordered field that
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has all the same first-order properties as R. Reasonably, ultraproducts of

families
� Ji

Ri[[XGi ]]
 
i2I of Rayner rngs with respect to ultrafilters U on I

can potentially give rise to rngs with interesting features, and such rngs
might be related to the ultraproducts of the families {Ri}i2I , {Gi}i2I and
{Ji}i2I with respect to U .

Other model-theoretic explorations could be conducted in order to
obtain more information on the structure of the

J
R [[XG]] construction.

For instance, one could wonder if the first-order properties of
J
R [[XG]]

depend on the higher-order properties of R, G or J . Strictly speaking,
consider two rngs R and R0, two groups G and G0, and two arithmetic
Rayner ideals J ,J 0 on G,G0, respectively, so that R ⌘ R0, G ⌘ G0 and
J ⌘ J

0. Here, the symbol ‘⌘’ represents the relation of elementary
equivalence, which treats as equivalent any two structures of the same
kind that have precisely the same first-order properties. On this footing,
a pressing question would be to determine whether the equivalence
J
R [[XG]]⌘

J 0

R0[[XG
0
]] holds, and if it does not in general, then it could be

that it holds when additional hypotheses are assumed. Last but not least,
we point out that the Hahn fields have been singled out as special cases in
several recent studies on the Henselian valued fields (55, 185, 68, 110, 116),
and such studies are likely to provide a good starting point for several
model-theoretic considerations concerning the Rayner rngs.

. In Theorem 3.56, we learned that the functor R : Rng! Rng given by
8
<

:
R (R) :=

J
R [[XG]]

(R (� : R
Rng

�! S) (x))
g
:= � (xg)

preserves object-finite limits and quotients modulo ideals in Rng, where G

is an ordered group and J is an arithmetic Rayner ideal on G, and that
implies that R preserves at least one kind of colimit, the initial object
0 = {0} in Rng, since 0 also happens to be the terminal object in Rng.
Let us briefly discuss the reason why the preservation of colimits of non-null
functors is more involved. Given a limit cone � = {�i : F (i)

Rng

�! L}
i2I0

under a (possibly finite or object-finite) non-null functor F : I ! Rng, and
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given a cone � =
�
�i :

J

F (i) [[XG]]
Rng

�! V
 
i2I0

under R � F , then, in order
to show that R preserves colim (F), one would need to show that there is
a unique morphism � :

J
L [[XG]]

Rng

�! V such that the digraph
J

F (i) [[XG]]

R(�i)
✏✏

�i
// V

J
L [[XG]]

�

77

in Rng commutes for all i 2 I0. The sole piece of information available at
this point is that � is a limit cone under F , that is, one can perform colimit
lowerings of cones under F along �. If one were to follow the procedure
adopted in the proof of Item (b) of Theorem 3.56, then one would follow
the given steps:

(1) For each i 2 I0, define a family {�i,j : F (i) Mon

�! V }
j2J that captures all

the information contained in the morphism �i :
J

F (i) [[XG]]
Rng

�! V ;

(2) For each j 2 J , obtain the colimit lowering �j : L
Mon

�! V of the cone
�j := {�i,j : F (i) Mon

�! V }
i2I0

along �;

(3) Define a function � :
J
L [[XG]]! V that captures all the information

contained in the family {�j : L
Mon

�! V }
j2J ;

(4) Prove that � is a homomorphism between rngs and that it satisfies
the universal property of colimits for � and R (�).

Step (2) is trivial, and Step (4) is attainable depending on how the other
steps go. The aggravating issues lie in Steps (1) and (3), for there seems to
be no direct means of storing all the data contained in a homomorphism of
the form � :

J
R [[XG]]

Rng

�! S into a family of homomorphisms of the form
 := { k : R

Mon

�! S}
k2K. The values of � at the generalised polynomials in

R [XG] can be easily stored in  , for instance by taking K := G and
 g(x) := � (xXg) for each g 2 G, but the values of � at the formal power
series with infinite support always seem to be left out of the conversion
process. Therefore, if R preserves some sort of colimit other than the initial
object in Rng, then proving this fact would probably require the use of a
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different proof strategy. Future examinations of “simple” specific examples
of colimits in Rng might reveal new insights on the matter, such as
determining whether the rngs (cf. Example B.39)

lf

((Z/2Z) t (Z/2Z)) [[XQ]] and
lf

(Z/2Z) [[XQ]] t
lf

(Z/2Z) [[XQ]]

are isomorphic in Rng.

. As we have seen in the Introduction, a comprehensive theory of Differential
and Integral Calculus on the real Levi-Civita field R has gradually been
developed since the late 19th century. Several theorems of this thesis are
generalisations of preliminary results of that theory, and it is presumable
that many other results of the Analysis on R could be generalised in
like manner, revealing to what extent the analytical properties of R hold
for other ordered Rayner fields. So far, with the results of this work, we can
conjecture that an ordered Rayner field

J
K [[XG]] is most likely to be

“suitable for Analysis” if the following conditions are met for all formal
power series x =

X

g2G

xgXg in
J
K [[XG]]:

(C1) The coefficients xg lie in an ordered field K (Theorems 3.67 and 3.82)
such that every positive element of K has an n-th root for each natural
number n (Theorem 3.78);

(C2) The exponents g lie in a divisible (Theorem 3.78) ordered subgroup G

of (R,+R, <R) (Theorem 3.61) that is also a cofinal ordered subgroup
of (K,+K , <K) (Theorem 4.19, Item (c));

(C3) The supports supp (x) lie in an incremental (Theorems 3.61 and 3.78;
Theorem 4.2, Item (j); Theorem 4.19, Item (c)), left-finite (Theorem 4.2,
Item (c); Theorem 4.15, Item (o)) full Rayner ideal J on G (Theorem 3.67).

We leave to the reader the proof that Condition (C2) implies that
the ordered field K is Archimedean, and, therefore, the ordered group
(K,+K , <K) must be an ordered subgroup of (R,+R, <R) in that case
(Theorem 1.72). In addition, note that the Levi-Civita ideals

lf

P (G) are the
only ones that are guaranteed to satisfy Condition (C3) among the main
kinds of Rayner ideals that we have considered.
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As expected, the Conditions (C1), (C2) and (C3) hold for the ordered
field R =

lf

R [[XQ]], and it is not hard to come up with other examples
of ordered Levi-Civita fields that are also in accordance with those
requirements. For instance, denoting by A the set of algebraic real
numbers (37), the ordered fields

lf

R [[XR]] ,
lf

R [[XA]] ,
lf

A [[XQ]] and
lf

A [[XA]]

have a number of interesting analytical properties which are worthy of
further inspection.

212



Appendix





A
Set Theory, Mathematical Structures and
the TG System

The notions of set, membership and inclusion have been employed
implicitly and explicitly by philosophers and mathematicians in every period
of history, being occasionally deployed as intuitive dialectical tools for delineating
complex arguments. For millennia, deliberations regarding finite sets never gave
rise to controversies, being considered to be trivial and self-evident, but the
situation was quite different for infinite sets, for they seemed to violate a few
laws that many thinkers took for granted. For instance, the principle that states
that “the whole is greater than the part” was widely accepted, but many
set-theoretic counter-examples to that statement could easily be found, including
proper subsets of N that are equipotent to N, and that led many authors to
distrust the use of actual infinities in their works, such as Aristotle, Galois, Pasch
and Hilbert (40). These philosophical difficulties raised no serious concerns up
until the late 19th century, for one could always phrase the arguments in ways
that avoid mentioning infinite sets, sometimes going through great lengths to
do so, and also because these issues did not affect the main body of
mathematical results that had been established so far.

The first spark of the coming revolution on the nature of infinity occurred
in 1874 when the German mathematician Georg Cantor provided a rigorous
proof that the infinite set of algebraic real numbers has less elements than the set
R in a sense (47). Shortly after, he showed that there are infinitely many sizes of
infinity which can be well-ordered in a natural manner (50). Since these results
defied thousands of years of philosophical tradition, they initially faced fierce
opposition from many influential intellectuals of the 19th century, above all
Kronecker (46), but a few others showed swift appreciation for Cantor’s



discoveries, including Dedekind and Weierstraß. By the beginning of the
20th century, the bulk of the mathematical community had already been
convinced that the properties of sets are worthy of extensive investigation,
and that realisation gave rise to a new branch of Mathematics called
Set Theory.

However, Cantor himself knew that there were some rather strange
predicaments resulting from his theory. In an unpublished letter to Hilbert sent
in 1896, he remarked that there cannot be a set of all ordinals, since that set
would be well-ordered and would be order-isomorphic to a proper initial segment
of itself, which is absurd (40), and then in 1899 he wrote to Dedekind detailing
the contradictions that arise when the set of all cardinals and the set of all sets
are considered (50). These findings led him to distinguish the regular sets
(Mengen) from what he called “multiplicities” (Vielheiten), the latter being sets
that are “too large” to be thought of as single objects (51). Other prominent
figures noticed similar irregularities on Set Theory around that period, such as
Burali-Forti (45), Zermelo (180) and Russell (198), and even some inconsistencies
involving finite sets were found, such as Richard’s Paradox 1 (184). Soon it
became unanimously clear that the foundations of Mathematics required an
urgent revision in order to eliminate set-theoretic paradoxes. “Where else is
there to be found certainty and truth when even mathematical thinking fails? ”,
as Hilbert put the general sentiment amongst many researchers around that
time (98).

We shall not retrace here the many philosophies, doctrines and programs
proposed in the 20th century to address that matter, and we shall not address
the enormous repercussions of Gödel’s Incompleteness Theorems (86) on the
discussions regarding the limitations of the Axiomatic Method. For our purposes,
it suffices to describe the approach that the mathematical community eventually
embraced as their preferred solution to all foundational issues:
1 A simplified version of Richard’s Paradox due to Berry and Russell (198) is as follows: the

set of integers which can be named in less than nineteen syllables is finite, but the integer
that is ‘the least integer not nameable in fewer than nineteen syllables’ is named is eighteen
syllables, which is absurd.

216



. Up until the late 19th century, all mathematical assertions were articulated
in natural human languages, which are non-designed languages that have
evolved naturally in human societies through millennia of unceasing use
and repetition, and sentences in these communication systems may have
multiple alternative interpretations, often causing confusion in the
assessment of texts. That hindrance was eradicated by the introduction of a
completely formalised language with fixed syntactic rules in which every
assertion can be expressed with no possible ambiguity, and, in that
framework, the notion of property is reduced to well-formed assemblies of
symbols which have no abstract meaning per se. Yet it must be noted that
researchers do not usually enunciate their conclusions in such formalised
language, not even logicians, model-theorists or set-theorists, still routinely
making use of natural languages throughout, but there is a general
consensus that all results should be appropriately formalizable. This
constraint is not satisfied for all paradoxes of Set Theory generated by
inventive plays upon words, such as Richard’s Paradox;

. All logical deductions are to be carried out according to a completely
formalised version of the Axiomatic Method that is greatly inspired
by Hilbert’s thorough and profound Grundlagen der Geometrie (99).
Mathematicians are free to choose the axioms that support their
conclusions, and, once these are chosen and fixed, all valid results of the
theory must be provable from the axioms according to a finite set of formal,
strictly syntactic, inference rules. In order to check the validity of a proof,
one can, in principle, check in finitely many stages if the inference rules
were applied correctly, so that one does not need to take the individual
psychological reactions of the proof’s creator into account. Thus, one may
regard each such axiomatic system as a one-player game with a rigorous
finite body of regulations. The assemblage of the formalised language
employed to convey sentences and the inference rules in which logical
deductions are performed is called First-order Logic, and it is the crown
jewel of modern Mathematical Logic;
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. A highly influential and widely accepted system of axioms was introduced
for Set Theory, the so-called Zermelo-Fraenkel-Choice system (or
ZFC), which is mostly due to the works of Zermelo (243, 245, 246),
Skolem (218), von Neumann (146) and Fraenkel (77, 78, 79). In that
system, the word ‘set’ and the membership conditions x 2 y are left
undefined, being taken as primitive notions of the theory, and all conditions
are said to be L✏-formulas.

Most axioms of ZFC are mere formal translations of the most basic
human intuitions regarding the notion of set. In addition, there is the
Axiom of Foundation (Fundierungsaxiom) introduced in order to discard
some pathological sets from the theory, such as sets that belong to
themselves, and there is an Axiom Schema of Separation
(Aussonderungsschema) which is cautiously designed to avoid the
appearance of Cantor’s Vielheiten, stating that the set of all objects x

satisfying an L✏-formula P (x, y1 . . . yn) exists (in ZFC) if P implies a
condition of the form x 2 A, where y1 . . . yn and A are sets that have
already been shown to exist. When a collection defined by an L✏-formula P

does not exist in that sense, one may still consider its “intrinsic nature”
as a meta-object by defining that collection to be P itself, and such
meta-formula can be encoded as an object of ZFC 2. And then there is the
Axiom of Choice (or AC) (Auswahlaxiom), which stirred a great deal of
controversy in the early 20th century despite having a fairly intuitive and
plain statement. That controversy emerged over the fact that the AC
establishes the existence of mathematical objects without explicitly
defining them, thus breaking with a few philosophical principles regarding
the notion of constructibility in Mathematics. Since many well-established
theorems require it for their proofs, resistance to the AC has gradually
vanished through time, so that that axiom has been securely incorporated
into standard Set Theory.

2 One way of achieving that is by defining the language of First-order Logic within a countably
generated free monoid (148), where the sets y1 . . . yn are added to the alphabet of the language.
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Although Gödel’s Second Incompleteness Theorem has crushed
all hopes of proving that ZFC is consistent, the vast majority of
mathematicians have high confidence in the consistency of that system, and
that is due to the fact that no contradiction has been found over roughly a
century of intense, exhaustive testing of the axioms (63);

. The earliest alternative to ZFC within the framework of First-order Logic
was introduced in 1925 by von Neumann (146), and shortly later it was
reformulated and simplified by R. Robinson (193), Bernays (13) and
Gödel (87), eventually being denominated the Neumann-Bernays-Gödel
system (or NBG). This system takes the membership conditions x 2 y

and the words ‘class’ and ‘set’ as its primitive notions 3, and, unlike ZFC,
it has a finite number of axioms 4. Cantor’s Vielheiten are formalised within
NBG precisely as the classes A such that A 62 B for every class B, and such
classes, which at some past time caused so much trouble for many thinkers,
are called proper classes, and this name stuck for the general concept
even in contexts that are not related to NBG. It has been proved that NBG
is a conservative extension of ZFC, meaning that a sentence written in
the language of ZFC is a theorem of ZFC if, and only if, it is a theorem
of NBG, and that immediately implies that the consistency of NBG is
equivalent to that of ZFC. Many other alternatives to ZFC were proposed,
most notably the Morse-Kelley system (232, 111, 143), but none of them
has achieved the same degree of acceptance and dissemination as ZFC
and NBG. We refer the reader to (127, 71, 194, 106, 159, 224, 199, 100) for
details on the prevailing formalisations of Set Theory within the framework
of First-order Logic;

. Mathematics has been largely unified under Set Theory, so that a strong
foundation for the latter provides a strong foundation for the former.

3 A formalisation of NBG that takes only the notions of class and membership as primitives
was introduced by Mendelson in 1964. We refer the reader to (159) for details, and we call his
or her attention to the fact that Mendelson assumes ZFC’s Axiom of Choice for his system,
while von Neumann, Bernays and Gödel assumed the stronger Axiom of Global Choice.
Many authors refer to Mendelson’s axiomatic system as Mendelson’s NBG.

4 ZFC has two axiom schemas which generate countably infinitely many axioms for the theory,
while NBG has no axiom schema.

219



The desire to unify the “queen of sciences” 5 into a single conceptual
framework can be traced back to the Pythagorean maxim “All things are
numbers”, and that feeling has remained throughout history taking many
forms. A major step was taken toward that goal in the 17th century when
Descartes and Fermat unravelled a deep connection between Algebra and
Geometry which would culminate in the development of Calculus. At the
beginning of the 19th century, the scenario was so that the natural numbers
were seen as “exclusive products of our intellect” (85), the continuous
quantities were viewed as lengths, areas and volumes of geometric
constructions, and the rational numbers were intrinsically connected to the
notion of subdivision of a magnitude into equal parts. In the span of a
century, these conceptions were inherently altered due to the works of many
experts in varied fields, including Graßmann, Hankel, Weierstraß, Cantor,
Dedekind and Méray, who showed that the integers, the rationals, the reals
and the complex numbers could all be fully described in set-theoretic
terms (40), and gradually all other areas of Mathematics met the same fate,
so that Set Theory became the lingua franca for the development of
mathematical ideas. Deep results in Topos Theory and first-order
axiomatisations of the category of sets and the category of categories have
led many theorists to make intriguing claims that the notion of category
will eventually be prevailingly viewed as the most fundamental notion of
Mathematics (133, 134, 154, 88), but so far there is no indication that the
community is reaching an agreement in that direction;

. Caught in the atmosphere of set-theoretic unification, in 1935 the French
group Nicolas Bourbaki, headed by Cartan, Chevalley, Delsarte, Dieudonné
and Weil, set out a monumental attempt to encapsulate nearly all of the
Mathematics of its time into a modern, rigorous and comprehensive series
of textbooks called Éléments de mathématique 6. The series was intended
to be completely self-contained: references to other works were explicitly

5 Phrase coined by Gauss (231).
6 The use of the unusual, archaic French word ‘mathématique’ in place of the customary

‘mathématiques’ is deliberate (35). “The absence of the ‘s’ was of course quite intentional, one
way for Bourbaki to signal its belief in the unity of mathematics”, as the Bourbaki member
Armand Borel explained (31).
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forbidden within the main body of the exposition, and all results employed
in the text were to be proved in the series itself as theorems of an axiomatic
system essentially equivalent to ZFC. The group, which is still operational
today with a whole new personnel, presented their main founding ambition
in one of their thought-provoking articles:

As every one knows, all mathematical theories can be considered
as extensions of the general theory of sets [...] On these
foundations, I state that I can build up the whole of the
Mathematics of the present day; and, if there is anything
original in my procedure, it lies solely in the fact that, instead
of being content with such a statement, I proceed to prove it
in the same way as Diogenes proved the existence of motion;
and my proof will become more and more complete as my
treatise grows. (36)

That stance led some authors to claim that Bourbaki did not
understand the profundity of Gödel’s First Incompleteness Theorem,
to which the Bourbaki member Alain Connes responded that “[Gödel’s
theorem] states that, for every finite or recursively defined set of axioms,
there are always questions that cannot be answered. [...] But if a question is
not decidable, [...] we can give it an answer and continue to reason. This
means that [...] each undecidable question creates a bifurcation and imposes
a choice.” (54). Thus, it seems that at least a few members of the group
used to believe that mathematicians are destined to work on an increasing
sequence of axiomatisations of Set Theory that tends toward completeness
without ever reaching it. However, the group never voiced its definitive
choices for many well-known problems that have been proved to be
independent of the ZFC system, such as the Generalised Continuum
Hypothesis (48, 87, 60) and Martin’s Axiom (155, 212), and to this day
most mathematicians have shown great reluctance to do so, since there
is no acknowledged basis on which those decisions are to be made.
The posture that has been adopted by logicians and model-theorists is so
that all reasonable variations of the axiomatisations of Set Theory must be
carefully studied and the logical connections between these systems must
be disclosed.
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In the remainder of this appendix, we shall examine how mathematical
structures are defined in formal Set Theory, and then we shall give special
consideration to structures whose universes are “too large”, advocating for the use
of an extension of ZFC due to Tarski and Grothendieck that is appropriate to
overcome most technical limitations regarding such constructs.

A.1 Structures in modern Mathematics

A mathematical structure is an abstract encapsulation of the
component elements, inherent configuration and operational data of a multipart
mathematical idea that satisfies a predetermined set of axioms. For example,
consider the set C of complex numbers, the usual addition and multiplication
operations +C : C⇥ C! C and ⇥C : C⇥ C! C, the usual topology ⌧C on C
(Example 1.46), and bear in mind that the following conditions hold true:

(P1C) +C is a commutative and associative operation on C that has an identity
element 0 in C, and every element of C is +C-invertible (Definitions 1.1, 1.2
and 1.5);

(P2C) ⇥C is a commutative and associative operation on C that has an identity
element 1 in C, and every element of C� {0} is ⇥C-invertible;

(P3C) 0 6= 1;

(P4C) (8x, y, z 2 C) (x+ y) z = xz + yz and x (y + z) = xy + xz ;

(P5C) ⌧C is a topology on C such that the functions

+C : (C, ⌧C)⇥ (C, ⌧C)! (C, ⌧C) , ⇥C : (C, ⌧C)⇥ (C, ⌧C)! (C, ⌧C)

and
⇥C

Inv : (C� {0} , ⌧C � (C� {0}))! (C, ⌧C)

are continuous (Definitions 1.36), where
⇥C

Inv : C� {0}! C is the function

given by
⇥G

Inv (z) := z�1 (Definition 1.7).
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All these considerations are called upon at once when one asserts that the set C
of complex numbers has a topological field structure when endowed with the
operations +C, ⇥C and the topology ⌧C, or, more briefly, that the ordered 4-tuple
(C,+C,⇥C, ⌧C) is a topological field (Definition 2.30; Example 2.31).

That observation may seem pedantic since it simply reflects the definition
of the phrase ‘topological field’ and since the properties (P1C)-(P5C) are
historically inspired upon the arithmetic and topological properties of number
systems. However, the recurring use of such structural, axiomatic abbreviations
has revolutionised the way in which mathematicians organise the ideas and
results of their discipline for the past two hundred years. Note that the phrase
‘topological field’ stands for any 4-tuple of the form

(K,+K : K ⇥K ! K,⇥K : K ⇥K ! K, ⌧K 2 P2(K))

that satisfies the axioms (A1K)-(A5K), where each (AnK) is the condition (PnC)
with the set C replaced by K. All results that one may derive from these axioms
for any such 4-tuple must hold true for every particular topological field, and that
saves one the effort of having to prove these results again everytime one identifies
a topological field. Clearly, that is valid for every kind of mathematical structure,
as Bourbaki explained:

Its most salient feature [of the axiomatic method], [...], is
to achieve considerable economy of thought. “Structures” are
tools for the mathematician; once he has discerned [...] the
relations satisfying the axioms of a structure of a known type,
he immediately has at his disposal the whole arsenal of general
theorems relating to structures of that type, when before
he had to laboriously forge for himself means of attack,
whose powers depended on his personal talents and which
were often encumbered with the unnecessarily restrictive
hypotheses arising from the particularities of the problem
under study. (35)

The reader can find in the literature several definitions of the notion
of mathematical structure (38, 1, 101, 177), some broader than others, some
clumsier than others. In essence, all definitions (very roughly) agree that a
structure S with universe (set) X is an ordered pair of sets S := (X,R),
where R is any element of some set SX obtained from X by applying a finite
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number of operations, such that S must satisfy some set of axioms. For instance,
a semigroup can be defined to be an ordered pair (M,⇥M) so that ⇥M is any
element of the set of functions SM := M⇥MM and such that the associativity
axiom x (yz) = (xy) z (8x, y, z 2M) is satisfied (Definition 1.2). Since ordered
pairs can be easily encoded as sets, such as in Wiener’s definition
(a, b) := {{{a} , ;} , {{b}}} (236) or as in Kuratowski’s now-accepted definition
(a, b) := {{a} , {a, b}} (125), that entails that all the data of a mathematical
structure can be effectively enclosed within a unified entity in Set Theory.
However, such definition of the notion of structure is inappropriate for specific
applications within the prevailing axiomatisations of Set Theory, as we shall
address in the next section.

A.2 Troubles with large structures in ZFC and NBG

In foundational areas of Mathematics, such as Model Theory, Category
Theory and Sheaf Theory, it is often convenient to deal with structures whose
universes are “too large” to be regarded as single objects, which are sometimes
called large structures. We shall consider how these are treated in ZFC
and NBG.

As previously mentioned, there is a trick that allows one to circumvent,
without risk of contradiction, the fact that proper classes are not formal objects
in ZFC, and it consists in defining classes as being the L✏-formulas P (v) with one
free variable v and with set parameters 7 (106). With that definition, the elements
of a class P (v) are taken to be the objects x such that P (x) holds in ZFC, so
that the sentence P (x) is denoted by x 2 P by abuse of language, and each set
A can be identified with the class v 2 A. Furthermore, a proper class is a class
P (v) such that the existence of the set {x | x 2 P} implies a contradiction, and
a class-structure may be (loosely) defined as an ordered pair (P (v) , R (v)) that
satisfies some set of axioms, where P (v) is a class and R (v) is a class whose
7 We shall omit the parameters here.
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elements belong to some class SP obtained from P by applying a finite number of
operations. A large structure, in that vein, is a class-structure whose universe
is a proper class, and the regular structures are called small structures. As an
example, we have that On := ‘v is an ordinal’ is a proper class that forms a “large
well-ordered class” when endowed with the “class-well-order” given by

<On := (9↵) (9�) (v = (↵, �) ^ (‘↵ and � are ordinals’) ^ ↵ < �) ,

whose elements (↵, �) belong to the class

SOn := “On⇥ On” = (9↵) (9�) (v = (↵, �) ^ (‘↵ and � are ordinals’)) .

Unfortunately, that approach has a significant downside: a result that is
true for all small structures of a particular kind may not hold true for some large
structures of the same type. For instance, we know that every well-ordered set
is order-isomorphic to some ordinal, but the large structure (On, <On) from our
previous example is clearly not “class-order-isomorphic” to any ordinal, and even
if we had defined the class On to be an ordinal as a special case, that would force
us to redefine the class On, leading up to a long, tedious series of uninteresting
changes in many definitions and results of Set Theory just to accommodate that
new notion of ordinal. Thus, for each kind of structure, mathematicians would
need to keep track of which theorems hold only for the small representatives of
such structures. Such nuisance can be tolerated, and in fact it has been by many
theorists, but perhaps a better strategy for dealing with large structures would be
less troublesome, as we shall indicate in a short while.

In NBG, classes are taken as primitive objects of the theory, and proper
classes are precisely the classes that cannot be elements of any class. However,
given a proper class P and a class R, one is not able to formally construct the
(Kuratowski’s) ordered pair (P,R) = {{P} , {P,R}} within the theory, since P

would appear as an element of {P} in that case. Hence, although NBG is
ontologically richer than ZFC, incorporating the notion of (proper) class into
the mix, that is not of use for defining large structures as unified objects in NBG.
On this account, many authors routinely make reference to large structures only
by abuse of language, as they actually mean to implement the defining parts of
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such structures separately, and these abuses often build up quickly as more and
more constructions are perfomed using such structures. Even if one were to cope
with these linguistic fictions, one would still face the same difficulty in NBG as
that described for ZFC, that is, one would still have results that are true for all
small structures of a particular kind but that are false for some large structures
of the same type.

Therefore, the ways in which large structures are treated in ZFC and NBG
are rather problematic. In the next section, we shall discuss an elegant
alternative to these axiomatic systems that allows the user to operate with large
structures more freely and straightforwardly.

A.3 From the inaccessibles to the TG system

The first paper to present a broad formulation of the general Theory of
Totally Ordered Sets was Hausdorff’s Grundzüge einer Theorie der geordneten
Mengen, published in 1908, in which the author systematically developed the
Theory of (Total) Order-types with careful attention to the special cases of the
ordinal and cardinal numbers (94). As Cantor had previously remarked, some
cardinals are equal to their own cofinality (Definition 1.27), such as 0,!,!1,!2,
etc., and some are not the immediate successor of any cardinal, such as
0,!,!!,!!!

, etc., the former numbers being called regular cardinals and the
latter initial cardinals. Contrarily, a singular cardinal is one that is not
regular, and a successor cardinal is one that is not an initial cardinal.
Hausdorff effortlessly noticed that 0 and ! are regular initial cardinals, and he
wondered if there are other cardinals of that kind. Referring to cardinals simply
as numbers, and taking for granted the fact that !↵ > ↵ for every ordinal ↵,
he reflected:

The question of whether [...] there are also regular initial
numbers with a limit index must remain undecided here, but
the following can be remarked on this subject. An initial
number [!↵] with a limit index [↵] is singular if its index is
smaller than itself; accordingly, a regular initial number with a
limit index can only be included among those initial numbers
which are equal to their own indices [that is, !↵ = ↵] [...].
The existence of such a number appears at least problematic
hereafter, but must be considered as a possibility [...]. (94)
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That contemplation echoed in the works of several mathematicians in the
early 20th century, including Kuratowski (126), Zermelo (246), Sierpiński (214)
and Tarski (221), and it was widely believed that a verdict on the matter could
potentially provide some useful insight onto Cantor’s Generalised Continuum
Hypothesis. The regular initial cardinals were eventually called weakly
inaccessible cardinals, and it was revealed that such numbers are precisely the
regular cardinals  such that ↵+<  (8↵ < ). Zermelo, who referred to the
inaccessible cardinals as “boundary numbers” (Grenzzahlen), hinted in 1930 that
the following axiom should be considered for Set Theory:

Axiom of (Weak) Inaccessibles (AWI). (246) For every cardinal ↵, there is
a weakly inaccessible cardinal  such that ↵ < .

Moreover, in that same year Tarski and Sierpiński discovered that,
assuming the validity of the Generalised Continuum Hypothesis, every weakly
inaccessible cardinal  is such that ↵�<  (8↵, � < ) (213), and the weakly
inaccessible cardinals that satisfy this extra condition were eventually called
strongly inaccessible cardinals. Accordingly, the analogous version of axiom
AWI for the strong inaccessible cardinals was considered, and soon the name
‘Axiom of Inaccessibles’ became tied only to this new version of the axiom, which
we shall denote by the acronym AI. The status of both notions of inaccessibles
within the mathematical community in 1938 was concisely summarised by Tarski:

The concept of inaccessible cardinal number has long been
encountered in set-theoretic investigations [...]. Initially,
however, the unattainable figures were viewed more as a
curiosity; [...] Hausdorff expresses the opinion that these
numbers are of such an exorbitant size that they will hardly
ever come into consideration for the usual purposes of
set theory. It was only later that the meaning of the term
under consideration for the basic questions was recognised,
and in recent years it has turned out that the inaccessible
numbers are not without meaning for certain factual problems
of set theory, indeed they even play an essential role in some
investigations. For these reasons, it seems worthwhile today to
subject the concept of inaccessible cardinal number to a closer
examination. (222)
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Tarski was the first to realise that, in the presence of the axioms of ZFC
except the Axiom of Choice, the existence of arbitrarily large strongly inaccessible
cardinals is implied by the existence of arbitrarily large “inaccessible sets”, that is,
it is implied by the following statement:

(Tarski’s) Axiom of Inaccessible Sets (TA). (222, 223) For every set N ,
there is a set M such that:

. N 2M ;

. If X 2M and Y ⇢ X, then Y 2M ;

. If X 2M , then P (X) 2M ;

. If X ⇢M is so that |X| < |M |,
then X 2M .

Hence, “If one wants to ensure the existence of arbitrarily large cardinal
numbers that are strongly inaccessible, one must enrich the Zermelo-Fraenkel
system with a new principle, that is, formally speaking, with a new axiom”,
he argued (222). He also noticed that axiom TA implies the Axiom of Infinity,
the Axiom of Power Set and the Axiom of Choice, so that these may be removed
from the axiomatisation of the system ZFC+TA, which is why Tarki’s Axiom
was regarded as being “too strong” by many set-theorists, being treated as a
suspicious eccentricity in the following decades.

Some mathematicians saw Tarski’s “inaccessible sets” as a potential
opportunity to avoid proper classes in foundational areas of Mathematics,
especially in the booming area of Category Theory. In 1959, Alexander
Grothendieck, a member of the Bourbaki group at the time, presented his
Theory of Universes in the group’s internal newsletter La Tribu (118). That
theory consisted in an adaptation of Tarski’s notion of “inaccessible set” and the
introduction of an axiom for Set Theory, as we shall now describe.

In most applications of the notion of proper class, one does not actually need
these classes to contain all their elements. It is sufficient that such collections
contain the objects that are relevant for the specific context under consideration,
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and that they are closed under all basic set-theoretic operations. That idea is
formalised in the following definition:

Definition. (81, 5) A (Grothendieck) Universe is an inhabited set U such that
the following conditions hold:

. If x 2 U and if y 2 x, then y 2 U;

. If x, y 2 U, then {x, y} 2 U;

. If x 2 U, then P (x) 2 U;

. If {xi}i2I is a family in U so that
I 2 U, then

[

i2I

xi 2 U.

The four items above which axiomatise the notion of universe are closure
properties in essence, that is, they are statements that specify that if some
objects belong to the set U, then the products of the applications of some
mathematical operations to these objects must remain in U. Thus, one can deal
with sets within U without worrying too much about which set-theoretic
operations one may legitimately apply to these entities, and, in that regard,
the definition of a universe is meant to provide a set in which all Mathematics
can be done. It turns out that, within ZFC, the universes are precisely the sets of
the form V, where {V↵}↵2On

is Zermelo’s cumulative hierarchy of sets and where
 is a non-zero strongly inaccessible cardinal (242), and that every uncountable
universe forms a transitive model of ZFC (120, 242, 142). In particular, it follows
from Gödel’s Second Incompleteness Theorem that the ZFC system cannot prove
the existence of an uncountable universe, and, in fact, the countable set V! of
hereditarily finite sets is the only universe that can be constructed in ZFC.

Following the pattern of Tarski’s Axiom, Grothendieck proposed that the
following axiom should be added to Set Theory:

(Grothendieck’s) Axiom of Universes (AU). (81, 90) For every set x, there
is a universe U such that x 2 U.
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It is a standard exercise to prove that ZFC+AI, ZFC+TA and ZFC+AU
are equivalent, and these axiomatic systems are conjointly called the
Tarski-Grothendieck system (or TG). The following proposition reveals the
current status of the consistency of TG relative to that of ZFC:

Proposition. (5, 238)

(a) If ZFC is consistent, then ZFC + ¬AU is consistent;

(b) One cannot prove within ZFC that the consistency of ZFC implies the
consistency of TG. In standard logical notation, we have

ZFC 6` Con (ZFC)! Con (TG) .

Proof.

(a) Suppose M = (M,E) is a model of ZFC. If M has no uncountable universe
as an element, then M is a model of ZFC+¬AU. If M has an uncountable
universe U as an element, then U is of the form V, where  is an uncountable
strongly inaccessible cardinal in M, and taking 0 to be the least cardinal of
that kind in M, then V0 is a model of ZFC+¬AU.

(b) If we assume otherwise, then, since the consistency of ZFC is a theorem
of TG, then the consistency of TG is a theorem of TG (by modus ponens),
which is absurd by Gödel’s Second Incompleteness Theorem.

Therefore, by item (b), any possible proof of relative consistency of TG with
respect to ZFC would require the use of tools outside of the ZFC system.
Even so, since TG has been tested, sometimes inadvertently, by many set
theorists and logicians for nearly as much time as ZFC, and since no
contradiction has been found in that long appraisal, the TG system is largely
believed to be consistent (120). Besides, most proposed axiomatisations of Set
Theory featuring large cardinals imply the existence of strongly inaccessible

230



cardinals, so that axiom AI is regarded as one of the tamest in a long list of
large-cardinal axioms (239).

Grothendieck consistently employed axiom AU in order to avoid the use of
proper classes in his categorical treatment of Algebraic Geometry, and that
allowed him to define large categories as standard structures in a Bourbaki-like
fashion (118). He described such technique as follows, in the context of
Category Theory:

To avoid certain logical difficulties, we will here admit the
notion of Universe, which is a set “big enough” so that we do
not get out of it by the usual operations of set theory; an
“Axiom of Universes” guarantees that any object is in a
Universe [...]. Thus, the acronym Ens designates not the
category of all sets (a notion which has no meaning), but the
category of sets that are found in a given Universe 8 (which we
will not specify here in the notation). Similarly, Cat will
designate the category of categories that are found in the
Universe in question [...]. (90)

Along these lines, the source of the troubles that mathematicians have faced
when dealing with large structures (Section A.2) can be entirely eliminated, since
universes are plain, well-behaved sets, and since mathematical structures, small
or large, can be defined as standard ordered pairs (X,R) in TG (Section A.1),
with X and R being elements of some universe U (219). Even if an operation
leads a mathematical object outside of a given universe, the Axiom of Universes
guarantees that there is a bigger universe that contains that object. There is a
caveat to that approach: some universal constructs (limits, colimits, adjoints,
Kan extensions, etc.) are universe-dependent, as some concrete examples have
shown (235, 142). Luckily, most of these issues have been overcome by the
development of clever techniques (5, 152, 82, 142).

It is worth noting here that most Bourbaki members did not cope well with
Grothendieck’s innovative foundational proposals, mainly due to the fact that
the group had already committed itself to a rigid course of incremental
presentation with several already-published volumes (10). Additionally, the lack
8 We denote this category by Set in this thesis, as usual in English-language texts

(Example B.17).
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of a proof of relative consistency of AU with respect to ZFC caused some
members to worry that the introduction of AU would cause the loss of “empirical
certainty” of the axiomatic system (118). After many heated, shouted
discussions 9 at the École Normale Supérieure in 1959, mostly between
Grothendieck and Cartan, it was decided that Grothendieck would resign from
the group, and after that it took half a century for Bourbaki to finally introduce
the notion of category in the Éléments de mathématique series. Nevertheless,
the group agreed to release some of its internal papers to be published as an
appendix entitled Univers for the notes of the Séminaire de géométrie algébrique
du Bois Marie, directed by Grothendieck (5). Bourbaki’s concerns toward the
Theory of Universes have echoed and disseminated in the mathematical
community to this day, but, by contrast, Grothendieck’s approach to Algebraic
Geometry has been widely acclaimed.

The best argument for TG is based on its usefulness. Let us recall that the
Axiom of Choice was not well-received by many prominent constructivists
following its introduction by Zermelo in 1908 (244), but it eventually became
almost unanimously accepted in the mathematical community for pragmatic
reasons. As Martin-Löf put it:

Despite the strength of the initial opposition against it,
Zermelo’s axiom of choice gradually came to be accepted
mainly because it was needed at an early stage in the
development of several branches of mathematics, not only
set theory, but also topology, algebra and functional analysis,
for example. Towards the end of the thirties, it had become
firmly established and was made part of the standard
mathematical curriculum in the form of Zorn’s lemma. (156)

Hence, it was neither some major philosophical breakthrough on the nature of
“empirical certainty” nor some convincing heuristic evidence that provoked that
mood shift in favour of the AC, but rather a gradual acknowledgement that this
axiom vastly enriches Mathematics. As it turns out, the study of large cardinals
has been very fruitful in a number of areas of Mathematics (109), not only in
foundational, model-theoretic studies on Set Theory but also in many seemingly
9 Such intense discussions between Bourbaki members were quite common, and, curiously, they

very rarely culminated in someone’s resignation.
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unrelated areas such as Descriptive Set Theory, Measure Theory, Determinacy
Theory and Combinatorics (138). Furthermore, the notion of universe has proved
to be a valuable supporting tool in several important applications, for instance
in Wiles’ proof of the Taniyama-Shimura conjecture, in Deligne’s proof of the
Weil conjectures and in Faltings’ proof of the Mordell conjecture (158). Therefore,
the rationale for endorsing the AC applies for accepting TG as a valid mathematical
framework, at least to a certain degree.
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B
Concepts of Category Theory

This appendix serves as a reference to a number of basic definitions of
Category Theory that are employed in Chapters 1, 2 and 3, most crucially
in Section 3.6. Following the approach of Bourbaki (41), we shall first introduce
the notion of digraph and its associated basic concepts in Section B.1, and then
we shall define categories as digraphs with additional structure in Section B.2.
The remaining sections are devoted to three fundamental universal constructs in
Category Theory, namely the concepts of limit, colimit and quotient. We refer
the reader to (7) for a thorough account of Digraph Theory, and the works
(2, 6, 215, 220) are easy-to-read introductory texts on Category Theory in which
the reader can find further explanations on the concepts included here.

B.1 Digraphs

A digraph is an abstract structure that represents a set of vertices together
with the connections existing between these vertices, so that each such connection,
called an arrow, is expressly oriented from a vertex to another vertex.

Definition B.1. A directed graph or a digraph 1 is a set G endowed with a
set V and two functions i, t : G! V . We have the following notations and
terminology:

. We shall denote digraphs by boldface uppercase latin letters, such
as G,H ,C,D . . . ;

1 Many authors call this structure a directed multigraph or a multidigraph, reserving the
names ‘directed graph’ and ‘digraph’ to a more restricted notion.



. An arrow in G is an element of the set G. Arrows are denoted by lowercase
latin letters, such as f, g, h . . . ;

. A vertex in G is an element of the set V . Vertices are denoted by
uppercase latin letters, such as A,B, U, V, . . . . Whenever no particular
notation is attributed to the set of vertices V of G, it shall be denoted
by G0;

. The initial vertex function of G is the function i : G! V and the
terminal vertex function of G is the function t : G! V . Whenever no
particular notation is attributed to these functions, they shall be denoted
by iG and tG, respectively. For each arrow f in G, the initial vertex of f

is the image i (f) and the terminal vertex of f is the image t (f);

. For each A,B 2 V , the set of arrows in G with initial vertex A and with
terminal vertex B is denoted by

G

Arr (A,B), and the condition f 2
G

Arr (A,B)

is denoted by f : A G

�! B;

. A digraph G is finite (resp. vertex-finite, arrow-finite) if it has a
finite number of vertices and arrows (resp. a finite number of vertices, a
finite number of arrows). Otherwise, it is infinite (resp. vertex-infinite,
arrow-infinite);

. A subdigraph of G is a digraph S such that S ⇢ G, S0 ⇢ G0, iS ⇢ iG and
tS ⇢ tG. In that case, we also say that G contains S;

. A subdigraph S of G is full in G if every arrow in G whose initial and
terminal vertices belong to S0 is an arrow in S.

Our definition of digraph places greater emphasis on the set of arrows and
less on the set of vertices of the digraph. Such definitional choice is due to the
fact that we shall define the notion of category by use of the notion of digraph
(Definition B.15), bearing in mind the fact that the results of Category Theory
characteristically “subjugate the role of the mathematical object to the role of its
network of relationships” (157).
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Example B.2. Let V be a set. The empty digraph on V is the set ; endowed
with the set V and the functions i, t : ; ! V , and it is denoted by NullV .
In particular, if V = ;, then the empty digraph NullV = Null; is called the
null digraph, and if V is a singleton {X}, then the empty digraph
NullV = Null{X} is called the trivial digraph with vertex X.

Some digraphs may be fully described by graphical representations:

Example B.3. The graphical representation
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i
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h

??

g

��

f

-- E D
l

oo F

p

⌧⌧

C
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NN

n

OO

o

]]

G

q

]]

depicts the finite digraph G := {f, g, h, i, j, k, l,m, n, o, p, q} with set of vertices
given by G0 := {A,B,C,D,E, F,G} and with

8
<

:
iG := {(f,A) , (g,A) , (h,A) , (i, B) , (j, B) , (k,B) , (l,D) , (m,C) , (n,C) , (o, C) , (p, F ) , (q,G)} ,

tG := {(f,A) , (g, C) , (h,B) , (i, A) , (j, A) , (k,D) , (l, E) , (m,A) , (n,D) , (o,A) , (p,G) , (q, F )} .

That representation is by no means unique. As a matter of fact, a vertex and an
arrow may appear in different locations in a graphical representation of a
digraph, with the provision that repeated arrows must appear with the same
initial and terminal vertices assigned to them to keep consistency. Also,
some parts of a digraph may appear completely disconnected from the rest of
the digraph. Accordingly, a digraph may have infinitely many different graphical
representations.
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By arbitrarily deleting a few vertices and a few arrows, we obtain the
following subdigraph S of G:
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]]

By abuse of language, we often say that a graphical depiction of a digraph
is the digraph itself.

Example B.4. Sometimes we are mostly interested in the shape of the digraph
and we omit the labels of the vertices and arrows. For example, we may speak of
the infinite digraph

• //

✏✏

��

•

�� ��

// •

����

//
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����

// · · ·

}}

• • • • · · ·
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??

•

OO

oo

__ ??

// •

??__

// •

??__

//

OO

· · ·

aa

When such label omission is performed, there can be no repeated vertices or
repeated arrows, though, meaning that any two drawn dots represent different
vertices of the digraph and any two drawn arrows represent different arrows of
the digraph.

One may straightforwardly obtain new digraphs from known ones, as the
following definition shows:
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Definition B.5. Let G and H be two digraphs.

. The opposite digraph of G is the digraph (G,G0, iop, top), where iop and
top are the functions of type G! G0 given by

iop(f) := tG(f) and top(f) := iG(f) ,

and it is denoted by G
op;

. The product digraph of G and H is the digraph

(G⇥H ,G0⇥H0, iG⇥H , tG⇥H) ,

where iG⇥H , tG⇥H : G⇥H ! G0⇥H0 are the functions given by

iG⇥H(f, g) := (iG(f) , iH(g)) and tG⇥H(f, g) := (tG(f) , tH(g)) ,

and it is denoted by G⇥H , by abuse of language.

Example B.6. The opposite digraph G
op of the finite digraph G described in

Example B.3 is given by
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The primary tools for comparing digraphs are given in the
following definition:

Definition B.7. Let G and H be two digraphs.

. A morphism � : G!H is a 4-tuple

� = (�0 : G0!H0,�Arr : G!H ,G,H)

such that iH� �Arr= �0� iG and tH� �Arr= �0� tG, that is, such that for
every arrow f : A G

�! B, we have �Arr(f) : �0(A)
H

�! �0(B);
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. By abuse of language, for each A 2 G0 and each f 2 G, the vertex �0(A) and
the arrow �Arr(f) are denoted simply by � (A) and � (f). It is customary to
state the definition of a morphism � : G!H as if it were a single function,
specifying its values at every object and morphism in G and omitting the
mention of the functions �0 and �Arr;

. The shape of a morphism � : G!H is the digraph G;

. A morphism � : G!H is finite (resp. vertex-finite, arrow-finite) if its
shape is finite (resp. vertex-finite, arrow-finite);

. A morphism � : G!H is surjective if both functions �0 and �Arr

are surjective;

. An isomorphism � : G!H is a morphism � of that type such that the
functions �0 and �Arr are bijective. The digraphs G and H are
isomorphic if there is an isomorphism � : G!H .

Example B.8. Let G be a digraph and let S be a subdigraph of G.
The canonical immersion on G induced by S is the morphism � : S ! G

given by � (f) := f (8f 2 S) and � (A) := A (8A 2 S0). Hence, every subdigraph
of G gives rise to a morphism which is inherently associated to it.

Example B.9. Let G be the finite digraph described in Example B.3, let H be
a digraph and let � : G!H be a morphism. The digraph

� (B)

�(k)

''

�(i)

((

�(j)

66

� (A)
�(h)

oo

� (A)

�(h)
;;

�(g)

  

�(f)
)) � (E) � (D)

�(l)
oo � (F )

�(p)

⌧⌧

� (C)

�(m)

LL

�(n)

OO

�(o)

``

� (G)

�(q)

\\
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is a subdigraph of H . As a particular example, we might define H to be
the digraph

L

u

⌫⌫

v

��

N
y

qq

K
r

--

s

>>

t
&&

M
w

dd

x

>>

and we might define � to be as follows:

8
>><

>>:

� (A) ,� (D) ,� (F ) ,� (G) := K

� (B) ,� (E) := L

� (C) := M

and

8
>>>>>>>><

>>>>>>>>:

� (f) ,� (p) ,� (q) := r

� (h) ,� (l) := s

� (g) := t

� (i) ,� (j) ,� (k) := v

� (m) ,� (n) ,� (o) := w

Note that the vertex N and the arrows u, x and y in H are not images of �.

A morphism between digraphs may be described graphically, as the
following example shows:

Example B.10. The graphical representation

B

i

✏✏

Q

t

✏✏

A

f

99

g
..

h

��

�

=) P

r

99

s
..

s

��

C R

depicts a morphism � : G!H , where G is the digraph

B

i

✏✏

A

f

88

g
..

h

��

C
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and H is a digraph that contains the digraph

Q

t

✏✏

P

r

88

s
..

s

��

R

Such morphism � is given by

8
>><

>>:

� (A) := P ,

� (B) := Q ,

� (C) := R

and

8
>><

>>:

� (f) := r ,

� (g) ,� (h) := s ,

� (i) := t .

That description of � is still not complete, since the representation does not
provide the codomain H of �. When that codomain is not specified in the
context, we assume � is surjective, that is, we assume that the codomain is
entirely shown in the right hand side of the drawing.

In many applications, it is necessary to keep track of ordered pairs of
arrows (f, g) such that the second arrow ends where the first begins:

Definition B.11. Let G be a digraph. We call the binary relation

LinkG := {(f, g) 2 G⇥G | tG (g) = iG (f)}

on G the linking relation on G. We have the following terminology:

. Two arrows f and g in G are linked in G if (f, g) 2 LinkG or
(g, f) 2 LinkG;

. The pair of arrows (f, g) 2 G⇥G is composable in G if (f, g) 2 LinkG.

242



Note that LinkG
op = (LinkG)

�1.

Example B.12. Let G be the finite digraph described in Example B.3.
The linking relation on G is given by

LinkG = {(f, f) , (g, f) , (h, f) , (m, g) , (n, g) , (o, g) , (i, h) , (j, h) , (k, h) , (h, i) ,

(h, j) , (l, k) , (h,m) , (l, n) , (f, o) , (g, o) , (h, o) , (q, p) , (p, q)} .

A simple yet extremely important concept in Digraph Theory is given in
the following definition:

Definition B.13. Let G be a digraph, let A and B be two vertices in G and
let n 2 N0. A walk from A to B in G (of length n) is an ordered (n+ 2)-tuple
w = (A, f1 . . . fn, B), where f1 . . . fn is a finite sequence of arrows in G such that:

. either n = 0 and A = B

. or n > 1, iG(f1) = A, (fi+1, fi) 2 LinkG (8i 2 [1, n)N) and tG(fn) = B.

In that case, we denote w : A G

�!
walk

B and we define iG(w) := A and tG(w) := B.

A parallel pair of walks in G is a pair of walks w1, w2 : A
G

�! B which have
the same initial and terminal vertices.

Example B.14. Let G be the finite digraph described in Example B.3.
The following tuples are walks in G:

. c1 := (E, ;, E)

(the trivial cycle around E);

. c2 := (A, f, f, f, A) ;

. c3 := (C, n,D) ;

. c3 := (A, h, j, h, k, l, E) ;

. c4 := (C, o, f, g,m, h, k,D) .
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B.2 Categories

Perhaps the most influential and impactful mathematical theory since the
mid-20th century has been Eilenberg and Mac Lane’s Category Theory (130).
Introduced in 1945 in order to study the notion of natural isomorphism,
and ab initio showing applications to Algebraic Topology and Homological
Algebra (70), this field has provided a powerful conceptual framework under
which many frequently recurrent patterns in a variety of areas of Mathematics
could be identified and described. Its range of applications has flourished since
its introduction, reaching fields of study as diverse as Algebraic Geometry,
Mathematical Physics, Computer Science and the Foundations of Mathematics
(130, 119). In this section, we shall present a compendium of basic definitions of
Category Theory for reference purposes.

Definition B.15. A category is a digraph C endowed with a function
� : LinkC ! C (Definition B.11) such that:

. If f : A C

�! B and g : B C

�! C are arrows, then g � f : A C

�! C;

. If f : A C

�! B, g : B C

�! C and h : C C

�! D are arrows, then we
have h � (g � f) = (h � g) � f ;

. For each vertex A in C, there is an arrow idA : A
C

�! A such that idA� f = f

and g � idA= g for all arrows f, g 2 C so that tC(f) = iC(g) = A. One can
easily verify that the arrow idA is unique.

We have the following notations and terminology:

. The vertices in C are called objects in C;

. The arrows in C are called morphisms in C;

. The composition operation on C is the function � : LinkC ! C.
Whenever no particular notation is attributed to that function, it shall be
denoted by �C ;
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. The sets of the form
C

Arr (A,B) (Definition B.1) shall be denoted by
C

Hom (A,B), where A and B are two objects in the category C;

. A category C is finite (resp. object-finite) if its underlying digraph is
finite (resp. vertex-finite). Otherwise, it is infinite (resp. object-infinite);

. A subcategory of C is a subdigraph S of the underlying digraph of C such
that S is a category when endowed with the restriction �C �Link(S). In that
case, we also say that C contains S;

. A digraph in C is a subdigraph G of the underlying digraph of C.
The subcategory of C generated by G is the smallest subcategory of
C containing all the vertices and arrows of G, and it shall be denoted
by CatC(G). We have (CatC(G))0 = G0, that is, the category CatC(G) is
obtained from G only by introducing arrows to G;

. The (�C-)composition of a walk (A, f1 . . . fm, B) in C of length m > 2

(Definition B.13) is the composition fm � · · · � f1 : A
C

�! B;

. A digraph G in C commutes or is commutative (in C) if any two parallel
walks w1, w2 : A

G

�!
walk

B of lengths > 2 have the same composition in C.

The notion of category is a generalisation of the notion of monoid. Recall
that a monoid is a set M endowed with an associative operation ⇥M on M that
has an identity element 1M in M (Definition 1.5). In a similar way, as we have
stated above, a category is a digraph C endowed with an associative (partial)
operation �C on C that has an identity element idA for each object A in C. As a
matter of fact, every monoid M may be seen as a category with only one object
whose (endo)morphisms are the elements of M and whose composition operation is
the operation of M . Thus, a category is an assemblage of interconnected monoids,
in a sense.

Example B.16. Note that LinkNull;= ; (Example B.2; Definition B.11). The null
category is the null digraph Null; endowed with the empty function � : ; ! ;,
and it shall be denoted by Null; by abuse of language.
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Example B.17. A large category is a category such that the existence of
its set of morphisms implies a contradiction in ZFC. Some examples of large
categories are the following:

. The category of sets is the category whose objects are the sets, whose
morphisms are the functions between sets and whose composition operation
is the usual functional composition. This category is denoted by Set;

. The category of semigroups, SGrp (Definition 1.2);

. The category of monoids, Mon (Definition 1.5);

. The category of groups, Grp (Definition 1.7);

. The category of ordered sets, SetOrd (Definition 1.26);

. The category of topological spaces, Top (Definition 1.36);

. The category of rngs, Rng (Definition 2.1);

. The category of rings, Ring (Definition 2.5).

The category Grp is a subcategory of Mon, which in turn is a subcategory
of SGrp. The category Ring is a subcategory of Rng. In Sections A.2 and A.3
of Appendix A, we discuss how large structures are usually dealt with in the
ZFC, NBG and TG axiomatic frameworks.

Example B.18. Let I = {i, j, k, . . . } be a set. The discrete category on I is
the digraph

i

idi

-- j

idj

-- k

idk

,, l

idl

-- · · ·

endowed with the composition operation given by idx � idx := idx (8x 2 I), and
we shall denote it by Disc (I). A category C is discrete if there is a set I such
that C = Disc (I).

One may prove that for any digraph G, there is a smallest 2 category C

such that G is a digraph in C and that no morphism in G is the �C-composition
2 Up to isomorphism (Definition B.25).
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of a walk in G of length > 2. With that, we say that each graphical
representation of G (Section B.1) is a graphical representation of C.
Note that no �C-identity morphism is in G.

Example B.19. The graphical representation

C
f

// D
g

// E

depicts the finite category C whose underlying digraph is

C
f

//

idC

⇢⇢

h

99

D
g

//

idD

⇢⇢

E

idE

⇢⇢

and whose composition operation is given by

. g � f := h ;

. idC � idC := idC ;

. f � idC := f ;

. h � idC := h ;

. idD � idD := idD ;

. idD � f := f ;

. g � idD := g ;

. idE � idE := idE ;

. idE � g := g ;

. idE � h := h .

By abuse of language, we often say that a graphical depiction of a category
is the category itself.

Example B.20. Sometimes we are mostly interested in the shape of a category
and we omit the labels of the vertices and arrows. For example, we may speak of
the infinite category

. . .

((

. . .

•

))

•

66

•

))

55

•

55

•

((. . .

66

. . .
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When such label omission is performed, there can be no repeated vertices or
repeated arrows, though, meaning that any two drawn dots represent different
objects of the category and any two drawn arrows represent different morphisms
of the category.

One may straightforwardly obtain new categories from known ones, as the
following definition shows:

Definition B.21. Let C and D be two categories.

. The opposite category of C is the digraph C
op (Definition B.5) endowed

with the opposite operation induced by �C , which is the function

�
op
C

: LinkC
op = (LinkC)

�1
�! C

given by f �op
C

g := g �C f . We always assume that the opposite digraph
C

op is endowed with the operation �op
C

, turning C
op into a category;

. The product category of C and D is the product digraph C ⇥D

(Definition B.5) endowed with the product operation induced by �C
and �D, which is the function

�
C⇥D

: LinkC⇥D�! C ⇥D

given by (f, g) �
C⇥D

(f 0, g0) := (f �Cf 0, g �Dg0). We always assume that the
product digraph C ⇥D is endowed with the operation �

C⇥D

, turning
C ⇥D into a category.

Some morphisms in a category C deserve special attention:

Definition B.22. Let C be a category.

. A morphism f : A C

�! B is an endomorphism (in C) if A = B. In that
case, we say that f : A C

�! A is an endomorphism of A;

. A morphism f : A C

�! B is mono or is a monomorphism (in C) if for all
objects C in C and all morphisms g, h : C C

�! A, the equation f � g = f � h

implies g = h;
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. A morphism f : A C

�! B is epi or is an epimorphism (in C) if for
all objects C in C and all morphisms g, h : B C

�! C, the equation
g � f = h � f implies g = h;

. A morphism f : A C

�! B is iso or is an isomorphism (in C) if there is a
morphism g : B C

�! A such that g � f = idA and f � g = idB. In that case,
the morphism g is unique, it is called the inverse of f (in C) and it is
denoted by f�1;

. An endomorphism f : A C

�! A is an automorphism of A (in C) if it is iso;

. Two objects A and B in C are isomorphic (in C), or simbolically A
C

⇠= B,
if there is an isomorphism f : A C

�! B. One can easily verify that the
binary relation

C

⇠= := {(A,B) 2 C0 ⇥C0 | A is isomorphic to B in C}

is an equivalence relation on C0.

A morphism f : A C

�! B is mono (resp. epi, iso) if, and only if, it is epi
(resp. mono, iso) in C

op.

Example B.23. (2) In Set, the monomorphisms are the injective functions,
the epimorphisms are the surjective functions, and the isomorphisms are the
bijective functions.

Example B.24. (2) In Ring, the monomorphisms are the injective homo-
morphisms and the isomorphisms are the bijective homomorphisms. Every
surjective homomorphism between rings is epi, but not all epimorphisms
are surjective. For instance, since any homomorphism of type Q Ring

�! R is entirely
determined by its values on the integers, where R is any ring, note that the
canonical inclusion of type Z! Q is an epimorphism in Ring that is
not surjective.
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Definition B.25. Let C and D be two categories. A functor F : C !D is a
morphism between the underlying digraphs (Definition B.7) such that:

. F (g � f) = F (g) � F (f) for every pair (f, g) of composable morphisms in C;

. (8C 2 C0) F (idC) = idF(C) .

We have the following notations and terminology:

. We denote the function FArr : C !D (Definition B.7) by FHom;

. A functor F : C !D is faithful if for all X, Y 2 C0, the restriction

FHom � (
C

Hom (X, Y )) :
C

Hom (X, Y )!
D

Hom (F (X) ,F (Y ))

is injective;

. The shape of a functor F : C !D is the category C;

. A functor is finite (resp. object-finite) if its shape category is finite
(resp. object-finite);

. A functor F : C !D is surjective if both functions F0 : C0!D0 and
FHom : C !D are surjective;

. An isomorphism F : C !D is a functor F of that type such that the
functions F0 : C0!D0 and FHom : C !D are bijective. The categories C

and D are isomorphic if there is an isomorphism F : C !D.

Note that the equation F (g � f) = F (g) � F (f) is only valid when it is
known beforehand that the pair (f, g) is composable. Case in point, there may be
a composable pair (F (f) ,F (g)) in D such that the pair (f, g) is not composable
in C, and, in that case, the term F (g � f) is meaningless. Three examples of
functors are discussed at length in Section 3.6.

Example B.26. Let C be a category. A functor of type Null;! C (Example B.16)
is said to be a null functor of such type.
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Example B.27. Let C be a category and let G be a digraph in C.
The canonical immersion on C induced by CatC(G) (Definition B.15)
is the functor F : CatC(G)! C given by F (f) := f (8f 2 CatC(G)) and
F (C) := C (8C 2 G0).

Example B.28. Let C be the finite category described in Example B.19, let D

be a category and let F : C !D be a functor. The category

F (C)
F(f)

// F (D)
F(g)

// F (E)

is a subcategory of D. As a particular example, we might define D := Set

(Example B.17) and F to be the functor given by
8
<

:
F (C) ,F (E) := R ,

F (D) := R⇥ R
and

8
<

:
F (f) (x) := (x, 0) ,

F (g) (x, y) := y .

Since F (h) = F (g � f) = F (g) � F (f), the image F (h) : R! R is the constant
function with value 0.

A functor between categories may be described graphically, as the following
example shows:

Example B.29. The graphical representation

A
f4

//

g1

✏✏

f1

��

D

g4

✏✏

X
q

//

r

✏✏

p

��

Y

idY

✏✏

B
f2

//

g2

✏✏

C

g3

✏✏

f3

??

F=) Y
idY

//

idY

✏✏

Y

u

✏✏

idY

??

E
h4

// H

h3
~~

Y
idY

// Y

t
��

F
h2

//

h1

>>

G Y
s

//

idY

>>

Z
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depicts a functor F : C !D, where C is the finite category

A
f4

//

g1

✏✏

f1

~~

D

g4

✏✏

B
f2

//

g2

✏✏

C

g3

✏✏

f3

>>

E
h4

// H

h3
~~

F
h2

//

h1

>>

G

and D is a category that contains the category

X
q

//

r

✏✏

p

~~

Y

idY

✏✏

Y
idY

//

idY

✏✏

Y

u

✏✏

idY

??

Y
idY

// Y

t
��

Y
s

//

idY

>>

Z

Such functor F is given by

8
>><

>>:

F (A) := X ,

F (B) ,F (C) ,F (D) ,F (E) ,F (F ) ,F (H) := Y ,

F (G) := Z

and
8
>><

>>:

F (f1) := p ,F (f4) := q ,F (g1) := r ,

F (f2) ,F (f3) ,F (g2) ,F (g4) ,F (h1) ,F (h4) := s ,

F (h2) := s ,F (h3) := t ,F (g3) := u .

That description of F is still not complete, since the representation does not
provide the codomain D of F . When that codomain is not specified in the
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context, we assume F is surjective, that is, we assume that the codomain is
entirely shown in the right hand side of the drawing.

The following proposition shows that functors preserve isomorphisms:

Proposition B.30. (2) Let F : C !D be a functor between categories.
If f : C C

�! D is an isomorphism, then F (f) : F (C) D

�! F (D) is an
isomorphism.

Proof. Since f is an isomorphism in C, there is a morphism g : C C

�! D so that
g � f = idC and f � g = idD, and that gives us

F (g) � F (f) = F (g � f) = F (idC) = idF(C)

and

F (f) � F (g) = F (f � g) = F (idD) = idF(D) ,

proving that F (f) is an isomorphism in D.

B.3 Limits and colimits

Many mathematical constructions are defined by universal properties,
loosely meaning that they are specified, up to isomorphism, by their relationship
toward all related structures. In this section, we shall present two dual notions of
that kind, the limit and the colimit of a functor, which are considerably
relevant almost everywhere in Mathematics. Truth be told that only the limits
play a meaningful role in the main body of this work, but the colimits were also
included here since these two concepts are almost always presented together
in literature.

253



Definition B.31. Let I and C be two categories, let F : I ! C be a functor
and let V be an object in C. A cone over (resp. under) F with vertex V is
a family

� = {�i : V
C

�! F (i)}
i2I0

(resp. � = {�i : F (i) C

�! V }
i2I0

)

such that for each morphism k : i I

�! i0, the digraph

V
�i

}}

�
i0

""

F (i)
F(k)

// F (i0)

 
resp.

F (i)

�i
!!

F(k)
// F (i0)

�
i0

||

V

!

in C is commutative. A limit cone over (resp. under) F is a cone

� = {�i : L
C

�! F (i)}
i2I0

(resp. � = {�i : F (i) C

�! L}
i2I0

)

over (resp. under) F with a vertex L that satisfies the universal property of
limits (resp. colimits) in C, that is, it is such that for each cone � over
(resp. under) F with vertex V , there is a unique morphism � : V C

�! L

(resp. � : L C

�! V ) such that the digraph

L

�i

✏✏

V
�i

//

�

77

F (i)

 
resp.

F (i)

�i

✏✏

�i
// V

L
�

77

!

in C is commutative for all i 2 I0. In that case, the morphism � is called the
limit lifting (resp. colimit lowering) of the cone � along �.

The term ‘limit lifting’ (resp. ‘colimit lowering’) comes from a physical
analogy, as we shall describe. In the second diagram shown in Definition B.31,
one may imagine that the morphism �i of the limit cone � represents the
direction of the gravitational field in the surroundings. Thus, in order to
reorientate the morphism �i of the cone � into the direction of the morphism �,
one would need to lift (resp. lower) the terminal (resp. initial) end of the
morphism �i from the object F (i) to the object L.
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When a functor F : I ! C has a limit cone over (resp. under) it with
vertex L, then L is unique up to a unique isomorphism. More precisely, if

� = {�i : L
C

�! F (i)}
i2I0

and �0 = {�0
i
: L0 C

�! F (i)}
i2I0

(resp. � = {�i : F (i) C

�! L}
i2I0

and �0 = {�0
i
: F (i) C

�! L0}
i2I0

)

are limit cones over (resp. under) F , then there is a unique isomorphism
↵ : L C

�! L0 such that the digraph

L
�i

''

↵

✏✏

F (i)

L0
�
0
i

77

0

B@resp.

L

↵

✏✏

F (i)
�
0
i

''

�i

77

L0

1

CA

in C is commutative for all i 2 I. With that in mind, we say that the object L

(or any object in C isomorphic to L) is the limit (resp. colimit) of F (in C)
and we denote it by

C

Lim (F) (resp.
C

Colim (F)). We shall denote the limit cone �
over (resp. under) F by

C

lim (F) (resp.
C

colim (F)).

Remark B.32. It has been observed that limits are unique up to unique
isomorphism. That fact has a sort of converse: if � = {�i : L

C

�! F (i)}
i2I0

is a
limit cone over F with vertex L and if f : L0 C

�! L is an isomorphism, then the
family {�i � f : L0 C

�! F (i)}
i2I0

is a limit cone over F with vertex L0.

The reader may have noticed that only the “shape” of the category I plays
an important role in Definition B.31, that is, the labels of the objects and the
morphisms of I are irrelevant to the essence of the limit and the colimit of a
functor F : I ! C. That is the reason why the shape I of F is usually called
the index category of F in this context. Thus, graphical representations of I
usually omit all labels as shown in Example B.19, but whenever it is necessary to
assign labels to the objects of I, they are often denoted by lowercase latin letters,
such as i, j, k . . . , just as one would often denote the elements of the index set of
a family.
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Definition B.33.

. A category C is complete (resp. cocomplete) if every 3 functor F with
codomain C has a limit (resp. colimit) in C. A category is bicomplete if it
is complete and cocomplete;

. A category C is finitely complete (resp. finitely cocomplete) if every
finite functor F with codomain C has a limit (resp. colimit) in C. A category
is finitely bicomplete if it is finitely complete and finitely cocomplete.

The most fundamental example of a bicomplete category is the following:

Example B.34. (190) The category of sets, Set, is bicomplete. In fact, given a
functor F : I ! Set, we have:

(a) Let L be the set of cones � = {�i : {;}
Set

�! F (i)}
i2I0

over F , all with the
common vertex {;}, and let � = {�i : L

Set

�! F (i)}
i2I0

be the family of
morphisms in Set given by �i(�) := �i(;). The family � is a limit cone over
F with vertex L;

(b) Let ⇠ be the smallest equivalence relation on the disjoint union
G

i2I0

F (i)

such that

(8i, j 2 I0) (8x 2 F (i)) (8f : i I

�! j) (x, i) ⇠ (F (f) (x) , j) ,

let L :=
⇣G

i2I0

F (i)
⌘
/ ⇠ and let � = {�i : F (i) Set

�! L}
i2I0

be the family of

morphisms in Set given by �i(x) := (x, i) / ⇠. The family � is a limit cone
under F with vertex L.

3 If the category C was defined in view of a universe U (Appendix A, Definition A.3) so that
C,C0 ⇢ U , then we restrict the functors F considered in this definition, requiring the domain
I of F to be an element of U . The reader shall see that this assumption is not at all relevant
for our discussions.
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Example B.35. (2, 151) Other large categories mentioned in Example B.17 also
turn out to be bicomplete, namely the categories Mon, Top, Grp, Ring,
and Rng.

Some functors do not change the status of certain kinds of limits or colimits:

Definition B.36. Let C and D be two categories and let K : C !D be
a functor.

. The functor K sends limits (resp. finite limits, object-finite limits)
in C to limits in D if for every index category I, every functor
(resp. every finite functor, every object-finite functor) F : I ! C and every
limit cone � = {�i : V

C

�! F (i)}
i2I0

over F , the cone

K (�) = {K (�i) : K (V ) D

�! K (F (i))}
i2I0

over the composition K � F : I !D is a limit cone over K � F . If C = D,
we say simply that K : C ! C preserves limits (resp. finite limits,
object-finite limits) in C;

. The functor K sends colimits (resp. finite colimits, object-finite
colimits) in C to colimits in D if for every index category I, every
functor (resp. every finite functor, every object-finite functor) F : I ! C

and every limit cone � = {�i : F (i) C

�! V }
i2I0

under the functor F ,
the cone

K (�) = {K (�i) : K (F (i)) D

�! K (V )}
i2I0

under the composition K � F : I !D is a limit cone under K � F .
If C = D, we say simply that K : C ! C preserves colimits
(resp. finite colimits, object-finite colimits) in C;

. The functor K : C !D is left-exact (resp. right-exact) if C is finitely
complete and if K sends finite limits (resp. finite colimits) in C to limits
(resp. colimits) in D.
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In Theorems 3.54 and 3.56, we show that two important functors in the
Theory of Rayner Rngs preserve object-finite limits, and these functors also happen
to be left-exact.

B.4 Notable limits and colimits

The simplest types of limits and colimits arise when null functors
F : Null;! C are considered:

Definition B.37. Let C be a category. A terminal (resp. initial) object in C

is a limit (resp. colimit) of the null functor of type Null;! C (Example B.26).
When it exists, this terminal (resp. initial) object is denoted by 1 (resp. 0),
its corresponding limit cone is empty, and it satisfies the universal property of
terminal (resp. initial) objects in C, that is, it is such that for every object V
in C, there is a unique morphism of type V C

�! 1 (resp. 0 C

�! V ).

Functors with discrete shapes (Example B.18) give rise to limits and colimits
of the utmost importance in Mathematics, which extract the essence of the notions
of Cartesian product and disjoint union of sets:

Definition B.38. Let C be a category, let I = {i0, j0, k0, . . . } be a set and let
{Xi}i2I be a family of objects in C. A product (resp. coproduct) of {Xi}i2I

in C is a limit (resp. colimit) of the functor F : Disc (I)! C (Example B.18)
given by

i0

id
i0

,, j0

id
j0

,, k0

id
k0

++ · · ·
F=) Xi0

idX
i0

(( Xj0

idX
j0

(( Xk0

idX
k0

''

· · ·

When it exists, this product (resp. coproduct) is denoted by
CY

i2I

Xi (resp.
Ca

i2I

Xi),

and its corresponding limit cone consists of a family of projections
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(resp. injections) that satisfies the universal property of products
(resp. coproducts) in C, that is, it consists of a family

� =
n
�i :

CY

i2I

Xi

C

�! Xi

o

i2I

✓
resp. � =

n
�i : Xi

C

�!

Ca

i2I

Xi

o

i2I

◆

such that for each family of morphisms � = {�i : V
C

�! Xi}i2I

(resp. � = {�i : Xi

C

�! V }
i2I) with vertex V , there is a unique product lifting

� : V C

�!

CY

i2I

Xi (resp. coproduct lowering � :
Ca

i2I

Xi

C

�! V ) such that

the digraph
CY

i2I
Xi

�i

✏✏

V
�i

//

�

99

Xi

0

@resp.

Xi

�i

✏✏

�i
// V

Ca

i2I
Xi

�

99 1

A

in C is commutative for all i 2 I.

If I = {i01, i
0
2, . . . , i

0
n
} is a finite set, then the product

CY

i2I

Xi (resp. the

coproduct
Ca

i2I

Xi) is also denoted by

Xi
0
1
⇥Xi

0
2
⇥ · · ·⇥Xi0n (resp. Xi

0
1
tXi

0
2
t · · · tXi0n) .

Example B.39. (61, 43) Let R and S be two rngs. We shall provide a
construction 4 for the colimit R t S in Rng. We may assume, without loss of
generality, that the rngs R and S are disjoint, since the rng R (resp. S)
is isomorphic to the Cartesian product R⇥ {1} (resp. S ⇥ {2}) endowed with
the operations

(r, 1) + (r0, 1) := (r + r0, 1) (resp. (s, 2) + (s0, 2) := (s+ s0, 2))
and

(r, 1) (r0, 1) := (rr0, 1) (resp. (s, 2) (s0, 2) := (ss0, 2)) ,

4 The essence of this example is usually described in literature within the context of the
Theory of R-Algebras. Our description of the coproducts in Rng is a simple adaptation
of the construction of the so-called free products of R-algebras.
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and since the rngs R⇥ {1} and S ⇥ {2} are disjoint. Let (R [ S)⇤ be the set of
finite sequences p := p1p2 . . . pn in R [ S, not including the empty sequence,
such that the conditions pi2 R and pi+12 S are equivalent for all i 2 [1, n� 1]N,
and let R t S be the set of commutative, formal sums of elements of (R [ S)⇤:

R t S :=
n
O,

kX

i=1

ci p
i
| k 2 N, ci2 Z� {0} (8i) , pi2 (R [ S)⇤ (8i)

o
,

where
kX

i=1

ci p
i is the formal sum notation for the function f : (R [ S)⇤! Z

with finite support {pi | i 2 [1, k]N} such that f (pi) := ci (8i), and where
O : (R [ S)⇤! Z is the constant function with value 0. To end the construction,
endow R t S with the pointwise addition operation (f + g) (x) := f (x) + g (x)

and with the multiplication operation given by

⇣ kX

i=1

ci p
i

1 . . . p
i

mi

⌘
·

⇣ lX

j=1

dj q
j

1 . . . q
j

nj

⌘
:=
X

i2[1,k]N
j2[1,l]N

cidj rij ,

where

rij :=

8
<

:
pi1 . . . p

i

mi
, qj1 . . . q

j

nj
if pi

mi
, qj1 62 R and pi

mi
, qj1 62 S ,

pi1 . . . p
i

mi�1, (p
i

mi
qj1) , q

j

2 . . . q
j

nj
otherwise.

and let �1 : R! R t S and �2 : S ! R t S be the canonical homomorphisms
given by

�1(r) (x) :=

8
><

>:

1 if x = r ,

0 if x 2 (R [ S)⇤� {r} ,

and �2(s) (x) :=

8
><

>:

1 if x = s ,

0 if x 2 (R [ S)⇤� {s} .

With these settings, we have that R t S is a rng, and it is a coproduct of R

and S in Rng with injections �1 and �2.

Functors whose shapes are generated by parallel pairs of morphisms give rise
to important limits and colimits:
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Definition B.40. Let C be a category and let f, g : C C

�! D be two
morphisms. An equaliser (resp. coequaliser) of f and g in C is a limit
(resp. colimit) of the functor F given by

•
!!

==

•
F=) C

f

""

g

==

D

whose codomain is C. When it exists, this equaliser (resp. coequaliser) is denoted
by

C

Eq (f, g) (resp.
C

Coeq (f, g)), and its corresponding limit cone consists of an
equaliser morphism (resp. coequaliser morphism) Ceq (f, g) (resp. Ccoeq (f, g))
that satisfies the universal property of equalisers (resp. coequalisers) in C,
that is, it consists of a morphism

Ceq (f, g) :
C

Eq (f, g) C

�! C (resp. Ccoeq (f, g) : D C

�!
C

Coeq (f, g))

such that the digraph

C
Eq (f, g)

Ceq(f,g)
// C

f

��

g

@@

D

 
resp. C

f

��

g

@@

D

Ccoeq(f,g)
//

C
Coeq (f, g)

!

in C commutes and such that for each morphism � : V C

�! C (resp. � : D C

�! V )
making the digraph

V �
// C

f

��

g

@@

D

 
resp. C

f

��

g

@@

D �
// V

!

in C commute, there is a unique equaliser lifting � : V C

�!
C

Eq (f, g)
(resp. coequaliser lowering � :

C

Coeq (f, g) C

�! V ) such that the digraph

C
Eq (f, g)

Ceq(f,g)
✏✏

V
�

//

�

77

C

 
resp.

D

Ccoeq(f,g)
✏✏

�
// V

C
Coeq (f, g)

�

77

!

in C commutes.

The fourth important type of limit-colimit pair that we shall define in this
appendix may be seen as a generalisation of the product-coproduct conceptual pair:
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Definition B.41. Let C be a category and let f : C1
C

�! P and g : C2
C

�! P

(resp. f : P C

�! C1 and g : P C

�! C2) be two morphisms. A pullback
(resp. pushout) of f and g in C is a limit (resp. colimit) of the functor F

given by
•

✏✏

C2

g

✏✏

F=)

• // • C1
f

// P

0

BB@resp.

• //

✏✏

• P
f

//

g

✏✏

C1

F=)

• C2

1

CCA

whose codomain is C. When it exists, this pullback (resp. pushout) is denoted by
C1 ⇥

f,g

C2 (resp. C1
C

t
f,g

C2) and it is also called the fibred product

(resp. fibred coproduct 5) of C1 and C2 with respect to f and g (in C).
Its corresponding limit cone consists of a pair of morphisms

f : C1
C

⇥
f,g

C2
C

�! C2 and g : C1
C

⇥
f,g

C2
C

�! C1

�
resp. f : C2

C

�! C1
C

t
f,g

C2 and g : C1
C

�! C1
C

t
f,g

C2

�

that satisfies the universal property of pullbacks (resp. pushouts) in C,
that is, it is such that the pullback square (resp. pushout square)

C1
C

⇥
f,g

C2
f

//

g

✏✏

C2

g

✏✏

C1
f

// P

0

BB@resp.

P
f

//

g

✏✏

C1

g

✏✏

C2
f

// C1
C

t
f,g

C2

1

CCA

5 Some authors call the fibred coproduct C1
C

t
f,g

C2 the fibred sum or the amalgamated sum
of C1 and C2 with respect to f and g.
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in C commutes and such that for each pair of morphisms �i : V C

�! Ci (i = 1, 2)

(resp. �i : Ci

C

�! V (i = 1, 2)) making the digraph

V
�2

//

�1

✏✏

C2

g

✏✏

C1
f

// P

0

B@resp.

P
f

//

g

✏✏

C1

�1

✏✏

C2
�2

// V

1

CA

in C commute, there is a unique pullback lifting (�1,�2) : V
C

�! C1
C

⇥
f,g

C2

(resp. pushout lowering (�1,�2) : C1
C

t
f,g

C2
C

�! V ) such that the digraph

C1
C

⇥
f,g

C2

f

��

g

⇤⇤

C2 C1

V

�2
22

�1

<<

(�1,�2)

::

0

BBBB@
resp.

V

C1 C2

�1

11

�2

>>

g

⇡⇡

f

⇧⇧

C1
C

t
f,g

C2

(�1,�2)

MM

1

CCCCA

in C commutes. The morphism f is called the pullback (resp. pushout) of f

along g and the morphism g is called the pullback (resp. pushout) of g along f .

If the object P is a terminal (resp. initial) object in C, then the morphisms
f : C1

C

�! P and g : C2
C

�! P (resp. f : P C

�! C1 and g : P C

�! C2) are uniquely
determined, and the fibred product C1⇥

f,g

C2 (resp. fibred coproduct C1
C

t
f,g

C2) is a

product (resp. coproduct) of C1 and C2 in C, that is, we have C1⇥
f,g

C2

C

⇠= C1⇥ C2

(resp. C1
C

t
f,g

C2

C

⇠= C1t C2).

Several examples of the notable limits and colimits introduced in this section
are shown in Sections 1.3 and 2.3, mostly instances of limits.
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B.5 A-Concrete categories; Quotients

Some categories are better understood when its objects and morphisms are
viewed as those of another category.

Definition B.42. Let A be a category. An A-concrete category is a category
C endowed with a faithful functor F : C ! A. Such functor is called the
forgetful functor of C, and whenever no particular notation is attributed to
that functor, it shall be denoted by

C

U : C ! A, while its images
C

U (X) are
denoted by UX for objects X in C that are not indicated by large expressions.

The case A = Set is by far the most important in applications, but
occasionally other choices of A are relevant in some areas of study.

Example B.43. All large categories shown in Example B.17 may be canonically
regarded as Set-concrete categories. Of greater relevance for this thesis is the
fact that the category Rng may also be canonically regarded as a Mon-concrete
category, so that each rng R is associated to its underlying additive monoid
(R,+R) and each homomorphism between rngs is associated to itself (cf.
Section 2.2). For the record, note that the underlying additive monoid (R,+R) of
a rng R is a (commutative) group, so that the category Rng may be seen as a
Grp-concrete category. We chose to work with Mon instead of Grp in such
contexts in order to achieve higher generality in Proposition 3.53 and
Theorem 3.54.

Definition B.44. Let A be a category and let C and D be two A-concrete
categories. An A-functor F : C !D is a functor between the underlying
categories such that

C

U =
D

U �F . Thus, one can easily verify that the A-concrete
categories and the A-functors form a category.
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Expressly, the equation
C

U =
D

U �F ensures that for each object X in C

and for each morphism f : X C

�! X 0, the objects X 2 C0 and F (X) 2D0 are
interpreted by the same object in A while the morphisms f 2 C and F (f) 2D

are interpreted by the same morphism in A.

Definition B.45. Let f : X ! Y be a function between sets. The equivalence
relation on X induced by f is the binary relation ⌘ on X such that for all
x, y 2 X, the condition x ⌘ y is equivalent to f (x) = f (y). It is easy to check that
that binary relation is an equivalence relation on X, and we shall denote it by feq.

Given a mathematical structure C of a certain kind and given an equivalence
relation ⌘ on the set of elements of C, it is common in Mathematics that the set
of equivalence classes under ⌘ forms a structure Q of the same kind as that of C,
and the structures C and Q often have similar features. This is made precise in
the following definition:

Definition B.46. Let C be a Set-concrete category, let C be an object in C

and let ⌘ be an equivalence relation on UC . A (universal) quotient of C

modulo ⌘ (in C) is an object Q in C that satisfies the universal property of
quotients (in C), that is, it is such that there is a quotient morphism

◆ : C C

�! Q such that ⌘ ⇢
C
U(◆)

eq and for each object D in C and each morphism

f : C C

�! D so that ⌘ ⇢
C
U(f)

eq , there is a unique morphism f : Q C

�! Y so that
the digraph

C
f

//

◆

✏✏

D

Q
f

88

in C is commutative. In that case, the morphism f : Q C

�! D is called the
quotient lowering of f modulo ⌘ (along ◆).

If C has a quotient Q modulo ⌘ in C, then Q is unique up to unique
isomorphism. More precisely, if Q and Q0 are two quotients of C modulo ⌘ in C

265



and if
◆ : C C

�! Q and ◆0 : C C

�! Q0

are two morphisms that satisfy the conditions set out in Definition B.46, then there
is a unique isomorphism ↵ : Q C

�! Q0 such that the digraph

Q

↵

✏✏

C

◆

88

◆
0

&&

Q0

in C is commutative for all i 2 I. With that in mind, we denote the quotient Q

(or any object in C isomorphic to Q) by C
C

/ ⌘.

Remark B.47. It has been observed that quotients are unique up to unique
isomorphism. That fact has a sort of converse: if Q is a quotient of C modulo ⌘
in C with quotient morphism ◆ : C C

�! Q, and if f : Q C

�! Q0 is an isomorphism,
then the object Q0 is a quotient of C modulo ⌘ in C with quotient
morphism f � ◆ : C C

�! Q0.

Example B.48. Let A be a set, let ⌘ be an equivalence relation on A and let
A/⌘ be the canonical quotient set of A modulo ⌘, which is given by

A/⌘ :=
n
x/⌘

... x 2 A
o

where x/⌘ := ⌘h{x}i. It is easy to check that A/ ⌘ is a quotient of A modulo ⌘
in Set with the (canonical) quotient morphism � : A! A/ ⌘ given
by � (x) := x/⌘.

A couple of other examples of the notion of quotient are given
in Example 3.58.

The following theorem is an elementary categorical generalisation of many
standard results in Mathematics concerning quotients, most recurrently in
algebraic settings:
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Theorem B.49 (First Isomorphism Theorem). Let C be a Set-concrete
category, let f : C C

�! D be a morphism, let ⌘ be an equivalence relation on UC

so that ⌘ ⇢
C
U(f)

eq , and suppose that C has a quotient C
C

/ ⌘ in C modulo ⌘ with
canonical morphism ◆ : C C

�! C
C

/ ⌘.

(a) Im (
C

U (f)) ⇢ Im (
C

U (f)), where f : C
C

/ ⌘ C

�! D is the quotient lowering
of f modulo ⌘ along ◆;

(b) If the function
C

U (◆) : UC
!

C

U
�
C

C

/ ⌘
�

is surjective, then we have the

equality Im (
C

U (f)) = Im (
C

U (f)), and if, in addition, we have ⌘ =
C
U(f)

eq ,
then

C

U (f) is a bijection of type
C

U
�
C

C

/ ⌘
�
! Im (

C

U (f)).

Proof. Item (a) is a direct consequence of the equation
C

U (f) �
C

U (◆) =
C

U (f).
We shall prove item (b).

(b) Since
C

U (f) �
C

U (◆) =
C

U (f) and since the function
C

U (◆) is surjective,

we have Im (
C

U (f)) = Im (
C

U (f)). Suppose ⌘ =
C

U(f)
eq . If a, b 2

C

U
�
C

C

/ ⌘
�

are

so that
C

U (f) (a) =
C

U (f) (b), then there are x, y 2 UC such that
a =

C

U (◆) (x) and b =
C

U (◆) (y), implying

C

U (f) (x) =
C

U (f)
�C
U (◆) (x)

�
=

C

U (f) (a) =
C

U (f) (b) =
C

U (f)
�C
U (◆) (y)

�
=

C

U (f) (y) .

That being so, on account of ⌘ =
C

U(f)
eq we have x ⌘ y, and, since ⌘ ⇢

C
U(◆)

eq ,
we obtain

a =
C

U (◆) (x) =
C

U (◆) (y) = b ,

proving that the function
C

U (f) is injective.

In many instances of Set-concrete categories C, mostly categories whose
objects are algebraic structures (cf. Example B.24), a morphism h : A C

�! B is
an isomorphism if, and only if, the function

C

U (h) : UA
! UB is bijective. Thus,

in such categories, the quotient lowering f : C
C

/ ⌘ C

�! D in Theorem B.49 is an

isomorphism whenever
C

U (◆) is surjective and ⌘ =
C
U(f)

eq . This is precisely the reason
why many results resembling Theorem B.49 in mathematical literature are said to
be isomorphism theorems.
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Last of all, some functors do not change the status of quotients in
Set-concrete categories:

Definition B.50. Let C and D be two Set-concrete categories, let E be a set of
equivalence relations ⌘ on sets of the form UC for C 2 C0 and let F be a set of
equivalence relations ⇡ on sets of the form UD for D 2D0. A functor
K : C !D between the underlying categories sends quotients modulo E

in C to quotients modulo F in D if for every object C in C, for every
equivalence relation ⌘ 2 E on UC and for every quotient Q of C modulo ⌘ in C

with quotient morphism ◆ : C C

�! Q so that ⌘ ⇢
C
U(◆)

eq, there is an equivalence

relation ⇡ 2 F on UK(C) so that ⇡ ⇢
D
U (K(◆))

eq and such that K (Q) is a quotient
of K (C) modulo ⇡ in D with quotient morphism K (◆) : K (C) D

�! K (Q).
If C = D and E = F , we simply say that K : C ! C preserves quotients
modulo E in C.

In Theorems 3.54 and 3.56, we show that two important functors in
the Theory of Rayner Rngs preserve quotients.
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