• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
10.11606/D.45.2018.tde-26042018-162455
Documento
Autor
Nome completo
Rodrigo Rey Carvalho
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2018
Orientador
Banca examinadora
Junqueira, Lucia Renato (Presidente)
Aurichi, Leandro Fiorini
Passos, Marcelo Dias
Título em português
O problema de Scarborough-Stone
Palavras-chave em português
Compacidade
Pequenos cardinais
Problema de Scarborough-Stone
Resumo em português
O problema de Scarborough-Stone consiste em perguntar se o produto de espaços topológicos sequencialmente compactos precisa ser enumeravelmente compacto. Nesse trabalho estudamos alguns resultados que surgiram tentando resolver tal problema. Começamos com uma resposta negativa em ZFC usando espaços T2 e depois especificamos melhor condições sobre os axiomas de separação envolvendo os espaços do produto. Veremos respostas positivas envolvendo alguns axiomas de separação mais fortes como T6 (usando MA e a negação de CH) e T5 (usando o PFA). Além disso construímos mais respostas negativas usando construções como a Reta de Ostaszewski, espaços de Franklin-Rajagopalan e estruturas envolvendo álgebras Booleanas.
Título em inglês
The Scarborough-Stone problem
Palavras-chave em inglês
Compactness
Scarborough-Stone problem
Small cardinals
Resumo em inglês
The Scarborough-Stone problem asks if every product of sequentially compact spaces must be a countably compact space. In this work we study some results that have arisen in attempt to solve this problem. We start our results with a negative answer in ZFC using T2 spaces and specify our conditions about the separability axioms of the spaces of the product. We will see positive answers assuming stronger separability axioms like T6 (using MA and the negation of CH) and T5 (using the PFA). We also construct more negative answers using constructions like the Ostaszewski line, Franklin-Rajagopalan spaces and structures involving Boolean algebras.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Diss.pdf (933.15 Kbytes)
Data de Publicação
2018-11-23
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.