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Absract

RASSKAZOVA D. Finite geometries and related loops and quasigroups
2018. 40 pp. PhD thesis- Instituto de Matematica e Estatitica, Universidade de
São Paulo, São Paulo, 2018

This work is about finite geometries with 3 or 4 points on every line and
related loops and quasigroups.

In the case of 3 points on any line we describe the structure of free loops
in the variety of corresponding Steiner loops and we calculate the group of
automorphisms of free Steiner loop with three generators.

We describe the structure of nilpotent class two Steiner loops and classifiy
all such loops with three generators.

In the case of 4 points on a line we constructe new series of such geometries
as central extension of corresponding non-commutative Steiner quasigroups. We
conjecture that those geometries are universal in some sense.

Key-words: Steiner systems, Steiner loops, nilpotent loops, central exten-
sion, Steiner quasigroups.
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Resumo

RASSKAZOVA D.L. Geometrias finitas, loopos e quasigrupos relaciona-
dos 2018. 40 pp. Tese(Doutorado)- Instituto de Matemática e Estatítica, Univer-
sidade de São Paulo, São Paulo, 2018

Este trabalho é sobre as geométrias finitas com 3 ou 4 pontos na cada reta e os
loops e qiasigrupos relacionados. Em caso de 3 pontos na cada reta descrevemos
o loop de Steiner correspondente livre e calculamos o grupo de automorfismos
em caso de 3 geradores livres. Além disso descrevemos os loopos de Steiner
nilpotentes de clase dois e classificamos estes loopos com 3 geradores.

Em caso de 4 pontos na cada reta construimos as geometrias novas atraves
de expanção central de um análogo não comutativo do quasigrupo de Steiner.
Temos fortes indícios que esta construção é universal em algum sentido.

Palavras-chave: Sitemas de Steiner, loopos de Steiner, loopos nilpotentes,
expanção central, quasigrupo de Steiner.
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Chapter 1

Introduction

Steiner triple systems as special block designs are a major part of combinatorics,
and there are many interesting connections developed between these combinato-
rial structures and their algebraic aspects. In this thesis we consider Steiner triple
systems from algebraic point of view, i.e., we study the corresponding Steiner
loops. Diassociative loops of exponent 2 are commutative, and the variety of
all diassociative loops of exponent 2 is precisely the variety of all Steiner loops,
which are in a one-to-one correspondence with Steiner triple systems (see [2], p.
310).

Since Steiner loops form a variety (moreover a Schreier variety), we can deal
with free objects. Consequently, we use the term free Steiner triple systems for
the combinatorial objects corresponding to free Steiner loops. A summary of
results about varieties of Steiner loops, Steiner quasigroups and free objects in
the varieties can be found in [13].

We give a construction of free Steiner loops, determine their multiplication
groups (which is a useful knowledge for loops, see [17], Section 1.2)). The
problem of calculation of multiplication group for finite Steiner loops have been
represented in [8] and in [19] in the case of finite oriented Steiner loops. We also
show that the nucleus of the free Steiner loops are trivial, which is an indicator
of how distant these loops are from groups.

The automorphism group of a Steiner triple system S coincides with the
automorphism group of the Steiner quasigroup as well as with the automorphism
group of the Steiner loop associated with S. Any finite group is the automor-
phism group of a Steiner triple system ([16], Theorem 8, p. 103). This motivated
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the goal of our paper to study automorphisms of the free Steiner triple systems.
We prove that (i) all automorphisms of the free Steiner loops are tame, and (ii)

the automorphism group of a free Steiner loop is not finitely generated when the
loop is generated by more than 3 elements.

We also determine the generators of the automorphism group of the 3-
generated free Steiner loop and give conjectures about automorphisms of this
loop. Recall that in the case of linear Nielsen-Schreier varieties of algebras
in the the work [20] was proved that the all automorphisms are tame and all
relation are "trivial." We formulate conjecture that all relations in the group of
automorphisms of the free 3−generated Steiner loop has the same "trivial" form.

The results of second chapter are published in article [3].

The results of third chapter are accepted in article [4].

The results of fourth chapter are not published yet.

1.1 Preliminaries

A set L with a binary operation L× L −→ L : (x, y) 7→ x · y is called a loop, if
for given a, b, the equations a · y = b and x · a = b are uniquely solvable, and
there is an element e ∈ L such that e · x = x · e = x for all x ∈ L. A loop is
called diassociative if every two elements generate a group.

A loop L is called Steiner loop if x · (x · y) = y holds for all x, y ∈ L and
x2 = e for all x ∈ L, where e is the identity of L.

A Steiner triple system S is an incidence structure consisting of set of points
and blocks such that every two distinct points are contained in precisely one
block, and any block has precisely three points. It means that every Steiner
system S is a set with fixed subsets L(S) such that for every σ ∈ L(S) we
have |σ| = 3 and for every two elements x, y ∈ S there exists unique σ ∈ L(S)

such that x, y ∈ σ. It is a well-known fact that a Steiner triple system of order m
(where m is a number of points), exists if and only if m ≡ 1, 3 mod (6) (cf. [7],
Definition V.1.9).

To a given Steiner triple system, there correspond two different constructions
leading to distinct algebraic structures.

A Steiner triple system S determines a multiplication x · y on the pairs of
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different points x, y taking as a product the third point of the block joining x and
y, in other word x · y = z, if {x, y, z} is a block of this Steiner system. Define
x · x = x we get a Steiner quasigroup associated with S. Recall that a Steiner
quasigroup P is a set with commutative multiplication · such that x · x = x and
y · z = x, x · z = y, if x · y = z. Adjoining an element e with ex = xe = x,
xx = e we obtain the Steiner loop S.

Conversely, a Steiner loop S determines a Steiner triple system whose points
are the elements of S \ {e}, and the blocks are the triples {x, y, xy} for x 6= y ∈
S \ {e}. The quasigroup or loop obtained in this way is called an exterior Steiner
quasigroup or an exterior Steiner loop. This yields the first of the aforementioned
constructions. Because it is more popular than the other one, the term ’exterior’
will be omitted.

Let describe the construction of interior Steiner loop. Let a be some fixed
element of S and IS(S) = (S, a, ·) be a main isotope of the corresponding
to S Steiner quasigroup. It means that the multiplication in S is given by the
formula x · y = y · x = (ax)(ay). Then x2 = x · x = (ax)(ax) = ax, and hence
x2 · y2 = xy, x3 = x(ax) = a and (xy)y = (x2 · y2)2 · y2 = x.

Conversely, from a commutative loop S with identities x3 = 1, (x2y2)2y2 =

x, a Steiner triple system can be recovered, with blocks {x, y, x2y2}, if a 6= x 6=
y 6= a and {a, x, x2} for any x 6= a. This construction in a different framework
appears in [13] p. 23. A loop obtained in this way is called an interior Steiner
loop.

A loop L is said to be totally symmetric if x · y = y · x and x · (x · y) = y for
all x, y ∈ L. A totally symmetric loop of exponent 2 is called a Steiner loop. A
variety of universal algebras is called a Schreier variety if every subalgebra of
any free algebra in that variety is also free in that variety. Steiner loops form a
Schreier variety; it is precisely the variety of all diassociative loops of exponent
2 (see in [2] p. 310). Steiner loops are in a one-to-one correspondence with
Steiner triple systems. Multiplication groups of Steiner loops have been studied
in [8]. Central extensions of Steiner loops and quasigroups yielding algebraic
structures of Steiner triple systems with cyclic orientations on each triple have
been introduced in [9, 10].

The left, right, respectively, middle nucleus of a loop L are the subgroups of

9



L defined by

Nl(L) = {u; (u · x) · y = u · (x · y), x, y ∈ L},

Nr(L) = {u; (x · y) · u = x · (y · u), x, y ∈ L},

Nm(L) = {u; (x · u) · y = x · (u · y), x, y ∈ L}.

The intersection N(L) = Nl(L) ∩Nr(L) ∩Nm(L) is the nucleus of L.
The commutant C(L) of a loop L is the subset consisting of all elements

c ∈ L such that c·x = x·c for all x ∈ L. The center Z(L) of L is the intersection
C(L) ∩N(L).

A loop L is nilpotent if the series L, L/Z(L), [L/Z(L)]/Z[L/Z(L)] ... ter-
minates at 1 in finitely many steps. In particular, L is of nilpotency class two if
L/Z(L) 6= 1 and is an abelian group.

For x, y, z ∈ L, define the associator (x, y, z) of x, y, z as the unique element
in L such that (xy)z = (x(yz))(x, y, z). The associator subloop Ass(L) of
L is the smallest normal subloop H of L such that L/H is a group. Thus,
Ass(L) is the smallest normal subloop of L containing associators (x, y, z) for
all x, y, z ∈ L.

For any x ∈ L the maps λx : y 7→ x · y and ρx : y 7→ y · x are the left and
the right translations, respectively. The permutation group generated by the left
and right translations of loop L is called the multiplication group of L, and the
stabilizer of the neutral element is called the inner mapping group of L. More
facts about this objects can be found in [12].

1.2 Constructions of free Steiner loops

Constructions of free Steiner loops have been given by several authors: see e.g.,
[13], [15]. Nevertheless, we provide here a specific construction; it will help
to incorporate a transparent interpretation and to establish a natural system of
notation.

Let X be a finite ordered set and let W (X) be a set of non-associative X-
words. For every word v ∈ W (X) its length |v| is a number of letters which it
contains. The set W (X) has an order such that v > w if and only if |v| > |w| or
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|v| = |w| > 1, v = v1v2, w = w1w2, v1 > w1 or v1 = w1, v2 > w2. Next, we
define the set S(X)∗ ⊂ W (X) of S-words by induction on the length of word:

• X ⊂ S(X)∗,

• vw ∈ S(X)∗ precisely if, v, w ∈ S(X)∗, |v| ≤ |w|, v 6= w and if w =

w1 · w2, then v 6= wi, (i = 1, 2).

On S(X) = S(X)∗ ∪ {∅} we define a multiplication in the following manner:

1. v · w = w · v = vw if vw ∈ S(X),

2. (vw) · w = w · (vw) = w · (wv) = (wv) · w = v,

3. v · v = ∅.

A word v(x1, x2, ..., xn) is irreducible, if v ∈ S(X)∗.

Lets consider some facts which are proved in the second chapter:

Proposition 1. The set S(X) with the multiplication as above is a free Steiner
loop with free generators X.

Proposition 2. Let G = Mult(S(X)) be the group of right multiplications of the
free Steiner loop S(X). Then

1. G = ∗
v∈S(X)∗

Cv is a free product of cyclic groups of order 2;

2. G acts on S(X), and G = {Rv|v ∈ S(X)}StabG(∅). Moreover, the inner
mapping group StabG(∅) is a free subgroup of G generated by RvRwRvw,
v, w ∈ S(X).

Proposition 3. If x, y are different elements of the free Steiner loop S(X) and
|X| > 2, then there is an element z ∈ S(X) such that

(xy)z 6= x(yz).
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Chapter 2

Free Steiner systems and its
automorphisms

2.1 Free Steiner loops

In this chapter we are going to prove propositions formulated above at 1.2.

The proof of proposition 1.
The definition implies that S(X) is commutative, a · (a · b) = b for all

a, b ∈ S(X) and if a, b ∈ S(X) then {a, b, a · b, ∅} is a group of order 4 and
exponent 2. Hence S(X) is free diassociative of exponent 2, i.e., a free Steiner
loop. �

Let (G,H,B) be a Baer triple (see [11]), i.e., G = BH is a group, H is a
subgroup inG,B is a set of transversals forG/H with b2 = 1, b ∈ B,B∩H = 1.
For any b1, b2 ∈ B the product b1b2 may be written uniquely in the form b1b2 =

b3h1, where b3 ∈ B, h1 ∈ H. Then B admits a multiplication b1 ∗ b2 = b3.

Let suppose that this multiplication is commutative. Clearly b ∗ b = 1 and
(b1 ∗ b2)∗ b2 = b1. Indeed, (b1 ∗ b2)∗ b2 = b3 ∗ b2 = b2 ∗ b3 = b2 ∗ (b2b1h2

−1) = b1

since b2b2b1h2−1 = b1h2
−1. This yields that (B, ∗) is a Steiner loop. We call

such a decomposition G = BH an S-decomposition.

If the intersection ∩
x∈G

Hx = {1} then G ' Mult((B, ∗)).

We note that any Steiner loop can be constructed in the above fashion.
Indeed, let G = Mult(B) be the multiplication group of the Steiner loop B and
let B0 = {Rb|b ∈ B}, H =< RaRbRab|a, b ∈ B >. Then G = B0H is an
S-decomposition.
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The proof of proposition 2.
Let G = Mult(S(X)) be the group of right multiplications of the free Steiner

loop S(X). Then

1. G ' ∗
v∈S(X)∗

Cv is a free product of cyclic groups of order 2;

Indeed, if x ∈ S(X), g ∈ ∗
v∈S(X)∗

Cv, where Cv = {e, Rv}, then g =∏
v Rv = Rv1...Rvm and y = xg = (...(xv1)...)vm). By definition of the

free product we have that vi 6= vi+1, 1 ≤ v < m. Hence for some chose of
X we get y 6= x. Hence g 6= 1 as element of Mult(S(X)).

Inverse, if h ∈ Mult(S(X)), then h = Rv1...Rvm, vi 6= vi+1, 1 ≤ v < m.

Hence h ∈ ∗
v∈S(X)∗

Cv, where Cv = {e, Rv}.

2. G acts on S(X), and G = {Rv|v ∈ S(X)}StabG(∅). Moreover, the inner
mapping group StabG(∅) is a free subgroup of G generated by RvRwRvw,
v, w ∈ S(X).

It is clear that (∅)RvRwRvw = ∅,moreover, sinceRv = Lv, then StabG(∅)
is generated by the set {RvRwRvw|v, w ∈ S(X)}.

The subgroup StabG(∅) is free by the Kurosh subgroup theorem [14] p.
17.

�

The proof of proposition 3.
If x, y are different elements of the free Steiner loop S(X) and |X| > 2, then

there is an element z ∈ S(X) such that (xy)z 6= x(yz).

Let x = v1(x1, ..., xn) and y = v2(x1, ..., xn). Suppose we choose the
element z in the shape z = v2(x1, ..., xn) · xj, where xj is one of the generators
different from the last letter of v2(x1, ..., xn). Then we have that

(xy)z = (v1(x1, ..., xn) · v2(x1, ..., xn))(v2(x1, ..., xn)xj)

6= v1(x1, ..., xn) · (v2(x1, ..., xn) · v2(x1, ..., xn)xj) = v1(x1, ..., xn)xj = x(yz).

�

As was mentioned earlier, the nucleus of a loop can be interpreted as a
’measure’ of the non-associativity. As a corollary of the previous Proposition,
we can conclude that the free Steiner loops are ’very far’ from groups:
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Corollary 4. The nucleus and therefore the center of free Steiner loops are
trivial.

2.2 Automorphisms

Let Y = {y1, y2, ..., yn} be a set of free generators of S(X). Then ϕi : Y −→ S(X),
ϕi(yi) = yi · v, ϕi(yj) = yj, j 6= i, v ∈ S(Y \ yi) As ϕi is defined on the set Y
of free generators, it may be extended to some automorphism of S(X), called
an elementary automorphism (or an Y-elementary automorphism) and we will
denote it by ϕi = ei(v). Let T(X) denote a subgroup of the group of automor-
phisms Aut(S(X)) of loop S(X) generated by the X-elementary automorphisms.
Automorphisms contained in T(X) are called tame (or X− tame). In Theorem
7 below we show that Aut(S(X)) = T(X).

Let Y = {y1, y2, ..., ym} ⊂ S(X), then set Y is said to be reducible, if there
exist i and v ∈ S(Y\yi) such that |yi ·v| < |yi|. The set Y is said to be irreducible,
if it is not reducible.

Let S(Z) be a free Steiner loop with free generators Z = {z1, ..., zm}, let Y =

{y1, . . . , ym} be a set of elements of S(X) and let ϕ : S(Z) −→ S(Y) : zi 7→ yi

be a homomorphism. A set Y is called free isometric, if ϕ is an isomorphism
and |ϕ(v(z1, ..., zm))| = ||v(z1, ..., zm)||. Here ||v(z1, ..., zm)|| is the length with
weights |y1|, ..., |ym|, it means that ||v(z1, ..., zm)|| = n1|y1|+...+nm|ym|,where
ni is the number of times that the letter zi appears in the word v(z1, ..., zm).

Proposition 5. A set Y is irreducible if and only if Y is free isometric.

Proof. Let Y be an irreducible subset of S(X), S(Z) be a free Steiner loop
with free generators Z = {z1, ..., zm} and let ϕ : S(Z) −→ S(Y) : zi 7→ yi be a
homomorphism. We show that ϕ is an isometric isomorphism.

Let us choose v ∈ Kerϕ of minimal length and set v = v1 · v2, then ϕ(v1) =

ϕ(v2). Assume that v1 = w1 · w2 and v2 = w3 · w4 are irreducible, then we
have ϕ(w1) · ϕ(w2) = ϕ(w3) · ϕ(w4). Suppose that these decompositions are
irreducible. Then we get that ϕ(w4) = ϕ(w1) or ϕ(w4) = ϕ(w2). This yields a
contradiction with the minimality of the choice of v in both cases.
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Now we assume, that the decomposition ϕ(w1) · ϕ(w2) is reducible, then
ϕ(w1) = u1 · ϕ(w2). Hence u1 = ϕ(w5) and ϕ(w1) = ϕ(w5 · w2). Since
the decomposition w1 · w2 is irreducible, w1 = w6 · w7, ϕ(w6) = w5 and
ϕ(w7) = ϕ(w2). Moreover, w7 6= w2 and therefore w2 · w7 ∈ Kerϕ and
|w2 · w7| > |v1 · v2|. But since |v1| > |w2|, we have |v2| < |w7| < |w1| < |v1|.
This proves the assertion. �

Corollary 6. If Y is irreducible then S(Y) = S(X) precisely if Y = X.

Later on we will prove that all automorphisms of the free Steiner loops are
tame.

Theorem 7. Let S(X) be a free Steiner loop with a finite set of free generators X.
Then Aut(S(X)) = T(X).

Proof. Let ϕ be an automorphism of S(X) and let Y = ϕ(X). We prove that
ϕ ∈ T(X) by induction on |Y| =

∑n
i=1 |yi|.

First we note that the permutations of X are tame automorphisms. For any
transposition (ij) ∈ Sn(X) we have (ij) = φψφ with

φ = ei(xj) and ψ = ej(xi).

Since the symmetric group Sn(X) of permutations of X is generated by transposi-
tions, one has Sn(X) ⊂ T(X).

If |Y| = n then ϕ ∈ Sn(X) and therefore ϕ ∈ T(X). Now suppose that
|Y| > n. By Corollary 6 the set Y is reducible and hence for some i and v =

v(y1, ..., ŷi, ..., yn) we have |yi · v| < |yi|. By the induction assumption the map
ψ(x1, . . . , xn) = (y1, . . . , yi−1, yi · v, . . . , yn) induces an X-tame automorphism
of S(X). Set

w = v(y1, ..., ŷi, ..., yn)
ψ−1

= v(x1, ..., x̂i, ..., xn).

Then λ(x1, ..., xi, ..., xn) = (x1, ..., xi · w, ..., xn) is an X-elementary automor-
phism. Then ϕ = λψ since xλψj = xψj = yj for j 6= i and xλψi = (xi · w)ψ =

(yi · v) · wψ = (yi · v) · v = yi.
Consequently, ϕ ∈ T(X); this completes the proof of the theorem. �
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Lemma 8. Let φ = ei(v), v ∈ S(X \ i) be an X-elementary automorphism and
suppose u = u1u2 is an X−irreducible decomposition of a word u ∈ S(X). Then
either uφ1u

φ
2 is an X−irreducible decomposition of uφ or uφ = xi, in this case

u1 = xi and u2 = v.

Proof. We will use induction on the length |u| of the word u. First suppose
that uφ1u

φ
2 is an X-reducible decomposition of uφ. It means that uφ1 = u3u

φ
2 is

also an X-irreducible decomposition, and hence u1 = uφ3u2. If u1 = uφ3u2 is
an X-irreducible decomposition then u = u1u2 is X-reducible, which yields a
contradiction.

Therefore, u1 = uφ3u2 is X-reducible, where u1 = xi, u2 = v, u3 = xi.
Suppose |u3| > 1, |u2| > 1, u3 = wxi and u2 = yv, it is clear that w 6= xi 6=
v 6= y. Then uϕ3u2 = [w(xiv)] · yv is X-reducible if and only if w = yv or xi = y.
In the first case we get that uϕ1u

ϕ
2 = xi · yv is X-irreducible. In the second case

u1 = uφ3u2 = w and u1u2 = w(xiv) is X-irreducible. Hence, uϕ1u
ϕ
2 = wxi is also

X-irreducible decomposition of uφ. �
Define a normal chain of characteristic (Aut(S(X))−invariant) subloops of

S(X):
S0 = S(X) > S1 > S2 > · · · > Si > . . . . (2.1)

Here S0/S1 is a group, and for any i, Zi = Si/Si+1 is the center of the factor
loop S0/Si+1. Moreover, each Si is a minimal subloop with these properties.

Now we deal with the question whether the automorphism group of a free
Steiner loop with n generators is finitely generated for n > 3.

Theorem 9. The automorphism group Aut(S(X)) of the free Steiner loop S(X)

is not finitely generated when |X| > 3.

Proof. Owing to Theorem 7 and by a discussion afterwards, the group
G = Aut(S(X)) is generated by {ei(v)|v ∈ S(X)}. If G is finitely generated
then G is generated by a set P = {eji(vi)|vi ∈ S(X), i = 1, . . . ,m}.

Let S(X) > S1 > S2 > · · · > Si > . . . be a chain of normal characteristic
subloops as in (2.1). Choose a number p such that vi 6∈ Sp, i = 1, . . . ,m, and
1 6= v ∈ Sp. We assume that

ej(v) = ej1(v1) · · · · · ejm(vm).
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For any w ∈ S(X) we set (i) ||w|| = (s, t), if w = w1w2 is an X−irreducible
decomposition, w1 > w2 6= 1, w1 ∈ Ss \ Ss+1, w2 ∈ St \ St+1 and (ii) ||x|| =

(1, 0), if x ∈ X.
We prove that ||xjej1(v1) · · · · · ejr(vr)|| = (1, s), with s < m, by induction

on r. For r = 1 this is clear, and we suppose that for r this fact is true.
Set:

u = x1ej1(v1) · · · · · ejr(vr)ei(w), q = x1ej1(v1) · · · · · ejr(vr) = q1q2.

By the induction hypothesis we have ||q1|| = 1, ||q2|| = s < m.

If qei(w)1 q
ei(w)
2 is an X−irreducible decomposition then ||qei(w)|| = ||q|| =

(1, s), since Ss is a characteristic subloop. If qei(w)1 q
ei(w)
2 is an X−reducible

decomposition then, by Lemma 8, qei(w) = u = xi and ||u|| = (1, 0). We obtain
that xej(v)j = xjv and ||xjej1(v1) · · · · · ejm(vm)|| = (1, s), with s < m. However,
this contradicts to the fact ||xjv|| = (1,m). This completes the inductional step.

Therefore our assumption that G is finitely generated does not hold. �

The group Aut(S(X)) = T(X) is generated by X-elementary automorphisms
ei(v), v ∈ S(X \ {i}), with ei(v)2 = 1; this follows from the definition. Thus, a
natural question arises:

Problem 1. Which relations exist between X-elementary automorphisms of the
free Steiner loop S(X)?

We stress, that there is no relation among the elements {ei(v)|v ∈ S(X \ xi)}.

In what follows we focus on the 3-generated free Steiner loop S(x1, x2, x3).
Contrary to the case of the automorphism group of free Steiner loop with n > 3-
generators, we prove that the group Aut(S(x1, x2, x3)) is generated by three
involutions (12), (13) and ϕ = e1(x2).

Theorem 10. Let S(X) be a free Steiner loop with free generators X = {x1, x2, x3}.
Then the group of automorphisms Aut(S(X)) is generated by the symmetric
group S3 and by the elementary automorphism ϕ = e1(x2).

Proof. Let G0 be the subgroup of Aut(S(X)) generated by S3 and ϕ. If G0

is a proper subgroup, then let φ be an element of Aut(S(X)) \G0. The length of
φ(x1, x2, x3) = (u, v, w) is the sum of the length of the generators under φ, i.e.,
|φ| = |u|+ |v|+ |w|.
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The claim of Theorem 10 can be verified by induction on the length of
element φ ∈ Aut(S(X)) \G0. For |φ| = 3, it is trivial. Now if |φ| > 3 then by
the induction hypothesis we have that if |ψ| < |φ| then ψ ∈ G0. By Corollary 6
the collection {u, v, w} is reducible, and we can suppose that u = u0 · u1, u1 ∈
{v, w, v · w}. There is an automorphism α such that α(x1, x2, x3) = (u0, v, w);
α ∈ G0 since |α| < |φ|. If u = u0 · v then φ = ϕα. Further, if u = u0 · (v · w)

then
φ = (13)ϕ(123)ϕ(132)ϕ(13)α. (2.2)

Finally, if u = u0 · w then φ = (23)ϕ(23)α. In all three cases φ is contained in
the group G0; this implies the assertion of the theorem. �

Theorem 10 implies

Corollary 11. Let S(X) be the Steiner loop with free generators X = {a, b, c}.
Let Q be the stabilizer StabAut(S(X))(c) of element c in the automorphism group
of S(X). Then

Q =< ϕ, τ, ξ >

with

ϕ(a, b, c) = (ab, b, c), ξ(a, b, c) = (ac, b, c), τ(a, b, c) = (b, a, c).

Proof. Denote by Q0 the subgroup of Q generated by ξ, ϕ, τ and let λ ∈ Q
be the map λ(a, b, c) = (v, w, c), with |λ| = |v| + |w|. Suppose that for every
γ ∈ Q with |γ| < |λ|, γ is contained in Q0.

Since (v, w, c) is reducible, we have three possibilities: v = v0w, v = v0c or
v = v0(wc).

Consider the map λ0(a, b, c) = (v0, w, c); it is contained in Q0 by induction
because |λ0| < |λ|.

In the first case λ = ϕλ0. In the second case λ = ξλ0, and for the mapping
φ(a, b, c) = (a(bc), b, c) we have by Eqn (2.2) (see the proof of Theorem 10). In
the third case φ = τξϕτϕξτ ∈ Q0.

In each case λ ∈ Q0; this fact yields that Q0 = Q. �
Let us return to Problem 1. As was mentioned in the proof of Theorem 10,

any transposition of the symmetric group Sn(X) on X can be written as a product
of X-elementary automorphisms

(ij) = ei(xj)ej(xi)ei(xj).
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Using this description of translations and the equation

(i− 1, i)(i, i+ 1)(i− 1, i) = (i, i+ 1)(i− 1, i)(i, i+ 1),

we get that

ei−1(xi)ei(xi−1)ei−1(xi)ei(xi+1)ei+1(xi)ei(xi+1)ei−1(xi)ei(xi−1)ei−1(xi) =

ei(xi+1)ei+1(xi)ei(xi+1)ei−1(xi)ei(xi−1)ei−1(xi)ei(xi+1)ei+1(xi)ei(xi+1).

This yields the relation

(ei(xj)ej(xi))
3 = 1.

In the proof of Theorem 10 we showed a further relation

e1(x2 · x3) = (13)ϕ(123)ϕ(132)ϕ(13) =

e1(x3)e3(x1)e1(x3)e2(x1)e1(x2)e1(x3)e3(x1)e1(x3)e1(x2)e1(x3)e3(x1)

·e1(x3)e1(x2)e2(x1)e1(x3)e3(x1)e1(x3).

These facts suggest the following

Conjecture 12. The group Aut(S(x1, x2, x3)) is generated by three involutions
(12), (13) and ϕ = e1(x2) with relations

(12)(13)(12) = (13)(12)(13), (ϕ(12))3 = (ϕ(13))4 = 1.

The analysis of computerised calculations shows that if the Conjecture 12 is
false then some new relations might exist, among the above involutions, of the
type

ϕσ1ϕσ2 · · ·ϕσn = 1.

Here σi ∈ S3 =< (12), (13) > . Moreover, σi 6= (12) or 1; if σi = (13) then
σi+1 6= (13). Finally, n > 50 (for n ≤ 50 new relations were not found).

In paper [20] it has been proved that the automorphism group of a free
algebra of an arbitrary linear Nielsen–Schreier variety is generated by elementary
automorphisms with some specific relations (2)–(4) ([20], pages 210–211). If
Conjecture 12 holds, we will have a similar result for the group Aut(S(X)) of
the free Steiner loop S(X) in the case |X| = 3.
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Remark 13. If Conjecture 12 is true, group Aut(S(x1, x2, x3)) is the Coxeter
group

< (12), (13), ϕ |(ϕ(12))3 = (ϕ(13))4 = ((12)(13))3 = 1 > .

Conjecture 14. Q = {ϕ, τ, ξ|ξ2 = ϕ2 = τ 2 = (τϕ)3 = 1}.

Theorem 15. If Conjecture 12 is true then Conjecture 14 is also true.

Proof. Suppose that Conjecture 12 is true but Conjecture 14 is not. Then
there exists a non-trivial word w = w1 . . . wn formed by the letters {τ, ξ, ϕ} such
that aw = a, bw = b. Here the "non-trivial" means that w does not contain the
subwords ϕτϕ and ξτξτ .

Applying induction on n, assume that for any non-trivial word v constructed
from {τ, ξ, ϕ}, of length less than n, the corresponding word in {τ, π, ϕ} is
non-trivial, where π = (23). Observe that ξ = πϕπ. Hence, w0 = w1 . . . wn−1 is
a non-trivial word in {τ, π, ϕ}. We focus on the case where w is not non-trivial
word in {τ, π, ϕ} . The choice wn−1 = τ implies that wn 6= τ and wn−2 6= τ .
Furthermore, if wn = ξ = πϕπ then w = w1 . . . wn−2τπϕπ is a non-trivial word
in {τ, π, ϕ}. If wn = ϕ and wn−2 = ξ then w is again a non-trivial word in
{τ, π, ϕ}. Finally, if wn = ϕ and wn−2 = ϕ then w is not a non-trivial word in
{τ, ξ, ϕ}, since w contains the subword wn−2wn−1wn = ϕτϕ. �

Next, we present as a consequence of the preliminary results, a connection
between the groups of automorphisms of

(a) free Steiner quasigroups and the corresponding Steiner loops;
(b) the free exterior Steiner loops and free interior Steiner loops.

Theorem 16. Let S(X) be a free Steiner quasigroup with free generators X. Let
ES(X) = S(X) ∪ e and IS(X) be its corresponding free exterior and interior
Steiner loop, respectively.

Then Aut(S(X)) = Aut(ES(X)) and Aut(IS(X)) ' StabAut(ES(X))(a),
where a ∈ IS(X) is the unit element of loop IS(X).

Proof. Let φ be an automorphism of S(X), then we can define the correspond-
ing automorphism φ̄ of ES(X) = {e} ∪ S(X), such that φ̄(e) = e, φ̄(x) = φ(x),

x ∈ S(X). It is clear that the map φ → φ̄ is an isomorphism of the groups
Aut(S(X)) and Aut(ES(X)).
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Let φ ∈ Aut(IS(X)) be an automorphism of IS(X), then φ(a) = a, since a
is the unit of IS(X). Moreover, φ(x ◦ y) = φ((x.a).(a.y)) = (φ(x).a).(a.φ(y))

for all x, y ∈ IS(X). Since x.y = x.a ◦ y.a, then φ(x.y) = φ(x.a) ◦ φ(y.a) =

(φ(x.a).a).(φ(y.a).a) = φ(x).φ(y), as φ(xa) = φ(x ◦ x) = φ(x) ◦ φ(x) =

φ(x)a. Hence φ is an automorphism of S(X) and φ(a) = a.

Inverse, let φ ∈ Aut(S(X)) and φ(a) = a. Then
φ(x ◦ y) = φ((x.a).(a.y)) = (φ(x).a).(φ(y).a) = φ(x) ◦ φ(y),

hence φ ∈ Aut(IS(X)).

�

2.3 Computations

Steiner Triple Systems are easily represented as combinatorial objects, thus
we used some computational approach to make hypothesis about the group of
automorphisms of a free Steiner loop with three free generators. The purpose of
the program was to construct different series of involutions, such as

ϕσ1ϕσ2 · · ·ϕσn
which may act on some set of words reducing it back to itself, it means we

have a kind of equation:

ϕσ1ϕσ2 · · ·ϕσn = 1.

Thus the program has to generate a set of non-associative words from primi-
tives using the rules for the loop S(X), then make an action on the set and look
for any intersections between new set and old set. If there are no equal words,
we may make a new iteration.

Algorithm

1. Construct a set of already generated words

Y ⊂ W = {(w1, w2, w3) : wi ∈ S(X), i = 1, 2, 3}

For first iteration Y is a set of generators of loop S(X).
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2. Act on every word with a pair of involutions ϕσi. We have to remember
there exist some simple relations between involutions:

(12)(13)(12) = (13)(12)(13), (ϕ(12))3 = (ϕ(13))4 = 1.

So order of actions is important: we can’t use, for example, a pair ϕ(12)

three times one by one, the program has to remember the “history” of
word’s creation. This implements rather big volume of data we have to
keep in memory at every iteration.

3. Verify if there appears any word we already have in Y :

• If we have some repeated word, we should check its “history” for
the series which may give us a new relation between elements of a
group.

• If there are no such words, the program is adding all new words to
set Y .

4. Go to the first step.

Data structures

Usually for keeping any symbolic data it is common to use string types of
data structures. But, as we noticed, the value of data we are keeping at every
step is big and it grows with every iteration exponentially.

Another way we want to keep words in a special tree-structures which has
lighter weight, are easily readable and give us information about the word. Using
these structures is an option if only we have non-associative objects like our
generated words.
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The picture below shows how the word w is represented in a tree-structure:

Leaves of the tree are always generators of the loop and every pair of branches
with common parent corresponds to a multiplication of two words (one is repre-
sented by the left branch and another by the right).

The order on the set of words produces order in the set of trees. Then one
can compare two trees if they have a common view (i.e right branches are always
“heavier” than left ones). “Weight” of the branch (or of the tree) means the
number of leaves (symbols) it has. The picture below shows the process of
re-structuring a tree, which is used as one of subprograms:

There exists only one common form for every tree (every generated word),
because our objects are non-associative. Also our words are irreducible, thus
generated trees shouldn’t have any sub-branch equal to a branch. If it’s so, we
would have a new relation in a group of automorphisms.
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Program result analysis.

At first 50 iterations we have found no relations between automorphisms
except for different compositions of already known. Therefore the length of

ϕσ1ϕσ2 · · ·ϕσn = 1.

have to be more than 50. Also we noticed that the weight of a tree doesn’t
increase linearly, it has peaks and falls. The new hypothesis is that there exists a
series of automorphisms which increases a weight for any tree it’s applied on.
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Chapter 3

Nilpotent class two Steiner loops

In what follows we discuss Steiner loops of nilpotency class 2.

3.1 Centrally nilpotent Steiner loops of class
two

Let S(X) > S1(X) > S2(X) > ... be a central series of the free Steiner loop S(X)

with free generators X = {x1, ..., xn}. Then V = S(X)/S1(X) is an elementary
abelian 2−group and may be identified with F2-space of dimension n := |X|,
F2 = {0, 1} is the field of two elements. Given σ = {i1 > i2 > ... >

is} ⊆ In define the corresponding element σ = (((xi2xi1)xi3)...xis) of S(X).
As S(X)/S1(X) is an abelian 2-group, it is isomorphic to Fn

2 . Hence, to any
element v ∈ Fn

2 an element σ = (i, j, ...) can be related, where i, j, ... are the
numbers of coordinates having value 1 of the vector v. Therefore, {σ|σ ⊆ In}
is a set of representatives of S(X)/S1(X). Determine a set of representatives of
Z = S1(X)/S2(X).

Set Lf to be a central extension of F2-spaces V and Z in the variety of
Steiner loops. It means that Z < Z(Lf) and Lf/Z ' V, where Z(Lf) is the
center of Lf . It is well known that Lf is a central extension of Z by V if and
only if Lf is isomorphic to a loop defined on V × Z by the multiplication

(v1, z1) ◦ (v2, z2) = (v1 + v2, f(v1, v2) + z1 + z2). (3.1)
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Here f : V × V −→ Z is a Steiner loop cocycle, that is, a map satisfying

f(0V , v1) = f(v1, v1) = 0Z , f(v1, v2) = f(v2, v1), f(v1 + v2, v2) = f(v1, v2)

(3.2)
for all v1, v2 ∈ V . Denote by Z2(V, Z) the set of all Steiner loop cocycles.
Next, let C1(V, Z) be the set of all functions g : V −→ Z and δ : C1(V, Z) −→
Z2(V, Z) such that

δ(g)(v1, v2) = g(v1 + v2) + g(v1) + g(v2) and g(0V ) = 0Z .

for all v1, v2 ∈ V . Let
B2(V, Z) = δ(C1(V, Z))

and
H2(V, Z) = Z2(V, Z)/B2(V, Z).

Central extensions L1 and L2 are called equivalent precisely if, there is
an isomorphism φ : Lf1 −→ Lf2 such that φ(v, ∗) = (v, ∗) if v ∈ V and
φ(∗, z) = (∗, z + λ(∗)) where z, λ(∗) ∈ Z.

Any two equivalent extensions L1 and L2 are clearly isomorphic, but the
converse is not true in general (for an example see the proof of Theorem 21).

Lemma 17. Central extensions Lf1 and Lf2 corresponding to cocycles f1 and
f2 are equivalent if and only if f1 = f2 inH2(V, Z).

Proof. The map ϕ = (ϕ1, ϕ2) : Lf1 −→ Lf2, with ϕ1(v, z) = v and
ϕ2(v, z) = z + g(v), determines an isomorphism if and only if f1(v1, v2) =

f2(v1, v2)+g(v1+v2)+g(v1)+g(v2), i.e., f1 = f2 inH2(V, Z). This is because

ϕ((v1, z1) ◦ (v2, z2)) = (v1 + v2, f1(v1, v2) + z1 + z2 + g(v1 + v2)) =

(v1 + v2, f2(v1, v2) + z1 + z2 + g(v1) + g(v2)) = ϕ(v1, z1) ◦ ϕ(v2, z2).

�

Let {v1, ..., vn} be a basis of VF2
; as before, we can identify V with Pn - the

set of all subsets of In. The set Pn has an ordering: σ > τ if |σ| > |τ | or |σ| = |τ |,
σ = {i1 < ... < ik}, τ = {j1 < ... < jk} with i1 = j1, ..., is = js, is+1 > js+1.

Consider a subset Z2
0(V, Z) ⊂ Z2(V, Z), where f ∈ Z2

0(V, Z) if and only if
f(σ, {i}) = 0, {i} ≥ max(σ), σ ∈ Pn = V . In what follows 4 stands for the
set-theoretical difference.
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Lemma 18. Z2(V, Z) = Z2
0(V, Z)⊕ B2(V, Z).

Proof. First, consider the case when f ∈ Z2
0(V, Z) ∩ B2(V, Z).

Then g(σ) =
∑

i∈σ g({i}). Hence,

f(σ, τ) = g(σ4τ) + g(σ) + g(τ) =
∑
i∈σ4τ

g({i}) +
∑
i∈σ

g({i}) +
∑
i∈τ

g({i})

Then g(σ) =
∑

i∈σ g({i}). Hence,

f(σ, τ) = g(σ4τ) + g(σ) + g(τ) =
∑
i∈σ4τ

g({i}) +
∑
i∈σ

g({i}) +
∑
i∈τ

g({i})

=
∑
i∈σ\τ

g({i}) +
∑
i∈τ\σ

g({i}) +
∑
i∈σ∩τ

g({i})

+
∑
i∈σ\τ

g({i}) +
∑
i∈τ∩σ

g({i}) +
∑
i∈τ\σ

g({i}) = 0.

Now, suppose f ∈ Z2(V, Z). For σ = (i1, ..., ik) we define σs = (i1, ..., is−1),
s > 1, and g(σ) =

∑k
s=2 f(σs, {is}), assuming that |σ| > 1 and g({i}) = 0.

Then f + δ(g) ∈ Z2
0(V, Z). Indeed, if {i} = {ik+1} > {ik} = max(σ) then

(f + δ(g))(σ, {i}) = f(σ, {i}) + g(σ ∪ {i}) + g(σ) + g({i})

= f(σ, {i}) +
k+1∑
s=2

f(σs, {is}) +
k∑
s=2

f(σs, {is}) = 0,

as σk+1 = σ and {ik+1} = {i}. This yields that f+δ(g) ∈ Z2
0(V, Z) completing

the proof of the lemma. �

We call a pair (σ, τ) regular if and only if σ4τ > σ > τ . Note, that if
∅ 6= σ 6= τ 6= ∅ then precisely one of the pairs (σ, σ4τ), (σ, τ), (σ4τ, τ),
(σ4τ, σ), (τ, σ), (τ, σ4τ) is regular. A regular pair is called strongly regular if
|σ| ≥ |τ | > 1 or |σ| ≥ |τ | = 1 but {i} < max(σ), where τ = {i} and |σ| > 1.

Lemma 19. The cardinality of elements of the set of all strongly regular pairs is

1

3
(22n−1 + 1)− 3 · 2n−1 + n+ 1.
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Proof. Let P be the set of all ordered pairs (σ, τ), σ > τ 6= ∅. Then
|P | = C2

m,m = 2n − 1 and hence, the number of regular pairs is 1
3C

2
m =

1
3(2n − 1)(2n−1 − 1).

If (σ, τ) is regular but not strongly regular then τ = {i}, i ≥ max(σ) or
σ = {j}, j > i. Hence, for given i we have (2i−1 + n − 2i) regular but not
strongly regular pairs. Then the number of strongly regular pairs equals

1

3
(2n − 1)(2n−1 − 1)−

n∑
i=2

(2i−1 + n− 2i)

=
1

3
(2n − 1)(2n−1 − 1)− 2n − n2 + n(n+ 1) + 1

=
1

3
(22n−1 + 1)− 3 · 2n−1 + n+ 1.

�

Theorem 20. The union of sets

{
({i}, σ \ {i}, τ)

∣∣ (σ, τ) or (τ, σ) strongly regular,

σ ∩ τ = ∅, {i} = max(σ ∪ τ) ∈ σ
}

and{
({j}, µ, λ)

∣∣ (µ, λ) strongly regular, µ ∩ λ 6= ∅, {j} = max(µ ∩ λ)
}
.

is a basis of the F2-space S1(X)/S2(X),

Moreover,

dimF2
(S1(X)/S2(X)) =

1

3
(22n−1 + 1)− 3 · 2n−1 + n+ 1,

where n := |X|.

Proof. Let F (X) be a free 2-step nilpotent Steiner loop with free generators
X = {x1, ..., xn}. F (X) can be realized as a central extension Lf on V × Z for
some Steiner loop cocycle f ∈ Z2

0(V, Z).
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For any elements (σ, s), (µ,m), (τ, t) ∈ Lf we have(
(σ, s), (µ,m), (τ, t)

)
=
[(

(σ, s) ◦ (µ,m)
)
◦ (τ, t)

]
◦
[
(σ, s) ◦

(
(µ,m) ◦ (τ, t)

)]
=
[
(σ4µ, f(σ, µ) + s+m) ◦ (τ, t)

]
◦
[
(σ, s) ◦ (µ4τ, f(µ, τ) +m+ t)

]
= (σ4µ4τ, f(σ, µ) + f(σ4µ, τ) + s+m+ t)

◦(σ4µ4τ, f(µ, τ) + f(σ, µ4τ) + s+m+ t)

= (σ4µ4τ4σ4µ4τ, f(σ, µ) + f(σ4µ, τ) + f(µ, τ) + f(σ, µ4τ))

= (∅, f(σ, µ) + f(σ4µ, τ) + f(µ, τ) + f(σ, µ4τ)).

Taking s = m = t = 0 and identifying (σ, 0), (µ, 0) and (τ, 0) with σ, µ and τ ,
respectively, we obtain the following relation involving associators:

(σ, µ, τ) = f(σ, µ) + f(µ, τ) + f(σ4µ, τ) + f(σ, µ4τ). (3.3)

Set Zf = f(V, V ). Then by (3.3) we get that Ass(F (X)) ⊆ Zf .
Next, we show that Zf ⊆ Ass(F (X)). Let σ, τ ∈ V be such that σ > τ .

If the pair (σ, τ) is not regular, then σ > σ4τ and f(σ, τ) = f(σ4τ, σ) by
the properties of Steiner loop cocycles. Note that the pair (σ4τ, σ) is already
regular. Now, suppose that (σ, τ) is regular but not strongly regular. Then
τ = {i} and {i} ≥ max(σ) or σ = {j}, τ = {i} and j > i. In this case
f(σ, {i}) = 0 by the definition of Z2

0(V, Z). This means that it is enough to
show that f(σ, τ) ∈ Ass(F (X)) for any strongly regular pair (σ, τ).

Let (σ, τ) be a strongly regular pair, that is, |σ| ≥ |τ | > 1 or |σ| ≥ |τ | = 1

but {i} < max(σ), τ = {i} and |σ| > 1. Furthermore, let {i} = max(σ ∪ τ).
In what follows we use induction in r := |σ| + |τ |. Assume that f(σ, τ) ∈
Ass(F (X)) if (σ, τ) is strongly regular and |σ| + |τ | < r. Consider the case
where the pair (σ, τ) is strongly regular and |σ|+ |τ | = r.

If σ ∩ τ = ∅ and {i} ∈ σ, then by (3.3) we have:

({i}, σ \ {i}, τ) = f({i}, σ \ {i}) + f(σ \ {i}, τ)

+f({i}4(σ \ {i}), τ) + f({i}, (σ \ {i})4τ)
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and

f(σ, τ) = ({i}, σ \ {i}, τ) + f({i}, σ \ {i}) + f(σ \ {i}, τ)

+f({i}, (σ \ {i})4τ) = ({i}, σ \ {i}, τ) + f(σ \ {i}, τ),

(3.4)

since f({i}, σ \ {i}) = 0 and f({i}, (σ \ {i})4τ) = 0. By the induction
assumption, f(σ \ {i}, τ) ∈ Ass(F (X)) as |σ \ {i}|+ |τ | < |σ|+ |τ | and hence
f(σ, τ) ∈ Ass(F (X)). Similarly, we can prove the same fact in the case where
σ ∩ τ = ∅ and {i} ∈ τ .

If σ ∩ τ 6= ∅ and {j} = max(σ ∩ τ), then by (3.3) we obtain that

({j}, σ, τ) = f({j}, σ) + f(σ, τ) + f({j}4σ, τ) + f({j}, σ4τ)

and

f(σ, τ) = ({j}, σ, τ) + f({j}, σ) + f(σ \ {j}, τ) + f({j}, σ4τ). (3.5)

Each summand in the right-hand side is contained in Ass(F (X)). Namely, as
f is a Steiner loop cocycle, we have f({j}, σ) = f(σ, {j}) = f(σ \ {j}, {j}).
Then |σ \ {j}|+ |{j}| = |σ| < |σ|+ |τ | yields by the induction hypothesis that
f({j}, σ) ∈ Ass(F (X)). Similarly, we have that f(σ \ {j}, τ) ∈ Ass(F (X)) by
induction, since {j} ∈ σ and |σ \ {j}|+ |τ | < |σ|+ |τ |. Also, f({j}, σ4τ) ∈
Ass(F (X)) by the induction, since |{j}|+ |σ4τ | = 1 + |σ|+ |τ | − 2|σ ∩ τ | <
|σ|+ |τ | as σ ∩ τ 6= ∅. This implies that f(σ, τ) ∈ Ass(F (X)).

Summarizing the above discussions, we get that Zf ⊆ Ass(F (X)). Hence
Zf = f(V, V ) = Ass(F (X)) = S1(X)/S2(X).

Moreover, by (3.4) and (3.5) we obtain that

f(V, V ) ⊆ SpanF2

{
({i}, σ \ {i}, τ), ({j}, µ, λ)

∣∣∣(σ, τ), (µ, λ) strongly regular, σ ∩ τ = ∅, {i} = max(σ ∪ τ)

andµ ∩ λ 6= ∅, {j} = max(µ ∩ λ)
}

=: W.
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Finally, we have that f(V, V ) ⊆ W ⊆ Ass(F (X)) = f(V, V ) which implies
Ass(F (X)) = W and

dim(S1(X)/S2(X)) = dim(f(V, V )) = dim(Ass(F (X))) = dim(W )

=
∣∣{strongly regular pairs}

∣∣ = 1
3(22n−1 + 1)− 3 · 2n−1 + n+ 1

where the last equality holds by Lemma 19. �

3.2 Classification of nilpotent Steiner loops
of class 2 with three generators

Note that there are exactly 80 non-isomorphic Steiner triple systems of order 15.
Moreover, there is only one nilpotent non-associative Steiner loop S16 of order
16 (cf. [6]), and it corresponds to the system N.2 in [5] p. 19. Furthermore, S16

has the GAP id SteinerLoop(16, 2); the label 2 indicates the system order as
in the list established in monograph [1]. The Steiner loop S16 is 3-generated and
has the nilpotency class 2. In what follows we describe all 3-generated Steiner
loops of nilpotency class 2.

Theorem 21. There exist three non-isomorphic non-associative 3-generated
Steiner loops of nilpotency class 2 and their orders are 16, 32 and 64, respec-
tively.

Proof. Let S(X = {x1, x2, x3}) be the 3-generated free Steiner loop of
nilpotency class 2 and Z =< (z1, z2, z3) > be the center of S(X). By Theorem
20, we can choose z1 = (x1, x2, x3), z2 = (x2, x1, x3), z3 = (x3, x2, x1x3).

Let G = AutS(X) be the group of automorphisms of the loop S(X). Since
S(X) is free and Z is a G−invariant subloop of S(X), we have an epimorphism
φ : G→ GL3(F2) with ker(φ) = {ρ ∈ G|xρ = xz, z ∈ Z}.

The group G acts on the F2−space Z, and this action depends only on
the images of the elements of G in GL3(F2). As the group GL3(F2) is simple
and has no non-trivial 2−dimensional F2−representations, the G−module Z is
irreducible.

31



If P is a 3-generated Steiner loop of nilpotency class 2, then there is a
canonical epimorphism π : S(X) → P and ker(π) ⊆ Z. Note that for any
other 3-generated Steiner loop Q and canonical epimorphism ψ : S(X) → Q

the loops P and Q are isomorphic if and only if there exists % ∈ GL3(F2)

such that ker(π)% = ker(ψ). Indeed, if ker(π)% = ker(ψ) then % induces an
isomorphism %̄ : P = S(X)/ker(π) −→ S(X)/ker(ψ) = Q. Conversely, let
%̄ : P = S(X)/ker(π) −→ S(X)/ker(ψ) = Q be an isomorphism between
P and Q. Then %̄ induces a homomorphism υ : S(X) −→ S(X)/ker(ψ) with
υ = %̄ ◦ π. For every x ∈ X one can choose σ(x) ∈ X such that υ(x) =

σ(x)ker(ψ) ∈ S(X)/ker(ψ). Since the loop S(X) is free, there is a unique
homomorphism ῡ : S(X) −→ S(X) satisfying ῡ(x) = υ(x) for all x ∈ X. It is
easy to see that ῡ ∈ AutS(X) and ῡ(ker(π)) = ker(ψ).

The group GL3(F2) acts transitively on Z \ {1} and on the set of the two
dimensional F2−subspaces of Z. As Z is a three dimensional irreducible
GL3(F2)−module, there exists a unique 3-generated Steiner loop of nilpotency
class 2 for each of the orders 16, 32 and 64. �
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Chapter 4

New constructions of finite
geometries with four point on a line

4.1 Generalized Steiner loops.

Lets remind that 3−geometries are actually the same objects as Steiner Triple
Systems, so 3−geometries are connected with Steiner loops and Steiner quasi-
groups. In this section we will show that in the same way the 4−geometries are
connected with Generalized Steiner loops and quasigroups.

Definition 22. A loop P is Generalized Steiner or for short Q−loop iff
(i) x.yx = xy.x = y,

(ii) xy.y = yx, if x 6= e,

We note that the set of all Q−loops is not a variety, but only quasivariety,
since (ii) is not identity, but quasi-identity.

Definition 23. A quasigroup P is Generalized Steiner quasigroup or for short
Qq−quasigroup [21] iff

(i) x.yx = xy.x = y,

(ii) xy.y = yx,

(iii) x.x = x.

There exists relation between Q−loops and Qq−quasigroups as between
Steiner loops and quasigroups.

Proposition 24. If P is a Q−loop, then
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a) S = P \ {e} is a Steiner system of the type (2, 4), (it means that every line
contains four points) where a line that passed by x, y is l(x, y) = {x, y, xy, yx}.

b) S is a Qq−quasigroup with multiplication:

x ◦ x = x, x ◦ y = x.y, if x 6= y.

Proof. a) It is enough to prove that
l(x, y) = l(x, xy) = l(x, yx) = l(xy, yx).

By (i) we get
(iii) y/x = xy, x\y = yx.
Then by (ii) and (iii):
(xy)\(yx) = y = yx.xy, or
(iv) yx.xy = y.

We get (xy)/(yx) = yx.xy = y, then
(v) y.yx = xy.
We have
1. l(x, xy) = {x, xy, x.xy, xy.x} = {x, xy, yx, y} = l(x, y).

2. l(x, yx) = {x, yx, x.yx, yx.x} = {x, yx, y, xy} = l(x, y).

3. l(xy, yx) = {xy, yx, xy.yx, yx.xy} = {xy, yx, x, y} = l(x, y).

b) By definition 22 we have the identities (i) and (iii) in the definition 23.
Moreover, the identity (ii) in the quasigroup S is the same as quiasi-identity (ii)
in P, since e 6∈ S by definition.

The proposition is proved. �

4.2 Central extension of Qq-quasigroups

The simplist example of Qq−quasigroup is a F4−vector space V, where F4 =

{0, 1, τ, τ 2 = 1 + τ} is the field of 4 elements.
In this case

v.w = w + τ(v + w) = τv + τ 2w (4.1)

Lemma 25. The set V with multiplication defined above is a Qq−quasigroup.
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Proof. By definition:
1) x.x = x+ τ(x+ x) = x,

since x+ x = 2x = 0 in F4.

2) x.(y.x) = x+ τ(x+ y + τ(x+ y)) = x+ τx+ τy + τ 2x+ τ 2y = y,

since τ + τ 2 = 1.

3) (x.y).y = x+ τ(x+ y) + τ(x+ τ(x+ y) + y) =

τ 2y + τx = y + τ(x+ y) = y.x.

Hence (V, .) is a Qq−quasigroup.
Lemma 25 is proved. �

Definition 26. LetQ be aQq−quasigroup. It is called group−like ifQ = (V, .),
where V is a F4−space with multiplication (4.1)

If Q = (V, .) is group-like Qq−quasigroup then in the corresponding
4−geometry the line l(x, y), x, y ∈ V, is the line of the affine geometry on
V = Fn

4 : l(x, y) = {x, y, τx+ τ 2y, τy + τ 2x}.
Let V,W be group-like Qq−quasigroups and ψ : V × V → W a map (not

necessary linear!) U = V ⊕W is a direct sum of the corresponding F4−spaces.
We can define on U a multiplication

(v1, w1).(v2, w2) = (v1.v2, w1.w2 + ψ(v1, v2)). (4.2)

Definition 27. A map ψ : V × V → W is a cocycle if the set U = V ⊕W with
multiplication (4.2) is Qq−quasigroup.

Remark. If ψ is a cocycle then ψ(v, v) = 0. Indeed, we have
(v, w).(v, w) = (v, w) = (v.v, w.w + ψ(v, v)),

hence ψ(v, v) = 0.

As a corollary of this note we get that inQq−quasigroup U constructed above
for any v ∈ V we have a normal subquasigroup Wv = {(v, w)|w ∈ W} ' W,

moreover, U/Wv ' V. In some sense the subloops Wv, v ∈ V, are central and
U is central extension.

The main object of this chapter (see Theorem 28 below) is construction of
central extension of two group-like Qq−quasigroups.

Ifw0, ..., wN−1 is a basis of the F4−vector spaceW then any elementw ∈ W
has the unique form
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w =
N−1∑
i=0

αiwi, αi ∈ F4.

We can write any element of F4 in the form τ s, s = 0, 1, 2, 3, where, by
definition τ 0 = 0. Hence every w ∈ W has the unique form

w =
∑N−1

i=0 τniwi, ni ∈ {0, 1, 2, 3}.
Then we have the bijection

φ : W → WN = {(nN−1nN−2...n1n0)|ni ∈ {0, 1, 2, 3}}, φ(w) = nN−1...n1n0.

Below we will use this identification W and WN .

Let B = BN be a set of lines in W which does not contain 0. Note that a
line l contains 0 iff l = {0, v, τv, τ 2v}, v ∈ W \ {0}. For any l ∈ B consider a
1−dimensional F4−space Ul with a basis al. We identify Ul with F4 = F4al.

Let T = {(i, j)|i 6= j ∈ {0, 1, 2, 3}}− the set of all ordered pairs from
{0, 1, 2, 3}. We fix a symmetric map ψl = ψ : T → Ul, ψ(i, j) = ψ(j, i), and a
partial map λ : W ×W → T,

ψ(1, 0) = 1, ψ(2, 0) = τ 2, ψ(3, 0) = τ ,

ψ(2, 1) = τ, ψ(3, 1) = τ 2, ψ(3, 2) = 1.

The map λ : W ×W → T, is defined only if v 6= w, τw, τ 2w ∈ W.
By definition

λ(v, w) = (i, j), if φ(v) = nN−1...n1n0, φ(w) = mN−1...m1m0, nN−1 =

mN−1, ..., nt = mt,

nt−1 = i 6= j = mt−1, t ≤ N − 1.

Finally, we define a map π : WN ×WN → UN =
∑

l∈BN
⊕Ul, such that

π(n,m) = 0, iff n,m ∈ {0, k, kτ , kτ2} for some k.

π(n,m) = ψl(λ(n,m)), if n,m ∈ l = {n,m, n ·m,m · n} ∈ BN .

We can consider UN as a group like Qq−quasigroup.

We define a central extension of WN with UN :

SN = WN ⊕ UN ,

(v, x).(w, y) = (v · w, x · y + π(v, w)). (4.3)

Theorem 28. The set SN with multiplication above is a non-commutative Steiner
quasigroup.
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Proof. We need to prove that the quasigroup SN satisfies the identities (i)-(iii)
from the definition of Qq−quasigroups.For this we have to prove

Lemma 29. The map π is cocycle iff
(1) τ 2π(v, w) = π(w, vw),

(2) τπ(v, w) = π(vw, v),

(3) π(v, w) + π(v, wv) + π(w,wv) = 0.

Proof. Let us suppose that π is a cocycle and, hence, SN is aQq−quasigroup.
We will use the following connection between the two operations on group-like
Qq−quasigroup V :

v.(w + u) = v.w + τ 2u, (4.4)

(v + w).u = v.u+ τw, (4.5)

For example: v.(w+u) = τv+ τ 2(w+u) = τv+ τ 2w+ τ 2u = v.w+ τ 2u.

Let us prove that relations (1) and (2) are equivalent to the identities (i).
Using (4.5) we get:

((v, x).(w, y)).(v, x) = (v.w, x.y + π(v, w)).(v, x) =

((v.w).v, (x.y+π(v, w)).x+π(v.w, v)) = (w, y.x+τπ(v, w)+π(v.w, v)) =

(w, y).

Then the relation (2) is equivalent to the identity (x.y).x = y.

Analogously we can prove that the relation (1) is equivalent to the identity
x.(y.x) = y, and (3) to (x.y).y = y.x.

The Lemma is proved. �
Now we have to deduce the relations (1)-(3) from Lemma 29.
Suppose that λ(v, w) = (1, 0). Let

v =
N−1∑
i=0

τniwi, ni ∈ {0, 1, 2, 3},

w =
N−1∑
i=0

τmiwi,mi ∈ {0, 1, 2, 3}.

If mN−1 = nN−1, ....,mi+1 = ni+1, ni = 1, mi = 0.
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Hence
τ pv =

∑N−1
i=0 τni+pwi, τ

pw =
∑N−1

i=0 τmi+pwi, p = 1, 2.

Here the sum ni + p is calculated modulo 3, since τ 3 = 1. Then nj + p 6=
mj + p, j < i, and all values of λ(x, y) for x, y ∈ {v, w, v.w, w.v} are defined
by the coefficient before wi. Hence

λ(w, v) = (0, 1), λ(v.w, w) = (2, 0), λ(v.w, v) = (2, 1), λ(w.v, v.w) =

(3, 2),

λ(v.w, w.v) = (2, 3), λ(w.v, v) = (3, 1), λ(w.v, w) = (3, 0).

We are ready to prove that π is cocycle, using the Lemma 29. Let consider
the cases:

1) Case (1, 0).
(i) τ 2π(v, w) = τ 2ψ(λ(v, w)) = τ 2ψ(1, 0) = τ 2,

π(w, v.w) = ψ(λ(w, v.w)) = ψ(0, 2) = τ 2,

hence τ 2π(v, w) = π(w, v.w).

(ii) τπ(v, w) = τψ(λ(v, w)) = τψ(1, 0) = τ,

π(v.w, v) = ψ(λ(v.w, w)) = ψ(2, 1) = τ,

hence τπ(v, w) = π(v.w, v).

(iii) π(v, w) + π(v, w.v) + π(w,w.v) =

ψ(λ(v, w)) + ψ(λ(v, w.v)) + ψ(λ(w,w.v) =

ψ(1, 0) + ψ(3, 1) + ψ(3, 0) = 1 + τ 2 + τ = 0.

2) Case (1, 2).
(i) τ 2π(v, v.w) = τ 2ψ(λ(v, v.w)) = τ 2ψ(1, 2) = 1,

π(v.w, v.(v.w)) = ψ(λ(v.w, w.v)) = ψ(2, 3) = 1,

hence τ 2π(v, v.w) = π(v.w, w.v).

(ii) τπ(v, v.w) = τψ(λ(v, v.w)) = τψ(1, 0) = τ,

π(v.w, v) = ψ(λ(v.w, w)) = ψ(2, 1) = τ,

hence τπ(v, v.w) = π(w.v, v).

(iii) π(v, v.w) + π(v, (v.w).v) + π(v.w, (v.w).v) =

π(v, v.w) + π(v, w) + π(v.w, w) =

ψ(λ(v, v.w)) + ψ(λ(v, w)) + ψ(λ(v.w, w) =

ψ(1, 2) + ψ(0, 1) + ψ(2, 0) = τ + 1 + τ 2 = 0.

3) Case (0, 2).
(i) τ 2π(w, v.w) = τ 2ψ(λ(w, v.w)) = τ 2ψ(0, 2) = τ 2τ 2 = τ,
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π(v.w, w.(v.w)) = ψ(λ(v.w, v)) = ψ(2, 1) = τ,

hence τ 2π(w, v.w) = π(v.w, w.(v.w)).

(ii) τπ(w, v.w) = τψ(λ(w, v.w)) = τψ(2, 0) = 1,

π(w.(v.w), w) = ψ(λ(v, w)) = ψ(1, 0) = 1,

hence τπ(w, v.w) = π(w.(v.w), w).

(iii) π(v.w, w) + π(v.w, w.(v.w)) + π(w,w.(v.w)) =

π(v.w, w) + π(v.w, v) + π(w, v) =

ψ(λ(v.w, w)) + ψ(λ(v.w, v)) + ψ(λ(w, v) =

ψ(0, 2) + ψ(2, 1) + ψ(1, 0) = τ 2 + τ + 1 = 0.

4) Case (3, 2).
(i) τ 2π(w.v, v.w) = τ 2ψ(λ(w.v, v.w)) = τ 2ψ(3, 2) = τ 2,

π(w.v, (w.v).(v.w)) = ψ(λ(w.v, w)) = ψ(3, 1) = τ 2,

hence τ 2π(w.v, v.w) = π(w.v, (w.v).(v.w)).

(ii) τπ(w.v, v.w) = τψ(λ(w.v, v.w)) = τψ(2, 3) = τ,

π((v.w).(w.v), v.w) = ψ(λ(v, v.w)) = ψ(1, 2) = τ,

hence τπ(w.v, v.w) = π((v.w).(w.v), v.w).

(iii) π(v.w, w.v) + π(v.w, (w.v).(v.w)) + π(v.w, (w.v).(v.w)) =

π(v.w, w.v) + π(v.w, w) + π(w.v, w) =

ψ(λ(v.w, w.v)) + ψ(λ(v.w, w)) + ψ(λ(w.v, w) =

ψ(3, 2) + ψ(2, 0) + ψ(3, 0) = 1 + τ 2 + τ = 0.

5) Case (3, 1).
(i) τ 2π(w.v, v) = τ 2ψ(λ(w.v, v)) = τ 2ψ(3, 1) = τ,

π(v, (w.v).v) = ψ(λ(v, v.w)) = ψ(1, 2) = τ,

hence τ 2π(w.v, v) = π(v, (w.v).v).

(ii) τπ(w.v, v) = τψ(λ(w.v, v)) = τψ(1, 3) = 1,

π((w.v).v, w.v) = ψ(λ(v.w, w.v)) = ψ(3, 2) = 1,

hence τπ(w.v, v) = π((w.v).v, w.v).

(iii) π(w.v, v) + π(w.v, v.(w.v)) + π(v, v.(w.v)) =

π(w.v, v) + π(w.v, w) + π(v, w) =

ψ(3, 1) + ψ(3, 0) + ψ(1, 0) = τ 2 + τ + 1 = 0.

6) Case (3, 0).
(i) τ 2π(w.v, w) = τ 2ψ(λ(w.v, w)) = τ 2ψ(3, 0) = 1,

π(w, (w.v).w) = ψ(λ(w, v)) = ψ(1, 0) = 1,
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hence τ 2π(w.v, w) = π(w, (w.v).w).

(ii) τπ(w.v, w) = τψ(λ(w.v, w)) = τψ(0, 3) = τ 2,

π((w.v).w, w.v) = ψ(λ(v, w.v)) = ψ(3, 1) = τ 2,

hence τπ(w.v, w) = π((w.v).w, w.v).

(iii) π(w.v, w) + π(w.v, w.(w.v)) + π(w, v.w) =

π(w.v, w) + π(w.v, v.w) + π(w, v.w) =

ψ(3, 0) + ψ(3, 2) + ψ(2, 0) = τ + 1 + τ 2 = 0.

Theorem is proved. �

Conjecture 30. Letψ be a cocycleψ : V×V → Z,where V, Z areQq−quasigroups
of group-like type.

Then ψ(v, w) = ψ(w, v).

Conjecture 31. Let S be a Qq−quasigroup and S 6' S1 × S2 for any non-
trivial Qq−quasigroups S1 and S2. Moreover, S is an central extension of two
group-like Qq−quasigroups V,W.

Then dimW ≤ (4n−1)(4n−1−1)
3 , where dimV = n.
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