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Abstract

Megrelishvili defines light groups of isomorphisms of a Banach space as the groups on

which the weak and strong operator topologies coincide and proves that every bounded

group of isomorphisms of Banach spaces with the point of continuity property (PCP) is

light. We investigate this concept for isomorphism groups G of classical Banach spaces X

without the PCP, especially isometry groups, and relate it to the existence of G-invariant

LUR or strictly convex renormings of X. We give an example of a Banach space X and an

infinite countable group of isomorphisms G 6 GL(X) which is SOT-discrete but such that

X does not admit a distinguished point for G, providing a negative answer to a question

of Ferenczi and Rosendal. We also prove that every combinatorial Banach space is (V)-

polyhedral. In particular, the Schreier spaces of countable order provide new solutions to

a problem proposed by Lindenstrauss concerning the existence of an infinite-dimensional

Banach space whose unit ball is the closed convex hull of its extreme points.

Key-words: Light groups. LUR renormings. Distinguished points. Combinatorial spaces.

Polyhedrality.





Resumo

Megrelishvili define grupos leves de isomorfismos de um espaço de Banach como os grupos

em que as topologias fraca e forte do operador coincidem e prova que todo grupo limitado

de isomorfismos de espaços de Banach com a propriedade do ponto de continuidade (PCP)

é leve. Investigamos esse conceito para grupos de isomorfismos de espaços de Banach

clássicos sem PCP, especialmente grupos de isometrias, e o relacionamos com a existência

de renormações G-invariantes LUR ou uniformemente convexas. Damos um exemplo de

um espaço de Banach X e um grupo enumerável infinito de isomorfismos G 6 GL(X)
que é SOT-discreto mas tal que X não admite ponto distinto em relação a G, fornecendo

uma resposta negativa a uma questão de Ferenczi e Rosendal. Também provamos que

todos espaços de Banach combinatórios são (V)-poliedrais. Em particular, os espaços de

Schreier de ordem enumerável fornecem novas soluções para um problema proposto por

Lindenstrauss sobre a existência de um espaço de Banach de dimensão infinita cuja bola

unitária seja igual a envoltória convexa fechada de seus pontos extremos.

Palavras-chave: Grupos leves. Renormações LUR. Pontos distintos. Espaços combi-

natórios. Poliedralidade.
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Introduction

The purpose of this thesis is to investigate geometric properties of Banach spaces,

especially light groups of isomorphisms, convexity of norms, distinguished points for group

actions and polyhedrality. Chapters 1, 3 and 4 are part of a joint work with Valentin

Ferenczi, Sophie Grivaux and Christian Rosendal [AFGR17]. The results of Chapters 2

and 5 are part of a joint work with Kevin Beanland and Hùng Chu [ABC19], obtained

during the author’s doctoral exchange program (Programa de Doutorado Sandúıche no

Exterior – PDSE-CAPES) in Washington and Lee University, under the guidance of Prof.

Kevin Beanland.

A frequent problem in functional analysis is to determine under which conditions

weak convergence and norm convergence coincide. For example, it is well-known that

conditions of convexity of the norm of a Banach space ensure that weak and strong con-

vergence are equivalent on its unit sphere. The corresponding problem for isomorphisms

of Banach spaces (or more generally of locally convex spaces) was studied by Megrelishvili

in [Meg01]. He calls a bounded group of isomorphisms of a Banach space G 6 GL(X)
light if the Weak Operator Topology (WOT) and the Strong Operator Topology (SOT)

coincide on G.

Megrelishvili proves that if X is a Banach space with the Point of Continuity

Property (PCP) and if G 6 GL(X) is bounded in norm, then G is light. In particular, if

X is reflexive or if it is a separable dual space, then every bounded subgroup of GL(X)
is light. For example, the isometry groups of `1 and Lp[0, 1], for 1 < p <∞, are light.

A natural question that arises from Megrelishvili’s result is in which respect it is

optimal and whether “smallness” assumptions on G or weaker assumptions than the PCP

on X could imply that G is light. To investigate this question, we classify the isomorphism

groups (especially the isometry groups) of classical Banach spaces in terms of being light.

In Chapter 1 we classify the isometry groups of `∞, L1[0, 1] and C(K). We also prove that

every SOT-compact group is light.

In Chapter 2 we classify the isometry group of Schreier spaces of finite order. This

problem motivated the characterization of the isometry group of these spaces, that was

obtained later by Kevin Beanland and Hùng Chu using properties of extreme points of

Schreier spaces. We also reproduce their proof, with minor modifications.

We start to connect the concept of light groups with other geometric properties of

Banach spaces in Chapter 3. We study the relation between light groups and the existence

of locally uniformly rotund (LUR) renormings invariant under the action of the group.
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Kadec proved in [Kad59] that every separable Banach space admits an LUR renorming.

If, in addition, X has the Radon-Nikodym property (RNP), Lancien showed in [Lan93]

that this LUR renorming can be taken in such a manner that it preserves the original

isometries of X. In this case, we say that X admits an isometry invariant LUR renorming.

In general, if G 6 GL(X, ‖ · ‖) is a bounded group of isomorphisms on X, the norm on

X defined by

|||x||| = sup
g∈G
‖gx‖, x ∈ X,

is a G-invariant renorming of X. In other words, G 6 Isom(X, ||| · |||). So a consequence

of Lancien’s Theorem is that whenever X is a separable space with the RNP and G is a

bounded group of isomorphisms on X, there exists a G-invariant LUR renorming of X.

In Theorem 3.3 we prove that if a Banach space X admits a G-invariant LUR

renorming, then G is light. In fact, this is true even if the norm is LUR only on a dense

subset of SX . We also show that the converse assertion is false: although the isometry

group of C[0, 1] is light, C[0, 1] admits no strictly convex isometry invariant renorming

(Corollary 3.11). In particular, Lancien’s result cannot be generalized to every separable

Banach space. Another consequence of Theorem 3.3 is that the isometry group of c0 is

light, due to the existence of an isometry invariant LUR renorming of c0 provided by Day

in [Day55].

In Chapter 4 we will connect the concepts of light groups with the concept of

distinguished point, defined by Ferenczi and Rosendal in [FR11]. Ferenczi and Galego

investigated in [FG10] groups that may be seen as the group of isometries of a Banach

space under some renorming. Among other results, they prove that if X is a separable

Banach space with LUR norm ‖ · ‖ and if G is an infinite countable isometry group of X

such that − Id ∈ G and such that G admits a point x ∈ X with infg 6=Id ‖gx−x‖ > 0, then

G = Isom(X, ||| · |||) for some equivalent norm ||| · ||| on X. A point x satisfying the condition

inf
g 6=Id
‖gx− x‖ > 0

is called in [FR11] a distinguished point of X for the group G. In Theorem 4.4 we prove

that if G 6 GL(X) is such that G has a distinguished point for X, but G does not act as

an SOT-discrete group on X∗, then G is not light. In particular, the isometry group of c

is not light (Corollary 4.7). A consequence of this fact is that every infinite dimensional

separable C(K) admits a non light renorming (Corollary 4.9), i.e., a renorming such that

the corresponding isometry group is not light.

It is clear that if G is an isometry group with a distinguished point then G is

SOT-discrete. Ferenczi and Rosendal proposed the following question in [FR11]: if G is

an isomorphism group of X which is SOT-discrete, should X have a distinguished point

for G? We give in Proposition 4.11 an example of a group G 6 GL(c0) that provide a

negative answer to this question. In addition, this group is not light.
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In Chapter 5 we return to the study of Schreier spaces, initiated in Chapter 2.

We provide a characterization for the extreme points of the dual of Schreier spaces of

countable order (Proposition 1.10). In fact, this result holds for any combinatorial space,

i.e., for any sequence space in which the norm is defined by a compact, hereditary and

spreading family of finite sets of N.

We will also prove that the Schreier spaces of countable order provide new solutions

for a problem of Lindenstrauss [Lin66] concerning polyhedrality. A Banach space X is

called polyhedral if the unit ball of every finite dimensional subspace of X is a polytope

(i.e. has finitely many extreme points). Some examples of polyhedral spaces are c0 and

C(K) spaces for K a countable, compact, Hausdorff space.

Lindenstrauss proved in [Lin66] that every infinite-dimensional space has a two-

dimensional quotient space whose unit ball is not a polygon. In particular, no infinite-

dimensional dual space (including reflexive spaces) is polyhedral. A consequence of Krein-

Milman Theorem is that if X is reflexive, then

BX = co(extBX).

This led Lindenstrauss to ask whether there exist a polyhedral infinite-dimensional Banach

space whose unit ball is the closed convex hull of its extreme points. The first solution

to this problem was provided by De Bernardi in [DB17], using a renorming of c0. In

fact, De Bernardi proves that c0 with this renorming satisfies a stronger condition, called

(V)-polyhedrality.

The unit ball of Schreier spaces of countable order are the closed convex hull of

their sets of extreme points, since they have the convex series representation property

(CSRP). In Theorem 5.12 we will prove that these spaces are also (V)-polyhedral and

hence provide new answers to Lindenstrauss’s problem. We also prove (Corollary 5.10)

that the dual space of every combinatorial space has the CSRP, i.e., every point of the

unit ball of X∗F can be expressed as an infinite convex combination of extreme points of

X∗F .

We summarize the classification of groups in terms of being light cited in this

thesis in page 69.

In this thesis all Banach spaces are assumed to be real spaces and all isometries

are assumed to be linear and surjective.





1 Light groups

A frequent problem in functional analysis is to determine when a weak convergence

implies a strong convergence. Megrelishvili studied this problem in [Meg01] focusing in

the continuity of group representations in locally convex spaces, especially in Fréchet

spaces and Banach spaces. For this reason, he considered bounded groups of isomorphisms

T : X → X in which the weak operator topology and the strong operator topologies

coincide. These groups are called light.

1.1 Operator topologies
Let X and Y be normed spaces and let B(X, Y ) be the space of bounded linear

operators T : X → Y . When X = Y we will denote B(X,X) simply by B(X). The closed

unit ball of X, {x ∈ X : ‖x‖ 6 1} will be denoted by BX and the unit sphere of X,

{x ∈ X : ‖x‖ = 1} will be denoted by SX .

Recall that

‖T‖ = sup
x∈BX

‖Tx‖

defines a norm in B(X, Y ) and this norm is complete if Y is a Banach space. Thus, we

can consider the norm topology in B(X, Y ) defined by this norm. However, we will be

interested in this chapter in weaker topologies in B(X, Y ).

The strong operator topology (SOT) in B(X, Y ) is the topology generated by the

family of seminorms

fx : B(X, Y ) → Y

T 7→ Tx,

with x ∈ X. In other words, SOT is the topology of pointwise convergence. The weak

operator topology (WOT) in B(X, Y ) is the topology generated by the family of seminorms

fx,y∗ : B(X, Y ) → K

T 7→ y∗Tx,

with x ∈ X and y∗ ∈ Y ∗. In other words, the WOT is the topology of pointwise conver-

gence in B(X, Y ), when Y is equipped with the weak topology.

A useful way to characterize these topologies is using nets (for definitions and

properties of nets, see [Meg98, Chapter 2]). A net (Tα)α∈I ⊂ B(X, Y ) converges to T in

SOT if, and only if, for every ε > 0 and every x ∈ X there exists α0 ∈ I such that

α < α0 =⇒ ‖Tαx− Tx‖ < ε.
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In the same way, a net (Tα)α∈I ⊂ B(X, Y ) converges to T in WOT if, and only if, for

every ε > 0, every x ∈ X and every y∗ ∈ Y ∗ there exists α0 ∈ I such that

α < α0 =⇒ |y∗Tαx− y∗Tx| < ε.

Since the inequality

|y∗Tx− y∗Sx| 6 ‖y∗‖ · ‖Tx− Sx‖ 6 ‖y∗‖ · ‖T − S‖ · ‖x‖,

holds for every x ∈ X, y∗ ∈ Y ∗ and S, T ∈ B(X, Y ), we can conclude that WOT is indeed

a weaker topology than SOT and that SOT is weaker than the norm topology.

1.2 Light groups
Let X be a locally convex space. Megrelishvili calls a group of isomorphisms G 6

GL(X) light in [Meg01] if the weak and the strong operator topologies coincide on G (a

set G ⊂ GL(X) with this property is called a Kadec subset by Glasner and Megrelishvili

in [GM14]).

We will be interested in bounded groups of isomorphisms, i.e., groups G 6 GL(X)
such that

sup
T∈G
‖T‖ <∞.

Example 1.1. Let H be a Hilbert space. We say that an operator T : H → H is unitary
if

T ∗T = Id = TT ∗,

where T ∗ is the adjoint operator of T . Notice that every unitary operator T is an isometry
in H, since for every x ∈ H we have

‖Tx‖2 = 〈Tx, Tx〉 = 〈x, T ∗Tx〉 = 〈x, x〉 = ‖x‖2.

The set of unitary operators on H defines a group, called unitary group of H and denoted
by U(H).

We claim that U(H) is light. Notice that it suffices to show that for every net
(Tα)α∈I in U(H) such that Tα WOT−→ Id we have Tα SOT−→ Id.

Let (Tα)α∈I in U(H) such that Tα WOT−→ Id. For every x and y ∈ H we have

〈Tαx, y〉 → 〈x, y〉 and 〈y, Tαx〉 → 〈y, x〉.

Hence, for every x ∈ H we have:

‖Tαx− x‖2 = 〈Tαx− x, Tαx− x〉 = 〈Tαx, Tαx〉 − 〈x, Tαx〉 − 〈Tαx, x〉+ 〈x, x〉 → 0,

i.e., Tα SOT−→ Id.
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Example 1.2. A locally compact group G is called amenable if it admits a left invariant
mean on L∞(G), i.e., there exists a Borel measure µ with µ(G) = 1 and µ(gA) = µ(A) for
every g ∈ G and A ⊆ G measurable. It is a well-know fact that every uniformly bounded
continuous representation of an amenable group on a Hilbert H space is equivalent to
a continuous unitary representation (see [Pie84, Corollary 17.6]). Hence, every bounded
representation of an amenable group on H has light image.

In fact, Megrelishvili proves that every bounded group (amenable or not) G 6

GL(X) of a Banach space with the Point of Continuity Property is light.

1.3 Banach spaces with PCP and RNP
Let C be a norm-compact subset of a Banach space X. It is easy to see that the

weak topology τw and the norm topology τ‖·‖ coincide on C. However, if C is only weakly

compact, the identity map (C, τw) → (C, τ‖·‖) is not continuous, in general. Namioka

studied in [Nam67] how the points of continuity for this map were distributed in C, in

particular if the extreme points of C are points of continuity.

In [Bou80] Bourgain says that a Banach space has the property (∗) if for each non-

empty, bounded, closed and convex subset C ⊂ X, the identity map Id : (C, τw)→ (C, τ‖·‖)
has a point of continuity. This property is currently called convex point of continuity

property (CPCP). If Id : (C, τw)→ (C, τ‖·‖) has a point of continuity for every non-empty,

bounded and closed subset C ⊂ X, we say that X has the point of continuity property

(PCP).

Remark 1.3. Sometimes in literature the condition “closed” in the definition of PCP
is replaced by “weakly-closed” (cf. [Pie07, p. 229] and [FLP01, p. 636]). However, both
definitions are equivalent. Indeed, let’s denote by PCP’ the Banach spaces that satisfy
this second definition. It is immediate that PCP =⇒ PCP’, since every weakly closed
subset of X is norm closed. On the other hand, suppose that X has the PCP’ and let
F be a norm closed, bounded and non-empty subset of X. Let G be the closure of F in
the weak topology. Then, there exists a point of continuity x0 ∈ G for the identity map
Id : (G, τw)→ (G, τ‖·‖). Since x0 is a limit point of F in the weak topology, there exists a
net (xα)α∈I in F such that

xα
τw−→ x0.

By the weak-to-norm continuity of Id in x0,

xα
τ‖·‖−→ x0

and, since F is norm closed we have x0 ∈ F . Therefore x0 is a point of continuity of
Id : (F, τw)→ (F, τ‖·‖) and X has the PCP.
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Remark 1.4. The PCP is a hereditary property, i.e., if X is a Banach space with the
PCP and Y is a closed subspace of X, then Y has the PCP. Indeed, if C is a non-empty,
bounded and closed subset of Y , then C is a non-empty, bounded and closed subset of X.
Since the weak topology of X, τwX , restricted to Y coincides with the weak topology of
Y , τwY , and since the norm topology of X, τ‖·‖X , restricted to Y coincides with the norm
topology of Y , τ‖·‖Y , then the existence of a point of continuity for

Id : (C, τwX )→ (C, τ‖·‖X )

is equivalent to the existence of a point of continuity for

Id : (C, τwY )→ (C, τ‖·‖Y ).

Examples of Banach spaces without PCP are c0 and L1[0, 1] (see [EW84, Table 1]).

By Remark 1.4, any space that contains a copy of c0 also fails the PCP, for example C(K)
for any infinite, compact and metrizable set K (see [FHH+11, p. 273, Exercise 5.26]).

Bourgain proves in [Bou80] that every space with the Radon-Nikodym property

(RNP) has the PCP. A Banach space has the Radon-Nikodym property if a version of the

Radon-Nikodym Theorem holds for X. More precisely, a Banach space X has the RNP

with respect to a space of finite measure (Ω,Σ, µ) if for every vector measure continuous

with respect to µ with bounded variation G : Σ→ X there exists g ∈ L1(X,µ) such that

G(E) =
∫
E
gdµ,

for every E ∈ Σ. If X has the RNP with respect to every finite measure space, we simply

say that X has the RNP. This definition was given by Chatterji in [Cha68]. See [DUJ77,

p. 218] for other equivalent definitions of RNP.

Diestel [DUJ77, p. 218] gives as examples of Banach spaces with the RNP:

1. Reflexive spaces;

2. Separable dual spaces;

3. Weakly compactly generated (WCG) spaces;

4. Duals of WCG spaces;

5. Locally Uniformly Convex (LUC) spaces;

6. Dual spaces with differentiable Fréchet norm;

7. Spaces with a boundedly complete basis;

8. `1(Γ), for every set Γ.
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1.4 Megrelishvili’s results
The main result of [Meg01] is the following:

Theorem 1.5 (Megrelishvili). If X is a Banach space with the PCP and G 6 GL(X) is
bounded, then G is light.

The proof of this theorem involves the concept of fragmentability. We say that a

subset A of a Banach space X is fragmented if for every B ⊂ A and every ε > 0 there

exists a weakly open set W ⊂ X such that B ∩W 6= ∅ and diam(B ∩W ) < ε. We say

that X is bound-fragmented if every bounded subset of X is fragmented.

Megrelishvili proves that if G 6 GL(X), π : G × X → X is a group action and

x ∈ X is such that:

1. For every T ∈ G there exists a neighborhood U of T such that U−1 is uniformly

equicontinuous;

2. There exists a neighborhood V of Id such that V x is a fragmented subset of X;

3. The orbit of x under the action of G

x̃ : G → X

g 7→ gx

is continuous, if G is equipped with the WOT;

then x̃ is continuous with G equipped with the SOT. The result then follows from the fact

that a Banach space X has the PCP if, and only if, it is bound-fragmented (see [JR85]).

Notice that, by Theorem 1.5, every bounded group of isomorphisms of reflexive

spaces (including Hilbert spaces) or separable dual spaces is light. The objective of this

chapter is to investigate the following question:

Question 1.6. Can Theorem 1.5 be improved? In other words, can we replace the condition
of X has PCP by a weaker one?

For this purpose, we will classify in terms of being light several bounded groups

of linear isomorphisms of Banach spaces without the PCP, focusing on isometry groups

of classical sequence spaces and function spaces. Since we are primarily interested in

surjective linear isometry groups, we define:

Definition 1.7. A Banach space X is light if its isometry group

Isom(X) = {T ∈ GL(X) : ‖Tx‖ = ‖x‖, ∀x ∈ X}

is light.
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Recall that if K is a non-empty compact Hausdorff space, C(K) denotes the space

of every continuous function f : K → K and C(K) is a Banach space with the norm

‖f‖∞ = max{|f(x)|;x ∈ K}.

Megrelishvili gives in [Meg01] as an example of a non-light bounded group the following:

Proposition 1.8 (Megrelishvili). The group Isom(C[−1, 1]2) is not light.

Megrelishvili uses in the proof of this proposition a Helmer construction [Hel80] of

a group action on [−1, 1]2 that is separately continuous, but not jointly continuous and

the equivalence between pointwise compacity and weak compacity on bounded subsets

of C(K). Using the same construction, we can prove that C(K) is non-light, for every

infinite, compact and connected subset K ⊂ Rn that contains a k-dimensional region,

with k > 2. This raises the new question:

Question 1.9. For every compact set K (Hausdorff, separable), is C(K) non-light? Is
C[0, 1] non-light?

We will give the answer of this question in Proposition 1.15.

1.5 Non-light classical Banach spaces
In this section we will give some examples of classical Banach spaces that are not

light, namely, `∞, L1[0, 1] and C({0, 1}N). The proofs consist in concrete examples of

sequences of isometries of these spaces that converge in WOT but not in SOT. Thus, our

examples are simpler than the one provided by Megrelishvili in [Meg01].

Proposition 1.10. The space `∞ is not light.

Proof. Consider the sequence (Tn) in Isom(`∞) defined by

Tn(x1, . . . , xn−1, xn, xn+1, . . . ) = (x1, . . . , xn−1,−xn, xn+1, . . . ).

Obviously Tn
SOT
6−→ Id, since

‖Tn(1, 1, . . . )− (1, 1, . . . )‖∞ = 2,

for every n. On the other hand, Tn WOT−→ Id. Indeed, if this was not the case, there would
exist Φ ∈ `∗∞, x ∈ `∞, ε > 0 and infinite indices n1, n2, . . . , nk, . . . such that

|Φ(Tnk(x))− Φ(x)| > ε
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for every k. For each k ∈ N define λk by

λk = |Φ(Tnk(x)− x)|
2‖x‖∞Φ(Tnk(x)− x) ,

and for each N ∈ N define xN by

xN =
N∑
k=1

λk(Tnk(x)− x).

Notice that for every N we have ‖xN‖∞ 6 1. Indeed, the coordinates of xN =
(xN(1), xN(2), . . . ) are given by

xN(k) =

0, if k 6= n1, n2, . . .

−2λixi, if k = ni
.

Hence,
‖x‖∞ 6 max

16i6N
2|λixi| =

|xi|
‖x‖∞

6 1.

On the other hand,

Φ(xN) =
N∑
k=1

|Φ(Tnk(x)− x)|
2‖x‖∞Φ(Tnk(x)− x)Φ(Tnk(x)− x) > Nε

2‖x‖∞
,

for every N ∈ N, which contradicts Φ ∈ `∗∞. Therefore, Tn
WOT−→ Id and Isom(`∞) is not

light.

A similar proof of Proposition 1.10 can be used to show that the space C({0, 1}N)
is not light:

Proposition 1.11. The space C({0, 1}N) is not light.

Proof. For each integer n > 1, let Nn be the basic open set of {0, 1}N defined by

Nn = {(x1, x2, . . . ) ∈ {0, 1}N; x1 = · · · = xn−1 = 1, xn = 0}.

Define the sequence (Tn) in Isom(C({0, 1}N)) by

Tn(f)(x) =

−f(x), if x ∈ Nn,

f(x), otherwise.

Then, Tn
SOT
6−→ Id, since taking f ≡ 1 we have ‖Tn(f)− f‖∞ = 2 for every n. On the other

hand, the same proof of Proposition 1.10 shows that Tn WOT−→ Id.

It is worth noticing that the spaces `p, with 1 6 p <∞, are light by Theorem 1.5,

since they are separable dual spaces and hence have the RNP. Although `1 is light, the

same does not occur to L1[0, 1].
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Remark 1.12. L1[0, 1] is not isometrically isomorphic to any dual space, since it has no
extreme points [Meg98, Example 2.10.11]. Moreover, L1[0, 1] does not have the PCP (see
[EW84]).

Proposition 1.13. The space L1[0, 1] is not light.

Proof. For every n ∈ N, n > 1 define ϕn : [0, 1]→ [0, 1] by

ϕn(x) = x+ 1− cos(2nπx)
2nπ .

Notice that ϕn is a differentiable bijection, with ϕ′n > 0. Hence, the linear operator
Tn : L1[0, 1]→ L1[0, 1] defined by

Tn(f)(x) = ϕ′n(x)f(ϕn(x))

is an isometry, since

‖Tn(f)‖1 =
∫ 1

0
|ϕ′n(x)f(ϕn(x))|dx =

∫ 1

0
|f(x)|dx = ‖f‖1,

for every f ∈ L1[0, 1] and it is onto. Moreover, Tn
SOT
6−→ Id because taking f ≡ 1 we have

‖Tn(1)− 1‖1 = ‖ sin(2nπx)‖1 = 2
π
> 0,

for every n.

We claim that ∫ 1

0
Tn(f)(x)g(x)dx→

∫ 1

0
f(x)g(x)dx

for every f ∈ L1[0, 1] and g ∈ L∞[0, 1] (i.e., Tn WOT−→ Id). Indeed, it is well-known that the
sequence sin(πnx) converges weakly to zero in L1[0, 1] (Riemann-Lebesgue Lemma – see
[Rud87, p. 103]). Hence, the claim holds for constant functions f ≡ c, since∫ 1

0
c(1 + sin(2nπx))g(x)dx→

∫ 1

0
cg(x)dx

for every g ∈ L∞[0, 1]. Consider now f as the characteristic function

χ[ 2k
2m ,

2(k+1)
2m ], with m > 1 and 0 6 k 6 2m−1 − 1.

Since ϕm :
[

2k
2m ,

2(k + 1)
2m

]
→
[

2k
2m ,

2(k + 1)
2m

]
is a bijection, then

χ[ 2k
2m ,

2(k+1)
2m ](ϕm(x)) = χ[ 2k

2m ,
2(k+1)

2m ](x).
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Therefore,∫ 1

0
Tn

(
χ[ 2k

2m ,
2(k+1)

2m ]
)

(x)g(x)dx =
∫ 1

0
ϕ′n(x)χ[ 2k

2m ,
2(k+1)

2m ](ϕn(x))g(x)dx

=
∫ 1

0
ϕ′n(x)χ[ 2k

2m ,
2(k+1)

2m ](x)g(x)dx

=
∫ 1

0
χ[ 2k

2m ,
2(k+1)

2m ](x)g(x)dx+

+
∫ 1

0
sin(2nπx)χ[ 2k

2m ,
2(k+1)

2m ](x)g(x)dx.

and by the weak convergence of sin(2nπx) to 0 in L1[0, 1], it follows that∫ 1

0
Tn

(
χ[ 2k

2m ,
2(k+1)

2m ]
)

(x)g(x)dx→
∫ 1

0
χ[ 2k

2m ,
2(k+1)

2m ](x)g(x)dx.

The general case follows from the linearity of Tn and by density of staircase functions in
L1[0, 1].

1.6 Light classical Banach spaces
Recall that Megrelishvili proved that C[−1, 1]2 is not a light space. In fact, his

proof can be generalized to show that C(K) is not light, if K is a connected compact

subset of Rn, with n > 2. However, as we will see in next proposition, this is not the case

for n = 1.

In the examples that we provided in last section, it was enough to find a sequence

of isometries that converge in WOT but not in SOT to prove that those spaces were not

light. However, to show that a space is light we need to verify that every net (Tα) that

converges (without loss of generality, to Id) in WOT converges also in SOT. Hence, we

need a characterization of the isometries of these spaces.

Fortunately, the characterizations of isometries of many classical Banach spaces

can be found already in Banach’s book [Ban32], although some proofs are not given

completely and the theorems are stated in less than full generality. For example, the

isometries of C(K) were characterized by Banach for K compact metric space. Stone

generalized Banach’s proof for compact Hausdorff spaces. Other generalizations can be

found in [FJ03].

Theorem 1.14 (Banach-Stone). If K and Q are compact Hausdorff spaces and T is an
isometric isomorphism of C(Q,R) onto C(K,R), then there is a homeomorphism ϕ from
K onto Q and a continuous function h : K → R, with |h(x)| = 1 for every x ∈ K and
such that for each f ∈ C(Q),

Tf(t) = h(t)f(ϕ(t)), for t ∈ K.
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Proof. See [FJ03], Theorem 2.1.1.

Using Banach-Stone Theorem we can now prove that C[0, 1] is light.

Proposition 1.15. The space C[0, 1] is light.

Proof. Let (Tα)α∈I be a net in Isom(C[0, 1]) such that Tα WOT−→ Id. By Banach-Stone
Theorem, for every α ∈ I there exists a homeomorphism ϕα : [0, 1]→ [0, 1] and hα ∈ C[0, 1]
with |hα(x)| = 1, for every x ∈ [0, 1], such that

Tα(f)(x) = hα(x)f(ϕα(x)),

for every f ∈ C[0, 1] and x ∈ [0, 1]. Since Tα WOT−→ Id, taking Φx ∈ C[0, 1]∗ given by
Φx(f) = f(x), it follows that Tα(f)(x)→ f(x) for every x ∈ [0, 1]. In particular, taking
f = Id, we see that

Tα(Id)(x) = hα(x)ϕα(x)→ x,

for every x ∈ [0, 1]. Without loss of generality, we may assume that ϕα is an increasing
homeomorphism and hα ≡ 1, for every α. We claim that for every δ > 0 there exists αδ ∈ I
such that

α < αδ =⇒ |ϕα(x)− x| < δ,

for every x ∈ [0, 1]. Indeed, there exists n ∈ N, n > 1 such that 1
2n−1 < δ and there exists

αδ ∈ I such that
∣∣∣∣∣ϕα

(
k

2n

)
− k

2n

∣∣∣∣∣ < 1
2n+1 , for k = 0, 1, . . . , 2n − 1 and α < αδ. Since ϕα is

an increasing function and k

2n 6 x 6
k + 1

2n for some k, it follows that

|ϕα(x)− x| 6

∣∣∣∣∣ϕα
(
k + 1

2n

)
− k

2n

∣∣∣∣∣
6

∣∣∣∣∣ϕα
(
k

2n

)
− k

2n

∣∣∣∣∣+
∣∣∣∣∣ϕα

(
k + 1

2n

)
− k + 1

2n

∣∣∣∣∣+ 1
2n

6
1

2n−1

< δ.

Finally, by uniform continuity of f ∈ C[0, 1] we have

‖Tα(f)− f‖∞ = max
06x61

|f(ϕα(x))− f(x)| → 0,

i. e., Tα SOT−→ Id.

It is interesting to notice that actually C([0, 1]× F ) is light for every finite set F ,

while C([−1, 1]2) is not light.

Proposition 1.16. If F is a finite set, then C([0, 1]× F ) is light.
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Proof. Let F = {y1, . . . , yn} be a finite set equipped with the discrete topology and
let (Tα)α∈I be a net in Isom(C([0, 1] × F ) such that Tα WOT−→ Id. By the Banach-Stone
Theorem, for each α ∈ I there exists a homeomorphism ϕα : [0, 1]× F → [0, 1]× F and
hα ∈ C([0, 1]× F ) with |hα(x, yi)| = 1 for every (x, yi) ∈ [0, 1]× F such that

Tα(f)(x, yi) = hα(x, yi)f(ϕα(x, yi))

for every f ∈ C([0, 1] × F ) and every (x, yi) ∈ [0, 1] × F . Since Tα WOT−→ Id, we have
Tα(f)(x, yi) → f(x, yi) for every (x, yi) ∈ [0, 1] × F . In particular, considering g ∈
C([0, 1]× F ) defined by g(x, yi) = x+ i we see that

Tα(g)(x, yi) = hα(x, yi)g(ϕα(x, yi))→ x+ i,

for every (x, yi) ∈ [0, 1]× F . Therefore, we may assume that for every α and i we have
hα ≡ 1 and

ϕα(x, yi) = (ϕα,i(x), yi),

where ϕα,i : [0, 1]→ [0, 1] is an increasing homeomorphism. We conclude that Tα SOT−→ Id
proceeding as in the proof of Proposition 1.15.

A similar proof works also for the space C0(R). Recall that if K is a locally compact

Hausdorff space, then C0(K) denotes the space of functions on K that vanish at infinity,

i.e., the space

C0(K) = {f : K → R;∀ε > 0,∃Q ⊂ K compact ;x 6∈ Q =⇒ |f(x)| < ε}.

C0(K) is a Banach space with the norm ‖f‖ = supx∈K |f(x)|.

The version of Banach-Stone Theorem for C0(K) spaces was given by Novinger:

Theorem 1.17 (Novinger). Let K and Q be locally compact Hausdorff spaces. If T is a
linear isometry from C0(Q) onto C0(K), then Q and K are homeomorphic. Furthermore

Tf(t) = h(t)f(ϕ(t))

for all t ∈ K, where h is continuous on K such that |h(t)| = 1 for all t ∈ K and ϕ is a
homeomorphism of K onto Q.

Proof. See [FJ03, Corollary 2.3.12]

Proposition 1.18. The space C0(R) is light.

Proof. Let (Tα)α∈I be a net in Isom(C0(R)) such that Tα WOT−→ Id. By Novinger’s Theorem
for each α ∈ I there exists a homeomorphism ϕα : R → R and a continuous function
hα : R→ R with |hα(x)| = 1 for every x ∈ R such that

Tα(f)(x) = hα(x)f(ϕα(x))
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for every f ∈ C0(R) and x ∈ R. Let f ∈ C0(R) and let ε > 0. There exists K > 0 such
that |f(x)| < ε

3 whenever |x| > K. Let g ∈ C0(R) be such that:

a) g(x) = f(x), if |x| 6 K;

b) g(x) = 0, if |x| > K + 1 and

c) ‖f − g‖∞ <
ε

3.

Proceeding as in the proof of Proposition 1.15, we see that ‖Tα(g)− g‖∞ → 0, i.e., there
exists α0 ∈ I such that ‖Tα(g)− g‖∞ <

ε

3 for every α < α0. Therefore,

‖Tα(f)− f‖∞ 6 ‖Tα(f)− Tα(g)‖∞ + ‖Tα(g)− g‖∞ + ‖f − g‖∞ < ε,

i.e., Tα SOT−→ Id.

1.7 SOT-compact groups
We finish this chapter presenting a condition on groups G 6 GL(X) that implies

the lightness of G:

Proposition 1.19. Let X be a Banach space and let G 6 GL(X). If G is SOT-compact,
then G is light.

Proof. Let (Tα)α∈I be a net in G such that Tα WOT−→ Id and suppose, by contradiction,

that Tα
SOT
6−→ Id. Then, there exists an SOT-open neighborhood U of Id such that Tα 6∈ U

for infinite indices α ∈ I. Let J = {α ∈ I;Tα 6∈ U}. Notice that J is a directed set and
hence (Tα)α∈J is a subnet of (Tα)α∈I . Since G \ U is SOT-compact, then (Tα)α∈J has an
accumulation point T ∈ G \ U . Therefore, T is also an accumulation point of (Tα)α∈I in
WOT, which is a Hausdorff topology. Hence, T = Id, which is a contradiction, since T 6∈ U
and Id ∈ U .

Questions and comments
Bellenot proved in [Bel86] that any separable real Banach space (X, ‖·‖) admits an

equivalent renorming ||| · ||| such that Isom(X, ||| · |||) = {± Id}. Jarosz generalized Bellenot’s

result in [Jar88], proving that any Banach space (X, ‖ · ‖) (separable or not, real or

complex) admits an equivalent renorming ||| · ||| such that

Isom(X, ||| · |||) = {λ Id : λ ∈ K, |λ| = 1},

where K = R in the real case and K = C in the complex case. Obviously the group

{λ Id : λ ∈ K, |λ| = 1} is light. Therefore, even if (X, ‖ · ‖) does not have the PCP, X
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admits an equivalent renorming ||| · ||| such that Isom(X, ||| · |||) is light (and still fails the

PCP).

Although Megrelishvili has defined the concept of light groups only for locally

convex spaces, we can expand his definition to quasi-normed spaces, even if they are not

locally convex. One could ask whether the isometry groups of non-convex quasi-normed

spaces are light/non-light in general, but the spaces `p and Lp[0, 1], 0 < p < 1 show that

we do not have such general result. The space Lp[0, 1] is not light, since (Lp[0, 1])∗ = {0}
for 0 < p < 1 (see [KPR84, p. 18]). On the other hand, by Banach-Lamperti Theorem,

each T ∈ Isom(`p), 0 < p < 1, has the form T (xn) = (εnxσ(n)), where εn ∈ {±1} and

σ : N → N is a bijection. Using the fact that the dual space of `p can be isometrically

identified with `∞, where Φ = (y0, y1, . . . ) ∈ `∞ acts in an element x = (x0, x1, . . . ) ∈ `p
by the formula Φ(x) = ∑∞

i=0 yixi (see [KPR84, p. 21]) we can verify that Isom(`p) is light.

Proposition 1.16 was generalized by Grivaux in [AFGR17], proving that if K is

an infinite compact connected space, then C(K) is light if K is homeomorphic to a finite

union of segments of R, and C(K) is not light if K contains an n-dimensional region for

some n > 2, C(K).

In the next chapters we provide more examples of light/non-light groups of isome-

tries, but using different techniques. Namely, we will show that c is not light, while c0 is

light, as well as the Schreier spaces of finite order.

We were able to classify the isometry groups of `p, with 0 < p 6∞ and of Lp[0, 1],
with 0 < p <∞ in this chapter. However, it remains to verify whether L∞[0, 1] is light or

not.

Question 1.20. Is L∞[0, 1] light?

Another interesting space which could be investigated in this context is the Gurarij

space, whose isometry group possesses a very rich structure. For example, the isometry

group of the Gurarij space is a universal Polish group, i.e, every Polish group embeds

there homeomorphically.

Question 1.21. Is the isometry group of the Gurarij space light?

The Holmes space is another interesting space to be investigated (see [Hol92]). It

is the Banach space spanned by the universal Urysohn metric space. Urysohn space is

universal for the separable metric spaces and has the property that any isometry between

finite subsets can be extended to an isometry for the whole space.

Question 1.22. Is the isometry group of the Holmes space light?
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The main difficulties to answer these questions are to get characterizations of the

isometry groups of these spaces, as well as a nice characterization of their duals.



2 Isometries of Schreier spaces

In Chapter 1 we classified several classical Banach spaces in terms of being light,

i.e., sequence spaces or spaces of continuous functions which norms are defined by an

explicit formula. The purpose of this chapter is to classify Banach spaces in which norms

are defined by a family of finite sets of natural numbers which are compact, hereditary

and spreading. These spaces are called combinatorial spaces. More specifically, we are

interested in classifying the Schreier spaces in terms of being light.

2.1 Schreier spaces
Banach and Saks proved in [BS30] that every bounded sequence in Lp, with p > 1,

has a subsequence such that its arithmetic means converge in norm. This property is

currently called Banach-Saks property. They also asked whether this property is also valid

for the space of continuous functions. This question was answered negatively by Schreier

in [Sch30], constructing a sequence of functions (fi) in C[0, 1] that converges weakly to

0 but has no subsequence whose arithmetic means converge in norm. In his construction,

Schreier considered finite sets of natural numbers F such that cardF 6 minF . The family

S1 = {F ∈ [N]<∞ : cardF 6 minF} ∪ {∅}

is now called Schreier family, and its elements are called Schreier sets.

Nishiura and Waterman showed in [NW63] that every space with the Banach-Saks

property is reflexive. On the other hand, Baernstein [Bae72] gave an example of a reflexive

space that does not have the Banach-Saks property. In [Bea79] Beauzamy used a variation

of Baernstein’s construction to define the space XS1 as the completion of c00 in respect to

the norm

‖x‖XS1
= sup

F∈S1

∑
k∈F
|xk|, x = (x1, . . . , xk, . . . ) ∈ c00.

This space was called Schreier space, in [BL84]. Beauzamy proved that the interpolation

space (`1, XS1)θ,p, for 0 < θ < 1 and 1 < p <∞ is a reflexive space that does not have the

Banach-Saks property, providing simpler examples than the one obtained by Baernstein.

Alspach and Argyros defined in [AA92] the higher order Schreier spaces as follows.

Let An denote the set of finite subsets of N with cardinality less than n. Letting S0 = A1

and supposing that Sα has been defined for some countable ordinal α, we define

Sα+1 = {
n⋃
i=1

Ei : n 6 E1 < E2 < · · · < En and Ei ∈ Sα} ∪ {∅},
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where n 6 E1 denotes n 6 minE1 and Ei < Ei+1 denotes maxEi < minEi+1. If α is a

limit ordinal then we fix αn ↗ α and define Sα = {∅} ∪ {F ⊂ N : for some n > 1, F ∈
Sαn and n 6 F}. We may assume (see for example [Cau17]), that for each n ∈ N we have

Sαn ⊂ Sαn+1 . We say that Sα is the Schreier family of order α. The Schreier space of

order α, denoted by XSα , is defined as the completion of c00 with respect to the norm

‖x‖XSα = sup
F∈Sα

∑
k∈F
|xk|, x = (x1, . . . , xk, . . . ) ∈ c00.

We can verify by transfinite induction that each family Sα is:

1. hereditary (F ∈ Sα and G ⊂ F =⇒ G ∈ Sα);

2. spreading ({l1, l2, . . . , ln} ∈ Sα and li 6 ki =⇒ {k1, k2, . . . , kn} ∈ Sα);

3. compact, seen as a subset of {0, 1}N, with the natural identification of P(N) with

{0, 1}N.

A collection F of finite subsets of N satisfying these three properties is called a

regular family in [BDHQ18]. Given a regular family F , the combinatorial Banach space

XF is defined to be the completion of c00 with respect to the norm

‖x‖XF = sup
F∈F

∑
k∈F
|xk|, x = (x1, x2, . . . ) ∈ c00.

Combinatorial Banach spaces were first defined by Gowers in his blog [Gow09], for

a system of natural numbers A that contains all the singletons and is hereditary. A more

restrictive definition was given by Beanland, Duncan, Holt and Quigley in [BDHQ18],

using regular families, with the objective of studying problems related to the cardinalities

of the sets of extreme points of Banach spaces, especially Schreier spaces.

2.2 Decompositions and spreads of Schreier sets
In this section we will recall some useful properties of Schreier sets of finite order.

We say that a set F of a regular family F is maximal if there is no set G ∈ F that contains

F properly. We denote by Fmax the collection of maximal sets of F .

Proposition 2.1. Let n ∈ N ∪ {0} and let E ∈ Smax
n . Then, for each 0 6 m 6 n there

exists a unique finite sequence E1 < E2 < · · · < Ed in Smax
m such that E = ⋃d

i=1Ei.
Moreover, {minEi}di=1 ∈ Smax

n−m.

Proof. The proof of this proposition is by induction over n. It is clear that it holds
for n = 0. Suppose that it holds for 0, 1, . . . n ∈ N ∪ {0} and let E ∈ Smax

n+1 . By the
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definition of maximal Schreier sets, we can write E in a unique way as ⋃di=1Ei, with
E1 < E2 < · · · < Ed ∈ Smax

n and {minEi}di=1 ∈ Smax
1 . Let 0 6 m 6 n + 1. If m = n + 1,

the result is immediate. If 0 6 m 6 n, by induction hypothesis each Ei can be written as
Ei = ⋃ai

j=1Ei,j, with Ei,1 < Ei,2 < · · · < Ei,ai ∈ Smax
m and {minEi,j}aij=1 ∈ Smax

n−m. Hence, E
can be written as the union of

E1,1 < · · · < E1,a1 < E2,1 < · · · < E2,a2 < · · · < Ed,1 < · · · < Ed,ad .

Moreover, by the maximality of these sets, this decomposition is unique. Also, since
{min{minEi,j}aij=1}di=1 = {minEi}di=1 ∈ Smax

1 , it follows that

{minEi,j : 1 6 i 6 d, 1 6 j 6 ai} =
d⋃
i=1
{minEi,j}aij=1 ∈ Smax

n+1−m.

The converse of Proposition 2.1 also holds:

Proposition 2.2. Let E = ⋃d
i=1Ei, such that E1 < E2 < · · · < Ed is a finite sequence in

Smax
m and {minEi}di=1 ∈ Smax

k , with m, k > 0. Then, E ∈ Smax
m+k.

Proof. We will proceed the proof by induction over k. For k = 0 it is immediate. Suppose
that the result holds for some k ∈ N ∪ {0} and for every m ∈ N ∪ {0} and let E1 < · · · <
Ed ∈ Smax

m be such that {minEi}di=1 ∈ Smax
k+1 . If m = 0, the result is immediate. If m > 1,

by Proposition 2.1 we can write {minEi}di=1 = ⋃r
j=1 Fj, with F1 < · · · < Fr ∈ Smax

1 and
{minFj}rj=1 ∈ Smax

k . For each 1 6 j 6 r, define

Gj =
⋃

minEi∈Fj
Ei.

Since Ei ∈ Smax
m and {minEi : minEi ∈ Fj} = Fj ∈ Smax

1 , it follows that Gj ∈ Smax
m+1.

Moreover, since E = ⋃r
j=1Gj and {minGj}rj=1 = {minFj}rj=1 ∈ Smax

k , by the induction
hypothesis it follows that E ∈ Smax

m+k+1.

We say that G = {l1, . . . , ln} ⊂ N is a spread of F = {k1, . . . , km} ⊂ N (written in

increasing order) if m = n and ki 6 li for each 1 6 i 6 n. Recall that the Schreier families

are spreading, i.e., if F ∈ Sn and if G is a spread of F , then G ∈ Sn. In fact, we have a

more general result:

Proposition 2.3. Let n ∈ N, E ∈ Smax
n and F ⊂ N such that F is a spread of E,

minE < minF and cardE = cardF . If j > minE, then {j} ∪ F ∈ Sn.

Proof. By Proposition 2.1 we can write E = ⋃d
i=1Ei, with E1 < · · · < Ed ∈ Smax

n−1 and
{minEi}di=1 ∈ Smax

1 . Hence, minE = minE1 = d. Since cardE = cardF and F is a spread
of E, we can write F = ⋃d

i=1 Fi such that for each i the set Fi is a spread of Ei. Therefore
{j}, F1, . . . , Fd ∈ Sn−1 and min{j} ∪ F1 ∪ · · · ∪ Fd > d+ 1. Hence, F ∪ {j} ∈ Sn.
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2.3 Isometry groups of Schreier spaces
In Chapter 1 we classified several Banach spaces in terms of being light. However,

all the isometry groups of those spaces were well known and could be found already

in Banach’s book [Ban32]. On the other hand, the isometry groups of Schreier spaces

were not known until very recently. During the author’s Doctoral Exchange Program

(Programa de Doutorado Sandúıche no Exterior – PDSE-CAPES) in Washington and

Lee University, we were trying to classify the Schreier spaces in terms of being light, but

we needed the characterization of their isometry groups. Kevin Beanland and Hùng Viê.t

Chu, using properties of extreme points of XSα , managed to prove that for every n ∈ N,

the isometries of XSn consist only in change of signs of the coordinates.

For the sake of completeness, we will present their proof in Theorem 2.6. We will

need the following properties of Schreier sets and extreme points of XSα . Recall that an

extreme point of a convex set C in a real vector space is a point in C which does not lie

in any open line segment joining two points of C, i.e., x is an extreme point of C if for

any y, z ∈ C such that

x = λy + (1− λ)z,

for some 0 < λ < 1 we have x = y = z. The set of extreme points of C is denoted by

ext(C).

Theorem 2.4 (Beanland, Chu). Let 0 < α < ω1 and let x ∈ SXSα . Then x ∈ ext(BXSα
)

if and only if the following conditions are satisfied:

a) x ∈ c00;

b) there exists a non-maximal set F ∈ Sα such that
∑
k∈F
|xk| = 1;

c) for all i 6 max suppx there exists F ∈ Sα such that i ∈ F and
∑
k∈F
|xk| = 1, where

suppx denotes the support of x,

suppx = {i ∈ N : xi 6= 0}.

Proof. See [ABC19, Theorem 2.6].

In the proof of Theorem 2.6 we will also need the following technical lemma, that

is a consequence of results in Section 2.2:

Lemma 2.5. Let (ki)∞i=1 be an increasing sequence in N. For each n ∈ N∪{0}, let ϕn ∈ N
such that {ki}ϕni=1 ∈ Smax

n .
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1. If F1 < F2 < . . . is a sequence of finite subsets of N such that cardFi = ki and

ki < Fi for every i > 1, then for every j > k1 we have {j} ∪
ϕn−1⋃
i=1

Fi ∈ Sn;

2. If G ∈ Smax
n can be written as G =

m⋃
i=1

Gi, with G1 < · · · < Gm ∈ Smax
1 and

minGi 6 ki for every 1 6 i 6 m, then m 6 ϕn−1.

Proof.

1. For each i > 1 consider the sets Ei = {ki} ∪ Fi \ {maxFi}. Notice that E1 < E2 <

· · · < Eϕn−1 ∈ Smax
1 and that {minEi}ϕn−1

i=1 = {ki}ϕn−1
i=1 ∈ Smax

n−1 . By Proposition
2.2, it follows that E = ⋃ϕn−1

i=1 Ei ∈ SMAX
n . Moreover, since Fi is a spread of Ei

and cardEi = cardFi for each i, then F = ⋃ϕn−1
i=1 Fi ∈ Sn is a spread of E and

cardE = cardF . Since minE = k1 < minF , by Proposition 2.3, it follows that for
every j > minE = k1 we have {j} ∪ ⋃ϕn−1

i=1 Fi ∈ Sn.

2. By Proposition 2.1, we have {minGi}mi=1 ∈ Smax
n−1 . Suppose by contradiction that

m > ϕn−1. Since {ki}ϕn−1
i=1 ∈ Smax

n−1 it follows that {ki}mi=1 6∈ Sn−1. However, since
Schreier sets are spreading and minGi 6 ki, we should have {minGi}mi=1 6∈ Sn−1,
which is a contradiction.

Using these properties, we can proceed to the main result:

Theorem 2.6. Let n ∈ N and T ∈ Isom(XSn). Then, there exists a sequence (εi) in
{−1, 1} such that

T (x) = (εixi)∞i=1,

for every x = (xi)∞i=1 ∈ XSn.

Proof. Let n ∈ N and T ∈ Isom(XSn). For each i ∈ N, let

T (ei) = fi = (fi,1, fi,2, fi,3, . . . )

and
T−1(ei) = di = (di,1, di,2, di,3, . . . ).

We will divide the proof of this theorem in eight steps:

Step 1: f1 = ±e1.

Suppose, by contradiction, that f1,j 6= 0, for some j > 2. Let

Y = {x = (x1, x2, . . . ) ∈ XSn : x1 = 0}.
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Notice that, for every x ∈ BY we have

‖e1 + x‖ = 1 = ‖f1 + Tx‖. (2.1)

Since T (Y ) is a subspace of codimension 1 of XSn , there exists k > j such that ek ∈ T (Y ).
On the other hand, since {j, k} ∈ Sn, by (2.1) we have

1 = ‖f1 + ek‖ > |f1,j|+ |1 + f1,k|.

Moreover, there exist infinite k > j such that ek ∈ T (Y ) and f1,k → 0. Therefore,

1 = ‖f1 + ek‖ > |f1,j|+ 1,

which is a contradiction. Hence, supp(T (e1)) = {1} and since ‖f1‖ = 1 we must have
f1 = ±e1.

Step 2: dk,1 and fk,1 = 0, for every k > 2

Let k > 2. By Step 1, there exists ε1 ∈ {−1, 1} such that T (e1) = f1 = ε1e1. Thus, for
every k > 2 we have

‖e1 + ek‖ = ‖ε1e1 + fk‖ = 1 > |ε1 + fk,1|

and
‖e1 − ek‖ = ‖ε1e1 − fk‖ = 1 > |ε1 − fk,1|.

These two inequalities imply that fk,1 = 0. In the same way we prove that dk,1 = 0.

Step 3: For every i ∈ N, di, fi ∈ c00 and there exists a non-maximal set Fi ∈ Sn
such that

∑
k∈Fi
|fi,k| = 1.

It follows from the fact that isometries preserve extreme points, e1 + ej ∈ ext(BXSn
) for

every j > 2 and from Theorem 2.4.

Step 4: Let m ∈ N. If j > max
16i6m

{max supp fi}, then supp dj > m.

The proof of this step is by induction overm. Form = 1, it follows from Step 2. Assume now
that the conclusion holds for every m′ < m, for some m > 2. Fix j > max

16i6m
{max supp fi}.

By the induction hypothesis it follows that supp dj > m− 1, so it remains to prove that
dj,m = 0. By Step 3, there exists a non-maximal set F ∈ Sn such that

∑
k∈F
|fm,k| = 1. Thus

F ∪ {j} ∈ Sn and

‖fm ± ej‖ =
∑

k∈F∪{j}
|fm,k|+ δj,k = 2 = ‖em ± dj‖,

where

δj,k =

0, if j 6= k;

1, if j = k.
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Suppose, by contradiction, that m ∈ supp dj . Since ‖em ± dj‖ = 2, there exist sets G and
H in Sn such that

2− |dj,m| <
∑
i∈G
|δm,i + dj,i| 6 2 (2.2)

and
2− |dj,m| <

∑
i∈H
|δm,i − dj,i| 6 2. (2.3)

Notice that if m 6∈ G, we would have

1 6 2− |dj,m| <
∑
i∈G
|dj,i| 6 1,

which is a contradiction. For the same reason, we conclude that m ∈ H and hence
m ∈ G ∩H. If dj,m < 0 by (2.2) we would have

2− |dj,m| = 2 + dj,m < 1 + dj,m +
∑
i∈G
i 6=m

|dj,i| =⇒ 1 <
∑
i∈G
i 6=m

|dj,i|,

which contradicts the fact that ‖dj‖ = 1. On the other hand, if dj,m > 0, by (2.3) we would
have

2− |dj,m| = 2− dj,m < 1− dj,m +
∑
i∈H
i 6=m

|dj,i| =⇒ 1 <
∑
i∈H
i 6=m

|dj,i|,

that also contradicts ‖dj‖ = 1. Therefore we must have dj,m = 0, i.e., m 6∈ supp dj, as
desired.

Step 5: for every r ∈ N, there exist s, t ∈ N such that

r < supp ds < supp dt.

It follows from Step 4.

Step 6: for every k > 2, supp fk 6 k.

By Step 5, we can find F1 ⊂ N with k = k1 < minF1, cardF1 = k1, k1 < supp
∑
j∈F1

dj and

such that (dj)j∈F1 satisfies

r, s ∈ F1, r < s =⇒ supp dr < supp ds.

Let
k2 = max supp

∑
j∈F1

dj = max supp dmaxF1 .

Continuing in this way, we obtain an increasing sequence (ki)∞i=1 in N and a sequence
(Fi)∞i=1 of finite subsets of N such that for every i > 1:

a) ki < Fi;
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b) cardFi = ki;

c) ki < supp
∑
j∈Fi

dj;

d) If r, s ∈ Fi with r < s, then supp dr < supp ds, .

For each n ∈ N ∪ {0}, let ϕn ∈ N such that {ki}ϕni=1 ∈ Smax
n .

Claim: For every G ∈ Sn we have k1 6∈ G or G ∩ supp dj = ∅ for some j ∈ ⋃ϕn−1
i=1 Fi.

Indeed, suppose by contradiction that k1 ∈ G and G⋂ supp dj 6= ∅ for every j ∈
⋃ϕn−1
i=1 Fi.

Without loss of generality, we may assume that G is maximal in Sn. By Proposition 2.1
we can write G = ⋃m

i=1Gi with G1 < G2 < · · · < Gm ∈ Smax
1 and {minGi}mi=1 ∈ Smax

n−1 .
Since k1 ∈ G, it follows that minG1 6 k1 and hence cardG1 6 k1. The conditions
cardG1 6 k1 = cardF1; k1 < F1; supp dr < supp ds, if r < s; G⋂ supp dj 6= ∅; and
G1 < G2 < · · · < Gm, implie that

G1
⋂

supp dmaxF1 = ∅.

Therefore, we must have Gi ∩ supp dmaxF1 6= ∅, for some i > 1. Hence, minGi 6

max supp dmaxF1 which implies that minG2 6 max supp dmaxF1 = k2.

Continuing in this manner we see that

Gi ∩ supp dmaxFi = ∅ and minGi 6 ki

for each 1 6 i 6 m. By Lemma 2.5 item 2, it follows that m 6 ϕn−1. However, Gm ∩
supp dmaxFm = ∅ implies that G∩ supp dmaxFm = ∅ which contradicts our assumption and
concludes the proof of the claim.

Since ‖dj‖ = 1 for every j, it follows from the claim that for every G ∈ Sn we have

∑
r∈G
|δk,r +

ϕn−1∑
i=1

∑
j∈Fi

dj,r| <
ϕn−1∑
i=1

cardFi. (2.4)

Therefore,

‖ek +
ϕn−1∑
i=1

∑
j∈Fi

dj‖ = sup
G∈Sn

{∑
r∈G
|δk,r +

ϕn−1∑
i=1

∑
j∈Fi

dj,r|
}
6

ϕn−1∑
i=1

cardFi. (2.5)

Suppose by contradiction that max supp fk > k. By Lemma 2.5 item 1, for every j ∈
supp fk, with j > k, we have {j} ∪ ⋃ϕn−1

i=1 Fi ∈ Sn. Then,

‖ek +
ϕn−1∑
i=1

∑
l∈Fi

dl‖ = ‖fk +
ϕn−1∑
i=1

∑
l∈Fi

el‖ > |fk,j|+
ϕn−1∑
i=1

cardFi >
ϕn−1∑
i=1

cardFi, (2.6)

which contradicts (2.5). Hence, we must have max supp fk 6 k.
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Step 7: f2 = ±e2.

It follows from Steps 2 and 6.

Step 8: fk = ±ek, for every k > 3.

This final step is proved by induction. We proved in Steps 1 and 7 that f1 = ±e1 and
f2 = ±e2. Let k > 3 and suppose that fk′ = ±ek′ for every k′ < k. If j > k, then fk,j = 0
by Step 6. On the other hand, if 1 6 j < k, arguing as in Step 2 we conclude that fk,j = 0.
Since ‖fk‖ = 1 we must have |fk,k| = 1, as desired.

2.4 Lightness of XSn

The characterization of Isom(XSn) given by Theorem 2.6 finally allows us to classify

the Schreier spaces of finite order in terms of being light.

Proposition 2.7. Let n ∈ N. The isometry group Isom(XSn) is light.

Proof. Let (Tα)α∈I be a net in Isom(XSn) such that Tα WOT−→ Id and suppose, by contra-

diction, that Tα
SOT
6−→ Id. Then, there exist x = (x1, x2, . . . ) ∈ XSn , δ > 0 and indices

α1, α2, · · · ∈ I such that ‖Tα`x− x‖ > δ, for every ` ∈ N. By Theorem 2.6, for each ` ∈ N
there exists a sequence (εα`1 , ε

α`
2 , . . . ) in {−1, 1} such that Tα`ei = εα`i ei for each i ∈ N.

Since Tα WOT−→ Id, for every m ∈ N, e∗m(Tα`x) `→∞−→ xm. Hence, for every m ∈ N, there exists
N ∈ N such that l > N implies (Tα`x)k = xk, for every 1 6 k 6 m. On the other hand,
since ‖Tα`x− x‖ > δ, for every m ∈ N there exists Fm ∈ Sn with supp(Fm) > m such that∑

k∈Fm
|(Tα`x)k − xk| =

∑
k∈Fm

2|xk| >
δ

2 .

Hence, x cannot be approximated by elements of c00 with respect to the norm of XSn ,
which is a contradiction.

Questions and comments
It is worth mentioning that by Remark 1.4 the Schreier spaces do not have PCP,

since they have an isometric copy of c0 (see [CS89, Proposition 0.13]). Hence, we cannot

apply Theorem 1.5 to conclude that Isom(XSn) is light.

Although Theorem 2.6 was proved only for Schreier spaces of finite order, we

believe that it is valid for every XSα , for α < ω1. Almost every step in the proof can be

reproduced in the countable case, except for Step 6, in which Lemma 2.5 is used. For this

reason, we ask:

Question 2.8. Is Lemma 2.5 valid for XSα , α < ω1? What are the correspondent versions
of results of Section 2.2 for infinite countable ordinals?
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Another natural question is whether Theorem 2.7 is true for every combinatorial

space.

Question 2.9. Does there exist a combinatorial space that is not light?

It is worth mentioning that Tsirelson’s space is light, since it is reflexive. However,

Tsirelson’s space is not a combinatorial space, according to the definition that we adopted

here.



3 Convexity of norms and light groups

The purpose of this chapter is to connect the concept of light group of isomor-
phisms with the existence of smooth renormings. According to Deville, Godefroy and
Zizler [DGZ93],

Questions concerning the supply of smooth functions on Banach spaces
are of crucial importance in differential calculus. Smooth functions are
usually obtained from smooth norms and smooth norms are in turn often
constructed from dual rotund norms. The existence of equivalent smooth
or rotund norms or nontrivial smooth functions on a particular Banach
space depends on its structure and has in turn a profound impact on its
geometry.

We will show in Theorem 3.3 that if G 6 GL(X) and X admits a G-invariant LUR

renorming in X (or just LUR on a dense subset of SX), then G is light. Corollary 3.11

shows that the converse does not hold.

3.1 Convexity of norms in vector spaces
Let (X, ‖ ·‖) be a Banach space. We say that a norm ‖ ·‖ in X is rotund or strictly

convex if for every x, y ∈ X such that

‖x‖ = ‖y‖ = 1 and ‖x+ y‖ = 2

we have x = y. The following conditions are equivalent(see [DGZ93, Chapter 2, Proposi-

tion 1.3]):

1. The norm ‖ · ‖ is strictly convex;

2. If x and y ∈ X are such that 2‖x‖2 + 2‖y‖2 − ‖x+ y‖2 = 0, then x = y;

3. If x and y ∈ X are such that ‖x + y‖ = ‖x‖ + ‖y‖ and x, y 6= 0, then x = λy for

some λ > 0.

Geometrically, ‖ · ‖ is strictly convex if, and only if, the unit sphere SX does not

contain any non-degenerated line segment.

The next definition is stronger than the previous one. We say that the norm ‖ · ‖
in X is locally uniformly convex (LUC) or locally uniformly rotund (LUR) in x0 ∈ X if

for every sequence {xn} ⊂ X such that

lim ‖xn‖ = ‖x0‖ and lim ‖x0 + xn‖ = 2‖x0‖



50

we have lim ‖xn − x0‖ = 0. If ‖ · ‖ is LUR in every x0 ∈ X, we simply say that the norm

is LUR in X.

If x0 ∈ SX , we have the following equivalent definitions (see [DGZ93, Chapter 2,

Proposition 1.2].):

1. The norm ‖ · ‖ is LUR in x0;

2. If (xn) is a sequence in SX and lim ‖xn + x0‖ = 2, then lim ‖xn − x0‖ = 0;

3. If (xn) is a sequence in X such that lim 2(‖x0‖2 + ‖xn‖2) − ‖x0 + xn‖2 = 0, then

lim ‖x0 − xn‖ = 0.

Geometrically, the norm ‖ · ‖ is LUR in x0 ∈ SX if taking a variable chord in SX

with a fixed endpoint in x0, if the midpoint of the chord gets close to the sphere then the

length of the chord goes to zero.

An example of Banach space with LUR is `2, since for every x, y ∈ `2 we have the

parallelogram identity

2(‖x‖2 + ‖y‖2) = ‖x+ y‖2 + ‖x− y‖2.

On the other hand, `1 is not even strictly convex.

The convexity of a norm is deeply connected with the differentiability of the norm:

if the dual norm ‖ · ‖∗ is strictly convex in X∗, then ‖ · ‖ is Gateaux differentiable in X;

moreover, if ‖ · ‖ is LUR in X∗, then ‖ · ‖ is Fréchet differentiable in X (Propositions

1.5 and 1.6 in [DGZ93]). It also has connections with the coincidence of weak and norm

topologies on SX .

A norm ‖ · ‖ on a Banach space X is said to have the Kadec-Klee property (KKP)

if the relative norm and weak topologies on the unit ball BX coincide in the unit sphere

SX . If ‖ · ‖ is an LUR norm on X, then (X, ‖ · ‖) has the KKP (see [DGZ93], Proposition

1.4).

3.2 G-invariant renormings
A common problem in geometry of Banach spaces consist in investigating condi-

tions in which a norm can be replaced by an equivalent one, but with better geometric

properties. Recall that two norms ‖ · ‖ and ||| · ||| in a vector space X are equivalent if there

exist constants C1 and C2 > 0 such that

C1‖x‖ 6 |||x||| 6 C2‖x‖,
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for every x ∈ X. In particular, they induce the same topology on X. We say that ||| · ||| is

a renorming of (X, ‖ · ‖) if ‖ · ‖ and ||| · ||| are equivalent.

A fundamental result in renorming theory was proved by Kadec in [Kad59]:

Theorem 3.1 (Kadec). Every separable Banach space admits an LUR renorming.

The proof of Theorem 3.1 consists of the following steps:

• If Y admits an LUR dual norm and T ∈ B(Y,X) is w∗ − w continuous with dense

image in X, then X admits an LUR renorming;

• IfX is separable, there exists T ∈ B(X∗, `2) w∗−w continuous such that T ∗ : `2 → X

is w∗ − w continuous and T ∗(`2) is dense in X;

• The usual norm of `2 is LUR.

For the full proof, see [DGZ93, Chapter 2, Theorem 2.6].

In [Lan93] Lancien proves that if, in addition of being separable the space has the

RNP, then this renorming could be taken preserving the original isometries of the space.

We say that the norm ‖ · ‖ on X is G-invariant , where G 6 GL(X), if

‖Tx‖ = ‖x‖,

for every T ∈ G and every x ∈ X. In other words, ‖ · ‖ is G-invariant if G is a subgroup

of Isom(X, ‖ · ‖). If ||| · ||| is an equivalent norm of a Banach space (X, ‖ · ‖) such that

Isom(X, ‖ · ‖) ⊆ Isom(X, ||| · |||),

we say that ||| · ||| is an isometry invariant renorming of X.

Lancien proves the following:

Theorem 3.2 (Lancien). If X is a separable Banach space with RNP, then X admits an
isometry invariant LUR renorming.

The proof of this theorem is based on the concept of dentability index δ(X) of a

Banach space. If C is a closed and bounded subset of a Banach space X, consider the

sections

S(y, a) = {x ∈ C; y(x) > a},

where y ∈ X∗ and a ∈ R. For ε > 0, define

C ′ε = {x ∈ C; every section of C containing x has diameter > ε}.
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For α ordinal, we define inductively Fα
ε in the following way:

F 0
ε = F = BX

Fα+1
ε = (Fα

ε )′ε

Fα
ε =

⋂
β<α

F β
ε , if α is a limit ordinal.

Set

δ(X, ε) =

inf α < ω1;Fα
ε = ∅}, if there exists;

ω1, otherwise.

Finally, the dentability index of X is defined as

δ(X) = sup
ε>0

δ(X, ε).

Lancien proves that if X is separable and has the RNP, then δ(X) < ω1. Moreover,

if δ(X) < ω1 then X admits an LUR renorming. In addition, this renorming preserves

isometries.

In [FR11] Ferenczi and Rosendal proved that L1[0, 1] does not admit any isometry

invariant LUR renorming, using the fact that the norm of L1[0, 1] is almost transitive,

which implies that any isometry invariant renorming must be a multiple of the original

norm. On the other hand, the norm of L1[0, 1] is nowhere LUR. Hence, Lancien’s result

does not generalize to every separable Banach space.

We will give another example of a separable space that does not admit any isometry

invariant LUR renorming in Proposition 3.10, namely, the space C[0, 1]. The proof of this

theorem is based on the fact that Isom(C[0, 1]) is light (Proposition 1.15) and in next

theorem:

Theorem 3.3. If a Banach space X admits a G-invariant renorming ‖ · ‖ which is LUR
in a dense subset of SX , then G is light.

Proof. Let (Tα)α∈I be a net in G such that Tα WOT−→ Id and suppose, by contradiction, that

Tα
SOT
6−→ Id. Then, there exists x ∈ SX such that Tαx 6→ x. Without loss of generality, we

may assume that there exists δ > 0 such that ‖Tαx− x‖ > δ > 0 for every α and ‖ · ‖ is
LUR in x. By the LUR property of ‖ · ‖ in x, we may also assume that there exists ε > 0
such that, for every α ∈ I we have

‖Tαx+ x‖ 6 2− ε.

Let φ ∈ X∗ such that ‖φ‖ = 1 and φ(x) = 1. By the WOT convergence of Tα to Id, we
have

φ(Tαx)→ 1. (3.1)
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On the other hand,

|φ(Tαx) + 1| = max
ψ∈X∗
‖ψ‖=1

|ψ(Tαx+ x)| = ‖Tαx+ x‖ 6 2− ε,

which contradicts 3.1.

Remark 3.4. In fact, the proof of Theorem 3.3 gives us a formally stronger result: if X
admits a G-invariant renorming which is LUR on a dense subset of SX then G is orbit-wise
light. Megrelishvili defines in [Meg03] a group G 6 GL(X) as orbit-wise light (or orbit-wise
Kadec) if for every x ∈ X the orbit O(x) = {Tx ; T ∈ G} is a set on which the weak and
the strong topologies coincide. It is readily seen that if G is orbit-wise light, then it is
light, but whether the converse holds is still an open question.

An example of application of Theorem 3.3 is to prove that c0 is light. Indeed, Day

defined in [Day55] the following renorming of c0:

‖x‖D = sup


(

n∑
k=1

x2
σ(k)

4k

) 1
2

 ,
where the supremum is taken over all permutations σ : N → N. By Novinger’s Theorem,

every isometry Isom(c0) can be written as

T (xn) = (εnxσ(n)),

where σ : N → N is a permutation and (εn) is a sequence such that |εn| = 1 for every n.

Therefore, Day’s renorming is isometry invariant. Moreover, in [Rai69] Rainwater proved

that this norm is LUR. Hence,

Corollary 3.5. The space (c0, ‖ · ‖∞) is light.

3.3 Renormings in `∞
Day’s norm can be defined in `∞(Γ) in a similar way that it was defined for c0,

where Γ is an arbitrary set. It also can be shown that it is LUR in c0(Γ), for every Γ (see

[DGZ93, p. 69–71]).

Although this norm is LUR in c0, it is interesting to note that the same does not

occur in `∞. In fact, it is not even strictly convex in c. For example, it is not strictly

convex in y = (1, 1, . . . ) since for every x = (x0, x1, . . . ) ∈ c such that ‖x‖∞ = 1 and

|xi| = 1 for infinite indices i, we have

‖x‖D = ‖y‖D =
∥∥∥∥x+ y

2

∥∥∥∥
D
.
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Proposition 1.10 and Theorem 3.3 imply that `∞ does not admit any isometry

invariant LUR renorming. In fact, a stronger result is already known: the space `∞ does

not admit any renorming with Kadec-Klee Property (see [DGZ93, Theorem 7.10, Chapter

II]).

Since `∞ does not admit any renorming with KKP, it also does not admit any

LUR renorming. On the other hand, `∞ admits strictly convex renormings (see [Die75, p.

120]).

Question 3.6. Does `∞ admit a strictly convex isometry invariant renorming?

Next proposition gives a negative answer to this question.

Proposition 3.7. The space `∞ does not admit any strictly convex isometry invariant
renorming.

Proof. Consider the points x = (1, 1, 0, 1, 0, 1, 0, . . . ) and y = (−1, 1, 0, 1, 0, 1, 0, . . . ) ∈ `∞.
Then,

z = x+ y

2 = (0, 1, 0, 1, 0, 1, . . . ).

Every T ∈ Isom(`∞) can be written as

T ((xn)n∈N) = (εnxσ(n))n∈N,

where σ : N→ N is a permutation and (εn)n∈N is a sequence in K such that |εn| = 1,for
every n ∈ N (see [Ban32, p. 178]). Therefore, there exist T and S ∈ Isom(`∞) such that
Tx = y and Sx = z. Hence, if ‖ · ‖ is an isometry invariant renorming of `∞

‖x‖ = ‖Tx‖ = ‖y‖ = ‖Sx‖ = ‖z‖,

which implies that ‖ · ‖ cannot be strictly convex.

3.4 A light space without isometry invariant LUR renormings
In view of Theorem 3.3, we may ask:

Question 3.8. Does there exist a Banach space X and a bounded light group G 6 GL(X)
such that X does not admit any LUR G-invariant renorming?

By Theorem 3.2 if such space exists it cannot have the RNP. Therefore, we need

to look at the examples that we found previously of light groups of spaces without the

RNP. Although c0 is light, the group Isom(c0) is not an answer to Question 3.8, since

Day’s renorming is LUR and isometry invariant. Another possibility is Isom(C[0, 1]), by

Proposition 1.15. Indeed, in the same way we proved for `∞, we will show that C[0, 1]
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does not admit isometry invariant strictly convex renormings. We will need the following

Lemma:

Lemma 3.9. Let f ∈ C[0, 1] be such that f is strictly monotone in some interval [a, b] ⊂
[0, 1]. Then, there exists g ∈ C[0, 1] such that

1. ‖f‖∞ = ‖g‖∞ =
∥∥∥∥∥f + g

2

∥∥∥∥∥
∞
;

2. ‖f − g‖∞ > 0;

3. g = f ◦ ϕ and f + g

2 = f ◦ ψ, where ϕ, ψ : [0, 1]→ [0, 1] are homeomorphisms.

Proof. Let 0 6 a < b 6 1 such that f |[a,b] is strictly monotone. Without loss of generality,
suppose that f is strictly increasing in [a, b]. Let ξ : [a, b]→ [f(a), f(b)] be an increasing
homeomorphism such that ξ 6≡ f |[a,b]. Define g ∈ C[0, 1] and the homeomorphism ϕ :
[0, 1]→ [0, 1] by

g(x) =

ξ(x), if x ∈ [a, b];

f(x), otherwise.
ϕ(x) =

f
−1(ξ(x)), if x ∈ [a, b];

x, otherwise.

Then, g = f ◦ ϕ, ‖g‖∞ = ‖f‖∞ =
∥∥∥∥∥f + g

2

∥∥∥∥∥
∞

and ‖f − g‖∞ > 0. Moreover, f ◦ ψ = f + g

2 ,

where ψ : [0, 1]→ [0, 1] is the homeomorphism defined by

ψ(x) =


f−1

(
ξ(x) + f(x)

2

)
, if x ∈ [a, b];

x, otherwise.

Proposition 3.10. Let ||| · ||| be an isometry invariant renorming of C[0, 1]. Then, there
exists a dense subset of C[0, 1] where ||| · ||| is not strictly convex.

Proof. Let f ∈ C[0, 1] be an affine non-constant function and let g, ϕ and ψ be as in
Lemma 3.9. Since f 7→ f ◦ ϕ and f 7→ f ◦ ψ define surjective linear isometries on C[0, 1],
then

|||g||| = |||f ◦ ϕ||| = |||f ||| = |||f ◦ ψ||| =
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣f + g

2

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

Hence, ||| · ||| is not strictly convex in f . The result follows from the fact that the set of
piecewise linear continuous functions is dense in C[0, 1].

Corollary 3.11. The space C[0, 1] does not admit isometry invariant strictly convex
renormings.



56

Corollary 3.11 gives us a positive answer to Question 3.8. On the other hand,

Remark 3.4 suggests the following new question:

Question 3.12. Does there exist a Banach space X and an orbit-wise light group G 6

GL(X) such that X admits no G-invariant LUR renorming?

The next proposition shows that the isometry group of C[0, 1] also gives a positive

answer to Question 3.12:

Proposition 3.13. The group Isom(C[0, 1]) is orbit-wise light.

Proof. Let f ∈ C[0, 1] and let (gα)α∈I be a net in the orbit O(f) of f under the action
of the group Isom(C[0, 1]) such that gα converges weakly to g ∈ O(f). By Banach-Stone
Theorem, there exist homeomorphisms ϕ, ϕα ∈ Hom([0, 1]) and ε, εα ∈ {−1, 1} such that
g = ε · f ◦ ϕ and gα = εα · f ◦ ϕα. Since gα converges weakly to g (hence, pointwise),
without loss of generality we can assume that the ϕα are increasing homeomorphisms,
ε = εα = 1 for every α ∈ I and g = f .

Suppose by contradiction that f ◦ ϕα does not converge uniformly to f . Then we
can assume that there exists ε > 0 and for every α ∈ I there exists xα ∈ [0, 1] such that
|f(ϕα(xα))− f(xα)| > 2ε. We also can assume that xα → x ∈ [0, 1] and xα 6 x for every
α. Then by the continuity of f at the point x,

|f(ϕα(xα))− f(x)| > ε.

Let δ > 0 be such that |x− y| < δ =⇒ |f(x)− f(y)| < ε

8 . Then ϕα(xα) 6∈ (x− δ, x+ δ)
for every α and ϕα(xα) < x− δ for infinitely many indices α ∈ I, or ϕα(xα) > x+ δ for
infinitely many indices α ∈ I. Without loss of generality, we may assume that

ϕα(xα) < x− δ, for every α ∈ I.

We also may assume that

x− δ < xα 6 x, for every α ∈ I

(the cases ϕα(xα) > x+ δ and/or x < xα < x+ δ for every α ∈ I are similar).

Let α1 ∈ I and let
y1,1 = ϕα1(xα1).

We claim that for every n > 2, there exists a finite sequence in [0, 1],

yn,1 < yn,2 < · · · < yn,2n−1 < x− δ

such that
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a) |f(yn,2k+1)− f(x)| > ε− ε

8 −
ε

2k+4

n−k−2∑
j=0

1
2j

 >
3ε
4 for k = 0, 1, . . . , n− 1

and

b) |f(yn,2k)− f(x)| < ε

8 + ε

2k+3

n−k−1∑
j=0

1
2j

 <
ε

4 for k = 1, 2, . . . , n− 1.

Notice that the existence of such a sequence for every n > 2 contradicts the uniform
continuity of f on [0, 1]. Hence it suffices to prove the claim in order to complete the proof
of Proposition 3.13.

We proceed to the proof of the claim by induction. Since f ◦ϕα converges pointwise
to f and xα → x, we can take α2 < α1 such that xα1 < xα2 < x, |f(ϕβ(y1,1))−f(y1,1)| < ε

16
and |f(ϕβ(xα1))− f(xα1)| < ε

16 for every β < α2. Let

y2,1 = ϕα2(y1,1), y2,2 = ϕα2(xα1) and y2,3 = ϕα2(xα2).

Since ϕα2 is an increasing homeomorphism and y1,1 < x − δ < xα1 < xα2 , we have
y2,1 < y2,2 < y2,3 and y2,3 = ϕα2(xα2) < x− δ. Moreover,

|f(y2,1)− f(x)| > ε− ε

8 −
ε

16 , |f(y2,2)− f(x)| < ε

8 + ε

16 and |f(y2,3)− f(x)| > ε− ε

8 ,

which proves the inequalities for n = 2.

Suppose now that the inequalities hold for n. Let αn+1 < αn such that xαn <
xαn+1 < x, |f(ϕβ(yn,r)) − f(yn,r)| <

ε

2n+3 and |f(ϕβ(xαn)) − f(xαn)| < ε

2n+3 for every
r = 1, 2, . . . , 2n− 1 and every β < α2. Let

yn+1,r = ϕαn+1(yn,r) for r = 1, . . . , 2n− 1,

yn+1,2n = ϕαn+1(xαn) and yn+1,2n+1 = ϕαn+1(xαn+1).

It follows that

|f(yn+1,2k+1)− f(x)| > ε− ε

8 −
ε

2k+4

n−k−1∑
j=0

1
2j

 for k = 0, 1, . . . , n and

|f(yn+1,2k)− f(x)| <
ε

8 + ε

2k+3

n−k∑
j=0

1
2j

 for k = 1, 2, . . . , n.

Since ϕαn+1 is an increasing homeomorphism and yn,1 < yn,2 < · · · < yn,2n−1 < x − δ <
xαn < xαn+1 , we have yn+1,1 < yn+1,2 < · · · < yn+1,2n+1 = ϕαn+1(xαn+1) < x − δ, which
proves the claim.
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Questions and comments
The original proof of Theorem 3.3 was obtained by Ferenczi, Grivaux and Rosendal.

We modified the proof here to include the complex case.

Megrelishvili proved that if X has the PCP, then every bounded group of iso-

morphisms G 6 GL(X) is light. We presented here two other conditions that imply the

lightness of a bounded group: SOT-compactness (Proposition 1.19) and the existence of

G-invariant LUR renormings (Theorem 3.3).

Question 3.14. What other conditions over X and/or G imply that a bounded group
G > GL(X) is light?

We were not able to find yet an orbit-wise light group that is not light. For this

reason, we ask:

Question 3.15. Is every light group orbit-wise light?



4 Distinguished points and light groups

Bellenot proved in [Bel86] that any separable real Banach space (X, ‖·‖) admits an

equivalent renorming ||| · ||| such that Isom(X, ||| · |||) = {± Id}. Jarosz generalized Bellenot’s

result in [Jar88], proving that any Banach space (X, ‖ · ‖) (separable or not, real or

complex) admits an equivalent renorming ||| · ||| such that

Isom(X, ||| · |||) = {λ Id : λ ∈ K, |λ| = 1},

where K = R in the real case and K = C in the complex case. Ferenczi and Galego

investigated in [FG10] what other groups may be seen as the group of isometries of a

Banach space under some renorming. Among other results, they prove that if X is a

separable Banach space and G is a finite group of isomorphisms of X with − Id ∈ G, then

X admits an equivalent norm ||| · ||| such that

G = Isom(X, ||| · |||).

They also prove that if X is a separable Banach space with LUR norm ‖ · ‖ and if G is

an infinite countable bounded isometry group of X such that − Id ∈ G and such that

G admits a point x ∈ X with infg 6=Id ‖gx − x‖ > 0, then G = Isom(X, ||| · |||) for some

equivalent norm ||| · ||| on X. A point x satisfying the condition

inf
g 6=Id
‖gx− x‖ > 0

is called in [FR11] a distinguished point of X for the group G.

Ferenczi and Rosendal generalized results of [FG10] in [FR11] to certain uncount-

able Polish groups and also defined the concept of distinguished family for X in relation

to G as a finite subset F = {x1, . . . , xn} of X such that

inf
T 6=Id

{
max
16i6n

‖Txi − xi‖
}
> 0.

In this chapter we will investigate the relations between the concepts of distin-

guished families and light groups. In Theorem 4.4 we will prove that if G 6 GL(X) is

such that G has a distinguished point for X, but G does not act as an SOT-discrete group

on X∗, then G is not light. In particular, the group Isom(c) is not light, which implies

that every separable infinite dimensional C(K) admits a non-light renorming (Corollary

4.9).

It is clear that if G is an isometry group with a distinguished point, G is discrete

in the strong operator topology. Ferenczi and Rosendal ask in [FR11] if the converse of
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this fact holds, i.e., if every SOT-discrete group has a distinguished point. In Proposition

4.11 we will see that the answer to this question is negative. We will give an example of

an infinite countable group of isomorphisms G of c0 which is SOT-discrete but does not

admit a distinguished point for G. In addition, this group is also not light.

4.1 Distinguished family for dual actions
If G 6 GL(X), besides the action of G on X we also may consider the action

induced by G on X∗, identifying G with ψ(G) 6 GL(X∗), where ψ : G → GL(X∗) is

given by

ψ(T )(x∗) = x∗ ◦ T−1.

We will show in Proposition 4.3 that the existence of a distinguished family of

cardinality n in X for G implies the existence of a distinguished family of cardinality n

in X∗ for G. We will need the following lemmas:

Lemma 4.1. Suppose that G 6 GL(X) is light. If G acts like an SOT-discrete group on
X, then G acts like an SOT-discrete group on X∗.

Proof. Let ψ : G→ GL(X∗) be defined by

ψ(T )(x∗) = x∗ ◦ T−1

for every T ∈ G and x∗ ∈ X∗. We want to show that ψ(G) is an SOT-discrete subgroup
of GL(X∗). Since G is light, G is WOT-discrete. Hence, for every T ∈ G there exist
x1, . . . , xm ∈ SX , x∗1, . . . , x∗n ∈ SX∗ and ε > 0 such that

G ∩ {S−1 ∈ GL(X); |x∗i (S−1(xj))− x∗i (T−1(xj))| < ε, 1 6 i 6 n, 1 6 j 6 m} = {T−1}.
(4.1)

Notice that

A = {Φ ∈ GL(X∗); ||Φ(x∗i )− ψ(T )(x∗i )|| < ε, 1 6 i 6 n}

is an SOT-open subset of GL(X∗). Moreover, if ψ(S) ∈ ψ(G) ∩ A then

||ψ(S)(x∗i )− ψ(T )(x∗i )|| < ε, for every 1 6 i 6 n.

Therefore,

|ψ(S)(x∗i )(xj)− ψ(T )(x∗i )(xj)| < ε, for every 1 6 i 6 n and 1 6 j 6 m.

Thus, |x∗i (S−1)(xj)− x∗i (T−1(xj)| < ε and by (4.1), we conclude that S = T and

ψ(G) ∩ A = {ψ(T )}.

Hence, ψ(G) is SOT-discrete in GL(X∗).
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Lemma 4.2. Let X be a Banach space, G a bounded subgroup of GL(X) and {x1, . . . , xn}
a distinguished family of X for the action of G. Let ‖ · ‖ be a G-invariant renorming of X
which is LUR in x1, . . . , xn. Then, for any φi ∈ SX∗,‖·‖∗ with φixi = 1, i = 1, . . . , n, the
family {φ1, . . . , φn} is distinguished for the dual action of G in X∗.

Proof. Without loss of generality, suppose that ‖xi‖ = 1 for every i. Let

γ = inf
g 6=Id

max
i
‖gxi − xi‖ > 0.

If g 6= Id, let i be such that ‖gxi − xi‖ > γ. Since ‖ · ‖ is LUR in x1, . . . , xn, there exists
ε > 0, which depends of γ but not of i, such that

‖gxi + xi‖ 6 2− ε.

Hence,

|φigxi + φixi| 6 2− ε

|φigxi + 1| 6 2− ε

φi(gxi) 6 1− ε

g∗(φi)(xi)− φi(xi) 6 −ε

ε 6 ‖g∗(φi)− φi‖.

Lemmas 4.1 and 4.2 and Theorem 3.3 imply the following:

Proposition 4.3. Let X be a Banach space, G a bounded SOT-discrete subgroup of
GL(X) and suppose that X admits a G-invariant renorming LUR in a dense subset of
SX . If there exists a distinguished family of cardinality n for the action of G on X, then
there exists a distinguished family of cardinality n for the dual action of G on X∗.

The next theorem gives us a criterion to determine that a group is not light. We

will use this result in Proposition 4.5 to prove that c is not light.

Theorem 4.4. Let G 6 GL(X) be such that G has a distinguished point for X, but G
does not act as an SOT-discrete group on X∗. Then, G is not light.

Proof. Let x0 be a distinguished point of X the action of G. Since

inf
T∈G
T 6=Id

‖Tx0 − x0‖ > 0,

we have Tn
SOT
6−→ Id for every sequence (Tn) in G such that Tn 6= Id for every n. On the

other hand, since G does not act as an SOT-discrete group on X∗, there exists a sequence
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T ∗n on the dual representation ψ(G) of G on GL(X∗) such that T ∗n 6= Id for every n and
T ∗n

SOT−→ Id in ψ(G). Therefore, for every ϕ ∈ X∗,

T ∗nϕ
‖·‖X∗−→ ϕ

T ∗nϕ(x) → ϕ(x), for every x ∈ BX

ϕT−1
n (x) → ϕ(x), for every x ∈ BX

T−1
n

WOT−→ Id .

Proposition 4.5. There exists a subgroup G of Isom(c) that has a distinguished point,
but whose dual action on `1 is not SOT-discrete.

Proof. Define G as the subgroup of isometries T of c of the form

T ((xk)k∈N) = (εkxk)k∈N, (xk)k∈N ∈ c,

where the sequence (εk)k ∈ {−1, 1}N is eventually constant. Notice that (1, 1, . . .) is a
distinguished point for G, since

inf
T∈G
T 6=Id

‖T (1, 1, . . . )− (1, 1, . . . )‖ = 2.

On the other hand, the dual space of c identifies isomorphically with `1, where ϕ =
(yk)k∈N ∈ `1 acts on an element x = (xk)k∈N ∈ c by the formula

ϕ(x) = y1 lim
k→∞

xk +
∞∑
k=2

yk xk−1.

For every n ∈ N, define the operator Tn ∈ G by setting, for every (xk)k∈N ∈ c,

Tn(x1, x2, . . . , xn−1, xn, xn+1, . . . ) = (x1, x2, . . . , xn−1,−xn, xn+1, . . . ).

For every x ∈ c we have

ϕ(Tn(x)) = y1 lim
k→∞

(Tn(x))k +
∞∑
k=2

yk (Tn(x))k−1 =
(
y1 lim

k→∞
xk +

∞∑
k=2

yk xk−1

)
− 2ynxn

which tends to ϕ(x) as n tends to infinity. Thus, the inequality

‖T ∗nϕ− ϕ‖X∗ 6 |(T ∗nϕ− ϕ)(x)| = 2|ynxn| 6 2|yn|‖x‖,

x ∈ c, ϕ ∈ `1, implies that T ∗n tends SOT to Id, so the dual action of G on `1 is not
SOT-discrete.

Remark 4.6. Since the dual action of the group G of Proposition 4.5 is not SOT-discrete,
by Lemma 4.1 its action on c is also not SOT-discrete.

By Theorem 4.4 we also have the classification of Isom(c) in terms of being light:

Corollary 4.7. The space c is not light.
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4.2 Non-light renormings of C(K)

We proved in Corollary 4.7 that Isom(c) is not light. In fact, we can use this result

to prove that every infinite dimensional separable space C(K) admits a renorming ||| · |||
such that Isom(C(K), ||| · |||) is not light. We will need the following result:

Proposition 4.8. Suppose that Y is a complemented subspace of X. If every bounded
group of isomorphisms of X is light, then every bounded group of isomorphisms of Y is
light.

Proof. Let Z be a closed subspace of X such that X ' Y ⊕ Z. Let G 6 GL(Y ) be a
bounded subgroup and for each T ∈ G define T̃ ∈ GL(X) by T̃ (x) = (T (y), z), where
x = (y, z) ∈ X ' Y ⊕ Z. Notice that G̃ = {T̃ ;T ∈ G} is a bounded subgroup of GL(X)
and hence, light.

Let (Tα)α∈I be a net in G such that Tα WOT−→ IdY . We claim that T̃α WOT−→ IdX . Indeed,
for every Φ = (ξ, ψ) ∈ X∗ ' Y ∗ ⊕ Z∗ and every x = (y, z) ∈ X we have

|Φ(T̃α(x))− Φ(x)| = |ξ(Tα(y))− ξ(y)| → 0.

Since G̃ is light, then T̃α SOT−→ IdX . Moreover, for every y ∈ Y we have

‖Tα(y)− y‖Y = ‖T̃α(y, 0)− (y, 0)‖X → 0,

i.e., Tα SOT−→ IdY .

Since c is isomorphic to c0 (see, [FHH+11, p. 271, Exercise 5.16]) and c0 is isomor-

phic to a complemented subspace of C(K) for every infinite, compact and metrizable K

(see [FHH+11, p. 273, Exercise 5.26]), and since C(K) is separable if and only if K is

metrizable (see [FHH+11, p. 128, Lemma 3.102]), it follows:

Corollary 4.9. Every infinite dimensional separable C(K) admits a non-light renorming.

Proof. Let Z be a closed subspace of C(K) such that C(K) ' Isom(c)⊕ Z. Let

G = {g ⊕ IdZ ; g ∈ Isom(c)}.

By Propositions 4.5 and 4.8, G is a bounded non-light group of isomorphisms of C(K).
Moreover, C(K) admits a LUR renorming ‖ · ‖, since it is separable (Theorem 3.1). Also,

|||x||| = sup
g∈G
‖gx‖

is a G-invariant LUR renorming of C(K). Since G 6 Isom(X, ||| · |||), it follows that
Isom(X, ||| · |||) is also non-light.
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4.3 Example of an SOT-discrete group without distinguished
points
If x0 is a distinguished point of X for G 6 GL(X), there exists ε > 0 such that

inf
T∈G
T 6=Id

‖Tx0 − x0‖ > ε.

Hence, A = {T ∈ G : ‖Tx0−x0‖ < ε} is an SOT-open subset of G that contains only the

identity and therefore G is SOT-discrete.

On the other hand, since the sets

Vx1,...,xn,T,ε = {S : ‖Sxi − Txi‖ < ε,∀1 6 i 6 n}

form a basis for SOT, if G 6 GL(X) is SOT discrete there exist ε > 0 and x1, . . . , xn ∈ X
such that

G ∩ Vx1,...,xn,Id,ε = {Id}.

Thus, {x1, . . . , xn} is a distinguished family of X for the action of G. In [FR11] Ferenczi

and Rosendal ask if we also can get a distinguished point for G in this condition.

Question 4.10. If G is an isomorphism group of X which is SOT-discrete, should X have
a distinguished point for G?

Next proposition gives a negative answer to this question.

Proposition 4.11. For every r > 2, there exists a bounded infinite SOT-discrete isomor-
phism group which admits a distinguished family of cardinality r, but does not admit any
distinguished family of cardinality r − 1.

Proof. Let (λk)k, λk = (λ(1)
k , . . . , λ

(r)
k ), be a dense sequence in the unit sphere Sr−1 of Rr

for the `1 norm. Consider the vectors of the canonical basis of c00 (en)n>1 and for each
k > r define the functionals

x∗k = λ
(1)
k e1 + λ

(2)
k e2 + · · ·+ λ

(r)
k er + ek,

which seen as an element of `1 has norm at most r+1. For every k > r define the operators
Rk : c0 → c0 by

Rk(x) = −2x∗k(x)ek.

Notice that
R2
k = −2Rk and RnRk = 0, if k 6= n.

Thus
(Id +Rk)2 = Id
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and if n 6= k we have

(Id +Rk)(Id +Rn) = Id +Rk +Rn = (Id +Rn)(Id +Rk).

Therefore, the operators Tn = Id +Rn generate a countable infinite abelian subgroup
G 6 GL(c0). Moreover, any element of G can be written as

T = Id +
∑
k∈F

Rk,

for some finite subset F ⊂ N ∩ [r,+∞). Hence, for every x = (xn)n ∈ Bc0 we have

‖Tx‖ = ‖x− 2
∑
k∈F

x∗k(x)ek‖ 6 max{‖x‖,max
k∈F
|xk − 2x∗k(x)|}

6 max{1,max
k∈F
| − xk − 2

∑
j>r

λ
(j)
k xj|}

6 3.

It follows that ‖T‖ 6 3 for every T ∈ G, i.e., G is bounded. We will now prove that no
family {x1, . . . , xr−1} of c0 is distinguished. Notice that for every k > r and 1 6 s 6 r − 1
we have

‖(Id +Rk)(xs)− xs‖ = 2||x∗k(xs)ek||

= 2|λ(1)
k x(1)

s + · · ·+ λ
(r)
k x(r)

s + x(k)
s |

6 2|λ(1)
k x(1)

s + · · ·+ λ
(r)
k x(r)

s |+ 2|x(k)
s |.

Since dim span{x1, . . . , xr−1} 6 r − 1 there exists y = (y(1), . . . , y(r)) ∈ Sr−1 such that
y ⊥ xs for every 1 6 s 6 r − 1. By the density of (λk)k in Sr−1, it follows that

lim inf
k
‖(Id +Rk)xs − xs‖ = 0

for every 1 6 s 6 r − 1 and hence the family {x1, . . . , xr−1} is not distinguished. On the
other hand, the family

{e1, . . . , er}

is distinguished. Indeed, notice that for every T = Id +∑
k∈F Rk, F 6= ∅, and 1 6 s 6 r

we have
‖Tes − es‖ = 2 max

k∈F
|λ(s)
k |.

Since
|λ(1)
k |+ · · ·+ |λ

(r)
k | = 1,

there exists i ∈ {1, . . . , r} such that |λ(i)
k | >

1
r
. It follows that

inf
T∈G
T 6=Id

{max
16s6r

||Tes − es||} >
2
r
> 0

and {e1, . . . , er} is distinguished for G. In particular, G is SOT-discrete.
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Taking r = 2 in Proposition 4.11, we have a negative solution to Question 4.10.

Moreover, we have:

Proposition 4.12. The groups of Proposition 4.11 are not light.

Proof. For every x ∈ c0,

Rn(x) = −2(λ(1)
n x(1) + λ(2)

n x(2) + · · ·+ λ(r)
n x(r) + x(n))en

converges weakly to 0, i.e., Tn WOT−→ Id. On the other hand, taking

x = e1 + e2 + · · ·+ er

we have
‖Tn(x)− x‖ = ‖Rn(x)‖ = 2|λ(1)

n + λ(2)
n + · · ·+ λ(r)

n |.

By the density of sequence (λn)n in Sr−1 we cannot have

lim
n→∞

|λ(1)
n + λ(2)

n + · · ·+ λ(r)
n | = 0.

Therefore, Rn(x) does not converge strongly to 0 and Tn
SOT
6−→ Id.

4.4 SOT-discrete groups with dense orbit
A famous and still unsolved problem in geometry of Banach spaces is Mazur’s

rotation problem. This problem is motivated by the observation that the Hilbert space

H = L2[0, 1] has the following property: for every pair f, g ∈ SH there exists T ∈ Isom(H)
such that T (f) = g. Indeed, if f = ±g, then ± Id would be an isometry that maps f in g.

Otherwise, let Y = span{f, g}. Define an isometry T ∈ Isom(Y ) such that T (f) = g and

extend it linearly to H = Y ⊕ Y ⊥ using the identity in Y ⊥. Denote by T̃ this extension.

Then, for every h = (u, v) ∈ Y ⊕ Y ⊥ we have

‖T̃ (u, v)‖2 = 〈T̃ (u+ v), T̃ (u+ v)〉

= 〈Tu+ v, Tu+ v〉

= 〈Tu, Tu〉+ 〈v, v〉

= 〈u, u〉+ 〈v, v〉

= 〈u+ v, u+ v〉

= ‖u+ v‖2,

i.e., T̃ ∈ Isom(H). In [Ban32, p. 242] Banach attributes to Mazur the following question:

Question 4.13 (Mazur’s rotation problem). Let X be a separable infinite dimensional
space such that, for every x, y ∈ SX there exists T ∈ Isom(X) with Tx = y. Is X isometric
to H?
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In modern terminology, Mazur asks if every separable infinite dimensional transi-

tive Banach space is isometric to L2[0, 1]. A norm ‖ · ‖ in X is called transitive if for every

x, y ∈ X there exists T ∈ Isom(X) such that Tx = y. In other words, ‖ · ‖ is transitive if

the orbit of a point x0 ∈ SX (or equivalently, of every point x ∈ SX) by the group action

of Isom(X)
O(x0) = Isom(X)x0 = {Tx0;T ∈ Isom(X)}

is equal to the set SX . When O(x0) is only a dense subset of SX , we say that the norm

‖ · ‖ is almost transitive .

Mazur’s rotation problem motivates many works about the existence of transitive

or almost transitive renormings of Banach spaces (see, e.g., [FR13]).

Proposition 4.5 gives us an example of SOT-discrete isometry group that has a

distinguished point x0 ∈ SX . In particular, the orbit O(x0) is not dense in SX . A natural

question that arises from this fact is the following:

Question 4.14. Does there exist a Banach space X such that Isom(X) is SOT-discrete
but whose orbit for some x0 ∈ SX is dense in SX?

We will give a partial answer to this question in Proposition 4.16: if such space

does exist, then its isometry group cannot be abelian. This an immediate consequence of

the following lemma:

Lemma 4.15. Let X be a Banach space such that Isom(X) acts almost-transitively on
SX . If there exists a distinguished family {x1, . . . , xn} ⊂ SX , n > 2 for Isom(X), then
Isom(X) is not abelian.

Proof. Let ε > 0 be such that

inf
T 6=Id

{
max
16i6n

‖Txi − xi‖
}
> ε.

Since
O(x1) = {Tx1;T ∈ Isom(X)}

is a dense subset of SX , there exists T1 ∈ Isom(X) such that ‖T1x1 − x1‖ <
ε

4. Hence,

‖T1xi − xi‖ > ε, (4.2)

for some 1 < i 6 n. Let T1, . . . , Tn ∈ Isom(X) such that ‖Tix1 − xi‖ <
ε

4. Then,

‖TiT1x1 − xi‖ 6 ‖TiT1x1 − Tix1‖+ ‖Tix1 − xi‖ <
ε

2 .

If Isom(X) was abelian, we would have for every 1 6 i 6 n,

‖T1xi − xi‖ 6 ‖T1xi − T1Tix1‖+ ‖TiT1x1 − xi‖ < ε,

which contradicts (4.2).
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Proposition 4.16. If Isom(X) is SOT-discrete and acts almost-transitively in SX , then
Isom(X) is not abelian.

Proof. It follows from Lemma 4.15 and the fact that if G is an SOT-discrete group, then
X has a distinguished family {x1, . . . , xn} for G, with n > 1. This implies also that X has
a distinguished family {x1, . . . , xn} for G with n > 2, because if F is distinguished for G
then F ∪ {x} is also distinguished for any x ∈ X.

Questions and comments
The proof of Proposition 4.11 is a generalization of an initial result of Ferenczi,

Grivaux and Rosendal for r = 2.

The examples presented show that there is no general relation between closed sub-

spaces and their respective isometry groups, in terms of being light, apart from Proposition

4.8. Indeed:

1. c0 is a closed subspace of c, c0 is light, but c is not;

2. c is isometrically isomorphic to a closed subspace of C[0, 1], c is not light but C[0, 1]
is light.

In view of Proposition 4.16, we may restate Question 4.14 in the following way:

Question 4.17. Does there exist a Banach space X such that Isom(X) abelian, SOT-
discrete but whose orbit for some x0 ∈ SX is dense in SX?

Finally, whether the converse to Megreleshvili’s result holds remains an open ques-

tion:

Question 4.18. Does a Banach spaceX have the PCP if and only if all bounded subgroups
of GL(X) are light?

The answer is positive when X has an unconditional basis: this follows from the

following facts:

1. if X is a separable Banach space containing an isomorphic copy of c0, then GL(X)
contains a non-light bounded subgroup G;

2. an unconditional basis whose span does not contain c0 must be boundedly complete;

3. separable dual spaces have the RNP and therefore the PCP.
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For further references, we reproduce below the classification of light groups that

were cited in this thesis:

Group or property Light/non-
light Reference

G 6 GL(X) bounded, X reflexive Light [Meg01]
G 6 GL(X) bounded, X separable dual space Light [Meg01]
Isom(C[−1, 1]2) Non-light [Meg01]
Isom(C(K)), if K contains an n-dimensional
region, n > 2 Non-light [AFGR17]

Isom(`∞) Non-light Proposition 1.10
Isom(L1[0, 1]) Non-light Proposition 1.13
Isom(C({0, 1}N)) Non-light Proposition 1.11
SOT-compact groups Light Proposition 1.19
Isom(C[0, 1]× F ), F finite Light Proposition 1.16
Isom(C0(R)) Light Proposition 1.18
Isom(XSn), n ∈ N Light Proposition 2.7
G 6 GL(X), if X admits a G-invariant dense
LUR renorming Light Theorem 3.3

Isom(c0) Light Proposition 3.5
G 6 GL(X), if G has a distinguished point but
has dual action SOT-indiscrete Non-light Theorem 4.4

Isom(c) Non-light Corollary 4.7

Table 1 – Light/non-light groups





5 Polyhedrality of combinatorial spaces

Let X be a topological vector space and let A ⊂ X. We say that A is a convex

polytope if

A = co(F ),

for some finite subset F ⊂ X, where co(F ) denotes the closed convex hull of F . We say

that a finite dimensional vector space X is polyhedral if its closed unit ball BX is a convex

polytope.

The concept of polyhedrality has many applications for finite dimensional spaces,

which led several authors to expand this definition for infinite dimensional spaces. Fonf

and Viselý collect in [FV04] eight of these definitions:

(I) (extBX∗)′ ⊂ {0}, where

A′ = {f ∈ X∗ : f ∈ A \ {f}w
∗

}, A ⊂ X∗;

(II) (extBX∗)′ ⊂ rBX∗ , for some 0 < r < 1;

(III) (extBX∗)′ ⊂ B0
X∗ , where B0

X is the open unit ball of X;

(IV) f(x) < 1, whenever x ∈ SX and f ∈ (extBX∗)′

(V) sup{f(x) : f ∈ extBX∗ \D(x)} < 1, for each x ∈ SX , where

D(x) = {f ∈ S(X∗) : f(x) = 1};

(VI) every x ∈ SX has a neighborhood V such that, for each y ∈ V ∩ SX , the segment

[x, y] lies entirely in SX ;

(VII) the set Mv = {x ∈ SX : max〈D(x), v〉 6 0} is open in SX for each direction v ∈ SX ;

(VIII) the unit ball of every finite-dimensional subspace of X is a polytope.

These definitions are non-equivalent. Indeed, Fonf and Viselý prove that

(I) =⇒ (II) =⇒ (III) =⇒ (IV) =⇒ (V) =⇒ (VI) =⇒ (VII) =⇒ (VIII)

and none of these implications can be reversed. The oldest and standard definition of

polyhedrality is the definition (VIII), due to Klee, in [Kle60], motivated by the problem

of existence of universal spaces for some classes of spaces, especially the existence of

a universal space for the reflexive separable spaces (which was answered negatively by
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Szlenk later, in [Szl68]). Klee proved that c0 is polyhedral and it is universal for all

finite-dimensional polyhedral Banach spaces and asks whether there exists an infinite-

dimensional Banach space reflexive and polyhedral.

Lindenstrauss proved in [Lin66] that every infinite-dimensional space has a two-

dimensional quotient space whose unit ball is not a polygon. A consequence of this theorem

is that no infinite-dimensional dual space (including reflexive spaces) is polyhedral. Indeed,

if X = Z∗ is infinite dimensional, there exists Y 6 Z such that dim(Z/Y ) = 2 and Z/Y is

not polyhedral. Since (Z/Y )∗ is isometric to Y ⊥ = {ϕ ∈ Z∗ : ϕ(y) = 0,∀y ∈ Y } 6 Z∗ = X

(see [FHH+11, Proposition 2.6]) and dim(Z/Y )∗ = 2, it follows that X is not polyhedral.

Recall that BX is weakly compact if X is reflexive. Since the weak and the norm

closures coincide in convex subsets of normed spaces, the Krein-Milman Theorem implies

that

BX = co(extBX),

if X is reflexive. This and the previous observation led Lindenstrauss to ask the following

question:

Question 5.1 (Lindenstrauss, [Lin66]). Does there exist a polyhedral infinite-dimensional
Banach space whose unit ball is the closed convex hull of its extreme points?

Obviously c0 is not a solution for this question, since it has no extreme points,

although it is polyhedral. However, De Bernardi gave in [DB17] the first solution for

Lindenstrauss’s problem, using a renorming of c0. The construction is the following: let

(γn) ∈ c0, with 0 < γn <
1
2 for every n and let δn = 2γn. For each n ∈ N, let

An = {(1− δn)ε1e1 + · · ·+ (1− δn)εnen + (1 + γn)εn+1en+1 : ε1, . . . , εn+1 ∈ {±1}},

where e1, e2, . . . is the usual basis of c0. Put A = ⋃∞
n=1An and B = co(A). Since (γn) ∈ c0,

then {±e1± e2± · · · ± en : n ∈ N} ⊂ B, which implies that Bc0 ⊂ B. Since A is bounded,

B is the closed unit ball of an equivalent norm ||| · |||. Define X = (c0, ||| · |||). De Bernardi

proved that X is (V)-polyhedral, i.e., it satisfies the fifth definition of [FV04], which is

stronger than Klee’s definition, and also showed that co(ext(BX)) = BX .

The purpose of this chapter is to provide new examples of spaces that solve

Question 5.1. We will prove in Theorem 5.12 that every combinatorial space XF is (V)-

polyhedral. In particular, the Schreier spaces of countable order XSα are new solutions to

Lindenstrauss’s problem. We also prove (Corollary 5.10) that the dual space of every com-

binatorial space has the convex series representation property (CSRP), i.e., every point of

the unit ball of X∗F can be expressed as an infinite convex combination of extreme points

of X∗F .
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5.1 λ-property and CSRP
The λ-property was defined by Aron and Lohman in [AL87] as follows: let X be a

normed space and let x ∈ BX . If e ∈ ext(BX), ‖y‖ 6 1, 0 < λ < 1 and x = λe+ (1− λ)y
we say the ordered triple (e, y, λ) is amenable to x. In this case, we define

λ(x) = sup{λ : (e, y, λ) is amenable to x}

(the function λ measures how close a point of the ball is close to being an extreme point

of the ball). A Banach space X is said to have the λ-property if each x ∈ BX admits an

amenable triple. If X has the λ-property and, in addition, satisfies

inf{λ(x) : x ∈ BX} > 0,

we say X has the uniform λ-property.

Aron and Lohman prove that many classical Banach spaces have the λ-property

or the uniform λ-property. For example, they prove that every finite dimensional normed

space has the uniform λ-property. Also, if X is a strictly convex normed space, T is a

compact metric space and CX(T ) is the space of continuous X-valued functions on T

endowed with the sup norm, then:

1. CX(T ) has the uniform λ-property, if X is an infinite dimensional space;

2. CX [0, 1] has the uniform λ-property, if X is a real space with dimX > 2;

3. CX [0, 1] does not have the λ-property, if X is a real space with dimX = 1;

4. `1(X) has the λ-property but not the uniform λ-property;

5. `∞(X) has the uniform λ-property;

6. c(X) has the uniform λ-property, for X infinite-dimensional;

Among other useful geometric implications for these properties, the authors prove

the following:

Theorem 5.2 ([AL87], Theorem 3.3). Let X be a Banach space satisfying the λ-property.
Then,

BX = co(ext(BX)).

They also observe that if X has the uniform λ-property, then each x ∈ BX admits

an expansion as an infinite convex combination of members of ext(BX), i.e., there exist
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a sequence of positive numbers (λk) with
∑∞
k=1 λk = 1 and a sequence of extreme points

(ek) of BX such that

x =
∞∑
k=1

λkek.

This property is called convex series representation property (CSRP) in [Loh89]. On the

other hand, it is not hard to see that the CSRP implies the uniform λ-property. Actually,

in [ALS91] the authors prove that the CSRP implies the λ-property and, hence, both

properties are equivalent.

In [ST90], Shura and Trautman prove that the Schreier space XS1 has the λ-

property. Beanland and Chu extended this result in [ABC19]:

Theorem 5.3 (Theorem 3.1, [ABC19]). Let α be a non-zero countable ordinal. Then:

1. The space XSα has the λ-property.

2. For p ∈ (1,∞), the space Xp
Sα has the uniform λ-property, where Xp

Sα denotes the
p-convexification of XSα, i.e., the completion of c00 under the norm

‖x‖Xp
Sα

= sup
F∈Sα

(
∑
i∈F
|xi|p)

1
p ;

By Theorem 5.2, it follows that:

Corollary 5.4. For every non-zero countable ordinal α,

BXSα
= co(ext(BXSα

)).

Hence, the Schreier spaces of countable order are possible candidates to give a

positive answer to 5.1, different than the one provided by De Bernardi. In fact, in Theorem

5.12 we will prove that every combinatorial space is (V)-polyhedral.

5.2 Characterization of the dual of combinatorial spaces
We will prove in Theorem 5.12 that for every regular family F the combinatorial

space XF is a (V )-polyhedral space. In order to prove Theorem 5.12 we need a character-

ization for the extreme points of the dual of XF . Gowers [Gow09] states in his blog the

following:

(...) a long time ago I proved a result I quite liked, motivated by the
question of showing that explicit spaces contained c0 or `p. However,
the result isn’t quite what you would expect, because it includes a lot of
spaces that aren’t even definable. Let us call a space combinatorial if it
is defined by means of a system A of finite sets in the following simple
way: ‖x‖ = supA∈A

∑
n∈A |xn|. I showed that every combinatorial space
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contains c0 or `1. (We need to assume that A contains all singletons just
to make sure we’ve got a norm and without loss of generality if A ∈ A
and B ⊂ A then B ∈ A.) I also generalized this observation somewhat. I
never published the result, because I gave a talk about it at a conference
and someone pointed out to me that it was known that spaces for which
the unit ball of the dual space has only countably many extreme points
must contain c0. My result was an easy consequence of that: if you have
a nested sequence A1 ⊂ A2 ⊂ . . . of sets in A, then the basis vectors in
the union of the Ai generate `1, and if you don’t have such a sequence,
then every element of A is a subset of some maximal element A, and all
the extreme points of the dual space are sequences that take
the value ±1 on a maximal set and 0 outside it. So I had proved
(by a similar method) a special case of a known result.

In Theorem 5.9 we will give a proof for this characterization of ext(BX∗F
) stated

by Gowers but before that we will provide a characterization of the whole unit ball BX∗F
.

It is a well-known fact that the unit ball of dual spaces can be characterized by norming

sets. A set Λ ⊂ BX∗ is called a norming set for X if

‖x‖ = sup
ϕ∈Λ
|ϕ(x)|,

for every x ∈ X.

Proposition 5.5. Λ ⊂ BX∗ is a norming set for X if, and only if,

BX∗ = cow∗(Λ),

where cow∗(Λ) denotes the weak*-closed convex hull of Λ.

Proof. Suppose that Λ ⊂ BX∗ is a norming set for X and suppose by contradiction that
BX∗ 6= cow∗(Λ). Let f ∈ BX∗ \ cow∗(Λ). By the Hahn-Banach separation theorem, there
exists Φ ∈ (X∗, w∗)∗ such that

sup{|Φ(g)| : g ∈ cow∗(Λ)} < Φ(f).

Since (X∗, w∗)∗ can be identified with X (see [FHH+11, Proposition 3.22]), there exists
x ∈ X such that

sup{|g(x)| : g ∈ cow∗(Λ)} < f(x) = |f(x)| 6 ‖f‖ · ‖x‖ = ‖x‖,

which contradicts the fact that Λ is a norming set. On the other hand, suppose that
BX∗ = cow∗(Λ) and suppose that Λ is not a norming set. Then, there exists x ∈ X such
that

sup
ϕ∈Λ
|ϕ(x)| < ‖x‖.

Hence, for every ϕ1, . . . , ϕn ∈ Λ and every a1, . . . , an > 0, with ∑n
i=1 ai = 1, we have

|
n∑
i=1

aiϕi(x)| 6
n∑
i=1

ai|ϕi(x)| 6 sup
ϕ∈Λ
|ϕ(x)|
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and therefore
sup

ψ∈co(Λ)
|ψ(x)| < ‖x‖ = max

ξ∈BX∗
|ξ(x)|,

which contradicts the w∗-density of co(Λ) in BX∗ .

We will use Proposition 5.5 to give a characterization of the ball of dual of combi-

natorial spaces:

Theorem 5.6. Let XF be a combinatorial space and let

WF = {g =
∑
k∈F
±e∗k : F ∈ F}.

Then,

BX∗F
=
{
f =

∞∑
i=1

λifi : fi ∈ WF , λi > 0 and
∞∑
i=1

λi 6 1
}
.

Proof. Notice that for every x ∈ XF ∩ c00 we have

‖x‖XF = sup
F∈F

∑
k∈F
|xk| = sup

f∈WF
|f(x)|

and by density of c00 in XF the same holds for any x ∈ XF , i.e., WF is a norming set for
XF . By Proposition 5.5 it follows that

BX∗F
= cow∗(WF).

Thus, we need to show that

cow∗(WF) =
{
f =

∞∑
i=1

λifi : fi ∈ WF , λi > 0 and
∞∑
i=1

λi 6 1
}
.

Let f ∈ cow∗(WF) and let (fn)∞n=1 be a sequence in co(WF) such that

fn
w∗−→ f,

i.e., fn converges pointwise to f . Each fn can be written as

fn =
dn∑
m=1

λn,mfn,m,

with λn,m > 0,
dn∑
m=1

λn,m = 1, dn > 1 and fn,m ∈ WF . Also, each fn,m has the form

fn,m =
∑

k∈Fn,m
ε(k)
n,me

∗
k,

where Fn,m = {k1 < k2 < · · · < kt} ∈ F and εn,m = (ε(k1)
n,m, . . . , ε

(kt)
n,m) ∈ {−1, 1}t. Then,
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f1 = λ1,1
∑

k∈F1,1

ε
(k)
1,1e

∗
k + λ1,2

∑
k∈F1,2

ε
(k)
1,2e

∗
k + · · ·+ λ1,d1

∑
k∈F1,d1

ε
(k)
1,d1e

∗
k

f2 = λ2,1
∑

k∈F2,1

ε
(k)
2,1e

∗
k + λ2,2

∑
k∈F2,2

ε
(k)
2,2e

∗
k + · · ·+ λ2,d2

∑
k∈F2,d2

ε
(k)
2,d2e

∗
k

...

fn = λn,1
∑

k∈Fn,1
ε

(k)
n,1e

∗
k + λn,2

∑
k∈Fn,2

ε
(k)
n,2e

∗
k + · · ·+ λn,dn

∑
k∈Fn,dn

ε
(k)
n,dn

e∗k

...

We want to show that

f = w∗ lim
n→∞

fn = λ1
∑
k∈F1

ε
(k)
1 e∗k + λ2

∑
k∈F2

ε
(k)
2 e∗k + λ3

∑
k∈F3

ε
(k)
3 e∗k + . . . , (5.1)

for some λi > 0, Fi ∈ F , ε(k)
i ∈ {−1, 1} for every i ∈ N and k ∈ Fi and

∑∞
i=1 λi 6 1.

Let
N = {t ∈ N; f(et) 6= 0}

and denote by P the class of pairs

P = {(F, ε) : F = {k1 < k2 < · · · < kj} ∈ F and ε = (ε(k1), ε(k2), . . . , ε(kj)) ∈ {−1, 1}j}.

In P , we will say that (G, δ) is an extension of (F, ε) and we will denote

(F, ε) v (G, δ)

if F = {k1 < · · · < ki} ⊆ G = {l1 < · · · < lj} and ε(kt) = δ(kt) for every kt ∈ F .

For each j ∈ N, define Pj to be the class of pairs (F, ε) of P such that:

1. F ⊂ N ;

2. card(F ) = j;

3. there exists the limit µ(F,ε) = lim
n→∞

( ∑
16m6dn

(F,ε)v(Fn,m,εn,m)

λn,m

)
;

4. µ(F,ε) > 0.

We will say that (Fn,m, εn,m) is a maximal extension of (F, ε) and we will denote

(F, ε)
max
v (Fn,m, εn,m)

if:
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1. (F, ε) v (Fn,m, εn,m);

2. (F, ε) ∈ Pj =⇒ (G, δ) 6v (Fn,m, εn,m), for any (G, δ) ∈ Pj+1.

The elements (F, ε) ∈ ⋃∞j=1Pj will be used to define the sets Fi and the signs ε(k)
i in

(5.1). It still remains to define the coefficients λi. This will be done as follows: let (Fi, εi)∞i=1

be an enumeration of ⋃∞i=1Pi. Let

λ(F1,ε1) = lim sup
n

( ∑
16m6dn

(F,ε)
max
v (Fn,m,εn,m)

λn,m

)
= lim

n→∞
n∈N1

( ∑
16m6dn

(F,ε)
max
v (Fn,m,εn,m)

λn,m

)
,

where N1 is an infinite subset of N. In the same way we define λ(F2,ε2), λ(F2,ε2), . . . , taking
infinite subsets N2, N3, . . . of N such that

N1 ⊇ N2 ⊇ N3 ⊇ . . . .

Notice that ∞∑
i=1

λ(Fi,εi) 6 1.

Indeed, if
∞∑
i=1

λ(Fi,εi) > 1, there would exist r ∈ N such that
r∑
i=1

λ(F,ε) > 1. Hence, for

sufficiently large n ∈ Nr,
∑

16m6dn

λn,m > 1, since each (Fn,m, εn,m) is a maximal extension

of at most one pair (Fi, εi), which contradicts the fact that
dn∑
m=1

λn,m = 1.

For each i ∈ N define
g(Fi,εi) =

∑
k∈Fi

ε
(k)
i e∗k.

Let
g =

∞∑
i=1

λ(Fi,εi)g(Fi,εi).

We claim that f(et) = g(et) for every t ∈ N and hence

f = g.

Indeed, suppose by contradiction that f(et) = M and g(et) = L, with M 6= L, for some
t ∈ N . Let

M+ = lim sup
n

( ∑
16m6dn
t∈Fn,m
ε

(t)
n,m=1

λn,m

)
= lim

n→∞
n∈N ′

( ∑
16m6dn
t∈Fn,m
ε

(t)
n,m=1

λn,m

)
,

where N ′ is an infinite subset of N, and let

M− = M −M+ = lim
n→∞
n∈N ′

( ∑
16m6dn
t∈Fn,m
ε

(t)
n,m=−1

λn,m

)
.
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Hence,

f(et) = lim
n→∞

fn(et) = lim
n→∞

( ∑
16m6dn
t∈Fn,m

λn,mε
(t)
n,m

)
= M+ −M−.

On the other hand,

g(et) =
∞∑
i=1

λ(Fi,εi)g(Fi,εi)(et) =
∑

16i<∞
t∈Fi

λ(Fi,εi)ε
(t)
i = L+ − L−,

where L+ =
∑

16i<∞
t∈Fi
ε

(t)
i =1

λ(Fi,εi) and L− =
∑

16i<∞
t∈Fi

ε
(t)
i =−1

λ(Fi,εi).

Without loss of generality, suppose that M+ 6= L+ and let

|L+ −M+| = ζ > 0.

For sufficiently large r ∈ N, we have∣∣∣∣∣L+ −
∑

16i6r
t∈Fi
ε

(t)
i =1

λ(Fi,εi)

∣∣∣∣∣ < ζ

4 .

Also, for sufficiently large n ∈ N ′,∣∣∣∣∣ ∑
16i6r
t∈Fi
ε

(t)
i =1

λ(Fi,εi) −
∑

16i6r
16m6dn

(Fi,εi)
max
v (Fn,m,εn,m)

λn,m

∣∣∣∣∣ < ζ

4 .

Hence, ∣∣∣∣∣L+ −
∑

16i6r
16m6dn

(Fi,εi)
max
v (Fn,m,εn,m)

λn,m

∣∣∣∣∣ < ζ

2

and then ∣∣∣∣∣M+ −
∑

16i6r
16m6dn

(Fi,εi)
max
v (Fn,m,εn,m)

λn,m

∣∣∣∣∣ > ζ

2 ,

i.e., ∣∣∣∣∣ lim
k→∞
k∈N ′

( ∑
16l6dk
t∈Fk,l
ε

(t)
k,l

=1

λk,l

)
−

∑
16i6r

16m6dn

(Fi,εi)
max
v (Fn,m,εn,m)

λn,m

∣∣∣∣∣ > ζ

2 ,

for every r ∈ N and n ∈ N ′ sufficiently large. It means that for every k sufficiently large
we can find sets Fk,l1 , . . . , Fk,lu such that t ∈ Fk,lj , ε

(t)
k,lj

= 1 and ∑u
j=1 λk,lj >

ζ

2, which are
not maximal extensions of any (Fi, εi). This is a contradiction, because in the worst case
they would be a maximal extension of ({t}, 1).
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Notice that

WFmax = {g =
∑
k∈F
±e∗k : F ∈ Fmax}.

is also a norming set for X∗F and hence BX∗F
= cow∗(WFmax). For this reason, we may ask:

Question 5.7. Can we replace WF by WFmax in Theorem 5.6?

We will provide a positive answer to this question in next corollary. An important

consequence of this result is that the dual of any combinatorial space has the CSRP, as

we will see in Corollary 5.10.

Corollary 5.8. Let XF be a combinatorial space. Then,

BX∗F
=
{
f =

∞∑
i=1

λifi : fi ∈ WFmax , λi > 0 and
∞∑
i=1

λi 6 1
}
.

Proof. Let f ∈ BX∗F
. By Theorem 5.6 f can be written as

f =
∞∑
i=1

λifi,

with Fi ∈ F , λi > 0, ∑∞i=1 λi 6 1 and

fi =
∑
k∈Fi

ε
(k)
i e∗k,

with ε(k)
i ∈ {−1, 1}. For each i, take Gi ∈ F such that Gi ∩ Fi = ∅ and

Hi = Fi ∪Gi ∈ Fmax.

Then,

fi = 1
2

∑
k∈Fi

ε
(k)
i e∗k +

∑
k∈Gi

e∗k

+ 1
2

∑
k∈Fi

ε
(k)
i e∗k +

∑
k∈Gi
−e∗k

 .
For each i ∈ N, define

f̃2i−1 =
∑
k∈Fi

ε
(k)
i e∗k +

∑
k∈Gi

e∗k, f̃2i =
∑
k∈Fi

ε
(k)
i e∗k +

∑
k∈Gi
−e∗k

and
λ̃2i−1 = λ̃2i = λi

2 .

Therefore,

f =
∞∑
i=1

λ̃if̃i,

with λ̃i > 0, ∑∞i=1 λ̃i 6 1 and f̃i ∈ WFmax for every i ∈ N.

Finally, we are able to prove Gowers’s statement:
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Theorem 5.9. Let XF be a combinatorial space. Then,

ext(BX∗F
) =

{∑
i∈F

εie
∗
i : F ∈ Fmax and εi ∈ {−1, 1}

}
.

Proof. Let f ∈ ext(BX∗F
) and suppose that f 6∈

{∑
i∈F

εie
∗
i : F ∈ Fmax and εi ∈ {−1, 1}

}
.

Notice that
‖x‖XF = sup

f∈WF
|f(x)| for every x ∈ XF .

By Proposition 5.5, it follows that

f ∈ cow∗(WF).

We will consider three cases:

1. If f ∈ WF , then f = ∑
i∈F εie

∗
i , with F ∈ F \ Fmax and εi ∈ {±1} for every i ∈ F .

Let i0 ∈ N \ F such that F ∪ {i0} ∈ F . Notice that f ± e∗i0 ∈ BX∗F
and

f = 1
2[(f + e∗i0) + (f − e∗i0)],

which contradicts f ∈ ext(BX∗F
).

2. If f ∈ co(WF), f = ∑n
i=1 λifi, with fi ∈ WF , fi not all the same, λi > 0 and∑n

i=1 λi = 1, then obviously f 6∈ ext(BX∗F
).

3. If f ∈ cow∗(WF) \ co(WF), by Theorem 5.6 f = ∑∞
i=1 λifi, with λi > 0, ∑∞i=1 λi 6 1

and fi ∈ WF are not all the same. Then,

f = λ1f1 + (1− λ1)
(

λ2

1− λ1
f2 + λ3

1− λ1
f3 + . . .

)

and
(

λ2

1− λ1
f2 + λ3

1− λ1
f3 + . . .

)
∈ BX∗F

, since
∞∑
i=2

λi
1− λ1

6 1. Hence, in this case

we also have f 6∈ ext(BX∗F
).

This proves that ext(BX∗F
) ⊆

{∑
i∈F

εie
∗
i : F ∈ Fmax and εi ∈ {−1, 1}

}
. On the other

hand, let f =
∑
i∈F

εie
∗
i with F ∈ Fmax and εi ∈ {−1, 1}. Suppose that f 6∈ ext(BX∗F

). Let

g, h ∈ S(X∗F) such that g 6= h and f = g + h

2 . Notice that

g(ei) = h(ei) = f(ei), for every i ∈ F.

Indeed, if we had, for example, εi = 1 and g(ei) > h(ei) for some i ∈ F , then

f(ei) = 1 = g(ei) + h(ei)
2 =⇒ g(ei) > 1 =⇒ g 6∈ S(X∗F).
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Suppose now that g(ei0) 6= 0 for some i0 6∈ F . Let x =
∑
i∈F

aiei such that f(x) =
∑
i∈F
|ai| = 1

and |ai| 6= 0 for every i ∈ F . Let η = min{|ai|; i ∈ F} and let y = x + η

2ei0 . Notice that
f(y) = f(x) = 1 and ‖y‖ > 1. In fact, we will show that ‖y‖ = 1. To prove this, let G ∈ F .

1. If i0 ∈ G, then
∑
i∈G
|yi| 6

∑
i∈G∩F

|ai|+ |y(i0)|. However, G∩ F ( F , because otherwise

we would have F ∪ {i0} ∈ Sα. Thus,∑
i∈G
|yi| <

∑
i∈G∩F

|ai|+ |y(i0)| < 1− η + η

2 = 1− η

2 .

2. If i0 6∈ G, then
∑
i∈G
|yi| 6

∑
i∈F
|ai| = 1.

Hence, ‖y‖ 6 1 which implies that ‖y‖ = 1. However,

g(y) > f(x) + g(ei0) = 1 + η

2 ,

which contradicts the fact that ‖g‖ = 1. Therefore, f ∈ ext(BX∗F
).

Corollary 5.10. The dual of every combinatorial space has the CSRP.

Proof. It follows immediately from Corollary 5.8 and Theorem 5.9.

5.3 Polyhedrality of combinatorial spaces
Fonf showed in [Fon81] that a polyhedral space must be c0-saturated (that is, every

infinite dimensional subspace has a further subspace isomorphic to c0). In addition, for

each countable α < ω1 the space XSα embeds isometrically in a C(K) for an appropriately

chosen countable compact Hausdorff space K (see, for example, [CG91] or [Ros03]), which

is polyhedral. Therefore each XSα is a polyhedral Banach space.

In this section we will prove a stronger result: every combinatorial Banach space

XF is (V)-polyhedral. We will use the existence of an ε-gap for the sets in F that do not

attain the norm of x in XF , proved by Beanland, Duncan, Holt and Quigley:

Lemma 5.11 ([BDHQ18], Lemma 2.5). Let XF be a combinatorial space and let x ∈
S(XF). Then there exists an εx > 0 so that

∑
i∈F
|xi| < 1− εx

for every F ∈ F such that
∑
i∈F
|xi| < 1.

Theorem 5.12. Every combinatorial space XF is (V)-polyhedral.
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Proof. Let x ∈ S(XF) and f ∈ ext(BX∗F
) be such that f(x) < 1. By Theorem 5.9,

there exists F ∈ Fmax such that f = ∑
i∈F εie

∗
i , with εi ∈ {±1} for every i ∈ F . Let

G = {i ∈ F ; εi = sgn(xi)} and H = {i ∈ F ; εi = − sgn(xi)}. Notice that
∑
i∈G
|xi| 6= 1.

Indeed, if H = ∅, then f(x) = ∑
i∈G |xi| < 1. On the other hand, if H 6= ∅, then

∑
i∈G
|xi| <

∑
i∈F
|xi| 6 ‖x‖ = 1.

By Lemma 5.11, there exists εx > 0 such that ∑i∈G |xi| 6 1− εx. Hence,

f(x) =
∑
i∈G
|xi| −

∑
i∈H
|xi| 6 1− εx,

which proves the Theorem, since εx depends only of x.

From Theorem 5.12 and Corollary 5.4, it follows immediately:

Corollary 5.13. For every countable α, XSα is (V)-polyhedral and

BXSα
= co(ext(BXSα

)).

In particular, XSα is a solution to Lindenstrauss’s problem.

Questions and comments
A new proof of Theorem 5.6 was given by Causey, using the fact that the extreme

points of C(KF)∗, where KF = {σ ∈ {−1, 0, 1}N : supp σ ∈ F}, can be identified with

{εδσ : σ ∈ KF , ε ∈ {−1, 1}}. For this proof, see [ABC19, Proposition 4.1].

We cannot expect to obtain a (IV)-polyhedral space X such that BX =
co(ext(BX)), since (IV)-polyhedral spaces do not have extreme points ([FV04, Theorem

3.6]). So, as the example provided by De Bernardi, our result is optimal.
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