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Resumo

ROBERTO, K. M. A. Multianeis e a Camara Secreta: relacoes funtoriais entre teorias ab-
stratas de formas quadraticas. 2019. 285 f. Dissertagao (Mestrado) - Instituto de Matematica
e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2019.

O principal objetivo deste trabalho é estabelecer precisamente quais sao as conexoes funtori-
ais entre as teorias abstratas de formas quadraticas, criando uma via introdutéria entre a teoria
cldssica e as abstratas durante este processo. Ha uma gama de literatura desenvolvida tanto na
teoria cldssica quanto nas abstratas, mas nenhuma intercalando-as “geograficamente”. Nesta per-
spectiva, discutiremos os aspectos fundamentais da teoria classica e reduzida de formas quadraticas,
encapsulando as teorias das Estruturas Quaternionicas, Esquemas de Cordes, Anéis de Witt Ab-
stratos, Espacos de Ordens Abstratos, Grupos Especiais, Espectro Real Abstratos e Semigrupos
Reais em um quadro funtorial, inserindo os novos elementos envolvendo a teoria recente dos Multi-

anéis e Multi-corpos.

Palavras-chave: Multi-anéis, grupo especial, semigrupo real, quadro funtorial.

iii



iv



Abstract

ROBERTO, K. M. A. Multirings and The Chamber of Secrets: relationships between
abstract theories of quadratic forms. 2019. 285 f. Dissertagdo (Mestrado) - Instituto de

Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2019.

The aim of this work is to establish precisely what are the functorial connections between the
abstract theories of quadratic forms, as well as, to create a short and introductory path from the
classic theory to the abstract ones. There is a large amount of literature developed about classic and
abstract theories but does note relate them “geographically”. In this perspective, we discuss the
fundamental aspects of the classic and reduced theory of quadratic forms, and sum up the theories
of Quaternionic Structures, Cordes Schemes, Abstract Witt Rings, Abstract Ordering Spaces,
Special Groups, Abstract Real Spectra and Real Semigroups in a functorial picture, inserting the

new aspects involve the recent theory of Multirings and Multifields.

Keywords: multirings, special group, real semigroup, functorial picture.
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Introduction

The aim of this present work is establish precisely what are the functorial connections between
the abstract theories of quadratic forms as soon as to create a short and introductory path from
the classic theory to the abstract ones. This is an important contribution, since there are an
amount of good literature developed in classic and abstract theories but no one interchanging
them “geographically”.

Chapter 1 is a “crash course” in algebraic theory of quadratic forms, in the sense to provide a
good introduction to quadratic forms for the readers that are not familiar with this subject (and
it is crucial since we will work with abstract versions of quadratic forms).

In chapter 2 we talk about the very first “abstract theory” of quadratic forms, the reduced
theory. It is nothing more than a theory of quadratic forms “in the point of view” of a fixed
preordering. Almost all of the results in chapter 1 is immediated translated in this new context.
Beside this, a new phenomena appears (we call it the “Lam’s triangle”), that is the interchanging
of information between quadratic forms, orderings and valuations:

Orderings
drati .
Quardbiatie Valuations

Forms

In chapter 3 we treat about the first generation of abstract theories. The first abstract theories
appears in 70’s, by the hands of M. Marshall and C. M. Cordes. These theories appears for a
reason: they are interested in the existence (or not) of fields with prescribed properties relating to
quadratic forms.

In chapter 4, we discuss the second generation of abstract theories. The first one appears in
the decade of 80’s, the Marshall’s Abstract Space of Orderings (AOS). They are important because
generalize both theory of orderings on fields and the reduced theory of quadratic forms. Since the
abstract theories of chapter 3 does not have field-theoretic methods to deal with the reduced case,
the AOS solves this issue. But only in the decade of 90’s that arise a (finitary) first-order theory
that generalize the reduced and non-reduced theory of quadratic forms simultaneously. This theory
is the Special Groups of F. Miraglia and M. Dickmann. It takes as primitive the binary isometry,
is a first-order theory and treat the reduced and non-reduced case in a very elegant way. This
simplicity brings new methods and tools to the algebraic theory of quadratic forms, culminating
in a proof of Marshall’s and Lam conjecture.

In chapter 5 the paradigm changes drastically. We start with a third generation of abstract
theories, that appears in a first atempt to develop a theory of quadratic forms over (general)
coeflicients on rings. As we will see, the ring-theoretic case is much more difficult that the field
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one, the isometry is not well behaved and an algebraic counterpart of the ARS’s appears just
in years 2000, with the realsemigroups (RS) of Dickmann and Petrovich. The RS appears in an
atempt to creat a duality RS ~ ARS? likewise SG ~ AOS°. They are successful in explore
the analogies with the SG case (e.g, the Duality RS ~ ARSP), but this is not pay off in deep
theorems yet, since the theory still is in development.

In chapter 6 the Chamber of The Secrets is opening: here we connect the new theory of
multirings and multifields with the most significant theories of quadratic forms. This is (in some
way) a new picture: despites of the Marshall’s and Miraglia’s observation about these connections,
it is the first time that this is made explicit. So, because this, the implications of the multirings
and multifieds theory in the abstract theory of quadratic forms are a road to discover.



Chapter 1

Quadratic Forms over Fields

At a first moment, we gather the principal results from the “classic” algebraic theory of
quadratic forms. These are the Witt ring and its properties, Pfister’s Local-Global Principle,
Pfister forms and Hauptsatz, first connections between quadratic forms and orderings and so on.
In this intent, we made a compiled of the chapters 1, 2, 8 and 10 of Lam’s book [Lam05].

Our aim here, is to provide a good introduction to quadratic forms for the readers that are not
familiar with this subject (and it is crucial since we will work with abstract versions of quadratic
forms). Unfortunately, because this, we do not present many beauty applications as the field
invariants, connections with Milnor’s K-theory, quaternion algebras and more deep results on
function fields. We will make some remarks on this direction in section but for the readers
interested on these applications, we strongly recomend the already cited book [Lam05], that covers
all these aspects.

1.1 Foundations

Here, we will estabilish the “Rules of the Game”, i.e, the list of the basic definitions and results
from algebraic quadratic forms theory.

Definition 1.1.1. An (n-ary) quadratic form over an ﬁeldﬂ F is a polynomial f in n variables
over F' that is homogeneous of degree Zﬂ It has the general form

n
F(X1, o Xn) = ) aXiXj € FIXy, .., X, = FX].
ij=1

To render the coefficients symmetric, it is customary to rewrite f as

n n
1
f(X) = E §(aij + aji)Xin = E binin,
i,j=1 i,j=1

where b;; = %(aij + aj;). In this way, f determines uniquely a symmetric matriz (b;j) (denoted by

LAll fields consider in this present work have characteristic different from 2.
2 An homogeneous polynomial f € F[Xi, ..., X,] is a polynomial whose nonzero monomials all have the same total
degree.
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M) such that:
X1
t Xz
(X)) =(X1,....X,)" - My - :
Xn
where t is the transposition and X is viewed as a column vector. Quadratic forms arise naturally
in many contexts of mathematics. There are some examples:

e The real inner product (z,y) = z1y1 + ... + TpYn;

e The discrete variance of a random variable X = {x1, ...,z }:
n
Var(X) = Zpl(acz —7)?
i=1

where T is the mean of X and p; is the probability associated to x;.

Indeed, it is a valuable analogy consider a quadratic form as a “generalized inner products”.
Now, as “good mathematicians”, we will study the behavior of such “generalized inner products”.
The very first thing to do, is “collapse” quadratic forms that “describes the same phenomena”:

Definition 1.1.2. Let f and g be n-ary quadratic forms. We say that f is equivalent to g, notation
f =g, if there exists an invertible matriz C € GLn(F') such that f(X) = g(C - X).

This means that there exists a nonsingular, homogeneous linear substitution of the variables
X1, ..., X, that takes the form g to the form f. Since

§(C - X) = (C-X) - My (C- X) = X'+ (C* - M, - C) - X,
the equivalence condition f(X) = g(C - X) stipulated above amounts to a matrix equation
My=C"-M,-C.

Thus, equivalence of forms amounts to congruence of the associated symmetric matrices (once that
C"'- M, - C remains a symmetric matrix).

Example 1.1.3. Let f(X1,X2) = X1X2. We have that f is equivalent to the form g(Xi,X2) =
X2 — X2 by the computation

’ (Gg —11//22> ' (2)) = 9(X1/2+ X5/2, X1/2 = X5/2) =

= (X1/2+ X2/2)” = (X1/2 = X2/2)* =
= X244+ X1X9/2+ X2/4 — X2 /4+ X1Xo/2 — X2 /4
- X1X2 — f(X17X2)7

or in matricial terms,

(G )6 )6 8- )

Remember that char(F') # 2.
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Our point of view here is axiomatic, so is worthy to point out that we have another categorical
equivalent axiomatizations for quadratic forms. We will discuss briefly the quadratic spaces and
more information can be found in the chapter 1 of [San15].

Definition 1.1.4. A quadratic space (V, B) consist of a finite-dimensional F-vector space V' and
a symmetric bilinear pairing B : VXV — F on'V. The map qp : V — F given by qp(x) = B(x, )
for all z € V will called quadratic map associated to the quadratic space (V, B). Sometimes we will
denote (V, B) by (V, qp).

Definition 1.1.5. If (V,B) and (W,C) are quadratic spaces, we say that they are isometric,
notation V= W if there exists a linear isomorphism 7 : V — W such that

C(r(x), 7(y)) = B(x,y)

forallz,y e V.
Naturally, we want to get something like this:

Proposition 1.1.6. Let F' be a field. Then there is a one-one correspondence between the equiv-
alence classes of n-ary quadratic forms Qp and the isometry classes of n-dimensional quadratic
spaces Quady .

Proof. Given a quadratic form f, define Qs : F" — F by Q¢(z) = ' - My - z. In the sequel, define
By : F" x F" — I by

1
By(z,y) = 5(Qs(z +y) — Qr(z) — Qs (y)).
Let f 2 g be isometric forms, where My = C* - M, - C with C € GL,(F).

2By(z,y) = Qp(r +y) — Qp(z) — Qf(y)
=(@+y) My (x+y)—a"-My-z—y' My-y
=(x+y)" - (C"-M;-O)-(x+y)—a"-(C'-My-C)-z—y" - (C*-M,-C) -y
=(C-(z+y)' My (C-(z4y)—(C-2)"-My-(C-z)—(C-y)' - My-(C-y)
= 2B4(C(z),C(y)).

Then we have a (well-defined) map

®: Qr — Quadp
[f] = [(F", By)]

On the other hand, given a quadratic space (V, B), for a choice of a base {e1,...,e,} of V, we can
define a quadratic form

fB(Xh ,Xn) = ZB(ei, ej)Xin
2%

with My = (B(e;,e;)). If we choose another base { fi, ..., fn}, the quadratic form f’ resulting from
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n
the new choice of basis will be equivalent to f. In fact, if f; = > cpex, then

k=1
(My)ij = B (fi, f)
= Z kzekazcljej>
k=1 =1

n
ZZ% (exs€1) - cij
)zj

where C' = (cg;). Therefore, this form is invariant under change of base, and since every n-
dimensional F-vector space is isomorphic (and so on, isometric as quadratic space) to F™, we have
a map

V: Quadp — Qf
[(V,B)] = [fB]

Finally, we have ® o ¥ = Id (because My, = (B(e;, e;))i;) and ¥ o & = Id by construction, finising
the proof. O

Then quadratic forms and quadratic spaces describes the same thing, so we will switch between
these notions according the convenience.

Our next step, is answer the question:
What class of quadratic forms matters? What properties they have?

So we need to classify them, by introducing new definitions and operations. In this sense, we start
with the following lemma: let (V, B) be a quadratic space and M be a symmetric matrix associated
to one of the forms in the equivalence class of fg.

Lemma 1.1.7. The following statements are equivalent:

a - M is a nonsingular matriz.

b - z— B(,x) defines an isomorphism V. — V*, where V* denotes the vector space dual of V.
c- Forx eV, B(x,y) =0 for ally € V implies that x = 0.

Proof. The equivalence (b) < (c) is just the fact that isomorphism are injective functions and
dim(V) = dim(V*), so if B(x,y) = 0 for all y € V, then z is in the kernel of the morphism
x+— B(,z). And (a) < (b) is consequence of the fact that M (by the appropriate choice of basis)
is the matrix associated to the morphism x — B(,x). O

Definition 1.1.8. Let (V, B) be a quadratic space. (V, B) is a regular (or nonsingular) quadratic
space if one (and hence all) of the equivalent statements of the lemma holds.

Keeping in mind the “generalized inner product” analogy, we equip our theory with some
terminology provenient from linear algebra:
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Definition 1.1.9. Let (V, B) be a quadratic space, and S be a subspace of V.. Then (S, Blsxs) is
a quadratic space in its own right. The orthogonal complement of S is defined by

St={zecV:B(zy) =0VyecS}
The orthogonal complement of V itself is called the radical of (V, B), denoted by V+ = rad(V).
Lemma 1.1.10. Let (V, B) be a regular quadratic space and S be a subspace of V. Then:
a - dim S + dim S+ = dim V;
b- (SH)t=5.

Proof. Let ¢ : V. — V* be the linear isomorphism defined in the item (b) of Then S* is
precisely the subspace of V' annihilated by the functionals in ¢(.S). By the usual duality theory in
linear algebra, we have

dim S+ = dim V* — dim ¢(S)
— dimV — dim 8,
since ¢ is an isomorphism. This estabilishes (a). Applying (a) twice, we get
dim(S+)t = dimV — (dim V — dim S) = dim S.
Since (S+)+ D S, we get (b). O

Definition 1.1.11. If (Vi, By),(Va, B2) are quadratic spaces, we may form the orthogonal sum
(V,B) of (V1, B1), (Va, Ba), notation (V,B) = (Vi,B1) L (Va, Ba) in this way: V = Vi & Vo and
B:V xV — F is given by

B((w1,41), (72,92)) = Bi(w1,y1) + Ba(z2,92)-

And hence, qg = qB, + 4B, -

Example 1.1.12. If q1 is the ternary form XY —3Z% and qo is the binary form X? —Y?2, ¢1 L ¢
is the form XY — 322 + V2 —W? in the five variables V,W,X,Y, Z.

Lemma 1.1.13. Let (Vi, By), (Va2, B2) be quadratic spaces. Then (Vi, By) @ (Va, Ba) is reqular if
and only if (V1,B1) and (Va, B2) are regular.

Proof. Is direct consequence of

MfBlJ-fBQ = ( 0 My,
2

where fp,, fB, are the unique form up to isometry determined by B; and By respectively and
My , My, are the symmetric matrix associated to one of the forms in the equivalence class of fp,
and fp, respectively. O

Now, we advance another step in our purpose of classify quadratic forms. The next definition
is crucial:

Definition 1.1.14. Let F be a quadratic form over F and d € F := F \ {0}. We shall say that f
represents d if there exists x1,xa,...,xy, € F such that f(xy,...,x,) = d.



8 CHAPTER 1. QUADRATIC FORMS OVER FIELDS

Note that (x1,...,x,) is a nonzero vector. We shall write Dp(f) = D(f) to denote the set of
values in F' represented by f. This set depends only on the equivalence class of f. Beside this,
d € D(f) if and only if da® € D(f) for all a € F.

For d € F, we shall write (d) to denote the isometry class of the 1-dimensional space corre-
sponding to the quadratic form dX?. Follow by definition that (d) is regular if and only if
de F.

Proposition 1.1.15. Let (V, B) be a quadratic space and d € F. Then d € D(V) if and only if
there exists another quadratic space (V', B") such that V = (d) L V.

Proof. If we have V = (d) L V/, then d € D((d) L V') = D(V). Conversely, suppose d € D(V),
so there exists v € V with ¢(v) = d (where ¢ = ¢p). We first make a reduction to the case
where V' is regular. Take any subspace W such that V = (radV) ®@ W = (radV) L W. We have
D(V) = D(W) be definition of orthogonal sum, and W is regular (by construction). Hence, we
may assume without loss of generality that V' is regular.

The quadratic subspace F - v is isometric to (d), and (F -v) N (F-v)* = 0. Since

dim(F - v) + dim(F - v)* = dim V
by lemma [1.1.10, we conclude that V 2 (d) L (F -v)*. O

Corollary 1.1.16. If (V, B) is any quadratic space over F, then there exist scalars di,...,d, € F
(an “orthogonal basis”) such that V = (d;) L (d2) L ... L (dy). In other words, any n-ary quadratic
form is equivalent to some diagonal form, di X3 + ... + d, X 2.

Proof. If D(V') is empty, then B = 0 and V is isometric to an orthogonal sum of (0)’s. If there
exists some d € D(V), then V = (d) L V' for some (V’, B), and the proof proceeds by induction
on dim V. O

We shall abbreviate the diagonal form (dy) L (d3) L ... L (d,) by (di,da,...,d,). The n-ary
diagonal form (d, ..., d) will be abbreviated as n(d). For example, 2(a) L 3(b) means the 5-ary form
(a,a,b,b,b). Another corollary follows:

Corollary 1.1.17. Let f be an n-dimensional quadratic form over F'. Then b € D(f) < there exist
b2, ..., by € F such that f = (b, by, ...,by). Moreover, if f is regular then we can choose by, ..., b, € F.

Proof. (<) is a natural consequence of the definitions of isometry and representation. For (=),
consider the quadratic space (V, By)associated to f. We have V' = (b) L V' by proposition [1.1.15
Hence, the result follows diagonalizing V. 0

Proposition [1.1.15] and corollaries [1.1.16 are a powerful tools in deal with quadratic

forms. These reduces the study of quadratic forms to diagonal forms, i.e, instead of deal with
matrices, polynomials and vector spaces we only need to worry with n-tuple of elements in F. Of
course, we will use (and abuse) of this method from now to the end of the dissertation.

However, we do not forget the intuition and geometric appeal that linear algebra and matrices
got to us! In face of this, we still work with spacial notions in this and next section.

Corollary 1.1.18. If (V, B) is a quadratic space and S is a regular subspace, then:
a-V=818"

b- IfT is a subspace of V such that V =8 L T, then T = S+.
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Proof. a - Since S NS+ = radS = 0, it is suffices to show that V is spanned by S and S=.
By corollary [1.1.16, S has an orthogonal basis x1,...,x,, and the regularity of S implies that
B(x;,z;) # 0 for all i. Given z € V, consider the vector

P
B(z,x;)
=z-— X
Y ; (ziy )"

We have
p
B(z,x;)
B(y,x;) = B(z, ;) ZmB(mu%)
i=1 1y M1
B(z,z;)
iB _ )] B .
(2,25) Bl(x;, ;) (zj,25) =0

Thus y € S+, and

b-IfV=8L1T,then T C S*+. But
dim T = dimV — dim S = dim S+

and dim 7, dim S* < dim V € N. So, we must have T = S+.
O

Corollary 1.1.19. Let (V,B) be a regular quadratic space. Then a subspace S is regular if and
only if there exists T CV such that V=8 L T.

Proof. (=) Take T = S+ and apply the item (a) of the corollary [1.1.18
(<)IfV =98 L T, then radS C radV = 0, so S is regular and 7' = S, by item (b) of corollary
INWE) O

Definition 1.1.20. Let f bea nonsingular quadratic form. The discriminant of f is defined to be
d(f) = det(My) - F? (an element of F/F?), where My is the symmetric matriz associated with f.

Note that if f = g, then My = C*M,C for some nonsingular matrix C, and hence
d(f) = det(My) - F* = det(M,) - (det C)? - I = d(g).

This shows that d(f) is an invariant of the equivalence class of f.

Let (V,B) be a (regular) quadratic space that corresponde to the equivalence class of f. If
V = (dy,...,dy,) is a “diagonalization” of V, then d(f) = dy...d, - . It is sometimes convenient to
call this quantity the discriminant of V', written d(V).

We had seen some cool results about regular quadratic forms, so you could be thinking

Our job is done! Regular forms classify quadratic forms!

But it is not enough. For example, let the binary form ¢ = (1,—1) (say in R). ¢ is a regular
form, but ¢(z,z) = 0 for all x € R, so from the “g-point of view”, all vectors in the line y = x have
“length” zero. In an ideal world, non-zero vectors must be “positive length”! So regular forms do
not “see” these “strange” vectors.
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Definition 1.1.21. Let v be a nonzero vector in a quadratic space (V,B). We say that v is an
isotropic vector if B(v,v) = 0 and say that v is anisotropic otherwise. The quadratic space (V, B) is
isotropic if it contains a (nonzero) isotropic vector and is said to be anisotropic otherwise. Finally,
we shall say that (V,B) is totally isotropic if all nonzero vectors in V are isotropic (that is, if
B=0).

Theorem 1.1.22. Let (V,q) be a 2-dimensional quadratic space. The following four statements
are equivalent:

a - V 1is regular and isotropic.

b - V is regular, with d(V) = —1- F2.

¢ - V is isometric to (1,—1).

d - V corresponds to the equivalence class of the binary form X1 Xo.

The isometry class of a 2-dimensional quadratic space satisfying these conditions is called hyperbolic
plane and will be denoted by H.

Proof. We already seen that (c¢) < (d) in example and (d) = (a) is immediate.
(a) = (b): Let z1,x2 be an orthogonal basis for V. Regularity of V implies that ¢(z;) = d; # 0
(i =1,2). Let az1 + bxy be an isotropic vector with a # 0 (without loss of generality). Then

0 = g(axy + bxo) = ady + b?dy = dy = —(ba™1)? - dy
=d(V)=dydy F?>=—1-F%
(b) = (¢): Under the hypothesis of (b), we have a diagonalization V 2 (a, —a) for some a € F.
By the argument in example we know that aX? — aY? is equivalent to aXY. The latter

represents all elements in F'. In particular, (V,q) itself represents 1. By the proposition [1.1.15 we
conclude that V 2 (1, —1). O

An orthogonal sum of hyperbolic planes will be called a hyperbolic space. The corresponding
quadratic form may be taken either as (X? — X3)+...(X2 | — X2 )oras X1 Xo+...+ Xom_1Xom.

Definition 1.1.23. A quadratic form (or quadratic space) is called universal if it represents all
the nonzero elements of F'.

Theorem 1.1.24. Let (V, B) be a regular quadratic space. Then:

a - Every totally isotropic subspace U C V' of positive dimension r is contained in a hyperbolic
subspace T C V' of dimension 2r.

b - V is isotropic if and only if V' contains a hyperbolic plane.
c - If V is isotropic, then V is universal.

Proof. a - We shall prove by induction on r. Take any basis x1, ..., x, in U, and let S be the span
of &3, ...,z,. Of course, U C S+. Since V is regular, we may apply the proposition to
get

dim S* = dimV — dim S > dimV — dimU = dim U*.



1.1. FOUNDATIONS 11

This means that there exists a vector y; € S+ that is orthogonal to o, ..., z,,, but not orthogonal
to x1. In particular, 21,y are linearly independent vectors (since z is isotropic). The subspace
Hy, = Fx1 + Fy; has discriminant

0 B(ﬂcl,yl)) =2 52
d(Hy) = det CF?=_-1.F?
( 1) ¢ <B($1,y1) B(y1,91)

so H; = H by the theorem [1.1.22, We have thus a splitting V = H; 1 V', where V' = Hi-

contains xa, ..., x, (corollary [1.1.18). Since V' is regular (corollary |1.1.19)), the proof proceeds
by induction.

b - Follow by (a) putting r = 1.

¢ - Is imediatly consequence of the fact that H is universal.
O

Theorem 1.1.25. Let f, g be arbitrary quadratic forms over a field F', a1, ..., ayn, b1, ...,by € F and
7 e Sl Then:

a- f=g= dim(f) =dim(g) and d(f) = d(g).

b- f=g=af Zag forallacF.

c - (a1b3, ..., a,b2) = (ay, ..., a,).

d - (Ar(1), s Or(n)) = (a1, s an)-

e- If (a1, ...;ar) = (b1, ..., bg) and (ags1, ..., an) = (bgi1,...,bn) then (a1, ...,an) = (b1, ..., by).
Proof.

a - Isometry is already defined on forms of the same dimension. Now, suppose that M; = C*M,C.
Then

det(My) = det(C*M,C) = det(M,) det(C)?* = d(f) = det(M;) - F? = det(M,) - F* = d(g).

b - If g(X) = f(C - X) for some C € GL,(F), then the same matrix C gives ag(X) = af(C - X).

¢ - Is just the fact that the symmetric matrix

by 0 ... O
0 b ... O
0o 0 .. b,

transform (ay, ..., a,) to {(a1b?, ..., a,b2).

d - Consider the matrix A = (a;;) where air(;) = 1 and the other entries are 0. We have that
A € GL,(F) and A transform (a1, ..., an) t0 (1) - Qr(n))-

3The group of bijections 7 : {1,2,...,n} = {1,2,...,n}.
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e - If B transform (ay, ..., ax) into (b1, ..., bx) and C transform (agi1, ..., an) into (bgs1, ..., b,) then

o-(2 )

transform (ay, ..., a,) into (b, ..., by).

Corollary 1.1.26. Let a,b,c,d € F. Then:

a- (a) = (b) < a=b(mod F?).

b - (a,b) = (c,d) < ab = cd (mod F?) and there exist x,y € F such that ¢ = ax? + by?.
Proof.

a - Is just the items (a) and (c) of corollary [I.1.25

b- (=) ab = ed (mod F?) comparing discriminants and by theorem [1.1.17((e), we have ¢ € D(a, b).
Then there exist x,y € F such that ¢ = az? + by?.

(<) As ¢ = ax?® + by? for some z,y € F, we have ¢ € D(a,b). Hence by corollary [1.1.17

(c,€) = (a,b) for some e € F. Thus ce- 2 = ab- F2 = cd- F? so e - F2 = d - F2. By item (a)
(e) = (d) and by corollary [1.1.25| (¢, e) = (¢, d). Then by transitivity of isometry (a, b) = (¢, d).
O
Corollary 1.1.27. (a, —a) = (1, —1) holds for all a € F'.
Proof. a(—a)-F?=1(-1)- F? and
ae (@ +1)\? (a—1 2
= 5 5 .
Thus by item (b) of corollary [1.1.26| we have (a, —a) = (1, —1). O

Corollary 1.1.28. Let f be a regular quadratic form over F of dimension n. Then f is isotropic
if and only if there exist b3, ...,b, € F with f = (1,—1,bs,...,b,). In particular, this implies n > 2.

Proof. If f = (1,—1,bs3,...,b,), then 12 — 12 + b3(0)2 + ... + b,(0)?> = 0 and f is isotropic (for the
vector v = (1,1,0,0,...,0), we have f(v) = 0 and v # 0). Now suppose that f = (ai,...,a,) is
isotropic. Then for some 1, ...,z, € F not all zero, we have a12? + ... + a,22 = 0. By (d)
we may assume 1 # 0. Take a = ajz?. Then —a = agz3 + ... + anz2 € D(ag, ..., a,) so bycorollary
1.1.17] there exist bs, ..., b, € F such that (ag, ..., an) = (—a, bs, ..., by). Also (a1) = (a) by corollary

1.1.26{(a) so by [1.1.25|e) and corollary [1.1.27]

f = <a1, ...,an> = (a, —a, b3, ,bn> = <1,—1,b3, ,bn>

O]

Proposition 1.1.29. Leq q = (a,b), ¢’ = (¢,d) be regular binary forms. Then q = q if and only
if d(q) = d(q') and q,q’ represents a common element e € F.
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Proof. We just need to prove (<). Assume that d(q) = d(¢) G.F/F2 and let e € D(q) N D(¢).
By proposition [1.1.15, we know that ¢ = (e,e’) for some €’ € F. Taking discriminant, we have
abF? = cdF?, so ¢ = (e, abe). Similarly, ¢’ = (e, cde). But abF? = cdF?, s0 ¢ = ¢. O

Now we know what we need to do: it is necessary to look for some criteria to decompose general
diagonal forms to anisotropic diagonal forms. But before this, let is get more familiarity operating
quadratic forms. Our classification task will return in the future.

So, we already know how to “sum” quadratic forms. A natural question is:

Is it possible “multiply” forms?
Of course is, and this is the subject of the next definition:

Definition 1.1.30. Let (Vi, B1,q1), (Va, B2, q2) be two quadratic spaces over F, of dimension m
and n. We define a new vector space V=V, @V, (& = ®F), and let B : V xV — F be the unique
simmetric bilinear pairing satisfying

B(v1 ® va,v] @ vh) = By(v1,v])Ba(ve,v5), v1,v9 € V1, v, v5 € V.

and therefore, qp(v1 ® va) = q1(v1)g2(v2). The pair (V,B) is a new quadratic space over F with
dimension mn, called the Kronecker product (or tensor product) of Vi and V.

Let {e1,...,em} and {f1, ..., fn} be basis of V; and V5 respectively. Taking a;; = Bi(e;,e;) and
bir = Ba(f1, fr), we have that M = (a;;) and N = (by;) are the symmetric matrices associated with
q1 and g2 in the given choice of base (respectively). Now, consider the basis of V' =V} ® V4 given
by {1 ® fi,e1 ® fa,...,e1 ® fn, ety em @ f1,.yem @ frn}. With respect to this choice of basis, the
form ¢ gives rise to the symmetric matrix

a11bir  anbiz - | ai2bin  ai2bia N ~ N
a/ a o« o e a/
ai1bor  aribaa -+ | arzbar  a12b22 1 12 lm
} ) ) ) a21N  aaN -+ aypN
as1bi1  a21bi2 : : : :
. . am1N  amaN - ammN

which is precisely the ordinary Kronecker product of the two matrices M, N. In particular,
(a) ® (b) = (ab) for all a,b € F.

As consequence of this matricial property, we have the following lemma:

Lemma 1.1.31. The Kronecker product operation for quadratic forms satisfies the following prop-
erties:

a- 1 ®¢@=qpRq.
b-(1®q)®q=q®(q®gs).
¢ - The “distributive law” ¢ ® (q1 L g2) = (¢ L q1) ® (¢ L g2)-
Using the distributive law, we obtain the following rule:
<a1, R am> X (bl, cee bn> = <a1b1, ...albm, agbl, e agbm, capby, .., ambn)

If r is a nonnegative integer and f is a form, r - f (or sometimes rf) denotes the orthogonal
sum of r copies of f.
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Corollary 1.1.32. If q is any regular quadratic form, then ¢ @ H = (dimq) - H.

Proof. By induction on dim ¢, we reduce to the case where ¢ = (a), a # 0. But then, (a) ® H =
(a,) ® (1,—1) = (a, —a) = H, by the theorem [1.1.22 O

1.2 Witt’s theorems and its consequences

We are aware equipped with basic facts about isometry, sum and product of forms, so we are
prepared to deal with our classification task. We will get the desired decomposition in this section,
as consequence of some classical theorems due to Ernest Witt.

To proof the first one, the Cancellation Theorem, we need the notion of a hyperplane refletion.
Let (V,B,q) be any quadratic space. We shall write Oy(V) = O(V) to denote the group of
isometries of (V,q). This so-called orthogonal group is the symmetry group which underlies the
geometry of our quadratic spaces. The following construction associates an element 7, € O(V') to
every anisotropic vector y € V. As a map from V to itself, 7, is defined by

for every x € V. Below, are some properties of 7,:
a - T, is a linear endomorphism.

b - 7, is the identity map on (F-y)*1. In fact, in the above formula, if B(x,y) = 0, then 7,(z) = .
Furthermore, if we apply 7, to y itself, we get

In particular, 7, is an involution (7'3 = id): it leaves the hyperplane (F - y)* pointwise fixed,
and reflects the vector Ay across (F - y)* to —\y.

c- 1, € O(V) by the calculation:

ny— g (o 2BEy) L 2BG)
B(Ty(x)va(x))_B< ay) q(y) )
= Blaa!) - PENET gy, ) - NI

= B(z,2') (since B(y,y) = q(y)).

d - As a linear automorphism, 7, has discriminant —1.

e - The set of hyperplane refletions {7, : ¢(y) # 0} is closed under conjugation in the orthogonal
group O(V). In fact, if 0 € O(V), then one has 07,0~ = 75y

om0 (2) = oo ta]
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for every x € V.

Proposition 1.2.1. Let (V,q) be a quadratic space, and let x,y be vectors in V such that q(x) =
q(y) # 0. Then there exists on element T € O(V') such that T(x) = y.

Proof. Geometrically, if we consider the reflection with respect to the hyperplane (F - (z — y))*,
then x should be taken to y. But, is £ — y necessarily anisotropic? We derive first the law of
parallelogram:

gz +y)+alz—y)=BlE+yz+y) +Blxz—yz-y)
= 2B(z,x) + 2B(y,y) = 4q(z) # 0.
This implies that ¢(z + y),q(z — y) cannot be both zero. Replacing y by —y if necessary, we

may assume that g(z — y) # 0 (because if we can find 7 € O(V) such that 7(x) = —y, then
q(—y) =q(y) #0, so 7_y(7(z)) = 7—y(—y) = y). Applying the reflection 7,_, to x, we obtain

_,_ 2Baa-y)
ryfe) =2 = 2 2@y
But
a(x —y) =Bz —y,x—y)
= B(x,x) + B(yay) - 2B($7y)
= 2(B(x,z) — B(x,y)) = 2B(z,z — y).
Thus, 7,—y(z) = 2 — (r — y) =y, finishing the proof. O

We are in position to prove
Theorem 1.2.2 (Witt’s Cancellation). If q,q1,q2 are arbitrary quadratic forms, then
Ila=qle=q0=q¢@
Proof. Suppose it is given that ¢ L ¢1 = g L ¢o.

Case 1: q is totally isotropic and ¢ is regular. Let M;, Ms be the symmetric matrices associated

. - . 0 0. 0 0
with ¢; and ¢2. The hypothesis implies that <0 M1> is congruent to <0 M2>, so there

A B

exists an invertible matrix £ = < ), dim(A) = dim(q), dim(D) = dim(q;) = dim(g2),

such that

At BY\ /0 0 A B
ct DtJ\0 My)\C D
At Bt 0 0

ct D) \M,C MsD
CtM,C'  CtMyD
D'M>C DtMyD
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In particular My = D!M,D. Since M; is nonsingular, so is D, and hence M, My are
congruent. This gives q1 = ¢o.

Case 2: ¢ is totally isotropic. To see this, diagonalize q1,¢2 and assume that ¢; has exactly r
zeros coefficients in the diagonalization, while go has exactly r zeros or more. Rewriting the
hypothesis, we have

qLr(0) Lgy=qLr(0) L g
Since ¢} is regular, the case 1 implies that ¢f = ¢5. By tagging on r terms of (0), we conclude
that ¢ = ¢o.

Case 3: general case. Let (ay,...,a,) be a diagonalization of ¢. Inducting on n, we are reduced
to the case n = 1. The case a; = 0 has been handled in case 2, so we may assume that
q = (a1), a1 # 0. The hypothesis now reads: (a1) L ¢1 = (a1) L g2. Let p1 = (a1) L ¢1 and
p2 = {a1) L go. Since a; # 0, there exists x1,y1,2,y2 € V (eventually z1 = y1 and 2o = y9)
such that pi(z1) = p1(y1) # 0 and p2(z2) = p2(y2) # 0.
By proposition there exists 71,72 € O(V) isometries such that 7i(x;) = 71(y1) and
7’2(1‘2) = Tg(yg). Since 11 1(F,x1)L: (F-J}l)l — (F'yl)J‘ and 7o 1(F,x2)L: (F'I'Q)L — (F-yg)J‘
are isometries and ¢1 = (V,q) l(Fant @ = (V,q) 1(Foz2)Ls 72_1 T(Fyo)t ©T1 1(p.zy)L is the
isometry that witness q1 = go.

O

Finally, we get our desired decomposition theorem:

Theorem 1.2.3 (Witt’s Decomposition). Any quadratic space (V,q) splits into an orthogonal sum

(V;S,Qt) 1 (Vhaqh) uE (Vavqa)v

where V; is totally isotropic, Vi, is hyperbolic (or zero), and V, is anisotropic (or zero). Furthermore,
the isometry types of Vi, Vi, Vi, are all uniquely determined.

Proof. For the existence, take any subspace Vj such that V = (radV) & Vp = (radV') L Vj. Then
V; = radV is totally isotropic, and Vj is regular. If V; is isotropic, we may write Vo = Hy 1L Vi
(by theorem , where H; = H. If V; is again isotropic, we may further write V)3 = Hy 1 V5,
where Hy = H. After a finite number of steps, we achieve a decomposition

Vo= (Hy L..LH) LV, (r>0),

where Hy L ... L H, =V}, is hyperbolic (or zero), and V, is anisotropic. This proves the existence
part.

To estabilish the uniqueness part, suppose V' has another Witt decomposition V =V/ LV} L
V. Since V/ is totally isotropic and V; L V is regular, we have

radV = (radV/) L rad(V}, L V) =V/,

so V; 2 V/. By the Cancellation Theorem we have now V3, L V, = V) L V.. Write V}, = m-H
and V/ = m/ - H. By cancelling H one at time, we conclude that m = m/’ since V,,V/ are both
anisotropic. After all m hyperbolic planes have been cancelled, we arrive at V, = V!, completing
the proof. O

So with Witt’s decomposition theorem, we can happily say
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Just anisotropic forms matters!

and consider our classification task done. But the devil is in the details! In a pratical situation,
taking a general (diagonal) anisotropic form of dimension n could lead us to some trouble with
the “length” of n. In other words, we do not want to make heavy calculation with forms of higher
dimension. So would be desirable reduce this “length” as much as possible. This is the content of
the next two theorems.

Then, our ultimate slogan is

Just binary anisotropic forms matters!

If you casually underestimate the power of binary forms, we have a final argument for you: the
Chain Equivalence Theorem. First, we define simply and chain equivalence:

Definition 1.2.4. Let ¢ = {(aq,...,a,) and ¢' = (by,...,b,). We shall say that q and ¢’ are simply-
equivalent, if there exist indices i,j < n, such that

a - {ai, a;) = (bi, b)),
b - ap = by whenever k is different from i and j.

Note that, if i = j, the expression (a;,a;) is understood to be just (a;).

More generally, we say that two diagonal forms f and g are chain-equivalent, if there exists a
sequence of diagonal forms fo, f1, ..., fm such that fo = f, fm = g, and each f; is simply-equivalent
fimn 0<i<m-—1).

Chain equivalence is an equivalence relation on all diagonal forms (of a fixed dimension), and
it will be denoted by the symbol ~. Of course, f ~ ¢ implies f = g. It turns out that the converse
is also true, and this is the content of the following celebrated result of Witt:

Theorem 1.2.5 (Witt’s Chain Equivalence). If f and g are arbitrary diagonal forms (of the same
dimension), then f =2 g= f~g.

Proof. Say f = (a1,...,an) and g = (b1,...,b,). Note that if o is a permutation of the indices
{1,2,..,n}, and f7 = (as(1), Ax(2), -+ Qo(n))> then f = f7. This follows from the observation that
the full symmetric group on {1,...,n} is generated by the transpositions. Since f = g, the two
forms, f and g, have the same number of zero terms in their diagonalizations. It is, therefore,
sufficient to show that the regular parts of f and g are chain-equivalent. By Witt’s Decomposition
Theorem the number of zeros in f is equal of the number of zeros in g, so we may assume
that f and g are both regular, that is, a;,b; are all nonzero. The argument is by induction on n.
There is nothing to prove if n = 1,2, so we consider n > 3 in the following.

Among all diagonal forms that are chain-equivalent to f, choose an f' = (c1, ..., ¢,) such that
some (c, ..., ¢p) represents by and p is smallest possible (the existence of f’ follows from the Well-
Ordering Principle). We claim that p = 1. In fact, suppose the contrary. Write b = c1e? +... +cpel2,
(p > 2). By the minimality of p, no subsum in this summation can be equal to zero. In particular,
d = c1€2 + cae2 # 0. By proposition (c1,c2) = (d, cicad). Thus

f~f={c,co,...icn)
~ (d,cicad, €3, ..., Cpy ..oy Cn)
~

d,c3,...,Cp, ..., Cp, C1C2d),
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and by = d + cze2 + ... + cpeg is already represented by (d, cs, ..., ¢p), which has dimension p — 1,
contradicting the choice of p. We have thus shown that p = 1. Hence (¢;) = (b1), and so
f = (by,ca,....,cn). By Witt’s Cancellation Theorem,

<b1,62, ...,Cn> = (bl,bg, ,bn> = (CQ, ...,Cn> = <b2, ,bn>

By the inductive hypothesis, this implies that (ca, ..., ¢,) = (b, ..., b,). So finally,

f ~ <bl,CQ, ...,Cn> =~ <bl,bg, ,bn> =4g.

1.3 The Witt Ring

Okay, you define quadratic forms and classify them. In the process, some operations (orthogonal
sum and Kronecker product) appears, and you prove that with these operations, the “quadratic
forms are almost a ring”. What we get if we pursuit these ideas?

If you thought something like that, do not worry, we do not forget about our operations.
Let M(F') be the set of all isometry classes of nonsingular quadratic forms over F'. The binary
operations | and ® already define the structure of a commutative semiring on M (F'). By Witt’s
Cancellation Theorem ([1.2.2)), the additive structure (L) actually makes M (F) into a cancellation
monoid, although no nonzero element in M (F') has an additive inverse. The procedure required to
remedy this is the so-called Grothendieck construction. In fact, this construction is essentially the
same of the construction of Z from N.

In general, let M be any commutative cancelative monoid under addition. We define a relation
~ on M x M by

(ac,y) ~ (wlvy/) @x—l—y' = $/+y'

The cancellation law in M implies that ~ is an equivalence relation on M x M. We define the
Grothendieck group of M to be Groth(M) = (M x M)/ ~ (the set of equivalence classes) with the
addition induced by

() + (@"y) =@+ y+y).

This is a well-defined addition on Groth(M), and that in Groth(M), the two classes (z,y), (v, z)
are additive inverses of each other. So, indeed, Groth(M) is a group. The map i : M — Groth(M)
defined by i(z) = (x,0) is an injective monoid homomorphism of M into Groth(M), which may be
viewed as an inclusion M C Groth(M). Note that (z,y) = i(x) —i(y) = x — y, so in particular,
Groth(M) is the additive group generated by M. Any monoid homomorphism f of M into an
abelian group G extends uniquely to a group homomorphism f : Groth(M) — G by the rule
fx —y) = f(x) — f(y) € G. This is the universal property of Groth(M). Lastly, if M has a
(commutative) multiplication which makes it into a semiring, i.e, that distributes over the sum in
M, then
(z,y)(@"y) = (v’ + yy', ya' + zy)
induces a (commutative) multiplication on Groth(M) that makes it into a (commutative) ring.
We may now apply the above machinery to the commutative semiring M = M (F).

Definition 1.3.1. W (F) = Groth(M(F)) is called the Witt-Grothendieck ring of quadratic forms
over the field F'.
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Every element of W(F ) has the formal expression ¢; — g2, where q1, g2 are nonsingular quadratic
forms, or rather, isometry classes of such forms. Since M(F) C W (F), the two statements q; =
g2 € W(F) and ¢ = g3 are synonymous.

Now, consider the dimension map dim : M (F') — Z, which is a semiring morphism on M (F).
This extends uniquely (via the universal property) to a surjective ring morphism dim : W(F ) — Z,
by dim(q1 — g2) = dim¢; — dim ¢o.

Definition 1.3.2. The kernel of the morphism dim : W(F) — 7, denoted by IF is called the
fundamental ideal of W (F).

Proposition 1.3.3. IF is additively generated by the expressions (a) — (1), 0 # a € F.

Proof. If z € IF, then z = q; — g2, where ¢; and ¢ have the same dimension. Say, ¢1 = (a1, ..., an),
q2 = (b1, ...,b,). Then

By the homomorphism theorem, we have W (F)/IF = 7.

It is important to observe that the Witt-Grothendieck ring has the same problem of regular
forms: hyperbolicity scapes of them. To solve this situation in our ring theoretic point of view, we
consider another important ideal of W(F), the ideal of all hyperbolic spaces and their “additive
inverses”, denoted by Z - H (this is an ideal by corollary

Definition 1.3.4. The factor ring W(F) = W (F)/Z -H is called the Witt Ring of F.
Now, some consequences of this definition:
Proposition 1.3.5.

a - The elements of W (F') are in one-to-one correspondence with the isometry classes of all aniso-
tropic forms.

b - Two nonsingular forms q,q" represent the same element in W (F) if and only if q, = ¢, i.e, if
the anisotropic part (conformm of ¢ and ¢’ are isometric. In this case, q and q' are said
to be Witt-similar.

¢ - If dimq = dim ¢/, then q and ¢ represent the same element in W (F') if and only if ¢ = ¢.

Proof. For the item (a), since the form H represents the element 0 in W (F') and H = (a, —a), we
have —(a) = (—a) € W(F) for all a € F. In particular, every element of W(F) is represented
by a form ¢. If we write down the Witt decomposition of ¢, say ¢ = qn L ¢4, then ¢ and ¢,
represent the same element in W (F) (since g;, = 0 in W(F')). Therefore, each element of W (F) is
represented by a suitable anisotropic form. For the proof of item (a), it remains only to show that,
if ¢ and ¢’ are anisotropic forms, then ¢ = ¢’ € W(F) = ¢ = ¢/. But ¢ = ¢’ € W(F) implies that
g=¢q +mH € W(F ) for some integer m. Without loss of generality, we may assume that m > 0.
Then we have an isometry ¢ = ¢’ L mH, which implies that m = 0 (since ¢ is anisotropic). Thus,
indeed, ¢ = ¢'. Ttems (b) and (c) are direct consequence of item (a). O

Moreover, the Witt ring construction behaves functorially:
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Proposition 1.3.6. W and W are both functors from fields of characteristic not 2 to commutative
Tings.

Proof. We just to worry about morphisms. Let f : K — L be a morphism of fields (of characteristic
not 2) and (V, B) be a K-quadratic space. We can built a L-quadratic space (VL, BL) as follow:
VI .= L®kV and B is defined by the rule BY(z ® u,y ® v) = xy - f(B(u,v)). By the universal
property of tensor product, we have that B’ is in fact, a bilinear symmetric form. Then, we have
a semiring morphism f : M(K) — M (L), given by [(V, B)] — [(V, BY)]. Note that f — f is a
functor (preserves id and 0). Finally, the functoriality of W is consequence of the universal property
of Grothendieck construction, and the functoriality of W is consequence of the homomorphism
theorem. O

Definition 1.3.7. The image of the ideal IF under the natural projection W (F) — W (F) will be
denoted by IF. This is called the fundamental ideal of W (F).

Proposition 1.3.8. A form q represents an element in IF C W(F) if and only if dim g is even.

Proof. (=) if g represents an element in I F', then there exists an equation ¢ = ¢ —ga+mH € W(F),
where m € Z and dim ¢; = dim ¢s = k. Applying the map dim, we see that dim ¢ = 2m + 2k.

(<) We can assume without loss of generality that ¢ is a binary form ¢ = (a,b). Then ¢ is the
image of (a) — (—b) € IF under the natural projection W (F) — W (F). By definition, this says
that ¢ € IF C W(F). O

The ring epimorphism dim : W (F) — Z induces another epimorphism
W(F)/Z-H=W(F) - 7/2Z,
which we shall denote by dimg. By the above proposition, ker(dimg) = I F', so we obtain
Corollary 1.3.9. dimg defines an isomorphism W (F)/IF = 7/27.

Now, we going to search for the relationships connecting W (F) to F'/EF? and W(F) to F/F?,
Let us recall the meaning of the discriminant of a form ¢ € M(F), d(q) = det(q) - F?2. We have a
monoid morphism d : M(F) — F/F?. By

d(q1 — q2) = d(q1)d(g2) " = d(q1)d(g2),

this extends to a homomorphism d from the additive group W (F) to F'/F2. Since d(H) = —1- F2,
the homomorphism d does not factor through W (F). However, there is a clever way to remedy
this.

Let ¢ be a (nonsingular) form of dimension n. We define the “signed discriminant” of ¢ by
di(q) = (=1)"=1/24(q) € F/F2?. The obvious advantage of this signed discriminant is that
di(H) = 1- F2. However, d+(q L ¢') = d+(¢q)d+(¢') fails in general: di(H) = 1- F2, di((1,1)) =
—1-F2 but de((1,1) L H) = 1-F2. To restore the homomorphism property, we look at ds together
with dimg, and manufacture a bigger group to receive the combined invariant. This new group is
an extension of F'/F? by 7/27. Namely, we define (set theoretically) Q(F) = Z/27Z x (F'/F?), and
introduce on it the binary operation (e,d) - (¢/,d’) = (e 4 ¢/,(—1)°“dd’) (not the direct product
operation!).

Lemma 1.3.10. Q(F) with the operation defined above is an abelian group.
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Proof. Let (a,d), (b,e), (c, f) € Q(F).
[(a,d) - (b,€)] - (¢, f) = (a +b,(=1)*de) - (¢, f)
= (a+b+c (=1)(=1)"def)
_ (a+ b+ ¢, (_1)ab+ac+bcd€f)’

and
(a,d) - [(b,e) - (¢, /)] = (a,b) - (b+ ¢, (=1)*€f)

= (a+b+ ¢, (~1)**I(—1)"def)
— (a+ b+ c, (_1)ab+ac+bcdef).

Then - is associative. (a,b)-(0,1) = (a+0,(—1)%b1) = (a,b) and (0,1)-(a,b) = (0+a, (—1)°21b) =
(a,b), hence (0,1) is the identity element. Finally,

(e,d) - (e, (—1)%d) = (e + e, (=1)%¢(—1)%dd) = (0, 1).
Therefore, Q(F) is a group. Moreover,
(a,d) - (be) = (a+b,(=1)®de) = (b+ a, (—1)"ed) = (b,e) - (a,d),
so Q(F) is an abelian group. O

Note that the “inclusion” d — (0,d) identifies F'/F? with a subgroup of index 2 in Q(F).

Proposition 1.3.11. (dir{lo, d+) defines a monoid epimorphism from M(F') to Q(F). This extends
to a group epimorphism W — Q(F). The latter induces a group isomorphism f : W(F)/I?F =
QF).

Proof. The map M(F) — Q(F) is given by ¢ — (dimo(q),d+(q)) € Q(F'). To check that it is a
monoid homomorphism, we calculate as follows (where dim(q) = n, and dim(¢’) = n’):

n, (=1)""V2d(g)) - (', (=1)" " D2a(g))

n+n', (=1)" (=)D N2 G(g)d ()

n+n!, (1)t =260 1 g'))

dimo, d)(g L ¢) € Q(F).

(dim07 d:l:)(Q) : (dimo, di)(q/) =

~—~~ ~~ ~~

Further, M(F) — Q(F) is clearly an epimorphism, since
(dimg, d+)({a)) = (1,a - F2) and (dimy, d+)((1, —a)) = (0,a - F?).

By the universal property of W(F), the map (dimg, d+) extends uniquely to a group epimorphism
from W (F) to Q(F). Moreover, since (dimg, d- )(H) = (0, (—1)d(H)) = (0, 1) is the identity element
of Q(F), we get an induced epimorphism W (F) — Q(F). We claim that this homomorphism is
trivial on I?F. By proposition IF is additively generated by binary forms (1,a), so I?F is
additively generated by the four-dimensional forms (1,a) ® (1,b). But

(dimg, d+((1,a,b,ab)) = (0,(=1)%a-b-ab- F?) = (0,1),

so we obtain an epimorphism f : W(F)/I?F — Q(F). We shall show that f is an isomorphism,
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by constructing an inverse g : Q(F) — W(F)/I*F. We simply set ¢g(0,a) = (1,a) (mod I*F),
g(1,a) = (a) (mod I?F), and carry out the following computation:

9[(0,a)(0,0)] = ¢(0,ab) = (1, —ab) = (1, —a, 1, -b)
= ¢(0,a) + ¢g(0,b) (mod I*F),
9l(1,a)(1,b)] = g(0, —ab) = (1,ab) = (a,b)
= g(1,a) + g(1,b) (mod I*F)
9[(0,a)(1,b)] = g(1, ab) = (ab)

= (1, —a,b) = g(0,a) + g(1,b) (mod I*F).

—~

Hence, g is a group homomorphism. By construction, f o g = Idg(r), and g splits the surjection
f. But, by g(1,a) = (a)(mod I*F), g is onto. It follows that f and g are inverse isomorphisms of
each other. O

Corollary 1.3.12 (Pfister). I2F consists of classes of even-dimensional forms q for which d(q) =
(=1)*(=1/2 (where n = dim(q) ).

Proof. This is just restating that f : W (F)/I?F — Q(F) is a monomorphism. O
Corollary 1.3.13 (Pfister). The restriction of f induces an isomorphism from IF/I*F onto F /2.
Proof. Is just the fact that the image of IF under f is {0} x F'/F?2. O
Corollary 1.3.14. The following are equivalent:

i - W(F) is a noetherian ring.

it - W(F) is a noetherian ring.
ii - F'/F? is a finite group.

Proof. (1)=(2) Is just the fact of W (F) = W(F)/ZH, and that a quotient ring of any noetherian
ring is noetherian.

(2)=-(3) Since W(F') is assumed noetherian, IF is a finitely generated W (F')-module, so
IF/I?F is a finitely generated W (F)/IF-module. But W(F)/IF = Z,, so IF/I*F must be
finite. It follows from corollary that F / F? is finite.

(3)=(1) By the diagonalization theorem, W (F) is additively generated by (a). a € F/F2.
Thus, (3) implies that W (F) is a finitely generated abelian group. As a ring, of course, W (F) is
then noetherian. O

Witt rings are amazing, but where are the examples?

Calm down my dear friends. The examples are hard to compute. However, we do not let you
without someone. Let’s start with this definition.

Definition 1.3.15. A field F is said to be quadratically closed if every element of F' is a square,
i.e, if F2=F.

Proposition 1.3.16. F is a quadratically closed field if and only if dim : W(F) — Z is a (ring)
isomorphism. In this case, W(F') = Za (by dimg).



1.3. THE WITT RING 23

Proof. (=) if F is quadratically closed, then (a) 2 (1) for all a € F and ¢ = dim¢(1) for every
regular form ¢. This implies that dim is an isomorphism.
(«) if dim is an isomorphism, then (a) = (1) for every a € F', so every a € F'is a square. [J

Proposition 1.3.17. Let F =R (or any euclidean ﬁeldﬁ. Then:

a - There exist exactly two anisotropic forms up to isometry at each (positive) dimension. For
dimension n > 0, these are n(1)) and n{—1).

b-W(F)=Z.

¢ - (Sylvester’s Law of Inertia) Two (nonsingular) forms over F' are equivalent if and only if they
have the same dimension and the same signature (the term will be defined in the proof).

d-W(F)2Z®L. As a ring, W(F) is isomorphic to the integral group ring Z[G] of a 2-element
group G.

Proof. a - The conclusion follow by that if a form is anisotropic, in its diagonalization we cannot
have coefficients of mixed signs.

b - Direct consequence of item a.

¢ - Let us first define “signature”. We claim that, in a diagonalization of a form ¢, the number of
positive coefficients (hence also the number of negative coefficients) is uniquely determined. In
fact, let ¢ be a form of dimension n, and suppose that (1) L (n—7r)(—1), s(1) L (n—s)(—1) are
two diagonalizations of ¢, where s > r. Passing to the Witt Ring W (F'), we have an equation

r(1) = (n=7)(1) = s(1) = (n = s)(1) € W(F),

which implies that 2r(1) = 2s(1) € W(F'). By the item b, we have r = s. Thus, we may write
n4 = r (number of positive terms) and n_ = (n—r) (number of negative terms). The signature
of ¢ is defined to be

ny —n_=ny —(n—ny)=2n4y —n.

Thus, two forms are equivalent if and only if they have the same n and the same n,, i.e, if
and only if they have the same dimension and the same signature. This is Sylvester’s Law of
Inertia.

d - Tt is suffice to show that (1), (—1) form a free Z-basis for W (F). We already know that they
span W (F). To show that they are independent, let a(1) +b(—1) = 0 in W (F'), where a,b € Z.
Passing to W (F'), we see that a = b. Then a = b = 0.

0

Now, we are interested in writing down full sets of generators and relations for W(F ) in the
category of commutative rings, as well as in the category of abelian groups. Once we estabilish
such results, then similar results may be derived for W (F), since W (F) = W (F)/Z - H.

We first consider W (F) as a commutative ring. The elements (a) (a € F) generate W (F), and
satisfy the following properties:

I- {a?) =1 (the identity of the ring);
I - (a) - (b) = (ab), for a,b € F};

4Euclidean fields will be defined in m




24 CHAPTER 1. QUADRATIC FORMS OVER FIELDS

I - (a) + (b) = (a+b) - (1 + (ab)), where a,b,a + b € F.

Our aim is to prove that these are essentially all the relations among the symbols (a), a € F.
The precise meaning of this statements the content of the following:

Theorem 1.3.18. Let F be the free commutative ring generated by the symbols [a] (a € F). Let
R be the ideal of F generated by the elements

R1- [1]-1;

R2 - [ab] — [a] - [b], a,b € F, and

R3 - [a] + [b] — [a +b]- (1 + [ad]), a,b,a+ b€ F.

Then, the factor ring X = F/R is isomorphic to W (F).

Proof. By the universal property of the free commutative ring F, and by I, IT and III, we have
a ring surjection f : X — W(F ). We need only show that there exists an inverse. Thus, we try
to define first a monoid homomorphism ¢ : M(F) — X. For a given quadratic form ¢. take any
diagonalization of ¢, say, (a1, ..., a,). We propose to set ¢(q) = [a1]+ ...+ [an] € X. We must show,
however, that ¢(q) does not depend on the particular diagonalization of ¢ chosen above. This
means that if (b1, ...,b,) is another diagonalization of ¢, we must show that > [a;] = > [b;] € X.
By Witt’s Chain Equivalence Theorem , we may suppose that (a1, ..., ay) is actually simply-
equivalent to (b, ...,b,). Without loss of generality, we may assume that a; = b; for ¢ > 3, and
(a1, a2) = (b1, b2). Consequently, it is enough to show that

(a1,a2) = (b1,b2) = [a1] + [ag] = [b1] + [b2] € X. *)

Before we proceed, we must deduce some consequences of the relations in (R1),(R2),(R3), in order
to know more about X. We claim that, for every a € F, [a?] =1 € X. To see this, we calculate
[a] + [a] in two different ways.

(A) Since a + a = 2a # 0, (R3) implies [a] + [a] = [2a] - (1 + [a?]) & X.

(B) By (R1) and the distributive law, we have

[a] - 2] - (1 + [1])
2a] - (1+[1]) € X.
But (R1) implies that each [b] (b € F) is a unit in X. Comparison of (A) and (B) then yields the

desired information: [a?] =1 € X.
Coming back to (*), we write by = a12% 4 a2y?, and ajas = bibac? (c € F'). We have two cases:

i- 2 =0ory=0. Suppose, for instance, x = 0 (y = 0 is similar). Then b; = agy? = [b1] =
[a2y?] = [a2] € X. On the other hand,

lar] = [b2 o -02] — [bay??] = [ba] € X.

a2

Hence, (*) follows.
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ii- x#0,y7#0. Then, in X, we have

[ar] + [ag] = [a12%] + [asy”]
alx + asy ] (1+ [alaz(ﬂfy)2])
b1] - (1 + [b1b2])

bi] + [ba]-

Thus ¢ : M(F) — X is well-defined and is clearly a monoid homomorphism. By the universal
property of W(F), ¢ extends to a group homomorphism ¢ : W(F) — X, which is evidently
an inverse for f: X — W(F'). The latter is therefore a ring isomorphism.

[
= |
=
=

O]

Theorem 1.3.19. Let F' be the free abelian group generated by the symbols {a}, a € F. Let R/
be the subgroup of F' generated by the elements:

R’1 - {ab?} — {a}, a,b € F;

R’2 - {a} + {b} — {a+b} — {abla+b)}, a,b,a+ b€ F.

Then, the factor group X' = F' /R’ is isomorphic to W (F).

Proof. Analogous the theorem [1.3.18] O

It is now easy to derive similar results for W (F'). In the category of commutative rings, we need
only add the relation (R4): [1] + [—1] to (R1),(R2),(R3); and in the category of abelian groups, we
need only add the relation (R’3): {1} + {—1} to (R’1) and (R’2).

1.4 Orderings on Fields

In atempt to apply quadratic forms in field theory we quickly found orderings in the process.
So, to avoid further complications, we decide to do a brief introduction to orderings on fields and
estabilish some notations.

Definition 1.4.1. A field F is said to be formally real if —1 is not a sum of squares in F.
Otherwise, we say that F' is nonreal.

For an arbitrary field F, let o(F') denote the set of elements of F' that can be expressed as a
sum of squares in F. We shall also write ¢(F') for o(F') \ {0}.

Proposition 1.4.2.

a - 6(F) is a subgroup of F' that is closed inder addition.

b - If F is nonreal and char(F) # 2, then o(F) = F.

¢ - If F is formally real, then char(F) = 0.

Proof. a- 1 =12 € o(F). Now, let z,y € 6(F), z = 23 + ... + 2 and y = y} + ... + y2,. We have

ay = (23 + .. +22) (Y] + o+ y2) —ZZm

=1 j=1
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T 1\ 2 T9\ 2 Tp\ 2
x*1:—2=(—1> +(—2> +...+< ”) .
T T x T

and

Therefore, (F) is a subgroup of F.

b - Let x € F. Since the hyperbolic plane (1, —1) is universal (remember that char(F') # 2), there
exist y, z € F such that x = 3% — 22. If —1 € o(F), we get

t =1+ (-1)22 € o(F)+o(F) - o(F) C o(F).
Hence, o(F') = F.

c- Ifchar(F) =p#0,thenp-1=0and -1 =1+ ...+ 1 ((p— 1)-times) is a sum of squares.
0

Definition 1.4.3. An ordering on a field F' is the assignment of a proper subset P C F (called
the positive cone of the ordering) which posseses the following properties:

P1- P+PCP;

P2- P.PCP;

P3- PU(—-P)=F.

Given such a set P, we shall say briefly that F is ordered by P, or that (F, P) is an ordered field.
Proposition 1.4.4. Let (F, P) be any ordered field. Then:
a-o(F)CP.

b - char(F) # 2.

c-—1¢ P, and PN (—P)={0}.

d - F is formally real (and so char(F) =0).

e - P:=P\ {0} is a subgroup of index 2 in F.

f- If P' C F gives another ordering on F, then P C P' = P = P’

Proof. a - Since P+ P C P, it is suffices to prove that F2 C P. Let € F. By P3, we have x € P
or —x € P. Ifx € P,thena?=2-2 € P-P C P. If —z € P, then 2? = (—z)(—2) € P-P C P.

b - Otherwise, —1 =1 € P by (a), and P = —P, contradicting the very definition of an ordering.

¢ - Assume that —1 € P. For any a € F, we have

1\2 —1\?

contradicting the fact of P be a proper subset of F. Therefore —1 ¢ P. Next, consider
r € PN(=P). If z # 0, we would have —1 = (27 !)22(—2z) € P, contradiction. This shows
that PN (—P) = {0}.

d - Since —1 ¢ P and o(F') C P, we have —1 ¢ o(F'), so F' is formally real.
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e- Forze P,_ we have =1 = (z7!)2z € P. Hence P is a subgroup of F. Since F' = PU(—P), we
have [F : P] = 2.

f-1€o0(F)C Pand P C P'. Assume that there exist + € PN (—P),  # 0. Then —1 =
(x7h22(—2) € P, contradiction.
O

In view of P3 and (b) in the above proposition, we see that F' is the disjoint union of {0}, P
and —P. This is the “law of trichotomy” in an ordered field (F, P). As usual, we may introduce
the notation x <p y to mean that y — x € P. This is a linear ordering compatible with - and +.

Let (F, P) be an ordered field. For any subfield Fy of F', we may order Fy by taking Py := PNFy
to be its positive cone. This order is said to be induced (on Fy) by the ordering P on F'.

The quintessential example of an ordered field is F' = R, which has (unique) ordering given by
the positive cone P = R?. By what we said in the last paragraph, any subfield Fy C R inherits
and ordering R%2 N Fy from R. Thus, the rational field Q, all real quadratic fields, the field Q(+/2),
and the field of all real algebraic numbers, etc, are all equipped with natural orderings.

But there is nothing new in the last paragraph. There is another “non trivial” example of
ordering?

This is an interesting question. Indeed, is very unintuitive think about “weird” orderings.
Seems that our intuition are limited to the reals... so, let do some examples:

Example 1.4.5. Let F' = Q(a) where a® = 2. We can define an ordering P on F by using the
embedding ¢ : F' — R with o(a) = /2. Similarly, we can define another ordering P' # P on I by
using the Q-automorphism ¢' : Q(v/2) — Q(—v/2) with ¢'(a) = —v/2.

Example 1.4.6. Let F' = K(x), where K is a field given with an ordering Py. We can extend this
ordering on F in several ways. First, we declare a polynomial

f(x) =ag+ a1z +..+apx" € K[QS‘], Gnp 7£ 0,

positive if a, € Py. Then we declare a rational function g(x)/f(x) positive if the polynomial
f(x)g(x) is positive. The set of positive elements in F defined in this way, together with 0, gives
an ordering Py on F. Note that in this ordering, we have

O0<..<a?<zl<a<z<a®<..

for any a € By, as we can readily check. We can also get a second extension of Py as follows.
Declare a polynomial

f(z) = a2 + ar1z" L apa” € Klz], r <mn, an,a, #0

positive if ar € Py, and extend this positivity notion to F = K (z) as before. This results in a
second ordering P» extending Py. With respect to this ordering Ps, we have instead

2

0<..<’<az<a<al<z?<..

for any a € Py. These orderings are examples of nonarchimedean orderings on F: these are
orderings with respect to which there are elements that are larger than all integers (and hence all
rational numbers) in F.
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Example 1.4.7. Consider Py the usual ordering on R. Let C be any subset of R with the property
For any paira<beR:beC=acC

(for example, take C as an open interval (—oo,b)). We can define an ordering Pc on F = R(x) as
follows. For any nonzero polynomial f(z) € R[x|, write down the factorization of f into irreducible
factors

fl@x)=r(z—a1)...(xr — an)q1 (z)...qm(x),

where r,a1,...,a, € R and the g;’s are monic irreducible quadratic polynomials. We shall take
f(z) € Po zﬁr € Py and the number of a; ¢ C is even, or r ¢ Py and the number of a; ¢ C is
odd. For nonzero rational functions g(x)/f(x), we take (as before) g/f € Po iff gf € Po. It can
be shown that the Pc obtained in this manner is an ordering on R(zx), and is, in fact, the unique
ordering P on R(x) with respect to which C ={beR:b<p z}.

We finalize this section with some definitions and results that will be used throughout the entire
chapter.

Definition 1.4.8. A field F' is called euclidean if F' is formally real and |F'/F2| =2 (in such field,
F =F?U(—F?)). A field F is called pythagorean if the sum of two squares in F is always a square.
In such field, o(F) = F2.

Let F be a field and a,b € F. How a? + b* = a®(1 + (b/a)?), to prove that F' is pythagorean, is
suffice to show that 1+ y? € F2 for all y € F.

Proposition 1.4.9. If F is euclidean, then F is pythagorean with a unique ordering.

Proof. We claim that P := F? is an ordering. For this P, we already have P # F, P- P C P and
PU(—P) =F. Thus, we only need to prove that P+ P C P, that is, F' is pythagorean.
Consider a sum 1+ %, where y € F. If 1 +y> € —F? then —1 = —(1+¢?) + y*> € F, and
F is nonreal, absurd since F is euclidean. Hence, 1 + %> € F? and P is an ordering. Follow by
proposition (e) that P is the unique ordering on F'. O

The next result offers several important characterization of euclidean fields:
Theorem 1.4.10. For any field F' (of any characteristic), the following are equivalent:
i - F is euclidean.
1 - F is formally real, but every quadratic extension of F' is nonreal.
iti - /—1 ¢ F and F(\/—1) is quadratically closed (that is, K* = K).
iv - char(F) # 2 and there exist a quadratic extension L D F that is quadratically closed.

Example 1.4.11. Two immediate examples of euclidean fields are the real field R and the field
A of algebraic numbers. Here A = Q N R, where Q denotes the algebraic closure of Q. Another
interesting example: let Q be the field of constructible numbers, that is, Q. Then F: QNR is an
euclidean field, with F(v/—1 = Q.

Definition 1.4.12. A field F' is called real-closed if F is formally real, but no proper algebraic
extension of F' is formally real.

An immediate consequence of [[.4.10] is
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Corollary 1.4.13. Let F be a real-closed field. Then F is euclidean (with a unique ordering F?),
and F(\/—1) is quadratically closed.

Of course, we need to prove that this definition make sense, i.e, that there is an abundant
supply of real-closed fields.

Proposition 1.4.14. Let F be any formally real field, and F be its algebraic closure. Then there
exists a real-closed field R between F and F.

Proof. Consider the collection S of all formally real subfields of F' containing F. If {F,} is a
chain (relative to inclusion) of such fields, then Fy = |J, Fi» belongs to the same family S. By
Zorn’s Lemma, there exists R € S that is a maximal member of & with respect to inclusion. By
maximality, such a field R must be real-closed. 0

We note the following property of a formally real field.
Proposition 1.4.15. If F' is formally real, so is every odd-degree extension K of F'.
Corollary 1.4.16. If F is real-closed, then any odd-degree polynomial f € F|x] has a root in F'.
Theorem 1.4.17. For any field F, the following are equivalent:
i - F' s real-closed.
it - F is euclidean, and every odd-degree polynomial in F[x] has a root in F'.
i - /=1 ¢ F and F(v/—1) is algebraically closed.

Corollary 1.4.18. The real field R is real-closed, and the complex field C = R(\/—1) is algebraically
closed.

Proof. To begin with, R is a euclidean field. By the usual continuity argument in calculus, every
real polynomial of odd degree has a real root. Therefore, (ii) in the above theorem is satisfied for
F =R, and we get the desired conclusions from (i) and (iii). O

We shall introduce the notion of “real-closure”, which will be used in the next section.

Definition 1.4.19. Let F' be a field ordered by a positive cone P. An extension field R O F is
called a real closure of F' (relative to P) if it satisfies the following three conditions:

1 - R is real-closed.
7 - R is algebraic over F.
it - The given ordering on F is induced by the unique ordering on R (in other words, P = R>NF).
We have the following existence and uniqueness result.
Theorem 1.4.20.
i - Bvery ordered field (F, P) posseses a real-closure.

it - If (F1, P1), (Fa, P») are ordered fields and Ry, Ra are their real-closures, then any order iso-
morphism f : Fy — Fy (isomorphism such that f(P1) = P») extends uniquely to an isomor-
phism [ : R1 — Ra, which is automatically an order isomorphism.

This theorem means that the possible orderings which can be put on F' are in 1-1 correspondence
with the F-isomorphism classes of the real-closed algebraic extensions of F.
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1.5 Pfister’s Local-Global Principle

Now, we will make our first application of theory of ordered fields to theory of quadratic forms.
For a field F, let us write X (or sometimes X (F') and Sper(F)) for the (possibly empty) set of
orderings on F. In order to work with Xz as a set of “points”, we shall write o for a typical
element in Xp, and write “<,” for the total ordering given by « on F. To reconcile this with our
earlier notation, we shall write P, = {a € F : a >, 0} for the positive cone of the ordering .

For each a € Xp, let us fix a real-closure F,, with respect to « (i.e, a real-closed field con-
taining the ordered field (F,«)). Letting r, : F' — F, be the inclusion map, we have a functorial
homomorphism 7} : W(F) — W(F,). Now, just as in we have a canonical isomorphism
W (Fy) = Z. The composition of these two maps gives a surjection sgn,, : W(F) — Z, which sends
an F-quadratic form ¢ to its signature sgn, (¢q) with respect to Fy,

Letting o range over the set of orderings Xg, we get a “total signature” map

sen: W(F) —» [[ w2 [] 2

OéEXF aEXF

which sends a form ¢ to (sgn,(q))aecx, on the right hand side. One of the contents of the Pfister’s
Local-Global Principle is to compute the kernel of this total signature map.

Theorem 1.5.1 (Pfister’s Local-Global Principle). For any field F', Ker(sgn) = Wy(F), the torsion
subgroup of the Witt group W (F'). Moreover, every element in Wi(F') is 2-primary torsion.

An equivalent way to state the first part of the theorem is that two quadratic forms ¢;, ga over
F has the same signature relative to all orderings on F iff n- ¢ = n-ga € W(F) for some integer
n > 1. The second part of the theorem says that, in this case, we could taken n to be of the
form 2" for some r. Yet another way to express is to say that, if a form ¢ is hyperbolic in
all real-closures of F', then for some integer r > 0, 2" - ¢ is hyperbolic over F. These alternative
formulations of explain why this result is called a Local-Global Principle.

Before we proceed to the proof of we need some technical results.

Theorem 1.5.2. Let F be a field, K = F(y/a) be a quadratic extension of F' and q be an anisotropic
form over F'. Then qk is isotropic over K if and only if contains a binary subform isometric to
(b) - (1, —a) for someb € F.

Proof. (=) Is just the fact that (1,—a) = (1,—1).
(<) Let (by,...,b,) be a diagonalization of ¢ and assume that g is isotropic. Then there exists
an equation

> biwi+yi/a)* =0
=1

where x;,1y; € F are not all zero. Then

n n
Zbi(xi + yl-\/5)2 =0= sz(xf + ay? + QnyZ\/&) =0
=1

i=1
n n n

=Y bl + Y by} = biziyi =0,
i=1 i=1 i=1

SWe could prove that the map sgn, does not depend on the choice of Fy, or on the fact that F, is uniquely
determined up to an isomorphism.
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hence the vectors = = (z1,...,2,) and y = (y1,...,yn) are orthogonal in the quadratic space
(F™,q). Moreover, g(x) = —aq(y), and this implies that  and y must both be nonzero (since
q is anisotropic). Therefore, g contais the binary form

(q(2),q(y)) = (—aq(y),q(v)) = (q(y)) - (1, —a).
O

Theorem 1.5.3. Let F be a field and K = F(\/a) be a quadratic extension of F. An anisotropic
F-form q becomes hyperbolic over K if and only if ¢ = 0® (1, —a) for some F-form 6. In particular,
the kernel of r* : W(F) — W (K) is given by the principal ideal W (F) - (1, —a).

Proof. The if part is just the fact that that (1, —a) = (1, —1) and that 0® (1, —1) = (dim§)- (1, —1).
For the another part, we induct on m = (dim ¢)/2. In the case m = 0 is nothing to do, and starts
the induction. If m > 0, the theorem gives an isometry ¢ = b(1,—a) L ¢, where b € F
and (dim¢')/2 = m — 1. By Witt’s Cancellation Theorem, (¢')x is hyperbolic over K. Our
inductive hypothesis then gives a form ¢’ such that ¢ =2 ¢ ® (1, —a). We now have ¢ = b(1, —a) L

(0 ®(1,—a)) =0 ® (1, —a), where § = (b) L &' O
Corollary 1.5.4. Let q be an F-form of dimension 2m that becomes hyperbolic over K = F( /a).
Then:

a- —a-q=q overF.

m

b - If q is anisotropic over F, then d(q) = (—a)
¢ - If q also becomes hyperbolic over F(/a), then 2g =0 € W(F).

Proof. a - By theorem we can write ¢ = r-Hp L 0 ® (1,—a) for some F-form . Since
—a-Hp 2 Hp and —a(l, —a) = (1, —a), it follows that —a - ¢ = q.

b - If ¢ is anisotropic over F, we have r = 0, so dimf = m, and computing discriminants from
q=60® (1,—a), show that d(q) = (—a)™.

¢ - Assume that ¢ is also hyperbolic over K = F(y/a). If K = F, then g =0€ W(F). If K # F,
then by the item (a) (applied to the quadratic extension K|F'), we have a - ¢ & ¢, along with
—a - q = q. Adding these, we get 2¢ =0 € W(F).

O

Now, our strategy for proving is as follows. We first check the truth of in two special
cases, and then give the general proof by making a reduction to these special cases.

The first special case is when F' is a euclidean field. In this case, F' has a unique ordering «
with P, = F?, and the total signature map

sgn: W(F) - W(F,) =2Z

is an isomorphism. Here W;(F') = {0}, so is certainly true.

The second special case of is when F' is a nonreal field, for which Xz is the empty space.
Here, [[,cx, W(Fu) is an “empty” direct product, which is, as usual, taken to be {0}. In this
case, asserts that W (F) is a 2-primary torsion group. This is equivalent to saying that the
ring W(F) has characteristic 2" for some integer r, so the proof of boils down to checking
this statement for any nonreal field F'. We shall do this by appealing to the following observation
on the prime ideals of W (F') for any field F.



32 CHAPTER 1. QUADRATIC FORMS OVER FIELDS

Lemma 1.5.5. Let F be a field and p be any (proper) prime ideal in W (F).
a- If2¢ep, thenp=1F.
b-If2¢p, then P:= {0} U{a € F: (a) = (1) (mod p)} is an ordering on F.

Proof. Note that for any a € F, (a)? = 1 € W(F) implies that (a) = #1 (mod p) (since W (F)/p
is an integral domain). If 2 € p, then (a) = 1 (mod p), so for any 2n-dimensional form ¢, we have
g = 2n = 0(mod p). Thus, IF C p and the equality must hold (because I'F' is a maximal ideal
with WF/IF = 7,/27).

Now assume 2 ¢ p and define P := {0} U{a € F : (a) = (1) (mod p)}. Is immediate that
P.-PCP,PU(—P)=F and (—1) # (1) yelds —1 ¢ P. We finish by checking that a,b € P,
¢:=a+b# 0 implies that ¢ € P. From the isometry (a, b) = (¢)(1, ab), we have 2 = 2(c) (mod p).
Since 2 ¢ p, we have (¢) = 1 (mod p), as desired. O

For a nonreal field F', the above lemma implies that IF' is the unique prime ideal of W (F).
But then, by a standard theorem in commutative algebra, I /' must be the nilradical of W (F). In
particular, for the element 2 € I'F, we have 2" = 0 € W (F') for some r > 1. This proves for
nonreal fields.

Now we are in a good position to complete the proof of

Proof of Pfister’s Local-Global Principle [1.5.1, For any F, we Wy(F') C Ker(sgn) (since [[,Z is
torsion free). The main job is to show that if a form ¢ € W(F') is not 2-primary torsion, then
sgn,q # 0 for some ordering o € Xp. By Zorn’s Lemma, there exists a field K 2 F' within
the algebraic closure of F' that is maximal with respect to the property that qx € W(K) is not
2-primary torsion. We claim that K is euclidean.

Surely, K is formally real (for otherwise 2"W (K) = 0 for some 7). Assume for the moment,
that K has an element a ¢ +£K2. By the “maximality” of K, gx must become 2-primary torsion
in K(y/a) and K(yv/—a), and so for a large integer N, 2V ¢x is hyperbolic ober both K(,/a) and
K(y/—a). But then, by corollary (c), 2.2Nq = 0 € W(K), a contradiction. This shows that
K is euclidean, and we have sgn,(q) # 0 for the ordering @ € X induced on F by the unique
ordering on K. O

1.6 Harrison Topology on X

Orderings seems to be an efficient tool to deal with questions in quadratic forms. So to accurate
our results, we introduce the Harrison topology on the space X of orderings of a field F'. For
pratical reasons, let us assume that Xz # () i.e, that F is formally real.

To set up the Harrison topology on Xp, first note that each ordering @ € Xp determines a
map (actually a group epimorphism) E — {£1}, given by «a(z) = sgn,(x). Thus, we have an
embedding X < {£1}*" (on the set of the functions from F' to {£1}).

The function space {£1}* has a natural product topology, if {1} is given the discrete topology.
Thus, there is a subspace topology induced on Xp; this is, by definition, the Harrison topology,
named after David Harrison who first pointed out its existence in his work.

To get a better view of this topology, let us first write down the defining subbase of the product
topology on {41}

Hoe={f:F = {£1}: f(a)=¢} (a € F, e = £1).
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This is a clopen (closed and open) set, since its complement is H, .. Thus, {:tl}F is a Boolean
space; that is, it is compact, Hausdorff, and totally disconnected. E| Here, of course, the Tychonoff
Theorem is needed to guarantee the compactness of the space {1}

Theorem 1.6.1. X, with the Harrison topology, is also a Boolean space.

Proof. It is suffice to show that Xp is a closed subspace of {1} (since any closed subspace of
a Boolean space remains Boolean). Take any map s : F' — {£1} that does not yield an ordering.
If s is identically 1 (or —1), the subbasic open set H; i (resp. Hj 1) separates s from Xp. We
may thus assume that s is surjective. Using this s, we can thus talk about “positive” elements
(s(z) = 1) and “negative” elements (s(z) = —1) in . However, there must exist some “positive”
a,b such that a+b or ab will be “negative” (since s does not yield an ordering). But then the basic
open set H,1 N Hy1 N H. 1 separates s from Xp. ]

To get a subbasis (of open sets) for X, we need only take the following intersections:
H(a):= Hyy N Xp={a€ Xp:a>,0}(acF).

The reason we can restrict our attention to ¢ = 1 is, of course, that H, 1 N X is given by
H(—a). The family {H(a) : a € F'} may be called the Harrison subbasis for the Boolean space
Xp.

Corollary 1.6.2. Let K|F be a field extension. Then the map p : Xg — Xp obtained by the
restriction of orderings is continuous and closed (with respect to the Harrison topologies on X
and Xp).

Proof. For any a € F, p~'(Hp(a)) = Hg(a), where the subscripts refer to the respective fields.
Since {Hr(a) : a € F} is a subbasis for Xp, the continuity of p follows. If C is a closed subset of
Xk, then C is compact (since X is), and therefore p(C') is also compact. It follows that p(C) is
closed in Xp. O

Next, we note that each quadratic form ¢ over F' defines a map
G: Xp — Z, where ¢(«) :=sgn,(q).
The significance of the Harrison topology is largely clarified by the following observation:

Proposition 1.6.3. For each quadratic form q, the signature map is continuous with respect to
the Harrison topology on Xp and the discrete topology on Z. In fact, with the latter topology fized,
the Harrison topology is the coarsest topology on Xp that makes all the maps § continuous.

Proof. To prove the continuity of ¢, it is sufficient to treat the case ¢ = (a) (since the sum of
continuous functions into an additive topological group is continuous). In this case, we note that

0 if i #£ +1,
G (i) = {a € Xp:sgny(a) =i} = { H(a) if i = 1,
H(—a)ifi=—1.

From these calculations, the desired conclusion in the proposition follow immediately. O

A topological space is called totally disconnected if is Compact, Hausdorff and has a base of clopens.
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Proposition|[1.6.3|is another evidence that quadratic forms and orderings are “naturally” related.

Previously, we have written the total signature map in the form

sgn: W(F) — H Z,
aceXp

where the right hand side of the equation is just ZX# (the set of all functions f : Xp — Z). Since
each ¢ in is continuous, we may as well use a smaller target set for “sgn”, and re-express the
latter as a ring homomorphism

sgn: W(F) — C(XF,Z) given by q — ¢,

where C(Xp,Z) denotes the ring of continuous functions from Xr to Z (Xp with the Harrison
topology and Z with discrete topology).

The advantage of using the smaller target group C(Xp,Z) is that we can now more meaninfully
study the cokernel of the map “sgn”. In we have shown that ker(sgn) is a 2-primary torsion
group. Our first main result in this section is the following “dual” statement.

Theorem 1.6.4. For the map sgn, coker(sgn) is also a 2-primary torsion group.

The proof of this is based on the lemma below concerning to the existence of quadratic forms
in I™F with certain prescribed signature properties. Here, I™F denotes the n-th power of the
“fundamental ideal” IF.

Lemma 1.6.5. For any clopen set C C Xp, there exists a form q € I"F (for some n > 0) such

that 2"xc = sgn(q), where xc denotes the characteristic function on Xp associated with the subset
CCXp.

Proof. Step 1. If the lemma holds for two clopen sets Cy, Co, then it holds for Cy U Cs. Indeed,
suppose q1,q2 € I™ F are such that 2"y, = sgn(q;) and 2™2x¢, = sgn(gz). After multiplying
these equations by powers of 2 if necessary, we may assume that m; = me = m. Now take the
equation

XC1UCy = XC1 T XC2 — XC1XCo>

and multiply it by 22™ to get
22mX01U02 = 2msgn(Q1 + Q2) - Sgn(‘]l‘]?) = Sgn(Q)v

where ¢ = 2™(q1 + q2) — quq2 € I*™F.

Step 2. A basis of open sets in X is given by the sets
H(ay,...,an) == H(a1)N...N H(ay,), a; € F. (1.1)

Since X is compact, so is the given clopen set C. Thus, C' can be written as a finite union of
sets of the form H(ay,...,a,). By Step 1, the proof of the lemma is now reduced to the case where
C=H(ay,..,an).

Step 3. Let ¢; = (1,a;) € IF. We have sgn(q;) = 2X(q,)- Therefore, for ¢ =q1-...- g, € I"F,
we have
sen(q) = 2"XH(a1)-XH(an) = 2" XH(a1,....an)-
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This proves the lemma for the case C = H(ay, ..., ap). O
We are now in a good position to supply the following:

Proof of Theorem[1.6.4] Given a continuous function f € C(Xr,Z), let C; = f~1(i) (i € Z). These
sets are clopens, and form a partition of Xp (remember that the topology in Z is discrete!). Since
X is compact, all but a finite number of the C;’s must be empty. This means that f is a bounded
function on Xz, so we can express f as a finite sum Z?Zli - Xc;- By

2" x¢, € Im(sgn) for suitable n; > 0.
From this, it follows immediately that 2" f € Im(sgn) for some n;, as desired. O

Returning to[1.6.5] we note that there is a further self-strenghthening of this result that can be
stated in the form of a “separation theorem”. We shall call this “Urysohn Lemma”, in view of its
resemblance to the familiar topological results about separation in normal spaces.

Lemma 1.6.6 (Urysohn). For any two disjoint closed sets A, B in Xp, there exists ¢ € I"F (for
some n) such that sgn(q) =0 on B, and sgn(q) = 2™ on A.

Proof. The complement of B is a union of sets of the form Since A is compact, a finite
number of these, say C1, ..., C;, will cover A, and C; N B = (). If we apply to the clopen set
C = CjU...UC(,, the conclusion in Urysohn’s Lemma follows immediately. O

As another application of we shall give a characterization for quadratic forms ¢ with the
property that sgn,(q) is divisible by 2" for every o € Xp, where n is a given integer. Note that
these are precisely the forms ¢ such that sgn(q) € C(Xr,2"Z).

Theorem 1.6.7. Forn > 0 and any quadratic form q, the following are equivalent:
i- sgn(q) € C(Xp,2"Z).
ii - 2t . q € I'™F for some integer t > 0.

Proof. (ii)=(i): Since even-dimensional forms have even signature at any ordering, sgn(IF) C
C(XF,2Z). Recalling that sgn is a ring homomorphism, we have sgn(I"™F) C C(Xp,2™Z) for any
m. Thus, if 2! - ¢ € I'™F, we get 2 - sgn(q) € C(Xp,2!""Z), and cancelling 2!, we have (i).
(i)=(ii): Assuming (i), let D; = (sgn(q))~1(2"i): these clopen sets form a partition of Xp. As
before, at most a finite number of these clopen sets can be nonempty, so we can resolve sgn(q) in

a finite sum
sgn(q Z 2" - XD,

For each D; # 0, apply to find a form ¢; € I"™F such that 2™y p, = sgn(g;). Since only a
finite number of these are involved, we may again arrange that all m;’s be equal (say = m). Thus,

-sgn(q ZQ”Z 2"xp, = 22"2 sgn(q;).
By Pfister’s Local-Global Principle it follows that

2™ . sgn(q 22”2 qi + Wi(F).
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Multiplying this by a sufficiently large power of 2, say 2¥, we can eliminate the torsion (error) term,
and arrive at
2k—|—mq — 2n+k ZZ g € In+k+mF
i

which proves (ii) with ¢t = k + m. O

There is another condition on the form ¢ that is related to the two conditions in [1.6.
q € I"F + W(F). (Lam)

The argument above on the elimination of torsion error terms shows that (Lam) implies[1.6.7(ii),
and in any case, an application of the map sgn shows that (Lam) implies i). In 1976, T. Y.
Lam asked if (Lam) is equivalent to[1.6.7|i) and[1.6.7(ii). At around the same time, M. Marshall had
raised the same question for formally real pythagorean fields F' (for which Wy(F') = 0), and answered
it affirmatively in the case where | Xp| < oco. Later, a possible “yes” answer for this equivalence
(for general fields F') became known as “Lam’s Conjecture”. More recently, this conjecture has
been proved by M.Dickmann and F. Miraglia ([DMO00]) using the solution of Milnor’s Conjecture
due to Voevodsky.

1.7 Prime ideals of W(F)

Returning to the “quadratic forms world”, in this section we shall determine the prime ideal
spectrum of the Witt Ring W (F'). Recall that, for any commutative ring A, the set of proper
prime ideals of A, denoted by Spec(A), is called the prime spectrum of A. This is a topological
space carrying the Zarisk topology, in which the closed sets are of the form

V(I)={p € Spec(A4) : p D I}, (1.2)

where [ is any ideal in A. This prime spectrum is usually not Hausdorff, but it is always compact,
and a subbasis of its topology is given by the sets

D(a) = {p € Spec(A) : a ¢ p}, (1.3)

where a is any element of A.

If p € Spec(A), then A/p is an integral domain, so it has characteristic p, where p is a prime
number or 0. We shall say, for short, that p is a prime ideal of characteristic p (or symbolically,
char(p) = p).

The main idea needed for determine the prime spectrum of the Witt ring W (F) is already
implicit in lemma, Let us recall its two-part statement here. First, only prime ideal of
characteristic 2 in W(F') is I F; and second, if p € Spec(W (F')) has characteristic # 2, then

ap :={0}U{a € F: (a) = 1(mod p)} (1.4)

is an ordering on F'. In the case where F' is nonreal, therefore, we have Spec(W (F)) = {IF}. We
may dismiss this case in the following, and shall assume henceforth, until further notice, that F is
formally real.

We start out by defining some prime ideals in W (F'). Eventually, these will be shown to be all



1.7. PRIME IDEALS OF W (F) 37

of the prime ideals. For any ordering o € Xp, we fix a real-closure F, for (F,«), and define

po = ker(sgn,, : W(F) — W(F,) =2 Z),
Pap = {p € W(F) : sgn,(p) = 0(mod p)}, (p = prime). (1.5)
We have that p, C pa,p are both prime ideals of W (F'), with char(p,) = 0 and char(p,,p) = p.
In fact, we have W(F')/po = Z and W (F)/pap = Z/pZ.
Also, from our earlier remark about prime ideals of characteristic 2, we see that p,2 = IF
for every @ € Xp. This means that the p,2’s only gives one prime ideal (namely IF). But on
the other hand, there is no more “collapsing” among the prime ideals defined in First, the

po’s are parwise distinct from one another and from the p, p’s. Second, if p, , = pg 4, considering
characteristics we obtain p = ¢. Third, if p,;, = pg,p, then

a>q 0= (a) = 1(mod pg p)
= (a) = 1(mod pg p)
= a>p 0

since char(pg,) = p # 2. This shows that o = § € Xp.

Proposition 1.7.1. The map a — p, gives a one-one correspondence between Xr and the set Y
of prime ideals of characteristic 0 in W (F).

Proof. If p € Yp, defines an ordering o, € Xp. Now, we will check that & — p, and p — «
are mutually inverse maps between X and Y.
Let a € ay,, a # 0. Since

a € ap, NF < (a) = 1(mod p,)
< (a) — 1 € ker(sgn,)
< sgn, ((a) —1)=0
& sgn,((a)) =1
S a <,

we have oy, = .

Now, we want to show that p,, = p. For this, observe that if a € F, then (a)2 = 1 € W(F),
and this implies that (a) = £1(mod p). Now, let ¢ = (aq,...,a,) € p. Then ¢ = 0(mod p) implies
(a1) + ... + (ap) = 0(mod p). Since (a;) = £1(mod p) and char(p) = 0, we get n = 2k and we can
suppose without loss of generality that (a;) = 1(mod p) for i = 1,...,k and (a;) = —1(mod p) for
t=k+1,...,n. Hence, sgnap(go) =0, and ¢ € po,. Conversely, if ¢ = (a1,...,an) € ker(sgn%), we
have sgn, (ar) + ... + sgn%<an> = 0, and again, we get n = 2k and we can suppose without loss
of generality that sgn%<ai) =1ifi=1,..,k and sgn, (a;) = —11ifi =k +1,...,n. From this, we
obtain (a1) + ... + (a,) = 0(mod p) and hence ¢ € p. O

From this partial result, we get the full classification of prime ideals in W (F):
Theorem 1.7.2 (Harrison). Spec(W (F')) consists of three types of prime ideals:
I- po, @ € Xp. These are all prime ideals of characteristic 0.
II - pop, o € Xp. These are prime ideals of characteristic p # 2.

II - IF = pa2, o € Xp. This is the unique prime ideal of characteristic 2.
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Proof. Tt only remains to analyze the prime ideals of odd prime characteristic p. Let p C W (F)
be such a prime ideal. Then the construction in produces an ordering o« = «yp. Consider
¢ = (a1,...,an) such that sgn,(¢) = 0. We already argue that n = 2k and sgn, (a;) = 1 if
i=1,...,.k and sgn%(ai> =-1ifi=k+1,...,n. From this, we conclude that ¢ = 0( mod p) and
po € p. Since p, p is the unique prime ideal of characteristic p that contains p, (Z/pZ is rigid), we
conclude that p = p,. This completes the classification of prime ideals. ]

Now, we have a picture to ilustrate the prime spectrum of W (F):

Pop

Pep Ps

pe

IF Py Py

Pa

Pap ps

Psp

The corollary below (especially its last statement) shows that the Harrison topology is indeed
the most reasonable topology to be put on the space Xr.

Corollary 1.7.3. Max(W (F')) (the mazimal ideal spectrum of W (F')) consists of the height one
primes Po.p. On the other hand, MinSpec(W (F')) (the minimal prime spectrum) is just the space Y
in[1.7.1) consisting of the p,’s. The one-one correspondence in is a homeomorphism between
XF (with the Harrison topology) and MinSpec(W (F)) (with the induced Zarisk topology).

Proof. Only the last statement needs a verification. Using the notation in consider a subbasic
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open set in MinSpec(W (F')), which has the form
D(g) N MinSpec(W (F)) = {pa : ¢ ¢ pa}
= {Pa : s800(q) # 0},

where ¢ € W(F). Under the one-one correspondence in this corresponds to the following
subset in Xpg:

{a € Xp :sgn,(q) # 0},

which is open in X, since a — sgn,(q) is a continuous mapping from X to Z. Conversely,
specializing the above information to the form ¢ = (1,a) where a € F', we have

{a € Xp:sgn,(1,a) 20} ={a € Xp:a >, 0},

which is the Harrison subbasic set H(a) C Xp. Therefore, under the one-one correspondence in
1.7.1, H(a) C XF also corresponds to a subbasic open set in MinSpec(W (F')). This shows that
the one-one correspondence in question is a homeomorphism. ]

Corollary 1.7.4. The Witt ring W (F') has Krull dimension one if F is formally real, and Krull
dimension zero if F is nonreal.

Proof. This follows direclty from the enumeration of prime ideals in W (F') [1.7.2 O
Another direct consequence of follows below:
Corollary 1.7.5. The following three statements are equivalent:
1 - I is nonreal;
it - W(F') has a unique prime ideal (which must be IF);

iti - W(F) is a local ring (which mazimal ideal IF).

1.8 Applications to the Structure of W (F)

We are in good position to make a more precise study of the Witt ring. In this section, we use
the results of the three previous sections to determine the following objects which are of interest
for the structure of the Witt Rings:

i- nil(W(F)): this is the nilradical, consisting of all nilpotent elements in W ((F')). By commu-
tative ring theory, we know that nil(W(F)) is the intersection of all prime ideals in W (F).

ii - rad(W(F)): this is the Jacobson radical of W (F), i.e, the intersection of all maximal ideals
of W(F).

iii - zd(W(F)): the set of zero-divisors in W (F') (including 0).
iv - Id(W(F)): the set of idempotents in W (F').
v - U(W(F)): the multiplicative group of units in W (F).

We begin with nil(W (F')) and rad(W (F)):

Theorem 1.8.1.
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i - If F' is nonreal, then ni(W(F)) = rad(W(F)) = IF.
it - If F is formally real, then nil(W(F)) = rad(W(F)) = Wi(F).

Proof. (i) is direct consequence of theorem m For (ii), note that, for any ordering o on F', the
intersection (pqp (p ranging over all primes # 0) is just p,). Thus

rad(W(F)) = [|pap = [ | Pa- (1.6)

This is just the intersection of all the prime ideals in W (F'). Consequently, rad(W (F')) = nil(W (F')).
Further, says that rad(W(F)) is the intersection of the kernels of W (F) — W(F,), where F,
ranges over all the real-closures of F'. By Pfister’s Local-Global Principle we conclude that
rad(W(F)) = W(F). O

Next, we try to determine the set of zero-divisors zd(W (F')). We need the following general
observation about zd(R) for any commutative ring R.

Lemma 1.8.2. If R is a comutative ring, zd(R) is the union of a certain set of prime ideals in R.

Proof. 1t is suffices to show that any O-divisor z is contained in a prime ideal p C zd(R). Let S
be the multiplicative set of all non 0-divisor (S = R\ zd(R)). By Zorn’s Lemma, there exist an
ideal p maximal with respect to the properties pNS = () and z € p. We finish by showing that
p is prime. Indeed, suppose zy € p with z,y ¢ p. By the maximality property of p, there exist
s,s’ € S such that s € p+ 2R and s’ € p + yR. Multiplying these equations, we get ss’ € pN S,
which contradicts the choice of p. O

Theorem 1.8.3.
i - If F is nonreal, zd( W (F)) =IF.
it - If F is formally real but not pythagorean, then also zd(W(F)) = IF.

it - If F' is formally real and pythagorean, then zd(W (F)) is the union of the minimal prime ideals
Pa, O € XF

Proof.

i- In this case, by corollary IF = nil(W(F)) and W(F) \ IF = U(W(F)). Hence
zd(W(F)) =1IF.

ii - Suppose F is formally real but not pythagorean. Then there exists 0 # g € Wi (F') (because if
Wi(F) = {0}, we have for any ¢ = a® + b? # 0 an isometry (1,1) & (¢, ¢), which implies that
(c) = (1) € W(F), so ¢c € F?, i, F is formally real and pythagorean). Since the additive
order of ¢ is a power of 2 (i.e, ¢ is 2-primary torsion), we see that 2 € zd(W (F')). Now, IF
is the unique prime ideal of characteristic 2, so lemma implies that IF C zd(W(F)).
On the other hand, any prime ideal of the form p,, (o € XF, p # 2) cannot be contained in
zd(W (F)), since p-1 € pap is not a 0-divisor. The remaining primes p, are already contained
in IF C zd(W(F)). Thus lemma yields IF = zd(W (F)).

iii - In this case, W(F') is torsion free. For this, suppose that ¢ = (ai,...,a,) € W(F) is an
anisotropic form. Note that r - ¢ is also anisotropic for any natural number r. Indeed, if 7 - ¢
vanishes on a vector (€11, ..., €1r, ..oy €nly oovy Eny), 1.€,

aref; + ... +arel, + ...+ anedy + ... + aper, =0,
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we can write e + ... + €2, = e? for suitable e; € F' (remember that F is pythagorean!) to get
ale% + ...+ anei = 0.

This implies that e; = 0 for all ¢, and there fore e;; = 0 for all ¢, (by formal reality). This
implies, in particular, that W (F) is torsion free.

Made this digression, if F' is formally real and pythagorean, the prime ideals p,, (o € Xp,
p any prime) cannot be contained in zd(W (F)), since W (F') is torsionfree. Therefore lemma
[1.8.2)implies that zd(W (F)) C [Upa (a ranging over X ). We finish by proving that, for each
a € Xp, p, consists entirely of zero-divisors. If a form g € p,, then

q= (a1, ..., Gy —b1, ..., by

with all a;, b; positive at «. Letting ¢’ be the product of the binary forms (a;, b;) (1 < i < m),
we have ¢ # 0 in W (F) (since sgn, (¢') = 2™(1) € W(F,)), and ¢-¢' =0 € W(F). Therefore,
q € zd(W(F)), as desired.

O]

It is perhaps a little surprising that, in the formally real case, the determination of zd(W (F))
depends on wheter or not F' is pythagorean. But, as we saw from the proof above, this distinction
of cases is necessary since we need to know wheter or not 2 is a O-divisor. There is, however, a nice
piece of information that is common to all three cases in we record this below.

Corollary 1.8.4. For any field F', q € zd(W(F')) only if dimq is even. In other words, odd-
dimensional forms cannot be 0-divisors in W (F).

Proof. In the first two cases in theorem we know that even the “if and only if” statement
holds. But, in the formally real case, each prime ideal p, (o« € Xp) lies in IF, so even in case iii

in theorem we have
zd(W(F)) € | pa CIF.
acXp
O

We come now to the determination of the idempotents in W (F'). It turns out, however, that
there are no interesting ones!

Theorem 1.8.5. The only idempotents in W (F') are 0 and 1 (i.e, W(F') is a “connected” ring).

Proof. Suppose we have an equation 1 = e; + eo € W(F'), where ej, es are mutually orthogonal
idempotents, other than 0,1. Then, e, es € zd(W(F)) C IF by corollary and 1 =ej; e €
I F gives the desired contradiction. O

Our final task is that of describing U(W (F)), the group of units of the Witt ring W(F). A
preliminar result is the following:

Theorem 1.8.6.
i - If F is nonreal, U(W (F)) consists of all odd-dimensional forms.
it - If F is formally real, a form q lies in U(W (F)) iff sgn,(q) = £1 for every a € Xp.

Proof.
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i - Follows by theorem m(iii), i.e, by the fact that if F' is nonreal then W (F') is a local ring
with unique maximal ideal IF'.

ii - = follow by the fact that U(Z) = {1,—1}. For <, consider any form ¢ with the given
signature property. Then sgn, (¢%) = 1 for every a € X, and hence by Pfister’s Local-Global
principle

¢* —1 € Wy(F) = nil(W(F)).

We then have ¢% € 1 + nil(W (F)) C U(F), so certainly ¢ € U(W (F)).

A more sofisticate computation is:

Theorem 1.8.7. Let I}(F) = I?’FNWy(F). Then 1+ IZF is a multiplicative group, and
UW(F)) = (F/F?% x (1+I*F).

Here F/F2 is identified with the subgroup of W (F) consisting of the unary forms. In particular,
I%F is torsionfree iff U(W(F)) = F/F2.

Proof. First, note that, by IZ(F) is a nil ideal. Thus, 1+ I?F is a subgroup of U(W (F)).
This subgroup has trivial intersection with F'/F?2, since if (a) € 1+ I?F, then 1 — (a) € I2F implies
that (a) = 1 € W(F). It only remains to check that F//F? and 1+ I?F generate U(W (F)). If
q € UW(F)), then dim(q) must be odd, and we’ll have gy := ¢ L (—a) € I*F for some a € F.
This gives a-q = 1+ q1, where ¢1 = a- gy € I*?F. We are done if we can show that ¢ € W;(F).
We may assume that F' is formally real (for otherwise W (F') = Wy(F)). Taking signatures with
respect to any o € X, we have

sgn,(a-q) =1+sgn,(q1) =1 (mod 4).

By theorem ii), the left side of this equation can only be £1, so it must be 1, which implies
that sgn,(q1) = 0. Now, Pfister’s Local-Global principle implies that ¢; € Wy(F), as desired. [

Our more refinated result in calculation of U(W (F)) is
Theorem 1.8.8. U(W (F)) is a 2-primary torsion group.

In the following, we shall try to give an elementary proof for this result using solely the fact that
Wi(F) is a 2-primary torsion group. This will be done with the help of the following ring-theoretic
lemma:

Lemma 1.8.9. Let x be an element in any ring (with 1) such that mx = 0 = 22", where m > 1
and r > 0 are given integers. Then (1 +2)™ = 1.

Proof. The proof is by induction on . The case r = 0 being clear, we assume r > 0. Since mz = 0,
the binomial theorem gives (1+)™ = 142y, where y is a polinomial in x with integer coefficients.
Since m(z2y) = 0 and (2%y)*~! = 22"y?"~1 = 0, the inductive hypothesis applied to the element
z2y implies that

L= (L4 a%)™ L = [+ )™~ = (14 2)™.

We now return to



1.9. PFISTER FORMS AND CHAIN P-EQUIVALENCE 43

Proof of theorem[1.8.8, Let q € I?F. Since W;(F) is 2-primary torsion, we have mq = 0 for some
m = 2F. By q is also nilpotent, so ¢*" = 0 for some r. Applying lemma we see that

(14 ¢)%" = 1. Thus the results follow by O
We can obtain the following refinement of in a special case:

Corollary 1.8.10. If F is a field such that I3F is torsionfree, then U(W (F)) is a group of exponent
< 2.

Proof. In view of theorem it suffices to show that (1 + ¢)? = 1 for every q € I?F. Now 2q €
2-IF CIBFNWy(F) =0and ¢ € ¢- I}F C BFNW(F) = 0, so indeed (1+¢)? = 1+2¢+¢* =1,
as desired. O

1.9 Pfister forms and chain P-equivalence

The so called Pfister forms provides an entire revolution in the study of quadratic forms. We
reproduce some pieces of this work, with the climax in Hauptsatz, proved two sections later. We
begin by formally defining Pfister forms:

Definition 1.9.1. For an n-tuple of elements ay, ...,a, € F, we write ((ay,...,a)) to denote the
2"-dimensional form ®_,(1,a;) and will refer to this as an n-fold Pfister form (over F).

A 0-fold Pfister form is, by convention, taken to be the form (1).
In working with Pfister forms, it is useful to note that, if some a; = —1, then ({ai,...,an))
becomes hyperbolic. On the other hand, we have

((1,a2,...,a,)) = 2({ag, ...,an))

~

where 2¢ means ¢ L ¢. In particular, ((1,...,1)) = 2"(1). Another important motivation for
studying Pfister forms is, of course, the following:

Proposition 1.9.2. Let IF denote (as usual) the ideal of all even-dimensional forms in W (F').
Then I™F' is generated as an abelian group by all the n-fold Pfister forms over F.

Proof. We have shown in that IF is additively generated by (1,a) = ((a)), a € F. Thus, I"F
is additively generated by the n-fold product

{a))...{an)) = (a1, ..., an)),a; € F.
O

We'll begin our study by assembling some basic formulas for 2-fold Pfister forms. Recall that
D(q) = Dr(q) denotes the set of values in F' represented by q.

Proposition 1.9.3.
i - For any x € D{(a)), ((a,b)) = ({a, bx)).
it - For any y € D{a,b), ({(a,b)) = ((a,by)).
Proof. These follow from the following isometries:
((a,0)) = (1,a) L (b){z,za) = ((a,bx));
({a, b)) = (1, ab,a,b) = (1, ab,y, aby) = {(y, ab)).



44 CHAPTER 1. QUADRATIC FORMS OVER FIELDS

The goal of this section is to build up the properties of n-fold Pfister forms from those of 1-fold
and 2-fold Pfister forms. To this end, we proceed in analogy with Witt’s notion of chain equivalence

24

Definition 1.9.4. Let ({(a1, ..., an)) and ((bi, ..., b,)) be two n-fold Pfister forms. We say that they
are simply P-equivalent if there exist two indices © and j, 1 < i,5 < n such that

i~ ((asa;)) = ((bi, bj)), and
it - ap = by for any k #1i,j.

In condition (i) above, if i is equal to j, the expression ({(a;,a;)) is understood to be just ({(a;)).
More generally, we say that two n-fold Pfister forms ¢, v are chain P-equivalent if there exists a
sequence of n-fold Pfister forms ¢ = @q, @1, ..., on =7y, and that each @; is simply P-equivalent to
Yi+1 (Ogigm—l).

Chain P-equivalence is an equivalence relation on all n-fold Pfister forms; it will be denoted
by the symbol . Of course, ¢ = v implies that ¢ = . It is by no means obvious, at this point,
that the converse also holds. Nevertheless, this turns out to be the case, and will be one of the
theorems we prove in this section. To this end, let us first observe that, if 7 is any permutation of
{1,...,n}, then

<<a1, ceey an>) ~ <<aﬂ(1), ey aﬂ(n))>.
This follows immediately from the fact that, for n > 2, the symmetric group on n letters is generated
by the transpositions.

Since any n-fold Pfister form ¢ represents 1, we may write ¢ = (1) L ¢’. We shall call ¢’ the
pure subform of ¢ (in analogy with the “pure quaternions”). This terminology is justified, since the
isometry type of ¢’ is uniquely determined by that ¢, according to Witt’s Cancellation Theorem.
From here, we shall write ¢’ for the pure subform of a Pfister form .

Theorem 1.9.5 (Pure subform). Let ¢ = ((a1,...,an)) be an n-fold Pfister form (n > 1), and let
b€ Dp(¢'). Then there exist by, ..., by, € F such that ¢ = ((b,ba, ..., by)).

Proof. We induct on n. If n =1, then ¢ = (1,a4). Since b € Dp(¢') = Dp(a1), we have (b) = (aq),
and the result follows. Now assume the result for (n — 1)-fold Pfister forms. Let

7= {(a1,...,an_1)) = (1) L 7.
Then ¢ = 7(1,a,) =7 L (ap)7, s0 ¢’ = 7' L (an)7. Since by hypothesis b € Dp(¢'), there exist
x € Dp(7")U{0} and y € Dp(7) U {0}

such that b = = + a,y. We may further write y = t> + 3o, where yo € Dp(7') U{0}. Then, we have
two cases:

Case 1 - If y =0, then 0 # b = 2 € Dp(7'). By induction hypothesis, there exist dy, ...,d,_1 € F
such that 7 =~ ((z,da, ...,d,,—1)). Thus

P~ <<.'13,d2, "'7dn—17an>> = <<b7 d27 "’7dn—17an>>

and we are done.
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Case 2 - Suppose y # 0. We claim that

P~ <<(11, ag, ..., anfbany»-

There is nothing to prove if yg = 0, for then y = t2. So we may assume yo € Dp(7'). By the
inductive hypothesis again, 7 ~ ({yo, ca, ..., ¢n—1)) for some ¢; € F. Thus,

P~ <<y0, €2, ...,Cn—1, an>>
<<y07 €2y .-+s Cn—1, an(t2 =+ y0)>> (by (1))

<<a’17 bR a’TL—la any>>7

Q

Q

proving our claim. If x = 0, then the last entry a,y above is just b, and we are done. So we may
assume that @ € Dp(7"). Again, our inductive hypothesis implies that 7 ~ ((z,ds, ..., dp—1))
for some d; € F, and so

<<IL’7 d27 ceey dn—la any>>
<<m + any, d27 3] dn—lv anfl'fy>> (by (H))
<<b7 d27 seey dn—17 a’nxy>>

Q

12

Q

%

For the later reference, we record here one of the key steps used in the proof of

Proposition 1.9.6. Let 7 = ((aj, ...,an_1)) and y € Dp(7). Then for any a, € F:

<<CL1, ooy Ap—1, an>> ~ <<6L1, ooy any>>
In particular, ({a1,...,an—1,Yy)) is isometric to 27, and ({(a1, ..., an—1,—Y)) is hyperbolic.

Proof. This is just the “Claim” in case 2 in the proof of [1.9.5] Since [1.9.5]is now fully proved, this
“Claim” is valid for all n. The last statement of the proposition follows immediately from this, by
setting a, = +1. O

Using the Pure subform theorem [1.9.5] we shall now derive two of the principal properties of
Pfister forms. The first one is

Theorem 1.9.7. If a Pfister form @ is isotropic, then it is hyperbolic.

Proof. Since ¢ contains a hyperbolic plane, we have —1 € Dp(¢’) by Witt’s cancellation. By
¢ ~ ({(—1,...,)), which is hyperbolic. O

The next property has to do with the similarity factors of a Pfister form. For any quadratic
form g over F', G4(F) = Gp(q) = {c € F : (c)q = q} denotes the group of similarity factors of q.

Theorem 1.9.8. For any Pfister form ¢ over F, Dp(p) = Gr(v). In particular, ¢ is a group
form over F.

Proof. Since ¢ represents 1, we have that Gr(¢) C Dr(¢). To prove that ¢ € Dr(p) = (c)p = ¢,
we appeal to some argument on the Witt ring. The Pfister form ¢((—c)) = ¢ L (—c)¢ (of one
higher fold) contains a subform (¢, —¢) = H, so by proposition ((—c¢)) is hyperbolic. Hence
o((=c)) = 0 € W(F) and since dim((c)y) = dim(yp), it follows that (c)p = ¢ € W(F'), then

() = . O
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The special case of theorem for the Pfister form ((1,...,1)) is already worthy of some
celebration:

Corollary 1.9.9. For any n > 0, the nonzero sums of 2" squares in F form a subgroup of F.

Next, we shall further generalize the Pure Subform Theorem [1.9.5] This generalization will be
the key step in our subsequent proof of the theorem that isometry of Pfister forms implies their
chain P-equivalence.

Theorem 1.9.10. If 7 = ((b1,...,b;)) (r = 0), v = ({d1,...,ds)) (s > 1), and e1 € Dp(7Y'), then
there exist es, ...,es € ' such that

<<b1, vy br, dl, ,d5>> ~ <<b1, vy br, €1,y uny €S>>.

Proof. We prove by induction on s. If s =1, then e; € Dp((d1)7), so e; = dix, where z € Dp(7).
Proposition [1.9.6] implies that

<<b1, ...,br,dl» = <<b1, ...,br,d1$>> = <<b1,...,br,€1>>.
By induction, we may assume the result for ((b1,...,b,,d1,...,ds_1)). Let o = ((d1, ..., ds—1)), so
v =o0{ds,1) 2 (ds)o L o and v = (ds)o L o’

Therefore, 79" = (ds)7o L 70’. Since e; € Dp(7'), there exist x € Dp(ro) U {0} and y €
Dp(70’) U {0} such that e; = dsx +y. If  # 0 and y # 0 we get the desired in the following two
steps:

Step 1 - ((b1,...,by,d1,...,ds)) = ((b1, ..., by, d1, ...,dsz)) by [1.9.9]
Step 2 - By induction, there exist es, ..., es_1 € F such that
<<b1, ...,br,dl, ...,d571>> ~ <<b1, ...,br,y,eg, ...,€S,1>>. (*)

Therefore, by Step 1,

((b1, ...y bpydyy ..yds—1,ds))

Q

<<b1, ceny br, dl, veey ds_l, ds.%'>>
<<b1, ceny br, Y, €2, ..., 65_1,d51‘>>
((b1,...,by,€1,€2,...,e5_1,dszY)),

Q

Q

where the last “~” follows from [1.9.3((ii).

We are now left with the case where one of z,y is zero. If y = 0, then 0 # e; = dsx, and Step 1
provides the needed proof. If x = 0, then e; = y, and from (*), we get

<<b1, ceey br, dl, ceey d3>> ~ <<b1, ceey br, €1y .eny 6571d5>>,
which completes the proof. O

The following special case of [1.9.10] (with » = 1) is already noteworthy.
Corollary 1.9.11. Let g be a Pfister form. If ¢ = (1,b,e,...) with b,e € I, then

q = <<b7 €,€2, ..., es>>

for suitable e; € F.
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Proof. By the Pure Subform Theorem, ¢ = ((b))7y for a suitable Pfister form ~ = ((ba, ..., bs+1))-
Comparing ((b))y = ((b)) L ((b))y with ¢ = ({(b)) L (e,...), we see that e € ((b))y'. We are now

done by applying [1.9.10| with 7 = ((b)). O

We are now in position to prove the following main result on chain P-equivalence:
Theorem 1.9.12 (Chain P-equivalence). Let ¢, be n-fold Pfister forms. Then ¢ = iff ¢ ~ ).

Proof. 1t suffices to prove the = part. Write ¢ = ((a1, ..., an)) and ¢ = ((b1,...,byn)). Assuming
that ¢ =2, we claim that, for any integer r such that 0 < <n holds:

© = ((biy ..oy bp, Crp1y .y cp)) for some ¢y, ..., 0 € F. (4;)

If this is estabilished, then for r = n, the statement (A,) implies the desired conclusion that
¢ ~ 1. Now we prove (A,) by induction on r. There is nothing to prove in case r = 0. Assume
inductively, that (A,) is true, where r < n. We must proceed to prove (A,4+1). Set 7 = ((b1, ..., b)),
B = ((brs1,...,bn)) and v = ((¢r41, ..., cn)). Then  is an s-fold Pfister form, where s =n —r. We
have, from the various hypothesis, 7- 3 = 1) = ¢ = 7v; that is, 7 L. 748’ = 7 L 79'. By cancellation
theorem, it follows that 73 = 74/. But then

by1 € Dp(B') C Dp(r8') = Dp(r7).

By [1.9.10, we get

<<b1, ceny br,cT_H, ...,Cn>> ~ <<bl, ey br, b7~+1, C;ﬂ+2, ceey C;7,>>

for suitable ¢, € F. From this and the inductive hypothesis (A,), we deduce

© R (b1, ooy by, b1, Gy ooy C)),s

which estabilishes the truth of (A,41). O

1.10 Function Fields

In view of Hauptsatz proof, we must present a brief introduction to function fields. The main
idea is that in algebraic geometry, a function field is associated with every irreducible algebraic
variety. In the case of an irreducible quadratic form ¢, we have therefore a function field associated
with the quadratic hypersurface defined by the quadratic equation ¢ = 0. Not surprisingly, the
study of such function fields holds the key to many basic issues in the algebraic theory of quadratic
forms over fields.

In this section, we give a introduction to the idea of the function field of a quadratic form as
soon as some basic results derived from this. A preamble for the construction of such a function
field is the following.

Lemma 1.10.1. Let ¢(xg, ..., zy) be a regular (n + 1)-dimensional quadratic form over F, where
n > 1. Then ¢ is reducible as a polynomial in F|xg,...,zy] iff n =1 and ¢ = H.

Proof. If ¢(xg,...x,) factors nontrivially, it must factor into a product of two linear forms. Since
 is regular and n > 1, this happens iff ¢ is isometric to the quadratic form xgxi, that is, iff
p = H. OJ

Definition 1.10.2. The (“big”) function field of ¢, if ¢ is irreducible in (n+1)-variables, is defined
to be the quotient field of the integral domain F[X]/(q(X)). This is a field of transcendence degree
n over F'; we shall denote it by F|p].
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As we mentioned at the beggining of this section, F[¢] is the usual function field, in the sense
of algebraic geometry, of the affine quadric hypersurface ¢(X) = 0 in F"*!. Besides this, we have
that F'[p| depends (up to an F-isomorphism) only on the isometry class of .

A computation shows that F[p] can be expressed as a quadratic extension of a rational function
field in n variables over F. Indeed, if we write F[p] as F'(xq,...,zy,) (where the x;’s should have
been written as Z;’s), the relation aox% + ...+ anx% = 0 shows that

Flg] = F(x1, .., xn) <\/—(ale - anxg)/a0> (1.7)

as claimed.

The reason we called F[p] the “big” function field is that we could have formed a smaller one,
defined by

F(p) :== F(z1/%0,22/%0, ..., xn/x0) C Flg]. (1.8)

Note that this subfield of F[p] is uniquely determined, i.e, it does not depend on the choice of
xo as the denominators in Indeed, since

- (2):(2) e

F(¢) could have been expressed as F({z;/z;}) C F[y], which exhibts no dependence on any
particular subscript. The field F'(¢) may be called the homogeneous function field of ¢, since, in
algebraic geometry, it is just the function field of the projective variety defined by the homogeneous
equation p(X) =0 in P"(F).

The two function field F[p] and F(p) are related by the relation

Flp] = F(p)(20),

and they have pretty much the same behavior. In practice, it is sufficient to work with just one of
them.

Note that F(¢) is also a quadratic extension of a rational function field (this time in n — 1
variables). Indeed, if we write t; = z;/z¢ (1 <i < n), the equation

ap 4 a1t 4+ ... + apt? =0

show that

F(p) = F(t1, o tn 1) <\/—(a0 +art 4+ an_lti_l)/ao) ,

which is to be compared with

Now, we shall develop the main properties of function fields of quadratic forms. The main
focus will be on the nature of the quadratic forms that become isotropic or hyperbolic over these
function fields. From here, it will be more convenient to work with the “big” function fields F[¢],
although we could have equally well used the small function fields F(¢). We remind the reader
again that, whenever the notation F'[y] is used, it will be assumed that dim(p) > 2 and ¢ # H,
for otherwise F'[¢] is undefined.

Theorem 1.10.3. A function field F|p] is purely tmnscendentam iff the form ¢ is isotropic over F'.

A field extension K|F is purely transcedental if there is a subset S of K that is algebraically independent over
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In particular, any two isotropic quadratic forms of the same dimension have isomorphic function
fields.

To prove this theorem, we will need the following lemma:;:

Lemma 1.10.4. Let v be a quadratic form over a field F. If v is anisotropic over F', then v remains
anisotropic over the rational function field F(x). In particular, the Witt kernel W (F(x)/F') is the
zero ideal in W (F).

Proof. Let v = (ay, ..., a,), a; € F. Assume that v is isotropic over F(x). After clearing denomina-
tors, we obtain an equation Y a;f;(z)? = 0, where f;(z) € F[z] are not all zero. Changing the f;’s
if necessary, we may further assume that = does not divide all of the polynomials f;(x). Setting
r =0, we get > a;f;(0)2 = 0, where the f;(0) € F are not all zero. This says that «y is isotropic
over F'. The last part of the theorem now follows immediately. O

Proof of Theorem [1.10.3. First assume F[p] is purely transcendental. Since ¢ becomes isotropic
over F[p], lemma implies that ¢ must already be isotropic over F'. Conversely, assume that
¢ is isotropic over F'. After changing variables, we may express ¢ in the form zox; + ¥ (22, ..., ),
where 1) is a regular quadratic form in z9, ..., z,. Using the expression of ¢ to calculate F[y|, we
see that F[p] is isomorphic to the rational function field F(z1, ..., x,). O

Since ¢ always becomes isotropic over F[p], it is of interest to ask what other forms over F
might also become isotropic, or even hyperbolic, over F[p]. Although various results have been
obtained on this direction, a full answer to the above question has remained unknown up to this
date.

Now, we introduce some notation to facilitate our discussions:

Definition 1.10.5. For any quadratic form q, we write ¢ > ¢ (resp. q > QOE to express the fact
that q becomes isotropic (resp. hyperbolic) over the function field F[p] of the quadratic form .

Definition 1.10.6. Let ¢ and v be forms. If ¢ is isometric to a subform of the form v we will
write ¢ C .

For any field extension K|F, we have introduced earlier the Witt kernel notation W (K|F) for
the kernel of the functorial map W (F') — W(K). This ideal of W (F) is called the Witt kernel
of the extension K|F. In terms of this Witt kernel notation, the relation g > ¢ in simply
amounts to g € W (F[p]/F).

Example 1.10.7.
a - Of course, ¢ > .
b - Suppose q1 = q2 + q3 € W(F). If ¢; > ¢ holds for two values of i, then it holds for all three.

¢ - If dim(q) > 0, then ¢ > ¢ = q > ¢. The converse fails in general, but does hold when q is a

Pfister form (by[1.9.7).

We will end this section with the following theorem, that gives a significant necessary conditions
on the forms ¢ > ¢ (for a given ¢).

K (i.e, the elements of S do not satisfy any non-trivial polynomial equation with coefficients in K) and such that
L=K(95).
8Tt will be convenient sometimes to write also ¢ < ¢ instead of ¢ > ¢ and ¢ < ¢ instead of ¢ > ¢.
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Theorem 1.10.8. Suppose q > ¢ where q, ¢ are quadratic forms over F, with 1 € Dp(p). Then
©(X) € Gpx)(q), where X = (z0, ..., zn), and dim(p) = n+1 (in other words, we have p(X)-q = q
over the rational function field F(X)). If q is anisotropic, then a-p C q (over F') for any a € Dp(q);
in particular, we must have dim(q) > dim(yp) (if dim(q) # 0).

Unfortunately, the proof of theorem involve some techniques of quadratic forms under
transcendental extensions that escape from the scope of this dissertation. However, the reader can
found the proof in theorem 4.5 on chapter 10 of [Lam05], and read about this methods on chapter
9 of the same book.

1.11 Hauptsatz and Forms in ["F

This section offers the begginings of an in-depth study of the quadratic forms in I"™F, the n-
power of the fundamental ideal I F'. The first word in the section title above refers to the following
beautiful result of Arason and Pfister proved in 1971 in their joint paper:

Theorem 1.11.1 (Hauptsatz). Let g be a positive-dimensional anisotropic form over F. If q €
I"F, then dimq > 2".

An equivalent way to state this result is the following: if a form ¢ belongs to I"(F') and
dim(q) < 2", then ¢ must be a hyperbolic form.

The significance of the Hauptsatz lies in the fact that it offers an important dimension-theoretic
sufficient condition for a form to belong to I™F. This Hauptsatz may be regarded as the first step
towards finding a set of necessary and sufficient conditions for the quadratic forms in I™F (for
given n).

Before we proof we will estabilish the power of the Hauptsatz given a few immediate
consequences. The first one is the “Krull Intersection Property” in part (i) below.

Corollary 1.11.2.
i - In the Witt ring W (F), ﬂ‘;‘;OIjF =0.

it - More generally, if K|F is any field extension, and J is the kernel of the functorial map
r*: W(F) = W(K), then ﬁ;-";o(J—l—IjF) =J.

Proof.

a - Let ¢ be a form belonging to ﬂ?’;OIjF. Pick a large integer n such that dim(q) < 2". Since
q € I"F, the Hauptsatz implies that ¢ = 0 € W (F).

b - This is a self-strenghthening of item (a). If ¢ € N2 (J + I'F), then r*(q) = qi € I'K for all i
(since r*(I'F) C I'K). By item (a), we have r*(q) =0 € W(K), so ¢ € J.

O]

Corollary 1.11.3. Let ¢,7 be a pair of 2™-dimensional forms which represent a common value
a € F. Then
© =~ (mod I"F) = o= ~.

Proof. Since a € Dp(¢) N Dp(vy), there exist forms ¢y and 7y such that ¢ = (a) L ¢o and
v = (a) L . Consider o := ¢y L (—1)7p. Since

o L(-1)y={(a,—a) Lo L (~1)y0=H Lo,
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the hypothesis ¢ = 7 (mod I"*'F) leads to ¢ € I""'F. Since dim(c) < 2" + 2" = 2"l the
Hauptsatz implies that ¢ is hyperbolic, and hence ¢ = ~. ]

Corollary 1.11.4. Let r,s € F, and let @, be n-fold Pfister forms over F. Then
¢ =y e (r)p = (s)y(mod I"'F).

Proof. We have that ¢ = (r)p and ¥ = (s)1) modulo I""1 F. This proves = and reduces < to the
case r = s = 1. This case follows from [[.11.3]since ¢ and 1 represents 1. O

Although we can prove [1.11.1] and [1.11.2] in several special cases, the methods used for this
proves do not generalize to the case for arbitrary n and arbitrary fields F'. In order to prove|l.11.1
in general, we’ll need the method of function fields. As it turns out, with the function field results
in the last section at our disposal, the proof of boils down to a simple induction, as follows.

Proof of theorem|1.11.1. Let ¢ € I"F be as in [1.11.1] Since the n-fold Pfister forms additively
generate I"™F', there exists an expression

qg=c¢c101+... +erp € I"F,

where ¢; = £1 and ¢; are anisotropic n-fold Pfister forms. To show that dim(q) > 2", we induct
onr. If r =1, we have ¢ = (+1)¢1, so dim(q) = 2"™. For the general case, we go up to the function
field L = F[p1]. Over this field, we have a shorter expression

qr = e2(p2) + ... + &.(¢r)L € I"L.

If g1, is hyperbolic, [1.10.8 yields direclty dim(q) > dim(p;) = 2™. Thus we may assume that (qr)an
(the anisotropic part of ¢r,) is a positive-dimensional form in /™ L. Thus, the inductive hypothesis
(invoked over the field L) implies that dimz,(qr)an > 2". But then,

dimp(q) = dimp(qz) > dimpg(qr)an > 2"

O

The very short proof of the Hauptsatz above perhaps belies its true depth. Of course, this proof
made crucial use of [1.10.8] which is a centerpiece in the function field theory of quadratic forms.

1.12 How quadratic forms are useful to mathematicians?

As promised, we cover in this chapter all the concepts that will be taken as primitive in the
chapters 3-6. However, you probably thought:

Why all this matters? Where are the connections with maistream mathematics?

This is a central question and we are not in position to give a full answer. But the work seems
to be incomplete if we do not include some substantial application of algebraic theory of quadratic
forms. So in this section, we give a few comments about Milnor’s algebraic K-theory (as developed
in [Mil70]), that in our point of view, are a beatiful way to illustrate the applications of the theory
of algebraic quadratic forms.



52 CHAPTER 1. QUADRATIC FORMS OVER FIELDS

So, let us start. To any field F' we associate a graded ring
K.F = (KyF, K, F, KyF, ...)

as follows. By definition, Ky = Z and K F is the multiplicative group F written additively. To
keep notation straight, we introduce the canonical isomorphism

l: F — K\F,

where [(ab) = l(a) + 1(b) (the “logarithm”). Then K, F is defined to be the quotient of the tensor
algebra
(Z, K71 F,K1F ® K\F, K1F @ K1 F ® K\ F, ...)

by the ideal generated by all [(a) ® [(—a), with a # 0,1. In other words each K,F, n > 2, is the
quotient of the n-fold tensor product K1 F ® K1 F ® ... ® K1 F by the subgroup generated by all
l(a1) ®...®1(a,) such that a; + a;+1 = 1 for some 7. If mentally we relate [(a) with the Pfister form
(1, —a), this relation is just saying that “an n-fold hyperbolic Pfister form is zero in I"/I"*1.”

In terms of generators and relations, K,F' can be described as the associative ring with unit
which is generated by the symbols [(a), a € F, subject only to the defining relations I(ab) =
l(a) +1(b) and l(a)l(—a) = 0.

Think in K,F in terms of relations between Pfister forms is not worthless: setting k,F =
K,F/2K, F, we have the following:

Theorem 1.12.1 ([Mil70] Theorem 4.1). There is one and only one homomorphism
Sp ko F — I"F/T"TF

which carries each product l(ay)...l(ay) in k, F to {{a1, ...,a,)) modulo "1 F. The homomorphisms
S0, 81 and sy are bijective and every s, is surjective.

Theorem [1.12.1| surprisingly (or not) is saying that k.F works almost like the graded Witt ring
W.(F) = (W(F)/IF,IF/I*F,...,I"F/I""'F, ..).

But we have even more interesting connections: to any field F', let Fs be a separable closure
and G = G = Galp(F}s) be the Galois group of Fs over F. Then the exact sequence

1 {1} = Fg > Fg — 1
upon which G operates, leads to an exact sequence
HY(G,F) 5 HY(G, Fy) — H'(G,{£1}) - H'(G, F\)

of cohomology groups, where the right hand group is zero. Idenfying the first two groups with F,
and substituing Z /27 for {41}, this yields

F3FS5 HYG,2/22) — 0.
The quotient F'/F? can of course be identified with H'(G,Z/27Z).

Theorem 1.12.2 (|Mil70] Lemma 6.1). The isomorphism l(a) + §(a) from ki F to HY(G,Z/27)
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extends uniquely to a graded ring homomorphism
hy : kp — H*(G,Z/27).
With these two results, a natural question is:
Are s, and h, isomorphisms?

This question is known as “Milnor’s Conjecture”. A positive answer is given by V. Voevodsky
and colaborators late 1990’s, given to us a “triangle”

Milnor’s
K-Theory

Galois Co- Quadratic
homology Forms

These relations are being object of research even today.
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Chapter 2

The Reduced Theory of Quadratic

Forms

Even though the reduced theory is not yet an “abstract theory”, it is an immediate generaliza-
tion of the concepts in chapter 1. In this chapter, we work in “Lam’s triangle” of reduced theory

of quadratic forms:
Forms

In our context, chapter 1 is the “Heart” and this chapter is the “Blood” of the generalizations
in the next chapters. Here, we follow chapters 1-7 of Lam’s book [Lam83] and for valuations, we
follow chapter 4 of [End72]. Some examples of valuations are extracted from [Efr06].

2.1 Preorderings and Orderings

Firstly, we need to develop more the theory of orderings on a ﬁeldE].

Definition 2.1.1. A preordering on a field F is a proper subset T C F such that F2 C T, T+T C T
andT -T CT.

Note that, in view of the last three properties of a preordering, the requirement that 7' # F
may be stregthened into —1 ¢ T. For, if —1 € T, then for any z € F, we can write z = y? — 22,
where y = (1 +2)/2 and z = (1 — z)/2, and so we would have x € F2 +T-F2CT+T-T CT.

For any preordering T C F, the set T = T \ {0} is a subgroup of the multiplicative group F
(because 1 € F2 C T and if € T, then 27! = (1) -z € T).

Let T' C F be a preordering, and {a; : i € I} be a set of elements in . We shall let T'[a; : ¢ € I]
denote the subsemiring of F' generated by T and {a; : i € I}. This consists of all “polynomial
expressions” in {a; : i € I} with elements of T" as “coefficients”. This will be a preordering in F iff

it does not contain —1. In the special case when [ is a singleton set, note that T'[a] =T + aT.

LOf course, all fields of this chapter are considered with characteristic different of 2.

95
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Lemma 2.1.2. Let T C F be a preordering and a € F. Then Tla] is a preordering iff a ¢ —T.

Proof. If a ¢ =T, we claim that —1 ¢ T'a]. In fact, if we could write —1 = #; + t2a for some
ti,ta € T, then —toa =1+t € T, and so a € —T, a contradiction. Then T[a] is a preordering.
If a € =T, then T[a] contains (—a) - @ and hence —1, so T'[a] is not a preordering. O

Corollary 2.1.3. A preordering T C F is maximal (with respect to set-theoretic inclusion) iff T
s and ordering.

Proof. (=) If T is a maximal preordering, then for any a ¢ T', the above lemma implies a € —T.
This means that F' =T U (—T'), so T is an ordering in F.

(<) Suppose that there exist another proper preordering 77, T 2 T’ and an element x €
T'N(=T), x #0. Then —1 = (z71)? -2 - 27! € T', contradiction. O

Corollary 2.1.4. Any preordering T' C F' is contained in at least one ordering of F'.

Proof. Applying the Zorn’s lemma to the family F of all preorderings containing 7. Pick any
member P € F which is maximal with respect to inclusion. By corollary 2.1.3] P is an ordering of
F' containing 7. O

Theorem 2.1.5 (Artin-Schreier). A field is formally real iff it has an ordering.

Proof. We already know that a field F' is formally real iff F' has a preordering. Then, applying the
above corollary we have the desired result. O

For any preordering T' C F, we shall write X7 for the (nonempty) subset of Xr consisting of
all orderings P O T. We claim that X7 is a closed set of Xg, so X7 will also be a Boolean space
with induced topology. To prove our claim, let P € Xz \ X7, and fix an element a € T'\ P. Then
—a € P and H(—a) is a neighborhood of P disjoint from X7. This shows that Xp \ X7 is open,
so X is closed. Note that a subbasis for the topology of Xt is given by the relative Harrison sets
HT(CL) = H(a)ﬂXT = {P eXr:aé€ P}

Theorem 2.1.6. For any preordering T' C F', we have T = nPeXT =

Proof. Tt is suffices to show that (\pcx, P C T. Let a ¢ T. Then by lemma T[—a] is a
preordering and by corollary there exists an ordering Py D T[—a]. Since —a € Py, we have

a ¢ Po,soaé(Npex, P O

In the special case when T = Y F?, the theorem above was first proved by Artin. In this case,
the theorem states that, in a formally real field F', an element a € F' is a sum of squares in F iff
it is nonnegative in every ordering of F' (this statement is, of course, also correct for nonreal fields
F, since, in that case, > F? = F and Xr is empty). We shall refer to theorem as Artin’s
Theorem.

Note that the intersection of any nonempty family of preorderings is always a preordering.
conversely, Artin’s Theorem tels us that any preordering T' C F' arises in this way.

For the later reference, we record the following consequence of

Corollary 2.1.7. Let T C T’ be two preorderings in F. Then:

i - There exists a preordering T" such that T CT" CT' and [T": T"] = 2.
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i - T' is minimal (as a preordering) over T iff [T" : T] = 2
Proof.

i- By we have X7 C Xp. Pick any ordering P € Xr \ X7 and let 7" : PNT'. We have
TCT'CT, and [[':T") = [F: P|=2.

ii - Follow by item (i).
]
Suppose T'C 7" and T” is minimal over T. Then, for any a € T’, the following equation holds:
Tal|=T+4+T -a=TUT -a.

In fact, if @ € T, both sides are equal to T, while, if a € T"\ T, both sides are equal to 7" (in view
of 2.1.7).This leads to a useful definition:

Definition 2.1.8. For a given preordering T', an element a € F' is said to be T-rigid if T +T-a =

TUT -a, ie if [T(a) : T] < 2.

Elements of T" are always T-rigid. For some preorderings 7', it may happens that T is already
the set of all T-rigid elements. This is the case, for instance, if T' is the weak preordering > F
in the field F' = Q(x). Note that if 7" is a preordering such that all T-rigid elements are already
in T, then no preordering 7" 2 T can be minimal over T, and so the set of preorderings properly
containing 7" will not satisfy the descending chain condition.

The notion of T-rigid elements will emerge again to play a central role when we study the class
of preorderings called “fans”.

2.2 The Reduced Theory

The main goal of this section is to set up a theory of quadratic forms “relative to” a preordering
T (or “reduced” modulo T"). This theory will lead to a relative Witt ring, denoted by Wy F', which
shares many of the formal properties of the ordinary Witt ring W F. Actually, W F turns out to
be isomorphic to a certain quotient ring of W F', namely

WrF = WF/Y WF-(1,-t).
teT

Therefore, one could legitimately take this to be the definition of W F. Such a definition,
however, would be awkward to work with and would obscure the fact that there is actually a
reasonable quadratic form theory naturally associated with WpF'. For better motivation, one
should therefore first develop the relevant “reduced” quadratic form theory relative to T', and then
construct the Witt ring Wr F from it.

In the following, let T" be a fixed preordering in F'. By a (diagonal) T'-form, of dimension n, we
shall mean a formal expression ¢ = (a1, ..., an)7, where ay, ..., a, € F. If the preordering T is clear
from the context, we shall often drop the subscript 7" and simply write ¢ = (ay, ..., a,). For such
T-form ¢, and any ordering P € X7, we define the P-signature of ¢ by

n
senp(p) = 3 senp(a;) € Z,
=1
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where

lifae P,
=9 g p

Follow that sgnp(¢) = dim ¢ (mod 2).
We can define the orthogonal sum and the tensor product of T-forms as we did for ordinary
forms, namely:

<a1, ceey an> 1 <b1, .

yom) i=(a1, ..., an, b1, ..., by,
<CL1, ...,an> & <b1, )

. m> ::<a1b1, ceey aibj, ceey anbm>
A straightforward calculation shows that

sgnp(p L 9) =sgnp(p) + sgnp(i))
sgnp(p ® 1) = sgnp(p)sgnp(1)
for any T-forms ¢, and any ordering P € Xp. To simplify the notation, we shall use the same

conventions adopted in chapter 1: write ¢ - %, or just @, for the tensor product ¢ ® . For any
natural number r, we write r - ¢ or just rp for the r-fold orthogonal sum ¢ L ... 1 ¢.

Definition 2.2.1. We say that two T-forms ¢, are T-isometric (in symbols, ¢ =1 V) if ¢,V
have the same dimension and the same signature with respect to any P € X/T.

From this definition, we can verify that following two types of T-isometries:

(a1, ..oy an)7 =7 (Q1t1, .oy antp) T (a5 € F,ty € T), (2.1)
(a,b)p =7 (a+b,ab(a + b))7 (a,b,a + b € F). (2.2)

These two basics types of T-isometries are particularly important, because it will turn out later
that they can be used to “account for” all T-isometries.
Another immediate consequence of is the Witt’s Cancellation:

© D Y1 Er o Db = Y1 S Pa.

A T-form ¢ is said to be T'-hyperbolic (or hyperbolic over T') if sgnp(p) = 0 for every P € Xrp.
Such a form must have even dimension. If dim ¢ = 2n, we have in fact ¢ = (1, —1)7, i.e, up to
T-isometry, there is only one hyperbolic T-form of dimension 2n. The binary hyperbolic T-form
(1, —1)p is called the T-hyperbolic plane and is denoted by Hrp.

Definition 2.2.2. A T-form ¢ = (a1, ...,an)7 is said to be T-isotropic (or isotropic over T) if
there exist t1,...,t, € T, not all zero, such that aity + ... + apty, = 0. If such tis does not exist, ¢
1s said to be T-anisotropic.

To illustrate this notion of T-isotropy, consider the case when 7T is the weak preordering > F?
in a formally real field F. To say that ¢ above is (Y. F?)-isotropic means that there exists an
equation

n
Zai(m?l +..+ xfn) =0,
i=1

where the x;;’s are not all zero. This means, therefore, that, for some natural number r, r - ¢ is
isotropic as an ordinary quadratic form. If this is the case, we shall say that the form ¢ is weakly
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isotropic. If F' happens to be a pythagorean field (i.e, " F? = F?), this will, of course, imply that

¢ is isotropic. If F is not pythagorean, the implication may no longer be true: for x2 + 23 ¢ F?,

the form ¢ = (1, —(2? + 23)) is weakly isotropic (with 2 = 2(1, —1)), but ¢ is anisotropic.
Returning to T-forms ¢ = (ay,...,an)7 over a general preordering T', we define D7 (p) to be

the set
Dr(p) = {Zaiti 20ty oty € T} - (ZT : ai) \ {0}
=1

This is called the set of values of the T-form ¢; it is a union of T-cosets in F. If b € Dp(y), we
shall say that b is T-represented by ¢ (or represented by ¢ over T'). It will turn out later that the
set Dr(p) depends only on the T-isometry class of ¢, but this is not at all clear from the definition
above.

Proposition 2.2.3. Let ¢ = (a1, ...,an)7. Then:

1 - For any ty,...,t, € T,
DT(<t17 "'at'f)(p) = DT(()D) = DT(T : 90)

11 - For any natural number r, @ is T-isotropic iff r - ¢ is T-isotropic.

Wi - @ is T-isotropic iff, for suitable ty,...,tn € T, (t1, ..oy tr){an, ..., an) is isotropic as an ordinary
quadratic form.

Proof. All three conclusions follow from the axioms T'-T C T, T 4+ T C T for the preordering T
and the definition of T-representation. O

Note that the conclusion (iii) above relates the notion of T-isotropy to the usual notion of
isotropy for quadratic forms. The next result, which is considerably deeper, gives the analog of
this for the notion of hyperbolicity.

Theorem 2.2.4. For any T-form p, the following statements are equivalent:
i - s hyperbolic over T.

i - ((t1, .y t)) o =0 € WF for somety,....t, € T.

@i - (t1,...,t,) o =0 € WF for somety,....t, € T.

Proof. (ii)=-(iii) and (iii)=-(i) are immediate. So we need only prove (i)=(ii). The proof will be
based on the following “Witt Formula”, which holds in the Witt ring W F for all a; € F"

2"(ay, ..., apn) = 2(51, o eny((e1a1, ..., enan)) € WE. (2.3)

€

Here ¢ ranges over all n-tuples (1, ...,&,) with &; € £1. To prove first note that £;((g;a;)) =
a;{{eia;)), so
<81, ceny 8n><<51a1, ceey snan>> = <CL1, ceey an><<51a1, ceny 8nan>>.

Therefore, we are reduced to proving that

Z<<51a17 ey Enlp)) = 2" (1) € WF,

£
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for all a; € F.. This is checked by induction on n. For n = 1, the sum is ((a1)) + ((—ay1)) = 2(1) €
W F. Inductively, if we let &/ = (e1,...,€,-1), then the sum breaks up into

Z«Elah ey En—1an—1, an>> + Z<<51a17 ey En—1an—1, _an>>

5/

= {(e1a1, s enm1an-1)) ({an)) + ((—an)))

= 22«51%» ey En—1Gp_1)) = 2"(1) € WF.

Now, let ¢ = (ai,...,an)r be T-hyperbolic. To get (ii), we shall try to apply For a given
n-tuple € = (e1,...,&,) as above, we have the following two possible cases:

Case 1. T[e1a1,...,ena,] # F. In this case, there exists an ordering P D T[ejay,...,enay]. For
this P, we have sgnp(e;) = sgnp(a;) for all i, so sgnp((€1,...,en)) = sgnp(¢) = 0. Thus, half
of the ¢;’s are 1’s and the other half are —1’s. This gives (¢1,...,e,) = 0 € WF, so we can
drop the corresponding term on the right side of

Case 2. T[e1a1,...,ena,] = F. Note that T[ejai,...,enan] \ {0} is just Dr(p:) where ¢, =
£1Q1,...,EnGy); in particular —1 € Dp(p:). This implies that 2¢. is T-isotropic, so by
(ii) and (iii), there exist t/,...,#/, € T such that (), ..., ). is isotropic as an ordinary
quadratic form. Hence ((t},...,t,,€1a1, ...,€nay)) is isotropic. Since this is a Pfister form, it
must be hyperbolic. Therefore, multiplying the twos sides of by a suitably chosen Pfister

form ((t1,...,t,)) (t; € T), we get ({t1,....t;))o =0€ WF.

O]

Corollary 2.2.5. If ¢ is T-hyperbolic, then ¢ is T-isotropic. The converse holds if ¢ is a Pfister
form.

Proof. For ordinary quadratic forms, we know that hyperbolicity does imply isotropy. There-
fore, the first conclusion follows from [2.2.3|(iii) and [2.2.4{iii). For the second conclusion, let
© = ((b1, ..., b)) be T-isotropic. By definition, there is an equation

to 4+ t1b1 + ... + tpby + t12b1bo + ... =0,

where t;,%;;,... € T are not all zero. Consider any P € X7. The equation above implies that the
b;’s cannot all be in P, say by € —P. Then

sgnp(p) = sgnp(l, b1)sgnp((b, ..., b)) = 0,
so ¢ is T-hyperbolic. O
We can now prove the following powerful

Theorem 2.2.6 (Representation Criteria). Let by € F and ¢ = (ay,...,an)7. Then by € Dyp(y) iff
there exists by, ..., b, € F such that ¢ = (by,ba, ..., bp)7. In particular, Dr(p) depends only on the
T-isometry class of .

Proof. First assume by € Dp(p), say by = a1ty + ... + apty, where t; € T. We may assume that
aity + ... + ayt, # 0 for all r (for otherwise we can just work with (a,41,...,a,)). Using repeatedly
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the two basic types of T-isometries in and we obtain

(%2 gT altl, ceey antn)

=7 (ai1t] + asgto, alagtltg(altl + a2t2), asts, ..., antn>

=1 (a1t + agte, agts, arastita(arts + agte), ast, ..., anty)

o~ o~~~

=7 (a1t; + agts + as, astz(aits + asta)(a1ts + agte + asts), ajastite(arts + asta), asts, ..., anty)

and so on. Repeating this process, we get ¢ =p (b1, ba, ..., by) for suitable bo, ..., b, € F.
Conversely, assume we have ¢ =p (by, ba, ..., by)r. Then

<a1, veey Qg —bl, ceny _bn>T
is T-hyperbolic. By [2.2.4(iii), there exist 1, ...,t, € T such that
(tl, ...,tr><a1, ceny an) = <t1, ...,t7~><b1, ey bn> e WF.

Since the left hand side and the right hand side above are forms of the same dimension, they must
be isometric (as ordinary forms). In particular, t161 € Dr({t1,...,tr)¢). In view of [2.2.3(i), this
implies that by € t7' D7 (p) = Dr(¢p). O

Corollary 2.2.7. For any T-form ¢, the following statements are equivalent:
1 - @ 18 T-isotropic;

1 - @ Zp Hy L o for some T-form 1;

1 - @ 18 T-universal;

v - There exists an element b € F' such that both +b € Dr(p).

Proof. (ii)=(iii)=-(iv) is immediate. .
(iv)=(1) From b € Dr(p), by we get ¢ =p (b,as,...,an)r for suitable as,...,a, € F.
Similarly, from —b € Dp(¢) we get ¢ = (=b, ca, ..., ¢, )7 for suitable co, ..., ¢, € F. Then

20 2 (b, —b,a,...,ap, C2, ..., Cp )T

that is T-isotropic. By (ii) we conclude that ¢ is itself T-isotropic.
(i)=(ii) If ¢ = (a1, ...,an)7 is T-isotropic, write ait; + ... + ant, = 0 where ¢; € T, and say
t1 # 0. Then
—laity = asto + ... + anty € DT(CLQ, cees an),

so by (a2, ...,an)r =1 (—ayt1)r L 1 for some T-form 1. Therefore
%) gT <a1t1, —a1t1>T i 1[) %T <1, —1>T iR Ql}
O

Note that the characterizations (iii),(iv) above for T-isotropy are special features in the “mod
T” theory; they do not have analogues in the “absolute” theory of quadratic forms.

Corollary 2.2.8. For any T-form ¢, there exists a “Witt decomposition” p = b L rHy, where
r > 0 and ¢ is T-anisotropic. Here, r is uniquely determined by ¢, and so is the T-isometry class
of . We call v the Witt index of ¢ (over T'), and call v the T-anisotropic part of .
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Proof. This proof follows the same sketch of proof of theorem [1.2.3

For existence part, if ¢ is anisotropic, take ¢» = ¢ and r = 0. Let ¢ is isotropic, say ¢ =2
(I, =1)p L 1. Observe that dimvyy < dimp. Then we repeat this analysis for ¢: if ¢ is
anisotropic, take ¥ = 1 and r = 1, if is not, write 1 = (1,—1)7 L 19 (and of course, ¢ =
2(1, —1)p L 19, with dim @9 < dim 1 < dim)). After a finite number of steps (instead, maximum
dim ¢/2), we achieve a decomposition

® gT T<]-7 _1> L 1/}7‘)

where 1, is anisotropic (or 0). This proves the existence part.
To estabilish the uniqueness part, suppose ¢ has another Witt decomposition ¢ =7 s(1, —1)p L
Y. So
r(1,—1) L =ps(l,—1) Lo/,

and if r < s, by Witt’s cancellation we have ¢ = (s — r)(1,—1) L ¢/, contradicting the fact that
1) is anisotropic. Similarly for s < r, then we force r = s. Now, the resulting equation is

r(L,—1) Lo &g s(1,-1) L,
and by Witt’s cancellation (again!) we get ¢ =p ', finalizing the proof. O

Having developed the “mod T” theory thus far, it is now an easy matter to set up the relative
Witt ring WrF and derive its basic properties. Since the procedure here is substantially the same
as that used for ordinary Witt ring WF', we can suppress most of the details in the following
discussion.

By definition, W F' is the Grothendieck group of the T-isometry classes of all T-forms modulo
the ideal generated by the T-hyperbolic plane. Addition in the Grothendieck group is given by
the orthogonal sum of T-forms. Definining multiplication in W F by using the tensor product
of T-forms, we make WrF into a commutative ring (with identity (1)7). The elements of WrF
are in a one-one correspondence with the T-isometry classes of T-anisotropic forms (including,
by convention, the “zero form”). Two T-forms ¢, ¢’ will give the same element in W F iff their
T-anisotropic parts are T-isometric (in which case we say that ¢, ¢’ are “Witt similar”, over T).
Just as in the absolute theory, it follows that

¢ Zp o iff dim(p) = dim(¢)) and ¢ =1 € WpF. (2.4)

In particular, (a) = (b) if and only if ab € T.

There is, however, one main phenomenon which distinguishes Wr F' from WF'. For any T-form
@ and any integer r > 1, r - ¢ is T-hyperbolic iff ¢ is; this implies that Wz F' is never torsion-free,
unless F' is formally real and pythagorean.

By viewing a form (ay,...,a,) as a T-form, we can define a surjective ring homomorphism
WF — WrF. The image of IF under this homomorphism is ITF, the ideal of T-isometry classes
of even-dimensional T-forms. Again, the n-th power I72F' is additively generated by the T-Pfister
forms ((a1,...,an))r (a; € F). The isomorphisms WpF/IrF = 7 /27, IrF/I2F = F/T can be
checked in the same way as in the absolute theory. For the second isomorphism, however, we need
to know that there is a good notion of discriminants for T-forms. Since this requires a separate
argument, we include it in the following

Proposition 2.2.9. For any T-form ¢ = (a1, ...,a,)7, det @ == ay - ... - ap - T € F/T is uniquely
determined by the T-isometry class of .
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Proof. Suppose ¢ = ¢ = (b1,....bn)T, and let ¢ = ay...ay, d = by...b,. We want to show that
cd € T; by Artin’s Theorem [2.1.6, it suffices to show that sgnp(c) = sgnp(d) for every P € Xr.
Given P, suppose (say) ai,...,ag € =P, ar41,...,a4n € P, by, ....;bs € =P, bsy1,...,b, € P. Since

n—2r=sgup(p) = sgup(P) =n — 2s,

we have r = s, hence
senp(c) = (1) = (~1)° = sgnp(d).

Using the idea of the discriminant, we can also compute U(WrF), the group of units in W F.
Proposition 2.2.10. U(WrF) = {{a)r : a € F}.

Proof. Tt suffices to show that, if o, are T-forms such that pyp =1 € W F, then ¢ = (a) € WpF
for some a € F. For any P € Xr, we have sgnp(p)sgnp(y) = 1 so sgnp(p) = £1. In particular,
¢ has odd dimension, say ¢ = (ai, ..., a2n+1). We claim that a := (—1)"ay...a2,4+1 (the “signed”
discriminant) is what we want. To see this, let P € Xp. We may assume that aq,...,a, € —P, and
Anpgls--e) G2 € P. Then

sgnpa = (—1)"(—1)"sgnpagnt1 = sgnp(azn+1) = sgnp(p).

This implies that ¢ =7 n(l,—1)7 L (a)p, so ¢ = (a)r € WrF. O

In the proof above, we have implicitly used the idea that a T-form ¢ may be “identified” with
the signature function it defines on the Boolean space Xr. We shall now formulate this idea more
precisely. In the following, we shall write C'(Xr,Z) for the ring of continuous functions from X
to Z. Whenever we use this notation, it will always be understood that Z is given the discrete
topology.

Since X7 is compact, the image of any continuous function f : X7 — Z must be a finite
set, and, for r ranging over this image, the sets f~1(r) form a finite partition of X7 into clopens
sets. Conversely, given any finite partition of X7 into clopens C1, ..., Ck, we can define continuous
functions f € C(Xp,Z) by sending C1,...,Ck to arbitrary integers nq,...,ni. Therefore, as an
abelian group, C'(Xr,Z) is generated by the characteristic functions of the clopen sets in Xr.

For any T-form ¢, we can define its “signature function” ¢ : Xp — Z by ¢(P) = sgnp(y), for
every P € Xp. Follows that R X A .

¢ LY =¢+¢and Yy = @i
In case ¢ is a unary form (a)7, we have ¢(X7) C {£1}, with
¢~ '(1) = Hy(a) and ¢~ ' (—1) = Hp(—a). (2.5)

Therefore ¢ is continuous. By the first formula in [2.5] we see that the same is true for higher-
dimensional T-forms ¢.

If we define c¢r(p) = ¢ for any T-form ¢, we get a well-defined map cr : WrF — C(Xr,Z)
(the “cap” map). By cr is a ring homomorphism. If c¢p(¢) = 0, then by definition ¢ is a
T-hyperbolic form, so ¢ = 0 € WrF': this shows that ¢y is a monomorphism. Now consider the
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diagram

Wi F C(X7,7)

cr
where er(ay,...,an) = (a1, ...,an), and ¢ = croep.
Theorem 2.2.11 (Pfister, Becker,...). Ker(er) = Ker(ep) = WF/ Y, .+ WF - (1,~t).

Proof. Since cp is injective, we have Ker(ep) = Ker(¢r) so it suffices to compute the latter. Of
course, it contains 4 := Y7, WF - (1,~t). Conversely, let ¢ = (a1,...,a,) € ker(cr); we shall
show that ¢ € 4 by induction on n. The case n = 0 is immediate. If n > 0, since ¢ is T-hyperbolic
as a T-form, there exists an equation »_ t;a; = 0 where t; € T are not all zero (see . Let

’ a; if ti =0
a, =
’ tiai if ti 7& 0
and consider ¢’ = (da}, ...,al,). Working in WF', we have
p—¢ = ai(l,—t;) €4,
70

so it suffices to show that ¢’ € 4. Since ¢’ is isotropic, we have ¢’ =p (1,—1) L ¢” for some
(n — 2)-dimensional form ¢”. Then

er(¢”) =er(¢’) =er(p) =0,
so by the inductive hypothesis, we have ¢” € 4, hence ¢ € 4. O

In the case when T' = ZFQ. Thus, we get back Pfister Local-Global Principle, Note
that if w is a sum of 2" squares, then 2" (1, —w) is isotropic, and hence (by Pfister form theory)
hyperbolic. This shows that the kernel above is in W3 F', the torsion subgroup of W F'. On the other
hand, since C(Xp, Z) is torsion-free, W F' must be contained in ker(WF — C(Xp,Z)). Therefore,
this kernel equals Wi F', and we get

WrF = WF/Y WF (1, -w) = WF/W,F

for T =5 F2. This ring, usually denoted by W,.qF is called the reduced Witt ring of F.
Returning to a general preordering 7', we record for later reference the following consequence

of 2211t

Corollary 2.2.12. WrF is isomorphic to the group G with generators [a], a € F, and relations
1. [1] 4+ [-1] =0,
2. [a] + [b] = [a + D] + [ab(a + )], a,b,a +bE F,
3. la]=lat],ac F,teT.

Proof. 1If we use only relations of the type (1), (2), together with the following special case of (3):

(3) [a] = [ac®] (a,c € F),
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the group we get is isomorphic to WF, via [a] — (a) (see[1.3.18)). According to [2.2.11 WrF is
isomorphic to WF modulo the subgroup generated by (a)(1, —t) = (a,—at) (a € F,t € T), and
this finalize the proof. O

Another way to prove is to first estabilish a “chain-equivalence” theorem for T-isometries,
generalizing Witt’s Chain Equivalence Theorem for ordinary isometries . To this end, we
define the notion of chain-T-equivalence as follows: given two T-forms ¢, ¢ of the same dimension
n,  is chain-T-equivalent to v if we can change ¢ to ¥ by a finite sequence of transformations of
the following types:

A - (a1, ., an)r — (t1a1, ..., than) (t; € T);

B - (a1, @iy ey @y ooy an)7 = (@1, o0y @5+ @Gy ey @i (a5 + @), ey Gn) Ty
(ai,ai—l—ajeF, 1<i<j<n);

C- <a1, vy Ay ey Qg ...,an>T — <a1, vy Ay eny Qg ...,an>T.

If ¢ is chain-T-equivalent to 9 then ¢ =27 1. Not surprisingly, we have the following analog of
Witt’s Chain Equivalence Theorem:

Theorem 2.2.13. Let ¢ = (a1,...,an)7 and ¥ = (by,....by)r. If o Zp 1 then ¢ is chain T-
equivalent to .

Proof. Since the symmetric group S, is generated by transpositions, (C) implies that (ay, ..., an)7
is chain-T-equivalent to <a0(1), ...,ag(n)>T for any permutation o. If ¢ Zp 1, implies that
b1 € Dr(p), so, after permuting the a;’s, we may assume that by = tja; + ... + tra, (for some
r < n) where no subsum is equal to zero, and t; € T. Applying the transformations (A) and
(B) repeatedly (as we made in the proof of , we see that ¢ is chain-T-equivalent to some
(b1,dly, ...,al ). After cancelling (by)r, we have

oy Ay
<a'2, ...,a%)T %T <b2, ---abn>T

so, the proof proceeds by induction. ]

In the definition of chain-T-equivalence, one could have dropped the transformations of type
(C) without affecting the definition. To see this, it suffices to show that (a,b)r can be changed
into (b, a)r by transformations of the type (A), (B). If a + b = 0, we are done by

(a,—a) “@ (a, —2a) Sy (—a,2a®) “@ (—a,a).

If ¢c:=a+b# 0, we have instead
(a,b) = (¢, abc) “) (b%c, abc) & (bc?,bc? - b2c - abe) “@ (b,a).

Using [2.2.13] we could give another proof for[2.2.12} for the group G in[2.2.12] we have a group
homomorphism f : G — WrF defined by fla] = (a)r € WrF'. By [2.2.13] we check that

g{ay, ...;apn)r) = [a1] + ... + [an] € G

gives a well-defined inverse for f. Therefore f is an isomorphism.
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2.3 Some basic stuff about Valuations

We already talk about orderings and quadratic forms. To complet our “Lam’s tripé” we shall
talk about valuations. The concept of valuations are like an Hydra: have many heads and each
time you cut one, three or more borns again! Here, we restrict our atention to three heads of this
“Hydra”: Krull valuations, valuation rings and places.

So, let us start with valuation rings.

Definition 2.3.1. A subring A of a field K is called a valuation ring of K, ifr € Aorz™' € A
for any non-zero x € K. Is immediate that K is the quotient field of A.

A non-trivial binary relation [C K x K (i,e, |# K x K) of a field K is a called a divisibility if:
i- | is a preordering (i.e, is reflexive and transitive);
ii-z|y=xz|yzforall z,y,z € K;
fli-z|yando|z=2z|y—zforallz,y,z € K.

Note that 2 | 0 and does not hold 0 |  for any € K. Beside this, the divisibilities | of K are in
one-to-one correspondence with the subrings D of K by

{z|lyeyr'eDand D={z € K:1|x}.
Moreover, Up = {z € D : x| 1} is the group of units of D.

Theorem 2.3.2. A subring R of K is a valuation ring of K if and only if the corresponding
divisibility | is an ordering.

Proof. (=) Suppose R is a valuation ring and let z t y. If x = 0, then y | . If x # 0, then
yr~ ' ¢ R,so (yr~")"' =xy~' € R. Then 1| zy~! and y | x, showing that | is an ordering.

(<) Suppose | is an ordering an let € K \ R with 1 {/x. Since | is an ordering, z | 1, and
1-27! € R. Then R is a valuation ring. O

A subset M of K is called R-stable if R- M C M, ie, ax € M for all a € R and x € M. We
show that in the case of a valuation ring R any R-stable non-empty subset of R (resp. K) is an
ideal of R (resp. an R-submodule of K) and this property characterizes valuation rings.

Theorem 2.3.3. Let K be the quotient field of R and J (resp. J ) the set of all R-stable non-empty
subsets of R (resp. K). Then the following conditions are equivalent:

i - R is a valuation ring of K;
1 - J s totally ordered;
14 - J is totally ordered;
iv - The subset of J consisting of all principal ideals of R is totally ordered.
In this case, J (resp. J) is the set of all ideals of R (resp. R-submodules of K ).

Proof. (i)=-(ii) Suppose that M,N € J. M ¢ N and N ¢ M. Let x € M\ N and y € N\ M.
Since # = (vy )y ¢ N we have zy~! ¢ R, and since y = (yz~ )z ¢ M, we have yx~! ¢ R;
therefore R is not a valuation ring of K.

(ii)=-(iii) Is immediate since every R-stable set in J provides an R-stable set in J.
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(iii)=(iv) Is immediate since this is a subset of a (totally) ordered set.

(iv)=(i) Let z =a/be K,a#b,a,b#0. f x ¢ R, then R-a ¢ R-b. By (iv), R-bC R - a,
and then 7! = b/a € R. Hence R is a valuation ring of K.

For the last statement, it suffices to show that for any M € J and z,y € M \ {0} we have
r—y€M. Infact,if R-2 CR-ythenz —y=(zy ' —1)-y€ R-y C M; if R-2 ¢ R-y, then
R-yCR-zandz—y=(1—-yz HrcR-2C M. O

Corollary 2.3.4. Any valuation ring is a local ring.

Proof. For any valuation ring A the set A\ U4 is A-stable, hence by we get that A\ Uy is an
ideal. O

Valuation rings are not noetherian, in general. However,
Corollary 2.3.5. Any finitely generated ideal of a valuation ring A is principal.

Proof. Let 4 = A-a1 + ...+ A-ap. By {A-ay,..,A- ap} has a largest element, say
A-ay DA a;,i=1,...m. Then U C A-a; C il O

We shall use the fact that, for any subring R of K and any prime ideal p of R, the prime ideals
q of the ring of fractions R, are in one-to-one correspondence with those prime ideals v of R which
are contained in p, by q = v- Ry and v = q N R. In particular, R, is a local ring with the maximal
ideal pR,.

Theorem 2.3.6. Let A be a valuation ring of K, B the set of all prime ideals p of A and B the
set of all subrings B of K which contains A. Then any B € B is a valuation ring of K with
mp C A, and there is an inclusion inverting one-to-one correspondence B < B given by p = mp

and B = A,.

Proof. Let B € B. For any z € K, x ¢ B implies ¢ A, hence 27! € A C B, whereas = € mp
implies 7! ¢ B, hence = € A.

For any B € B, mp N A = mp is a prime ideal of A, with Ay, C B. Even Ay, = B, since if
z€B\Athenz '€ AC B, 27! ¢ mp, hence x € Ap,. For any b € B we have A, € B, and

mAb:mAbﬂA:b-AbﬂA:b.

Finally, by construction (i.e, by general properties of ideals and fractions) the correspondence
B > B is inclusion reversing. By B is (totally) ordered, hence so is B. O

Definition 2.3.7. A Krull valuation of a field K is a mapping v : K — T'U{oc} onto a (totally)
ordered abelian group I', the value group of v, satisfying the axioms:

VO-v(z)=c0cez=0foralzcK;
V1 - v(zy) = v(z) +v(y) for any z,y € K;
V2 - v(z +y) > min{v(z),v(y)} forz,y € K.

Two Krull valuations vy, vo of K with the value groups I'y, I's respectively, are called equivalent
if there is an isomorphism (of ordered groups) ¢ : I'y — I'y such that vy = towv; (with the convention
t(o00) = 00). Note that any bijective order-preserving homomorphism I'y — T’y is an isomorphism.
In particular, its inverse is also order-preserving.
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Theorem 2.3.8. For any Krull valuation v of K, the set A, = {x € K : v(x) > 0} is a valuation
ring of K.

The mapping v — A, induces a bijection from the set of all equivalence classes of Krull valua-
tions of K onto the set of all valuation rings of K.

Proof. A, is a valuation ring of K, since x € K \ A, implies v(z) < 0, and v(z~!) > 0, s0 x71 € A,
For equivalent vy, v2 we have vi(x) > 0 iff vo(z) > 0 for all z € K, hence A,, = A,,.

For any valuation ring A of K we define a (the canonical) Krull valuation as follows: the
divisibility of K corresponding to A is an ordering of the multiplicative group K of K, by
The factor group 'y = K /U4 is an ordered abelian group; we write it additively and denote its
ordering by <. The canonical homomorphism v4 : K — I'4, extended to K by setting v 4(0) = o0,
is a Krull valuation of K with value group I'y and A, = A. In fact, vq : K — T'y U{oo} is
surjective and satisfies VO and V1, as well as z € A < v(z) > 0 for all z € K. Now, let z,y € K
such that v(x) < v(y). Then x7'y € A and so 1 + 271y € A. Hence

va(z +y) = va(e(l +271y)) = va(z) + va(l +27"y) 2 va(z) = min{v(z), v(y)};

therefore V2 is satisfied too. We have still to show that if A = A, then v is equivalent to A,.
In fact, since v is surjective and has kernel Uy, it induces an ordering preserving bijection ¢ from
'y = K/Uy4 onto the value group T' of v, and this is even an isomorphism ¢ : I'y — T" such that
V=10v4. ]

The preceding proof shows that the Krull valuations of K are essentially (up to equivalence)
the canonical mappings vq: K —» Ty = K /U4 corresponding to valuation rings A of K. In fact, it
would be possible (but sometimes inconvenient) to work only with these canonical Krull valuations.

Here are some examples of valuations.

Example 2.3.9 (Valuations on Q). Let p be a prime number. We define the p-adic valuation
v, on Q by
vp(p'n/p*m) =r—s

for n,m € Z are not divisible by p. It is a discrete valuatimﬂ with residue field ).

Example 2.3.10 (The Degree valuation). Let K be a field and F' = K(t). For a polynomial

f € Klt], define v(f(t)) = —deg(f), and for f/g € K(t), set v(f/g) = degg — deg f. This
mapping define a valuation on K(t), called the degree valuation.

Example 2.3.11 (Laurent Series). Let K((t)) be the field of Laurent series. An typical element
in K((t)) is a serie >3 a;t', where N € Z, a; € K for all i > N. When ay # 0, we define

v @; aiti> = N.

This mapping prescribes a valuation on K((t)).

Now, we show that the valuation rings A of K are in one-to-one correspondence with the
equivalence classes of places of K and that the places corresponding to A are essentially the
canonical homomorphisms from A onto the residue field A/my4.

2A valuation v on a field F is discrete if v(F) 22 Z.
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For the definition of places, we have to extend fields to projective fields, adjoining an element
co. More precisely, the projective fields obtained from the field K is the set K = K'U {o0} endowed
with the addition and the multiplication of K extended to K by

r+oo=o00+x=ocforall z e K;

r-00o=00-x =00 for all x € K.

Moreover, we set 07! = 0o, co™! = 0, and —oo = co. Note that oo + 00, 0 - 0o and oo - 0 are not
all defined.

Definition 2.3.12. A place of K into L is a mapping 7 : K — L satisfying the following conditions
forallxz,y € K:

Pl - Ifz+y and w(z) + 7(y) are defined then 7(z +y) = 7(z) + 7(y);
P2 - If xy and w(x)n(y) are defined then w(zy) = 7(x)7(y);
P3 - There is some z € K such that w(z) = 1.
We state some elementary properties of places:
Proposition 2.3.13. a - 7(1) =1, w(0) =0, 7(00) = 0.
b- If n(z)+7(y) (resp m(x)w(y)) is defined then so is x +y (resp zy).
¢ - m(—x)=—n(zx).
d- m(z b =n(x)" L.

e - 7 Y(L) is a valuation ring Ay of K, and w|a, : Ax — L is a ring homomorphism with kernel
ma

f- 7 YL)=Ua, and mlu,, U, — L is a multiplicative homomorphism with kernel 1+ my4_.
Proof.
a - Let z € K such that 7(z) = 1. Then z -1 and 7(z) - 7(1) are defined, hence
1=mn(z) =7(z-1) =7(2)r(1) = 1m(1) = m(1).
Since 1+ 0 and 7(1) + 7(0) are defined, we have
l=7n(1)=n(1+0)=mn(1l) +n(0)=1+x(0),
so m(0) = 0. Since 1+ oo and 7(1) + 7(oc0) are defined, we have
7(00) = 71+ 00) = (1) + 7(00) = 1+ (00),
so m(00) = oo.

b - If 7(z)+m(y) is defined then (7 (z), 7(y)) # (00, 00), hence (z,y) # (00, 00) by (a), so z+y is de-
fined. If w(x)7(y) is defined then (7 (z),7(y)) ¢ {(0,00), (00,0)}, since (z,y) ¢ {(0,00), (00,0)}
by (a), zy is defined.
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¢ - If 7(—x) 4+ w(x) is not defined, then n(z) = 7(—z) = oo, then —n(z) = oo. If 7(—x) + 7(z) is
defined then so is —z 4 «x, then

O=n(—z+2z)=n(—z)+n(z)
provides 7(—x) = —m(x).

d - If w(z~Ym(z) is not defined then (w(z~ 1), 7(x)) € {(0,00),(00,0)}, so w(x™1) = w(x)~t. If
n(z~'7m(x) is defined, then so is 'z, hence

1=7n(1) =n(z"z) = n(z YHn(x),
then m(z~1) = m(z)~L.

e - We have 771(L) C K since 7(c0) = co. By (b) and (c) we get that 7—!(L) is a subring A, of
K. If x € K\ Ay then 7(x) = oo, so m(z~!) = 0 by (d), providing = € A,. Therefore A,
is a valuation ring of K. Of course, 7|4, is a ring homomorphism with kernel m; C m4_. We
have even m, = my_, since x € my_ implies 27! ¢ A, (n(z))"! = 7(271) = oo, m(z) = 0.

f- 7 Y(L)={z € Ay : m(z) # 0} = Ay /m4_, 50 7|u,, is a multiplicative morphism. Its kernel is
1+ my,, since 7(x ) =1 if and only if 7(z —1) =0, if and only if z — 1 € my4,_.

O]

By [2.3.13((e), any place of K into L induces a homomorphism A : A — L from a valuation ring
A of K into L, with kernel m4. The converse is also true:

Theorem 2.3.14. Let A be a valuation ring of K and A : A — L a homomorphism into a field L,
with kernel ma. Then the mapping T K — L, defined by 7(z) = Mx) for allz € A and 7(x) = oo
forallz e K \ A is a place of K into L with Az = A.

Proof. 1t suffices to verify P1 and P2. 7(x) + 7(y) is defined if and only if (7(z), 7(y)) # (00, 00).
If 7(x) # 7(y) and 7(y) = oo, then z € A, y € K \ A, then w(zx + y) = oo = w(x) + w(y). If
m(x), m(y) # oo, then =,y € A, so

m(x+y) =Mz +y) = AMz) + Ay) = 7(x) + 7(y).
The proof of P2 is a similar argument. O

A place 7 : K — L is called trivial if A, = K, or equivalently, m 4, = (0 ) The trivial places
of K into L are exactly the monomorphlsms u: K — L extended by p(o0) =

Let Ko be any subfield of K. Then Ko is a projective subfield of K (1 e, addltlon and mul-
tiplication in Ko are induced by those in K ) and that, for any place 7 : K — L, the restriction
| Ko : Ky — L is a place of K into L. In particular, the restriction of 7 to the prime field of K is
non-trivial if and only if Char(L) # Char(K), and in this case, Char(K) = 0.

For any place 7 : K — L, the image m(A;) of A, is a subfield of L, called the residue field
of w, and 7 can also be considered as a place of K into m(A,). We have L = 7(A,) if and only
if 7: K — L is surjective; in this case, 7 is called a place of K onto L, or a surjective place. In
particular, for any valuation ring A of K, the canonical homomorphism g4 : A — A/m4 extends
to a place m4 of K onto A/my4, by 74 is called the canonical place corresponding to A.

Places can be composed similarly as homomorphisms:
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Proposition 2.3.15. Let 7 : K — L and £ : L — M be places and let Ax (resp. Bg) be the
valuation ring of K (resp. L) corresponding to w (resp. L). Then { o : K — M is a place and
Agor = w_lBg C Ay. If 7 is a place of K onto L, then m(Agor) = Be.

Proof. ¢ o satisfies P1, since if (€ o m)(z) 4 (€ o m)(y) is defined then, by 2.3.13|(b), m(z) + 7(y)
and x + y are defined and

(Eom)(@) + (Eom)(y) = &(m(z) +7(y)) = (Eom)(x+y).

Similarly P2 is verified. P3 follows from &(7(1)) = £(1) = 1. For any = € K we have z € Agom if
and only if (m(x)) # oo, if and only if w(x) € Bg, if and only if

zen H(Be) Cn (L) = An.
If 7 : K — L is surjective, then A(gory = H(Be) implies m(A(eon)) = Be. O

We use the composition of places for defining a preordering on the class of all surjective places
of a fixed field K:

Proposition 2.3.16. Let my, w1 be surjective places of K. Are equivalent:
v - Al - AO;

ii - There exists a mapping € : Lo — Ly such that m = £ om. In this case € is a uniquely
determined place of Lo onto L.

We write w1 < mo if one (and therefore all) of the equivalent conditions above holds.

Proof. (i)=(ii) It suffices to prove that & : mo(z) — m1(x) (z € K) is well-defined. Let z,y € K
such that mo(z) = 7o (y).

If © ¢ Ay, then mp(x) = mo(y) = 00, y ¢ Ap, and then =,y ¢ Aj, hence m1(z) = m1(y) = oo.

If x € Ag then m(z) # 0o, hence mg(x) + mo(—y) is defined and

mo(x —y) = mo(x) — mo(y) = 0.

Sox—yemy, Cmy, C Ay, by Let x ¢ Ay; then y ¢ Ay, mi(x) = 00 = m1(y). Let x € Ay,
then 71 (x) # 0o, hence m(z) + 71 (—y) is defined and 71 (z — y) = 0, so mi(z) = m(y).

(ii)=(i) To prove that ¢ is a place of Ly, it suffices to verify P1 and P2 for £&. Let Z,7 € Lo
such that T + 7 and &(Z) + £(7) are defined, and let 2,y € K such that T = mo(z), ¥ = po(y);
then m(x) = &(T), m(y) = &£(y). Since mo(x) + mo(y) (resp. mi(z) + mi(y)) is defined, we have
mo(x +y) = mo(z) + mo(y) (resp. mi(z +y) = mi(x) + i (y)), by 2.3.13(b). Then

§@+7) =E&(m(z +y) =m(z+y) =m(x)+my) = @) +£G)

P2 is proven similarly. Hence ¢ is a place of Lo, and (i) follow from [2.3.15/ Since mp and 7 are
surjective, £ is uniquely determined and it is a place of Ly onto L. O

In particular, for any surjective place m of K we have m < tx (the trivial place determined by
the identity of K), and tx < 7 if and only if 7 is trivial.

Two surjective places my, m; of K are called equivalent if 7y < m; and m; < 7. We conclude
from
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Proposition 2.3.17. With the notation of [2.5.16] the following conditions are equivalent:
i- A = Ap.

i - m = & omy for some bijective mapping € : Lo — L.

1 - m = & omgy for some trivial place & of Lyg.

w - w1 1S equivalent to m.

Moreover, yield the following statement, similar to [2.3.8}

Proposition 2.3.18. The mapping 7 — A, induces a bijection from the set of all equivalence
classes of surjective places of K onto the set of all valuation rings of K.

By means of the composition of places, one gets a survey on the set of all valuation rings of
K contained in some given valuation ring Ag of K. In fact, these valuations rings are in one-to-
one correspondence with the valuation rings of the residue field Ag/my,, as the following theorem
shows:

Theorem 2.3.19. Let Ay be a valuation ring of K and my a place of K onto Ly with Ay, = Ao.
Then there is an inclusion preserving one-to-one correspondence between the set Gy of all valuation
rings A of K contained in Ay and the set B of all valuation rings B of Ly, given by B = my(A)
and A =7 Y(B).

Proof. For any A € Gy we have m4 = £ o mp for some place & of Ly onto A/mu, by [2.3.16] and

mo(A) = Be € B by [2.3.15] Since A = 7, (B¢) by [2.3.15, the mapping Gy — B defined by
A — mo(A) is injective. It is also surjective, since if B € B then B = B¢ for some place £ of Ly,

and m = £ o mg is a place of K with A; € Gy and my(Ap) = B, by [2.3.15] Moreover, this mapping

is inclusion-preserving and so is its inverse. O

2.4 Compatibility between Valuations and Orderings

In this section, we shall introduce the important notion of “compatibility between valuations
and orderings in (formally real) fields. This notion provides the main link between valuation theory
and the theory of ordered fields.

Remembering: by a valuation on a field F', we shall always mean a ”Krull valuation“ v : ' —
I' U {oo} in the sense of definition [2.3.7]

The value group I' will always be written additively, unless it is stated otherwise. For a given
valuation v as above, we can define the following collection of associated objects:

i - The valuation ring of v, A :={x € F: x =0 or v(z) > 0}.
ii - The maximal ideal of v, m:={z € F : x =0 or v(x) > 0}.
iii - The group of valuation units, U := A\ m.
iv - The residue class field of v, F := A/m.
v - The place associated with v, 7 : F'U {00} — F U {cc}, defined by

r+meFifzeA,
m(r) =9 .
xifx ¢ A
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Usually, we work with one valuation at a time, so given x € A, we shall simply write T for
x + m, its image in the residue class field. In the same vein, we shall adopt the following notation:
for any set T C F, let T denote the image of T N A in the residue field F. We shall refer to T as
the "pushdown“ of T' (along v) into F.

Given a valuation v, we shall often need to refer to one or more of the objects associated with
v and listed above. Therefore, instead of saying “let v be a valuation”, we shall often say “let
(v, A,m,I',...) be a valuation”, with the understanding that we shall be using the notation above
for the valuation v. For instance, if we are dealing with a given valuation ring A in a field F’ EL we
shall refer freely to “the valuation associated with A”, and assume the reader knows that we mean
the valuation F' — I' : F'/U, where U is the group of units of A, and F//U (a multiplicative group)
is given the natural ordered group structure.

We shall also use the notion of one valuation being finer (or coarser) than another. Roughly,
to “coarsen” a valuation v : F' — I' means composing v with an ordered group homomorphism
I' — I'. From the viewpoint of valuation rings, a coarsening of v corresponds to a valuation ring
containing that of v. Of course, the coarsest valuation is the trivial valuation (with value group
zero), whose valuation ring is F'. In our discussion, however, we shall never exclude the trivial
valuation, unless it is otherwise stated explicitly.

Theorem 2.4.1. Let P € Xp, and let (v,A,m,T',...) be a valuation of F. Then the following
statements are equivalent:

i-0<a<b (with respect to P) = v(a) > v(b) in T;
i1 - A is convex with respect to P;
114 - m s convexr with respect to P;
w-14+mCP.

Proof. To say that A is convex means that
r<y<zandz,z€ A=ye A
(i)=(ii) Upon a translation, it is sufficient to show that
0<a<beA=acA

By (i), the left hand side implies that v(a) > v(b) > 0, so indeed a € A.

(ii)=>(iii) Assume that 0 <a <be€m. Then 0 <b ! <a . But b1 ¢ A, so by (ii), a=! ¢ A
and hence a € m.

(ili)=(iv) Let @ € m. If 1 + a ¢ P, then we have 0 < 1 < —a, and (iii) implies 1 € m, a
contradiction.

(iv)=(i) Assume that 0 < a < b, but v(a) < v(b). Then m := b/a € m, and so, by (iv),
1 —b/a > 0, which leads to the contradiction a > b. O

Definition 2.4.2. If any (and hence all) of the conditions in theorem hold for v and P, we
shall say that v is compatible with P (or P is compatible with v ).

Let A be the valuation ring of v. Since v is essentially determined by A (and vice versa), it is
reasonable to say that A is compatible with P if v is. Similarly, if 7 is the place associated with v,
it is reasonable to say that 7 is compatible with P if v is.

3By saying that A is a valuation ring in F, we shall always assume implicitly that F is the quotient field of A.
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If (v, A,m,...) is compatible with P € X, then so is any coarser valuation (v’, A’,m’,...). This
follows by using either (i) or (iv) in the characterization theorem for compatibility (if we use
(iv), note that A C A’ implies that m D m/).

Theorem 2.4.3. Let P € Xp. Then the family F of valuation rings in F' compatible with P forms
a chain under inclusion, with a smallest member given by the convex hull of Q in F with respect
to P, i.e, A(P)={a € F:3r € Q such that —r <, a <,r}.

In fact, F consists of all subrings of F containing A(P).

Proof. The fact that members of F form a chain under inclusion is essentially a consequence of
convexity and trichotomy: suppose A, B € F, but A ¢ B. Fix a € A\ B, with, say a > 0 (with
respect to P). To show that B C A, consider 0 < b € B. By convexity of B we cannot have
0 < a <b, so we must have 0 < b < a, and by convexity of A, we have b € A.

Now let A(P) = {a € F': 3r € Q such that —r <, a <, r}. We have that A(P) is a subring
of F. To see that it is, in fact, a valuation ring of F', we must check that b ¢ A(P) = b~ € A(P).
We may assume that b > 0. Since b ¢ A(P), we have, in particular, b > 1. Therefore, 0 < b=! < 1
implies that b~ € A(P). By definition A(P) is convex, so A(P) € F.

Now consider A € F. Since A O Z and is convex, it contains the convex hull of Z, which is the
same as the convex hull of Q (here we are implicitly using the fact that P induces the usual order
on Q: this is true because Q has only one ordering). Therefore A O A(P). Finally, any subring of
F' containing a valuation ring of F' must itself be a valuation ring of F'. Hence F consists precisely
of all subrings of F' containing A(P). O

The elements in F'\ A(P) are those whose “absolute values” with respect to P are larger than
any rationals. The inverses of these elements comprise the maximal ideal of A(P), so this maximal
ideals consists of elements which (in the ordering P) are “infinitesimal” with respect to the rational
numbers.

Definition 2.4.4. We shall call A(P) the canonical valuation ring of P; its associated valuation
v = vp will be called the canonical valuation of P. Note that vp is the trivial valuation iff, with
respect to P, every a € F is bounded “in absolute value” by somer € Q 1i.e, iff P is an archimedean
ordering.

Proposition 2.4.5. Let P € Xp, and (v,A,m,l], F,...) be a valuation com@tible with P. Then
the pushdown P (i.e the image of P under A — F = A/m) is an ordering on F. For any valuation
unity u € U, we have u € P iffu € P.

Proof. By definition, is immediate that P is closed under addition and multiplication, and that
PU—P = F. Thus, to see that P is an ordering on F, we need only check that —1 ¢ P. Indeed,
if —1 € P, we would have —1 = @ for some a € PN A. Then 1+a €m,s0o —a € 1+m C P by
2.4.1(iv). This forces a = 0, which is absurd. This proves the first conclusion in the proposition.
Since U = A\ m and 1 +m C P, the second assertion follows. O]

2.5 Compatibility between Valuations and Preorderings

In the last section, we have defined the important notion of compatibility between a valuation
v and an ordering P on a field F. In this section, we shall focus our attention on preorderings
instead of orderings. The first natural question to ask is, therefore: How does one generalize
the notion of valuation-compatibility from orderings to preorderings?

A moment of thought will reveal that we can generalize the compatibility notion to preorderings
in two different ways. One is a “weak” generalization and the other is a “strong” generalization.
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Both are natural, and will play important roles for our future investigations. We set forth these
generalizations in the following basic definition:

Definition 2.5.1. A wvaluation v on F is said to be compatible with a preordering T if v is
compatible with some ordering P € X/T. v is said to be fully compatible with T if v is compatible
with all orderings P € X/T.

Theorem 2.5.2. Let (v, A,m,...) be a valuation on F', and T'C F be a preordering. Then:
1 - v s fully compatible with T iff 1+ m C T;
ii - v is compatible with T iff (1 +m)N =T =0 iff T is a preordering on F.

Recall that F' denotes the residue field of the valuation, and T' denotes the image of T'N A in
F.

In this theorem, (i) is consequence of Artin’s theorem and characterization theorem [2.4.1]
Indeed, for v to be compatible with all P € X7, the necessary and sufficient condition is that
1+m C({P: P e Xrp}. Since by this intersection is just 7', statement (i) follows. The proof
of (ii) requires more work. For convenience, this proof will be preceded by a lemma:

Lemma 2.5.3 (Wedge Product Lemma). Let (v, A,m,U,...) be a valuation on F, and 7 : A — F
be the projection map. Let T be a preordering on F, and S a preordering on F such that S D T.
Define the “wedge product” T A S to be T -7~(S). Then T A S is a preordering on F; it is fully
compatible with v, and T NS = S.

Proof. The definition of T' A S provides the fact that this set is multiplicative closed and contains
F2. Furthermore, —1 ¢ T'A S for, if =1 =t-u where t € T and u € A with @ € S, then t € A and
—1e€T-S =8, a contradiction. Thus, it only remains to show that T'A S is additively closed.
Consider a = t1uq+tous, where t; € T and u; € U withw; € S (1 = 1,2). Without loss of generality,
we may assume that toug/tju; € A (since A is a valuation ring). Then a = tjuq(1 + toug/t1uq),
so it will be sufficient to deal with the simpler case a’ = 1 + tu, where t € TN A, and u € U with
7 € S. In this case, we have @ = T+7u € S so o’ € 7~(S5). This shows that T'A S is a preordering
on F. Since T A S contains 71(S) D 14 m, it is fully compatible with v by (1)

Finally, to show that T'A S pushes down to S, take a = tu € A, where t € T, and u € U with
weS. Thente Atooanda=tueT-S=S5. Honce TAS = S. O

Remark 2.5.4. In the proof above, we have never used the fact that T is additively closed. Thus,
as long as T is a subset of F containing F, such that T = T\ {0} is a group under multiplication
(with T C S), then the wedge product construction will be meaningful, and all conclusions n the
lemma will remain valid.

This important remark will be used consistently in the rest of this chapter, since we will have
several future occasions to invoke the wedge product construction in its more general form. As an
explict example, we can take T' = F2: the wedge product F2ZAS:=F2. 7~1(S) obtained in m
may be called the “pullback” os S. we shall denote this by S it is a preordering on F' which is
fully compatible with b, and pushes down to the given preordering S in F.

Let T be as in Then the set of orderings in F' containing the wedge product T'A S can
be explicitly determined as follows:

Xr1ns = {orderings P: PO T and P € Xg}.

For, if P lies in the right hand side, then P D 7= '(§) so TA S C P-P = P. Conversely, if
P € X715, then P is compatible with v, so P is an ordering containing T A S = S. In view of
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Artin’s Theorem the equation above leads to the following alternative characterization of the
wedge product preordering:

TAS = ﬂ{orderings P:P2Tand P € Xg}.
With the preparation above, we are in position to finalize the proof of

Proof of the Theorem [2.5.3. We already have proved statement (i), so we just need to prove state-
ment (ii). Assume v is compatible with the preordering T, say it is compatible with P € X7. Then
by proposition ~1¢ PDOT. Hence —1 ¢ T, i.e, (1 +m) N (=T) = 0. Conversely, assume
—1 ¢ T. Then T is a preordering on F, and we can form the “wedge product” T'A T in the sense
of This is a preordering on F', which is fully compatible with v. Take any P € X, 7. Then
v is compatible with P, hence (by definition) compatible with 7' (because P O T'). O

In the proof above, the wedge product T'A T could have been replaced by the more direct
expression T'- (1 +m). The inclusion T AT DO T - (1 +m) is immediate. For the reverse inclusion,
note that if u € #~1(T), then u = ¢ for some t € T NU. But then m := u —t € m and so
u=t(1+t"tm) €T -(1+m). Then, TAT =T -(1+m) is the smallest preordering containing T
which is fully compatible with v.

Definition 2.5.5. In the sequel, this preordering will by denoted by TV. Xpv consists of all order-
ings in X7 which are compatible with v.

As an example, consider the weak preordering Ty = > F? in a formally real field F. To
understand what it means for a valuation v to be compatible with Tj, we need a definition and a
lemma.

Definition 2.5.6. We say that a valuation (v, A,m, F,...) is real if its residue field F = A/m is a
formally real field. If this is the case, we shall say that the valuation ring A is residually real.

Lemma 2.5.7. Let (v, A,m, F,...) be a real valuation on F with value group T'. Let a = a%—i—...—i—a%
where a; € F' for alli. Then a # 0 and v(a) = 2min{v(a;)} € I'. In particular, F' must be formally
real and v(>" F?) = 2.

Proof. Say v(a1) = min{v(a;)} € I'. Then a;/a; € A for all 4, and
a=a2(1+ (az/a1) + ... + (an/ar)?).

Since F is formally real, the expression in parenthesis above cannot lie in m. Therefore, it is a unit,
and we get a # 0, v(a) = v(a1)? = 2v(ay). O

Proposition 2.5.8. A valuation v on a formally real field F' is compatible with the weak preordering
To = 5. F? iff v is a real valuation. If this is the case, then Ty pushes down to the weak preordering

inF (ie, > F? = Ef2)

Proof. Suppose v is compatible with Ty. Then Ty is a preordering in F, so F is formally real, i.e,
v is a real valuation. Conversely, suppose v is a real valuation. Consider an element a € Ty N A,
say a = a? 4 ... + a2 where a; € F. By 2v(a;) > v(a) >0, so a; € A for all i. Going down to
the residue field we have, therefore, @ = a3 + ... + a2 € EFQ. This proves that Ty = EFQ. Since
this is a preordering in F', we conclude that v is compatible with Tj. O
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Recall that, to any ordering P, we can associate its canonical valuation ring, A(P) defined in
If we consider a preordering 7' instead, we can associate with two subrings of F, namely

AT = T{A(P) : P € Xr}f|and A7 = (J{A(P) : P € X1},

with A7 C AT, If there is only one valuation ring in {A(P) : P € Xr}, then A7 = AT, If there
are at least two distinct valuation rings, then we have Ap ¢ AT The larger ring, A7, is always
a valuation ring; in fact, it is the smallest valuation ring F' which is fully compatible with 7" (of
course, AT may very well be the trivial valuation ring F': this is the case iff no nontrivial valuation
is fully compatible with T"). The smallest ring, A, is not a valuation ring in general.

For the rest of this section, we shall assume that (v, A, m,U,T,...) is a valuation on
F which is compatible (but not necessarily fully compatible) with the preordering 7'

Definition 2.5.9. We shall write X7. for the set of orderings in X7 which are compatible with v.

Recalling the earlier notation 7% := T AT = T - (1 + m), we see that X% is just X7v». In
particular, X7 is a closed set of X, hence a compact Hausdorff space.

Our next goal will be to analyze the exact relationship between X7 and X7. This analysis will
involve looking at a given ordering Q 2 T on F', and studying the various ways of “lifting” it to
orderings on F'. For this purpose, the group

I/v(T) = F/UT

turns out to play a very important role. To simplify the notation, we shall write G for this group,
and write v’ for the composition

F—Y .7 G

Since v(T") 2 2T", G has exponent < 2 and therefore may be viewed as a vector space over Zs, the
field with two elements.

To begin our analysis, we fix a set {a;}ics of elements in F' such that {v/(a;)} form a Zy-basis
for G. Given P € X7, we can define a Zso-linear functional P* : G — {£1} uniquely by specifying
its effect on the basis {v(a;)}:

P*(v'(a;)) = sgnp(a;).
Thus P* € G*, the Zs-dual, or the character group, of G (we note however, that P* is not
“naturally” defined, since its definition depends on the choice of the a;’s).
Now let P € X7. Then P gives rise to two objects:

1. a characther P* € G* (defined above), and

2. an ordering P € X7F.
We have therefore, a mapping g : X7 — G* x X7, defined by g(P) = (P*, P).
Theorem 2.5.10 (Baer-Krull). This mapping g, is a bijection.

Proof. To prove injectivity, let P € X7. It suffices to show that given z € F, the sign of z with
respect to P is uniquely determined if we know P* and P. In fact, write z = a;,...a;, - tu, where

4This notation is supposed to mean the product of the subrings A(P) inside F, not the direct product of the
A(P)’s
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teT,ueU, and i,..,i, are distinct (n > 0). Since T' C P, we have sgnp(t) = 1, and by
sgnp(u) = sgnpu. Therefore

sgnp(z) = (sgnp(u)) Hsgnp(ai) = (sgnpu) HP*(UI(%‘))a

which proves what we want. To prove the surjectivity of g, let x € G* and Q € X7 be given. We
shall try to find an ordering P € X% such that P* = x and P = Q. The idea is to construct a
certain set 77 O T and obtain P as the wedge product 7" A Q. In order to form this wedge product,
T" must be chosen to satisfy the following conditions (conform :

a - T is a subgroup of F' containing F?;
b-T'CQ.

By composing x with v/, we have a map F — {+£1}, which for simplicity, we shall again denote by
x. We now define 7" by

T = {tea;,...a;, : t € T, e = £1, iy, ..., iy, are distinct (n > 0) and x(a;,...a;,) = €} *)

Since T 2 F?, T’ satisfies condition (a). To check (b), we shall prove a stronger fact, namely
T'NU =TNU (this will imply that T =TC Q). Let u € T"NU and write u = tea;,...a;, in
the notation of (*). Then n must be zero since the a;’s are Zg-independent in F'/U - T. Therefore
e =x(ai,...qi,) =l and sou=t € T NU, as desired.

To complete the proof, let P be the wedge product 77 A ), which is a preordering in F. From
(*), we have

P = {tuai,...a;, : t € T, uw € U, i1, ..., i, are distinct (n > 0) and x(aj, ...a;,) = sgngyu}.

From this equation, we see that [F : P] = 2, so P is an ordering on F'. Since P DO T and by
P =T ANQ = Q; therefore P € X7. Finally, to see that P* = , it suffices to check that
P*(v'(a;)) = x(a;). If x(a;) = 1, then a; € T" C P, so P*(v'(a;)) = sgnp(a;) = 1. On the other
hand, if x(a;) = —1, then —a; € T" C P instead and P*(v'(a;)) = sgnp(a;) = —1. O

As a special case of the theorem, consider the weak preordering Ty = Y F? in a formally real
field F, and let v : ' — T be any real valuation. We shall denote X, more simply by XF: this
is the set of all orderings on F' which are compatible with v. We have seen before (conform [2.5.7)
that v(Tp) = 2T, so the group G is simply I'/2T; also recall that Ty = Zfz. Therefore
yields the following

Corollary 2.5.11. There is a one-one correspondence go between Xy and (I'/2T")* x X7 (this is
however, not a natural one-one correspondence).

We can also state [2.5.11] in the following less precise form: given any ordering ) on F, the
various ways of “lifting” @ to an ordering F' correspond one-to-one (though not in natural way) to
the characters on I'/2T". In particular, @ will lift uniquely iff T" is 2-divisible.

2.6 T-forms under a compatible valuation

In this section, we consider a preordering T' C F', and a valuation v on F' compatible with T
The general notations associated with the valuation v, namely (v,T'; A,m, U, F', ...) will remain in
force. For convenience of this section, we shall view I' as a multiplicative group.
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Our main goal is to study how T-forms behave under the compatible valuation v. As in section
the quotient group I'/v T) turns out to play a crucial role in this analysis. Continuing the
notations used in section we shall again denote the group I'/v(T) by G and write v/ for the
composition FLT G,

Note that we have a natural short exact sequence

1—=UT/T—F/T L ~G 1 (2.6)

Since the three groups involved are all elementary 2-groups, this is a split exact sequence. For the
rest of this section, we shall choose (and fix) a splitting
N EJT s UT)T
for the inclusion map in the sequence Composing A with the natural maps
UT/T~U/UNT — F/T,
we get a surjective homomorphism o
N BT BT
Thus we have a surjection (X, v') : F/T — E/f x G. By abuse of notation, the composition of
this map with ' — F/T will again be denoted by (X, v"). B
We shall consider the group ring of the group G over the Witt ring Wg(F'), denoted by
W=(F)[G]; a typical element of this ring will be written in the form > ¢;[g;], where ¢; € Win(F)
and g; € G. .
Under the map (\,v’) defined above, an arbitrary field element a € F' gives rise to a unary
T-form (N (a)) € W(F) and a group element v'(a) € G. Thus, a € F' gives rise to a group ring

element (N (a))[v'(a)] € Wa(F)[G]. We shall now prove the following result, which establishes the
connection between Wy F and Wi(F)[G]:

Theorem 2.6.1. The rule B
a— (N(a))[v'(a)] € WH(F)[G]

induces a well-defined surjective ring homomorphism f from WrF to Wx(F)[G] (this homomor-
phisms does depend on the choice of the splitting \).

Proof. For a € F, let us write
f'(a) = (N(a)['(a)] € W(F)[G].
To see that f’ gives a well-defined ring homomorphism f from Wg(F) to Wa(F)[G], we need to
check the following relations (see :
a- f'(1)+ f/(-1) = 0.
b- f'(at) = f'(a) fora € F and t € T
c- f'(ab) = f'(a)f'(b) for a,b € F.
d- f'(a)+ f'(b) = f'(a+b)+ f'(ab(a+b)) for a,b,a+b € F.

Among these, (a) follow by f'(1) = [1] and f'(—1) = (—1)[1] = —[1]; (b) follows since both \'(a) and
v'(a) depends only on @ mod T'. (c) follows from the fact that A’ and v are both homomorphisms.
Now, we only need to check (d).
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In view of (c), it suffices to check (d) in the special case b = 1, i.e, to check that

F)+ fl(a)=fA+a)(f'(1)+ f(a))ifa€ F,a#0,-1. (2.7)

For this purpose, we may assume that a lies in the valuation ring A of v (for otherwise, replace a
by 1/a which is also # 0, —1). There are three possible cases:

Case 1 - a € m. In this case 1 + a is a valuation unit. Thus
fA+a)=N(1+a)['(1+a)] = (D[] =[1],
SO follows.

Case 2 - a € U but 1 +a € m. In this case, N'(a) = —1 and v'(a) = 1. Thus f'(1) + f'(a) =
[1] + (=1)[1] = 0, so [2.7] follows again.

Case 3 - ac U but 1+a € U. In this case,

@)+ fa) =[]+ N(a)[v'(a)] = [1] + @) [1] = (L a@)[1],
fll+a)=N1+a)'1+a)]=(T+a)1],

SO

again, checking
We have now proved that the rule f'(a) = (\'(a))[v'(a)] induces a well-defined ring homomor-
phism f : Wr(F) — W(F)[G]. Since (N,v') : F — F/T x G is surjective, we conclude that f is

also surjective. O

Take any T-form ¢, and consider any diagonalization of it. We can “sort out” the diagonal
entries into different “blocks”, putting two entries (a) and (b) in the same block if and only if
v'(a) ='(b) € G. Thus, we have a representation

2 J—gEG’ <a’gla gn(g)> (28)

where v'(ag;) = g € G for every i. For each g € G, consider the T-form (X (ag1), ..., N (agn(q)))-
This is called the g-residue form of ¢ (with respect to the given diagonalization). By definition,
we have

f(SO) = Z<)‘,(agl)v e )‘l(agn(g)»[g]'

geG

Therefore, by theorem for each g € G the Witt class of the g-residue form (X' (ag1), ..., N (agn(g)))
in Wa(F) is uniquely determined, i.e, it is independent of the particular diagonalization of ¢ which
we have chosen (though still depending on the choice of the splitting A). We shall write

89(90) = <)‘I(a91)7 3 /\/(agn(g))> € WT(F)

p) = 95(0)lg] € Wr(F)[G].

geqG

SO
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Thus, the group homomorphism 9, : WpF — Wx(F) (g € G) may be viewed as the “coordinate
projections” of the ring homomorphism f : WrF — Wx(F)[G].

The case ¢ = 1 € G is particular noteworthy. In this case, since v'(a;;) = 1, we can write
a1,; = w;t; where u; € U and t; € T (keep in mind that G = F/U(T)) Thus, the “l-residue form”

(N(a11), .oy N(a1n(1))) =1 (@1, ooy Tyy(1)

does not even depend on the choice of A\. This will be called the principal residue form of ¢,
with respect to the diagonalization. Its Witt class 01 (p) € W(F) depends only on the Witt class
of ¢ € WrF and not on the choice of the splitting A.

We shall now prove two theorems relating the T-isotropy of a T-form ¢ to the T-isotropy of its
various residue forms.

Theorem 2.6.2. Let v be a valuation compatible with T. If a T-form ¢ diagonal as in 18
T-isotropic, then there exists an h € G such that the h-residue form (N (ap1, ..., N (ap ) is T-
1sotropic.

Proof. If ¢ is T-isotropic, then its T-anisotropic part ¢’ has a smaller dimension. Comparing

residue forms of ¢ and ¢, we have 0y(p) = 0y4(¢") € Wp(F) for every g € G, from which the
conclusion follows. O]

Theorem 2.6.3. Assume v is fully compatible with T. Then a T-form ¢ as in[2.8 is T-anisotropic
iff all its residue forms (with respect to the diaganalization@) are T'-anisotropic.

Proof. (=) Assume v is fully compatible with 7', and suppose some residue form, say L; (N (ap;) is
T-isotropic. Since v(ap;/an1) € v(T'), we can write ap;/ap = ti_lui where t; € T and u; € U. Then
N(api)/N(ap1) = ;T and so (by assumption), (i1, ..., %, ) is T-isotropic. Write down an equation,
say

0=> w5 (2<r<n(h),
=1

where s; € TNU, and let m = >, u;s; € m. Plugging in u; = t;api/an1, this becomes

r

0= (s1t; —m) — Z SitiQpi/ap] .
1=2

Since v is fully compatible with 7', and t; = u; € T NU, we have sit; —m € T - (1 +m) C T.
Multiplying the equation above by ap;, we see that (ap1, ..., ap.) is T-isotropic. In particular, so is
©.

(<) Is just the preceding theorem which holds already under the weaker assumption that v is
compatible with T'. O

Corollary 2.6.4. The ring homomorphism f : WrF — Wx(F)[G] defined in Theorem is an
isomorphism iff v is fully compatible with T.

Proof. (=) Assume that f is an isomorphism, and consider a = 1 + m, where m € m. Then
¢ = (1, —a)7 has principal residue form (1, —1)7= over F (and no other residue forms). Since f
is an isomorphism, it follows that ¢ is T-hyperbolic, i.e, a € T. Thus, 1 + m C T, so v is fully
compatible with T'.

(«=) Follow by theorem above. O
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2.7 Fans I

In this section, we shall introduce and study a very important class of preorderings called fans:

Definition 2.7.1. A preordering T C F' is called a fan if it satisfies the following property: for
any set S D T such that —1 ¢ S, if S = S\ {0} is a subgroup of index 2 in F, then S is an ordering
(i.e, S is automatically closed under addition).

Roughly speaking, 7" is a fan iff X7 is as big a set as it could possibly be. Consider, for instance,
the case when T' has finite index, say [F : T] = 2". There are exactly 2" sets S D T with the
property that —1 ¢ S and S is a subgroup of index 2 in F. For T to be a fan, each such S must
be an ordering. Thus, we have | X7| < 277! in general, with equality iff T is a fan. Of course, from
definition, if T is a fan, then so is every preordering containing 7.

Proposition 2.7.2. Let T be a preordering with [F : T] < 4. Then T is a fan (we shall say that
such a T is a trivial fan).

Proof. If [F: T] = 2, then T is an ordering, so is a fan. If [F': T] = 4, there are at least two (and
therefore exactly two) orderings in X, so again 7T is a fan. O

The first nontrivial case to consider is when the index [F' : T] = 8. In this case, we have
3 <|Xr| <4. Fix P, Py, P3 € X, and let x; be the character on F/T (into {£1}) associated to
the ordering P;. Then 1, X2, X3 must be Zy-linearly independent in the Zy-dual (F'/T)* so they
form a basis in this dual. There is exaclty one more character which takes ~T to —1, namely,
the product x1,x2,x3. In general, this may not be the character of an ordering. It will be the
character of an ordering iff there is a fourth ordering Py € Xp iff T is a fan. If this is the case, we
shall say that T is a “4-element fan” (the terminology refers to the fact that the set of orderings
X7 consists of 4 elements). In this case, if x4 denotes the character of Py, we have x1x2x3x4 = 1.

We shall now construct an explicit example of a 4-element fan. In the following, for a field K,
K ((z)) denote the power serie field in one variable over K. If K is formally real pythagorean field,
then so is K((z)).

Example 2.7.3. Let F' = R((2))((y)) and T = F?. Since F is formally real and pythagorean, T
1s just the weak preordering on F'. F/T has a Zgz-basis {—1,x,y}; moreover, Xp = Xp consists
of four orderings { Py, Ps, P3, Py}, under which x,y have the four different combination of signs:
(+.4), (+,=), (=, +), (=, ). Therefore, T is a 4-element fan. Writting again x; for the character
of P on F/T, we have

Py | Py | P3| Py | x1X2X3X4
T + |+ |- ]—- |1
y |+ |- |+ |- |1
S [N R R I

Theorem 2.7.4. For any preordering T C F, the following statements are equivalent:
1- T is a fan;
2 - forany set SO T, if —1 ¢ S and S is a subgroup of F, then S is a preordering;

3- foranybe F\(=T), T+Tb=TUT-b (or, in the terminology of- every b ¢ —T is
T-rigid);

3 - forcmya,bEFsuch thatab%—T,T-a—l—T-b:T-aUT'b;
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4 - there ezists an ordering P € Xt such that, for anybe P, T+ T -b=TUT -b (i.e, P consists
of T-rigid elements);

4" - there exist an ordering P € X1 such that, for any a,b € P, T-a+T-b=T-aUT:-b;
5 - every preordering T' O T of index 8 in F is a (4-element) fan.

Proof. The equivalences (3) < (3') and (4) < (4') follow by scaling, so in the following we shall
identify (3) with (3') and (4") with (4').

(1) & (2) Let S be as in (2).By elementary group theory, we know that S = |V where V
ranges over all subgroup of index 2 in F' containing S but not containing —1. By the definition of
a fan, each such V is additively closed. Hence so is S and so S is a preordering.

(2) < (3) Consider (T'UT -b)\ {0}. This is a multiplicative subgroup of F' containing 7" but
not containing —1. By (2), TUT - b is a preordering. Therefore T4+ 7T -b C T UT - b. Since the
reverse inclusion is immediate b is T-rigid.

(3) & (4) Follows by the fact that P is disjoint from —17.

(4') & (1) Let S D T be a set such that —1 ¢ S and S is a subgroup of index 2 in F. We need
to show that S is an ordering. Let P be as in (4') and consider S’ := SN P. Let a,b € 5. Using
the hypothesis on P, we have a+b e T -aUT-bC PNS =5, so S is a preordering, and the
index of §" is 2 or 4. If §" has index 2, then S = P and we are done, so we may assume that S” has
index 4. There are three multiplicative groups containing S’ of index 2 in F, namely, S, P, and
another one containing —1. But there are two orderings containing S’, so S must be one of them
(and P another).

(1) & (5) Immediate from the fact that if 7" is a fan, then so is every preordering containing 7.

(5) < (3) For b € F\ (=T, it is sufficient to show that 1 +b € T UT -b. Assume this is
false. Then 1+b,b~" +1 as well as b are not in 7. By Artin’s Theorem there exist orderings
Py, Py, P; € Xp which exclude these elements, respectively. Let T/ = P N P, N P3. Then b ¢ —T"
and 1+b¢ T/ UT’-b. Thus, T is not a fan (by (1) = (3), which is already proved). By [2.7.2] T’
cannot have index < 4, so necessarily [F': T'] = 8. This contradicts (5). O

We shall now record a few consequences of the theorem above:
Corollary 2.7.5. Let F C K be two fields. If T is a fan in K, then T =T'NF is a fan in F.

Proof. Let S D T be as in[2.7.4(2). Then S-T'NF =5,s0 —-1¢ S-T'. Since S-T"\ {0} D T" is
a multiplicative group, S -T" is a preordering in K. Therefore S is a preordering in F', and so T is
a fan in F. O

Another proof of [2.7.5) m may also be obtained by checking condition (3) or (3') in u Note
that these conditions have a natural quadratic form-theoretic 1nterpretat10n In fact, let ¢ be the
binary T-form (a,b); then (T'-a+T-b)\ {0} is just D7 (¢), the set of values represented by ¢ over
T. Thus, in form-theoretic terms, (3') says that for any 7T-anisotropic binary form ¢ = (a,b)p, ¢
represents only the obvious T-cosets T'-a, T - b and nothing more. By repeated application of this
property, we obtain the following self-strenghened version of (3’ ):

Corollary 2.7.6. Let T be a fcm and ¢ be the T-form (a1, ..., an) with the property that a;a; ¢ =T
for alli # j. Then Dp(p) =UT - a;.
i
Expressed informally, the condition on ¢ in says that there is no T-hyperbolic plane “in
the diagonalization” (ay,...,a,) of p. If ¢ is T-anisotropic, this condition on ¢ is surely satisfied.
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Therefore, gives the complete computation of values for all T-anisotropic forms over a fan T
(of course, we need not worry about T-isotropic forms since they are universal).

Since the condition on ¢ in is a necessary condition for ¢ to be T-anisotropic (for any
preordering T'), one may naturally ask: is it also a sufficient condition? The answer is provided in
below: it is iff T is a fan!

Corollary 2.7.7. For any preordering T, the following are equivalent:
1. T is a fan;
2. for any T-form ¢ = (a1, ...,an), ¢ is T-isotropic iff there exist i # j such that a;a; € =T

3. if (a1, ..., an) =1 (b1, ..., by) are T-anisotropic, then there is a permutation o of {1, ...,n} such
that T' - a; =T - by for all i.

Proof. (1)=(2) We only need to prove (=) part in (2). Assume ¢ is T-isotropic, but a;a; # T
for all ¢ # j. Then, by Dr(p) = UiT - a;. But since ¢ is T-isotropic, we have £1 € Dy ().
Thus, we can write 1 = ta; and —1 = t'a; for some ¢, ¢’ € T, and some i,7. But then a; € T and
aj € —T, these imply that i # j and a;a; € T, a contradiction.

2)=(1) To show that T is a fan, we shall check that every element b ¢ —T" is T-rigid (conform
2.7.4(3)). Let # ¢ € T+ T - b; then (1,b, —c) is T-isotropic. By (2), we have either —c € —T" or
—bce —T,s0 ce TUT -b. This shows that b is T-rigid.

(1)=(3) Let b,c be as above. Then (1,b) =7 (c,bc) are T-anisotropic forms, and by (3),
ceTUT-b.

(3)=(1) From (ai,...,an) =1 (b1,...,by), we have by € Dr(ay,...,a,). Since (ai,...,a,) is T-
anisotropic and T is a fan, .

DT(al, cees an) = U;T - a,

as we have already observed. Thus, we may assume (after reindexing) that b; € T - a;. Now cancel
and induct. O

So far the only example of fans we have given are the “trivial fans” and “4-element fans”. After
the following discussion, we shall be able to construct (using valuations) many example of fans of
index > 16. In fact, by a result of Brocker, we shall be able to explain precisely, in valuation-
theoretic terms, how all fans can arise. We first make some basic observations relating valuations
and fans.

Proposition 2.7.8. Let (v, A,m,U,...) be a valuation on F, and T C F be a preordering.
a - If v is compatible with T, then T is a fan imply T is a fan.

b - If v is fully compatible with T, then T is a fan iff T is a fan.

Proof.

a- Let b € U be such that b ¢ —T (in particular, b ¢ T). Let t1,t2 € TN A, and consider #; + £2b.
Since T is a fan, t; + #2b has the form t3 or t4b, where t3,t4 €T Going down to the residue
field, we have 1 +f2b € TUT - b. This shows that every b ¢ —T is T-rigid, so by M(?)) T is

a fan.

b - (=) Is already proven in item (a).

(«) Assume that v is fully compatible with 7" (so 1 +m C T'), and that T is afan. Let WO T
be a set in F' such that —1 ¢ W and W is a subgroup (of index 2) in F. We claim that
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—1 ¢ W. For, if —1 = w for some w € W N A, then —1 = w + m for some m € m and so
—w=14+mé€1l+mCT CW,which is not the case. Since T is a fan, and W is a subgroup
(of index 2) in F, W is a preordering (ordering) of F. In view of what we said in we can
form the wedge product W A W, which is a preordering in F'. But

WAW =W -(14+m)CW-TCW,
so W =W AW is a preordering (ordering) in F' as desired.
O

Corollary 2.7.9. Let v be a valuation on F and To C F be such that Ty is a subgroup of F
containing F2. Let S be a preordering in F containig To. The S is a fan (in F) imply Ty A S is a
fan (in F). In particular, the “pullback” S := F2 A S of a fan S C F is always a fan in F.

Proof. We have observed in that the wedge product Ty A S is fully compatible with v, with
TAS = S. Hence, the proposition applies. The “pullback” case follows by taking Ty =
F2, O

The corollary above enable us to construct a lot of fans by exploiting (real) valuations. For
instance, fix a real valuation (v, A,m,...) on a field F, and take any trivial fan S on F. Then the
pullback S=F2ASisa fan, and therefore any preordering 7" D S is also a fan. Quite remarkably,
this turns out to be the way to account for all fans, namely, any fan 7" in fact arises in this way!
This is a consequence of the following beautiful result:

Theorem 2.7.10 (Brocker’s Trivialization of Fans). Let T be a fan on F. Then there exists a
valuation v on F fully compatible with T with respect to which the pushdown T is a trivial fan.

Note that since v is fully compatible with T, the pullback T = F?AT lies in TAT = T-(1+m) =
T (conform , so T contains the pullback of the trivial fan T, we have stated in the paragraph
preceding the theorem.

Since any preordering containing a fan is also a fan, it is particularly important to understand
the structure of “minimal” fans: a fan Tj is called minimal if no smaller preordering T ; Ty is a
fan. By what we have said above, we know that any minimal fan in F' is the pullback of a trivial
fan (with respect to some valuation on F).

Unfortunately, we do not prove theorem We should need to develop much more techini-
calities and go away of our main goal, that is the abstract theories of quadratic forms.

2.8 The Representation Problem I
Recall that, for any preordering 7' C F', we have a (injective) ring homomorphism
c:cCr: WTF — C(XT,Z),

where W F' is the Witt ring over T', and C(Xp,Z) is the ring of continuous functions from Xr to
Z (the latter given the discrete topology). For any T-form ¢, we have, by definition, c(¢) = ¢,
where ¢(P) = sgnp(p) for any P € Xr.

A very natural question to ask in this context is: what is the image of c¢? In other words, what
s the criterion for a continuous function X — 7Z to be “represented” by a T-form? We shall
refer to this as the “Representation Problem” for such continuous functions. In this section, a full



86 CHAPTER 2. THE REDUCED THEORY OF QUADRATIC FORMS

solution of this Representation Problem will be presented. Our strategy will be as follows: we shall
first solve the problem in the case when T is a fan. Then in the sequel, we shall solve the problem
in general by making a reduction to fans.

First let us set up some notational and terminological conventions. To differentiate between
forms and functions, we shall denote T-forms by Greek letters «, 3, ¢, 9, ... and functions from
X7 to Z by Latin letters f, g, f',¢',.... It T D T is another preordering, then X7+ C Xp, so any
function f : Xp — Z induces a function Xp» — Z by restriction. By abuse of notation, we shall
denote the latter function again by f. A function f : X7 — Z is said to be represented over T
(by a form) if f = ¢ for some T-form ¢. If f is represented over T', then it will also be represented
over any bigger preordering 7" D T.

Two necessary conditions for a function f : X7 — Z to be represented over T' are as follows:

a - f must be continuous;

b - f is a function of constant parity, i.e, its values must be either all even or all odd. This is
because if f = ¢ for a T-form ¢, then

J(P) = $(P) = sgnp(p) = dimp (mod 2).

Let f : X7 — Z be a function satisfying (a) and (b). If f is an even-valued function, then
f € 2C(Xr,7); if f is an odd-valued function, then f € 1+ 2C(Xp,Z). Therefore, the set of
functions f satisfying (a),(b) coincides with the subring Z + 2C(Xr,Z) of C(Xr,Z), and we have

Im(c) CZ+2C(Xr1,Z).

In general, this is not an equality.
We shall now introduce some of the key techniques for studying the Representation Problem.
First we make a crucial definition:

Definition 2.8.1. Let T be a given preordering in F', and let F be a family of preorderings in F
containing T. We shall say that F is a Hasse-Minkowski family (or more briefly, an HM-family)
for T if, for any T-form @, ¢ is T-isotropic iff ¢ is S-isotropic for all S € F.

Given a preordering 7', it is an important task to try to identify good families F which are
HM-families for T'. If we can find an HM-family F such that for every S € F, we have a criterion
for deciding the S-isotropy of S-forms, then we will also get a criterion for deciding the T-isotropy
of T-forms. This situation reminds us of the usual Hasse-Minkowski Principle for quadratic forms
over number fields, hence the present terminology.

The importance of definition for the study of the Representation Problem lies in the
fact that, once we identify an HM-family F for a preordering 7T', we can make a reduction of the
Representation Problem from 7' to the preorderings S in F. More precisely, we shall now prove
the following result of Becker and Brocker:

Proposition 2.8.2. Let F be an HM-family for a preordering T C F, and let f € Z+2C(Xp,7Z).
Assume that f is represented over every S € F. Then f is also represented over T.

First, let us rewrite Theorem in the reduced theory context:

Theorem 2.8.3. For any continuous function f € C(Xp,Z), there exists a natural number n such
that 2" f € cp(ILF). In particular, coker(cr) is a 2-primary torsion group.

Now, we proceed with the proof.
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Proof of Theorem [2.8.2, Bylﬁ|7 there exists a natural number k such that 2% f is represented over
T. Using induction, it is enough to deal with the case k = 1. Say 2f = ¢, where ¢ = (a1, ..., am) 7.
We may assume ¢ is T-anisotropic and of course, m is an even integer; say m = 2n. To prove that
f is represented over T', we make the following claim:

There exists a T-form ¢” such that ¢ =1 (a1,a1) L ¢”. (2.9)
If we can verify this, then 2(f — <a/1\>) = g/07 . Repeating this process, we will eventually get

2f — (a1, az,..)) = 0, 50 f = (a1, az,...) € Im(Cr) as desired.

To prove claim we fix one preordering S € F. By the hypothesis (and the injectivity of cg),
we have p = 2ag € WgF' for some S-anisotropic form ag. Note that 2aig remains S-anisotropic,
but ¢ might become isotropic over S. Write down a Witt decomposition (in the context of S-forms)

v ¥g2ag Lig(l,—1) (is > 0) (2.10)

We shall prove that ig € 2Z. Once this is proved (for all S € F), then can be deduced as
follows. From we have ¢ =g 28g for some S-form Bg. Writting ¢ = (a1) L ¢/, we have
a1 € Dg(28s) = Ds(Bs), so Bs =g (a1) L s for some vs. But then (a1) L ¢’ =g (a1,a1) L vs L
vs, so, after cancellation, we get a1 € Dg(p’). This says that ¢’ 1 (—ay) is S-isotropic, for every
S e F,so¢ L (—ay)is, in fact, T-isotropic. Therefore ¢’ =1 (a1) L ¢” for some T-form ¢”, and
2.9 follows.

Our remaining task is, therefore, to prove that for any given S € F, the Witt index ig in [2.10]is
even. For this purpose, fix an ordering P € Xg. Among the diagonal entries in ¢ =p (ay, ..., az,),
suppose r elements are in P, and ¢ elements are in —P. Then 2n = r 4+ ¢ and sgnp(p) = r — t.
Upon subtraction, we get

2t = 2n — sgnp(p) = 2n — 2f(P),

sot = n — f(P). On the other hand, computing the P-signature of the discriminant of ¢ from

2.10] we get

(—1)"s = sgup(detp) = (~1)' = (=1)" /7).

Since f(P) has constant parity (for P € Xg and S € F), this implies that ig also has constant
parity (for S € F). If all ig’s were odd, then would say that ¢ is S-isotropic, for all S € F,
and hence ¢ is T-isotropic, a contradiction. Therefore all ig’s must be even, as we had hoped to
prove. O

Of course, how successfully we can apply the proposition above to solve the Representation
Problem over T" would depend on what kind of H M-families F we can find for 7. The kind of
H M-family used by Becker and Brocker is described in the following theorem:

Theorem 2.8.4 (Becker and Brocker). Let T C F be any preordering, and let F be the family of
all preorderings containing T which have finite index in F'. Then F is an HM-family for T.

If we combine this result with we see that, in order to solve the Representation Problem,
it is sufficient to do it in the case when the preordering has finite index in F. For preorderings
T C F of finite index in F', Becker and Brocker made a further reduction of the problem to the
case when T is a fan (of finite index), in which case the problem had been solved earlier by R.
Brown. To illustrate the situation, consider the following “flow chart” of reduction steps:
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T with
finite Index

The upper route, with reduction (a) followed by reduction (b), is the route followed by Becker
and Brocker. This is, however, a difficult route: (a) would depend on which is a rather deep
result, and (b) is also a very complicated reduction. In these notes, we shall offer an alternative
approach by trying to follow the lower route (marked (c¢) and (a)) in the “commutative diagram”
above. This lower route is made possibly by the work of M. Marshall, who gave a very ingenuous
proof for the reduction (d). Of course (d) would subsume (b), so if we assume Marshall’s work, the
upper route depend on (a), while the lower route would depend on (c) which is a special case of
(a). In order to get (a), we would need to prove but, in order to get (c), it will be enough to
prove in the special case when T is a fan (of course, these statements all assume . The
latter turns out to be easier, and because this, we use the lower route “(c) and (d)” for solving the
Representation Problem without to prove in full.

Lemma 2.8.5 (Special case of 2.8.4)). Let T' be a fan, and let F be the family of preorderings
S DO T which have finite index in F'. Then F is an HM-family for T.

Proof. Let ¢ = (ay,...,ay) be a T-form, and assume ¢ is T-anisotropic. Then for all i # j, we have
aja; ¢ —T. By Artin’s Theorem there exists an ordering P;; € X7 such that a;a; € F;;.
Now let S = ﬂKj P;j. Then whenever i # j, we have a;a; ¢ —S. But S is also a fan since T is, so
by © is S-anisotropic. Since S € F, this completes the proof of the lemma. ]

Now we shall give the solution of the Representation Problem in the special case of fans of
finite index. This steps is, of course, necessary no matter which route we want to follow. Note
that, once we solve the Representation Problem for fans of finite index, we will have solved the
Representation Problem for all fans, in view of and

Theorem 2.8.6 (R. Brown). Let T' be a fan of finite index in F, and let f € C(Xp,Z). Then f
is represented over T iff, for any preordering S O T, we have a congruence

> F(P)=0(mod | Xg]). (2.11)

PeXg

Thus, the representability of a continuous function f (by a quadratic form) depends on a whole
bunch of arithmetic conditions, in case T is a fan. Before we proceed to the proof of let
us take a closer look at some special cases of the congruence above. Of course, if S has index 2,
then S is an ordering and |Xg| = 1; in this case the congruence is a tautology. Next consider an
S which has index 4, say S = Py N P, where Pj, P» are distinct orderings in Xp. In this case,
the congruence says f(P1) + f(P) = 0(mod 2). Since P;, P, are arbitrary, this amounts to the
condition that f has constant parity on Xp, which, as we have observed before, is a necessary
condition for representability. In this light, the congruence 2.11] for S with bigger indices may be
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construed as generalizations of the constant parity condition — and according to the theorem, these
will be necessary and sufficient conditions for the representability of f.

After making these miscellaneous remarks, we shall now proceed to the

Proof of Theorem [2.8.6 (=) We need only consider the case S = T, and, by additivity, we may
assume that f is represented over T' by a unary form (a)7. If a € £7', then

S fP) = S sgupla) = £ Xrl,

PeXr PeXr

so we are reduced to checking the case when a ¢ +7'. In this case
T[a] =T+T -a=TUT -a and T[_a] :T_|_T(_a) =TUT- (_a)

both exclude —1 and hence are preorderings in F. If [F : T] = 2™ then these preorderings both
have index 2"~!. Since they are also fans, we have

‘XT[aH = |XT[—a]‘ =2"2

Observing finally that X7 is the disjoint union of X7, and X7|_,), we get

S fP) = 3 sgupla) =272 — 272 =,

PeXr PeXr

in particular proving [2.11

(<) To prove the converse, we shall imbed C(Xp, Z) into the larger ring C'(Xp, Q) of continuous
functions on X7 to Q. Here Q is again given the discrete topology (not the funny topology that it
inherits from the reals). In the ring C(X7,Q), we introduce the following inner product (_, _):

1
(f,9) = X1 > f(P)g(P) € Q. (2.12)

PeXr

Fix an ordering Py € X7, and let G denote the group Py/T with cardinality m = [ : T]/2 = | X7|.
We claim that the functions {a : a € G} form an orthonormal basis for C(X7, Q) under the inner
product defined in

Here (and in the following), we shall identify each a € G with a coset representative a € B.
For each such a, we have

| 2 1 _
(a,a) = m Z (sgnp(a))” = E‘XT‘ =1,
PeXrp
and, for distinct a,b € G, we have
o 1
(@6 = 3 seupla)senp(d) = 3 seup(d
PeXr PeXr

where ¢ := ab. Since ¢ ¢ T, by the proof of (=) the summation above is zero. Thus {a : a € G}
is an orthonormal set, and since C' (X7, Q) has Q-dimension | X7| = |G| = m, this proves the claim.

Now let f € C(Xr,Z) C C(Xr,Q) be such that the congruence are satisfied for any
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preordering S O T such that [S : T] < 2. We have a “Fourier expansion”
f=>Y (fa)
acG

with respect to the orthonormal basis that we found. To check that f € Im(er), it suffices to show
that (f,a) € Z for all a € G. This inner product can be computed as follows:

(Fa)=— 3 sanp()f(P

PeXr PGXT[_ ]
1
o R e S )
PeXr PGXT[ a)

By - 2.11| for S = T, the first term is an integer, so we need only worry about the second term. If
a € T the second summation is empty, so assume a ¢ T. Then S := T[—a] = TUT - (—a) is a
preordering. Since a € Py, we have —a ¢ T, so

[S:T]=2,[F:8=1/2[F:T] =m and |Xs| = m/2.
Applying to this S, we get the desired conclusion that (f,a) € Z. O

We are now in a good strategic position to follow through the “lower route” approach. The
only missing link is Step (d), which is reduction of the Representation Problem from the case of
general preorderings to the case of fans. The following result will, therefore, be our main goal:

Theorem 2.8.7. Let Ty C F' be a preordering, and f € C(Xg,,Z). Then f is represented over Ty
iff f is represented over any fan containing Ty.

Once we have proved we can combine it with 2.8.2] 2.8.5] and [2.8.6] to get the following
ultimate result:

Theorem 2.8.8 (Representation Theorem). Let Ty C F be a preordering, and f € C(Xr,,Z).
Then f is represented over Ty iff, for any fan T D Ty of finite index in F', we have a congruence

> F(P) =0 (mod |X7|).

PeXr
Our proof of 2.8.7] follows after three lemmas:

Lemma 2.8.9. Let T C F' be any preordering, and x1,Ts € F. Suppose ©1, 09 are T-forms such
that ©1(1, 1) =Zp @o(l,22). Then there exists a T-form ¢ such that p(1,z;) =p p;(1,x;) for
i=1,2.

Proof. If &1 € —T (resp. x5 € —T'), the lemma is immediate as we can take ¢ = @2 (resp. ¢ = ¢1).
Therefore, in the following, we shall assume 1,29 ¢ T, so T[x;] (i = 1,2) are both preorderings.



2.8. THE REPRESENTATION PROBLEM I 91

To prove the lemma, we shall work with both T-forms and T'[x;]-forms. For this purpose, the
following three observations will be useful:

o(L,zi) =1 pi(l,2:) < 0 Zre,) @i (2.13)
This is checked by signature considerations.
For any T-form, we have D7 (¢(1, ;) = Dy, (). (2.14)
This follows by a straightforward calculation of values.
For any T-form ¢, ¢(1, ;) is T-isotropic iff ¢ is T'[x;]-isotropic. (2.15)

This is proved by the same calculation used to prove [2.14

To prove [2.8.9] we proceed by induction on n = dim¢; = dimgs. If n = 1, the hypothesis
implies that 21T = 22T, so we are done by choosing ¢ = 1 or ¢ = 9. Now assume n > 2. From
the hypothesis and we have

Driey)(p1) = Drjgy)(p2)-
Fix an element y in this set and write ¢; = (y) L ¢’ over T[x;] (¢ = 1,2). Then, by
e1(L, i) =7 (y,yzi) L ¢'(1,25).
Using this for ¢ = 1,2 and cancelling (y), we get
(y1) L (L 1) = (yza) L (ph(1, z2). (A)

Since yxo is T-represented by the left hand side, there exists ¢ € Dr(¢)(1,21)) = Drp,1(¢]) sicj
that yxo is T-represented by (yx1,c), i.e,

(yx1,c) =7 (yxe, 1220).
Writing ¢} Zpp,,) () L ¢f, (A) becomes
(ya1) L cxi(l,x2) L o] (1, 21) = (yag) L (©h(1, 22). (B)

After cancelling (yx2), we have cx1 € Dr(¢h(1,22)), so as before, we can write @b Zpp,,) (cr1) L
©5. Then (B) becomes

cr1(1,2)2) L @) (1,21) Zr cr(l,x2) L @y(l, 22), (C)
so (1, 21) = (1, z9). We have now
©2 Zrip,) (Y, cx1) L @y

and
@1 = Tlz1)(y, ¢) L o Zppaq (y,cx1) Lol

Hence we can let pr(y,cz1) L ¢”, and find ¢” by the inductive hypothesis for the dimension
n— 2. O
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Lemma 2.8.10. Let T C F be a preordering, and let z1,x2 € F be such that x3 : —x129 ¢ £T,
and (x1,x2) = (1, —x3). Let f : X7 — Z be any (not necessarily continuous) function on Xrp. If
f 1is represented by a form ¢; over T|x;| (i =1,2,3), then f is represented by a form ¢ over T.

Note that each T'[z;] (i = 1,2, 3) is a preordering in this lemma. For ¢ = 3, this follows from the
assumption that x3 ¢ —7T. Since we also assume z3 ¢ T', (1, —x3) is not the T-hyperbolic plane.
By its T-values x1, xo cannot be in —T', so T'[x1], T'[x2] are also preorderings.

Proof of lemma[2.8.10, We may assume that ¢3 = 0 (after replacing f by f — ¢3). Also, we may
assume that ¢; is anisotropic over T'[z;], for i = 1,2. Since x3 = —x1x9, this means that ¢;(1,x;)
is anisotropic over T', for ¢ = 1,2. Since z3 = —x 172, the symmetric difference of X7, ; and X[,
is X7(z,], and, since (r1,v2) =7 (1, —z3), the union of these two sets is Xr.

By checking signatures, we see that ¢1(1,21) = @2(1,z2) in WpF. Therefore, we have

901<1a $1> =7 902<17:L'2>a

since these forms are both T-anisotropic.
By [2.8.9| (and [2.13]), there exists a T-form ¢ such that ¢ = ¢; over T'[z;], for i = 1,2. Hence ¢
will represent f over Xpp;,) U X7(,) = X7 O

The last lemma we need for the proof of shows in an interesting way how naturally fans
can arise in dealing with the Representation Problem:

Lemma 2.8.11. Let f be a function from Xr to Z (which is not necessarily continuous). Suppose
f 1is not represented over T, but is represented over any preordering T' 2 T. Then T must be a

fan.

Proof. Assume T is not a fan. Then by [2.7.4]there exists a nonzero ¢ such that (1,z) =7 (y, z/y)
for some y ¢ TUT - x. We also have x ¢ T (since the T-form (1,1) can represent only elements in
T). Now let 21 =y, x3 = /y and x3 = —x129 = —x. Then x3 ¢ £7T and (1, z9) =7 (1, —x3), as
in As noted after the statement of each T[x;] (i = 1,2,3) is a preordering; also we
have each 2; ¢ T, so T'lx;] 2 T. By the hypothesis, f is not represented over each T'[z;] (i = 1,2,3).
But the, by f is represented over T', a contradiction. O

We have now developed all the necessary machinery to prove [2.8.

Proof of Theorem [2.8.7. Returning to the notations there, we deal with a function f € C(Xr,,Z)
which we assume is represented over any fan O Tj. Assume that f is not represented over Tp. Let
F be the (nonempty) family of preorderings 7' O T such that f is not represented over T'. If F
has a maximal element T} (with respect to inclusion), then by T1 must be a fan, and we get
a contradiction.

To see that F does have a maximal element, we need only check that Zorn’s lemma applies.
Consider, therefore, a family of preorderings {7 : i € I'} which form a chain in F (with respect to
inclusion). We are done if we can show that the preordering T" := |J;; T; belongs to F. Let ¢ be
any Tp-form, and let

V ={P e Xz, : f(P) = $(P)}.

This is an open (and closed) set in X, by continuity of f and ¢. Since f cannot be represented
over ¢ over T;, we have (X7,) \ V # 0. These closed sets form a chain in X7, so by compactness
of Xr,, we have

0=((Xp)\V) = (ﬂ Xﬂ) \V = (Xp)\V.

i€l el
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Therefore, f cannot be represented by ¢ over T'. Since this holds for any form ¢, we have T' € F.
This completes the proof of O
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CHAPTER 2. THE REDUCED THEORY OF QUADRATIC FORMS



Chapter 3

First Abstract Theories

The first abstract theories appears in 70’s, by the hands of M. Marshall and C. M. Cordes.
These theories appears for a reason: they are interested in the existence (or not) of fields with
prescribed properties relating to quadratic forms. Questions like

There is a field with finite number of square classes and non-trivial Kaplansky’s radical (see for
example, [Cor75])? [[]

are the guide to their journey.
The very first step in abstracting the theory of quadratic forms is decide

What we take as primitive notions?

There is a reasonable list to take acount: representability, Witt ring, orderings, Pfister forms,
quaternionic structures and so on. And the privilegy of one in relation to the others is none!
Because this, the first theories are not necessarily the most elegant and efficient ones. But they
are important, because they answer some questions about Witt rings and reveal a roadmap to
construct more sophisticate tools to attack difficult questions, like Marshall’s signature conjecture
(see theorem [1.6.7).

In this chapter we expose the quaternionic structures, the abstract witt rings and the Cordes
schemes. This is not the historical order (Cordes schemes are the first and quaternionic structures
the last) but for didatical reasons we choose as well. Chapters 1 and 2 is the basic set of properties
that we want to proof in all abstract theories, so we strongly recommend to keep it in mind and
compare the results in the next chapters with the same ones in chapters 1 and 2 whenever is
possible.

LA quick digression about the Kaplansky’s radical: a central simple algebra over a field F is an algebra A
over F' whose center is F', and whose only two-sided ideals are 0 and A. As we will see later in this chapter, each
quaternion algebra over F' is such an algebra. By Wedderburn’s structure theorem, every central simple algebra
over F' is uniquely of the form A = M,(D) =2 D ® M,(F) for some n > 1 and some central division algebra D
over F. D is referred to as the division algebra component of A. Two central simple algebras A, B over F are
said to be equivalent, denoted A ~ B if their associated division algebra components are isomorphic as algebras.
This defines an equivalence relation on the class of all central simple algebras over F. Let us denote by Br(F') the
associated set of equivalence classes. The tensor product induces a binary operation on Br(F'), and with respect to
this operation, Br(F) is an abelian group. This is known as the Brauer group of F. So, given a,b € F/F27 we can
define a quaternion algebra (“I;b), and therefore, a map (.,.) : F/F? x F/EF? — Br(F), given by (a,b) — (%b) The
Kaplansky’s radical of F is the kernel of this map (.,.).

95
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3.1 Quaternionic Structure

First of all, we show how the theory of quadratic forms over a field F' os characteristic not
2, is describable in terms of the quaternionic structure associated to F', and then, the axioms for
abstract quaternionic structures appears naturally. Here, we follow chapters 1 and 2 of [Mar80].
Of course, we admit that all fields have characteristic not 2.

3.1.1 The Field case

In this section we define the quaternionic structure (G(F), Q(F), q) associated to F', prove its
basic properties, and show how the study of quadratic forms over F' is reduced to the study of the
quaternionic structure of F.

We define G(F) to be the quotient group F/EF?2. This is a group of exponent 2 in the sense
that 22 = 1 for all z € G(F). In view of theorem (c) we can view quadratic forms over F
to be n-tuples (ai,...,a,) with ai,...,a, € G(F). We define Q(F) to be the set of all isometry
classes of quadratic forms of the type (1, —a,—b,ab), with a,b € G(F). We consider Q(F) to
be a “pointed set” with point 0 equal to the isometry class of (1,—1,1,—1). Finally, we define
q:G(F)xG(F) — Q(F) to be the map sending (a, b) to the isometry class of (1, —a, —b, ab). The
triple (G(F'), Q(F'),q) will be referred to as the quaternionic structure associated to F'.

The reader could be note these facts: the isometry class of (1, —a, —b, ab) is nothing else that the
isometry class of the Pfister form ((a, b)) and with the proper identification, we have Q(F) C W (F),
the Witt Ring of F'. These facts will be useful later.

Theorem 3.1.1. For all a,b,c,d € G(F') we have:

Proof. With the identification Q(F) C W (F), theorem [1.1.25|(d) and their corollaries, operating on
the Witt ring we obtain (i), (ii) and (iii). To prove (iv), suppose ¢(a,b) = ¢(c,d), i.e, the isometry
class of (1,—a,—b,ab) is equal to the isometry class of (1, —c, —d,cd). By Witt’s Cancellation,
(—a,—b,—ab) = (—c,—d,cd). There exist e, f,g € G(F) with (=b,ab) = (e, f), (—=d,cd) = (g, f)
and (—a,e) = (—c¢,g). Comparing discriminants we get ef = —a, gf = —¢, so e = —af and
g = —cf. Taking x = —f, we have e = ax, g = cx, so (—b,ab) = (—z,ax) and (—d, cd) = (—x, cz).
Adding (1, —a) and (1, —c) respectively we obtain ¢(a,b) = g(a,z) and q(c,d) = q(c,z), proving
(iv). O

We now give a result which shows how the isometry relation on quadratic forms over F' is
determined by the quaternionic structure:

Theorem 3.1.2.
i-{a)y= ()< a=h.
ii - {(a,b) = (c,d) < ab = cd and q(a,b) = q(c, d).

I

iii - For n > 3, (a1,...,an) = (b1,...,bn) & there exist a,b,cs,...,cn, € G(F) with {(ag,...,ay)
(a,c3,y.ccip), (b2, .0y bp) = (b, c3, ..., ), and (a1, a) = (b1, b).

2 IR
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Proof. Here, we just need to combine the theorems (and corollaries) [1.1.26}f1.1.27} [1.1.28| with the
operations on the Witt ring (remember that Q(F) C W (F)!). O

Now, we devote some time to describe the relationship between the elements of Q(F') and
quaternion algebras over F. This is not a necessary knowledge for the rest of the content of this
work, but quaternion algebras is the classical treatment for the abstract quaternionic structure

that will be presented in the next section.

For fixed a,b € F, the quaternion algebra <‘%b) is defined to be the unitary algebra over F

generated by symbols 4, j subject to i = a, j2 = b, ij = —ji. It is a 4-dimensional algebra over
F with basis 1,¢,7 and k& = ¢5. On this so called “standard” basis, the multiplication is given by
i’ =a, j> =0, k*=—ab,ij = —ji =k, kj = —jk = bi, and ik = —ki = aj.

Theorem 3.1.3. Let a,b € F, and let A = (%) Then the center of A is F=F -1, and A has
only the trivial 2-sided tdeals.

Proof. Let x = xg + x11 + x2j + a3k lie in the center of A. Thus, by definition, xy = yx for all
y € A. In particular,
0 =iz — xi = 2237 + 222k

so o = x3 = (. Using the same argument with j instead of i, we obtain 1 = 0. Thus x = xg € F.

Now suppose J C A be a 2-sided ideal and x € J, x # 0. We wish to show that J = A. Suppose
x = xg+ 211 + x2j + x3k. Multiplying x by a suitable element of {1, 4, j, k}, we can assume x3 # 0.
Let y = iz — xi. Thus y € J, and, as above, y2j + y3k, where y2 = 2z3a # 0, and y3 = 2x3. Now
let z = yj — jy. Thus z € J, and z = 2ysb € F. Thus z is a unit in 4, so J = A. O

Corollary 3.1.4. For a,b € F, (aﬁb) is either a division algebra over F or it is isomorphic to
Ms(F) (the algebra of all 2 x 2 matrices over F).

Proof. By theorem [3.1.3, A = (aﬁb> is a simple algebra over F, so by Wedderburn’s theorem on

simple algebras, A = M, (D), the algebra of all n x n matrices over D, for some division algebra D
over F. Comparing dimensions, 4 = n?k, where k denote the dimension of D over F. Thus either
n =2, k=1, in which case A = Ms(F'), or n =1, k =4, in which case A = D. O

We now establish the connection between quaternion algebras and elements of Q(F'). Suppose

A= (‘}b) for some a,b € F. Let us say an element x = xo + x17 + x2j + x3k in A is a pure

quaternion if o = 0. We denote Ay = {v € A : v is pure}.
Lemma 3.1.5. Suppose v € A, x # 0. Then x is pure if and only if x> € F, v ¢ F.
Proof. One sees by “long-hand” computation that

2% = 22 + ax? + bal — abad 4 2xo(x1i 4+ 1o + 23k).

Thus, if  is pure, then 22 = ax? + ba — abx% € F. Conversely, suppose > € F, x ¢ F. Thus
2x0(x19 + x2j + w3k) = 0. But not all of x1,x9,x3 are zero. Since xox1 = zore = xor3 = 0, this
implies g = 0. Thus x is pure. ]

It follows that the concept of “purity” is independent of the particular presentation of A.
Another way of putting this is: any isomorphism A = B of quaternion algebras must carry pure
quaternions to pure quaternions.
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Corollary 3.1.6. If A = (‘}b>, B = (Cﬁd) and ¢ : A — B is an F-algebra isomorphism, then
Lp(A0> = B().

For x = xg+x1i+ 225 + 23k in A, we define the conjugate of x to be T = xg— x1¢ — x2j — x3k.
Note that for z € F, T = z. One verifies for z,y € A and ¢ € F that xt +y = T + 7, ¢T = T,
Ty = yx, and T = x. Thus conjugation is an algebra anti-isomorphism of order 2.

Let us define the trace tr: A x A — F by tr(z,y) = 1/2(xy + yZ). The trace is in fact, well-
defined, since tr(z,y) = tr(x,y), then tr(z,y) € F. One observe that ¢r is a symmetric bilinear
mapping on the underlying vector space of A. Thus, as well as being an algebra, A can also be
viewed as a quadratic space. The associated quadratic mapping is referred to as the norm of A.
It is given by

N(z) =tr(z,x) = %(wf—l— xT) = 27T

It is important to note that, the conjugation mapping (and hence the quadratic space structure)

F F
that ¢ : A — B is an algebra isomorphism. Then corollary implies that ¢(A4g) = By. If
r = a+ x9, where a € F and 29 € Agy, then T = o — xg, and hence p(z) = a + p(xp) and
©(T) = a — @(xg). Since (xg) € By, we have p(z) = ¢(Z). Therefore,

on A is independent of the particular presentation of A. Let A = (“’b>, B = (%) and suppose

N(p(x)) = ¢ - (@) = p(z) - p(T) = p(aT) = p(N(z)) = N(z),

S0 ¢ is an isometry. Thus any isomorphism A = B of quaternion algebras is also an isometry of
quadratic spaces.
Observe that if x € F', T = x, whereas if x is pure, T = —x. Thus if x € F' and y is pure then

1
tr(z,y) = 5 (~zy +yz) = 0.
Now suppose z,y are both pure. Then

1
tr(z,y) =0< 5(—azy —yz) =0 zy = —yz.

It follows from these remarks, and the fact that ¢, j, k are pure and anti-comute, that the standard
basis 1,1, j, k forms an orthogonal basis. Since N(1) =1, N(i) = —a, N(j) = —b, and N (k) = ab,
we see that the quadratic form of A with respect to this basis is (1, —a, —b, ab). Note that

ax?, by? ~ [ab

F -\ F
holds for any a,b,z,y € F. We see this replacing the standard basis {1,4,j,k} of (aljﬂb) by
2

{1,7,5',K'} where i' = xi, j' = yj, k¥ = i'j’. Then > = x%a, j = y?b. Since we are only

interested in the isomorphism class of the quaternion algebra (‘}b), we are thus able to view a, b

as elements of G(F'). We now prove the following:

Theorem 3.1.7. Let a,b,c,d € G(F). Then q(a,b) = q(c,d) iff the algebras (a};b) and (Ci,d) are
isomorphic. Further, q(a,b) =0 iff (a};b> >~ My(F).

Proof. Suppose « : (%b) = (%i) is an algebra isomorphism. In view of the criterion for purity
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given in lemma |3.1.5] a(Z) = a(z) for all z € (“F’,b). It follows that

b
tr(a(x),a(y)) = tr(x,y) for all z,y € (al; > .
Thus « is an isometry of quadratic spaces. From the basic correspondence between quadratic forms
and quadratic spaces, follows that the associated quadratic forms (1, —a, —b, ab) and (1, —c, —d, cd)
are isometric.
Now, conversely, assume (1, —a, —b,ab) = (1,—c,—d,cd). Then (—a,—b,ab) =

(—c,—d, cd)
by Witt’s cancellation. Let 1,4,7,k and 1,7,5’, k" be the “standard” bases of <‘%b) and <Cl’§l

)

respectively. It follows that the 3-dimensional subspace [i, j, k] of pure quaternions of ((}b> is

~

isometric to the corresponding subspace [i, ', k'] of (le). Let a : [i,7,k] = [¢/,7,K'] be any

isometry. Then «(i) is pure so (i) = —a(i). Thus
N(a(i) = a(i)a(i) = —a(i)*.
But « is an isometry so N(a(i)) = N(i) = —a. Thus a(i)?> = a. Similarly, a(j)? = b. Since

tr(i,j) = 0, we also have tr(a(i),a(j)) = 0. In view of an earlier remark, this implies «(7) and

a(j) anti-comutes. Thus, by replacing the standard basis of (Ciﬁl> by {1, a(i), a(j), a(i)a(j)}, we

cd\ ~ [ ab
see that (F) =~ (F>

Now consider (1’;1) If 1,4, 74, k is the “standard” basis of this algebra, then i? = 1, j2 = —1,
SO

(i+5)2 =i +ij+ji+j°=i2+42=0.

o 1) is not a division algebra. Thus, by corollary [3.1.4}

It follows that ¢ + j is not invertible, so (

(1—;1> > Ms(F). Thus by the first half of the theorem, and the fact that ¢(1,—1) =0,

<a1;b> = My(F) < (al;b) o~ (1’;1> & q(a,b) = q(1,—1) < q(a,b) = 0.

3.1.2 Quaternionic structures and the associated form theory

Definition 3.1.8. A quaternionic structure (or Q-structure) is defined to be a triple (G,Q,q)
where G is a group of exponent 2 (i.e, x*> =1 for all x € G) with a distinguished element denoted
—1, Q is a pointed set with distinguished point denoted 0, and q : G X G — @ is a surjective
mapping satisfying:

Q1 (symmetry) - q(a,b) = q(b, a).
Q2 - ¢g(a,—a)=0.
Q3 (weak bilinearity) - ¢(a,b) = ¢(a,c) < q(a,bc) = 0.

Q4 (linkage) - q(a,b) = q(c,d) = there exist © € G such that q(a,b) = q(a,z) and q(c,d) =
q(c, ).
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If F is a field of characteristic # 2, then we have the associated Q-structure (G(F), Q(F),q) (see
theorem . We do not claim that every @-structure is realized in this way, as the Q-structure
associated to a field, but, on the other hand, is not known if there is a counter example.

Here are basic consequences of these definition:

Lemma 3.1.9. Let (G,Q,q) be a quaternionic structure and a,b € G. Then:
- qla,1) =

ii - q(a,a) = q(a,—1).

i - q(a, —ab) = g(a,b).

iv - q(a,b) = q(c,d) < there ezxist x € G with q(a,bx) =0, ¢(c,dx) =0 and ¢(ac,z) = 0.
Proof.

i - Follow from Q3, since ¢(a,1) = ¢(a,1).

ii - By Q2 q(a,—a) = q(a,(—1)a) = 0, so by Q3, q(a,a) = q(a,—1).

iii - Since by Q2 ¢(a, —ab?®) = q(a, —a) = 0, Q3 provides q(a, —ab) = q(a, b).

iv - (=) From ¢(a,b) = q(c,d) by Q4 we obtain z € G such that ¢(a,b) = ¢(a,z) and g(c,d) =
q(e, x). Sousing Q3, we have ¢(a, bx) = q(c,dr) = 0. From q(a,z) = q(a,b) = q(c,d) = q(c, x),
using Q3 again we obtain ¢(ac, z) = 0.

(<) Using Q3 in the equalities ¢(a,bx) = 0, ¢(c,dx) = 0 and q(ac,z) = 0 we get g(a,b) =
q(a,x), q(c,d) = q(c,x) and q(a,z) = q(c,x). So q(a,b) = q(c, d).

O]

A morphism between Q-structures (G, Q, q) and (G',Q’,¢’) is a group homomorphism « : G —
G’ satisfying a(—1) = —1 and

q(a;b) = 0= ¢'(a(a),a(b)) =0

for all a,b € G. By [3.1.9(iv), the second requirement for a morphism of @)-structures implies the
(apparently stronger) condition

q(a,b) = q(c,d) = ¢'(a(a), a(b)) = ¢'(a(c), a(d)).

We now show how to develop an abstract theory of quadratic forms associated to any abstract
quaternionic structure. Of course, these abstract approach generalize the classical one, in the sense
that on case the @)-structure we start with is the Q-structure of some field F', this is just the usual
quadratic form theory over F.

Let (G,Q,q) be a @-structure which will remain fixed throughout this section. A form of

dimension n > 1 over G is just an n-tuple f = (ay, ..., a,) where aq,...,a, € G. The dimension
of f is denoted by dim(f). The discriminant of f is defined to be disc(f) := ajag...an, € G. If
a € G, we can scale f by a to obtain the form af := (aay,...,aa,). The sum of f and a form

g = (b1,...,by,) is defined by f @ g = (a1, ..., an, b1, ...,by,) and the tensor product of f and g is
defined by f ® g = (a1b1, ..., aibj, ..., anbp,).

Isometry of one and two-dimensional forms is defined by (a) = (b) < a = b and (a,b) = (¢, d) <
ab = cd and q(a,b) = q(c,d). For forms of dimension n > 3 isometry is defined inductively
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by: (ai,...,an) =, (b1,...,by) if and only there are x,y, z3, ..., 2, € A such that (a1, z) = (b1,y),
(a9, ..., an) Zn_1 (T, 23, ..., 2n) and (ba, ..., by) Zp_1 (Y, 23, ..., Zn).

Note that these definitions in the field case is already know basic properties of the isometry.
The next results is to establish another properties for our abstract isometry.

Proposition 3.1.10. Let (G,Q,q) be a quaternionic structure. Then for all a,b,c,d,x € G and
all forms o,y

a - If m is a permutation of {1,...,n} and ¢ = (a1, ....;an), P = (Ar(1), -+ Ar(n)) then o = .
b- =1 = dim(p) = dim(y)) and disc(p) = disc(y)).

¢ - (b,—bx) = (¢, —cx) holds if and only if q(bec,z) = 0.

d- o= =ap=ay. In particular, if (a,b) = (c,d) then (xa,xb) = (xc,xd) for all x € G.
e - (—a,—b,ab) = (—c,—d,cd) < q(a,b) = q(c,d).

f- {a,—a) = (1,-1).

Proof.

a- We may assume n > 3. If n(1) = ¢ > 2, take a = a;, b = a1, and take cs,..., ¢, to be the
elements left after a; and a; are deleted from the list aq,...,a,. Note that a,cs,...,c, is a
permutation of as,...,a,; b,c3,...,c, a permutation of bs,...,b, and b1,b is a permutation of
ai,a, so the result is true by induction on n. On the other hand, if 7(1) = 1, take a = b = ao,
and ¢; = a;, 1 > 3.

b - The first assertion is immediate. Also, the assertion concerning discriminants is true for 1 and 2
dimensional forms. Now, suppose ¢ = (a1, ..., an), ¥ = (b1, ...,b,), n > 3. By assumption, there
exists a, b, c3, ..., ¢, the “witness of the isometry”, i.e, with (aj,a) = (b1,b), (ag,...,an) =p_1
(a,cs,...,cn) and (ba, ..., by) =, 1 (b, c3,...,cy). By induction, we have as...a, = acs...c,, aja =
b1b and bes...c,, = bs...b,. Thus

aias...ay, = a1acs...c, = bibes...c, = biba...by,.

c- q(b,—br) = q(b,z) and b’z = —x = —c?z so (b, —bz) and (c, —cz) have the same discrimi-
nants. Thus

(b, —ba) = (¢, —cx) & q(b, ~bx) = qle, —cx) T2 (b, 2) = (e, z) © qlbe,x) = 0.

d - Is immediate for 1-dimensional forms. Now suppose ¢ = (b,d), ¥ = (c,e) and ¢ = 1. Thus
bd = ce, and setting —z := bd = ce, we get d = —bx and e = —cx. Thus ¢ = (b, —bx),
Y = (e, —cx), ap = (ab, —abx), arp = (ac, —acz). Thus, applying (c),

e =& qlbe,x) =04 q(abac,z) =0 S ap = ar.
The result for forms of dimension > 3 follows by induction on n.

e - By definition, (—a,—b,ab) = (—c,—d,cd) if exists p,q,r € G such that (—b,ab) = (p,r),
(—d,cd) = (q,r) and (—a,p) = (—c, q). Comparing discriminants this yields —a = pr, —c = gr.
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Let © = —r. Thus p = ax, ¢ = cx. Thus (—a, —b, ab) = (—c, —d, cd) iff exists x € G such that
(=b,ab) = (—z,ax), (—d,cd) = (—z,cx) and (—a,azx) = (—c, cx). Using (d) and (c) we get

(—=b,ab) = (—z,ax) < (b, —ab) = (z, —az) < q(a,bx) = 0.

Similarly, (—d,cd) = (—z,cx) < ¢(c,dx) = 0 and (—a,ax) = (—c,cx) < g(x,ac) = 0. Sum-
marizing, we have (—a,—b,ab) = (—c, —d,cd) iff there exist + € G such that ¢(a,bz) = 0,
q(c,dz) = 0 and ¢(ac,z) = 0. By |3.1.9(iv), we have (—a,—b,ab) = (—c,—d, cd) iff g(a,b) =
q(c, d).

f - Is just Q2 and the definition of isometry.

Theorem 3.1.11. Isometry is an equivalence relation (on forms of same dimension,).

Proof. Since reflexivity and symmetry follows by definition of 22, we just need to worry with
transitivity. Let ¢, 1,0 be n-dimensional forms over G with ¢ =2 ¢ and ¥ = 0. We show that
© 2 60 by induction on n. This is immediate if n = 1 or 2. If n = 3, scaling by discriminant we are
reduced to the discriminant 1 case (see [3.1.10|(d)). But any 3-dimensional form of discriminant 1
is of the shape (—a, —b, ab) for suitable a,b € G. Thus, this case follows using e).

Now assume n > 4. Let ¢ = (a) ®¢', = (b) &y’ and 0 = (¢) 0. Thus, exists a’,0',0", € G
and n — 2-dimensional forms 7, ¢ such that

/

12

I

(dY® T, ' =2 )® T and (a,d’) = (b, V).

and

12

Y2 WYDo, 0= ()Do and (bb") = (c, ).

Thus, by induction, (') & 7

I

(b") & o, so exists by, be and an n — 3-dimensional form « satisfying
T2 (b)) P, o (b)) ®aand (B, b1) = (b, bs).
It follows (using transitivity for n < 3) that
{a,a’,by) = (b,V,b1) =2 (b, 1" b)) = (c,c, by),

so using transitivity for n < 3 (again!) exists aj, ¢1,z such that

{(a',b1) = (a1, z), (¢ bs) = (c1,2) and (a,a1) = (c,c1).
Take 8 = (z) ® a. Then

' =(d)or=(d h)®a=(a,2)da=(n)ep

and
0 =()Do2(d, b)) DaX{c,z)da=c)®dp.

Thus by induction, ¢’ = (a1) ® « and 6’ = (¢1) @ a. Since {(a,a1) = (¢, c1), this implies ¢ = 0, as
desired. O

Lemma 3.1.12. For arbitrary forms @,y,¢" over G, ¢ 2/ & o @ =2 p G .
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Proof. By induction, we can assume ¢ is one dimensional, say ¢ := (a1).
(=) let ¥ = (x,¢c3,...,¢,) and Y = (y,ds, ...,d,). Then

l12

<a17x>
(x,c3, ..., Cn)

(x,c3, ...y Cn).

<a1733>
(x,c3, ..., Cn)
(y,d3, ..., dn)

I

12

Therefore, (a1) ® 1 = (a1) ¢’ by definition of isometry (take z =y and z; = ¢;, j = 3,...,n).
(<) By definition of isometry, exists a, b, cs, ..., ¢, such that ¥ = (a, cs, ..., cp), ¥ = (b, c3, ..., cp)
and (a1,a) = (a1, b) (remember the induction step!). Comparing discriminants, this yields a = b,
so ¥ X (a,c3, ..., cp) 2. Thus ¢ =), O

Proposition 3.1.13 (Witt’s Cancellation). Suppose p, ¢, 10,1 are forms over G satisfying p = ¢'.
Thenp 2 & pdP 2@ @Y.

Proof. Since ¢ = ¢/, it follows from lemma [3.1.12] and [3.1.10((a) that ¢ @ ¢’ = ¢ @ 1. Thus

pov 2oy ooy ey
by lemma [3.1.12 0

Corollary 3.1.14. If (a,b) = (¢, d) then {(a,—c) = (—=b,d).

Proof. From (a,b) = (c,d), applying [3.1.12} [3.1.13| and [3.1.10| we get:

(a,b) = (c,d) = (a,b) ® (=b,—c) = (c,d) ® (—b, —c)
(a,b,—b,—c) = (¢,d, —b,—c)

(a,—c) ® (b, —b) = (=b,d) @ (¢, —c)
(a,—c) ® (1,—1) = (—b,d) & (1,—1)
(a,—c) = (=b,d).

O
Proposition 3.1.15. If o, 1, ',y are forms over G with p = ¢’ and 1) =)', then pR1 = @' @1,
Proof. If ¢ = (a1, ..., an), then by [3.1.10(d) and [3.1.13]
CRVEZaY® ... Pan) Za ) ... Pa) 2o .
Similarly ¢ @ ¢ = o' @', s0 p @ = o' @Y. O

We say a form ¢ of dimension n represents x € G if there exist xo,...,x, € G such that
© = (x,x9,...,xy,). We denote by D(p) the set of elements x € G represented by ¢ in this sense.
In the field-theoretic case elements represented by ¢ = (aq,...,a,) are also expressible in terms
of ay,...,a, using the operations of F. The following result provide an analogous in the abstract
situation:

Proposition 3.1.16. If ¢ and ¥ are arbitrary forms over G, then

D(p &) = {D(z,y) : 2 € D(¢), y € D(¥)}.
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Proof. Let ¢ = (aq,...,ar), ¥ = {axy1, ..., an). For the inclusion D, let

2 e JiD(wy) 2 € D), y € DW)}.

Then, there exists x € D(¢), y € D(¢) such that z € D(z,y). By definition of representation,
there exists w, xa, ..., Tk, Yk+2, ---, Yn such that

(z,w) = (z,y)
© 2 (x,x9, ..., Tk)

¢ = <y7 Yk+25 -+ yn>
By proposition |3.1.13| and the properties in proposition |3.1.10] we have
D 1/} = <.%', L2y ooy Thes Ys Y425 -+ y’fl>

= <x7y7$27 v Thos Y425 -5 yn>

= <Z,’U},$2, vy Loy Y425 -+ yn>

Then z € D(p @ ).

To prove C, let by € D(¢ @ ). Thus, exists ba,...,b, € G such that ¢ @ ¢ = (b1, ba,...by).
Choose a, b, cs, ..., ¢, as witness of this isometry. Thus b; € D(aj,a). This completes the proof if
k=1 (take z = a1, y = a). If k > 2, by induction on k, exists 2’ € D(ag,...,ax), y € D(¢)) such
that a € D(2/,y). Thus

bl € D(alva) g D(al,a:/,y) = D(y)al,x/)v

so by the case k = 1, exists © € D(ay,2’) such that by € D(y,x) = D(x,y). Since D(a1,x) C D(p),
this completes the proof. O

Corollary 3.1.17. Suppose 1, ..., on are forms over G. Then
D(1 ® ... ® pn) = | {D(21, ...,wn) 1 21 € D(), Vi=1,...,n}.

Proof. Is just an application of induction on proposition [3.1.16 ]

Note that (a,—a) = (1,—1) for all a € G, since ¢(a,—a) = 0 = ¢(1,—1). Any form (a,—a),
a € G will be called a hyperbolic form. A form ¢ will be called isotropic if there exist a form

such that ¢ = (1, —1) @ 1. Otherwise f will be called anisotropic. A form is said to be universal
if D(yp) =G.

Corollary 3.1.18. Let ¢,v be forms over G. Then ¢ @ v is isotropic iff there exist v € D(p)
such that —x € D(v).

Proof. (=) suppose ¢ &1 = (1, —1) & 6. Decompose ¢ = (a) & ¢'. Then
(e oy=payp=(l,-1)66=(s,—a0ab,

so by Witt’s cancellation, ¢’ @ ¢ = (—a) & 6. Suppose dim(¢’) > 1. Then, by proposition
exists b € D(¢), ¢ € D(¢'), d € G such that (b,c) = (—a,d). Adding (a, —b) to both sides, and
cancelling the hyperbolic forms yields (a,c) = (—b,d). Thus —b € D(a,c) C D(p), i.e, z = —b
satisfies the required conditions. If, on the other hand, dim(¢’) = 0, then x = a works.
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() o= (x)®¢ and ¢ = (—z) ® ¢ then

PO =(z,—z) DY OY =(1,-1) Dy B Y.

Can be useful keep in mind the following special subcase of the above corollary:

Corollary 3.1.19. Let ¢ be a form over G and let a € G. Then a € D(p) < (—a) ¢ is isotropic.

3.1.3 The Witt Ring of a ()-structure

Here, we have the same situation of the chapter 1: the set of equivalence classes of forms over
G with respect to the equivalence relation = (isometry) with the operations of sum and product
on forms induce binary operations on this set. The resulting structure is “almost” a ring, except
for the fact that additive inverses fail to exist. To rectify this situation, we got to a slightly coarser
equivalence relation called Witt equivalence. For ¢ a form over GG, and an integer n > 0 we define
ny =pQ...Q ¢ (n times) (with the convention 0p = 0, the 0-dimensional form). Now, we say two
forms ¢, over G (not necessarily of the same dimension) are Witt equivalent, denote ¢ ~ 1,
if there exist non-negative integers k, [ such that ¢ ® k(1,—1) = ¢ ® I(1,—1). Could be fruitful
compare the Witt equivalence with the construction in section [I.3]

Of course, a direct consequence of the definition of Witt equivalence is that this relation is an
equivalence relation. Another consequence is the follow: suppose ¢ ~ ¢’, 9 ~ 1’ and a € G. Then
p@Y~ @Y, ap~ap and p @Y ~ ' @Y.

Let R be the set of equivalence classes of forms with respect to Witt equivalence. The sum and
product of forms induces binary operations on R. Defining on R the prescriptions 0 := (1, —1),
1 := (1) and —(ay,...,an) := (—ai,..., —a,), we have that R is a commutative ring with unity.
This ring is called the Witt ring associated to the Q-structure (G,Q,q). In the field case, this
construction coincide with the Witt ring of a field. In fact, this provides an alternative way to
define the Witt ring of a field.

The following proposition shows how to recover the concepts of isometry and isotropy from
Witt equivalence:

Proposition 3.1.20.

a- =S o~ and dim(p) = dim(y).

b - ¢ is isotropic < there exist a form ¢ with ¢ ~ 1 and dim(p) > dim(v).
Proof.

a- (=) is just the definition of Witt equivalence. (<) suppose ¢ @ k(1,—1) = ¢ @ I(1,—1).
Comparing dimensions and using dim(y) = dim(), this yields £ = I. Thus ¢ = ¢ by Witt’s
cancellation.

b - (=) is just the definition of isotropy. (<) suppose p@®k(1,—1) =2 p@®I(1, —1). Then comparing
dimensions and using dim(yp) > dim(vy) yields & < [. Thus, by Witt’s cancellation, ¢ =
& (I —k)(1,—1) so ¢ is isotropic.

O
Observe that any form ¢ over G decomposes as ¢ = pq, @ k(1, —1) with £ > 0 and with g,

a (possibly 0-dimensional) anisotropic form. To obtain such a decomposition, just keep extracting
terms (1, —1) until it is no longer possible.
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Corollary 3.1.21. Suppose ¢ = @gn, @ k(1,—1) and 1 = e, & 11, —1) with k,l > 0 and pan, Yan
anisotropic. Then ¢ ~ Y = Qun = Yan-

Proof. Observe that ¢ ~ @un, and ¥ ~ Wapn, SO @ ~ VY < Yan ~ Yan. Thus, we must verify g, ~
Yan < Pan = Yan. (<) is just the definition of Witt equivalence. For (=), suppose @an ~ Yan.
Since @an is anisotropic, by [3.1.20(b) dim(pan) < dim(¢qy). Similarly, dim(t,,) < dim(paen), since
Yan 18 anisotropic. Thus dim(pg,) = dim(1ey,), SO Qan = Yan by (a). O

We refer to g, (notation as above) as the anisotropic part of ¢. The non-negative integer
k is referred to as the Witt index of .

Note it follows from corollary [3.1.21] that if ¢ and ¢ are already anisotropic, then ¢ ~ 1) < ¢ &
1. Since each element of R is representable by an anisotropic form, R (as a set) can be identified
with the set of isometry class of anisotropic forms. Some care must be taken in doing this, however,
since the sum and product of anisotropic forms need not be anisotropic.

3.1.4 Pfister forms, fundamental ideal and Arason-Pfister property

We already know that Pfister forms are central for quadratic forms on the field case. Here,
we will want to reproduce this concepts in the abstract case. Again, we will work on a fixed

Q-structure (G, Q, q).
A k-folded Pfister form is a form of the type

©: (a1, ...,an)) == @ (1,a;) with ay,...,a; € G and k > 0.

A form ¢ over G is said to be round if the elements of G represented by ¢ are just the elements
a € G satisfying ap = ¢ (1o = p = 1 € D(p)). Since D(ap) = aD(p), one sees if ¢ is round then
aD(p) = D(yp) for all a € D(y), i.e, D(¢)D(¢) = D(p). This implies the set D(¢p) is a subgroup
of GG if p is round.

Proposition 3.1.22. Fvery Pfister form is round.

Proof. Let ¢ = ({(aq,...,ax)), a1, ..., ax € G. Expanding the products that define ¢, we see 1 € D(yp).
Now suppose a € D(p). If k =0, ¢ = (1) so a =1 and ayp = ¢ is immediate. Now suppose k > 1.

Thus ¢ = (1,a1) ® ¥ = ¥ @ a1y, where v = ((ag,...,)). By [3.1.16] exists ¢,d € D()) with
a € D(c,a1d). Comparing discriminants, this yields (¢, a1d) = (a, ajacd). Also cyp = 1) and dip =
by induction on k. It follows that cdiy = 1. Thus

ap = a( ® a1¥) = a(y @ ajedy)) = (a,aa1cd) @Y = (c,a1d) @1 = cp B ardyp = @ ar) = p.
O
Corollary 3.1.23. If ¢ is a Pfister form, then D(yp) is a subgroup of G.

Proposition 3.1.24. Suppose ¢ is a k-fold Pfister form, k > 1, that ¢ is defined by ¢ = (1) ® ¢/,
and x € D(¢'). Then there exist z1,...,xx € G with x1 = x and ¢ = ®%_ (1, z;).

Proof. If k =1 this is immediate since ¢’ = (z). Suppose ¢ = ({a1, ..., ax)), k > 2. Thus
p=(La) @y =9y ®ary

so ¢ =29 @ aryp. Here ' = ({ag,...,ar)) and ¢’ is defined by 1 = (1) @ ¢'. By [3.1.16, exists
y € D), z € D(¢) such that z € D(y,a1z). Thus, by [3.1.22] 2¢) = ¢, and by induction on k,
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= (1,y) ®.... Also, (y,a1z) = (z,a1xyz), so

PEYOaY =B arzy = (1,a12) @ (Ly) @ ...
~(1,y,a12,a1y2) @ ... =2 (1, z,a120y2,01y2) @ ... = (1, x2) @ (1, a1y2)  ....

O
Corollary 3.1.25. If ¢ is a Pfister form which is isotropic, then o ~ (E|
Proof. By assumption, ¢ = (1,-1) @ ..., so ¢’ = (=1) @ ..., i.e, =1 € D(¢'), so by [3.1.24] ¢ =
(1,-1)®...~0. O

Now, we will work on the fundamental ideal. The argument here is basic the same of the

arguments preceeding proposition |1.3.11
It is a direct consequence of the definition of Witt equivalence that for arbitrary forms ¢,

over G, ¢ ~ 1) = dim(y) = dim(v) (mod 2). The modulo 2 dimension of a form ¢ is defined by
dimg(p) = dim(p) + 2Z € Z/2Z. Thus dims is an invariant with respect to Witt equivalence, and
hence defines a ring homomorphism dimsg : R — Z/2Z. The kernel of dims is the fundamental ideal
of R, denoted by I.

Note that every even dimensional form is a sum of two dimensional forms. Also, (a,b) ~
(1,a) ® —(1,—0) for all a,b € G. It follows that I is generated, as an additive group, by the set
of 1-fold Pfister forms. Thus the k-th power ideal I* is additively generated by the k-fold Pfister
forms.

Proposition 3.1.26. Let k > 1. Then the following are equivalent:
a-IF=0.

b - @~ 0 for all k-fold Pfister form ¢.

¢ - @ 1is isotropic for all k-fold Pfister form .

d - ¢ is universal for all (k — 1)-fold Pfister form .

Proof. (a)<(b) and (b)=-(c) is immediate from definitions involved. (c)=-(b) follows from
(b)=-(d): let ¢ be a (k — 1)-fold Pfister form and let a € G. Then ¢ ® (1,—a) ~ 0 by (b), i.e,
© = ap. Thus by a € D(p).
(d)=(b): let ¢ = {{a1,...,ax)) and ¥ = ({a1,...,ax_1)). Then —ay € D(1)) by (d), so —ax) =
by 3.1.22] Thus ¢ = (1, a;) ® ¢ ~ 0. O

Corollary 3.1.27. ¢ - I =0& G = 1.

b-12=0eQ=0.

Proof.

a - By I =0 < (1) is universal. Since D(1) = {1}, this in turn, is equivalent to G = 1.

b - If I? = 0, then every 1-fold Pfister form is universal, so in particular a € D(1, ab) for all a,b € G.
Comparing discriminants, (1,ab) = (a,b) so ¢q(a,b) = ¢(1,ab) = 0. Since this os true for all
a,b € G, this implies @) = 0. Now suppose ¢(a,b) = 0 for all a,b € G. Thus (1,ab) = (a,b) so
(1,—a,—b,ab) ~ 0 i.e, (1,—a) ® (1,—b) ~ 0 for all a,b € G. This shows I? = 0.

2The notation ¢ ~ 0 means the class of ¢ in the Witt ring is 0, i.e, ¢ is isometric to a sum of hyperbolic forms.
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O]
Note that for all a,b € G,
(1,—a)® ~ (1, —ab) ® (1, —a) @ (1, —b).

It folows that the mapping o : G — I/I? defined by a(a) = (1, —a) + I? is a homomorphism from
the (multiplicative) group G to the additive group I/I%. Since the 1-fold Pfister forms generate I,
this mapping is, in fact, surjective. We wish to show that « is an isomorphism. For this purpose
it is useful to introduce the “signed” discriminant.

First note that the usual discriminant is not invariant with respect to Witt equivalence. To
rectify this, we define the signed discriminant of a form ¢ = (a4, ...,a,) to be

disct () = (—1)"" D 2disc(p) = (=1)" "D 2q1ay...a, € G.
Proposition 3.1.28.
a - If dim(p) = n, dim(yp) = m, then discy (o ® ) = (—1)""discy (@) disc+ ().
b - If o ~ 1 then discy(p) = discy ().
Proof.

a- dim(p ® 1) =n+m and disc(p @ 1) = disc(¢)disc(1)). The result now follows by noting that

(m+n)m+n—-1) m(m-1) n(n—1)
2 =T Tt

b - In view of [3.1.10(b), we need only to show that disc+(p @ (1,—1)) = disc+(¢), but this is an
immediate consequence of (a).

O]

It follows from (b) that the signed discriminant induces a mapping disc+ : R — G. By
(a), the restriction of this mapping to I is a group homomorphism. Note that if a,b € G,
then discs((1,a) ® (1,b)) = disc+((1,a,b,ab)) = 1 by direct computation. Sice the 2-fold Pfister
forms generate I? it follows disc4(I?) = 1, so disc+ induces a group homomorphism 3 : I/I? — G
defined by B(¢ + I?) = disc+ (). Finally, if a € G, then

(Ba)(a) = Bla(a)) = B(1, —a) + I?) = disc+ (1, —a) = a
so Ba = id. On the other hand,

(aB)((L,a) + I*) = a(B((1,a) + I?)) = a(~a) = (1,a) + I
and af = id. Thus « is an isomorphism with inverse 3. This proves the following:
Proposition 3.1.29. I/I? = G canonically.

Moreover, from the fact that 3 is the inverse of o we obtain

Corollary 3.1.30. For ¢,v € R, ¢ =1 mod I* & dima(p) = dimz(¢)) and discs(p) = discs(1)).
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In section [1.11], we studied the Witt ring of a field in terms of the filtration
RDOIDI?D>..DI"D ..

determined by the fundamental ideal I. Unfortunately, the proof of Hauptsatz depends on a certain
methods which is available only in the field case. We can, at least, proceed axiomatically as follows.
Let us say that the quaternionic structure (G, Q,q) satisfies AP(k) if f = (a1,...,a,) € R, f € I*
and n < 2F = f ~ 0. With this terminology we can prove:

Proposition 3.1.31. AP(0), AP(1) and AP(2) holds for any Q-structure.

Proof. AP(0) and AP(1) are trivial statements. To prove AP(2) suppose ¢ € I?, dim(p) < 4 (thus
dim(¢) = 0 or 2). By [3.1.30, ¢ is even dimensional and disct(¢) = 1. Disregarding the trivial
case, we may assume ¢ = (a,b). Thus 1 = disc4(¢) = —ab, so b = —a. Thus ¢ = (a,—a) ~0. O

However, we generally have the following problem for arbitrary @-structures:

Given a arbitrary Q-structure, does AP(k) hold for all k > 37

3.2 Abstract Witt Rings

We provide a brief account on the abstract Witt rings, as in the chapter 4 of [Mar80]. Un-
fortunately, we just compute the equivalence of this abstract Witt rings with the Witt rings of a
quaternionic structure (and of course, the classical Witt ring of a field). Most of its interesting
application, including an approach to the Representation Problem posed in are ommited. The
reader could consult this in [Mar80].

But even though this section is an introdutory one, we can note the simplification of the
language that the abstract Witt rings provides in deal with the study of its ring-theoretic aspects.

Suppose, to begin, that R is the Witt ring of a Q-structure (G, @, q). Suppose a,b € G. Then
by proposition and the definition of isometry, (a) ~ (b) < (a) = (b) < a = b. Thus we may
identify G with a subset Gg C R. This identifies 1 € G with the unity 1 € R and the distinguished
element —1 € G with —1 € R (where, as usual in a ring, —r denotes the additive inverse of r).
Since (a) ® (b) = (ab), G is a subgroup of the multiplicative group R of R, and G = G as groups.
Since every form is expressible as the sum of 1-dimensional forms, it follows that Gr generates R
as an additive group. With this as motivation, we define an (abstract) Witt ring:

Definition 3.2.1. An abstract Witt ring is a pair (R, Gr) where R is a non-trivial commutative
ring with unity 1 (0 # 1), and Gg is a subgroup of the multiplicative group R which has exponent
2 and contains —1. We assume:

W1 - Ggr generates R additively.

Since —1 € Gp, this is the same as assuming that every element of R is of the form r =
a1 + ... + an, with ay,...,a, € Ggr, and n > 1. We let Ir denote the ideal of R generated by
elements r € R of the form r = a + b with a,b € Ggr. This is the fundamental ideal of R, and we
can consider the Arason-Pfister property

AP(k): Ifr=a1+ ... +a, € I*, with n < 2%, then r = 0.
It is not quite clear what “should” be assumed concerning AP (k). However, we do assume

W2 - AP(0), AP(1) and AP(2) holds for R.
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Finally, we assume

W3- Ifar+..4+a, = b1+ ...+ b, and n > 3, then there exist a,b,cs,...,c, € Gr such that
ag+...+ap=a+c3+...+cp, a1 +a=>by+0b (and hence by + ... + by =b+c3 + ... + ¢ ).

When the context is clear, we will refer to abstract Witt rings just by Witt rings.

Note that the Witt ring associated to a @-structure is an example of abstract Witt ring (see
[3.1.20((a), [3.1.31] and the definition of isometry in a @-structure). The aim of this section is to
proof the converse is also true.

For r = a1 + ... + a,» € R, we define the modulo-2 dimension and the signed discriminant of r
by dimy(r) = n 4 2Z € Z/2Z and discs(r) = (=1)"=Y/2q,...a,, € Gg. It is necessary to verify:

Proposition 3.2.2. dimy : R — Z/27Z and discy : R — G are well-defined.
Proof. By AP(1), Gg NIz = 0. From this, it follows that

aiy+ ...+ ay, =by + ...b,, = n =m mod 2
thus dims is well-defined. Now, we wish to show that
a+...+a,=b1+ ...+ by = (—1)”(”_1)/2a1...an = (—1)m(m_1)/2[)1...bm.

By adding enough terms of the form 1+ (—1) we are reduced to the case m = n. Since the case
m =n = 1 is immediate, let n = 2. In this case, a; + as = b1 + by so
(a1 — b1)(a1 + az) = a1 (a1 + az) — by (by + b2) = af + arag — b} — biby
=1+ajas —1—b1by = ajas — bibs.

Thus ajas — b1by € Ii%z’ so by AP(2), ajaz = bibe. Now suppose n > 3. Choose a, b, c3, ..., ¢, as in
W3. Then by induction on n,

a1as...a, = a1ac3...c, = bibcs...c,, = b1ba...b,,

completing the proof. ]

Now, suppose that R is the Witt ring of some Q-structure (G, @, q), and that G is identified
with a subgroup of R in the canonical way. Then for a,b € G, the element (1 —a)(1 —b) € R
is just the equivalence class of the 2-fold Pfister form ((a,b)) = (1,—a,—b,ab). It follows, using

proposition [3.1.20] Witt cancellation, and [3.1.10|e), that for a,b,¢,d € G,
(1-a)(1-8) = (1 - (1 - d) & gla,b) = q(c, ).

For R an arbitrary Witt ring we define QQr to be the subset of R consisting of all elements
(1—a)(1—05), a,b € Gg. The mapping qr : Gr Xx Gr — Qr is defined by qr(a,b) = (1 —a)(1 —b).
we take —1 as the distinguished element of Gr, and 0 = qr(1,1) as the point of Qg.

Proposition 3.2.3. For any Witt ring R, (Gr,Qr,qr) is a Q-structure.
Proof. Q1 is immediate. For Q2, note that (1 —a)(1 —a) =1—a?=1— 1= 0. Concerning Q3,
(1-a)(1—=bc)=0<b(l—a)(l—bc)=0<(1—a)(b—c)=0
S(l—-a)(l=14b—-¢)=0
S (1—-a)(l-=0b)=(1—-a)(l—c).
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To prove Q4, assume (1 —a)(1—b) = (1 —¢)(1 —d), with a,b,¢,d € Gg. Expanding and cancelling,
this yields —a — b+ ab = —c — d 4+ c¢d. By W3, exists p,q,r € Ggr such that —b+ ab = p + 7,
—a+p=—c+q,and —d + cd = q+ r. Take x = —r. Comparing signed discriminants, this yields
p = ax, ¢ = cx. Thus

(1-a)(l=b)=1—a—b+ab=1—a+p+r
=l—-a+ar—z=(1-a)(l—ux).

Similarly, (1 —¢)(1 —d) = (1 — ¢)(1 — x). This completes the proof. O

We now obtain a result describing R as quotient of the integral group ring Z[Gg|. By Wi, there
is a natural surjetive ring homomorphism ¢ : Z[Gg] — R. We denote by [a] the element a € G
viewed as an element of Z[GR| (this notation is introduced to avoid confusing elements of Z[GR|
with elements of R). Thus ¢([a]) = a for all a € Gr. Hence there is an exact sequence

¢

0 Jr Z|Gr] R 0

where Jr denotes the kernel of ¢, so R = Z|GR]/Jr.

Theorem 3.2.4. Jp is generated as an ideal by the element [1] + [—1] and the elements ([1] —
[a])([1] — [b]) such that a,b € Gr and qr(a,b) = 0.

Proof. Let Kp denote the ideal of Z[Gr| generated by [1] 4 [—1] and the elements [a] + [b] — [c] —[d]
such that a +b=c+d in R.

Claim 1. Kir = Jgr. Of course, Kr C Jgr. Thus, the claim will be estabilished if we show
the reduced mapping ¢ : Z[Gr]/Kr — R is injective. Since [1] + [~1] € Kg, every r € Z[GR] is
expressible as r = [a1] + ... + [a,]) mod Kpg for suitable ay, ...,a, € Gr. Thus claim 1 reduces to:

Claim 2. If a; + ... + ap = b1 + ... + by in R, then [a1] + ... + [ay] = [b1] + ... + [bn] mod Kp.
By adding suitable number of terms 1+ (—1), we can assume m = n. By definition of Kg, we can
also assume n > 3. Let a,b,cs,...,c, be as in W3. Thus, by induction on n, these congruences

holds modulo Kg:

[as] + ... + [an] = [a] + [c3] + ... + [en],
[a1] + [a] = [b1] + [b],
[b2] + ... + [bn] = [b] + [c3] + ... + [cnl,

so modulo K, we have
[a1] + [ag] + ... + [an] = [a1] + [a] + [e3] + ... + [ea] = [b1] + [b] + [c3] + ... + [cn] = [b1] + -..[bn)-

This proves claim 2 and hence claim 1.

Now suppose a,b,c,d € Gr, and a + b = ¢+ d. Comparing signed discriminants, ab = cd.
Let x = —ab = —cd. Thus b = —ax, d = —cx, so a —axr = ¢ — cx, then 1 — x = ac — acx and
(1 —x)(1 —acx) =0, so qg(x,ac) = 0. Finally, modulo the ideal generated by [1] + [—1] we have
these congruences

[a] + [b] — [e] — [d] = [a] — [az] + [c] + [ex] = [a]([1] — [2] — [ac] + [acz])

finalizing the proof. O
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At this point, we can realize that this theory try to imitate the arguments developed in section
The class of Witt rings is made into a category as follows. If R and S are Witt rings, a
morphism o : R — S is a (unitary) ring homomorphism such that a(Gr) C Gs.

Corollary 3.2.5. Suppose a: R — S is a morphism of Witt rings. Then the restriction o : Ggr —
Ggs is a morphism of Q-structures. Conversely, each Q-structure morphism o : Gg — Gg lifts
uniquely to a morphism o : R — S.

Proof. The first assertion follow from the definition of morphisms of Witt rings. By W1, if a
morphism of the @-structures lifts at all, then it lifts uniquely. The existence of a lifiting follows
from theorem using the fact that if (1 —a)(1 —b) =0 then (1 — a(a))(1 — a(b)) = 0. O

Finally note that if (G, Q, q) is a Q-structure, there is a (abstract) Witt ring R with (Gr, Qr, qr)
isomorphic to (G, @, q) (in fact, R is the Witt ring constructed in section [3.1.3). Combining this
with the results just proved, we have the following major result:

Theorem 3.2.6. The category of Witt rings and the category of Q-structures are naturally equiv-
alent.

For finalizing this section, concerning about morphism of Witt rings, the exact relationship
between then and ring homomorphism is not quite clear. However, it is worth pointing out the
following result:

Proposition 3.2.7. Suppose R and S are Witt rings satisfying AP(3). Then R and S are iso-
morphic as Witt rings iff they are isomorphic as rings.

Proof. (=) is immediate. For (<), suppose o : R = S is a ring isomorphism. Thus «a(Ig) is an
ideal of index 2 in S. Thus, if a € Gg, then a = 1 mod «a(Ig) (since a ¢ «(Ir)). In particular,
—1=1mod a(Ig), so a+ b =0 mod a(Ir) for all a,b € Gg. Thus Is C a(Ig), so Is = a(Ir) by
maximality of Is. Thus a(Ig)* =1 Zé for all k > 1 so « induces a group isomorphism

o IR /TG = 75/ 15T for all k > 1.

Combining the natural isomorphisms Gg = Ig/I%, Gg = Ig/I% with a1, this yields a group
isomorphism g : Ggp — Gg. Note if ¢ € G, [(c) is characterized as the unique element of Gg
satisfying £(c) = a(c) mod Ig. We claim that § is an isomorphism of Q-structures. This, togheter
with will complete the proof. But note that the unique lifting of 8 may not coincide with .

From a(—1) = —1 € Gg follows f(—1) = —1. Now suppose a,b € Gr and ggr(a,b) = 0.
We wish to show ¢s(B(a), (b)) = 0. Applying a to 0 = gr(a,b) = (1 —a)(1 — b) we obtain
0= (1—aa))(l - a)). Since 3(a) = a(a) and B(b) = (a(b) modulo 1%, this yields

4s(8(a), B()) = (1 - B(a))(1 - B(b)) = (1 - a(a))(1 - (b)) = 0 mod I3,

Since we are assuming AP(3), this implies ¢g(B(a),5(b)) = 0. By symmetry, we also have
qs(B(a), (b)) =0 = qr(a,b) = 0. This proves the claim and hence the proposition. O

3.2.1 The local-global property of Pfister

The next natural step for this theory, is to obtain a result related to the Pfister local-global
principle

Let start with the basic definitions: given a witt ring R, by a signature of R one means a
(unitary) ring homomorphism o : R — Z. We denote by Xg the (possible empty) set of all
signatures of R.
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Recall Z is a Witt ring with Gz = {1, —1}. Also, if ¢ € Xg, then o(Gg) C o(R) = Z. Thus a
signature of R is just a morphism o : R — Z of Witt rings.

Note for a,b € Gy, qz(a,b) = 0 except if a = b = —1. It follows from this observation
and corollary that the signatures of R correspond in a one-to-one fashion with the group
homomorphisms o : Gg — {1,—1} (i.e, characters of Gg) satisfying o(—1) = —1 and qr(a,b) =
0 < either o(a) =1 or o(b) =1 for all a,b € Gr. Since

qr(a,b) =0 1—a=0b(1—-a) < be D(1,a),
replacing a by —a, this allows one to rephrase the last condition satisfied by o as follows:
be D(l,a) and o(a) =1=0o(b) =1 for all a,b € Gp.

In case F'is a field of characteristic # 2, then the signatures of the Witt ring R(F') correspond
exactly to the orderings of F.

Proposition 3.2.8. The set of signatures of R(F') (denoted X(F')) and the set of orderings of F
are in canonical one-to-one correspondence.

Proof. Each ordering P of F' correspond to a signature op by

(@) lifaeP
opla) =
r “lifa¢P

and if a signature o is given, we recover an ordering P such that o = op via P := {a € ' : 0(a) =
1}. O

Theorem 3.2.9 (Pfister Local-Global Principle). Suppose r € R and o(r) = 0 for all 0 € Xp.
Then there exist n > 0 such that 2"r = 0.

Let us now denote by R; the torsion subgroup of (R, +).
Corollary 3.2.10. Ry is 2-primary. Forr € R, r € Ry < o(r) =0 for all 0 € Xpg.
Corollary 3.2.11. The following are equivalent:
a- Xp=0.
b- Ri=R.
¢ - char(R) > 0.
Corollary 3.2.12. If Illfz is torsion-free, then AP(k) holds for R.
Corollary 3.2.13. If I}, is torsion free then AP (k) holds for all k > 1.

3.2.2 Prime Ideals, the Nilradical and Units

Theorem 3.2.14. Let P be a prime ideal of R, P # Ir. Then 2 ¢ P and there exists a unique
o € Xg such that ker(o) C P.

For the purpose of the next corollary we adopt the following notation: for o € Xg, let P, =
ker(sigma). This P, is a prime ideal of R and R/P, = 7Z. For 0 € X and p any prime integer
we let P, ) be the unique prime ideal of R such that P, C P, , and R/P,, = Z/pZ. The existence
and uniqueness of Py, follows from R/P, = 7Z and the well-know ideal structure of Z.
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Corollary 3.2.15. The prime ideals Ir, Py, 0 € Xg; and P,,, 0 € Xg, p in odd prime, are all
distinct and are the complete set of prime ideals of R.

Corollary 3.2.16. If Xr # 0, then Ig is the only prime ideal of R.

Corollary 3.2.17.
Ni(R) = { Ry, if Xp # 0In, if Xp = 0.

Theorem 3.2.18. a - If Xp =0, R=1+ Ip.

b—]fXR;é@, .
R={reR:o(r)==1 foraloec X} =Gr(l+ Ry).

Corollary 3.2.19. If R is any abstract Witt ring, then R = Gr(1 4+ Nil(R)).

3.2.3 Pfister quotients

If J is any ideal of R and R = R/J then we can define G to be the image of Gy in R by the
natural projection. It is of interest to know when R = (R, Gf) is again a Witt ring. In this section
we construct an important class of quotients of this type. In particular, we show that R/Nil(R) is
a Witt ring.

Let us fix a Pfister form p = ({(aq,...,ar)) over Ggr, p # 0 and let us denote the associated
Pfister element (1+a)...(1+ax) € R by p. Let us denote by Ann(p) the annihilator of p in R, that
is Ann(p) = {r € R : rp = 0}. This is an ideal of R.

Lemma 3.2.20. Ann(p) is generated as an ideal by the elements 1 — x, x € D(p).
Now let R = R/Ann(p) and let G denote the image of Gg in R. Note that for a € G,
a=1mod(Ann(p)) & (1—a)p=0<ap=p<ap=p<ac D(p).
It follow Gz = R/D(p).
Proposition 3.2.21. R = (R,Gy) is a Witt ring.

We will refer to the quotients R/Ann(p), p an anisotropic Pfister form over Gg, as Pfister
quotients of R. Thus we have proved that every Pfister quotient of R is a Witt ring. We will
also use the term Pfister quotient to indicate a slightly more general type of quotient of R. A set
S of anisotropic Pfister forms will be called directed if for all p € S there is a r € S such that
D(p), D(q) € D(r).

Now, suppose S is a directed set of Pfister forms and p,q € S with D(p) C D(q). Then by
lemma, Ann(p) € Ann(g), so the identity map in R induces a morphism of Witt rings
R/Ann(p) — R/Ann(q). Thus we have a directed system of Witt rings and morphisms. In this
situation we can always form the direct limit.

Lemma 3.2.22. Let {R;}ics be any directed system in the category of Witt rings. Then the direct
limit ligRi exists.
el
We wish to apply this to the directed system of Witt rings arising from a directed set S of
Pfister forms. In this case,

lim R/Ann(p) = R/ | J D(p)-

peES peES
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The associated group for this Witt ring is

lim G/D(p) = Gr/ | D).

peES peS

Such quotients of R will also be reffered to as Pfister quotients. One can, of course, view the
previous definition as being a special case of this one where S is a singleton set {p}.

Now suppose Xp #. The Nil(R) = R: Up>0 Ann(2"). Since the system of Pfister forms
{(1,1)™ : n > 0} is directed, it follows that R = R/Nil(R) is a Pfister quotient of R and hence
is itself a Witt ring, with G = Gr/ Un>0 D(1,1)". Note that X4 is canonically identified with
Xpr. On the other hand, if Xr = (), then Nil(R) = Iz so R = R/Nil(R) = Z/27Z. This can also be
viewed as a Witt ring with Gz = 1.

Combining the above, we have proved the following:

Corollary 3.2.23. If R is a Witt ring, R = R/Nil(R) and Gz = the image of G in R by the
natural projection, then R = (R, Gg) is a Witt ring with Nil(R) = 0.

We will denote the Witt ring R/Nil(R) by Req. In case F' is a field we will refer to R,..q as the
reduced Witt ring of F.

3.2.4 Reduced Witt rings

We will say a Witt ring R is reduced if Nil(R) = 0. Thus, if R is any Witt ring, then R,.q is
a reduced Witt ring. We now give a necessary and sufficient condition, in terms of the associated
@Q-structure, that a Witt ring is reduced.

Theorem 3.2.24. For an arbitrary Witt ring R, R is reduced if and only if qr satisfies
qr(a,a) =0=a=1

for all a € Gp.
Corollary 3.2.25. Let R be a reduced Witt ring, f be a form over Gr, and n > 1. Then
a- D(nx f)=D(f).
b - Ifdim(f) > 2 and n x f is isotropic, then so is f.
Recall that isotropic forms are always universal. For reduced Witt rings we have the converse:

Corollary 3.2.26. Let R be a reduced Witt ring, f be a form over Gr with dim(f) > 2. Then the
following are equivalent:

a - f is isotropic.
b - f is universal.

c - There exist v € Gr with x, —x € D(f).
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3.3 Cordes Scheme

As observed by Cordes in [Cor76], the existence of a field with prescribed properties relating
to quadratic forms can frequently be determined by observing what must happen to the value sets
of binary quadratic forms. For this reason, the theory of Cordes schemes borns, and we make a
brief introduction following [Cor76], [Kul79], [KSS8g|. Here, we describe the category of Cordes
Schemes and what is the apropriated notion of isometry of forms.

Definition 3.3.1. A pre-quadratic scheme is a triple (G, —1,V), where G is a group of exponent
2, i.e, g> =1 for all g € G; —1 is a distinguished element of G with the notation —a = (—1) - a,
and V' is a mapping assigning to each a € G a subgroup V(a) of G, satisfying the following axioms
for all a,b,c € G:

C1 - a€V(a) for every a € G.
C2 - b e V(—a) implies a € V(=b) for all a,b € G.
A pre-quadratic scheme is said to be reduced if satisfies
V(1) = {1}. (red)

Definition 3.3.2. A quadratic form f of dimension n in a pre-scheme G, is any n-tuple f =
(a1, ...,an) of elements of G. The set Df of elements of G represented by f is defined inductively
as follows:

D(ar) = {a1},
D{ay,...,an) = U{alV(alm) cx € D{ag,...,an)} forn > 2.

In particular, for a binary form (a,b) we have D{(a,b) = aV (ab) = bV (ab) = D(b, a)E|.

All these have natural meaning in case of the pre-scheme of a field F' of characteristic not 2.
Here G is the group of square classes F'//EF?, —1 is the coset (—1)F and V (aF?) is the value group
of the quadratic form (1,a) viewed as a subgroup of G. However, it turns out that in the abstract
situation the value set D{(ay,...,a,) depends in general on the order of diagonal entries. To rectify
this we introduce

Definition 3.3.3. A pre-scheme (G,—1,V) is said to be a Cordes scheme (or quadratic scheme)
if it satisfies the following axiom:

C3 - D{a,b,c) = D(b,a,c) for all a,b,c € G.
Tlustrating the versatile of Cordes schemes structure, we have the following

Theorem 3.3.4. For a triple (G,—1,V), where G is a group of exponent 2, i.e, g> = 1 for all
g € G; —1 is a distinguished element of G, and V is a mapping assigning to each a € G a subgroup
V(a) of G, the following are equivalent:

i- (G,—1,V) is a Cordes Scheme.
ii - (G,—1,V) satisfies C2 and C3.

3From a,ab € V(ab) we get b = a(ab) € V(ab). So a,b € V(ab), and since V(ab) is a subgroup, we have
aV (ab) = bV (ab).
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it - (G,—1,V) satisfies C1 and

beV(-a)V(—ac) = a € V(=b)V(—bc). (C4)

v - (G,—1,V) satisfies C1 and

bV (—a)NV(—ac) # 0= aV(=b)NV(=bc) # 0. (C5)

v- (G,—1,V) satisfies

beV(—a)V(—ac) = ab € V(=b)V(—bc). (C6)
Proof. (i)=-(ii) is immediate.

(ii)=(i) observe that without assuming anything on G' we have a € D(a,b) = aV (ab) and

a € D(a,b,c) = U {aV(az)}

zebV (be)

for all a,b,¢c € G. Thus a € D(a,1,—1) and by C3, a € D(1,a,—1). It follows a € V(x), where
z € D(a,—1) = aV(—a). Thus z = ay with y € V(—a) and a € V(ay). By C2, —ay € V(—a) and
so —a = —ay -y € V(—a). By C2 again, a € V(a), proving CI1.

(i)=-(iii) first of all, we claim that y € D(a,b,c) iff —ab € V(bc)V (—ay). For this, note that
D(a,b,c) = U{aV(au) cuebV(be)} = U{aV(abx) cx e V(be)}.
Hence y € D(a,b,c) iff exists x € V (bc) with y € aV (abx), i.e, ay € V(abzx). By C2, this holds iff
—abx € V(—ay) or equivalently, —ab € zV(—ay) with x € V(bc). Note that we do not use C3 in
this proof.
Now, using the claim, by b € V(—a)V(—ac) we get —c € D(—a,ab, —b) = D(—a,—b,ab). By

C3, —c € D(—b,—a,ab) = D(—b,ab, —a). Using the claim again, we obtain a € V(—b)V(—bc), as
desired.

(iii)=(i) by D(a,b,c) = |J{aV (abx) : © € V(bc)} we get
D(a,b,c) = abeD(be, ac, ab) = abeD(be, ab, ac).
Similarly, D(b, a,c) = abcD(ac, ab, be). using C4 and the claim, we get

y € D(ac, ab,bc) < —bc € V(ac)V(—acy)
& —ac € V(be)V (—bcy)
<y € D(be,ab, ac)

obtaining C3.

(iii)<(iv) follow by a general group-theoretic fact: b € HK iff HbN K # () where H and K are
subgroups of an arbitrary group G.
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(iii)=-(v) suppose b € V(—a)V(—ac). Then a € V(—b)V(—bc) and since —b € V(—=b)V(—bc),
we get —abV (—b)V (—=bc).

(v)=>(iii) applying C6 twice, we get
beV(—a)V(—ac) = a € V(ab)V (abc). (*)

Taking b = ¢ = 1 and using (*) we get a € V(a), proving C1. Finally, by C6 and C1 we obtain
beV(—a)V(—ac) = —a € V(=b)V(—bc), i.e, we prove C4. O

Definition 3.3.5. Let (G,—1,V) and (H,—1,W) be pre-schemes. A c-morphism is a group ho-
momorphism f : G — H such that f(—1) = —1 and f(V(a)) CW(f(a)) for all a € G.

The category of pre-schemes and c-morphisms will be denoted by PCS. Similarly, the category
of Cordes schemes (respectively reduced Cordes schemes) and c-morphisms will be denoted by CS
(respectively RCS).

The notion of isometry of quadratic forms can be introduced in abstract pre-schemes in two
different ways.

Definition 3.3.6. Two forms f = (a1, ...,a,) and g = (b1, ...,b,) in a pre-scheme S are said to be
chain isometric, written f ~ g if

i- a1 = by, when n=1.
ii - ajaz = bibe and D{ay,a2) = D(b1,ba), when n = 2.

i1 - For n > 3, there exists a chain of forms fo = f, f1, fo, .-, fx = g, k > 0, such that for each
i=0,....,k—1, the form f; is simply-equivalent to f;11 (remember m

Definition 3.3.7. Two forms f and g as above is said to be strongly isometric, written f = g, if
i- ap = by, when n=1.
ii - arag = biby and D{ay,az) = D(by,bs), when n = 2.

iii - Forn > 3, there exists a,b, cs, ...,c, € G such that (a1,a) = (by,b), (ag,...,an) = (a,cs, ..., Cn)
and (b, ....,bp) = (b, c3,...,cpn).

Lemma 3.3.8. For arbitrary forms @,1,v¢" over a Cordes scheme S, ) 2 ' < o @ = o d ).
Proof. Just copy (literally!) the proof of lemma O
Theorem 3.3.9. For a pre-scheme S the following are equivalent:

i - Strongly isometry =2 is transitive.

1 - Strongly isometry = is transitive on 3-dimensional forms.
11t - The pre-scheme S is a Cordes scheme.
Proof. (i)=-(ii) and (ii)<(iii) follow by the definitions involved. We just need to prove (ii)=(i).

By induction on the dimension, which, when 2 or 3 are taken care of by assumption. Assume that
(a1, .c.;apn) = (b1,...,b,) = ¥ and ¢ = (c1,...,¢,), and that = is transitive on forms of dimension
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n — 1 > 3. The hypotheses yield «, 3,7,0,y;,2; € G, 3 < i < n, such that (I) and (II) below hold
true

<a17a> % <b175>7 <a27 "'7an> % (@,g} and <b27 "'7b'fl> g <B7g>7 (I)
(b1,7v) = (c1,9), (bay....bp) = (7,2) and (ca, ..., cn) = (9, 2), (IT)
where ¥ = (y3,...,yn) and 2 = (z3, ..., z,). By induction, = is transitive on (n — 1)-forms, and so,

(B,1) = (v, ), since both are isometric to by, ..., b,). Thus, there are z,t,y.t = (t4,...,t,) € G such
that

(B,2) = (v, y), () = (2,) and (2) = (y,1). (I11)

Now, by the preservation of isometry by sum (lemma|3.3.8)), the first isometry in (I), (II) and (III)
as well as 3-transitivity, we may write

(a1, 0, z) = (a1, a) ® (x) = (b1, B) ® (z) = (by) ® (B, x)
= (b1) © (7, y) = (b1,7) © (y) = (e1,0) © (y) = (c1,0,9).

Therefore, there are u, v, w € G such that
<a17u> = <Cl,'U>, <Oé,1'> = <u,w) and <67 y> = <va>' (IV)

The preservation of isometry by sum, the transitivity of = for (n — 1)-forms, the second and the
third isometry in (I) and (II), respectively, together with the last two in (III) and (IV), yield

<a2a --'7an> = <Oé,]7> = <Oé,.1‘,t3 = <u7w>£> and
(C2, wwey €n) 22 (6, 2) = (8,1, 1) = (v, w, 1),

isometries which, together with the first one in (IV), prove that (a1, ...,an) = (c1, ..., cn). O

Theorem 3.3.10. Let S be a Cordes scheme. Given two forms f and g over S, we have

f=9ef~g

3.4 A First Functorial Picture

After this introduction to our first abstract theories, we will describe our first functorial picture

PCS

AWR —=— Q8 —= JS

RJWR RJ(:S

Here, RAWR and RCS are the categories of reduced abstract Witt rings and reduced Cordes
schemes respectively. We already describe the equivalence between AVYWR and 9OS. So, left to us,
create the connection between QS and CSfY

40f course, we do not talk about reduced abstract Witt rings. However, once we estabilish the equivalence between
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Proposition 3.4.1. Let (G,Q,q) be a quaternionic structure. For all a € G, define Vg(a) = {b €
G :q(—a,b) =0}. Then (G,—1,Vg) is a pre-scheme.

Proof. Firstly, we need to prove that Vi (a) is in fact a subgroup. By [3.1.9(i) ¢(—a, 1) = 0 for all
a€ G, s01eVg(a). Now, let b, c € Vg(a).

b,c € Vg(a) = q(—a,b) =0=q(—a,c) 6:25) q(—a,bc) =0

and bc € Vig(a). Therefore Vi (a) is a subgroup of G. Note that a € Vi (a) since g(—a,a) = 0 by
Q2, and if b € Vz(a),

a(—a,b) =02 ¢(b, —a) = 0 = q(—(=b), —a) = —a € Vg(-b).
Then, we have that (G, —1, V) is a pre-scheme. O

To prove that (G, —1, V) is a Cordes scheme, we need to translate the notion of representation
in both theories. Remember, given a form f = (ay, ..., a,) in a pre-scheme (G, V, —1), the set D¢ (f)
of elements of G represented by f (in the sense of Cordes schemes) is:

Defar) = {a1},
De¢lay, ..., an) = U{a1V(a1x) :x € D{(ay,...,an)} for n > 2.

In particular, for a binary form (a,b) we have D¢ (a,b) = aV (ab) = bV (ab). Hence,

Dc<a1,...,an> = U Dc(a1,$).

x€Dc{ai,...,an)

On the other hand, in the sense of quaternionic structures, given a form f = (aq,...,a,) in a
quaternionic structure (G, @, q), Do(f) of elements of G represented by f is:

Dqg(f) ={x € G : there exists xg,...,x, € G such that f = (z,z,...,z,)}.

By the inductive description of isometry on quaternionic structures, we have

DQ(al,...,an) = U DQ(al,x).

z€Dg(at,...,an)
Now, we are ready to prove the theorem desired:

Theorem 3.4.2. Let (G, Q,q) be a quaternionic structure. With the notation developed mm
(G, —1,Vg) is a Cordes scheme. Moreover, this correspondence gives a functor C : QS — CS.

Proof. For the first affirmation, we just need to prove C3. The first step, is to prove that D¢(a,b) =
Dg(a,b) for all a,b € G. For this, note that for all a,b € G

Dg(a,b) = {x € G : there exist y € G such that (z,y) = (a,b)}
= {z € G : there exist y € G such that 2y = ab and q(z,y) = q(a,b)}

y=zab {z € G : such that (z,zab) = (a,b)}.

AWR, QS and CS, the equivalence between RAWR and RCS will follow.
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In particular, Dg(1,a) = {x € G : such that (z,za) = (1,a)} and ¢(x,za) =0 for all @ € G, and
this implies Dg(a,b) = aDg(1, ab). This yields
- A o q(z,—z)=0
V(a)={zr € G:q(—a,z) =0} =
V(a) ={x € G :q(z,za) =0} = Dg(1,a)
for all @ € G. Therefore

Dc(a,b) = aV(ab) = aDg(1,ab) = Dg(a,b).

The second step is prove that D¢(a,b,c) = Dg(a,b,c) for all a,b,c € G:

Dc¢(a,b,c) = U De¢(a,x) = U Dg(a,z) = Dg(a,b,c).
x€D¢(b,c) z€Dg (b,c)

Finally, by proposition [3.1.10[(a) we have

Dg(a,b,c) = {x € G : there exist y,z € G such that (z,y,2) = (a,b,c)}
= {2 € G : there exist y,z € G such that (z,y,z) = (b,a,c)} = Dg(b,a,c),

12

finalizing the proof of C3. Hence (G, Vg, —1) is a Cordes scheme.

Now, for the second affirmation, let f : (G,Qq,q¢) — (H,Qm,qm) be a QS-morphism and
a € G. Of course, we already have f(—1) = —1 (and hence, f(—a) = —f(a)). Now, given b € V (a),
we have

beVg(a) = qa(—a,b) =0=qu(f(—a), f(b) =0
= qu(—f(a), (b)) =0= f(b) € Vu(f(a)).

Then f is also a C-morphism. Defining C(G, @, q) = (G, Vg, —1) and C(f) = f we have the desired
functor C : 9S — CS. O

Now, we will work in the converse of theorem Let start with a Cordes scheme (G,V, —1).
Here, the construction is exactly the same made for the theorem we define Qi to be the set
of all isometry classes of quadratic forms of the type (1, —a, —b, ab), with a,b € G and consider Qg
to be a “pointed set” with point 0 equal to the isometry class of (1, —1,1,—1). In the sequel, we
define ¢¢ : G x G — Q¢ to be the map sending (a, b) to the isometry class of (1, —a, —b, ab).

Theorem 3.4.3. Let (G,V,—1) be a Cordes scheme. Then (G, Qg, qa) is a quaternionic structure.
Moreover, this correspondence provides a functor @ : CS — QS.

Proof. We need to verify the properties of definition for (G,Qqg,qq). Let a,b,c,d € G. With
the identification via isometry classes,

q(a,b) = (1, —a, —b,ab) = (1, —b, —a,ba) = q(b, a)

gives Q1 and ¢(a,—a) = (1, —a,a,—1) = 0 gives Q2. For Q3, suppose that ¢(a,b) = g(a,c). Then
(1, —a,—b,ab) = (1, —a, —c, ac), and by Witt’s cancellation, (—b, ab) = (—c,ac). By definition of
isometry on Cordes schemes and theorem [3.3.9] we have

(—b,ab) = (—c,ac) & —bV(—a) = —cV(—a) < bV (—a) = cV(—a)
< abcV(—a) = aV(—a). (3.1)
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Keeping this in mind, lets us examine what ¢(a,bc) = 0 means.

q(a,bc) =0 < (1, —a, —be,abc) = (1,—1,1,—1)

& (—a,—bc,abc) = (—1,1,—1),
and this happens if and only if there exists x,y,z € G such that (—a,z) = (—1,y), (—be, abec) =
(x,z) and (1,—1) = (y,2). Taking x = a, y = 1 and z = —1, we already have (—a,a) = (—1,1) and
(1,—1) = (1,—1). To prove that (—bec,abc) = (a,—1), is just observe that (—bc) - (abc) = a - (—1)
and abcV (—a) = aV(—a) by Hence, ¢(a,b) = q(a,c) = q(a,bc) = 0. Conversely, suppose
q(a,bc) = 0. Then by the same argument above, we conclude abcV(—a) = aV(—a), and by
follows ¢(a, b) = q(a,c).

Finally, for Q4 we will repeat the same argument given in the field case: suppose q(a,b) = q(c, d),
ie, (1,—a,—b,ab) = (1,—c,—d,cd). By Witt’s Cancellation, (—a, —b, —ab) = (—c,—d,cd). By
definition of isometry on Cordes schemes and theorem there exist e, f, g € G with (—b, ab) =
(e, f), (—d,cd) = (f,g) and (—a,e) = (—b, g). Comparing discriminants we get ef = —a, gf = —c,
so e = —af and g = —cf. Taking z = —f, we have e = az, g = cx, so (—b,ab) = (—z,azx)
and (—d,cd) = (—z,cx). Adding (1,—a) and (1, —c) respectively we obtain ¢(a,b) = ¢(a,z) and
q(c,d) = q(e,x). Therefore (G, Qq,qq) is a quaternionic structure.

Now, let f : (G,Vg,—1) — (H,Vyg,—1) be a C-morphism. Since f is in particular a group
homomorphism, we have

46(a,b) = 0= (1, —a,=b,ab) = 0 = (1, = f(a), = f(b), f(a) (b)) = 0 = qu(f(a), (b)) = 0.

Then f is a QS-morphism. Defining Q(G,V, —1) = (G, Qg, qc) and Q(f) = f, we have the desired
functor Q : CS — 9OS. O

Corollary 3.4.4. The functors Q and C are quasi-inverse equivalences and the categories CS and
QS are equivalent.

So the first picture is complete. We emphasize this is the first time that these connections are
made with this level of details.



Chapter 4

A second generation of abstract
theories

In the decade of 80’s, a new abstract theory appears: the Marshall’s Abstract Space of Orderings
(AOS). They are important because generalize both theory of orderings on fields and the reduced
theory of quadratic forms. Since the abstract theories of chapter 3 does not have field-theoretic
methods to deal with the reduced case, the AOS solves this issue.

But only in the decade of 90’s that arise a (finitary) first-order theory that generalize the
reduced and non-reduced theory of quadratic forms simultaneously (in the sense that we will see in
subsection . This theory is the Special Groups of F. Miraglia and M. Dickmann. It takes as
primitive the binary isometry, is a first-order theory and treat the reduced and non-reduced case
in a very elegant way. This simplicity brings new methods and tools to the algebraic theory of
quadratic forms, culminating in a proof of Marshall’s and Lam conjecture.

4.1 Space of Orderings

We basically cover almost chapters 1,2 and 3 of [Mar96].

4.1.1 Basic Definitions

We need some elementary facts about groups of exponent 2 and their character groups.

A group of exponent 2 is a (necessarily abelian) group G satisfying > = 1 for all a € G. A
character on a group G of exponent 2 is a homomorphism x : G — {1, —1}. The character group G
of exponent 2 is x(G) := Hom(G, {1, —1}) the set of all characters on G, with the group operation
defined pontwise, i.e, (zy)(a) := x(a)y(a) for all a € G.

If G is a group of exponent 2, then x(G) has a natural topology making in into a topological
group. The topology is just the weakest such that the mapping x — x(a), a € G, are continuous,
giving {1, —1} the discrete topology.

Proposition 4.1.1. For any group G of exponent 2:
i - x(G) is compact.
it - For each subgroup H of G, x(G/H) is a closed subgroup of x(G).
iii - Conversely, if S is any closed subgroup of x(G) then S = x(G/H) where H = (.4 Ker(z).

123
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Proof. We are identifying characters in G/H with characters of G containing H in their kernels
(we can do it because of homomorphism theorem!).

i - Denote by {—1,1}¢ the set of all functions from G to {—1,1} with the product topology,
giving {—1,1} the discrete topology. Then x(G) C {—1,1}% and the topology on x(G) is the
induced topology. Since {—1,1}% is compact by Tychonoff’s theorem, it suffices to check that
x(G) is closed in {—1,1}%. Suppose z € {—1,1}% is in the closure of x(G). For each a,b € G,
the set

U={ye{-1,1}°: y(a) = (a), y(b) = z(b), y(ab) = z(ab)}

is a neighbourhood of = in {—1,1}%. Thus U N x(G) # 0, say y € U N x(G). Then y(ab) =
y(a)y(b) so z(ab) = y(ab) = y(a)y(b) = x(a)x(b). This proves that = is a character of G, so
z € x(G).

ii - x(G/H) is compact by item (i), so it is closed in x(G).

iii - Again, by homomorphism theorem, we can identificate S with a subseteq of x(G/H). Of
course, we shall abuse of this identification and write S C x(G/H). For the other inclusion,
replacing G by G/H, we are reduced to the case where H = {1}. Thus we are assuming
S C x(G) is a closed subgroup such that (), g Ker(z) = {1}, and we want to show S = x(G).

It suffices to handle the case where GG is finite. Suppose K is any finite subgroup of G
and denote by S|x the set of restrictions z|x, x € S. This is a subgroup of x(K) and
Nyes Ker(z|x) = {1}. Thus, if we know the result in the finite case, then S|k = x(K). This
means that, for each y € x(G) and each finite subgroup K of G, there exist x € S such that
x|k = y|k. Since S is closed in x(G), this implies (by compacity) that S = x(G).

So suppose G is finite (then the topology is discrete). Let {x1, ..., z,} be a subset of S chosen
minimal such that N} ;Ker(z;) = {1}. Consider the chain of subgroups

G 2 Ker(z1) O Ker(x1) N Ker(z2) 2 ... 2 Ni;Ker(x;) = {1}.

For j =1,...,n, Ker(z;) has index 2 in G and ﬂg;llKer(xi) ¢ Ker(z;) by the minimal choice
of the subset {z1,...,x,}. Thus (ﬂg;llKer(xi)) -Ker(zj) = G so

ﬂg;lKer(aci) ~ (NI Ker(x;)) - Ker(x;) __ G

N/_ Ker(a;) Ker(z;) Ker(z;)

>~

This means M’_, Ker(z;) has index 2 in N/ Ker(z;), j = 1,...,n so {1} = N Ker(z;) has
index 2" in G, i.e, |G| = 2". Thus, by counting, we see that the natural injection G —
[T~ G/Ker(x;) is surjective so we get elements ay, ..., a, € G such that z;(a;) = —1if i =j
and 1 otherwise. Then every element a € G is expressible uniquely as a =[]}, a;*, e; € {0,1},
so {ai1,...,an} is a Zy-basis of G. Follow this that {z1,...,x,} is the dual basis of x(G). Since
{z1,...,2,} C S, this means S = x(G).

O]

A topological space X is called a Boolean space if it is compact, Hausdorff and the clopen
sets form a basis for the topology. For example, if G is a group of exponent 2 then x(G) is
a Boolean Space. Boolean spaces are also characterized as compact Hausdorff spaces which are
totally disconnected (i.e, the connected components are singleton sets). This is a consequence of
the following general result which we record now for future use:
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Lemma 4.1.2. For any compact topological space X which is normal (i.e, disjoint closed sets can
be separated), the connected component of any x € X is the intersection of all clopen sets in X
containing x.

Proof. Let x € X and Z C X be the intersection of all clopen sets containing z. If C, is the
connected component of x, C; must be a subset of Z (because of the topology of subspace). If we
show that Z is connected, it will follow that Z = C,. Suppose this is false so we have non-empty
closed sets Z1, Zo in Z with Z1UZy = Z and Z1NZy = (. Z is closed in X since it is the intersection
of clopen sets, so Z1, Zs are closed in X. Since X is normal, there exist disjoint open sets Uy, Us
in X with U; O Z; and Us O Z. Consider the closed sets Vi = X \ Uy, Vo = X \ Us. Then
ViNnVan Z = so by compactness, V1 N Vo NY = () for some clopen set Y in X with Z CY. Y
decomposees as a disjoint union of two non-empty open sets Y = (U NY)U (U2 NY’). This means
UiNY and Uy NY are clopen in Y (and hence in X). Say z € Uy NY. Then U; NY is a clopen
set containing x and Z ¢ U; N'Y which contradicts the definition of Z. O

Now, rewrite some terminology of the reduced theory relative to a fix proper preordering T' C F/,
F a formally real field. Remember that Xp = {P DT : P € Sper(F)}. Let G = F/T

For any set X, {—1,1}% denotes the set of all functions a : X — {—1,1}. This is a group with
operation given by (ab)(x) = a(z)b(x). Note that a® =1 for all a € {—1,1}¥.

Lemma 4.1.3. G is naturally identified with a subgroup of {—1,1}X7.

Proof. Each a € F gives rise to a function @ = ap : Xp — {=1,1} given by

1if P
E(P): I a €
—1lifae —P.

Moreover, ab = ab so we have a group homomorphism from G7 into {—1, 1}XT given by ol — a.
If @ ¢ T then by and there exist P € X7 with @(P) = —1. Thus the mapping 7™ — @
is injective. O

Thus we can identify G with a subgroup of {—1, 1}*7 by identifying the coset oT with @ = ap
for each a € F.

A quadratic form with entries in G is an n-tuple ¢ = (@, ..., ay), @1, ..., ap, € Gp. n is called the
dimension of ¢. [[;-, a; € G is called the discriminant of . For each P € Xp, the signature of ¢
at Pis p(P) =Y I a;(P) € Z. We say b € Gr is represented by ¢ = (a1, ..., an) if b= 1, ait;
for some t1,...,t, € T. The value set of ¢ consists of all elements b € G represented by ¢. This
is denoted by D(y) or by D(ay, ..., a,). Thus, if @ € Gr, then D(a) = {a} and, if n > 3, then

b€ D{ay,...,a,) < b€ D{(a,c) for some ¢ € D(ay, ..., ay).

Since we are not allowing ¢ = 0, this requires a word of explanation: suppose b =" | a;t;. If
Somait; # 0, take ¢ = Y agti. Y0 ait; = 0, then b = ajty = ait; + c0 so, in this case, we
can take ¢ arbitrary in D(ao, ..., Gn).

Thus by induction on the dimension, the study of value sets reduces to the 2-dimensional case.
In this case, we have the following result giving a description of value sets which does not refer to
the addition on F":

Lemma 4.1.4.

D(ay,az) = {b € Gr : for all P € X7, either b(P) = a1(P) or b(P) = ax(P)}.
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Proof. Let b € F, b = tia1 + taas, t1,ts € T, and let P € Xp. We want to show b(P) = a7(P)
or b(P) = az(P). If a3(P) = —ay(P) it is immediate. If a;(P) = az(P) = 1, then the equation
b = tia; + tzaz forces b(P) = 1. Similarly, if aj(P) = az(P) = —1.

To prove the other inclusion, assume for each P € Xr, b(P) = a1(P) or az(P). We want to
show that b € T'ay + Tag, i.e, that b/a; € T'+ T'(az/a1). Suppose this is not the case, and consider
the preordering 77 = T + T'(az/a1). By [2.1.2] and 2.1.4) we have an ave an ordering P with b/a; ¢ P and
P DT Since T" O T and ay/a; € T', this means P € X, (az/a1)(P) = 1, b/a;(P) = —1. Thus
@1(P) = az(P) and b(P) = —ay(P). This contradicts the assumption. O

The next result is perhaps surprising: every represented element has a “transversal” represen-
tation:

Lemma 4.1.5. Suppose a1, ..., an,b € F. Then the following are equivalent:
i-bé& D{ay,..,a).

it-b = ZZ 1a for some d},...;al, € F such that @, = @;, i.e, a,

i = tia; for some t; € T,
1=1,..

Proof. (ii)=(i) is just the definition. For (i)=-(ii) we can suppose

n
b= thaj, t1, .t €T.
j=1

Using the identity p = (3%1)2 - (%)2, we get

for some r,s € F. Thus

n
1+rHb=ai+...+ap,+ (1+5%) Z (1 + sH)t))aj,
7j=1

n 14 (14-52)t;
so b=}l aj, where a}; = = >"aj. O

This lemma gives an interesting intrepretation of value sets. The multiplication on G satisfies
ab = ab, i.e, it is just the operation on G induced by the multiplication on F. We could try to do
the same thing with the addition and define @ + b = a + b, but this is not well-defined. Instead of
getting a single output, we get a whole set of outputs, namely we get the set D{(a,b) = {a’ + V' :
a +b #0,d =a, =b}. Thus, in studying value sets, we are just studying what remains of the
addition when we pass from F' to Gr.

Spaces of orderings were introduced by Murray Marshall in the 1980’s in an attempt to axiom-
atize the reduced theory of quadratic forms:

Definition 4.1.6 (Space of Orderings). An abstract ordering space or space of orderings, abbrevi-
ated AOS, is a pair (X, G) satisfying:

AX1 - X is a non-empty set, G is a subgroup of {—1,1}X, G contais the constant function —1,
and G separates points in X (i.e, if x,y € X, © # y, then there exists a € G such that

a(x) # a(y))-
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Although it is convenient to define elements of G to be functions on X, it is equally important
to realize that we can view elements of X as a characters on G. By AX1 we have a natural
embedding of X into the character group x(G) obtained by identifying x € X with the character
a— a(z). Since (ab)(x) = a(x)b(z) for all a,b € G this is a character on G and since G separates
points in X this identification is legitimate. Once this is identification is made, x(a) = a(x) so
Ker(z) = {a € G : a(x) = 1} and (,cx Ker(z) = {1}. It follows from this and (m‘) that X
generates x(G) topologically, i.e, x(G) is the smallest closed subgroup of x(G) containing X .

If a,b € G we define the value set D(a,b) to be the set of all ¢ € G such that for each v € X
either c(x) = a(x) or c¢(x) = b(z). In particular, a and b are both elements of D(a,b).

AX2 - If x € x(G) satisfies x(—1) = —1 and a,b € ker(x) = D(a,b) C ker(zx), then x is in the
image of the natural embedding X — x(QG).

AX3 (Associativity) - For all a,b,c € G, if t € D(a,r) for some r € D(b,c) then t € D(s,c)
for some s € D(a,b).

Elements of X are often referred to as orderings. If x € X, ker(z) is sometimes called the
positive cone of x.

If z € X then, viewing z as a character on G, we have z(—1) = (—1)x = —1 and a, b € ker(z) =
D(a,b) C ker(x). AX2 is just saying that every character on G having these properties is in X.
AX1 and AX2 are trivial in the sense that they can be “forced” in a natural way: suppose X is any
set and G is any subgroup of {—1,1}% containing the constant function —1. Let X denote the set
of all characters x € G satisfying the conditions of the hypothesis of AX2. Then (f( , G) satisfies
AX1 and AX2 and the binary values sets D(a,b) for (X,G) are the same as those for (X,G). Of
course, if (X, G) is already itself satisfies AX1 and AX2, then X =X.

Thus, in a certain sense, AX3 is the only non-trivial axiom. In the concrete case (X7, Gr),
AX3 is just saying that what remains of the addition is associative.

Since the definition of a space of orderings is motivated by the example (X7, Gr) considered
above, it is important to chech the following;:

Theorem 4.1.7. If T is a proper preordering in a formally real field F, then the pair (X1, Gr) is
a space of orderings.

Proof. Since T is proper, X1 # (). By Gt can be viewed as a subgroup of {—1,1}*7, and
—1 € G plays the role of the constant function —1. If P,Q € X7, P # @, then there exists a € P,
a¢ @, soa(P)=1,a(Q) = —1. This proves that Gp separates points in Xrp.

Suppose z € x(Gr) satisfies the conditions of the hypothesis of AX2 and let

P={a€cF:acker(x)}U{0}.

Then P is an ordering containing 7' (to prove that P+ P C P we use that a+b C D(a, b) C ker(z)).
This means that P € Xp and z is the character on G corresponding to P.

Suppose ay,as,a3 € F and b € D(ay,¢) for some ¢ € D(ay,a3). Using twice we see
that b = tia; + toas + tzas for some tq,to,t3 € T. If tia; + toas # 0 then b € D(a, as3) where
d = tiay + taaz, and d € D(ay,a2). If t1a; + taaz = 0, then b = t3a3, so we can take d € D(ay,as)
arbitrary in this case. O

For any spacing of orderings (X, G), X has a natural topology, namely the weakest topology such
that the functions a : X — {—1,1}, a € G, are continuous, giving {—1, 1} the discrete topology.
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This can also be described as the topology induced by our natural embedding X < x(G) where
X(G) is topologized as in last section. The sets

U(a) :={x € X :a(x) =1}, a € G,

are clopens. Using the fact that a(z) = —1 iff —a(x) = 1, we see that these sets form a subbasis
for the topology on X, i.e, the clopens sets

Ulay,...,an) = ﬂ Ulaj) ={z € X :a1(z) = ... = ap(z) = 1}

form a basis for the topology on X.
Theorem 4.1.8. For any space of orderings (X,G), X is a Boolean space.

Proof. Let u: X < x(G) be the natural embedding. Since x(G) is a Boolean space, it suffices to
show that u(X) is closed in x(G). This follows from AX2. Suppose x € x(G) is in the closure of
u(X). Then, for any elements a,b,c € G, there exist y € X such that z(a) = a(y), z(b) = b(y),
z(c) = c(y) and z(—1) = (—1)(y). This forces x(—1) = —1, and if ¢ € D(a,b), z(a) =1, z(b) =1,
it forces z(c) = 1. Thus by AX2, z € u(X). O

Spaces of orderings form a category, i.e, we not only have objects, we also have morphisms.

Definition 4.1.9. A morphism « from an AOS (X,G) to an AOS (Y, H) is a mapping o : X — Y
such that for each h € H, the composite function ho o : X — {—1,1} is an element of G (and in
particular, o is surjective). Note that this implies that « induces a group homomorphism h — ho«
from H to G. Also a1 (U(h)) = U(hoa) for each h € H, so « is continuous.

An isomorphism from (X, G) to (Y, H) is a morphism o : X — Y which is bijective and such
that the induced group homomorphism h — h o « is also bijective.

4.1.2 Quadratic Forms and the Witt Ring

We work now with a fixed space of orderings (X, G).

Forms, dimension and discriminant of a form, signatures of a form, and isometry of forms are
defined exactly as in the concrete case (X,G) = (X7, Gr): A (quadratic) form with entries in G
is an n-tuple ¢ = (a1, ..., an), ai,...,an, € G. n is called the dimension of ¢. H?:l aj € G is called
the discriminant of . For each z € X, the signature of  at x is p(2) == ", a;(z) € Z.

The value set of a binary form (a, b) has already been defined. The value set of an n-dimensional
form is defined inductively if n > 3:

D{(ay,...,an) = U D{ay,b).
beD({az,...,an)

For a 1-dimensional form, we define D{a) := {a}. We say b is represented by a form ¢ if b € D(y).
We use standard notation from quadratic form theory: If ¢ = (aq,...,an), ¥ = (b1, ..., by ) and
¢ € G, we define

CDY = (a1, ..., Qn, b1, ..oy by);
PRY = <a1b1, ...,aibj, ...,anbm>.

Also,if k> 1, kxp=p®..Dp k times.
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Forms of the shape (1,a1) ® ... ® (1,a,) are called Pfister forms (specifically n-fold Pfister
forms) and denoted by ((ai, ..., an)).

Theorem 4.1.10.
i - D(p) does not depend on the order of entries of .
it - D(cp) = cD(yp) for any c € G.
iti - ¢ € D(p @) iff c € D(a,b) for some a € D(p), b € D(3).
- c€D(p1@... 0wk iff c€ D(ay,...,ax) for some a; € D(p;), i =1,.... k.
Proof.

i - We proof by induction on n = dim(y). Let ¢ = (ai, ..., an). The result is immediate if n =1
or n = 2. Suppose n > 3. It suffices to show that the value set does not change if we permute
two adjacent entries a;,a;. If 7,5 > 2, this follows by induction step. This leaves the case
i =1, j =2. Suppose b € D{(ag,a1,...,a,). Thus b € D{ag,c), c € D{ay,d), d € D{as, ...,a,).
By AX3, b € D(ay,e) for some e € D(aa,d). This proves that b € D(a1, ag, ..., an).

ii - This is an immediate consequence of the definition of D. Recall that ¢? = 1.

iii - Let o = (a1, ..., ag), ¥ = (@41, ..., an).
(=): Ifk=1,ce D{a1,b), b e Dlay,...,a) so we can take a = ay. If k > 2 then ¢ € D{(ay, d),
d € D(¢'®v) where ¢’ = (ag, ..., ax). By induction, we have d € D{e, f), e € D(¢'), f € D(%).
By AX3 we have ¢ € D(g, f) for some g € D{aj,e). Thus g € D(¢)) so we can take a = g,
b=f.
(«<): If k =1 then ¢ € D{ay,b) (since a € D{(ay) so a =a1) so ¢ € D(p @ ). If k> 2 then

a € D{ay,d), d € D(¢') where ¢’ = (as,...,a;). By AX3, ¢ € D{ay,e) where e € D{(d,b). By
induction on k, e € D(¢’ @ 1)). This proves ¢ € D(¢ @ 1).

iv - This follows from (iii) by induction on k.

We say that a set M C G is additively closed if a,b € M implies D(a,b) C M.

Corollary 4.1.11.

i - D(p) is the smallest additively closed set containing the entries of ¢.

it - D(k x ¢ = D(p) for each k > 1.
Proof.

i- Say ¢ = (aq,...,a,). Using

D{ay,..,an) = | J Df{a1,b)
bE(az,....an)

and induction on n, we see that any additively closed set containing a, ..., a,, must contain
D(p). Thus it only remains to check that D(¢p) is additively closed. Suppose a,b € D(y) and

¢ € D(a,b). Then ¢ € D(p @ ¢) and by [4.1.10(i),

D(p ® ¢) = D({ay,a1) @ ...{an, an))
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so, by 4.1.10(iv), ¢ € D{(dy, ..., dy,) for some d; € D{a;,a;), i =1,...,n. Thus d;(x) = a;(z) for
all z € X sod; =a;,i=1,...,n, hence ¢ € D(yp).

ii - This follows by (i) since ¢ and k x ¢ have the same entries.

O]

Definition 4.1.12. The relation = (called isometry) on forms with entries in G is defined as
follows: For 1-dimensional forms (a) = (b) is defined to mean a = b. For 2-dimensional forms
(a1, a2) = (b1, ba) is defined to mean that the two forms have the same signature, i.e, a1(x)+az(x) =
bi(z)+ba(x) for allx € X. Forn > 3, the isometry relation = is defined inductively by (a1, ..., an) =
(b1, ...,by) iff there are a,b,cs,...,cn, € A such that (a1,a) = (b1,b), (ag,...,an) = {(a,c3,...,cpn) and

(bo,....bp) = (b, c3,y .. Cp).

Theorem 4.1.13 (Alternative description of value sets and isometry).
i- b1 € D(p) <= p=(by,...,by) for some by,....b, € G, where n = dim .
il - ¢ 2P < dimp =dimy and p(r) = P(z) for allz € X.

The proof of this will be made in next section. It is hard to overemphasize the importance of
It allows us to describe a space of orderings in a completely different way:

Definition 4.1.14 (Alternative definition of Space of Ordering). A space of ordering can be defined
to be a pair (X, G) satisfying the following axioms:

(o) X is a non-empty set, G is a subgroup of {—1,1}* containing the constant function —1, and
G separates points in X.

(B) The image of the natural embedding u : X — x(G), z — (a — a(x)) is closed in x(G).

(v) If ¢,% are forms with entries in G and ¢ € D(p @ 1)), then ¢ € D(a,b) for some € D(p),
be D(v).

Here (and this is crucial), the value sets and isometry are supposed to be defined as in the
statement of 1.1.13] i.e, ¢ = ¢ is defined to mean that dim(¢) = dim(¢) and ¢(z) = ¥(z) for
all z € X, and D(y) denotes the set of all elements b € G such that ¢ = (b, bs, ..., by,) for some
ba, ...,bn, € G (where n = dim(p)).

Theorem 4.1.15. The two description of a space of orderings are equivalent.

Proof. Suppose (X, G) is a space of orderings. (c) is just AX1. As explained in the proof of [4.1.8]
(B) is a consequence of AX2. According to the definitions of isometry and value set coincide
with the alternate definitions, so () is just [4.1.10|(iii).

Conversely, suppose (X, G) is a space of orderings in the alternate sense. AX1 is just (). Now,
suppose x € x(G) satisfies the conditions given in AX2. We want to show that z € X. By (5), X
is closed in x(G) so if x ¢ X, then we have some open set S in x(G) with z € S and SN X = 0.
Since z(—1) = —1 we can suppose S has the form

S={yex(G):yla) =1, a,...an € G}.

Consider the Pfister form ¢ = (1,a1) ® ... ® (1, a,). For any y € X, a;(y) = —1 for some i so

o(y) =[] +a;(y) =0.

j=1
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~

According to our definition of isometry and value sets, this means ¢ = 2771 x (1, —1),s0 —1 € D(¢).
On the other hand, expanding ¢ as ¢ = ¢ @ a9 where ¢ = (1,a2) ® ... ® (1,a,,), and using (v)
and induction on n, we see that D(¢) C ker(z). Suppose a € D(p). By (v), a € D(b,a;ic) for
some b,c € D() and, by induction on n, b,c € ker(z). Since z satisfies the conditions of AX2
and a; € ker(x), this forces a € ker(x). Since —1 € D(yp), this yields —1 € ker(z), a contradiction.
This proves that (X, G) satisfies AX2.

Suppose b € D{ay,c) for some ¢ € D{az,az). Then

(a1,a2,a3) = (a1, ¢, azasc) = (b, a1be, azasc),

so b € D(ai,az,a3). By (v), there exists d € D(ai,a2) such that b € D(d,a3). This proves
AX3. O

Actually, there is another description of space of orderings: the structure (X, G, —1) is an AOS
if it verifies the following conditions:

O1 - X is closed in x(G) (equivalently, in {+1}%).
02-og(-1)=—-1foraloeX.
03 - (), cx Ker(o) = {1}.

04 - If p, ¢ are forms over G and = € G, then x € Dx (¢ @ 1) implies that there are y € Dx(p)
and z € Dx(v) such that z € Dx(y, z).

The content of this definition is the same. («) and () collectively are equivalent to O1, O2
and O3. () is just O4.
For the rest of this section we will develop some basic properties of 2.

Theorem 4.1.16.
a- If bi = ar), i =1,...,n for some permutation © of {1,...,n}, then (a1, ..., an) = (b1, ..., by).

b-p =Y = dimp = dim, disc(p) = disc(v)), o(x) = Y(x) for all x € X, D(p) = D(¥)) and
cp = forallce@G.

¢ - The relation = is an equivalence relation.
d - For any forms o, ¢, 1, ¢ over G, if o = @' and 1) =)' then o Y = ' B Y.

e - (Witt’s Cancellation) For any forms @, ' 1,4 over G, if ¢ = ¢’ and ¢ & = @' &' then
by,
Proof.

a - We prove by induction on n. If n =1 or 2 there is nothing to show. Now, suppose n > 3. We
have two cases:

Case 7(1) =i > 2 - take a = a;, b = a; and c3, ..., ¢, to be the elements left after a; and a; are
deleted from the list ay,...,a,. Then a,cs, ..., ¢, is a permutation of asg, ..., an, b,c3, ..., cp
a permutation of bo, ..., b, and by, b is a permutation of a1, a. So by induction we have

(a1,a) = (b1,b), (ag,...,an) = (a,cs,...,cy) and (ba, ..., b,) = (b, c3, ..., cp).

Then (ay, ..., an) = (b1, ..., by).
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Case 7(1) =1 - take a =
<a1, ...,an> = <b1, 7bn

The fact that ¢ = ¢ = dimp = dim is already encapsuled in definition of = (4.1.12). To
prove the other statements we use induction. Suppose ¢ = (aq, ..., a,) and ¥ = (b, ..., by).

b = as and ¢; = a; for ¢ > 2 to be the witnesses of the isometry
).

For ¢ = ¢ = disc(p) = disc(v)), if dime = 1 there is nothing to do. If dim¢ = 2 and
ai(z)az(z) # b1(x)ba(x) for some x € X, then ai(z) + az(x) # by (z) + ba(z), its contradict the
definition of 2-isometry. Now, if dim ¢ = n, there are a, b, cs, ..., ¢, € A such that

(a1,a) = (b1,b), {ag,...,an) = (a,cs,...,cp) and(by, ..., b,) = (b, c3, ..., ).
By induction, we have

ala = blb
as...ap = acCs...Cp

by...b, = bes...c,
SO

a1as...ay, = a1acs...c, = bibes...c, = b1ba...by,.

For ¢ =2 ¢ = () = ¢(z) for all z € X, if dimp = 1 or 2 this is already in definition [4.1.12
Now, if dim ¢ = n, there are a, b, cs, ..., ¢, € A such that

(a1,a) = (b1,b), {ag,....,an) = (a,cs,...,cp) and(by, ..., b,) = (b, c3, ..., cy).

By induction, we have

SO

ai(z) + az2(x) + ... + an(z) = a1(x) + a(z) + c3(x) + ... + cn(2)
=by(z) + b(x) + c3(x) + ... + cn(2)
= bl(ZL‘) + bQ(SL‘) —+ ...+ bn(l‘)

For ¢ =2 ¢ = D(p) = D(¥), since (ay,...,an) = (by,....,bn), {a1,...,an} C D(by,....;b,
By 4.1.11ii) D{(aq,...,an) € D{by,...,b,). By the same argument we have D(bq,...,b,)
D{ay,...,a,), and so, the equality.

).
c

Finally, for ¢ = ¢ = cp = ctp for all ¢ € G, if dim ¢ = 1 there is nothing to do and if dim ¢ = 2,
by
a1(z) + az(x) = bi(x) + ba(z) = c(z)ai(x) + c(x)az(z) = c(x)bi(x) + c(z)b2(x)

we obtain cp = ¢ip. Now, if dim ¢ = n, there are a, b, cs, ..., ¢, € A such that

(a1,a) = (b1,b), (ag,...,an) = (a,cs,...,cn) and(by, ..., b,) = (b, c3, ..., ).
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By induction, we have

~

(cay,ca) = (cby,cb), {(cag, ...,can) = (ca,ccs, ..., ccp) and(cby, ..., cby) = (cb, ccs, ..., ccp).

Then cp = cyp.

We just need to prove transitivity. Suppose ¢,1), 7 are n-dimensional forms, saying ¢ =
(a1, ...,an), ¥ = (b1,....,by), T = (c1,...,¢n); such that ¢ = ¢ and ¢ = 7. We show by in-
duction on n that ¢ = 7. This is immediate if n = 1 or 2 (remember definition {4.1.12]).

For n = 3, by item (b) we know that ¢; € D(¢)) = D(¢) so ¢1 € D(a1,a) for some a € D(az,as).
So there are ¢,d3 € G with (a1,a) = (c1,¢) and (a2, a3) = (a,ds). Getting these information
together, we have:

(c1,¢9,¢3) =T =)
Y = ¢ = (a1, az,a3)

=
(a1,a2,a3) = (c1,¢,d3)
comparing signatures (by item (b)), we get
c1(z) + ca(x) 4+ es(x) = c1(x) + e(x) + ds(x)

for all x € X. Hence co(x) + c3(x) = c(x) + dz(x) wich yields (cz, c3) = (¢, ds). Thus complete
the proof that ¢ = 7 if n = 3.

Now assume n > 4. Let us write

(a1, ...;an) = {a1) ® ¢’
<bl, 7bn> = <b1> @1//
(e1,eycn) = (1) DT

@
(&
-

Since ¢ =2 1), there exist x,y € G and a n — 2-dimensional form a with
(a1,2) = (b1,y), ¢ = () @ a and ¥ = (y) S a,
and since ¥ 22 1, there exist z,w € G and another n — 2-dimensional form 5 with
(b, 2) = (e, w), ' = (2) & B and 7 = (w) & B.
By induction (y) ® a = (z) @ 3, so there exist u,v € G and a n — 3-dimensional form ~ with
(u,y) = (v,2) @ = (u) Gy and § = (v) 7.
Putting these isometries together and using transitivity in the n = 3, we get
(a1, z,u) = (b1, y,u) = (b1, 2,0) = (c1,w,v);
hence (a1, x,u) = (c1,w,v) provides a, c,d € G such that

(a1,a) = {c1,c), {(x,u) = (a,d) and (w,v) = (c,d).
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Take 6 = (d) ® . Then

I

(xy a2 (x,u)®y=(a,d) Dy={(a)PDd

S0/
T2 (w) BB (w,v) By {c,d) By =(c) B

I

By induction again, we get ¢’ = (a) & § and 7/ = (¢) & 4. Since (a1, a) = {(c¢1,c), this implies
pET.

d - Since p Y Z Y B p and p ® P = 1) ® ¢ by item (a), it suffices to prove this in the case where
v = ¢'. Since i) = ¢y if ¢ =2 ¢/ by item (b), it suffices to prove the result for &. On the other
hand, since

<a17 ceey an) S¥ 1/} = <CL1> > (<CL2, ceey aTL> S w)7
by induction on dimension, we are reduced to the case where dim(¢) = 1, say ¢ = (a).

Let ¢ = (x) @ 0. Then
(a,z) = (a,z), ¥ = (z) 6 and ¢’ = (z) B 4.

By definition 4.1.12| (a) & ¢ = (a) ® '

e - Using the previous item, if ¢ = ¢’ then

pov=d ey =(Yepev=(pay)ay

and by transitivity of =, it suffices to prove this in the case where ¢ = ¢’. Again, since

<a1, ...,an) ) 1/1 = <a1> 5> (<CL2, ~-7an> S 7/))7

by induction on dimension, we are reduced to the case where dim(yp) = 1.

Let ¢ = (a) and suppose (a) ® ¢ = (a) ® ¢)'. By definition, there are z,y € G and a n — 2
dimensional form ¢ such that

(a,z) = {(a,y), Y = (z) & and Y’ = (y) & 4.
Comparing discriminants we get = y, then
Y E(T) 0= (y) o=y
and by transitivity, ¢ = ’.
O]

Consider now the set of equivalence classes of forms over G with respect to the equivalence
relation =. By (d), the operations @ and ® on forms induce binary operations of this set.
Associativity and commutativity of these operations and the distributive property follow from
4.1.16[a). Thus, the resulting structure is “almost” a ring, but additive inverse fail to exist.

To retify this situation we got a slightly coarser equivalence relation called Witt equivalence.
A form (a,—a), a € G, is called a hyperbolic form or a hyperbolic plane. Note that (a, —a) =
(1, —1) for any a € G. we say ¢ and 1) are Witt equivalent, denoted ¢ ~ 1, if there exist integers
k,l > 0 such that

edkx (1,-1)Zyalx(l,-1).
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This is an equivalence relation and the sum and product of forms induce binary operations on the
set of equivalence classes of forms with respect to Witt equivalence. The resulting system is a
commutative ring with 1. We will denote this ring by W = W (X, G), and refer to it as the Witt
ring associated to the space of orderings (X, G). The zero of W is the class of the empty form
0 = () and the unity of W is the class of (1). The additive inverse of the class of ¢ = (ay, ..., an) is
the class of —¢ = (a1, ..., an).

Definition 4.1.17. A form ¢ will be called isotropic if there exists a form 1 such that ¢ =
(1, —1)®v. Otherwise, ¢ will be called anisotropic. A form ¢ is said to be universal if D(yp) = G.

Theorem 4.1.18.

i- 9=2Y & p~and dimep =dimy.

i1 - @ is isotropic iff there exists a form ¢ with ¢ ~ 1, dim > dim .

iii - @ 1s isotropic iff ¢ is universal iff D(p) N D(—p) # (.

w - If ¢ is anisotropic then so is n X @ for any n > 1.

v - If o @Y is isotropic then there exists b € D(p) with —b € D(1)).

Proof.

i-

ii -

iii -

v -

(=) is clear (taking k =1 = 0). For (<), suppose
ek x(1,-1)2palx(1,-1).

Comparing dimensions and using dim ¢ = dim, this yields £ = [. Thus ¢ = ¢ by Witt’s
cancellation.

(=) is immediate from definition. For (<) suppose
edkx(1l,-1)y=Z¢ypalx(l,-1).

Then, comparing dimensions and using dim ¢ > dim, this yields k£ < [. Thus, by Witt’s
cancellation, ¢ = (k — 1) x (1, —1) @ 1), so p is isotropic.
Suppose ¢ = (1,—1) @ 1. Since (1,—1) = (a, —a) for all a € G, this yields ¢ = (a, —a) ® 1,
so a € D(¢) by 4.1.13((a). In the sequence, if ¢ is universal, then

D(p) = G = D(p) N D(=¢p) # 0.

Now suppose D(p) N D(—p) # 0, say ¢ = (a1, a2, ....,an), —a1 € D(p). Since D{(a;) = {a1}
and —ay # a1, we get n > 2. Also, —aj € D(p) so —ay € D(ay,a) for some a € D(ag, ..., a,).
Then given z € X, by definition of D we get —a;(x) = a1(x) or —ay(z) = a(x), and we obtain
—aj; = a. Thus —a; € D(aq,...,a,) and by (i), (ag,...,an) = —ay,cs, ..., cy) for some

€3y...;Cp € G. Thus
© 2 {at, .., an) Zay, —ay,cs, ..., cn) = (1, —1,c3,...,¢n).

This proves that ¢ is isotropic.

By [4.1.11{ii), D(n x ¢) = D(¢p), so this is immediate from (iii).



136 CHAPTER 4. A SECOND GENERATION OF ABSTRACT THEORIES

v - Say ¢ = (a) @ ¢’. By hypothesis, pB9 = (1, -1) BT = (a, —a) BT, so, by Witt’s cancellation,
OB (—a)dT,ie —a € D ®Y). If ¢ is 1-dimensional then ¢’ & 1) = 1) and we can
take b = a. Otherwise, by [4.1.13] we get ¢ € D(¢'), d € D(¢) such that —a € D(c,d). Then
(¢, d) = (—a,—acd), ie, (a,c) = (—d,—acd), so —d € D(a,c) C D(¢). Thus we can take
b = —d in this case.

4.1.3 Pfister’s local-global principle

Theorem 4.1.19 (Pfister’s local-global principle). For any forms ¢, with entries in G,

o~ p(x) =1(x) for allz € X.

Proof. If ¢ ~ 1 then, using [4.1.16|(b) plus the fact that (1,—1) has signature 0, we see that
o(z) = ¢(x) for any = € X. For the other implication, by considering the form ¢ @& —1, it suffices
to show that if p(z) =0 for all x € X then ¢ ~ 0.

Suppose ¢ = 0. By (b), we can suppose @ anisotropic. By (d), 2™ x p » 0 for all
n > 0. Use Zorn’s lemma to choose a multiplicative set S in the Witt ring W = W(X,G) with
2 € S maximal subject to the condition that ¢ ® ¢ = 0 for all » € S (i.e, SN Ann(p) = @), where
Ann(p) C W denotes the annihilator of gp)ﬂ

Claim 1. If a € G then either (1,a) € S or (1,—a) € S (but not both).

For this, suppose (1,a) ¢ S. Since (1,a) ® (1,a) ~ 2 x (1,a) and 2 € S, the multiplicative
set generated by S and (1,a) is S U ((1,a) ® S). By the maximality pf S, (1,a) ® 1 @ ¢ ~ 0
for some v € S. Similarly, if (1,—a) € S, (1,—a) ® Y2 ® ¢ ~ 0 for some ¢ € S. Since
2~ (1,1) ~ (1,a) ® (1, —a), this implies that 2 x ¢ x ¢ ~ 0 where ¥ = 1)1 ® 1. Since 2 x ¢ € S,
this is a contradiction. If both (1,a) and (1,—a) are in S, then (1,a) ® (1,—a) ~ 0 € S, a
contradiction.

Using Claim 1, we have a well-defined function = : G — {1, —1} given by z(a) =1 if (1,a) € S
and z(a) = —1 if (1, —a) € S. Note that

(lLa)eSe (1,—a)¢ S (1,—a) @Y ¢ ~0,
ie, a ® ¢ ~ Y ® p for some Y € S. It follows from this that x is a character on G.

Claim 2. z € X.

For this, suppose a,b € ker(z), ¢ € D(a,b), and ¢ ¢ ker(x). Then (a,b) = (c,cab). Also
AP R ~ PR, i@y ~ YR and cYRp ~ —Y R for some ¢ € Sﬂ Then (a,b) @YRp ~ 22X,
(c,cab) @Y @@ ~ =2 @Y ® @, s0 4 X 1) ® ¢ ~ 0 contradicting 4 x » € S. Thus a,b € ker(z),
¢ € D(a,b) implies ¢ € ker(x) so, by AX2, z € X.

To complete the proof we need to show the following:

LOf course, sometimes the phrase “use Zorn’s lemma to ...” is not elusive, since we need to find a poset, and

search for some upper bound that is not appear at first sight. In our proof of Pfister local global principle, could be
helpful think in terms of rings and ideals, keeping in mind that this subset S lives in the Witt ring W = W (X, G).

2At first time there is no reason to the form 1 be the same for a,b and c¢. However, if a1 ® ¢ ~ 11 @ o,
b2 @ p ~ P2 ® ¢ and chs @ p ~ —1h3 @ p, we just take P = Y1 ® P2 @ P3.
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Claim 3. ¢(z) # 0.
For this, suppose ¢ = (a1, ...,a,) and let e; = a;(z), so

pla) = aj(@) =) e
j=1

7j=1
By definition of x, (1,a(z)a) € S for all a € G. Thus (1,eja;) € S so p @ [[;_;(1,eja;) = 0. On
the other hand, a;(1, e;a;) = e;(1, e;a;), so

n

sy H<17eiai> = <a17 "-7an> ® H<1ve]a’]> = <ela "'a€n> ® H(laejaj>
j=1

J=1 J=1
It follows that (e1, ..., e5) = 0. Each e; is 1 or —1 so this means >7_; e; = 0. O

Now we are in position to prove Theorem [4.1.13

Proof of Theorem |4.1.15

i- This is immediate for n = 1. if (a1,a2) = (b1, bs) then by € D{ay,a2) and ajay = biby (so
by = ajagby). Conversely, if by € D{(ay,az) then (aq,as) = (b1, bs), where by := ajazb;. Now,
suppose n > 3. If (a1, ..., an) = (b1, ..., by,) then we have a, b, cs, ..., ¢,, satisfying the conditions
written above. Thus b; € D{(aj,a) and, by induction, a € D{ag, ..., an), so b € D{ay, ..., a,).
Conversely, suppose b; € D{ay,...,an). Then by € D{(ay,a) for some a € D{ag,...,ay). Thus
(ar,a) = (b1,b) where b = ajab; and, by induction, (ag,...,a,) = (a,cs,...,c,) for some
€3y ...y Cn. Thus (ay,...,an) = (b1, ..., by), where by :=b and b; : ¢; for i = 3,...,n.

i - (=) is just L.1.16(b).

(<) If dimp = dim¢ and p(z) = ¢(x) for all x € X then, applying [4.1.19, we get ¢ ~ .
Since dim ¢ = dim v, [4.1.18((i) provides ¢ = ).

O]

denote ZX the set of all functions f : X — Z. This is a ring with operations define pontwise,
i.e,
(f +9)(@) = f(z) +g(2), (fg)(x) = f(x)g(x).

By the (=) implication of 4.1.19| we have a well-defined mapping ¢ : W — Z% sending the
Witt equivalence class of ¢ to the function x — ¢(x) and it is easy to check that o is a ring
homomorphism.

Corollary 4.1.20. For any space of orderings (X, G), the natural ring homomorphism
o:W(X,G) — 2%

18 injective.

Proof. Immediate from [4.1.19 O

Thus we can identify W = W(X,G) with a subring of ZX (the subring generated by the
elements of G).
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Recall that X is given the weakest topology such that each a € G is continuous. Using the
fact that any sum of continuous functions is continuous, we see that W is actually a subring of
C(X,Z), the ring of all continuous function from X to Z. Here, Z is given the discrete topology.

Our next result shows how to recover the space of orderings (X, G) from its Witt ring:

Theorem 4.1.21. Suppose (X,G) is a space of orderings with Witt ring W = W(X,G). Then:
i - G is naturally identified with the unit subgroup of W.

i1 - X is naturally identified with the set of all ring homomorphisms from W into Z.
Proof.

i- We have
a=>b% (a) = (b) < (a) ~ (b)

and (a) ® (b) ~ (ab) so the mapping a — (a) identifies G with a subgroup of the unity group
of W.

Suppose ¢ = (a1, ...,a,) is a unity in W. For fixed x € X, let k¥ = the number of positive
entries of ¢ and | = the number of negative entries. Then k+1=n and k — 1 = p(x) = £1.
This forces n to be odd, say n = 2m + 1, and ¢(x) =1 < k=m,l =m+1 and p(z) =
—1& k=m+1,1=m. It follows that p(z) = a(z), where a := (=1)™[[}_; a;. From this

it follows, using |4.1.19| that ¢ ~ (a).

ii - Each z € X defines a ring homomorphism ¢ +— ¢(z) from W into Z. Conversely, suppose
f W — Z is any ring homomorphism. Consider the function =z : G — {—1,1} given by
z(a) = f((a)). Then z(—1) = —1, z(ab) = z(a)z(b). Suppose ¢ € D(a,b) and z(a) = z(b) = 1.
Then applying f to (a,b) = (c, cab), we see that

2 = z(a) + z(b) = z(c)(1 + z(a)x (b)) = 22(c),

so z(c) = 1. Thus, by AX2, z € X. Since f((a)) = x(a) = a(z) for all a € G and W is
generated by the 1-dimensional forms (a), f coincides with mapping ¢ — ¢(z).

O]

4.1.4 Subspaces and preorderings

We continue to assume that (X, G) is a space of orderings. Recall: for any a € G, U(a) denotes
the set of all x € X such that a(x) = 1. These sets are clopen and form a subbasis for the topology
on X. The clopens sets

n
Ulay,...,an) := ﬂ U(a;),n>1,aq,..,a, € G,
j=1

are a basis for the topology.

Definition 4.1.22. A subset Y C X s called a subspace of X (more precisely, of (X,G)) if Y
is expressible as Y = (,cqU(a) for some (not necessarily finite) subset S C G. The subspace
generated by a subset Y in X is just the smallest subspace of (X,G) containing Y, i.e, it is the
intersection of all sets U(a) such thata =1 on'Y . For any subspace Y of X, G|y denotes the group
of all restrictions aly, a € G and, for any form ¢ = (ay, ...,a,) with entries in G, |y denotes the
associated form with entries in Gly, i.e, ¢|ly = (a1ly, ..., anly)-
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When we speak of a subspace Y of (X, G), we are often referring to the pair (Y, Gly). If Y # (),
we will prove that this is a space of orderings, conform [4.1.25

Let F be a formally real field. Subspaces of the full space of orderings (X s 2, Gy r2) have the
form (X7, Gr) where T is a preordering in F. If Y C X5~ p2 is a subspace, say (¢ U(@), then
Y = X7 where T is the preordering in F' generated by the elements a, @ € S, and G|y = Gp. If
T is a preordering of F', then Xp = maET\{O} U(a). If T,T' are preorderings in F then X7 is a
subspace of X7 iff T D T.

A preordering in G is a subgroup T of G which is additively closed, i.e, a,b € T = D(a,b) C T.

Our first objective is to relate subspaces, preorderings and Pfister forms.

Theorem 4.1.23.
i-Letyp=1,c1)®...®(,¢cx), Y =U(cy,...,cx). Then the preordering generated by ci, ..., ¢y is

DW)={beG: b=y} ={becG:b=1onY}.

ii - For any set S C G, the preordering generated by S is {b€ G :b=1 on (\,cgU(c)}.
Proof.

i - Denote the preordering generated by c1,...,cx by T. 1 is the sum of the s-dimensional forms
(CipyonCig)y 1 <iy < ... <ig < k, 0 < s <k, so, according to [£.1.11](i), D(¢) is the smallest
addtively closed subset of G containing the products c¢;,, ..., ¢;,. Since these products are in
T, this yields the inclusion D(¢)) C T. Since the set {b € G : b = 1 on Y} is a preordering
containing ¢y, ...,c, we also have T C{be G:b=1on Y}.

Suppose now that b € G, b = 1 on Y. Comparing signatures and using we see that
¥ = by (the signature of each side at x is 2" if € Y and 0 otherwise). Finally, since
1 € D(v), ¥ = by implies b € D(v), completing the proof.

ii - By the same argument in previous item we have C. For the other, suppose b = 1 on () g U(c).
Since b is continuous and X is compact, this implies that b =1 on U(ey, ..., ¢x) for some finite
subset {ci,...,cx} € S. Thus, by item (i), b lies in the preordering generated by cy, ..., ¢i.

O

Corollary 4.1.24. There is a natural one-to-one inclusion reversing correspondence between sub-
spaces of X and preorderings in G.

Proof. 1If Y is any subspace, then T'={b € G : b = 1 on Y} is a preordering. If T C G is any
preordering then Y = (1) . U(c) is a subspace and by 4.1.23(ii), ' ={b€ G :b=1on Y}. O

Observe that the kernel of the surjective group homomorphism G +— G|y, a — aly, is precisely
the preordering corresponding to Y.

Theorem 4.1.25. For any (non-empty) subspace Y C X, the pair (Y, Gly) is a space of orderings.

We prove [4.1.25 by showing that (Y, G|y ) satisfies the axioms («), () and () of the alternative
definition. We use the following result:

Theorem 4.1.26.
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i - Suppose p = (1,c1)D...®(1,ck), Y =U(eq, oory k), p = (a1, ..., an) and oly = {(a1ly, ..., anly)-
Then

bly € D(¢ly) < be D(p®1))
< b e D(a1si, ..., ansy) for some s1,...,8, € D(¥).

ii - Suppose Y C X is any subspace. Then bly € D(aily,...,anly) < b € D(a181,...,ansy,) for
some S1,...,8, € G such that s; =1 onY,i=1,...,n.

Proof. Here we are using the alternate definition of value sets and isometry. In the end, both
definitions are the same, see [4.1.13

i- Suppose bly € D(pl|y) so ¢ = (by,...,b,) on Y for some by, ..., b, € G with b = b. Comparing
signatures, ¢ ® 1 = (b1, ...,b,) ® ¥ on X. Since 1 € D(yp), this proves b = b1 € D(¢ ® ). In
turn, using ¢ @ Y = a1 O ... B a,y and (v), b € D(p ® 1) implies that b € D(a;s1, ..., anSy)
for some s, ..., s, € D(%). In turn, since s; = 1 on Y, this implies b|y € D(¢|y).

ii - The implication (<) follow immediate by the definitions involved in. For (=), say ¥ =
Nees Ulc). By assumption (a1, ..., an) = (b1, ...,by) on Y for some by, ...,b, € G with by = b.
Y is the intersection of the sets U(cq, ..., ck), c1, ..., cx € S and the function

z > ai() =Y bi(@)
j=1 j=1

is continuous so, by compactness, (a1, ...,a,) = (b1, ...,b,) on U(cy, ..., ¢x) for some cq, ..., ¢ €
S. By (i) we get b € D(a15s1,...,ansy) where s; € D((1,¢1) @ ... ® (1,¢)), i = 1,...,n. Since
Y CU(eq,.ycx) and s;, =1 on Ulcy, ..., cx) we see that s;, =1onY,i=1,..,n.

O]

Proof of Theorem[{.1.23. («) and () are direct consequence of definition [4.1.22] For (), suppose
aly € D(¢ly ® ¥ly), ¢ = (b1, ..., bn), ¥ = (c1,...,¢;). Then, by 4.1.15

a € D(blsl, ceey S, €11, oy ity), with s; = tj=1lonY.

Thus, by () for (X,G), we have b € D(bys1,...,bxsk), ¢ € D(city, ..., qt;) with a € D(b,c). Then
aly € D(bly,cly), bly € D(¢ly), cly € D(¢]y). O

If Y C X is a subspace, the inclusion ¥ < X is a morphism from the space of orderings
(Y,Gly) to the space of orderings (X,G). The associated group homomorphism from G to G|y
is just the restriction mapping a — aly. The associated ring homomorphism from W (X,G) to
W(Y,G|y) is given by (a1, ...,a,) — (aily, ..., an|y). This is surjective because the restriction map
G — Gy is surjective.

Theorem 4.1.27. For any (non-empty) subspace Y C X, the kernel of the ring homomorphism
W(X,G) — W(Y,G|y) is generated as an ideal by the elements (1,—s), s € G, sly = 1.

Proof. Of course, these elements are in the kernel. Conversely, suppose ¢ = (ai,...,a,) in the
kernel. Thus ¢|y ~ 0 so, in particular, n is even. Since ¢ ~ 0 on Y, by continuity of z — ¢(x)
and compactness, ¢ ~ 0 on U(cq, ..., c;) for some ¢q, ..., ¢ with ¢;|y = 1. Thus ¢ ® ¥ ~ 0 where
P = (1,¢1)®...®(1, ¢g) (since p®1) has signature 0 at each = € X). Since p®1) ~ a19®...Bay, this
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means a1 ®...Hay1 is isotropic so, by 4.1.18(e), we get s1 € D(v) with —a1s1 € D(agtp®...Dan1)
so, by4.1.10] —ays1 € D(aas2, ..., ansy) for some sg, ..., s, € D(¢). Thus (a;181, ..., anSy,) is isotropic
so (a181, ..., anSn) ~ 7 for some 7 of dimension n — 2. Thus

©={a1, ey ap) ~ {(A181, -y anSn) D aj(l,—s1) B ... B ap)l, —sy)
~T®ar(l,—s1) D ... Hap(l, —sn).

Since s; € D(¢), sily =1,i=1,...,n, 7 is also in the kernel, so the result follows by induction on
the dimension. O

4.1.5 Fans II

Suppose G is any group of exponent 2, with multiplication as the operation. Fix e € G, e # 1
(to play the role of the constant function —1), and set X = {z € x(G) : z(e) = —1}. Elements of
G are viewed as functions on X by defining a(z) = z(a) for all @ € G, z € X. The pair (X,G)
constructed in this way, is called a fan.

Theorem 4.1.28. Any fan (X, G) is a space of orderings.

Proof. We check AX1, AX2 and AX3.

Claim 1. If H is any subgroup of G maximal subject to the condition e ¢ H then H = ker(x)
for some x € X. For this, suppose b ¢ H. Then H UbH is a subgroup of G containing H properly,
so e € HUbH. Since e ¢ H, this means e € bH, i.e, b € eH. Thus H UeH = G so we have a
character x : G — {1, —1} with ker(x) = H. Then e ¢ ker(z), so z(e) = —1, i.e, x € X.

We are identifying G with a subgroup of {1,—1}* by identifying a € G with the function
a:X — {1,—-1} given by a(x) = z(a). This is legitimate: if a # b, then ab # 1 so e ¢ {1, eab}.
Thus by Zorn’s Lemma, we get a subgroup H of G with {1,eab} C H maximal subject to the
condition e ¢ H. By Claim 1, H = ker(z) for some z € X. Thus z(eab) = 1, i.e, x(a) = —xz(b)
i.e, a(x) = —b(x). This proves a, b are distinct as functions on X. AX1 is now proved. Note that
e(r) =x(e) = —1 for all x € X, so e = —1, proving AX2. To prove AX3 we need the following

Claim 2. If a,b € G, ab # —1, then D(a,b) = {1,b}. For this, suppose ¢ ¢ {a,b}. Then
—1 ¢ {1,ab, —ac, —bc} so, By Zorn’s Lemma, we have a subgroup H of G with {1, ab, —ac.—bc} C H
maximal subject to the condition —1 ¢ H. By Claim 1 we have z € X with ker(z) = H. Thus
(ab)(z) =1, i.e, a(z) = b(x), and (—ac)(x) =1, i.e, c(x) = a(z) # —a(zx). Thus

a(z) +b(z) # c(x) + a(z)b(z)c(z),
so {(a,b) % (c,abc), i.e, ¢ ¢ D(a,b).

Now suppose b € D(ay,c) for some ¢ € D(az,bs). We want to show that b € D(d, a3) for some
d € D(ay,az2). If ajas # —1, ajaz # —1, asaz # —1, then, by Claim 2, ¢ = ay or ag and b = aq, as
or az. Thus we can take d = a; or ag in this case. If ajas = —1, then D(a1,a2) = G so we can take
d=>5. If aja3 = —1,47 =1 or 2, then D(a;,a3) = G, so we can take d = a;. This proves AX3. [

Theorem 4.1.29. For a space of orderings (X, G), the following are equivalent:

a- (X,G) is a fan.
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b- D(l,a) ={1,a} for alla € G, a # —1.
c- Forallay,...,an € G, if ajaj # —1 for i # j, then D{aq,...,an) = {a1,...,an}.
d - If x is any element character of G satisfying x(—1) = —1 then z € X.

Proof. (a)=-(b): Follows by the proof of
(b)=(c): D(a) = {a} is true in general. Also, D(a,b) = aD(1,ab), so if (b) holds, then

D(a,b) = a{l,ab} = {a,b}

if ab # —1. Now suppose b € D(a1,...,a,), n > 3 and a;aj # —1 for i # j. Thus b € D(aq,c) for
some ¢ € D(as,...,a,). By induction ¢ = a; for some j > 2. Thus b € D(ay,a;) so b = a; or aj.
Anyway, this means b € {aq,...,a,}.

(c)=-(d): We have to show that a,b € ker(z) = D(a,b) C ker(z). But this is immediate once
ab # —1 (since —1 ¢ ker(z)) so, by (c), D(a,b) = {a,b} C ker(z). Thus, applying AX2, we see
that x € X.

(d)=(a): this is immediate fom definition of fan, taking e = —1. O

When is a finite space of orderings a fan? Suppose (X, G) is a space of orderings with X finite
(so G is also finite). Viewing elements of X as characters, we have (1, ker(z) = {1}, so we can
find some smallest subset {z1,...,,} of X with (\}_; ker(z;) = {1}. We refer to any such subset
as a minimal generating set for X. Note that the condition (;_, ker(z;) = {1} just means that
the subspace of (X, G) generated by z1, ..., x, is all of X.

Theorem 4.1.30. Suppose (X, G) is a space of orderings having a minimal generating set x1, ..., Tn,.
Then:

i |G| = 2"

il - X1,...,Tp 15 a Ly basis for the character group x(G). In particular, each x € X is expressible

uniquely as
n

xTr = H.CL‘?, €; € {0, 1}
i=1
i - A necessary condition for a character x =[], 2%, e; € {0,1}, to be in X is that

n

Z e1 =1 (mod 2).

i=1
In particular, n < | X| < 271
w - (X,Q) is a fan iff | X| = 2", so X consists of all products
n n
r = fol, and Zel =~ 1 (mod 2).
i=1 i=1
Proof. By the argument in the proof of [4.1.1{(ii), the natural injection

G — H G /ker(x;)

J=1
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is surjective, etc, so (i) and (ii) follows. (iii) and (iv) follows since each x € X must satisfy
z(—1) = (—-1)(z) = —1. O

If (X, G) is any space of orderings then, by a fan in X (more precisely, a fan in (X, G)), we mean
a subspace Y of X such that the space of orderings (Y, G|y ) is a fan. For example, in the space of
orderings (Xy~ pz, Gy~ p2), I a formally real field, we have the fans (X o+, Gpop+) associated to
the real places a : F' — RU {o0}.

A fan is said to be trivial if it has one or two elements. For any x,y € X, {x} and {z,y}
are trivial fans. The 4 elements fans are specially important. These consist of 4 distinct orderings
1, T2, ¥3, 24 such that [T/, z; =1 (ie, H§:1 a(z;) =1 for all a € G).

Finally, every fan is realized as the full space of orderings (X’ s r2, Gy r2) of some formally real
field F. To see this, take F' = R((I")), where I' is the direct sum of suitably many copies of Z
ordered in some way (e.g, lexicographically). In this situation, F' has a unique real place o and
UFf CF? s0o F2US =F? =3 F>

4.1.6 The Representation Problem II

Let (X, G) be any space of orderings. The representation theorem describes the image of the
Witt ring W = W(X,G) in C(X, Z). We state the representation theorem in [4.1.33 below, but we
start with the following easier result:

Theorem 4.1.31. Suppose f : X — Z is a continuous function. Then 2" f is represented by a
form (i.e, there exists a form ¢ with entries in G such that 2"f = @(x) for all x € X) for some
integer n > 0. In particular, the cokernel of the embedding W — C(X,Z) is 2-primary torsion.

Proof. f is continuous and Z discrete, so f is locally constant, i.e, for each x € X, there exists a
basic set U(ayq, ..., a,) with € U(aq, ..., a,) and f constant on U(ayq, ..., a,). By compactness, there
exist elements a;; € G, i =1,....,k, j =1,...,v; such that X is the union of the sets U(aj1, ..., @iv, ),
i = 1,..,k, and f is constant on each U(a;i,...,ai,). Take G C G to be the subgroup of G
generated by —1 and the elements a;;. For x € X, let

7:={y € X :a(y) = a(z) for all a € G}

and let X = {Z : x € X}. Thus, if we view the elements of X as characters on G, then elements
of X are just restrictions of elements of X to the subgroup G. In particular, elements of X can be
viewed as characters on the finite group G, so X is finite. Also, if Z =7, then a;;(x) = a;;(y) for
all 7,7 so x,y lie in the same U(a1, ..., Giv, ), s0 f(z) = f(y). Thus we get a well-defined function
f: X — Z such that f(Z) = f(z) for all z € X. Now fix a Zy-basis —1,ay, ..., a, for G and define

pz = (1,a1(x)a1) @ ... ® (1, an(x)ay),
7 € X (this depends only on Z, not on ). Then
_Jorifg=7
b= {0 fy#7T
Thus

f@pz | (v) =2"f(H) =2"f(y)

TEX
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for each y € X so
2"f = f(@)p=.
TeEX

Since pz € W and f(%) € Z, this proves 2"f € W. O

We can expand pz as pz = ) gas(x)(as), S running through all subsets of {1,...,n}, where
as := [[;cg ai- Then, substituting, we obtain

2'f =Y F@pz = [(@) zg: as(z){as) = ZS: ms(as),

zeX zeX
where B
ms= > @ as(x).
TEX s
In certain cases, we may able to improve on For example, if each of the integers mg is

divisible by 2" then we get f =" ¢ 5% (ag) € W.
Before deal with the Representation Theorem, we need a lemma:

Lemma 4.1.32. Suppose a1,a2 € G and @1, p2 are forms such that
1@ (1,a1) = 92 ® (1, ap). (*)

Then there exists a form ¢ such that |u,, = ¢ilu,, , i =1,2.

Proof. Let
S:=D(p1 ®(1,a1)) = D(p2 ® (1,a2)).

By [£.1.26(i),

S|pre,an) = SIbpe:e(1,a))>

i =1,2. Pick p € S and decompose ¢; = (p) ® ¢} on U(a;), so
@i @ (1,a;) = (p,pa;) & ¢} @ (1, a;)

on X, i =1,2. Rewriting (*) using this, and cancelling the 1-dimensional form (p), we obtain

(pa1) ® ¢; ® (L,a1) = (p, az) ® 3 @ (1, a).
Multiplying this by a2 and adding (—pai, az) to each side yields

(paraz) ® aspy ® (1,a1) = (p) © ¢p @ (1, a2)
and

(1,-1) & az¢y ® (1, a1) = p(l, —ara2) & ¢y @ (1, az). (4.1)

It follows that the right side of is isotropic so, by 4.1.18(v), there exists s € D(1, —ajaz) such
that —ps € D(wh ® (1,a2)). Thus —ps|y(a,) € D(Ph|U(as)) 50 ©5 = (—ps) @ ¢h on U(ag) and then

SOIQ ® <1,(12> = <_p87 —pSCL2> @ SO/QI ® <17a2>
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on X. Also, (1, —ajag) = (s, —sajaz). Rewriting using these last two relations, we obtain
(1, -1) @ asp) ® (1, a1) = (ps, —psaias, —ps, —psaz) ® 5 @ (1, az).

Cancelling the hyperbolic planes (1, —1) = (ps, —ps), and multiplying by ag, this yields

©1 @ (1,a1) = (=psar, —ps) ® ¢35 @ (1, a2). (4.2)
It follows that —ps € D(¢} @ (1,a1)) so @] = (—ps) ® ¢ on U(ay), i.e,

¢1® (1,a1) = (—ps, —psar) @ (1, a1)
on X. Rewritting [4.2 using this, and cancelling, we obtain ¢} ® (1,a1) = ¢ ® (1,a2) on X. Since
i = (p) ® @i = (p,—ps) @ ¢

on U(a;), i = 1,2, we are done by induction on the dimension. O

Theorem 4.1.33 (Representation Theorem). Suppose f : X — Z is a continuous function. Then
the following are equivalent:

a - 2" f is represented by a form (i.e, there exists a form ¢ with entries in G such that 2" f = p(x)
forallz € X).

b- > ey f(x) =0mod |Y| holds for all finite fans Y C X.
c- Y ey a(z)f(x) =0mod [Y]| holds for all finite fans Y C X and for all a € G.

Proof. (a)=-(b) Suppose f is represented by (ai,...,a,) and Y C X is a finite fan. Then f(y) =
qul:1 ai(y) so

Do)=Y aiy).

yey j=1 yey

Thus we are reduced to showing

Z a(y) = 0mod |Y| for any a € G.
yey

There are two cases. If @ = £1 on Y then } .y a(y) £[Y]. Ifa # £1 on Y, then ¥ =
U(aly)UU(—aly) and, since Y is a fan, U(aly) and U(—aly) each have half as many elements as
Y so

3 aly) = [Ulaly)| - [U(~aly)| = 0.

yey

(b)=(c) We want to show that >y a(z)f(z) = 0mod |Y] for any finite fan Y C X. This is
immediate from (b) if @ = £1 on Y. Otherwise

Sa@i@= S f@- S f@

zey z€U(aly) 2€U(—aly)

=2 Z flz) | — <Z f(ac)) = 0 mod |Y].

z€U(aly) zeY
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Here, we are using the fact that Y = U(aly) U U(—aly) and that U(aly) is a fan with 1/2|Y|
elements, so
Z f(z) =0 mod 1/2|Y].

zeU(aly)

(c)=(a) Assume the result is false. Thus f is not represented by a form. We look at all
subspaces Y in X such that f|y is not represented by a form. We use Zorn’s Lemma to get a
minimal such Y. One has to observe that if Y;, ¢ € I is some chain of subspaces, then Y =, Y;
is a subspace and, if f|y is represented by a form, say (a1ly, ..., an|y), then, by continuity, the set

U={ze€X: fz)=) a;x)}
j=1

is open in X and contains Y so, by compacteness it contains Y; (so fly; is represented by (ai|y, ..., an|y))
for some i € I. Thus Zorn’s Lemma does apply. So now we have the subspace Y with f|y not
represented, and Y is minimal with this property. Of course, every fan in Y is also a fan in X, so
our assumption that

Za(m)f(a:) =0 mod |Z|

T€Z
for all a € G still holds for all finite fans Z C Y. To simplify notation, we replace X by Y. So now
f is not represented, but f|y is represented for each proper subspace Y of X.

Claim. (X, @) is not a fan. For suppose (X, G) is a fan. Go to the notation used in the proof
of Pick any subgroup H C G so that G = G x H (direct product). Let Y consist of all
characters  : G — {—1,1} such that z|g =1, and x(—1) = —1. Since X is a fan and ¥ C X, so
Y is a fan. Since —1,ay, ..., a, is a basis for G, we see that |Y| = 2. Finally, we see that for each
T € X, there exists a unique y € Y such that T = 7. Thus

ms =3 F@asz) = 3 f(y)as(y) = 0 mod 2"

TEX yey

for each subset S of {1,...,n} so, f € W (each mg is divisible by 2™). This proves the claim.

Thus (X, G) is not a fan, so, by there exists a € G, a # —1, D(1,a) # {1,a}. Thus
there exists b € D(1,a), b # 1,a. Thus (1,a) = (b, ab), i.e, (—a,b,ab) ~ (1). Take a; = —a, ay = b,
as = ab. Note a; # 1, i =1,2,3, so U(a;) is a proper subset of X. By the minimal choice of X,
flu(ay) 18 represented, i = 1,2,3. Also (a1, ag, az) ~ (1) so, comparing signatures

For each = € X exactly one of a;(z),az(z),as(z) is — 1. *)

In particular, U(a;) N U(a;) = X if i # j. Thus we can assume U(a;) # 0 (otherwise U(a;) =
X). Now, let ¢; be a form with entries in G such that ¢;|y(q,) represents fly(q,, i = 1,2,3.
We can assume @3 ~ qﬂ We can also assume ;|;/(q,) is anisotropic, 7 = 1,2. Recall that by
4.1.26(1), D(¥ilv(a;)) = D(wi @ (1,0i))|t(a;)- This means o; ® (1,a;) is anisotropic, i = 1,2 (see
4.1.18|iii)). Consider these two forms carefully. Let z € X. By (*), there are three possibilities. If
a1(x) = az(x) = 1, then ¢;(z) = f(z),i=1,2, so

(b1 @ (L a1))(2) = 2f(2) = (P2 @ (1, a2)) ().

3Replace f by g : f — 3 if necessary. There is no harm in doing this. f is represented iff g is represented.




4.2. SPECIAL GROUPS 147

If a1(z) = 1, az(x) = —1, then az(z) = 1, so p1(z) = f(x) = p3(x) = 0 and (1,a9)(x) =0, so

(1@ (1,a1))(2) = 0(p2 ® (1, a2))().

Similarly, if a;(x) = —1 and aa(z) = 1. Thus ¢1 ® (1,a1) and 2 ® (1, az) have the same signature

at each x € X and both are anisotropic, so ¢1 ® (1,a1) = 2 ® (1,a2) (see 4.1.18(i) and [4.1.13).
By lemma 4.1.32 there exists a form ¢ such that ‘P|Uai 90i|Uai7 1 = 1,2. In particular, this ¢

represents f, contradiction. So the theorem is proved. O

1R

It is important observe that the notion of fans and the representation problem context for
AOS, provides a generalization for the context of the reduced theory of quadratic forms, covered
in chapter 2.

4.2 Special Groups

For special groups, we follow chapters 1,2 and 3 of [DMO0OQ]. This is a rich theory, and sadly
the most important applications, like the proof of Marshall’s Conjecture, the Boolean hull and the
invariants are left to a posterior work.

4.2.1 Basic Definitions

Let A be a set and = a binary relation on A x A. We extend = to a binary relation =, on A",
by induction on n > 2, as follows:

1- =9==.

ii- (a1,...,an) =n (b1,...,b,) if and only there are x,y, 23, ..., 2, € A such that (a1,z) = (b1,y),
(g, ...,an) =p—1 (T, 23, ..., 2n) and (ba, ..., bp) =n—1 (Y, 23, ..., 2n)-

Whenever clear from the context, we frequently abuse notation and indicate the aforedescribed
extension = by the same symbol.

Definition 4.2.1 (Special Group). A special group (SG) is an tuple (G,—1,=), where G is a group
of exponent 2, i.e, g> =1 for all g € G; —1 is a distinguished element of G, and =C Gx G x G x G
is a relation (the special relation), satisfying the following axioms for all a,b,c,d,z € G:

SG 0 - = is an equivalence relation on G2;

w
D)
o
1
£
=
Il

(c,d) = (ga, gb) = (gc, gd), for all g € G.
SG 6 (3-transitivity) - the extension of = for a binary relation on G® is a transitive relation.

A group of exponent 2 satisfying SGO-SG5 is called pre-special group (PSG). A PSG (or SG)
(G,—1,=) is reduced (RPSG, RSG respectively) if 1 # —1 and if (a,a) = (1,1) = a = 1.
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Definition 4.2.2. Let G be a psg. A form ¢ on G is an n-tuple (a1, ...,an) of elements of G; n is
called the dimension of ¢, dim(y). We also call ¢ a n-form.

By convention, two forms of dimension 1 are isometric if and only if they have the same
coefficients. If ¢ = (ay, ...,ay) is a form on G, define

a - The set of elements represented by ¢ as

Dg(p) =4{b e G :3z2,..., 2, € G such that ¢ =g (b, 29, ..., 2n) }.

—a

b - The discriminant of ¢ as d(y¢) = [] a;.

1

(]
¢ - Direct sum as ¢ ® 0 = (a1, ..., an, b1, ..., by ).
d - Tensor product as ¢ ® 0 = (a1b1, ..., a;bj, ..., anby). If a € G, (a) ® ¢ is written ap.

A form ¢ on G is isotropic if there is a form v over G such that ¢ =¢ (1, —1) @ 1; otherwise
it is said to be anisotropic. We say that ¢ is universal if Dg(y) = G.

Lemma 4.2.3. Let (G,=¢g,—1) be a pre-special group. Let a,b,c,d be elements of G and p, 1) be
n-forms on G. Then

a - {a,b) = {(c,d) if and only if ab = cd and ac € Dg(1,cd). Further, ¢ € Dg(1,a) if and only if
(c,ac) = (1,a).
b - @ =1 implies d(p) = d(v).

Proof. a - If (a,b) = (c,d), then by SG3 ab = cd and by SG5 (ac, be) = (1,cd), so ac € Dg(c,d).
Conversely, suppose that ab = cd and ac € Dg(c,d). Then there exist x € G such that
(ac,z) = (1,ed), and by SG3, acx = c¢d = ax = d.

(ac,z) = (1,cd) abzed {ac,z) = (1, ab)
945 (c,azx) = (a,b)
= (¢,d) = {(a,b).

b - We proceed by induction on dim ¢ = dim = n. If n = 1 there is nothing to do, and if n = 2
is just SG3 (or the previous item). Now, Let n > 3 and ¢ = (aq, ..., a,) and ¢ = (b, ..., by). If
© = 1), there exist z,y, 23, ..., 2z, € G such that (a1, x) = (b1,y), (ag,...,an) = (x, 23, ..., 2,) and
(ba,....,bn) = (y, 23, ..., zn). Therefore ajx = byy and by induction hypothesis, as...a,, = xz3...2,
and bs...b, = yz3...z,. Hence

ag...0n = TZ3...2p = A102...0p = A1T23...2, = b1Y23...2, = b1bs...b,

and d(p) = d(¥).
O

Proposition 4.2.4. Let (G,=q,—1) be a pre-special group and ¢, and 6 be forms on G. Then
a - The direct sum of isometric forms is isometric.

b - The tensor product of isometric forms is isometric.
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¢ - If G is a special group, then we also have the Witt cancellation:
wBO=Y 0= p=1.
d - For all a € G and forms o1, ...,on on G,

Jx; € Dg(pi), 1 <i<n,

a € Dg(Dilipi) &
a(@iz1pi) {such that a € Dg((z1, ..., n))

e - @ @Y is isotropic iff there is x € G such that x € Dg(p) and —x € Dg(). In particular, if a
is an element of G, a € Dg(p) iff (—a) @ ¢ is isotropic.

Proof. a - Suppose that 1, v, 11,12 are forms over G such that ¢1 = o and 11 = 1. We prove
that ¢1 @ Y1 = 2 @ Y9 by induction on n = dim¢; = dim @y. If n = 1, then ¢ = 2 = (a)
for some a € G. Let Y1 = {(c1,...,¢m) and 1y = (dy,...,d;,). The isometries (a,c1) = (a,c1),
1 =11 and 11 = 19 show that (a,cy,...,cm) = (a,dy, ..., dy,), as required.

Assume that result true for dim ¢y = dim¢y = n and suppose ¢1 = (a,aq,...,a,) and ps =
(byb1,...,by,). Let x,y,Z = (22, ..., 2,) be witnesses to the isometry ¢1 = @9, that is

(a,z) = (b,y), (a1,...,an) = (z,2) and (b, ...,b,) = (y, 2). (*)

The isometries in (*) and the induction hypothesis give

<a17 "'7an> @7/)1 = <'1"a5> @d}l and <ala "’aan> @¢1 = <£U,Z> @¢2

Hence, these isometries together with the first one in (*) yields

<CL,CL1, "'7an> S 17[)1 = <b7 blv 7b'n> D 77ZJ2
as desired.

b - Suppose that o1, 2,11, 12 are forms over G such that 1 = @2 and ;1 = 9. We prove that
1 ® Y1 = g ® P by induction on n = dim ¢; = dim @s.

Let n = 1. Then ¢; = @9 = (a) for some a € G. Now, we proceed by induction on m =
dimy; = dimy. Let 1 = {(c1, ..., ¢p) and g = (dy, ..., d,,). If m = 1 there is nothing to proof
and if m = 2 the result holds by SG5. Assume that the result holds true for (m — 1) and let
x,y,Z = (22, ..., zn) be witnesses to the isometry 11 = 19, i.e,

<Cl,$> = <d17y>’ <027 EEE) Cm> = (x’ Z) and <d27 B dm> = <y7 5> (**)
Multiplying all these isometries by a and using the induction hypothesis, we have
(aci,ax) = (ady, ay), (aca, ...,acy,) = (ax,aZ) and (ads, ..., ad,,) = (ay,aZ),

and hence, ai); = as.

The general induction step follow by the argument in the case n = 2. So, let us prove
(a,b) = (¢, d) = (a,b) @Y1 = (¢, d) R 1)y (4.3)

The argument is (again!) by induction on the dimension m of ¢0's. If m = 2, say ¥ = (c1,¢2) =
(d1,da) = 19, by preservation of isometry by sums and multiplication by an element of G we



150 CHAPTER 4. A SECOND GENERATION OF ABSTRACT THEORIES

have

<a, b> X <C1, 62> = a<01, C2> S b<61,02> = a<d1,d2> ® b<d1, d2> = <CL, b> ® <d1,d2>
= di(a,b) ® da(a,b) = di(c,d) ® da(c,d) = (c,d) ® (d1, da).

Now, suppose that holds for dim(v1) = dim(t¢2) = m — 1. From (**) come

(a,b) ® (1, z) = (¢, d) @ (d1,y); (4.4)
(a,b) @ (cay ..., Cm) = (a,b) @ (x, 2); (4.5)
(c,d) @ (da, ... dm) = (c,d) ® (y, 2); (4.6)
(a,0) ® (2) = (¢, d) ® (2). (4.7)
These isometries and the preservation of isometry by sums yields
(a,b) @ Y1 = c1(a,b) ® [(a,b) @ (ca, ..., cm)]
= c1{a,b) ® [(a, ) ® (z,2)]
= c1{(a,b) ® z(a,b) ® [{a,b) ® (Z)]
= di{c,d) @ y(c,d) & [(c, d) @ (2)]
= di{c,d) & [(c, d) @ (y, Z)]
=di{c,d) ® [{c,d) ® (da, ....,dn)] = (c,d) @ a.
Finally, we deal with the general case. By induction, let ¢1 = (a,a1,...,a,) and ps =

(b,b1,....;bn), n > 3. Let x,y,Z = (22,...,2,) be witnesses to the isometry ¢1 = o, i.e, el-
ements satisfying (*). From the isometries in (**) we get, by induction hypothesis and the case
n=2

(a, ) @1 = a1 @ xh1 = (b, y) @ b2 = biho @ yiho; (4.8)
(a1, .ccyapn) @Y1 = (x,2) @ Y1; (4.9)

(D15 ey bn) @ P2 = (Y, 2) @ ta; (4.10)

(2) ® 1 = (2) @ o (4.11)

Then, we get

01 @Y1 = (a,ai,...,an) @Y1
= a1 ® [(a1, ..., an) @ Y]
= a1 & [(z, 2) ® ¥1]
= a1 ® w1 & [(2) ® 1]
= bibs @ yib2 @ [(2) @ 90
= bh2 @ [(y, 2) ® o]
= by @ [(b1, ..., by) @ 2]
= (b,b1,...,bp) ® 2 = Y2 ® Po.

¢ - Let n = dim(p) = dim(v). First suppose that § = (a), a € G. Then the hypothesis in this
case reads (a) ® ¢ = (a) @ 1. Thus, there are x,y, Z = (23, ..., 2,) € G such that (a,z) = (a,y),
¢ = (x,2) and ¢ = (y, Z). The first isometry tells us that az = ay and so x = y. But then the
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transitivity of = yields ¢ = 1. To finish the proof, use induction on dim(€), noting that the
isometry 6 @ ¢ = 0 & 1) can be written as (a) ® ¢’ = (a) ® ¢/, for suitable ¢’ '

It is enough to prove the statement for n = 2 and use induction. Therefore, we will prove that

a € Dg(e ® 1) & there exist 1 € Dg(p) and x2 € Dg(¢) such that a € Dg(x1,z2). (4.12)

n, dim(¢) = m, b € Dg(p), ¢ € Dg(¢) and a € Dg(b,c¢). Then, there are
(ta,...,tn) and @ = (ag, ..., an,) in G such that

(b,c) = (a,w), (b,t) = ¢ and (¢, @) = 1.

But then,
pov=bHe(ad)=bdedad=az)e =,

showing that a € Dg (¢ @ ), hence Dg(a,b) C Da(p @ ).

(=) We use induction on dim(p) = n. If ¢ = (b) and a € (b) @ v, there is t = (t1,...,t,) in G
such that (a,t) = (b) @ 1). This means that we can find z,y and Z = (21, ..., 2,) in G such that
(among other things), (a,z) = (b,y) and ¥ = (y, Z). Since y € D¢ (1), this is exactly what was
to be proved.

Now suppose ¢ = (b, #), where ¥ € G™. If a € Dg(p®1)), then there is t = (ta, ..., t;) in G, with
| =n+m+1, such that (a,t) = (b,%) @ 1. Just as before, there are z,y and Z = (z3, ..., %)
in G such that (a,z) = (b,y) and (y,Z) = (¢) ® 9. By induction, since y is represented by
(U) @ 1), there are u € Dg((¥)) and w € D¢ () such that y € Dg(u,w). Now note that we
have a € D¢g(b,y) and y € Dg(u,w).

By what was proven above, we may conclude that a € Dg((b,u,w)) = Dg((b,u) & (w)). Using
the first step in the induction, we get the existence of ¢ € D¢ (b,u) such that a € Dg(t,w).
But again, by the first part of the proof, Dg(b,u) C Dg((b) ® /) = Dg(p), and the proof is
complete.

If there is © € Dg(p) such that —z € Dg(1)), then there are & = (¢1,...,t,) and Z = (21, ..., zm)
such that (z,t) = ¢ and (—x, Z) = 1. But then

@Y =(z,—2)® () ® (7)) = (1,-1) & (&) & (D),

i.e, ¢ @ 1) is isotropic. For the converse, we proceed by induction on dim(p) = n. If ¢ = (a),
then we have
(@) @y =(1,-1) D= (a,—a) DI,

and so cancelling a on both sides yields ¥ = (—a) @ 6, which shows that —a € Dg(v). By
induction, write ¢ = (a) & v, thus

pedYv=(a)dydYv=(1,-1)D0=(a,—a) DY,

which yields, by cancellation of a on both sides, v @ ¢ = (—a) ® 6. By (d) above, there are
x € Dg(y) and y € Dg(¢) such that —a € Dg(x,y), i.e, for some z € G, (—a,z) = (z,y).
Using SG1 and SG4, (z,—y) = (a,x). By (d), —y € Dg({a) ®v) = Dg(p), completing the
proof.

O
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Proposition 4.2.5. Let (G,=¢g,—1) be a pre-special group and ¢, and 6 be forms on G. Then
are equivalent:

a - G is a reduced special group.

b- Forallz,a € G, if v € Dg(a,a) then z = a.

¢ - For any form ¢ on G, Dg (¥ &) = D ().

d - For any form ¢ on G, ¢ @ isotropic = 1 isotropic.

e - For all forms ¥,0 on G, v Y =080 = ¢ =40.

f - For any form ¥ of even dimension on G, ¥ @ ¥ hyperbolic = ¢ hyperbolic.

Proof. (a)=(b). If x € Dg(a, a), there exist y € G such that (z,y) = (a,a). By SG3, zy = a? = 1,
so zy = 1, and = = y (because G has exponent 2). Now, by SG5 and reduction we have

(x,z) = (a,a) = (ax,azx) = (1,1) = ax =1 =z =a.

(b)=(c). Let ¢ = (a1, ...,an) and & € D (¢ ®1)). Then ®Y = @y, (a;, a;). Thus, by [1.2.4]c)
there are z; € Dg(a;,a;) such that © € Dg((z1,...,zy,)). By item (b), ; = a; for all i = 1,...,n,
proving that € Dg(v).

(¢)=(d). Let ¥' = (ag,...,ay). Then ¢ & = (a1,a1) ® (Y’ & '). Since ¢ & 1) is isotropic, by
4.2.4(d), there is x € D¢(aq, ay) such that —x € Dg (¢’ ®'). By item (¢), z € Dg({a1)), so z = a1
and —a; = —x € Dg(¢'). Invoking M(d) again, we conclude that ¥ = (a) & 1’ is isotropic.

(d)=-(e). Let ¢ and ¢’ as above and set 6 = (b1, ..., b,) with 6/ = (by,...,b,). We proceed by
induction on n. Assume ¢ ® ¢ = 0 @ 0; then (a1,a1) ® (Y ©Y') = (b1,b1) ® (¢’ ® '), which from

(a1,a1) & (=b1,=b1) & (Y &) = (L - & (1, -1) & (¢’ & 0), (*)

i.e, the form (1,1) ® ((a1, —b1) @ ') is isotropic. By item (d), the same is true of (a1, —b1) Py’ =
(—b1) @ 1. Thus, there is a form 6y of dimension n — 1 such that

(=b1) ® ¢ =(1,-1) & 0o = (b1, —b1) ® b, (**)

where we have used the preservation of isometry by sum and SG2. By Witt cancellation, ¢ =
(b1) @ Op. From (*) and (**) we also have

(1L, {(1,-1)ed)=(1,1)® (—b) &)
=(1,1) ® ((1,-1) ® y);

cancelling out (1,1) ® (1, —1), gives (1,1) ® ¢/ = (1,1) ® 6y. By the induction hypothesis, 8 = 6,
which yields
0= ((=b) D)= (=b1) DOy =,

as desired.
(e)=(f). Assume that 1) @ is hyperbolic. Since dim(v)) is even, say 2[, our assumption comes
down to

w@wzéu,_w:(zz) x(1,~1) =00

i=1

with 6 = @izlﬂ, —1). By item (e), 1 = 6 which means v hyperbolic.
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(f)=(a). Assume that (a,a) = (1,1). Then the form (a, —1) & (a, —1) is hyperbolic. By item
(f), so is {(a, —1), that is, (a, —1) = (1, —1), which implies a = 1 by SG3. O

Example 4.2.6 (Fan). Let G be a group of exponent 2 with a distinguished element —1 # 1. For
each a € G, a # —1, define G, = {1,a}, setting G_1 = G. We now define a relation =gq, on
G®G by

(a,b) =fan (c,d) iff ab = cd and ac € Gq4. (fan)

Indeed, (G,=fqn,—1) is a reduced special group with Dg(1,a) = G,. We will make a proof of this
in our second functorial picture, in theorem [{.3.1].

Example 4.2.7. Consider the multiplicative group 2 = {1} with —1 as the distinguished element.
By the previous example, define for a,b,c,d € 2

(a,b) =fan (c,d) iff a+b = c+ d(computed in Z).

With this structure, {£1} is a reduced special group with D(1,1) = {1} and D(1,—1) = 2.

If t is a form over 2 of dimension n (i.e, a sequence of 1’s and —1’s of length n > 1), let p; =
number of 1’s and ny = number of —1’s int. Then py + ny = n. If s,t are forms of dimension n
in 2, then the definition of isometry of n-forms and induction, yields

5 =fan t iff Z Z ) (in Z) iff ps = pr and ng = ny.

1<n i<n
This is the only structure of reduced (pre-)special group on 2, with 1 # —1, to be indicated by Zs.

Example 4.2.8 (The trivial special relation). Let G be a group of exponent 2 and —1 any element
of G distinct from 1. For a,b,c,d € G define

(a,b) =¢ {c,d) iff ab = cd.

Is an immediate consequence of this that (G, =, —1) is a pre-special group. For SG6, we will proof
that For forms ¢ = (ay,...,an) and ¢ = (by,...,b,) on G,

= iff d(p) = d().

Of course, follows by Lemma (b) that @ =; ¥ implies the equality of discriminants. For the
converse, we use induction on n > 2, observing that for n = 2 the equality of discriminants is the
definition of =;.

Assume n > 3 and that d(¢) = d(v). Set o = d({ag,...,an)) and f = d((ba,...,bn)). Let
Z=(23,...,2n) = (1,...,1). Then, using the induction hypothesis,

1 - a1 = blﬁ yzelds <Cl1,0(> =t <blvﬁ>;
it - ad((Z)) = « yields {ag, ...,an) =¢ (o, 2);
iti - Bd((Z)) = B yields (ba,...,bn) =¢ (B, 2).

The three isometries above imply  =¢ ¥, as desired. In particular, =; is transitive. We refer to
the relation =; as the trivial special group structure on G, denoting it by Gy.

It is straightforward to verify that Gy is never reduced, all binary forms are universal and all
forms of dimension > 3 are isotropic.
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Example 4.2.9 (Extension). Let (G,=,—1) be a SG and A be a group of exponent 2. Write G[A]
for the group G x A with its usual (coordinate-wise) group structure, with 1 = (1,1) as identity

and —1 = (—1,1) as distinguished element. We write g - §, instead of (g,9), for a typical element
of G[A]. For each g -6 in G[A] we define a subgroup Eg.5 of GIA] as follows:

Do(1,9) % {1} if g # —1 and 5= 1.
Ey s =4 G[A] ifg=—1 and § = 1, (ext)

{198} if6 #1
Define a relation =.¢ on G[A] x G[A] by

9192 = hiha and 0102 = 112

(91 01,92 - 02) Zewt (h1-m1,ho-1m2) &
“ hlgl . 77161 € Eglgg-5152'

Lemma 4.2.10. (G[A], =cat, 1) is a special group that is reduced iff G is reduced.
Proof. We will verify that =, is a special relation on G[A]:

SG 0 - (g1 01,92 02) =cat (91 - 01,92 - b2) since g1g1 - 0101 = 1 € Ey,g,.5,5,- If (9101, 92 - 02) =eat
(h1 - m1,he - m2) then g1ga = hihg, 6102 = mne and hig1 - 1101 € Eg, 406,60 = Enihomines SO
(h1-m1,ha - m2) =cat (91 - 61,92 - 02). Now, suppose (g1 - 61,92 - 02) =ext (h1 - 11, h2 - 92) and
(hl . 771,h2 . T]Q) —ext (ll . Gl,lg . 02) Then g192 = h1h2 = lllg and 5152 =mmn2 = 9192. Since
g1h1 . 51771 S Eg192-5152 = E1112.9192 and hqlq - 77191 S Eh1h2'771772 = E1112.9192, we have

g1l - 0101 = (g1h1 - 1m1)(haly - mb1) € Eyiy0,0,-
This proves that =.,; is an equivalence relation.
SG 1 - (g1-01,9202) =Zext (92 - 02,91 - 61) is just consequence of gi1go - 6102 € Ey, 4,.5,5,-
SG 2- (g-0,—g-09) =ext (1,—1) is just consequence of g+ € E_j.
SG 3 - Follow from the definition of =.4;.

SG 4 - Let (g1 - 01,92 - 02) =cat (h1-m1,ho - 12). Then g1go = hiha, 6162 = mn2 and g1hy - d1m1 €
Eg 4o.5:5,- Of course, we have —g1hy = —gahs and —d17m1 = —dan2. Then, we just need to
prove that —g1g2 - 0102 € E_g p,.5,,- We divide this in cases:

Case 1: 0102 # 1. In this case, Egg,.6,6, = {1,9192 - 6162}. Then gihy - 0y = 1 or
g1h1 - 61m = g192 - 6162. In both cases we have —g1g2 - 6102 € E_g 16,9, = {1, —g1h1 - 61m},
since M2 # 1 too.

Case 2: 4162 = 1 and g1g2 = —1. Then —g1g2- 0102 = 1 € E_g 15,7, -

Case 3: 162 = 1 and g192 # —1. From gihy - d1m € Ey,g,.5,5, We obtain 6171 = 1 and
g1h1 € Dg(1,9192). So there exits t € G such that (1,9192) =¢ (g1h1,t). From SG4
on G, we have (1,—g1h1) =¢ (—g192,t), then —g192 € Dg(1,—h1hg). This imply that
—9192-1 € E_gpy 1.

SG 5 - Let (g1 - 91,92 - 02) =cxt (h1 - 11, h2 - 12). Then

9192 = hihg and 6102 = mnz = (xg1)(xg2) = (zh1)(zhs) and (661)(0d2) = (On1)(0n2)
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and
grh - 01m € By .56, = (vg1)(xh1) - (001)(0m) € E(ag,)(29)-(661)(652)

So ((z - 0)(g1-61), (- 0)(g2 - 02)) Zeat ((x - 0)(h1-m), (x - 0)(ha - 12)).

SG 6 - We use a characterization for SG3 that we will prove in theorem[4.2.16} in a psg (G, =, —1),
= is 3-transitive iff for all For all 3-forms ¢ and all by, b, b3 € G,

¢ = (b1, b, bg) imples o = (b2, b, b3).

Now, let ¢ = (a; - d1,a2 - d2, a3 - 63 and suppose ¢ =¢zt (b1 - 1, b2 - M2, b3 - n3). Then, there
exist x -0,y -1,z -0 € G[A] such that

(a1 - 01,2 - 0) Zext (b1 -1,y - M), (a2 - 02,03 - 63) =cat (- 0,2 - 0) and
(ba - M2, b3 - N3) Zeat (Y -1, 2+ 0). (4.13)

Lets keep in mind that we want to prove

(a1 -01,a- @) Zcqr (b2 -m2,b- B), (a2 - 62,a3 - 03) =gt (a -, c-7) and
(b1 -m1,b3 - m3) Zeqr (b- B,c-7), (4.14)

for some a -, b- B,c-v € G]A]. Now, we have five cases to deal with:

Case 1: 6 =n = 0. For this case, we use the following fact:

Fact 4.2.11. Let G be a psg and A be a group of exponent 2. Given ¢ = (ay - 91, ..., ap - On),
Y ={(b1-M,....,bn - M) be forms on G[A], then

O Zept Y = 01...0n, = N1, and (a1, ...,an) =g (b1, ..., bn).

Proof. We prove by induction on n. Let n = 2 and suppose that (a; - 01,a2 - J2) =eaxt
(b1 - m1,ba - m2). We already have §192 = mne and ajas = ajag, so the discriminant part
is done. Of course, the definition of =.;; yield a1b; - 611 € Eg a,.5,6,- Now, to prove that
(a1,a2) =g (b1, b2), we divide the argument in cases:

Case 1: (5152 75 1. Then Ea1a2~5162 = {Il,alaz . 5152}, and albl : 517]1 =1 or a1b1 . (51’/71 =
aias - 0102. Then a1b; = 1 or a1b; = a1a9 so by = a1 and by = a9 or by = a9 and by = a1. In
both cases we have (a1, a2) =g (b1, ba2).

Case 2: 6102 = 1 and ajag = —1. Then b1by = —1, as = —aq and by = —b;. By SG2 on G,
we have (a1, —a1) =¢ (1,—-1) =g (b1, —b1).

Case 3: 0102 = 1 and ajag # —1. From a1b; - 61m € Eqyay-6,6, We get arby € D (1, g192). By
4.2.3(a) we obtain (a1, a2) =g (b1, b2).

Now, suppose the assertion valid for n — 1 and let ¢ = (a; - 01,...,an - 0,) and ¥ = (by -
My ooy by - ). By definition. ¢ =4 9 iff there exists z -0,y - n, 23 - 03, ..., 2 - Ny, € G[A] such
that

<CL1 : 5171' : 6> =ext <b1 M, Y- 7I>
(a9 - 02y .oy On) Zeqt (T 0,23 03, .0y 2 M)

<b2 c T2y ey bn : 77n> =ext <y <N, z3 - 03’ ceey Znnn>
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By induction hypothesis, this imply 616 = mn, d2...6n, = 02...0,, = 13...m,, and

<(11,£U> =G <b17y>
(ag,....;an) =¢ (x, 23, ..., Zn)

<b27 ) bn> =G <y7 235+ Zn>
ie, 01...0n, = N1..mp and (aq, ..., an) =a (b1, ..., bn). O
Now, lets return to the case § = n = 0. From the fact, we have imply (a1, a2, as3) =¢

)b1, b2, b3), and since G is a special group, we conclude (ay, as,as) =g (ba, b1, bs). Therefore,
exists a, b, c € G such that

(a1,a) =g (b2, b),(as,a3) =¢ (a,c) and
(ba,b3) = (b, c). (4.15)

From [I.13] again, we get

(a1 - 01,2+ 60) =cpt (b1-m,y-0),{az - 02,a3-03) =cxt (x -0,z -0) and
(b2 - m2,b3 - 13) Zeat (y- 0,2 0). (4.16)

Then 0203 = mam3 = 1. Moreover, aiby - 01 € Egyz.6,0, 027 - 020 € Egyq4.1 and bay - 1260 €
Ep,py.1. Therefore, 61 =11 = X and

d=0d0y=03=n=m=n3=0.

After this, we have two cases: =0and A\ # 0. If A =06, let a,b,c as in and set
a ==~ =0 to obtain [4.14

If A # 0, from aiby -1 € Ey .09, we obtain aiby -1 € {¥,a;x - Ad}. Since Ad # 1, we have
a1 = by. This implies z = y, and by and transitivity of =¢,; on 2-forms (SGO), we have
(ag - 62,a3 - 03) =cqt (b2 - M2, b3 - m3). Then

(a1 - A, bg - 0) =cat (b2~ 0,a1 - N), (ag - 02, a3 - I3) =cat (b2 - M2, b3 - 13) and
<b1 . A, b3 . 9> =ext <a1 . /\, b3 . 0>

Setting a = bs, b=aj, c=bgand a =0, 5 =X, v =60 we get [4.14

Case 2: 6 =0, § #n. From [£.13 we get

(a1 - 01,2 - 8) Zext (b1 M1,y - M), (a2 - 02, a3 - 63) Zext (v - 6,2 - J) and
<b2 - 12, b3 - 773) =ext <y “n,z- 5) (4'17)
Then asx - 620 € E,..1 and since nd # 1, bay - 12 € Epypyonans = {1, b2bs - m2m3}.
If boy - mom = 1, we get y = by, 7 = 12, 2 = bg and § = n3. Now, the isometries in is
rewritten as

(a1 - 01,2 - m3) Zept (b1 -m1,b2 - m2), (ag - 02, a3 - I3) =car (z - 13, b3 - 13) and
(b - m2,b3 - M3) =Zeqt (b2 - M2,b3 - M3). (4.18)
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Then, setting a = z, b = by, ¢ = b and o = 13, 8 = 11, 7 = 13 we obtain the isometries in

414

If boy - mom = babs - man3, we get y = b3, n =13, 2 = by and 6 = d2. Then, the isometries in
4.17] is rewritten as

(a1 - 01,2 -n3) Zeat (b1 -1m1,b3 - m3), (az - 02, a3 - 03) =cazt (T - 172, b2 - 172) and
(ba - M2, b3 - M3) =ept (b3 - M3,b2 - M2). (4.19)

Now, setting a = by, b = a1, ¢ = x and a = 19, = é1, v = 12 we obtain the isometries in

414

Case 3: =0, n# . Similar to case 2.

Case 4: 0 # 0, n # 6. Here, the argument holds for both § = n and § # n. From [4.13
we obtain asx - 620 € Fgya5.5,6, and bay - 121 € Epypyons- Since § # 0 and n # 0, we have
5253,772173 7é 1. Then asx - 525 c {]1,&2@3 . 5253} and bgy NIIRS {]l, b2b3 . 772773}.

If agx - 620 = 1 = boy - 12m, wWe obtain x = ag, d = d2, y = ba, 7 = 12 and from isometries in
4.13] a3 = z = b3 and 93 = 6 = n3. Then setting a = as, b = b1, ¢ = b3 = a3 and o = Jo,
B = mn1, v = n3 we obtain the isometries in

If asx - 620 = 1 and bay - nan = babs - n9n3, we obtain x = asg, d = do, y = b3, n = n3 and from
isometries in 2z =a3 = by and § = 3 = 9. Then setting a = az = by, b = a1, ¢ = a
and a = d3 = 12, B = 01, 7 = d2 we obtain the isometries in 4.14

If aox - 620 = asas - 9203 and boy - mon = 1, we obtain = a3, § = d3, y = ba, B = 12 and from
isometries in 4.13| z = a2 = b3 and § = do = n3. Then setting a = a3, b = a1, ¢ = ag = b3
and « = d3, B =m, v = d2 = 13 we obtain the isometries in [£.14]

If agx - 620 = agas - 263 and bay - non = babs - Mam3, we obtain z = ag = by and 0 = do = 19.
Then setting a = ag = ba, b = a1, ¢ = a3 and a = § = 19, 5 = 61, ¥ = 3 we obtain the
isometries in [A.14]

Finally, the last assertion on the lemma is just the fact that
(a-0,a-0=cp (1,1) iff (a,a) =¢ (1,1).

O

Definition 4.2.12. A map (G,=¢g,—1) I (H,=pg,—1) between PSG’s is a morphism of PSG’s
or PSG-morphism if f : G — H is a homomorphism of groups, f(—1) = —1 and for all a,b,c,d € G

(a,b) =¢ (¢, d) & (f(a), f(b)) =u (f(c), f(d))

A morphism of special groups or SG-morphism is a PSG-morphism between the correspondents
PSG’s. f will be an isomorphism if is bijective and f, f~1 are PSG-morphisms.

If o = (a1, ..., a,) is a form on G, the image form by f is denoted f*¢ = (f(a1), ..., f(an)). Spe-
cial groups (and reduced special groups) and their morphisms are categories, denoted respectively
by §G and RSG.

Lemma 4.2.13. Let (G,=q,—1),(H,=p,—1) be psg’s and v, be n forms on G. Then
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a- Amap f:G— H is a SG-morphism iff its a group homomorphism such that f(—1) = —1 and
satisfies

Vae G, f(Do(l,a)) C Di(L, f(a)). (D)

b- A map o: G — Zy is a morphism of psqg’s iff it is a group homomorphism taking —1 to —1
and satisfying

Vae€ G, ac€ Ker(o) = Dg(1,a) C Ker(o). (Ker)

Moreover, if f : G — H is a morphism of psg’s and o : H — Zo is a group homomorphism
satisfying [Ker/, the same is true oo f : G — Zs.

c- If f: G — H is a morphism of special groups and ¢, are forms on G of the same dimension,
then ¢ =g ¥ implies fxp =g f*1).
Proof.

a - Suppose that f is a morphism and b € Dg(1,a). Then there is u € G such that (b,u) = (1, a).
Since f is a morphism, (f(b), f(u)) =g (1, f(a)), and so f(b) € Dg(1, f(a)). Conversely,
assume that f is a group homomorphism, taking —1 to —1 and satisfying [D]. Let a,b, ¢, d be
elements of G such that (a,b) =g (¢,d). Then ab = c¢d and ac € Dg(1,cd). Since f(ab) =
f(a)f(b) = f(c)f(d) = f(cd), to prove that f is a morphism of special groups, it is enough to
verify (by [4.2.3(a)) that f(ac) € Dy(1, f(cd)). But this comes directly from [D].

b - Follow by the fact that in this case, condition [D] is equivalent to [Ker].

¢ - Follow by induction on the dimension of ¢ and i with the fact that the result being true for
forms of dimension 2 by definition.

O]

4.2.2 Caracterization of Special Groups

In this section, we present a useful set of equivalent conditions for a pre-special group to be a
special group.
If G is a group of exponent 2, ¢ = (a1, ..., a,) is a n-form over G and o € S, write ¢ for the

n-form ¢7 = <a0'(1)7 S ao(n)>-

Lemma 4.2.14. Let (G,=,—1) be a pre-special group. Let a,b,c,xz,y be elements of G and ¢,
forms over G. Assume that (a,b) = (z,y). Then

a-¢=1{ab) = p=1vy).
b - Forall o € S3, {a,b,c) = (z,y,c)°.
Proof.

a - By induction on dim(¢)). Write ¢ = (2) @ ;1. If dim(¢)) = 1, then ¢ = () and we must show
that
¢ =(ma,b) = o= (am,y).

Then, there are 7, d, u € G, such that

(z,7) = (a,6), ¢1 = (v, 1) and (a,b) = (5, ).
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The third isometry and (a,b) = (x,y) yield (z,y) = (0, u) which, together with the first two
isometries, implies ¢ = (o, z,y).

Assume the result true for dim(¢)) = n—1 and that ¢ = (y1, ..., yn). Then ¢ = ¢ ® (a, b) means
that there are v, d, us, ..., fin+2 € G such that

(2,7) = (Y1,0); 01 = (75 35 ey Pn+2)3 (4.20)
(Y2, ey Yn) @ (a,b) =)9, s, .., hn+2)- (4.21)

By the induction hypothesis, (4, us3, ..., tint2) = (Y2, ..., Yn) ® (x,y). But this isometry, and the
first two isometries above, show that ¢ =9 & (z,y).

b - By item (a) it is sufficient to verify that 8 = (a, b, ) is isometric to (z,y, c), (y, z, ) and {(c, x, y).
That the first two are isometric to 8 follows directly from the preservation of = by sum and the
hypothesis that (a,b) = (z,y) (and {(a,b) = (y,z) by SG1). For the remaining permutation,
observe that the isometries

{a,c) = {c,a), (b,c) = (c,b) and (z,y) = (a,b),
shows that 0 = (¢, z,y).
]

Two forms ¢ = (a1, ...,an), ¥ = (b1, ...,b,), over the psg G are said to be simply equivalent, if
there are i, j (not necessary distinct) such that

i- (a, a5) = (b, bj);
ii - ap = by, whenever k is distinct from 4 and j.

We say that ¢, 1 are chain-equivalent, written ¢ =2 1, if there is a sequence of n-forms g, @1, ..., Ym,
such that g = @, v, = ¥, and @y, is simply equivalent to pgy1 for 0 <k <m — 1.

Lemma 4.2.15. Chain-equivalence is an equivalence relation. Moreover, if ¢, are n-forms over
G and c is an element of G, then:

a- o=y iffvoe S, p=y°.
b - If ¢ = 1 implies (c) ® ¢ =~ (c) B Y.
c - @ =1 implies p = .

Proof. The fact that = is an equivalence relation is straightforward. Note that a form  is simply
equivalent to ¢7, where 7 is a transposition in .S,.

a - Consequence of the fact that =~ is transitive and that S, is generated by transpositions.

b - Note that if ¢ is simply equivalent to ) the same is true of (¢) @ ¢ and (c¢) ® 1. So, any chain
connecting ¢ and 1 becomes, adding (c) to each term, a chain connecting (c) @ ¢ to (c) @ 1.

¢ - By induction on dimension of ¢, noting that for 2-forms there is nothing to prove. So suppose
the result true for forms of dimension n and let ¢ = (a) ® 6y and ¢ = (b) ® 0, where dim(6y) =
dim(0;) = n. If p = 1), there are z,y,2 = (21, ..., 2,) € G such that

(a,z) = (b,y), 6y = (z,2) and 6; = (y, 2).



160 CHAPTER 4. A SECOND GENERATION OF ABSTRACT THEORIES

By the induction hypothesis, the last two isometries yields 0y =~ (x, Z) and 6; =~ (y, Z). By item

(b),
o= {a)® by~ (a,r,2) and ¥ = (b) ® O ~ (b,y, 2).

Since = is an equivalence relation and (a, x, 2) =~ (b,y, Z) (because (a,z) = (b,y)), we conclude
p =~ 1, as desired.

O]

The following result is very useful in verifying that a psg is a special group. It is interesting to
know that it can be presented at an early stage in the development of the theory of special groups.

Theorem 4.2.16. Let (G,=,—1) be a pre-special group. The following are equivalent:
a - = is 3-transitive (i.e, transitive for 3-forms, and hence G is a special group).
b - = is transitive (i.e, transitive for n-forms for alln > 2).

¢ - For alln > 2, for all n-forms ¢, over G and all 0 € Sy,
¢ = ¢ implies p = 7.
d - For allm > 2, for all n-forms v,y over G,
=1 iff o=
e - For all 3-forms ¢ and all by, b2, b3 € G,
@ = (b1, ba, b3) imples o = (ba, b1, bs).

Proof. (1)=-(2). By induction on the dimension, which, when 2 or 3 are taken care of by assump-
tion. Assume that (ai,...,a,) = (b1,...,b,) = ¥ and ¢ = (c1, ..., ¢p), and that = is transitive on
forms of dimension n — 1 > 3. The hypotheses yield «, 8,7, 9, yi,2; € G, 3 < i < n, such that (I)
and (II) below hold true

(a1, ) = (b1, B), (az,...,an) = (o, 7) and (b, ...,b,) = (B, 9); (1)
(b1,7v) = {(c1,9), (ba,....bp) = (7,2) and (cg, ..., c,) = (9, 2), (IT)

where ¥ = (ys3,...,yn) and Z = (z3, ..., z,). By induction, = is transitive on (n — 1)-forms, and so,
(B,1) = (v, ), since both are isometric to by, ..., b,). Thus, there are z,t,y.t = (t4,...,t,) € G such
that

(B,2) = (v,y), (i) = (&, 1) and (2) = (y,1). (111)

Now, by the preservation of isometry by sum, the first isometry in (I), (II) and (III) as well as
3-transitivity, we may write

(a1,a,z) = (a1, @) ® (x) = (b1, B) © (z) = (b1) © (B, 1)
= (b1) © (7, y) = (b1,7) ©(y) = (c1,0) © (y) = (c1,0,9).

Therefore, there are u,v,w € G such that

(a1,u) = (c1,v), (a,z) = (u,w) and (J,y) = (v,w). (Iv)
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The preservation of isometry by sum, the transitivity of = for (n — 1)-forms, the second and the
third isometry in (I) and (II), respectively, together with the last two in (III) and (IV), yield

(ag, ..., an) = (o, ) = (o, z,1) = (u,w, 1) and
(CoyunnyCn) = (8,2) = (6,y,1) = (v,w,1),

isometries which, together with the first one in (IV), prove that (a1, ...,a,) = {c1, ..., cp).
(2)=-(3). By induction on dimension; for 2-forms, the conclusion follows from SG1. Let o € S,,,
SO = <CL> EB Sol a'nd ¢ = <b17 7bn>

Case A. o(1) = 1.

We may write 7 = (b1) ® (ba, ..., by)?; moreover from ¢ =¥ we get a, 3,95 = (y3,...,yn) € G
such that

(a,a) = (b1, B), p1 = (o, 7) and (ba,...,b,) = (B, 7). (V)

By induction, (ba,...,b,)7 = (B,%) and this, together with the first two isometries in (V),
yield ¢ = (b1) ® (ba, ..., b, )7 = 7.

Case B. o is a 2-cycle (1,4) for some i > 2.

From ¢ = 1) we get the isometries in (V). Let b= {bx : k # 1,i}. By the induction hypothesis
and the third isometry in (V), (8, 7) = (b;, b), and so it follows that (3,7, b1) = (b;, b, b1).

Case A and the preservation of isometry by sum yield the following sequence of isometries:

(B,,b1) = (B,b1,9) = (B,b1) ® () = (b1, 8) S (V)
= (a,) ® (§) = (@) & (, §) = ¢.

Since = is transitive, we get ¢ = (5,7, b1), and thus, ¢ = (bi,l;, b1). We may apply Case A
once more to put by in its desired place, preserving isometry, getting (b;, b,b1) = ¥?. The
transitivity of = now yields ¢ = 7, concluding the proof of Case B.

Cases A and B show that ¢ = v implies ¢ = ¢, for any transposition o € S,,. Since = is assumed
transitive and S, is generated by transpositions, we conclude the desired implication for all o € .S,,.

(3)=(4). By Lemma [4.2.15{c) it is enough to verify that ¢ ~ ¢ implies p = 9.

We first verify that simple equivalence implies isometry. If ¢ is simply equivalent to v, then
there are a,b,z,y,Z € G and permutations 0,7 € S, such that ¢7 = (Z,a,b) and V™ = (Z,z,y),
with (a,b) = (z,y). By Lemma 4.2.14[(a), ¢7 = 97, and so (3) guarantees that ¢ = 1, because
(cp")"_l = o, for all o € S,, and all forms ¢ over G.

We use induction on the length [ of chains ¢;, 0 < i < [, which witness p = ¢. If [ =1, ¢ is
simply equivalent to 1 and we have already remarked that (with (3)) ¢ = 1. Suppose the result
true for chains of lenght [ and that ¢;, 0 < ¢ <1+ 1, is a chain connecting ¢ = ¢g and ¥ = 1.
By induction, ¢ = ¢; with ¢; simply equivalent to 1. Thus, just as above, there are 0,7 € S,, and
a,b,x,y,Z € G such that

wl = (%) @ (a,b) and 7 = (2) @ (z,y),

with {a,b) = (z,3). By (3), ¢ = ¥7 = () & (a,b). By Lemma [LZTd(a), ¢ = () & (z,y) = 4"
Another application of (3) gives ¢ = 1), as desired.
(4)=-(5). This is a special case of Lemma [4.2.14(b).
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(5)=(1). We show that if ¢, 1 are 3-forms over G, then
Vo € 53, ¢ =1 implies p = ¢°.

Once this is proven, then, exactly as in the proof of (3)=-(4), we have that for all 3-forms ¢, v,
=1 < p =Y. Since = is transitive, the same will be true of =.
Let ¢ = (b1, ba,b3), 0 € S3, and assume that ¢ = 1.

i- o(1) =1. Since (ba, b3) = (b3, b2) (SG1), it follows from Lemma [4.2.14)(a) that ¢ = 1) implies
p =Y.

ii - o(1) = 2. In this case we have ¥ = (b, b;, b;), {4,7} = {1,3}. If i = 1, the desired isometry
follows directly from (5). If i = 3, using (5) and (i) in succession, we getting

=1 = o= (b, b1,b3) = ¢ = (ba,b3,b1),
as needed.

iii - (1) = 3. By (i) above, we have ¢ = (b1,bs,b2); by (5), we can exchange b; and bs to get
@ = (b3, b1,b2). Now, case (i) can be applied again, to get ¢ = 7.

O]

Corollary 4.2.17. Let (G,=,—1) be a pre-special group. Let ¢ and v be forms over G and
a,b,x,y € G. The following are equivalent:

a - G is a special group.
b - For all forms ¢, over G and all a,b,x,y € G

= (a,b) @Y and (a,b) = (z,y) = ¢ = (z,y) D Y.
¢ - For all 3-forms p,¢ over G and all a,b,c,x,y € G

v =(a,b,c) and {(a,b) = (v,y) = ¢ = (z,y, ).

Proof. That (a) implies (b) follows from Lemma [£.2.14(a) and the fact that G satisfies condition
(3) in theorem [4.2.16] (b) implies (c) making ¢ = ( > It remains to prove that (c) implies (a). We
verify that, in fact, (c) implies condition (5) of theorem

Assume that (u,v,w) = (a, b, c). Hence, there are o, 3, in G such that

(u, @) = (a, ), (v,w) = (@, 7) and (b, c) = (5,7). ()

By [£.2.14b), from (u, &) = (a, B), we get (7, a, ) = (u, o, 7). Lemma [4.2.14(a) (with (y,a,8) = ¢
and (u) = 11)) and the second isometry in (*) also yield (v, a,8) = (u,v,w). Since {(a, 8) = (5, a),
4.2.14)a) once again (this time with (u,v,w) = ¢ and (y) = v), implies (u,v,w) = (v, 5, a). Now,
(c) and the third isometry in (*) yield (u,v,w) = (b, c,a), and yet another application of [4.2.14|(a)
gives (u,v,w) = (b,a,c), as desired. O

The usual construction of the Witt ring of a field can be carried out, in almost identical terms,
for special groups as well.
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Let (G,=¢,—1) be a special group (not necessarily reduced). Two forms ¢, ¥ over G are called
Witt-equivalent (over G), written ¢ /¢ 1, if there are integers n,m > 0 such that

edn(l,—1) =¢ ¢ ®m(l,—1).

We have that ~¢ is an equivalence relation on forms over GG, compatible with (and coarser than)
the isometry relation =¢.

We denote by W (G) the set of equivalence classes of forms over G under Witt-equivalence, and
by @ the Witt-equivalence class of the form (. The following proposition summarizes the basic
properties of this construction. The proof follow the same line as the arguments made in chapters
1 and 3.

Proposition 4.2.18. Let G be a special group and let @, be forms over G.
a - Witt-equivalence is a congruence with respect to sum and product of forms.

b - With the operations ¢+ = ¢ ® ¢ and oY = ¢ ® ¢, W(G) is a commutative ring having as
zero the class of hyperbolic forms and (1) as multiplicative identity.

¢ - The set I(G) of (classes of) even dimensional forms is a mazimal ideal in W(G) (called the
fundamental ideal of W(G)). Moreover W(G)/I(G) is the two element field.

d - For n > 1, the n'* power of I(G), denoted I"(G) is generated, as an abelian group, by the
multiplies of Pfister forms of degree n, that is, every element of I"(G) is Witt-equivalent to a
linear combination @i-“:laiw of Pfister forms p; of degree n, with coefficients a; € G.

4.2.3 Fields and Special Groups

In this section, we shall present a proof that the usual quadratic form theories over fields of
characteristic distinct from 2 — reduced and not necessarily reduced — yield special groups. These
examples are of course, at the root of the concept of special group.

Let F be a field with char(F) # 2, which will remain fixed in what follow. We set F(G) = F'/F?
and in the case F be formally real, we define Geq(F) = /3. F2. Of course, both G(F) and
Gred(F) are groups of exponent 2.

We wish to show that the usual notion of isometry in G(F') and in G,q(F') yield special groups,
the latter always reduced. To this end, we introduce the following:

Definition 4.2.19. Let T be a subset of F and write T* = T U {0}.

a-Ifa,beF, _
Dr(a,b) ={t € F:t=ap+ bq for some p,q € T*}

is the set of elements represented by (a,b) over T'. {a,b} C Dp(a,b) is immediate.
b - T is a SG-subgroup of F iff it satisfies the following conditions:

1 - T is a proper subgroup of the multiplicative group F;
ii- F2CT;

ii - For all a € F, Dp(1,a) is a subgroup of F.

Since T is a subgroup of F, for allp e F, p € T iff 1/peT.

We now show that squares, sums of squares and pre-orderings are examples of SG-subgroups.
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Lemma 4.2.20. With notation as above, let T be a subgroup of F', containing F2 and satisfying:

Vp,qu,v €T andVa € F3z € F such that (CS)
(pua® + qu — za) € T* and (pv+ qu + ) € T*.

Then T is a SG-subgroup of F'. In particular, F? is a SG-subgroup of F and if F is formally real,
3" F? and pre-orders are SG-subgroups of F.

Proof. For s,t € Dr(1,a) we must show that 1/s and st are in Dp(1,a). We may write
s=pq+qandt=ua-+v, (I)

with p, ¢, u,v € T*. Dividing the first equation by 1/s% € T shows that 1/s € Dp(1,a). To verify
that st € Dp(1,a), consider the product of the equations in (I), namely

st = pua® + qu + (pv + qu)a. (I1)

Then, (II) implies that if any one of p,q,u,v is zero, then st € Dr(1,a). Assume then, that all
these coefficients are in 7. By (CS), there is « € F such that

st = pua® + qu — za + za + (pv + qu)a =

= (pua® + qu — za) + pv + qu + z a,
a B
with a, 8 € T*, and hence Dp(1,a) is a subgroup of F.

If T is closed under sums (as is the case of a pre-order or of 3 F2), then it satisfies (CS) with

=0, forallae F. If T = F?2, then p = P, q=q?, u=u? and v = v}; we take z = 2(p1q1uiv1)

to prove (CS) for all a € F. For instance, pua® + qu — za = (prura — qrvq)?. O

Let T be a fixed (but otherwise arbitrary) SG-subgroup of F. Let Gr(F) = F/T be
the exponent-2 quotient of F' by T'; write ap for the class of a € F' in Gp(F'). For a,b € F we have

ar = by iff a,b € T iff 3p € T such that b = ap. *)
Lemma 4.2.21. With the notation above, let a,b,c,d,t be elements of F. Then
a-te DT(CL, b) =tr C DT((L, b)
b - tDT(a, b) = DT(ta,tb).
¢ - apr =cr and by = dp = Drp(a,b) = Dp(c,d).

Proof. For item (a), let t € Dp(a,b). Then, t = ap + bq for some p,q € T. If w € tp, by (*) above,
w = tx, for some x € T. Then

w =tz = (ap + bq)x = a(px) + b(qz), with px,qx € T.

This implies w € Dp(a,b), as desired.
Itens (b) and (c) are immediate consequence of '+ 7 C T, T -T C T and (*) above. O

We now define a relation = on Gp(F) x Gp(F') by

<CLT, bT> = <CT,dT> iff (ab)T = (Cd)T and DT(CL, b) = DT(C, d)



4.2. SPECIAL GROUPS 165

When T is F2 or a pre-order, this relation is precisely the isometry of 2-forms in the non-reduced
or reduced theory of quadratic forms, respectively.

Proposition 4.2.22. Ifa,b,c,d,t € F, then
a -t € Dr(a,b) iff Dr(t,abt) = Dr(a,b) iff (tr, (abt)r) = {aT, br).
(ab)T = (Cd)T

b - <CLT,bT> = <CT,dT iﬁ and
Dr(a,b) N Dr(c,d) # 0.

Proof.

a - One should keep in mind that F2 C T. To prove (a) it is enough to verify that
t € Dr(a,b) implies Dr(t,abt) = Dr(a,b),

the other implications coming directly from the definition of =. We first note that if = €
DT(lay)7 then

DT(I',l‘y) = xDT(Ly) = DT(L?/)' (4'22)

To verify this, since Dp(1,y) is a subgroup of F, if z € Dp(1,y), then 1/z € Dp(1,y) and we
have xDr(1,y) C Dr(1,y) and 1/xDr(1,y) C Dr(1,y), relations which, together with Lemma
4.2.21{(b), prove xDr(1,y) = Dr(1,y), verifying [4.22

If t € Dr(a,b), then at € Dy(1,ab) and so, by [4.22] Dy (ta, (tab)a) = Dr(1,ab). Thus, we have
Dr(a,b) = Dr(a,ba®) = aDr(1,ab) = aDr(ta, (tab)a)
= Dyp(ta?, (tab)a®) = Dp(t,abt),
which proves (a).
b - We only need to prove <. If t € Dr(a,b) N Dr(c, d) we have
Dy(a,b) = Dp(t,abt) and Dp(t,cdt) = Dr(c,d).
Since (ab)r = (cd)r, we get (abt)r = (cdt)r and so, by Lemma [4.2.21)c), Dr(t,abt) =
Dy (t, cdt), proving that Dy (a,b) = Dr(c,d) and that (ar,br) = (cp,dr).
O

We take as distinguished element —1 € G7(F) the class of —1 € F', (—1)7. We now prove

Theorem 4.2.23. If T is a SG-subgroup of a field F' of characteristic # 2, then (Gr(F),=,—1)
s a special group, which is reduced iff T is closed under sums..

Proof. We have to verify conditions [SGO]-[SG6] in definition Both [SGO] and [SG1] are
straightforward. The validity of [SG3] is required in the very definition of =, while [SG5] follows
from Lemma[4.2.21|(b). It remains to verify that [SG2], [SG4] and [SG6]. Although is a consequence
of [SG4], the former will be used in the proof of the latter.

SG2 - Note that if a € F, then there are z,y € F such that a = 2% — y?: just take z = (1 +a)/2
and y = (1 — a)/2. This shows that a € Dyp(1,—1) N Dp(a,—a). Since the discriminant of
(a,—a) is the same as that of (1,—1) modulo T, |4.2.22c) yields (a, —a) = (1, —1).
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- By hypothesis, we have arbr = c¢pdp and Dp(a,b) = Dp(c,d). Since the discriminant
equation implies ap(—cr) = (=br)dr, it is sufficient to verify, by proposition 4.2.22{c), that
DT(CL, *C) N DT(*b, d) 75 0.

First observe that if by = dp, then ap = ¢p, and [SG2] yields the desired conclusion. We
assume, therefore, that by # dp. Since b € Dp(c, d), there are p,q € T* such that

= cp + dg;
note that p # 0, otherwise, by = dr. But then we may write
—c=d(q/p) — n(1/p),

and —c¢ € Dp(—b,d). Since —c is also in Dr(a,—c), we have verified [SG4] and thus, that
(Gp(F),=,—1) is a pre-special group.

- By condition (e) in theorem [4.2.16} it is enough to show that
{(ar,br,cr) = (zr,yr, zr) implies (ar, br, cr) = (yr, 27, 21).
The antecedent of the above implication means that there are «, 8,7 € F such that

(ar,ar) = (7, Br), (br,cr) = (ar,yr) and (yr, zr) = (Br, V1) (4.23)

From the first isometry in we get a € Dy (z,3), while the last one implies 5 € Dr(y, 2).
Thus, there are pg, g4, ps, g in T™ such that the equations below hold true:

a = xpg + Bqa (4.24)

B = ypp + 2qp (4.25)

Substituting equation [£.25]in [£.24] we arrive at

a = TPq + BQa = IPq + Qa(ypﬁ + ZQ5)
TPa + YPBYa + 24890 = YPada + (Do + 2484a)-

Now define
v = TPq + 2q84a- (4.26)
Then,
a = Yppga + v. (4.27)

We discuss two cases:

Case I: v = 0. Then, from we have ar = yp. Consequently, the third isometry in
can be written as (ar, zr) = (B, vr). This isometry, the first one in and SG4 yield

(xr, —ar) = (ar, —Pr) = (=27, 77),

and so, (x7, —ar) = (—zr, yr). Another application of SG4 yields (zr, 27) = (ar,vyr), which
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together with the second isometry in gives (z7, zr) = (br, cr). Then we have
{(ap, zr) = (ar,z7), (br,cr) = (27, 27) and (zr, 21) = (27, 27),

which shows that (ar, br, cr) = (ar, xr, 27), as required.

Case II: v # 0. Equation implies a € Dr(y,v), while yields v € Drp(z, z).
Therefore, proposition [4.2.22(a) gives

(a7, (vay)r) = (yr,vr) and (vr, (vez)r) = (T7, 27).

These isometries imply that, to prove (ar,br,cr) = (yr,z7, 27), it is enough to verify that
((vay)r, (vez)r) = (br,cr). Since the discriminant of these forms in Gp(F') are the same,
by proposition they are isometric iff Dp(vay,vxz) = Dp(b,c¢). From the isometries
in we get ar = (azB)r, vr = (yzB8)r and Dr(b,¢) = Dr(a, 7). By lemma [£.2.21fc) we
conclude Dy (b, c) = Dy(azB,yzp).

Hence, what is need is equivalent to Dy (axzf3,yz8) = Dr(vay,vxz). Since the discriminants
are the same, it is enough to prove axf8 € Dp(vay,vzrz). Multiplying this relation through
by axv, we arrive at yet another equivalent condition, namely

U/B € DT($y, CLZ),

which we shall now verify. Equations [£.25] [£.26] and [1.24] yield, with ¢ = z¢z,

0B = (xpa + tqa) (Yps + t) = TYPapp + twpa + tYPsda + t°qa =
= 2YpaPp + L(Tpa + YPpa +tqq) =
= 2YpaPp + H(xpa + qa(yps +1)) =
= @ypapy + Hwpa + Sda) =

TYpapp +ta = xYpapp + azqg,

showing that v € Dr(zy, az) and concluding the verification of SG6.

Regarding reduction, note that (ar,ar) = (1,1) iff a is a sum of elements of T'; O

In recent book of Dickmann and Miraglia [DM15], they extend the classical algebraic theory of
quadratic forms over fields to a broad class of commutative rings with unit (of course, which was
mediated by the theory of special groups). The context is of a ring A of characteristic not 2, with
—1¢ 3 A?and 2 € A.

Given a such ring A and a preordering 7' on AEL they define that two n-dimensional forms
p = a1X12 + ...+ aanL, P = I)1X12 + ...+ anfl with a;, b; € A are T-isometric, ¢ ~7 ¢ if there
is a sequence g, 1, ..., pr of n-dimensional diagonal forms over A, such that Y = o, Y = Y
and for every 1 < 1¢ < k, ; is either isometric to ¢;—1 in the usual sense that there is a matrix
M € GL,(A) such that ¢; = My; 1 M? or there are ty,...,t, € T such that vi = (t121, ooy tnTn)
and @;_1 = (x1,...,2,). Value representation relation Dr on (A, T) is given by: for a, by, ...,b, € A,

a € DY (by,...,bp) € Tt1, ..., ty € T such that a = Y t;b;.
=1

We will see later that A is preordered if and only if —1 ¢ S A2,
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Given a preordered ring (A,T), they associate a structure Gr(A), whose domain is AJT,
endowed with the product operation induced by A, togheter with a binary isometry relation =g, (4),

defined on ordered pairs of elements of A/T , and having —1 = —1 /T as distinguished element.
The structure (Gr(A), =g,.(a), —1) is not quite a special group, but satisfy SG0, SG1, SG2, SG3
and SG5. They observed that the ring-theoretic approach, based on the definition of n-isometry
and the formal approach via Gr(A), though related, are far from identical.

Beside this, they called T-faithfully quadratic any preordered ring (A, T") such that Gp(A)
is a special group and T-isometry and value representation in (A,T') are faithfully coded by the
corresponding formal notions in G (A). After this brilliant idea, they was able to replicate most
of the consequences of the theory of special groups in field theory in this extended ring-theoretic
context.

4.2.4 Pfister Forms and Saturated Subgroups

Definition 4.2.24. Let G be a special group. A Pfister form over G is a quadratic form ¢ of the
type @7_1(1,a);, where n > 1 and ay,...,a, € G, or the form (1). In the first case, the integer n
is called the degree of ¢ and written deg(y); alson deg((1)) = 0. If the coefficients of ¢ happen to
belong to a subgroup A of G, we say that ¢ is Pfister over A.

Since a Pfister form ¢ contains 1 as a coefficient, we may write ¢ as (1) @ ¢'; ¢’ is called pure
subform of .

Proposition 4.2.25 (Basic properties of Pfister forms). Let G be a special group, ¢ = ((a1, ..., an))
a Pfister form over G of degree n > 1 and b € G. Recall that ¢’ is the pure sub-form of ¢. Then:

i- b€ Dg(l,a1) = ((a1,a2)) =¢ ((a1,a2b)).

it - b€ Dg(ar,a2) = ((a1,a2)) =¢ ((b, araz)).

iii - ((a1d, ..., anb)) =g ((1,a1b)) ® ((a1az, ..., a1ay)).

v - Ifb € Dg(¢'), then ¢ =g ((b,ba, ..., b)), with ba,....,b, € G.
v - An isotropic Pfister form is hyperbolic.

vi - Da(p) ={x € G: xp =¢ p}. Hence Dg(p) is a subgroup of G. If ¢ is a Pfister form over
G, then Dg(p)Da(v) € Dalp @ ).

vii - If a € Dg(p), then ({(a1,...,an, b)) =¢ (a1, ...,an,ab)).

viti - a € Dg(p) = (1,a) @ p =¢ 2@ ¢ and (1, —a) @ ¢ is hyperbolic.
iz - a € Dg(p) and b € Dg(1,a) = b € Dg(2® ¢).
z-(La)®p=¢2®¢=ac Dg(yp).

zi - (1,—a) ® ¢ hyperbolic = a € Dg(p).

zit - The following are equivalent:

a - G is a reduced special group.

b - 1# —1 and for every Pfister form ¢ over G of degree > 1 and a € G:

a,—a € Dqg(p) = ¢ hyperbolic.
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¢ - 1 # —1 and for every Pfister form ¢ over G and a € G

a € Dg((1,—a) ® ¢) = a € Dg(p).

Proof.
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i- If b€ Dg(1,a1), then (b,x) = (1,a1), so x = a1b (by SG3). By SG5, (as,a1a2) = (ag, ajazbs).

Now, using preservation of isometry by sum we get

<<a1,a2>> = <1,a1,a2,a1a2> = <1,CL1> ) (ag,a1a2> =

(1,a1) ® (az,arazb) = (1,a1, a2, azb) = ({a1, azb)).

ii - From b € Dg(a1,a2) we get (b, ajazb) = (a1, a2). Now, using preservation of isometry by sum

we get

((a1,a2)) = (1,a1,a2,a1a2) = (1,a1a2) ® (a1, a1a2) =

(1,a1a2) @ (b,ara2b) = (1,b,a1a2,ar1a2b) = ((b,aras)).

iii - We proceed by induction on n. If n = 1 there is nothing to do. Suppose that holds for n — 1

and let ¢ = ((a1b, ..., anb)).
(a1b, ...,apb)) = (1,apb) @ ((a1d, ..., an—1b))

1,anb) ® (1,a1b) ® ((ajag, ...,a1an-1))
1,anb, a1b, a1an) ® ((ara2, ..., a1an—1))

90

173!

L,a1b) ® (1,a1a,) ® ({a1ag, ...,a1a,-1))

(
<
=
= (1,a1b, a1y, apb) @ ((a1aa, ...,a1an-1))
=
= (1,a1b) ® ((a1ag, ...,a1ay)).

iv - Proceed by induction on the degree n of . If n = 1, there is nothing to prove. Assume that

¢ = (1,a) ® ¢, where 1 is a Pfister form of degree n. Since ¢’ = )
b € D(¢') and [4.2.4(c) yield z € D (¢') and y € D¢ (3), such that

b € Dg(x,ay), that is, (b, bary) = (z,ay).
By the induction hypothesis, there are zo, ..., 2z, € G, such that,
= ((x, 22, ..., 2n)).
Then, (II),(I) and yy = 9, yield, with a = ((22, ..., z,)),

(1,b) ® (1, axy) ®

(1,b, azy, abry) ® a
((1, azy) & (b, abzy)) ®
(1, azy) @ (z,ay)) ®
((

((

L)y ®ay(l,z)) @ «
1,2) ®0) @ ay({1,2) ® )
YO ayp =P @ ay =g,

® a1, the hypothesis
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X -

xi -

xii -
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completing the induction step.

Since ¢ = (1,—1) @ ¢, we have —1 € Dg(¢') by Witt’s cancellation. By item (iv) ¢ =
((—1,ba,...,b,)), which is hyperbolic.

Denote G, = {x € G : xp =¢ ¢}. Since ¢ represents 1, we have that G, C Dg(p). To prove
that g € Da(v) = (9)¢ = ¢, we appeal to some argument on the Witt ring. The Pfister
form ¢((—g)) = ¢ L (—g)p (of one higher fold) contains a subform (g, —g) = (1,—1), so by
item (v) ¢((—g)) is hyperbolic. Hence ¢((—g)) = 0 € W(G) and since dim({g)p) = dim(y),
it follows that (g)p = ¢ € W(G), then (g)p = .

Proceed by induction on the degree n of ¢. If n = 1, this is just item (i). Now, suppose the
assertion true for n — 1, and let @ € Dg(p) (remember: ¢ = ((a1, ..., ay))). Then

((a1, ...y an, b)) = ((a1)) @ ({ag, ..., an, b))

({(a1)) ® ({ag, ..., an,ab)) = ({a1,az, ..., an, ab)).

[[7}

Using the previous item, we have

2® (a1, an)) = (1, 1) @ ((a1, -, an)) = (a1, ..., Gn, 1))
= <<a17"'7ama>> < >® <<a17'-'7 >>

Using SG4 on this isometry we obtain (1, —a) ® ¢ hyperbolicity.

Since ¢ is a Pfister form, (1,a) ® ¢ = (1,a) ® ¢. Now, is just use the previous item and
4.2.4)c).

Just an application of Witt’s Cancellation to the fact that 2 ® ¢ = (1,1,1) ® 9.
Use the fact that (1, —a) ® ¢ hyperbolic implies (—a) & ¢ hyperbolic and |4.2.4{(d)

(a)=-(b): by item (viii), both (1, —a) ® ¢ and (1,a) ® ¢ are hyperbolic, so, by adding these
forms we obtain (1, 1) ® @@ ¢ hyperbolic, and in particular, ¢ @ is hyperbolic (and isotropic).
Since G is reduced, by lemma ¢ is isotropic, and by item (v), ¢ is hyperbolic.

(b)=(a): from (a,a) = (1,1) we obtain (a,—1) = (1, —a) by SG4. Then a, —a € Dg({{—a))),
and by item (b), ((—a)) is hyperbolic. Thus (1, —a) = (1, —1), so a = 1, by SG3.

(b)=(c): In this case, a, —a € Dg({1,—a) ® ¢). By (b), (1, —a) ® ¢ is hyperbolic and by (xi),
a € Dg(p).

(c)=(a): We proof by induction. If b, —b € ((x)) = (1, z), we have

(b,bx) = (1,2) = (—b, —bx) = (b,bx) = (—b, —bz) L (1,2) = (—1, —z).

Then —z € D((1,z) ® (1(), so by (¢), —z € D((1)) and —z = 1.

Now, suppose that holds for n — 1 and let ¢ = ({(aq,...,a,)). Let ¥ = ((a1,...,an—1)). If
b,—b € D(y), then by item (vi), bp = ¢ = —bp. Hence ¢ ® (1,a,) = 1/1 (1,—a), so
—ap € D((1,an) ®1). By induction step, —a,, € D(¢) and by item (viii), ¢ = (1, —(—a,))®y

is hyperbolic, finalizing the proof.
O
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Definition 4.2.26. Let G be a special group and let A C G be a subgroup. We say that A is
saturated if for all a € G,

a € A= Dg(l,a) CA. (sat)

Note that if, in addition, —1 € A, then A = G. Thus we will reserve the noun saturated for those

subgroups satisfying [sat] such that —1 ¢ A, while G will be called the improper saturated subgroup
of itself.

Lemma 4.2.27. Let G be a special group and A a subgroup of G.

a - The intersection of any family of saturated subgroups is saturated. The union of an upward
directed family of saturated subgroup is saturated.

b - The following are equivalent:

1 - A s saturated.

1 - For any Pfister forms p,v over A and any b,c € A
Da(p), Dg(¥) € A = Da(bp & ctp) C A.
iti - For any Pfister form ¢ over A, Dg(p) C A.
Proof.
a - Is an immediate consequence of the definition of saturatedness.

b- (i)=(ii): If a € Dy(bp @ ctp), there are x € Dg(p) and y € Dg() such that a € Dg(bx, cy),
which implies abx € Dg(1, bexy). Since Dg(¢) and Dg(1)) are contained in A, we have z,y € A;
hence bexy € A and, by (i), abx € A. Since bz € A, we get a € A.

(ii)=-(iii): By induction on the deg(y¢) = n. The case n = 0 is immediate. For the induction
step, ¢ can be written

p=(La)®y=cyday,

with a € A and v a Pfister form over A of degree n— 1. Hence, Dg(¢) C A and the conclusion
follows from (ii) for the values b =1 and ¢ = a.

(iii)=(i): Just use p = (1,a) = ((a)).

In the sequel it will be shown that saturated subgroups exist in profusion:
Lemma 4.2.28. Let G be a special group and let A be a subgroup of G.

a - The family Pa of all Pfister forms over A contains the form 2 = (1,1) and is closed under
tensor products.

b - The following are equivalent:

i - A is a proper saturated subgroup of G.

1 - There is a family S of anisotropic Pfister forms over G containing 2, closed under tensor
products and such that A = J{Dg(¢) : ¢ € S}.
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Proof.
a - It is just the fact that 1 € A and the definition of Pfister forms.

b - (i)=(ii): If A is saturated, consider S = Pa. Lemma [4.2.27|(c) implies that

A= J{Dalp): ¢ € S}.

If some ¢ € S is isotropic, then —1 € Dg(¢) C A, and so A = G.
(ii)=(i): Suppose that Sis asin (ii), and A = |J{Dg(p) : ¢ € S}. Let a € A and b € Dg(1,a).
Thus, a € Dg(p) for some ¢ € S and by [4.2.25|ix), we have b € D (2 ® ¢). Since this form is

in S, we conclude that b € A. If —1 € Dg(y) for some ¢ € S, then by 4.2.25(vi), —p =g .
But this means that ¢ @ ¢ =g 2 ® ¢ is an isotropic form in S.

O
Lemma yields at once
Proposition 4.2.29. Let G be a special group and let A be a subgroup of G. Then
A= U{Dg(cp) tp € Pat (saturation)

is the smallest saturated subgroup of G containing A. In particular, if A is saturated and ¢ is a
Pfister form over A, then Dg(p) C A.

Proof. Ttems (a) and (b) of Lemma [4.2.28 show that A is saturated (possibly improper). Since
(1,a) is in Pa, forall a € A, we have A C A. If T is a saturated subgroup containing A and ¢ € Pa,
then ¢ is Pfister over I' and item (iii) in 4.2.27|(b) shows that Dg(p) C I'. Hence, A C T O

Definition 4.2.30. We call A the saturation of A. If A = {1}, we write {1} = Sat(G).
Remark 4.2.31.

i - A may be improper even if —1 is not in A.

it - Sat(G) is the smallest saturated subgroup of G and

Sat(G) = | {De(J[(1.1) : n € w} J{Da(2¥(1)) 1 k € w}.
i=1
iii - Sat(G) = {1} if and only if G is reduced.
In case GG is a reduced special group, there are further examples of saturated subgroups.

Lemma 4.2.32. Let G be a special group.
a - Xg # 0 if and only if Sat(G) # G if and only if —1 ¢ Sat(G).

b- Ifo € Xg, then Sat(G) C Ker(o). Thus o factors through 7 to give a character 6 € X6/ Satc)
satisfying 6 o m = o, where w : G — G/Sat(G) is the canonical quotient map.

¢ - The map XG/Sat(G) — Xg given by 7 — T om, is a homeomorphism.

Proof.
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a - By SG2 we have Dg(1,—1) = G. So (Sat(G) # G) < (—1 ¢ Sat(G)) follow this. Now, suppose
Xg # 0 and let 0 € X¢. If —1 € Sat(G), say —1 € Dg(((1,...,1))) we have

o(—1) € Dz,({{c(1),...,0(1)))) = —1 € Dz, ({(1,...,1))),

contradiction. Finally, suppose —1 ¢ Sat(G). Define o : G — Zgy by the rule

1if g € Sat(G);
o(g) = .
—1 otherwise.
We have that ¢ is a SG-morphism, finalizing the proof.

b - Sat(G) C Ker(o) follow by the very definition of Sat(G), X and SG-morphisms. The rest is
just an application of the homomorphism theorem for groups.

¢ - Another application of homomorphism theorem.
O

Definition 4.2.33. Any special group verifying the equivalent conditions in|4.2.3%(a) will be called
formally real.

It is immediate that a field F is formally real iff the group G(F) is formally real.
Lemma 4.2.34. Let G be a reduced special group. Then:

a - For any Pfister form ¢ on G, Dg(p) is a saturated subgroup of G. In fact, if o = ({(a1,...,an))
then

D¢ (p) = Da(1,a1)Dg(1,a2)...Dg(1, ay).
b - For any form v on G, the set {a € G : ay) =g ¥} is a saturated subgroup of G.
Proof.
a - Proposition [£.2.25{ix) shows that a € D¢(p) and b € D(1,a) imply b € Dg(2 ® ¢). Now use

4.2.5(b) to conclude that b € Dg(p).

If T is a saturation subgroup of G' containing Dg(1,a;), 1 < i < n, then it follows from {4.2.29
that T contains D¢(p), since ¢ is a Pfister form over I'. Hence, Dg(y) is in fact the saturation
of the product of the Dg(1, a;).

b- Ifa,b € G, then a(by)) = ay) =1, so G is a subgroup. Assume that a € Dg(1,b), where ay) =¢
Y. Then, (a,ab) = (1, b); tensoring both sides of this isometry with ¢ yields ap®aby) = Db,
and hence ay) @ ay) = @ 1p. Now [4.2.5(d) gives aip = 1), as required.

O

Now we will prove two important properties of maximal saturated subgroups. The next lemma
will be used in both proofs.
If S is a subset of a group G, let [S] denote the subgroup generated by S in G.

Lemma 4.2.35. Let G be a special group, A a saturated subgroup of G and v € G. Then,

[AU{z}] =G iff —ze€A.
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Proof. If —z € A, then the subgroup generated by A and z will have —1, and so its saturation is
G.

Now assume that the saturation I' of [AU{z}] = AUzA is equal to G. Thus, —z € I, and by
the definition of saturation (proposition [4.2.29)) there is a Pfister form ¢ over A U {z} such that
—x € Dg(p). We may write ¢ in the form

o= (a1, ..., apn, b1, ..., b)), (*)
with aq, ..., an, b1, ..., b € A. By proposition (iii)
(b1 e b)) = {(brbs s brbn}) @ (1, by,

Substituting this isometry in (*) we get

p=¢ YR (1,hz) =g O biay, (**)

where 1 = ((a1, ..., an, biba, ..., b1by,)), a Pfister form over A. Since —z € Dg(p), (**) implies the
existence of y,z € Dg (1) such that —z € Dg(y, bixz), i.e,

(—x, —b1yz) =q (y,hizz).

It follows that
(—y, —b1yz) =g (r,b172),

and hence —xy € Dg(1,b12). Since A is saturated, Lemma [4.2.27(b) yields y,z € A and so
b1z € A. By saturatedness again, we get —zy € A and hence —x = (—zy)y € A. O

Proposition 4.2.36. Let A be a saturated subgroup of a special group G. Then, A is a maximal
saturated subgroup iff for all x € G, x € A or (exclusive) —x € A.

Proof. If x ¢ A and A is maximal, the saturation of the subgroup generated by A and z must be
G. By lemma we conclude —x € A.

Conversely, suppose A is saturated and such that either x or —x is in A, for all x € G. Then
any proper saturated extension I' of A will contain z and —z, for some z € G, which from I' = G,
by proposition [£.2.29] Thus, A is a maximal saturated subgroup of G. O

Theorem 4.2.37 (Separation Theorem). Let G be a special group, A a saturated subgroup of G
and a an element of G such that a ¢ A. Then there is a maximal saturated subgroup T' of G such
that ACT anda ¢7T.

Proof. Let ¥ = [AU{—a}]; Lemma [4.2.35/ implies that ¥ is a proper subgroup of G, otherwise a
would be in A. In particular, a ¢ ¥. Now, consider

V = {A : A is a proper saturated subgroup of G, ¥ C A and a ¢ A},

ordered by inclusion. 3 € V, and since an upward directed family of saturated subgroups is again
saturated (Lemma[{.2.27|(a)), Zorn’s Lemma furnishes a maximal element I' in V. To see that I is
indeed a maximal saturated subgroup of G, let © be a saturated subgroup of G properly containing
I'. Then © is not in V and so a € ©. Since © contains ¥, we have both a and —a in ©, which
implies that © = G. O

Corollary 4.2.38. A special group G is formally real if and only if admits a maximal saturated
subgroup.
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4.2.5 Quotients

Definition 4.2.39. Let A be a subgroup of a special group (G,=¢,—1). We define a quaternary
relation on the quotient group G/A as follows:

3a',b,d,d € G such that
(a/NO/AY =5 (¢/Ab/A)Y iff < ad,bY,cc,dd € A and
(d' V) =¢ (d,d).

Remark that no conditions are imposed on A.

Proposition 4.2.40. With notation as in definition [{.2.39, we have

a - The relation EE/A 1s well defined.

b - (G/A,E*G/A, —1/A) verifies the azioms [SG1]-[SG5] of special groups. The relation =G/A (on
G/A x G/A) is reflexive and symmetric, but not transitive in general. The canonical quotient
map 7 : G — G/A satisfies, Va,b,c,d € G

(a,b) =¢ (¢, d) = (w(a), 7(b)) =g/ (w(c), w(d)). (quo)

c - EZ,/A is the smallest binary relation = on G/A x G/A satisfying contidion (quo) for all
a,b,c,d € G.

Definition 4.2.41. Let G be a special group. A collection S of Pfister forms is said to be (upward)
directed if for every v, € S, There is 8 € S such that Dg(p), Da(v) C Dg(0).

A subgroup A of G is a Pfister subgroup iff there is a directed family S of Pfister forms over
G such that A = J{Dg(p) : p € S}.

Lemma b) proves that any saturated subgroup is Pfister, since a family of Pfister forms
closed under tensor products is directed (proposition [4.2.25|(vi)). Note that the subgroups D¢(¢p),
¢ a Pfister form, are Pfister (S = {¢} is directed).

The class of Pfister and saturated subgroups are not identical, except in the case of reduced
special groups — and only in that case — as shown by the following:

Proposition 4.2.42. Let G be a special group such that 1 # —1. Then G is reduced iff every
Pfister subgroup of G is saturated.

Proof. Suppose G is reduced and A is a Pfister subgroup, say A = | J{Dg(¢) : ¢ € S}, S a directed
family of Pfister forms. By corollary D¢ () is saturated, for each ¢ € S. Thus, A is the
directed union of saturated subgroups, and so itself saturated. The converse follows from item (iii)
of the remarks after definition since (1) is a Pfister form such that {1} = Dg((1)), {1} is
saturated. But this is equivalent to G being reduced. O

Proposition 4.2.43. Let G be a special group and A a Pfister subgroup of G, A = |J{Dg(y) :
p € S}, S a directed family of Pfister forms. For a,b,c,d € G, the following are equivalent:

a- {a/Ab/A) =0/A (c/A,d/A).
b - There is a ¢ € S such that (a,b) & ¢ =¢ (c,d) B .

Before proving this result we will deal with the particular case where S consists of a single
form.
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Lemma 4.2.44. Let G be a special group and @ a Pfisfer form over G.
a - Fora,b,c,d € G, the following are equivalent:

i- (a,b) ® p =¢ (¢, d) @ p.
ii - There are a/,b',c,d" € G such that ad’ bV, cc,dd' € Dg(p) and (d', V) =¢ (¢, d').

b - Conditions (i) or (ii) imply abed € Dg(p).
Proof.

a - (i)=(ii): By assumption, ap @ bp =g cp @ dp; in particular, a € Dg(cp @ dp). By proposition
there are x,y € Dg(p) such that a € Dg(cz, dy), i.e

(a,acdzy) =¢ (cx, dy). )

Setting a’ = a, V/ = acdzy, ¢ = cx and d' = dy we have (a',V) =¢ (¢, d'). Further, aa’ = 1,
e =x and dd' =y are in Dg(yp). Tensoring (*) with ¢ gives

ap Db o =g cxo®dyp =g cp ® dp =g ap D bp.

Cancelling ag on both sides (4.2.4]) yields by = b'p, that is, bb' € Dg(p).
(il)=(i): Assume (d’, V') =g (¢, d') with ad’,bV,cc’,dd" € Dg(p). Then

(a) d'p @by =langled V) ® p =¢ (¢, d) @ p=padp.

(b) d'p =ap, Vp=bp, p=cp, dp =dp.
Substituting the isometries in (2) for the corresponding terms in (1), we get

ap @ bp = cp @ dp

ie, (a,b) ® ¢ =g (c,d) ® ¢ as required.

b - Using (ii) we obtain a/b/'d’d’ = 1. Since ad’, bV, cc’,;dd" € Dg(p), which is a subgroup, we
conclude that abeda'b/'d’d’ = abed € Dg(p).

O]

Proof of proposition[{.2.43 (a)=(b): by assumption (a) there are elements a’,b',¢',d’ € G such
that aa’, bV, cc,dd’ € A and (d’,b') =¢ (/,d’). Since A is Pfister, there are forms @1, ...,p4 in S
such that aa’ € Dg(p1), bV € Dg(p2), e € Da(ps) and dd' € Dg(pa). Using the directedness
of S, pick a form ¢ € S so that Sg(yi) € Da(p), i = 1,2,3,4. Now (2) follows from (ii)=(i) of
lemma [1.2.44a) applied to ¢.

(b)=>(a): is immediate from (i)=>(ii) in lemma [1.2.44a). O

Lemma 4.2.45. Let G be a special group and let o1, ps be anisotropic Pfisfer forms over G, such
that D (1) € Dg(w2). Then, for all forms 1,0 over G,

YR 1= 01 = YR ps =g 0 pa.
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Proof. By induction on n = dim(¢)) = dim(#). For n = 1, the conclusion is immediate, while
for n = 2 it is a consequence of lemma [4.2.35(a). Assume the result is true for n > 2, and that
Y = (a) ® A, where dim(\) = n. Write 6 = (b1, ..., by, bp+1); thus

((a) @A) ®@p1 =0 @ @1 = (D11, -, b1, butrp1),
and so, by proposition (C), there are z; € Dg(p1), 1 < j <n+1, such that
a € Da(bix1, ..., bpy1ZTni1),
or equivalently, there are co, ..., cy11 € G, such that
(a,c2y .y Cpr1) = (D121, ooty byp 104 1) (I)
Multiplying (I) by ¢; yields

ap] @ (201, ooy Cnt191) = 012101 D .. D bpt1Tn4101 (I1)
=b1p1 P ... Pbpr1p1 = a1 P ()\ & ng).

Cancelling ap; on both sides of (II) gives

(€25 ey Cnt1) ® 1 = Cop1 D .. D Crg11 = AR 1. (I1I)
From the induction hypothesis, we get

(Coy ey Cpt1) @ P2 = C2p2 @ ... D Cpy1p2 = A Q 2. (IV)
Tensoring (I) with 9, yields, recalling that Dg(¢1) C Da(p2),

w2 D (CQQDQ b...D Cn+1902) =b012102 D ... B bpr1Tnt1902
=b1p2® ... Bbpt1p2 =0 @ o.

The substitution of (IV) in this last isometry shows that 1) ® p9 = 0 ® @2, completing the induction
step and the proof. O

Proposition [4.2.43| with lemmas |4.2.44] and |4.2.45| yield

Proposition 4.2.46. Let G be a special group and A a Pfister subgroup of G, determined by the
directed family S of Pfister forms over G. Then (G/A,E*G/A, —1/A) is a special group, and the
quotient map 7 : G — G /A is a morphism of special groups. Further, 1 # —1 in G/A iff —1 ¢ A.
Moreover, in this situation we have

a - If ¢, are n-forms in G, then m* @ EE/A m % iff there is a Pfister form P in S such that
PwRP=gyP.

b-If f+ G — H is a morphism of special groups satisfying A C Ker(f), then there is a unique
SG-morphism f: G/A — H such that f = fom.

Proof.

a - Transitivity of the relation =, /A follows from lemma [4.2.45] using proposition |4.2.43| Likewise,

axiom [SG6] is an immediate consequence of (a), which is proven by induction on n, using4.2.45
and 4.2.43
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b - It is straightforward to verify that, setting f(m(a)) = f(a) one gets a well defined morphism of
special groups.

]

The theory of quotients presented above yields the following result which in fact, is a version
of Pfister’s local-global principle:

Theorem 4.2.47 (Pfister local-global principle). For ay, ..., an, b1, ..., b, in a reduced special group
G, the following are equivalent:

a- (ar, ., an) =g (b1, ..., by).
b- (a1/A,...;anA) =g/ (b1/A,...;by/A) for all mazimal saturated subgroups A of G.

Before proving this result, we show that it implies a more general version, holding in all special
groups, reduced or not.

Proposition 4.2.48. Let G be a special group such that 1 # —1 and aq, ..., an,b1,...,b, € G. The
following are equivalent:

a - For some integer k >0, 28 - (ay,...,an) =g 2F - (by, ..., by).
b - (a1/A,...;and) =q/a (b1/A,...; b /A) for all mazimal saturated subgroups A of G.

Proof. (a)=-(b): is consequence of Proposition and that the quotient map G — G/A is a
SG-morphism.
(b)=(a): We apply Theorem 4.2.47|to G/Sat(G). Assume

2k<a1, veey an> $_£ 2k<b1, veey bn>
for every k > 0. Proposition [4.2.46| applied to the family {2 : n > 1} of Pfister forms yields:
(01/Sa(G), -, 1n /52t (G)) Z (b1 Sab(G), ., bu /Sat(G). *)

By the preceding theorem, G/Sat(G) contains a maximal saturated subgroup, I', such that (*)
holds modulo T, i.e, in (G/Sat(G))/T. Let A = 7}, where 7 is the canonical map from G to
G/Sat(G). Using proposition [4.2.40|(c), ker(r) C A, and the surjectivity of 7, we check that A is a
maximal saturated subgroup of G. Since I' = A/Sat(G) and G/A is isomorphic to (G/Sat(G))/T
(as special groups), we obtain

(a1/D, oy an/A) Zaa B1/A, .., ba/A),

contrary to (2). O

Proof of Theorem [{.2.47. Lemma [1.2.13(c) gives (a)=-(b). To prove the converse, assume G is
reduced and (a1, ...,an) #¢ (b1, ..., bn). Then by proposition [1.2.5]

2k(a1, veuy an) §—£G 2k<b1, ceny bn>
for all k£ > 0. Hence, every Pfister form ¢ in the family {2" : n > 0} has the property

(a1, .y @n) @ @ ZG (b1, ..y b)) @ 5 )



4.2. SPECIAL GROUPS 179

further, it is closed under tensor products. By Zorn’s Lemma, there is a maximal family £ of Pfister
forms over G containing (1, 1), closed under tensor products, and such that every ¢ € L verifies
(*). Note that every Pfister form ¢ verifying (*) is anisotropic; otherwise, ¢ would be hyperbolic
(proposition [4.2.25(v)), and we know that for [ > 1

(a1, ...,an) @ U1, —1) Za (b1, ..., bp) @ U(1,—1), (**)

as the coefficients on each side occur in pairs ¢, —c.

Let A = J{Dc(¢) : ¢ € L}. By lemma [£.2.28(b), A is a proper saturated subgroup of G. We
show that A is maximal saturated. By it is suffices to show that, for € G, either z € A or
—x € A.

Forye G,let L, = LU{(l,y)®¢ : ¢ € L}. L, contains L and is closed under tensor products
(because (1,y) ® (1,y) =¢ (1,1) ® (1,y)). If y ¢ A, by the maximality of £, the isometry

(a1, ...,an) @ (1,y) ® ¢ =g (b1, ..., bn) @ (1,y) @ ¢ (**%)

holds for some form ¢ € £. Note that if we have y,z ¢ A and 1, p2 are the forms in £ satisfying
(***) in relation to y and z, respectively, then ¢ = @1 ® 2 is in £ and satisfies (***) with respect
to y and z, simultaneously. Thus, we may assume that (***) holds as stated for z and —z.

Assume x,—z € A. Applying (***) to  and —z, and adding up the instance of (***) thus

obtained, yields:
(a1, .cyan) @@ (2@ (1, -1)) =¢ (b1, ..., bn) ® @ (2@ (1, 1)),
recalling that (1,z,1, —z) =g (1,1) @ (1, —1). Cancelling out the terms
(a1, .yan) @ p @ (1,—1) =g (b1, ..., bn) @ p @ (1, —1),
in agreement with (**), we get
(a1, cyan) @20 =g (b1, ..., bn) @ 20,

in contradiction to (*), since 2p € L. O

4.2.6 Duality

Here, we want to construct a duality between the categories of RSG and AOS, i.e, we want
to prove that the categories of RSG and AOS are equivalent. Here, we will work with the third
version of abstract ordering spaces, i.e, the structure (X, G, —1) is an AOS if it verifies the following
conditions:

01 - X is closed in x(G) (equivalently, in {+1}%).
02-o0(-1)=—-1foraloeX.
03 - N,ex Ker(o) = {1}.

04 - If p, 1) are forms over G and z € G, then z € Dx (¢ @ 1) implies that there are y € Dx ()
and z € Dx(v) such that z € Dx(y, z).

In her thesis, Lira [dL96] proves the following interesting result:
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Proposition 4.2.49. Let G be a group of exponent 2 with a distinguished element —1, and
X C x(G). If the structure (X,G,—1) satisfies the axioms [O1], [02] and [O3], the following

are equivalent:
a - (X,G,—1) satisfies [O4].
b - Strong and weak isometry modulo X are identical on forms of all dimensions.

¢ - Strong isometry modulo X is transitive on forms of dimension 3, and (X, G, —1) verifies the
following maximality condition:

05 - For every o € x(G), such that o(—1) = —1, if for all a € G [a € Ker(c) = Dx(1,a) C
Ker(o)], then o € X.

We further use this characterization. Also, our notion of morphism here is:

Definition 4.2.50. Let (X,G,—1) and (Y, H,—1) be AOS’s. A map v: X — Y is a morphism
of AOS’s iff there is a continuous group homomorphism I' : x(G) — x(H), such that v =T'|x.

Definition 4.2.51. Let G be a special group. The space of orderings of G is the set Xg of all
SG-morphisms of G into Zs, endowed with the topology induced by the product {£1}C.

The space of orderings has the following properties:
Proposition 4.2.52. Let G be a rsg. Then
a - Xg is closed in {£1}C (and in x(G)).
b - X is a Boolean space.
¢ - Nyex, Ker(o) = 1.

Proof. For itens (a) and (b), just reproduce the proof in For (c), follows from the Separation
Theorem [4.2.37; since G is reduced, {1} is saturated; given a # 1, there is a maximal saturated
subgroup A of G such that a ¢ A. But we have A = ker(o), for some o € Xg. O

For a form ¢ = (ay,...,an) ver G and a map o : G — {1}, we set sgn,(¢) = >, o(a1)
(addition in Z). sgn,(y) is called the signature of ¢ at 0. With notation as in if  is a form
over a formally real special group G, then for all o € Xg, sgn, () = sgns (7 * ¢).

Our next result, a reformulation of theorem is another abstract version of Pfister local-
global principle. It will be of crucial importance in the sequel.

Proposition 4.2.53 (Pfister’s Local-Global Principle). For aq, ..., an, b1, ..., by in a reduced special
group G, the following are equivalent:

a- (a1, ...,an) =g (b1, ..., by).

b - For every o € Xg, sgn,({(a1,...,an)) = sgny,({b1,...,bp)).

Proof. Immediate from Theorem O
Definition 4.2.54. Let G be a group of exponent 2 with a distinguished element —1. Let X C x(G).

a - The notion of weak isometry modulo X, denoted =x, is defined as follows: for forms ¢ =
(a1, ...;an) and ¥ = (b, ...,by) over G

o =x ¢ iff for all 0 € X, (sgn, () = sgn, ().
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b - If ¢ is a form of dimension n over G, define
Dx(p) ={be G:3ba,...,by, € G such that p =x (b, ba,...,bn)},
the set of elements weakly represented by ¢ modulo X .

c - We denote by =% the extension to forms of arbitrary dimension of the weak isometry relation

on binary forms. The relation =% is referred to as strong isometry modulo X .

Now, we state some properties of weak isometry:
Lemma 4.2.55. Let G be a group of exponent 2 and X C x(G). Then
a - Weak isometry modulo X is transitive on forms of any dimension.
b - Strong isometry implies weak isometry (but not conversely!)

¢ - Let ¢, 01,02 be forms over G, then

p® 0 =x oDy < 0 =x 0.

The results proved above at once yield
Proposition 4.2.56. If (G,=g,—1) is a rsg, then (Xg,G,—1) is an AOS.

Proof. O1 and O3 come from Lemma {4.2.52(a) and (c); O2 is contained in the definition of X¢;
04 is an immediate consequence of Proposition [4.2.53| and [4.2.4{c). O

Conversely, any abstract order space generates a reduced special group, as follows:
Proposition 4.2.57. If (X, G, —1) be an AOS, then (G,=x,—1) is a reduced special group.

Proof. Checking that (G,=x,—1) satisfies SG0-SG5 and the reduction axiom [red] is straightfor-
ward calculations. As for SG6, since weak isometry modulo X is transitive, it would be sufficient
to show that, under our assumptions, strong and weak isometry modulo X are identical on forms
of dimension 3. Indeed, this follows from O4, as we now prove: assume

(a1,a9,a3) =x (b1, ba, bs); (4.28)

then, by € Dx (a1, az,a3). By O4, there is x € Dx (a2, a3) such that by € Dx (a1, ), i.e, there are
Y, 2 € G so that

(a1,2) =x (b1, y); (4.29)

<a2, a3> =X <1‘, Z> (4.30)
It only remains to show that

(b2, b3) =x (Y, 2)- (4.31)

The isometry [4.30 and [4.2.55(c) give (a1, a2,a3) =x (a1,x,z). Similarly, |4.29| and |4.2.55(c) yield
<a17 €T, Z> =X <b17 Y, Z>

Since =x is transitive, and the last two isometries prove (b, ba,b3) =x (b1,y, z), which,
using [4.2.55(c) again, implies m O
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Summarizing, we have two correspondences between reduced special groups and abstract order
spaces, as follows:

D :RSG —» A0S,  (G,=q, 1)~ (Xa, G, —1)
U A0S » RSG,  (X,G,—-1)— (G,=x, —1).

We show next that these correspondences are reciprocal to each other.
Proposition 4.2.58. We have ® o U = Id40s and ¥ o ® = Idrsg.

Proof. First, we will prove that ¥ o & = Idgrsg. Since
U o (I)(G, =q, —1) = (G, EXG, —1),

it suffices to show that the relations =g and =x,, are identical on binary forms. This is asserted
by proposition

Now, we will prove that ® o U = Id40s. Let us denote ¥(X,G,—1) = (G,=x,—1) by G[X].
Thus, ®(G[X]) = (Xg[x], G, —1), and we have to prove that X = Xg(x.

By definition of the relation =y each o € X is a SG-morphism from G[X] into Zg, so X C
Xgx) follows. Conversely, since the special relation of G[X] is =x, every o € Xg(x) verifies the
assumption of the maximality condition O5 in proposition |4.2.49| above; hence o € X. O

The final step is to extend the correspondences ®, ¥ to functors. For this, we need to show
that every morphism of AOS’s is the restriction of a unique continuous group homomorphism of
X(G) into x(H). This is an immediate consequence of

Proposition 4.2.59. Let G be a group of exponent 2 and X a subset of x(G) satisfying the
separation axiom [O3]. Then, the subgroup of x(G) generated by X, [X], is dense in x(G).

For the proof of this result we need the following

Lemma 4.2.60. Let K be a finite group of exponent 2, and let o; € x(K), 1 < i < n. Then,
{o1,...,0n} generates x(K) iff i, Ker(o;) = {1}.

Proof. (=) If the conclusion fails, consider a € (i, Ker(o;), a # 1, and any character o such
that o(a) = —1 (such a o exists because {a} is an Fo-linearly independent subset of K); then
o & [o1,...,0p].

(<) We may assume that the character constantly equal to 1, 1, is not in {o1,...,0,}. By
induction on n we select an irredundant subset of {01, ...,0,}, say o1, ..., 0, i.e, a subset with the
following properties:

ﬂ Ker(o;) = {1} (4.32)

j—1
For 2 < j < m, ﬂ Ker(o;) ¢ ker(o;). (4.33)
i=1

By induction on m we choose elements b1, ..., b,, € K such that

bl §7_f ker(al) (4.34)
j—1
For 2 <j<m,b; € ﬂ Ker(o;), bj ¢ ker(oj). (4.35)

=1
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Claim. {by,...,b,} is a Fo-basis of K.

We prove by induction on m. If m = 1, by ker(o1) = {1}, that is, o7 is an isomorphism
between K and {£1}. By b1 = —1, a basis for K. Now suppose the claim true for m — 1,
m > 2. Consider the (proper) subgroup K; = ker(o1). For i > 2, let ¢/ = 0|k, ; then o}, ...,00,
are in x (K1), ba, ..., by, are in K; and

ﬂ Ker(o}) = ﬂ Ker(o;) = {1};
=2 i=1

j—1 j—1
If 3 < j <m, then ﬂ Ker(o}) = ﬂ Ker(o;) ¢ ker(oj);
i=2 i=1

whence ﬂf;zl Ker(o}) ¢ ker(o1) Nker(a;) = ker(o%). By induction hypothesis, {ba, ..., by} is a basis
for K. Since by ¢ K1, {b1,...,by} is a basis of K, proving the Claim.

The claim implies that {o1,...,0m,} is an Fa-basis of x(K). Observe first that {o1,...,om} is
[Fy-linearly independent: if 1 < j < m, we have ¢;(b;) = —1, while o;(b;) =1 for 1 <14 < j; hence
oj & [o1,...,0j-1]. Now, the Fa-dimension of K is equal to the Fao-dimension of x(K) (since x(K)
is the dual of K). So {o1,...,0m} is a basis for x(K). O

Proof of theorem[{.2.59. Let U # 0 be a clopen in x(G); we show that [X] N U # (. The set U is
of the form

n
U=(oeX:o(a)=26(i)},

i=1
for some {ai,...,a,} € G, and 0 : {1,....,n} — {£1}. Let K = [ay,...,a,]; K is finite, and so is
X(K). Also, the finite set X|x = {0k : ¢ € X} separates points in K, i.e, [],cx, ker(y) = {1}.
Hence, tehre is a finite set {01, ...,0,} € X such that (", Ker(o;|x) = {1}. Lemma shows
that S = {o;|k : © <n} generates x(K). Thus, if A € U, we have that A is a linear combination
of S, say A = [}, 0i;| k. Consequently, we have [[’_; 0i; € [X]NU, as required. O

Now, we are in position to construct the functors ® and V. Let G, H be reduced special groups
and f : G — H be a SG-morphism. The map ®(f) : (Xg,H,—1) — (Xg,G, —1) is obtained by

composition
®(f)(o)=0co f for o € Xy. (4.36)

oo f is a SG-morphism, so it is in Xg. Also ®(f) is the restriction of the map x(H) — x(G) given
by which is a continuous group homomorphism. Hence ®(f) is a morphism of AOS’s.

Extending ¥ to morphisms is a more delicate task which requires a simple case of Pontrjagin’s
duality Theorem, namely

Theorem 4.2.61. Let G be a group of exponent 2 and x.(x(G)) be the group of continuous group
character of x(G) into {£1}. Let ev : G — x.(x(G)) denote the evaluation map: for g € G,

ev(g) : x(G) = {£1}, 0 — o(g).

Then, ev is a group isomorphism between G and x.(x(G)).
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Let p: (X1,G1,—1) = (X2,G2,—1) be a morphism of AOS’s. By proposition [4.2.59, u is the
restriction of a unique continuous homomorphism of x(G1) into x(G2), which we also denote by p.
By composition, p induces a group homomorphism 7 : x.(x(G2)) = x(x(G1)):

A(y) =y o for v € xc(x(G)).

If b € G, then evy(b) € xc(x(G2)), and hence fi(eve (b)) € xc(x(G1)). Since evy is an isomorphism
between G and x.(x(G1)), there is a unique a € G; such that

evy(a) = eva(b) o u = f(evy(d)). (4.37)
X(G1) == x(Ga)

evi(a) cos(b)

{£1}
This is equivalent to:
For all o € x(G1), o(a) = u(o)(b). (dual)

We now define,
W()(6) = a.
Thus, setting p* = ¥U(u), we have p* : Go — G, while from [dual] comes

For every o € x(G1) and b € G, o(p* (b)) = u(o)(b). (4.38)
Moreover, and the fact that evy(a) is an isomorphism yield
p* = ev; ! oTioeuvs. (4.39)
Now we prove,

Theorem 4.2.62 (Duality Theorem). The correspondences ®,V are contravariant functors. Fur-
ther, the compositions ® o U and Vo ® are the identity functors, which shows that the pair (®, V)
establishes an equivalence between the categories RSG and AOSP.

Proof. In view of Propositions [£.2.56] [£.2.57 and [£.2.58] only the assertions concerning morphisms
require proof.

Straightforward checking shows that ® and ¥ are contravariant functors (use identity to
check that W reverses composition). The assertion of the statement are items (1), (2) and (3)
below.

1. The map p* = ¥(u) is a SG-morphism of (G2, =x,, —1) into (G1,=x,,—1).

(a) p* is a group homomorphism. THis follows at once from since evs, r and ev; Lare
group homomorphisms.

(b) p*(—1) = —1. For this, let a = p*(—1); by 4.38 with b = —1 yields, for all 0 € X1,

o(a) = p(o)(~1) = -1,
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since pu(o) € X (axiom O2). But then, axiom O3 guarantees that a = —1, since for all
o€ X1, 0(—a)=1.

(c) For a,b,c,d € Gy,
(a,b) =x, (c,d) = (" (a), 1" (b)) =x, (1" (c), n*(d)).
For this, let o € X;. Since (o) € Xa, we have
w(e)(a) + u(o)(b) = u(o)(c) + pu(o)(d).
From [I38 we get:
o(u*)(a) + o(p)(b) = o(u*)(c) + o (u")(d).
Since this holds for arbitrary o € X1, we have p*(a), u* (b)) =x, (u*(c), p*(d)).

2. ® o ¥(pu) = p for any morphism p : (X1,G1,—1) = (X2,G2,—1) of AOS’s. Writing p/ =
®(u*), we have p/(0) = oo p*, for o € x(G1) (see 4.36). The left hand side of gives
o(1*(@)) = 0 0 5*(a) = (o) (a); hence

for arbitrary a € G, 0 € x(G1). Fixing o, this shows that y/(0) = u(o), and hence p' = p.

3. For every SG morphism [ : (G2,=q,,—1) = (G1,=¢q,,—1), Yo ®(f) = f. Let &(f) = f’
and f* = U(f’). From we have f'(0) = oo f, for 0 € x(G1). Computing the right side
of [.38] for pu* = f* and p = f, gives

for arbitrary a € Ga, o € x(G1). Fixing a, this shows that f*(a) = f(a) and so f = f*.

4.2.7 Boolean Algebras and Special Groups

One of the reasons why special group theory is so unique is its connection to Boolean algebras.
This is the road that allows the applications of model theory to problems of quadratic forms. Here,
let’s just take a look at this story (a full proof of Marshall and Lam Conjectures stands for an
upcoming work). Our main goal here is to define a group’s boolean hull and sketch one of its
applications in the next section, with the Invariants. In this purpose, we just list definitions and
results, following closely chapters 4 and 5 of [DMO00].

Definition 4.2.63. A Boolean algebra B is a tuple B = (B,V,A,—, L, T) where (B,V,A\, L, T)
s a commutative ring with unit and 1 #£ 0, satisfying the following properties for all a,b € B:

Absorption - aA(aVb)=aeaV(aAb)=a;
Complementation - aV—-a=T eaA—-a= 1.
Lemma 4.2.64. Let B be a Boolean algebra. Then for all z,y € B:

a-xANy=0andxzVy=1implyx=y.
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b- —(-x) ==

¢ - (De Morgan’s Laws) =(z Vy) = —x A~y and —(x Ay) = -~z V —y.

d - (Idempotence) xV x =x and x N x = x.

e-xzVy=uyif and only if t Ny = .

Lemma 4.2.65. For every Boolean algebra B, the relation < defined by

x<yifandonlyiftVy=1y

(iff t Ny =y byl|4.2.6/|(e)) is a partial order in B.

Definition 4.2.66. Let B, B’ be Boolean algebras and f : B — B’ be a map between them. f is a
morphism of Boolean algebras, or BA-morphism if

2. f(mz) =~f(x);
3. flxVvy)=f(x)V f(y) and f(z Ay) = f(z) A f(y).

An isomorphism between B and B’ is just a bijective BA-morphism f : B — B’. The category of
(non-trivial) Boolean algebras, i.e, 1. # T, and Boolean algebra homomorphisms shall be denoted

by BA.
If B is a BA, define the operation of symmetric difference on B by
aAb=(aN-b)V (—aAb), (a,b € B).

We have that (B, A, L) is a group of exponent 2. A subgroup of B is a subset of B containing
T and closed under A.
So, in this context, given a Boolean algebra B, we define:

Product the symmetric difference aAb = (a A —b) V (a A b);
Distinguished elements 1 =1 and —1 =T;
Isometry (a,b) =p (a,b) if and only if a Ab=cAd e aAb=cAd.
Since for all a,be BaAb=aVb&s aAb= 1 and
(anb)V(aAnb)=(aAb)AaANb=aVD,
we verify that (a,b) =p (a,b) if and only if aANb=cAdeaVb=cVd.

Definition 4.2.67. A Boolean algebra B endowed with the structure defined above, will be denoted
by Sg(B) = (B,=p,-1).

So, naturally, we desire a result like this:
Proposition 4.2.68. If B is a BA, Sg(B) = (B,=p,—1) is a reduced special group.

The next natural question, is if Sg(B) with the structure of pre-special group defined above is
in fact, a special group. We obtain this with the following theorem:
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Theorem 4.2.69. Let G be a subgroup of a BA, and p,q,u,v € G. The following are equivalent:

i- (p,q,p O Q) =g (u,v,u A v);

it - There is v € G such that
pVy=uVy=pVg=uVo.

Corollary 4.2.70. Let B be a Boolean Algebra and p,q,u,v be elements in B. Then:
a- (p,q,p A q) =p (u,v,u Av) if and only if pV ¢ =uV v.
b- Sg(B) = (B,=p,—1) is a reduced special group.
c-pe€ Dp(1,q) if and only if p < q (in B).
Now, is the time to deal with morphisms:

Proposition 4.2.71. Let A, B be a Boolean Algebras and f : |A| — |B| a map between their
underlying sets. The following are equivalent:

i - fis a SG-morphism from Sg(A) to Sg(B).
1 - f is a morphism of BA’s.

Corollary 4.2.72. The correspondence which assigns to each BA, B its special group structure
Sg(B), and to every BA-morphism f: A — B the same mapping f : Sg(A) — Sg(B) is a functor
Sg: BA — RSG.

Proposition 4.2.73. Let B be a BA and A C B. Then,
a - A is a saturated subgroup of Sg(B) if and only if A is an ideal in B.

b - If A is a saturated subgroup of Sg(B), then Sg(B)/A is naturally isomorphic (as a BA and as
a special group) to Sg(B/A).

¢ - Any reduced SG-homomorphic image of B is (the special group of) a BA.

With notation as in section let B be the Boolean algebra of clopens in Xg. Define a
map g by
eq: G — Bg, where eg(a) = [a=—1], a € G.

Proposition 4.2.74. Let (G,=g,—1) be a RSG. Then

a - £g is an injective group homomorphism from (G,-,1,—1) into (Bg, A, 0, X&), where A denotes
the symmetric difference in Bg.

b - If u is an element in Bg, then there is a family {F; : 1 < i < n} of finite subsets of G such

that
u= U ﬂ eq(a).

ZSTL CLEFZ'

Proposition 4.2.75. Let G be a RSG, p = (1,a1)®...®(1,a,) be a Pfister form on G, and a € G.
Let A = Dg(p). Then

a-{oeXg:sgn,(¢)=2"} ={oce€ Xg:ACker(o)} =N [a; =1].
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b - a € Dg(p) if and only if eg(a) € U<, ec(a).

Corollary 4.2.76. The map g is an injective SG-morphism from G into Sg(Bg). In fact, for
all a,b € G,
be Dg(1,a) if and only if ec(b) C eg(a).

Corollary 4.2.77. Let (G,=,—1) be a RSG, and T be a subgroup of G. T denotees the saturation
of T . Then,

a- T ={y e G:3finite subset F C T such that eq(y) C U,erea(z).}

b - T is a proper subgroup of G if and only if eq(T) = {ec(z) : x € T} generates a proper ideal in
Be.

Definition 4.2.78.

a - If G is a RSG, X(G) denotes the set, partially ordered by inclusion, of proper saturated subgroups
of G. If B is a Boolean algebra, Z(B) denotes the set, partially ordered by inclusion, of proper
tdeals in B.

b - Given a saturated subgroup A of a RSG G, let

Z(A) ={u € Bg : 3 a finite subset F' C A such that u < U ea(9)},
geF

denote the ideal generated by A in Bg. If A CT then Z(A) C Z(T).

c - If I is an ideal in Bg, let
X(I)={9€G:eclg) €1}.

It follows from Corollary that X2(I) is a saturated subgroup of G. In fact, if we identify
G with its image in Bg, X(I) is simply ING. If I C J then 3(I) C X(J).

Corollary [4.2.77(b) implies that, in fact, we have increasing maps
Y :Z(Bg) — X(G) and 7 : X(G) — Z(Bg).
The main properties of these maps are given by

Proposition 4.2.79. Let G be a reduced special group and Bg be its associated BA. With notations
as above, we have:

a - EOI:ZdZ(G)

b - X and I are inverse bijective correspondences between the mazximal saturated subgroup of G
and the mazximal ideals in Bg.

We now establish the existence of a functor from SG to BA, in fact right adjoint to the functor

Sg : BA — SG defined in Corollary

Definition 4.2.80. Let G and H be reduced special groups and let f : G — H be a SG-morphism.
Let f* : Xg — X¢ be the continuous map dual to f given by the Duality Theorem [[.2.63. We
define B(f) to be the Stone dual of f*, that is the BA-morphism B(f) : B¢ — By given by

B(f)(u) = (f*)""[u] € Be-
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Theorem 4.2.81. Let G and H be reduced special groups. With notation as above:

1.

5.

The correspondence B defined by

G Be (@1 H) - B: 2 By,

is a functor from the category of reduced special groups (with SG-morphisms) to the category
of Boolean Algebras (with BA-morphisms).

For all SG-morphisms G i> H, we have
eno f=DB(f)oea, (BH)
that is, the following diagram is commutative:

G f

H (BH)
ore] €H

Be =55~ B

(Uniqueness) Given a SG-morphism G Ly H and a BA-morphism F : Bg — By such that
the diagram

G H (**)
£G EH
Bg ——F— Bnu

commutes, then F = B(f).

The pair (Bg,eq) is a hull for G in the category of BA’s: given a BA, B, any SG-morphism

a Sg(B) factors through ¢, i.e, the following diagram of special groups is commutative

G —%~ S¢(Bg)

B(f)
Sg(B)

modulo the identification of B with the BA of clopens in S(B), via the canonical map.

The functor in (1) is right adjoint to the (forgetful) functor Sg from BA to RSG.

In view of item (4), the Boolean algebra B will in the sequel be referred to as the Boolean Hull
of the RSG G.
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Definition 4.2.82. Let G, H be special groups. A group homomorphism f : G — H such that
f(=1) = —1 is a complete embedding if for all forms ¢ and ¢ over G

w =g ¥ if and only if fxo =g f*1.
Theorem 4.2.83 (Corollary 5.4 [DMO00]). Let G be a RSG and let e : G — Bg be the canonical
embedding of G into Bg.

a - €q 1s a complete embedding.

b - Fvery o € X¢g extends uniquely to Bg.

4.2.8 Invariants and the Hauptsatz

In this subsection, we will present some usage for the “toys” in the last subsection. Here, we
following closely chapter 7 of [DMOQ]. Indeed, the main philosophy is

“The isometry of quadratic forms over arbitrary dimension n over a reduced special group G is
equivalent to the validity, in the Boolean hull Bg of G, of a finite number of (actually n) Boolean
identities among their coefficients.”

This is exactly the content of Theorem [£.2.85] A seemingly simple and innocent statement is the
heart of substantial results, like this one:

Theorem 4.2.84 (The Arason-Pfister Hauptsatz). Let G be a reduced special group. Fix an
integer n > 2. Assume that 1 is a form over G of dimension m < 2", Witt equivalent to a linear
combination of Pfister forms of degree n over G. Then, v is hyperbolic over G.

Now, start our job with the invariants:

Theorem 4.2.85. Let G be a reduced special group, and let aq, ..., an, b1, ..., b, be elements of G.
For each 1 < k < n, let S™* be the set of all strictly increasing sequences of length k of elements
of {1,...,n}, denoted p = (p1,...,pr). Then, the following are equivalent:

1. (a1, ..., an) =g (b1, ..., by).
2. For all1 <k < n, the following identities hold in the Boolean Hull Bg of G:

k k
V Aa=\ Abp (HTy)

pesmk i=1 peSnki=1

3. For all 1 < k <mn, the following identities hold in the Boolean Hull Bg of G:

k k

Dpesni [\ ap, = Dpegni [\ by, (SWy)
=1 =1

Definition 4.2.86. Let G be a reduced special group. We define the Horn-Tarski and the Stiefel-
Whitney invariants of a form ¢ = (ai,...,a,) over G to be the following elements of the
Boolean Hull Bg of G:

k k
HT = \/ /\ ap, = \/ /\ by, (Horn-Tarski invariants)

peSmk i=1 pesnki=1
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k k
SWi = A pegnk /\ ap; = Dpegn.k /\ by, - (Stiefel-Whitney invariants)
i=1 i=1

for every integer 1 < k < n.

Now, is the time to state some basic properties of the Horn-Tarski and Stiefel-Whitney invari-
ants.

Proposition 4.2.87. Let G be a reduced special group, Bg the Boolean hull of G, and o =
(a1, ...,an) be a form of dimension n over G. Then,

HT1 - SWi(e) = d(p), the discriminant of .
HT2 - HT (@) =SWh(p) =a1 A... Aay.
HT3 - The Horn-Tarski invariants are decreasing:

HT1(p) > HT2(p) > ... > HT nle).

HT4 - Assume that the sequence of coefficients in ¢ is decreasing, a1 > ... > a, (in the partial
order x <y if and only if x € Dg(1,y), z,y € G). Then, for1 <k <n

HTk((p) = ag.

HT5 - ¢ =p, (HT1(p), HT2(0), ..., HT n(p)).

The next result gives explict formulas for both types of invariants in terms of each other, in a
way that depends only on k£ and the dimension of the form, but not on its coefficients!

Theorem 4.2.88. With notation as in Proposition[4.2.87, we have:
HT6 - For1<k<n,

SWi(p) = SWe((HT1(#), HT2(¢), s HTn(9))) = Dpegn i HT p, ()

HT7 - A" HT () = d(¢) € G.

HTS8 - For2 <k <n,
SWi(p) = Ak [HTi(9)]"*,

where ¢ 1 s the parity of the binomial coefficient (};11), i.e, 1y = 0 (resp. 1) if it is even
(resp. odd).

HT9 -
a - SWip) = AMAUT, ().

b SWanr(p) = {’*‘Tn—mo) i is odd

HT10 - For1 <k <n,
HTr(p) = AZ:k[SWp(sO)]S(’“”’),
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where s(, k,k + j) is defined by induction on j > 0 as follows:

j—1
s(k, k) =1 and s(k,k+§) =Y cryjpri - sk k+1).
=0

Definition 4.2.89.

a - For a form ¢ over G, we set

HTo(p) = SWol(p) =T = (= —1).

b - Let n,m and k be positive integers such that k < n+m. We define
AM™E — L(5 7)1 0 < s <min{k,n}, 0 <7 < min{k,m}, and s +r = k}.

Proposition 4.2.90 (Addition formulas). Let ¢, be forms over a reduced special group G, of
dimension n, m respectively. With notation as in definition|4.2.89(b), we have, for 1 <k <n-+m:

HT11 - HT (e @)= V  (HTs(e) NHT(¥)).

(s,r)€Anm+k
HT12 - SWk(QO ) 1/1) = A(S,T)EA"’"“H“ (SWS(QO) A SWT(TZJ))

Corollary 4.2.91. Let ¢ be a form of dimension n over a reduced special group G and y € G.
Then for 1 < k <n, we have:

HT (e @ (y) = HT k() V (HT k-1()
SWi(p @ (y)) = SWi(9) A(SWi-1(p)
HT ns1(p @ (¥) = SWhsi1(e @ (y) = HT n(@) A y.

Ay) (HT13)
AYy)

Another natural question is wheter the Horn-Tarski and Stiefel-Whitney invariants of a tensor
product can be expressed as Boolean functions of those of the factors in a reasonably simple
and meaningful way. Proposition below gives one such expansion for the Stiefel-Whitney
invariants. However, we have not been able to find an expression of this kind for the Horn-Tarski
invariants; the difficult lies in the absence of a tractable distributive law of join over symmetric
difference.

Proposition 4.2.92. Let G be a reduced special group, ¢ = (a1, ...,an), Y = (T1, ..., Tm) be forms
over G of dimensions n,m, respectively. For e € {£1} and x € G, set

{x ife=1
ex =

—xife = —1.

For integers k,n,m such that k < mn, define

n
Fi = {51, 8m) : 0 < 55 <n and Zsj = k}.
j=1
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Then, the following identities hold in Bg, for 1 < k < nm:

SWk(QO & ¢) = N.com ASEFIZLn /\ SWSJ.(—SJ'QO) NEIXLT N .. NEmTm, (HT14)
j=1
- AHEZ" (AtEFﬁm /\ SWtz(—Uﬂ/J)) Amar A ... \Nnpanp.
=1

The case m = 1 of Proposition [4.2.92] is interesting in its own right:
Proposition 4.2.93. Let G be a RSG. Let ¢ be a form of dimension n over G and x € G. Then,
for1 <k <mn:

SWi(xp) = (SWi(p) A —2) A(SWi(=¢) A 2). (HT15)

HTk(zp) = (HT k() A —2) A(HT k(=) A ). (HT16)

Now, we are deal with computations of the Horn-Tarski and Stiefel-Whitney invariants of Pfister
forms and their multiples:

Theorem 4.2.94. Let G be a reduced special group. Let a € G, and ¢ = (1,a1) ® ... ® (1,a,) be a
Pfister form over G of degree n > 1. Then:

aV '\ a; =HT1(ap) for 1 <k <21
HT i (ap) = =1
ah—\ ai=HTom(ap) for2"1 +1 <k < 2m,
i=1

1=

In particular,

\/ a; = HT 1< k<ol
HTw(0) = i\:/la 1(¢) for

L =HTan(p) for 201 +1 <k <2m.

Theorem 4.2.95. Let G be a reduced special group. Let @1, ..., (r > 1) be Pfister forms over G
of the same degree n > 1. Let aq, ..., a, be elements of G. Given an integer m, 1 < m < r2", let k
be the unique integer such that (k —1)2" ' +1 <m < k2L, Then

HTk (@ ai%’) =HTe(HT1(ar1), ... HT1(arer), ..., HT 2n (a101), ... HT 2n (aror))).
i=1

4.3 The Second Functorial Picture

Here is our second functorial picture
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PCS —=~PSG
AWR = - 08 = JS = Jg
RZJWR RCS ——> RSG —=> AOSP

Since we already know the Duality Theorem [4.2.62] our task is establish the functors between
special groups and quaternionic structures and special groups and Cordes schemes. Again, we do
not have founded these explicit relations in literature.

Theorem 4.3.1. Let (G,—1,V) be a pre-quadratic scheme. Define a relation =¢C G x G x G X G
by (a,b) =g (¢, d) if and only if ab = cd and ac € V(cd). Then (G, —1,=g) is a pre-special group.
Moreover, (G,—1,=g) is a special group iff (G,—1,V) is a Cordes scheme and (G,—1,=g) is
reduced iff (G,—1,V) is reduced.

Proof. We will check each axiom of pre-special group:

SGO - (a,b) =g (a,b) since a> = 1 € V(ab). If {a,b) =g (c,d), then ab = cd and ac € V(ed) =
V(ab). Hence (a,b) =g (c,d). Now, suppose (a,b) =g (¢, d) and (c,d) =g (e, f).

SG1 - (a,b) =g (b,a) since ab € V (ab).
SG2 - (a,—a) =g (1,—1) since a- (—a) = -1 € V(-1).
SG3 - Is just the definition of =g.

SG4 - (a,b) =g (c,d) implies ab = ¢d and ac € V(cd) = V(ab). ab = c¢d = ab(—bc) = cd(—bc) =
—ac = —bd and by C2 we have

ac € V(ab) = —ab € V(—cd).
Then (a, —c) =g (—b, d).

SG5 - (a,b) =g (c,d) implies ab = cd and ac € V(cd) = V(ab), i.e, (ag)(bg) = (cg)(dg) and
(ag)(cg) € V((cg)(dg)). Hence {ag,bg) =s {cg, dg).

This proves the first part of theorem. Since SG6 is the prescription of theorem and (a,a) =g
(1,1) & a € V(1), we have the second part. O

Corollary 4.3.2. The correspondence (G,—1,V) — (G,—1,=g) induces functors S : PCS —
PSG, S:CS — S8G and S : RCS — RSG.

Proof. let f : (G,Vg,—1) — (H,Vg,—1) be a C-morphism. Since f is in particular a group
homomorphism, we have

(a,b) =g (¢,d) = ab = cd and ac € Vig(cd)

SVeleDSYnTED) 1) f(b) = £() f(d) and f(a)f(d) € V(f(c) F(d))
= (f(a), F(b)) =5 ((c), F(d)).

Then f is a SG-morphism. Defining S(G,V,—1) = (G,=g,—1) and S(f) = f, we have the desired
functors. O
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Theorem 4.3.3. Let (G,—1,=) be a pre-special group. For each g € G, set Vg(g) as the sub-
group Dg(1,g). Then (G,—1,Vg) is a pre scheme. Moreover, (G,—1,Vy) is a Cordes scheme iff
(G,—1,=) is a special group and (G,—1,Vq) is reduced iff (G, —1,=) is reduced.

Proof. Note that a € Vg(1,a) = D(1,a). Now, suppose g € Vg(a). Then g € Dg(1,a), and
there exist © € G such that (g,z) = (1,a). By SG3, gr = a and x = ga. So (g,ga) = (1,a),
and by SG4 (1,—g) = (—a,ga), and —a € Dg(1l,—g) = Vg(—g). Then (G,Vg,—1) is a pre
scheme. This proves the first part of theorem. Since SG6 is the prescription of theorem and
(a,a) =g (1,1) & a € Vg(1), we have the second part. O

Corollary 4.3.4. The correspondence (G,—1,=) — (G, Vg, —1) induces functors C : PSG —
PCS, C:8G —CS and C : RSG — RCS.

Proof. Let f:(G,=g,—1) = (H,=p,—1) be a SG-morphism.

9 € Va(a) = g € Da(l,a) = (g9,a9) =c (1,a) = (f(9), fag)) =n (f(1), f(a))
= f(9) € Du(1, f(a)) = f(9) € Vu(f(a)).

Then f is a C-morphism. Defining C(G,—1,=) = (G, Vi, —1) and C(f) = f we have the desired
functors. O

Theorem 4.3.5. The functors S and C are quasi-inverse equivalences. In particular, PCS = PSG,
CS 285G and RCS = RSG.

Theorem 4.3.6. Let (G, Q, q) be a quaternionic structure. Define a relation =QC GxGxGxG by
(a,b) =q (c,d) if and only if ab = cd and q(a,b) = q(c,d) (this relation is just the binary isometry
in quaternionic structures). Then (G, —1,=q) is a special group. Moreover, this correspondence is
functorial.

Proof. The results in section yields the axioms SGO0-SG6 for (G, —1,=g). Then we only need
to treat about morphisms. Let f : (G, Q¢,qa) — (H,Qm,qy) be a QS-morphism and a € G. Of
course, we already have f(—1) = —1 (and hence, f(—a) = —f(a)). Now, for a,b € G we have:

(a,b) =¢ (c,d) = ab = cd and q(a,b) = q(c,d)
= f(a)f(b) = f(c)f(d) and q(f(a), (b)) = q(f(c), f(d))
= (f(a), F(b)) =q (f(¢), f(d))

then f is a SG-morphism. Defining S(G,Q,q) = (G,=qg,—1) and S(f) = f we have the desired
functor S : 9S — SG. OJ

For the converse of theorem we will make (again!) the same construction made for the
theorem“ Let (G,=,—1) bea special group. We define Q¢ to be the set of all isometry classes
of quadratic forms of the type (1, —b, ab), with a,b € G and consider Q¢ to be a “pointed set”
with point 0 equal to the isometry class of (1,—1,1,—1). In the sequel, we define q; : G X G — Qg
to be the map sending (a,b) to the isometry class of (1, —a, —b, ab).

Theorem 4.3.7. Let (G,—1,=) be a special group. Then (G,Qa,qc) is a quaternionic structure.
Moreover, this correspondence provides a functor QQ : SG — OS.

Proof. Using the forms theory for special groups, the verification of Q1-Q4 is the same made in
theorem Now, let f: (G,=qg,—1) — (H,=p, —1) be a SG-morphism. Since f is in particular
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a group homomorphism, we have
QG(aa b) =0= <17 —a, _ba ab) =0= <17 _f(a)v _f(b)> f(a)f(b)> =0= QH(f(a)a f(b)) =0.

Then f is a QS-morphism. Defining Q(G,=qg,—1) = (G,Q¢,qc) and Q(f) = f, we have the
desired functor Q) : QS — SG. O

Corollary 4.3.8. The functors Q and S are quasi-inverse equivalences and the categories QS and
SG are equivalent.



Chapter 5

A third generation of abstract
theories

We see how abstract ordering spaces and special groups generalizes almost entire classical and
reduced theory of quadratic forms over fields. But in the sense of generalization, we could ask

Is there some reasonable theory of quadratic forms over general coefficients in rings?

There is an excellent book, [Knu91], that deal with quadratic forms in an style near to that was
presented in chapter 1, in the most general possible setting. And of course, some abstract theories
appears trying to deal with this question. In 90’s Marshall generalizes the AOS to rings, and called
his new theory by “Abstract Real Spectrum”. As we will see, the ring-theoretic case is much more
difficult that the field one, the isometry is not well behaved and an algebraic counterpart of the
ARS’s appears just in years 2000, with the real semigroups (RS) of Dickmann and Petrovich.

The RS appears in an atempt to creat a duality RS ~ ARS? likewise SG ~ AOS°P. They
are successful in explore the analogies with the SG case (e.g, the Duality RS ~ ARS), but this
is not pay off in deep theorems yet, since the theory still is in development.

5.1 Abstract Real Spectra

The ring-theoretic case is entire new for us, so we need to describe the basic facts about orderings
and quadratic forms over rings. The axioms for ARS will be verified as we make in chapter 4. We
cover chapters 5 and 6 of [Mar96].

5.1.1 Orderings on rings

All rings we consider here are commutative with 1. Let A be a ring and p a prime ideal of
A. We denote by k(p) the field Frac(A/p), the field of quotients of A/p. k(p) is referred to as the
residue field of A at p. Here, all prime ideals are considered to be proper, i.e, p # A.

An ordering on A is a subset P C A such that P+ P C P, PPC P, PU—-P=Aand PN—P
is a prime ideal of A. The prime ideal is called the support of P.

Note that as in the field case, for an ordering P, Y. A2 C P and —1 ¢ P, since 1 = 12 € P and
if —1 € P, then 1 € PN —P, contradicting the fact that P N —P is proper.

Proposition 5.1.1. The set of orderings on A is in natural one-to-one correspondence with the
set of pairs (p, P) where p C A is a prime ideal and P is an ordering on k(p).

197



198 CHAPTER 5. A THIRD GENERATION OF ABSTRACT THEORIES

Proof. Tt suffices to show for each prime ideal p € Spec(A), that the set of orderings in A with
support p is in natural one-to-one correspondence with the set of orderings in k(p). The natural
homomorphism A — k(p) is the composite of the natural homomorphism ¢ : A — A/p with the
inclusion A/p C k(p). Because of this, the proof breaks into two parts:

1. Orderings in A with support p are in natural one-to-one correspondence with orderings in
A/p with support {0} (via ¢~1(0)).

2. If D is an integral domain with field of quotients k, then orderings in D with support {0}
are in natural one-to-one correspondence with orderings in k. If P is an ordering in k, then
@ = PN D is an ordering in D with support {0}. We must show that if @) is any ordering on
D with support {0}, then there exists a unique ordering P on k with PN D = (). Suppose
a,b € D, b# 0. Since a/ab = ab/b* and P contain squares, follow that a/b € P iff ab € Q.
Thus P is unique. To complete the proof it remains to check that

P={a/b:a,be D,b+#0,abe Q}

is an ordering on k. It follows by properties of fractions on k and by the fact that @) is an
ordering.

O]

Orderings play roughly the same role in real algebraic geometry that prime ideals play in
classical algebraic geometry. The set of all orderings in A is called the real spectrum of A,
denoted by Sper(A).

We have a natural mapping Sper(A) — Spec(A) given by P — P N —P. This is neither
surjective nor injective in general (for a given prime ideal p in A, there may be no orderings on
k(p) or there may be many).

A prime ideal is said to be real if there exist an ordering on A with support p, i.e, if k(p) is
formally real, i.e, if —1 ¢ > k(p)?. If a2 + ...+ a2 € p and ag ¢ p, then

n 2
_ a; +p
_1+p_z<ao+9>

J=1

and conversely. Thus, since we can always choose a common denominator for elements in k(p), we
see that the condition for p to be real is that a3 + ... + a2 € p = ag € p.

A preordering in A is a subset T of A satisfying T+ T C T, TT C T and A2 C T. A
preordering T’ of A is said to be proper if —1 ¢ T. Every ordering is a proper preordering. > A2
us a preordering, and is the unique smallest preordering of A.

If 2 is a unit in A, then we have the identity a = (“51)% — (%31)2 holding on A so, in this case,
a preordering T' C A is proper iff T' # A. If 2 is not a unit in A, the situation is more complicated.

Lemma 5.1.2. A proper preordering P C A is an ordering iff it satisfies the following condition:
a¢ Pb¢ P= —ab¢ P.

Proof. (=) Suppose P is an ordering with support p and suppose a ¢ P, b ¢ P. Then —a,—b € P
so ab = (—a)(—b) € P. If —ab € P, then ab € p so one of a,b is in p, say a € p. This contradicts
a¢ P.

(<)Ifa¢ Pand —a ¢ P then —(a)(—a) = a® ¢ P, a contradiction. This proves PU—P = A.
Let p=PN—P. Then —p =p, p+p =p, and Pp = p. Since A = P U —P, this shows Ap = p,
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ie, pis an ideal. If a ¢ p, b ¢ p, but ab € p then, replacing a,b by *a,+b if necessary, we get
a ¢ P,b¢ P, but ab € —P, a contradiction. This proves p is a prime ideal. O

Theorem 5.1.3. If T is a proper preordering in A then there exists an ordering P of A with
T C P. In particular, A has an ordering iff A has a proper preordering iff —1 ¢ > A2.

Proof. Let P be a proper preordering containig 7" and maximal with respect to inclusion. Such a
P exists by Zorn’s lemma. Suppose a ¢ P, b ¢ P, but ab € —P. Then P + aP is a preordering
containing P properly so —1 € P + aP. Thus —1 = s1 4 t1a, s1,t1 € P. Similarly, —1 = s9 + t2b,
So,ta € P. Thus abtite = (—t1a)(—t2b) = (1 +s1)(1+s2) =1+ s, s = 81 + s2+ s182 € P, so
—1 = s — abtity € P, a contradiction. O

Suppose « : A — B is a ring homomorphism. If P is a some ordering of B, then o~ !(P) is an
ordering on A. We refer to a~!(P) as the induced ordering on A. The support of a~1(P) is
a~!(p) where p is the support of P.

Example 5.1.4.

1. Suppose a is an ideal of A and o : A — A/a is the natural homomorphism. Then P+ o~ (P)
is a one-to-one correspondence between orderings in A/a and orderings in A containing a in
their support.

2. Consider the natural homomorphism o : A — S7Y(A), where S C A is a multiplicative
set. We don’t exclude the zero ring, it could be 0 € S. Also, v is not generally injective:
ala) = 0 < as = 0 for some s € S. Then, P + o 1 (P) is a one-to-one correspondence
between orderings in S~Y(A) and orderings in A whose supports have empty intersection with

S.

3. Ifp C A is a prime ideal, the associated mapping P — a~'(P) is a one-to-one correspondence
between orderings of k(p) and orderings in A having support p. This has already been proved

in (211
Now, we will make a couple of examples of orderings on rings:

Example 5.1.5. Orderings on fields.

Example 5.1.6. If P,Q are orderings in A with P C Q then Q@ = PU(QN—Q) (for, ifa € Q\ P,
then —a € P so —a € Q). Of course, in the field case, QN—Q = {0}, so this implies P = Q. In the
ring case, on the other hand, ordeings can exist which are not mazximal with respect to inclusion.
For example, take A to be the polynomial ring R[t], and let

Py={ao+ait + ...+ aptt : k>0, ap > 0} U {0}
Pyr ={ajt! + ... +axt" :0<j <k, a; >0}U{0}.

Then Py, Py+ are orderings in R[t] and Py+ € Py. Observe that Py+ has support {0} where as Py
has support (t), the principal ideal generated by t.

Example 5.1.7. An ordering P can be maximal without the prime ideal P N —P being maximal.
For example, take A to be the polynomial ring R[t] again, and

Pyt ={ag+ait + ...+ axt® : k >0, a5, > 0} U {0}.

Then P,+ is an ordering in A which is mazimal but the support of P, + is {0} which is not
mazximal.
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Example 5.1.8. In|5.1.6 and|5.1.7 we constructed three orderings Py, Py+, Pso+ on R[t]. Applying
the automorphism t — —t to Py+, Pyt yields two additional orderings Py-, Poo—. Applying the
automorphism t — t —a (a € R) to Py, Py+, Py~ yields orderings P,, P+, P,~ with P,+, P,- C P,.
The orderings P,+, P,— for a € R together with P+, P..— have support {0}. The ordering P, has
as support (t —a). We have

SpeT(R[t]) = Pt U Py- U {Pav Pyt , Py- }aER[t]-
The support {0} orderings on R[t] are just the orderings on the field R(t).

Example 5.1.9. For the study of semi-algebraic sets in R™, one is interested in the real spectrum
of the polynomial ring R[ty, ...,t,]. As the reader may well imagine, this is pretty complicated in
n > 2. On the other hand, as in the case n = 1, there is a small subset of Sper(Rl[t1, ..., tn]) which
1s easily described. For each a € R™, define

P, ={f € R[t1, ..., tn] : f(a) > 0}.

This is an ordering with support equal to the mazximal ideal (t; — ay, ..., t, —ayn) where ay, ..., a, are
the coordinates of a. The mapping a — P, from R™ into Sper(R[t1,...,t,]) is injective. If a € R™,

let .
F=> (t—a;)
j=1

Then f(a) =0, f(b) >0 ifb#a. Thus —f € Py, —f ¢ By, if b # a.

Example 5.1.10. Suppose A = C(Y,R), the ring of all continuous functions from Y to R, where
Y is some compact Hausdorff space. For each x € Y, we get the mazximal ideal m, = {a € A :
a(x) = 0}, and every maximal ideal of A is of this form. Otherwise we have a mazimal ideal
m#m, for allx €Y so, for each x €Y, we get a, € m with ay(x) # 0. By compactness of Y, we
have a finite set ay, ...,a; € m such that, for allx € Y, a;(z) # 0 for somei. Let b= a3 + ...+ az.
Then b € m and b(x) > 0 for allx €Y, so b is a unity of A, a contradiction.

On the other hand, it is known that, except in very special cases, there are a lots of prime ideals
of A which are not maximal. Observe that if a,b € A, then va? + b2 € A. Using this we see that
ST A2 = A% For any prime p C A, let

P=A?+p:={a*+b:ac A becyp}

Using (A2?)(A2%) = A% and A% + A% = A2, we see that PP = P and P+ P = P. If a € A, then
la] € A and (|a| — a)(Ja| +a) = a® —a® = 0 € p, so either a = |a| mod p, or a = —|a| mod p. Since
la| is a square in A, this proves PU —P = A. Suppose a®> = —b*> mod p, and let

2

a .
c= 4 a?+ b? ifa?0
0ifa=0

Then c € A so a® = (a®> +b?)c € p, so a € p. This proves PN —P = p. Thus P is an ordering with
support p. In fact, it is the only ordering with support p: if Q is an ordering with support p, then
A2CQ,pCQsoP=A2+pCQ. IfacQ,a¢g P, then - a€ PCQ,50QN-Q=pCP,a
contradiction.

Thus the natural mapping Sper(A) — Spec(A) is a bijection in this example.
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Example 5.1.11. The ring Z of integers is uniquely ordered. The unique ordering has support
{0} and corresponds to the unique ordering on Q. The remaining residue fields are the finite fields
Ly, p prime integer, and these have no orderings. Thus Sper(Z) is a singleton set.

Example 5.1.12. Suppose (X,G) is a space of orderings and W is the Witt ring of (X,G).
Suppose P C W is an ordering and p is the support of P. If a € G then a®> =1 so

<17 _a> ® <1>a> = <1>a> —a, _1> ~0e€p.

Thus either (1, —a) € p or (1,a) € p, i.e, (a) = £1 mod p. Since the 1-dimensional forms generate
W, this means W/p = Z or Z, for some prime integer p. Since the finite field Z, has no orderings,
the second case is impossible, i.e, W/p is the only possibility. By (u), there is some unique
z € X such that p = {p € W : p(z) = 0} and, since Z is uniquely ordered. P ={p € W : o(x) >
0}. Thus the mapping

x> Ppi={peW:px)>0}

defines a natural one-to-one correspondence between elements of X and orderings on W.

5.1.2 Constructible sets and semi-algebraic sets

The main motivation for studying the real spectrum comes from real algebraic geometry and
model theory. We explain this now. Fix an ordered field (k, Q) and a real closed extension field R
of (k,Q) (so Q = R2Nk). We are interested in semi-algebraic sets in R" defined over k (we define
this terminology below).

Our first result is an consequence of Lang’s homomorphism theorem:

Theorem 5.1.13. Let fi,..., fx, 91, .., q1 € k[t1, ..., n] and suppose there exists an ordering P C
klti,...,tn] with Q@ C P such that f; € P\ —P, i = 1,. k: and gj € P,j=1,..,1. Then there
exists a € R™ such that fi(a) > 0,i=1,....k and gj(a) > 1.1

We just state this theorem, because the proof involves Tarski’s Transfer Principle, and this
escapes of the escope of this work:

Theorem 5.1.14 (Lang’s Homomorphism Theorem). Suppose (k,Q) is an ordered field with real
closure R and suppose D is a finitely generated k-algebra which is an integral domain and that the
ordering QQ extends to an ordering in the quotient field of D in some way. Then

i - There exists a k-algebra homomorphism ¢ : D — R.

i1 - More generally, if ay,...,a, € D are positive in this extended ordering then there exists a
k-algebra homomorphism ¢ : D — R such that ¢(a1) >0,i=1,...,n

Now, we proof our result:

Proof of Theorem[5.1.13. Let p = PN —P and let P be the ordering on the residue field k(p)
induced by P. By [5.1.14] we have a ring homomorphism

v k[t .. tn]/p = R

such that v(fi+p) >0,i=1,....,k and y(g; +p) > 0 for those j satisfying g; € P\ —P (of course,
¥(gj +p = 01if g; € p). Define a = (a1, ..., a,) where a; = y(t; + p). Then v(f +p) = f(a) for all
[ € k[t1,...,t,]. It follows that f;j(a) >0,i=1,...,k and gj(a) >0, j=1,...,1 O



202 CHAPTER 5. A THIRD GENERATION OF ABSTRACT THEORIES

Thus, we are interested in a certain part of the real spectrum of the polynomial ring k[t1, ..., t,],
namely, those orderings P on kl[t1,...,t,] with Q C P. We denote this set by Sperq (k[t1, ..., tn]).
More generally, for any k-algebra A, we denote by Sperg(A) the set of all orderings P in A with
Q C P. For a € R", define

P, :={f €kl[t1,....,tn] : f(a) > 0}.

This is an ordering in k[ty, ..., t,] and Q@ C P, so we have a mapping
®: R" — Sperg(k[t1, ..., ta])

given by a — P,. The argument in example shows that ® is injective if & = R, but ®
is generally not injective. On the other hand, and this is an important point, says that,
for a certain natural topology on Sperg(kl[t1,...,tn]), the image of R"™ in Sperq(k[t1,...,tn]) is
dense. When we describes this topology eventually, we need notation for various sorts of subsets
of Sper(A). We introduce this notation now. Namely, for f € A, we define:

U(F) i= {P € Sperg(A) : f € P\ P}
Z(f) = Sperg(A) \ (U(f)uU(—f)={P¢c Sperg(A) : f € PN —P}
W (f) := Sperg(A) \U(=f) =U(f) U Z(f) = {P € Sperg(A) : f € P}

We explain the reason for the “bar” in the next section. Also, for fi,..., fr € A, we define:

U(fis o fr) =) U(

j=1

Q

.

(fl? '”7

W (f1

ﬁ
é

A subset C' C Sperg(A) is said to be constructible if it can be built up from the sets U(f),
f € A in a finite number of steps, by taking complements, finite intersections and finite unions.
A subset of R™ is said to be semi-algebraic (defined over k) if it has the form ®~1(C) for
some constructible C' C Sperg(k[t1, ..., tn]), i€, if it can be built up from the sets ®~1(U(f)),
f € k[t1,...,t,] in a finite number of steps, by taking complements, finite intersections and finite
unions.

Note that the sets Z(f), W(f) are constructible too. Beside this, for f € k[ty, ..., t,],

(U(f)) ={a€R": f(a) > 0}
“H(Z(f)) ={a€ R": f(a) = 0}
!

Any constructible set is expressible as a finite union of sets of the form

U(?l? >?k) N W(?l? "'7?[)‘

The proof just amounts to checking that sets of this form are closed under taking complements,
finite intersections and finite unions. Consequently, any semi-algebraic set is expressible as a finite
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union of sets of the form
{ae R": fi(a) >0, gj(a) >0,i=1,...,k, j=1,..,1}
where f1,..., fi, g1,y g1 € E[t1, ..., tn)].

Corollary 5.1.15. The natural mapping ® : R" — Sperg(k[t1, ..., tn]) induces a one-to-one corre-
spondence C — ®~1(C) between constructible sets in Sperg(k[t1, ..., tn]) and semi-algebraic sets in
R™.

Proof. From it follows that for any constructible set C, C # () = ®~1(C) # 0. Let Cy, Cy
be constructible, and let C' be the constructible set defined by C = (C; \ C2) U (C2 \ C1). Then
C1 = Oy & C = (), and similarly, ®~1(C;) = 7 1(Cy) & ®@~1(C)). Putting these together, we get
Ci#Cy = (13_1(01) 7é ‘I)_I(Cz). L]

We often use a “relative” version of |5.1.15| Let a C k[t1,...,t,) be an ideal and let V(a) C R"
denote the zero set, i.e,
V(a)={a € R": f(a) =0 for all f € a}.

By the Hilbert Basis Theorem, a is finitely generated, so
V(e)={a€R": fi(a) =0,i=1,...m}

where fi, ..., f, are generators for a, i.e, V(a) is the semi-algebraic set in R" corresponding to the
constructible set Z(fy, ..., f,,) in Sperg(k[t1,...,tn]). On the other hand, the natural homomor-
phism

k‘[tl, ceny tn] — k‘[tl, ceny tn]/a

identifies orderings in Sperg(k[t1,...,tn]/a) with orderings in Z(fy,..., f,,). Thus we have the
following immediate consequence of [5.1.19

Corollary 5.1.16. The natural mapping
(I)|V(a) : V(CL) — SperQ(k:[tl, ...,tn]/a)

induces a one-to-one correspondence between semi-algebraic sets in V(a) and constructible sets in
Sperg(k[t1, ..., tn]/a).

There are some subtle points to the theory. R™ has a natural topology namely the product
topology, where R is given the usual order topology. A subset C' C Sperg(A) is said to be open
constructible (resp. closed constructible) if C' is expressible as a finite union of the sets of
the form U(fy, ..., fx) (resp. of the form U(f, ..., fx). The topological meaning of this terminology
will be made clear later.

5.1.3 Nullstellensatz and Positivstellensatz

We work relative to a fixed preordering in a ring A. We are trying to generalize what we did
in the field case for AOS, as in section If T'C A is any preordering, X denotes the set of all
orderings of A lying over T, i.e,

Xr={P €Sper(A): PO T}.
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We consider the subset {—1,0,1} C Z viewed as a monoid, with multiplication as the operation.
For any set X, {—1,0,1}¥ denotes the set of all functions a : X — {—1,0,1}. Thus {—1,0,1}¥ is
a monoid with operation given by (ab)(z) = a(x)b(z). For a,b{—1,0,1}*,

i-Ifa(z) =0= b(x) =0 for all x € X, then b = a?b, and conversely.
ii - a® = a, a* = a?, etc.
iii - If a(x) > 0 for all x € X then a = a?, and conversely.
iv - If a(z) # 0 for all z € X, then a? = 1, and conversely.

We denote the constant functions in {-1,0,1}* by —1,0,1. For any submonoid G C {—1,0,1}*
containing —1,0, 1, G denote the multiplicative group of the monoid G (also called the unit group),
i.e,

G :={a € G : there exists b € G such that ab=1} = {a € G : a® = 1}.

G? denotes the set of idempotents of G, i.e,
G?={aecG:a>=a}={aeG:a(z)>0forallz e X} ={a®:acG}.

Let T be a proper preordering in the ring A, i.e, —1 ¢ 7. We know by that X7 # (). Each
a € A defines a function @ = ar : Xp — {—1,0, 1} given by

lifae P\ —-P
a(P)=<0ifac PN-P
—lifae —P\P

Let Gy = {a : a € A}. Since ab = @ - b, Gt is a submonoid of {—1,0,1}*7 that contains the
constant functions —1,0, 1.

Theorem 5.1.17. Suppose T' is a proper preordering on a field k. Then Gp = G U {0} and G
is naturally isomorphic to k/T. Here, k =k \ {0}, T := T\ {0}.

Proof. Since orderings in k have support {0}, Gr = Gr U {0}. By 4 the mapping a1 +— @
defines an isomorphism from & / T onto Grp. 0

Observe that what was denoted by G in is now being denoted by Gr.

If «: A — B is a ring homomorphism and 7', S are preorderings in A and B respectively with
a(T) C S, then we have an induced mapping o* : Xg — X7 given by P +— o 1(P) and an induced
mapping o, : Gr — Gy is given by ar — «a(a)g. Observe that o (ar) = ar o o where o denotes
composition.

Example 5.1.18.

a- Commonly, we start with T as given and take S = > a(T)B?, the set of all finite sums
Ma(t)b?, t; € T, b € B. This is called the preordering in B induced by T (note that
if T =5 A2, then S = 5. B?). Or, we start with B = A, o = the identity mapping, S,T pre-
orderings of A with T C S, to get the inclusion o : Xg C X1 and the restriction ay : Gp — Gg.

b- If a C A is an ideal and T C A is a preordering, then T + a is a preordering. The induced
preordering on A/a is
T/a:=(T+a)/a={t+a:teT}.
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in

T

1

1

The mapping X7/, — Xt corresponding to A — A/a is injective (since G — Grq is surjective)
and it identifies Xp/q with the Zariski-closed set

Xrya={P € Xr:ap(P)=0 foralla € a}
m Xr.

Suppose S C A is any multiplicative set and T C A is a preordering. The preordering on S™'(A)
induced by T 1is
S™2(T):={t/s*:teT, secS}

An ordering P on A with support p extends to an ordering on the localization S~1(A) iff pNS = 0.
The unique extension on P to ST1(A) is S™2P. The mapping Xg-2(1y = X1 corresponding to
A — S71(A) indentifies X g—2(p) with

{P e Xr:ap(P)#0 for alla € S}.

Note that (a/s)g-2(py = (as)g-2(py, 50 Gr — Gs-2(1) is surjective.

Paraphrasing M. Marshall ([Mar96], pg 93):
“It is important to realize that, in replacing A by G, we are already in deep water.”

For a,b € A, what does the statement ar = by really means? By [5.1.17, we know the answer
the field case. In general, using we have the following:

heorem 5.1.19. Suppose T is a preordering in A. Then

i - ap =0 iff —a®* € T for some integer k > 0.

i-ar=14f (1+s)a=1+t for some s,t €T.

i - ar >0 iff (a®) + s)a = a®* +t for some s,t € T and some k > 0.

These results are abstract versions of results in real algebraic geometry: the real Nullstellensatz

of Dubois and Risler and the real Positivstellensatz of Stengle.

Proof of Theorem |[5.1.19

i- (=) Go to the localization
All/a) == {b/a* : b€ A, k> 0},
the localization of A at the multiplicative set {ak : k > 0}, and the induced preordering
T[1/a? = {t/a** :t € T, k >0}

in A[l/a]. If @ = 0 then Xpp/p2) = 0 and —1 € T[1/a?] so —1 = t/s* for some s € T,
k > 0. Clearing fractions by multiplying by a®**) | > 0 sufficiently large, we obtain
—a2kth) = g2l € T,

(<) If —a®* € T for some k > 0, then —a?* € TN —-T C PN —P for all P € X (since
A% CT). Hence —a2?k¢ = 0, and this implies @ = 0 (because if @y # 0, then @% = 1).
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ii - (=) Go to the preordering T—aT in A. Then Xg_,r =0so—-1€T—aT. Alsol—a € T—aT
and T — aT is closed under multiplication so —(1 —a) =t — sa, i.e, (1 + s)a = 1 + ¢ for some
s,tefT.

(<) Follow by definition of @.

iii - (=) Go to preordering T'[1/a?] in the localization A[1/a?] and apply (ii) to get (1+s")a = 1+t'
for some s',t' € T[1/a?], say s' = s/2%%, t' =t/a?, s,t € T. Clearing fractions, this yields

(a2(k+l) + Sa?l)a _ a?(k’-i—l) + ta21

for some integer [ > 0.

(<) Follow by definition of @ (if necessary, use itens (i) and (ii)!).

Corollary 5.1.20. ar = by iff sab = (a® + b*)* +1 for some s,t € T and some k > 0.

b%]. Since @r = by on Xr, it follows that @rbr = 1 on X1 /a2 442] 50, Dy (ii), s'ab =1+t
for some s',t' € T[1/a® + b?]. Clearing fractions by multiplying by (a? + b%)*, k sufficiently large,
yields what we want.

(<) Follow by definition of a. O

Proof. (=) Go to the localization A[1/a?+b?] and the induced preordering T[1/a?+b%] in A[1/a®+
b 5.1.19

Suppose we are in the set up of section a C k[t1,...,t,) isanideal, and T := S k[ty, ..., t,)2Q.
Then Sper (k[t1,...,tn]) = X7, and the constructible set in Sperg(k[t1,...,,]) corresponding to
V(a) is

Sperg (klt1,...,tn]/a) = {P € X7 :ar(P) =0 for all a € a} = X7,

Thus, combining [5.1.16| and [5.1.19(i), we see that, for any f € k[t1,...,tn]), f = 0 on V(a) iff
—f% € T + a for some k > 0. Parts (ii) and (iii) of have similar concrete interpretations in
this special case.

There are several equivalent ways of expressing the condition @y = 1. Multiplying both sides
of (14 s)a=1+tby (1+s), we get ab®> = 1+t for some b € A and some t' € T. This implies
as’ =1+t for some s’,t € T. Finally, if the latter holds, then @7 = 1, so all these conditions are
equivalent. Similarly, there are several equivalent ways of expressing the condition ap > 0.

If T is a preordering in a field k, the situation in [5.1.19simplifies drastically: @z = 0 just means
a =0, ar =1 just means a € T, and @ > 0 just means a € T. This is immediate from the proof

of B117

5.1.4 Value Sets of quadratic forms

We continue to assume that T is a proper preordering in a ring A. We introduce quadratic
form terminology as in the field case. A (quadratic) form of dimension n with entries in G
is just an n-tuple ¢ = (@i, ...,a,), ai,...,a, € A. The discriminant of ¢ is H?:1 aj € Gr. The
signature of ¢ at P € Xr is

p(P):=> a;(P) €L
j=1

We write ¢ = 1) (read ¢ is isometric to 1) to indicate that ¢ and 1) have the same dimension and
the same signature at each P € Xp.
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From the reduced theory of quadratic forms developed in chapter [2| we know isometry and
value sets are well-behaved in the field case. In the ring case, the isometry relation is not very
well-behaved. On the other hand, we do have reasonably good results concerning value sets. We
define the value set of ¢ = (ay, ..., a,) to be

D(QO) = D(ﬁl, ...,ﬁn) = {B beTa +...+ Tan}.
We say b is represented by ¢ if b € D(p). Note that we are including 0 in the value sets now. In
AOS case, 0 was specifically excluded.
Proposition 5.1.21.
i- D@ ={fa:teAt>0}={b:ba="h )
= {b: for each P € X either b(P) =0 or a(P)b(P) > 0}.
ii - D(a@,b) = {¢: (ac?,bc®) = (¢,ab,c)} = -
{¢: for each P € X, either ¢(P) =0 or a(P)c(P) > 0 or b(P)e(P) > 0}.

iii - If n >3, D(ay,...,an) = U D(ay,c).
ceD(az,....aGn)

iv - D(ay,...,ay) depends only on @y, ...,a, (not on the particular representatives ay, ..., an).
v - b€ D(ay,..ay) iff tob =Y 1, tia; for some to,...,t, € T with tob = b.
Proof.

i - Follow by calculations with the definition of D.

ii - Comparing the signatures of (@c?, b, %) and (¢, abe) we obtain the equality between the second
and third set. If ¢ = tja + tob, t1,ts € T, then ¢® = tiac + tobe. From this, we obtain the
inclusion of the first set in the third. To prove the inclusion of the third set in the first,
pick ¢ € A such that ¢ belongs to the third set. Go to the preordering 7" = T[1/c?] in

the localization A" = A[l/c]. Let @' = ac, b’ = be. On Xpr_ypr, b > 0, so by [5.1.19(ii),
(14 s)b/ =1+t for some s,t € T" — a'T’. Thus

(1482 =04s)(1+t)=1+u

for some u € T' —a/T’, say u = to—t1d’, to,t1 € T', s0 1 +tg = t1a’ +tob’ where to = (1+s)2.
Multiplying by ¢?™*+1, m sufficiently large, we get

2
c1:= (™™ 4 s0)c = s1a + s2b, 50, 51,52 € T.

Since ¢; = ¢, this completes the proof.
iii - Let
ze |J D@.o).

€D (Ta,...,an)

Then T € D(ay, ¢) for some ¢ € D(ay, ..., a,), and hence x = tia1+toc, ¢ = taas+...+tpan, tj €
T,j=0,..,n. So, x =tia;+totaas+ ...+ totpay,, and by definition of D, T € D(ay,ag, ..., ay).
Conversely, if z € D(ay,as, ...,an), say * = tia1 + ... + tpan, t; € T, j = 1,...,n. Taking
¢ :=taag + ... + tpay, we have x = t1a; + l¢, and ¢ € D(ay, ..., ay), SO

ze |J D@,o).

ceD(az,...,an)
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iv - This is true when n =1 or 2 using (i) and (ii). For n > 3, it follows by induction on n, using

(ii).

sbb' = (b® + b?)* + ¢ for some s,t € T and some k > 0.

Then

(0* +2)F +1)b = sb°V = sb?sia
=1

so tob = Y 1 | t;a; where tg = (b% + V2)k 4t and t; = sb?s;, i =1, ...,7n.

It is important to realize that value sets are not preserved by isometry. For example,
(1,-1) = (0,0), D(1,—-1) = Gr, D(0,0) = {0}.

The reader will also note that is more complicated than the corresponding result in the field
case. In the ring case, the situation is further complicated by the fact that there are two sorts of
value sets, both important. We denote the second sort of value set by D!(ay, ..., @,) and refer to it
as the transversal value set of (ay,...,a,). This is defined to be the set of all b € G such that
there exists V', a}, ...,al, € A such that b = 5’, a=a,i=1,...,n,and ' = 22:1 a;». We say b is
transversally represented by (ay,...,a,) if b € D*(a@y, ..., @y).

The multiplication on G satisfies ab = ab, i.e, it is just the operation on Gr induced by
multiplication on A. On the other hand, the addition @ + b = a + b is not well-defined. The
outcome of adding in G is not a single element, but rather is the set of elements D!(a@,b). Thus,
in studying transversal values sets, we are just studying what remains of the addition when we
pass from A to Grp.

Since we know D(ay, ..., @), we have D'(ay, ...,a,) C D(@y, ..., ay)-
Proposition 5.1.22. The following are equivalent:
a-be D(ay,..an).
b-be Db ay,..., b a).
c - be D(tay, ..., thay,) for some ty,....t, € T.

Proof. (a)=-(b): We can suppose b = Y ' | t;a; for some ti,....,t, € T. Go to the localization
A[1/2b]. 1/2 =b/2band 1/b = 2/2b belong to A[1/2b]. Using the identity p = (p+1)%/2—(p—1)2/2,

we get
7@—1—.;—1—@” =2 =1+ -1+
for some r,s € A[1/2b]. Thus

n

Q+rb=a1+ ..+ an+ (L+s)b=> (1+ (1 +s)t)a;
=1
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in A[1/2b]. Multiplying each side by 4*b* sufficiently large, to clear fractions, this yields an equation
/ / /
tob = tlal —+ ...+ tnan

in A, with t), ...t/ € T, T, = 52, i =0,...,n. Since b = b, this means b € Dt(gzﬁl, ...,Bzan).
(b)=(c): Take #; = b".
(c)=(a): Follow from

DY(tya@y, ..., thayn) C D(tay, ..., t,a,) C D(ay, ..., @y).
OJ

Suppose T is a preordering in a field F and ai,...,a, € F. If b€ F, b # 0, then b =150 by

p.1.22,

b€ D(ay,...,a,) < b € D'(ay, ..., @),

i.e, D(ay,...,a,), D'(ay,...,a,) have the same non-zero elements.
5.1.22|gives a description of value sets in terms of transversal value sets. The next result reverses
the process, describing transversal value sets in terms of value sets.

Proposition 5.1.23. The following are equivalent:

a-be Dl ay,..,a,).

b-be D(@,....an) and —a@; € D(@1, ..., @1, —b, Wiy1...,Gp), i = 1,...,n.

Proof. (a)=>(b): We can assume b= > ; a;. Then b € D(ay,...,a,) and
—a;=a1+..+a—1—b+a1+ ...+ an,

S0 —a; € D(al,...,ai_l, —b, i1,y p), 0 =1,...,m.

(b)=(a): By p.1.21{v), we get n + 1 equations to;b = > I, tija;, j = 0,..,n with t;; € T,
toob = b, and t;a; = a;, 1 = 1,...,n. Adding these yields an equation

n n n
b = E ag where b = g to;b, a;- = g tija;.
i=1 §=0 =0

Then ¥ =band o’ =a;, i =1,...,n 50 b € D¥(ay, ..., ay). O
Proposition 5.1.24.

a - D(a) = {a}.

b - Di(a,b) = {¢: (a,b) = (c,abe}.

c - Ifn >3 then D'(ay,...,a,) = Uzept(@s.....3) D!(a,¢).

Proof.

a - Follow from definition.

b - Suppose ¢ € D*(@,b). We can suppose ¢ = a + b. Then

a(P) + b(P) = ¢(P) + a(P)b(P)é(P) for each P € Xr.
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also that —@ € D(—¢,b) and —b € D(a,¢). Thus, by |5.1.23, ¢ € D'(a, b).

For the other inclusion, suppose (@, b) = (¢, abe). Using [5.1.21{(b), we see that ¢ € D(a,b) and
¢ 5.1.23

c - Suppose b € D'(ay,...,a,). We may as well suppose b = >  a;. Then b € D!(a,¢) and
¢ € D'(ay,...,a,) where ¢ :== > I ,a;. Now suppose b € D'(a1,¢), ¢ € D'(ay, ...,a,). Then
b € D(ay,¢), —a; € D(b,¢), ¢ € D(as,...,a,) s0 b € D(ay,...,a,) and —a; € D(—b, s, ..., ay).
Also —as € D(—¢,as,...,a,) and —¢ € D(ay,—b) so —ay € D(ay,—b,as,...,a,). Similarly,
—a; € D(@1, ..., 1,0, Tis1, ..., p), i = 3, ...,n. By this means b € D(ay, ..., ay).

O]

5.1.5 Axioms for abstract real spectra

Recall that for any set X, {—1,0,1}* denotes the set of all function a : X — {—1,0,1}. This
is a monoid with operation given by (ab)(x) = a(x)b(z).

Definition 5.1.25 (Abstract Real Spectra). An abstract real spectrum or space of signs, abreviatted
to ARS, is a pair (X, Q) satisfying:

AX1 - X is a non-empty set, G is a submonoid of {—1,0,1}*, G contais the constants functions
—1,0,1, and G separates points in X.

If a,b € G, the value set D(a,b) is defined to be the set of all c € G such that, for all x € X,
either a(z)c(z) > 0 or b(x)c(x) > 0 or c(x) = 0. The value set D*(a,b) is defined to be the set of all
¢ € G such that, for all x € X, either a(x)c(z) > 0 or b(z)c(x) >0 or ¢(z) =0 and b(x) = —a(z).
Note that ¢ € D*(a,b) = ¢ € D(a,b). Conversely, c € D(a,b) = c¢ € D*(ac?,bc?).

AX2 - If P is a submonoid of G satisfying PU—-P =G, —=1 ¢ P, a,b € P = D(a,b) C P and
ab€ PN—P =a€ PN—P orbe PN —P, then there exists x € X (necessarily unique)
such that P = {a € G : a(z) < 0}.

AX3a (Weak Associativity) - For all a,b,c € G, if p € D(a,r) for some q € D(b,c) then
p € D(r,c) for some r € D(a,b).

AX3b - For all a,b € G, D*(a,b) # 0.

We hasten to point out that AX3a and AX3b combined are equivalent to the simgle axiom AXS3
below:

AX3 (Strong Associativity) - For all a,b,c € G, if p € D'(a,r) for some ¢ € D'(b,c) then
p € D'(r,c) for some r € D'(a,b).

We begin immediately by checking the easy half of this:
Proposition 5.1.26. AX3 = AX3a and AX3b.

Proof. Suppose b € D(ay,c) for some ¢ € D(as,a3). Then b € D*(b%ay,b%c), and ¢ € D¥(coaz, az)
(so b%c € D!(b*c*ag, b*c?a3)). By AX3, this implies b € D¥(d, b?c?a3) for some d € D(b%ay, b*c?as).
Since D!(b?ay, b%c?az) C D(b%ay,b%c?az) C D(a1,az) and D'(d,b%*c?a3) C D(d,b*c?a3) C D(d,as3),
this complete the proof of AX3a.

For AX3b just note that 1 € D'(a,1) and 1 € D!(b,1), so by AX3, 1 € D!d,1) for some
d € D'(a,b). O
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AXa3 is certainly very natural and elegant and is the desirable axiom to use from this point of
view. We use AX3a and AX3b because they seem to be easier to check than AX3. The reader will
already have some feeling for why this is so from the proofs in last section. It is also reflected in
the fact that the proof of the convers of is quite difficult.

We prove the converse of later. For now we concentrate on more elementary results. We
begin with our main example.

Theorem 5.1.27. If T is a proper preordering on a ring A, then the pair (X7, Gr) is an abstract
real spectrum.

Proof. AX1 is immediate from definitions involved. For AX2, suppose P is a submonoid of Gr
satisfying the hypothesis of AX2. Let P={a € A:a€ P}. Ift €T, then t = #* € P. This proves
T C P. PP C P and, since a+b € D'(a,b), P+ P C P. Also, PUP = Aand PN —P is a
prime ideal, so P is an ordering. Since P = {@ € G : @(P) > 0}, this complete the proof. AX3a
is immediate from description of value sets given in last section and Of couser, AX3b is
immediate using the fact that a + b € D'(a, b). O]

Just as in the case of space of orderings, AX1 and AX2 are trivial in the sense that they can be
forced in a natural way: suppose X is any non-empty set and G is any submonoid of {—1,0,1}¥
containing the constant functions. First identify points in X which are not separated by elements
of G and then add in the extra points required by AX2. The binary value sets D(a,b), D'(a,b) are
not changed by this process.

Just as we allow the zero ring in ring theory, it is sometimes convenient to allow the trivial
abstract real spectrum, obtained by taking X = () and G = {0} (so -1 =0=1inG). f T is a
preordering in a ring A and 7" is not proper, then (X7, Gr) is the trivial abstract real spectrum.

Let (X, G) be an abstract real spectrum. Elements of X are sometimes referred to as orderings.
The positive cone of x € X is

P,:={a€G:a(x)> 0}

For x € X, the support of x is

pe =P, N—P,={a€G:a(x)=0}
Supp(X) denotes the set {p, : € X}. We have a natural mapping

X — Supp(X) given by x — p,.
Recall that G* denotes the unit group of the monoid G, i.e,
G*={a€G:ab=1forsomebe G} ={acG:a®>=1)},
and G? denotes the set of idempotents, i.e,
G?={a*:acG}={acG:a(x)>0foralzecX}

It is important to understand the relationship between spaces of orderings and abstract real spectra:
Proposition 5.1.28. For any abstract real spectrum (X, G), the following are equivalent:
a - All x € X have the same support (= {0}).

b- G=G*U{0}.
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c- G?>=1{0,1}.

Proof. (a)=(b): suppose p, = p, for all € X. Then for any a € p;, a(y) = 0 for all y € X so
a = 0. In other words, if a # 0, then a(z) # 0 for all z € X, so a € G*.

(b)=-(c): is immediate.

(c)=(a): if a # 0 then a® = 1 s0 a € G* s0 a(x) # 0 for each x € X. This means p, = {0} for
each z € X. O

It is not necessary to distinguish between a space of orderings and an abstract real spectrum
with G = G* U {0}. This is the content of the next result.

Proposition 5.1.29. If (X,G) is an abstract real spectrum with G = G* U {0}, then (X,G*) is a
space of orderings. Conversely, if (X,G*) is a space of orderings then we obtain an abstract real
spectrum (X, G) with G = G* U {0} by adjoining 0 to G*.

Proof. (=) We want to show that AX1, AX2 and AX3 for (X,G*) as an AOS are consequence
of AX1, AX2, AX3a and AX3b for (X,G) (as an ARS). AX1 is immediate. AX2: suppose z is a
character on G* satisfying the hypothesis of AX2 for (X, G*). Then P = ker(z) U {0} satisfies the
hypothesis of AX2 for (X,G). Thus, by AX2 for (X,G), we have y € X satisfying P = P, and y
viewed as a character on G* is equal to x. AX3: suppose a1, az,a3 € G* and b € D(ay, ¢) for some
¢ € D(ag,as), by,c # 0. By AX3a, b € D(d,a3) for some d € D(ay,az). if d # 0, we are done. If
d = 0, then b = a3 sp we can replace d by a; in this case.

(<) AX1 and AX2 for (X, G) (as an ARS) is consequence of AX1 and AX2 for (X,G*) (as an
AOS). AX3a: suppose b € D(ay,c) for some ¢ € D(agz,a3). We want to show that b € D(d, a3)
for some d € D(aj,az). The existence of d is immediate if one of b, ¢, a;,as,az is 0. So suppose
b, c, a1, az,as are non-zero. In this case, existence of d follows from AX3 for (X, G*). AX3b: ifa,b
are both zero, then 0 € D!(a,b). Otherwise, if a # 0 say, then a € D(a, b). O

Later, when working with the topology on X, we need notation for various sorts of subsets of
X. We introduce this notation now. Namely, for a € G

U(a) :={x € X : a(x) > 0}.
Thus

U(—a) ={z € X : a(z) <0}
Ua®)={z € X :a(x) #0} =U(a) UU(—a).

Now, define

Z(a):= X\ (Ula) UU(=a)) = X\ U(a®) = {z € X : a(z) = 0}.
W(a)=X\U(-a)=U(a)UZ(a) ={z € X : a(x) > 0}.
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For a1, ...,a; € G,

S
—
s
[
1S
=
~
I
=
S
—
£
~—

=1

k
Zlas,rar) = () W (a)

121
W<a17 7ak) = ﬂ W(al)

=1

a€S
Z(8) =) Z(a),
a€S
W(S):= () W(a)
a€sS

We make frequent use of the following;:
Proposition 5.1.30.
i - For any a,b € G, D'(a?,b?) = {c*} for some unique c* € G?.
it - For any a,b € G, there exists ¢ € G such that Z(a,b) = Z(c).
iti - For any a,b,d € G, D(a?d,b*d) = {c*d} for some unique c*d € G.
Proof.

i- Let ¢ € D¥(a?,b?). Then for all x € X, ¢(z) > 0 and ¢(z) = 0 iff a(x) = b(z) = 0. This proves
that c is unique and also that ¢ = ¢? € G2.

ii - Pick c such that ¢ € D'(a?,b?).
iii - Is the same argument of item (i).

O

We mention briefly the idea of a morphism of abstract real spectra. This generalizes the
corresponding idea for space of orderings.

Definition 5.1.31. A morphism of ARS’s (X,G) — (Y, H) is a mapping 7 : X — Y such that for
each a € H, the composite mapping is aot : X — {—1,0,1} is an element of G (so T is surjective
and induces a mapping a — a ot from H to G). T is said to be an isomorphism if the mappings
X =Y and H — G are bijective.

With this definition and proposition [5.1.29] we have a full and faithfull functor AOS — ARS,
that is injective on the objects.
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5.1.6 Properties of value sets

Let (X,G) be an abstract real spectrum. Dimension and discriminant of forms, signature of
forms, etc, are defined exactly as in the concrete case (X,G) = (X7,Gr). A form of dimension
n with entries in G is just an n-tuple ¢ = (a1, ...,ay), a1, ...,a, € G. The discriminant of ¢ is
disc(¢) = aj...an, € G. The signature of ¢ at z € X is

n

o(x) = Z a;(x) € Z.

i=1

We write ¢ 2 1) (read ¢ is isometric to 1) to indicate that ¢ and 1 have the same dimension and
the same signature at each x € X. Initially at least, we will be mainly interested in the isometry
of binary (2-dimensional) forms. It is important to note that

D(a,b) = {c € G : (*a,?®b) = (c,abc)},
D'(a,b) = {c € G : {a,b) = (c,abc)}.

For the remaining dimensions, value sets and transversal value sets are defined as in [5.1.21] and

b.1.24i.e,
D(a):={be G: forall z € X, b(z) = a(z) or b(z) =0} = {b*a: b G},

and
D(ay,...,an) = U D(ay,c) if n > 3.

z€D(ag,....an)

D'(ay,...,a,) = U D'(ay,c) if n > 3.

z€Dt(ag,...,an)

The form notation and terminology we use is standard: if ¢ = (aq,...,an), ¥ = (b1, ..., by,) are
forms with entries in G and ¢ € G then

©@Y = (ay,...,an, b1, ..., bn),
cp = {cay, ..., cay)
PRY = ® ... & apty = (a1by, ..., a;bj, ..., anby,).
Also, if k> 1,
kxXp:=p&.. P pk-times.

A form of shape (1,a;) ®...® (1, ay) is called a n-fold Pfister form, and denoted by ({(a1, ..., a,)).
As mentioned before, isometry is badly behaved in general. We have the example

(1,-1) = (0,0) D(1, ~1) = &, D(0,0) = {0}.

On the positive side, by (1) below, value sets are preserved under permutation of entries
at least. Thus, for what we do here there is no harm in identifying two forms ¢, 9 if the entries of 1
are some permutation of the entries of . This allows us to write @) = Y@ p and PR Y = YR @,
for example.
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Proposition 5.1.32.
i - D(p) does not depend on the order of the entries of .

ii - If b € D(p) then be € D(cy) for any c € G. Conversely, if b € D(cp) then b = be? = (be)c
and be € D(c2p) C D(yp).

i1t - ¢ € D(p® ) iff c € D(a,b) for some a € D(p), b € D(3).
w-ceD(p1®... 0 pr) < c€ D(ay,...,ax) for some a; € D(p;), i=1,..., k.
Proof.

i- Let ¢ = (a1,...,an). If n =1 or 2 we are done. Suppose n > 3. It suffices to show the
value set does not change if we permute two adjacent entries a;,a;. If 4,7 > 2, this follows
by induction. This leaves the case i = 1, j = 2. Suppose b € D(az,a1,as,...,a,). Thus
b € D(ag,c), ¢c € D(ay,d), d € D(as,...,an). By AX3a, b € D(ay,e) for some e € D(ag,d).
This proves b € D(ay, ag, ..., ay).

ii - The first assertion is immediate for n = 1 or 2 and follows by induction for n > 3. If b € D(cyp)
then ¢ = 0 = b = 0so b = bc®. The second assertion is immediate from the first once this
observation is made.

iii - Let $ = <a17 "'7ak>7 Y= <ak+17 "'7an>'

(=)Ifk=1,ce D(a1,b),be D(ay,...,a) so we can take a = aj. If £ > 2 then ¢ € D(ay,d),
d € D(¢' @), where ¢ = (ag,...,a;). By induction, we have d € D(e, f), e € D(y'),
f € D(v). By AX3a we have ¢ € D(g, f) for some g € D(aj,e). Thus g € D(¢) so we can
take a =g, b= f.

(<) If k =1 then ¢ € D(a1,b) (since a € D(a1)) soc € D(p® ). If k > 2 then a € D(ay,d),
d € D(¢') where ¢ = (ag, ...,a,). By AX3a, ¢ € D(ai,c) where e € D(d,b). By induction on
k, e € D(¢' @ 1)). This proves ¢ € D(p ® ).

iv - This follows from (iii) using induction on k.

We use the following key result:
Lemma 5.1.33.
i - Suppose Z(a) "W (c) C Z(c). Then there exists a; € D(a,b) a1 = a on W(c).
ii - If b € D(eay,eas,a3) then b € D(ed,a3) for some d € D*(b?a1, b%az).
Proof.

i - By hypothesis, v* € D(a?b?, —b?c) so b* € D(—a?V?, a?b?, —b%c). Since D(—a?V?, a?V?) =
D(—ab, ab), this implies b*> € D(—ab,ab, —b*c) so, there exists e € D(ab, —b*c) such that
b2 € D(—ab,e). Pick any a; € D(a,be). We claim that a; € D'(a,b) and a; = a on W(c).
On the part of X where b = 0 it follows (from a1 € D'(a,be)). On the part of X where
b # 0, either e > 0 or ab < 0 (since b> € D'(—ab,e)). If e > 0 then a; € D'(a,b) (since
a1 € D¥(a,be)) and, if we also have ¢ > 0, then ab > 0 (since e € D(ab, —b%c)) so a; = a. This
leaves the part of X where ab < 0 and e > 0. So a1 € D'(a,b) on this part and, since e < 0
and a; € D'(a,be), we must have a; = a on this part. This proves the claim.
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ii - Scaling by b and applying b2 € D(foy,aszb) for some fy € D(earb,eash). Let f = efo.
Then ef = €2fy = fo, so b*> € D(ef,asb) and f € D(aib,asb). Thus, on W(—asb) N U(b?),
ef >0 (so f2 > 0) so b> € D(f? asb). Pick g € D'(aib,azb). Then Z(f) N W (—azb) C
Z(b) C Z(g) so, by (i), there exists f; € D!(f,g) such that f; = f on W(—asb). We claim
that f; € D(ab, azb) and b*> € D(efy,azb). Since f € D(aib,azb) and g € D*(ayb, azb) and
fi € D'(f,g), it follows that f; € D(aib,asb). If f{ = 0 then f = —g. If g = 0, this forces
a1b = —agb. If g # 0 it also forces a1b = —agb. This proves fi € D'(a1b,asb). From agb > 0
we get b € D(ef1,asb). If asb < 0, then f; = f and b*> € D(ef,azb). This proves the claim.
By the claim, fib € D'(a1b? asb?®), b € D(ef1b, asb®). Now, just take d = f1b to complete the
proof.

O]

Theorem 5.1.34. Suppose X is a non-empty set and G is a submonoid of {—1,0,1}X containing
the constant functions. Then the following are equivalent:

a - AX3 holds.
b - AX3a and AX3b holds.

c-be D(al, c) for some ¢ € D(ag,a3) = b € D(d,a3) for some d € D*(b*ay,b®as).

Proof. (a)=-(b): is just m
(b)=(c): Follow from |5.1.33|( ) takmg e=1.
(¢c)=(a): AX3a follows from ), so [5.1.32 holds. Also AX3b follows from ¢ using the fact

that lainD(a,b,1). Now suppose b € D'(ay,c) for some ¢ € D'(ag,a3). Let ag = —b. Thus
—ag € D%(ay,c), ¢ € D'(as,a3). Also —ay € D'(ag,c), ¢ € D¥(ag,a3). Similarly, —as € D!(a3, —c),
—c € D'(ag,a1) and —a3 € D(as, —c), —c € D*(ag,ay). Thus, using (c) there exists do, dy,ds, ds €
G such that

b2 b2 2
—ag € D'(agag, dy), dy € D*(a1ag, azaj),

2 2 9
—ay € D'(agai, —dy), —dy € D'(apa3,aza?),

—ay € D'(aya3, —ds), —dy € D'(apa3, aza3),

~—~~ Y~ —~

t t(, 2 2
—az € D'(aga3, ds), d3 € D'(a1a3, aza3).

In summary, dy, d1, da, ds satisfy
—apa? € D'(aza?, d;), d; € D'(a1a?,aza?), i =0,1,2,3. *)

Pick any element d € D'(dy, dy,d2,ds3) (d exist by AX3b and induction). A straightforward check
shows that —ag € D%(as,d), d € D'(a1,az) as required. We check that —d € D'(ag,a3) (the
proof that d € D!(a1,as is similar). Since d € D(do,d1,ds,d3) and —d; € D(ag,a3) by (*),
—d € D(ag,a3). It remains to show that, at each point in X, ay # az = d # 0. So suppose

ag # a3. One of ag, a3 is not zero, say asz # 0 (so ag = ag or a9 = 0). By (*), d; = —agd2 so each
d; has the same sign as —as, or d; = 0. Also, d3 = —aga3 = —az # 0. Since d € D*(do,d1,da, d3)
this forces d to have the same sign as —ag so d # 0. O

Proposition 5.1.35.
a - D¥(p) does not depend on the order of the entries of ¢.
b - If b€ D(p) then be € D(cy) for any c € G.
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c-ce DY o®) < ce D a,b) for some a € D' (p), b € D ().

d-ce D o1 ®...®p) & c€ D ay,...,ax) for some a; € DX (;), i =1,..., k.

Proof. This is basically the same as the proof of except now we use AX3 instead of AX3a. [
Value sets are describable in terms of transversal value sets as follows:

Proposition 5.1.36. The following are equivalent:

a-be D(ay,...,an).

b-be D3a,...,c2ay) for some ci,...,c, € G.

c - be DY(bay, ..., b%a,).

Proof. This is immediate if n =1 or n = 2 so we assume n > 3.

(a)=-(b): this follows immediately by induction on n.

(b)=(c): by assumption b € D!(c?ay,c) for some ¢ € D!(c2as,...,c2a,). Thus b € D(aq,c) so
b € D'(b%a1,b%c). Since b’c € Di(b%clas,...,b*c2ay,) this proves b € D(b%ay, c3as, ..., c2a,). Now
permute the entries of (b%ay,c3as,...,c2a,) so that b?c3ay is in the first position and repeat the
argument, etc (using the fact that b%6% = b?).

(c)=(a): this follows immediately from

Di(b%ay, ...,b%a,) C D(b%aq, ...,b%a,) C D(ay, ..., an).

Proposition 5.1.37. For ay,...,a, € G, the following are equivalent:
a - —ag € D'(ay,...,ap).

b- —a; € D (ay, ..., ai—1,@i41, -, an) for alli € {0,...,n}.

¢ - —a; € D(ay, ..., a;—1, 41, ..., an) for all i € {0,...,n}.

Proof. (a)=>(b): In view of [5.1.35(i), it suffices to show —ag € D(ai,...,a,) implies —a; €
D(ag, as, ...,a,). Say —ag € D(ay,c), ¢ € D¥(as, ...,a,). Then —a; € D(ag,c), ¢c € D¥(as, ..., a,),
so —aj € D%(ag, ag, ..., an).

(b)=-(c): is immediate.

(c)=(a): since —a; € D(ag, ..., Qi—1, Qit1y .y Op), —Q; = —aiaf € Dt(aga?, ...,ai_la?,aiﬂa%, ...,ana?)
so, using the implication (a)=-(b),

2 teo 2 2y
—apa; € D*(aqas,...,anas), 1 =0,...,n.

Observe that a; € D(a;{(a3, ...,a2)), in fact, by [5.1.30(iii) and induction, a; is the only element in

cey Uy

Dt(a;(a3,...,a2)). In particular, —ag € D(—ag(a3, ...,a2)) so, by [5.1.35(iv),
—ag € Dt(alag, . ana%) D...0 Dt(alai, .y anai).

2
n

2

The entries of a1 (a2, ...,a2) ©...®a,(a, ...,a2) are a permutation of the entries of (a1a3, ..., anad) ®

. @ {ard?, ..., ana2) so, by [5.1.35(1),
2

—ag € D'(a1(a},...,a2) @ ... ® an{ad, ...,a2)).
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Thus, by [5.1.35(iv) again, —ag € D!(a}, ...,al,) where a} € D'(a;(a3, ...,a2). Since a; is the unique

ey g
element of D'(a;(a3,...,a2)), this means —ag € D¥(ay, ..., a). O

Theorem 5.1.38.

i-b€D(cpDdY)=be D((cd) @) for some d € DE(b*p).

i - If b€ D(c1o1 @ ... ® cppr) then b € D(cidy, ..., cpdy) for some d; € D (b%g;), i =1, ..., k.
Proof.

i- Let ¢ = (a1,...,a,). If n = 1, taking d = b?a; we obtain the desired. Suppose n > 2 and

let ¢ = (as,...,an). Thus b € D(ca1,caz,e), e € D(cy’ @ ). By [5.1.33(ii), b € D(cf,e),
f € DY(b?a1,b%az). Thus b € D(c({f) ® ¢') ® ). By induction on n, b € D({cd) ® 1),
d € DY (B2 f) ® b?¢'). Since b*f = f and f € D'(b*ay,b%az), this means d € D (bp).

ii - This follows by repeated use of (i).

5.2 Real semigroups

Here introduce a new class of algebraic structures dual to the category of abstract real spectra.
This structure first appear in [DP04], and was baptised real semigroups (abbreviated RS).

We realize that both ARS’s and real semigroups provides a reduced theory of quadratic forms
over rings, but the non-reduced case is still unknown. In view of this, we avoid as much as possible
the uses of the reduction axiom, and as contribution, we gave new elementary proofs of basic facts
in real semigroups.

5.2.1 Ternary semigroups

As a preliminary step, we devote some attention to the ternary semigroups, a class of semigroups
underlying the RS’s in very much same sense that the groups of exponent 2 underlie the notion of
special group.

Definition 5.2.1. A ternary semigroup (abbreviated TS) is a struture (S, -, 1,0, —1) with individual
constants 1,,0,—1 and a binary operation “” such that:

TS1 - (S,-,1) is a commutative semigroup with unity;
TS2 - 23 ==z forallxz € S;

TS3 - 141 and (—1)(-1) = 1;

TS4-z-0=0 forallz € S;

TS5 - Forallz €S, zx=-1-z=2=0.

We shall write —x for (—1) - x. The semigroup verifying conditions [TS1] and [TS2] (no extra
constants) will be called 3-semigroups.

Example 5.2.2.

a - The three-element structure 3 = {1,0, —1} has an obvious ternary semigroup structure.
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b - For any set X, the set 3% under pointwise operation and constant functions with values 1,0, —1,
is a TS.

¢ - The class of ternary semigroups is closed under direct product and subestructures.

d - Any group of exponent 2 is a 8-semigroup; the pointed group of exponent 2 with a distinguished
element —1 # 1 underlying a RSG also verifies [TS3]. Any such group G, becomes a ternary
semigroup by adding a mew absorbent element 0, i.e, extending the operation by x -0 = 0 for
x € GU{0}. Note that the set of invertible elements of a 3-semigroup is a group of exponent 2.

e - For any commutative ring A with 1, the set G4 of all functions @ : Sper(A) — 3, for a € A,
where
lifaea\ (—a)
a(a) =¢0ifacan(—a)
—lifae(—a)\a

with the operation induced by product in A is a TS.

By a subsemigroup we mean a subset closed under the operation - and containing 1. Thus,
a subsemigroup of a TS may not contain 0 or —1 and hence may not be a substructure for the
language used in A TS-morphism is a function f : (S,-,1,0,—1) — (7,-,1,0,—1) such that
f(ab) = f(a)f(b) and f(—1) = —1. A TS-character is a TS-morphism into 3.

An ideal in a semigroup S is a subset I C S such that -5 C I. An ideal is prime if it is proper
andabe l =aclorbel, foralla,beS.

Of course, given a ternary semigroup T and a subset X C T, the ideal generated by X is

[X}:ﬂ{IideaI:IDX}:{1}U{Hmai:aieX,rieTnEN}.
i=1

The basic properties of ideals holds here: intersection of ideals is an ideal, directed union of
ideals is an ideal, etc.

Lemma 5.2.3. Let I be an ideal in a TS, T, and let A be a subsemigroup of T such that INA = ().
Let J be an ideal of G containing I and mazimal with respect to being disjoint from A. Then J
is prime. In particular, if a ¢ I (by setting A = {1,a%}) it follows that an ideal mazimal for not
containing a 1S prime.

Proof. Suppose by absurd that J is not prime, i.e, that ab € J with a ¢ J and b ¢ J. Let
J1 = [JU{a}] and Jo = [J U {b}]. Since J C J; and J C Jo, by maximality of J we must have

z € ANJ; and y € ANJy. Note that = az’ and y = by’ (because JNA = (). Then zy € A and
zy = ab(z'y’) € [J U {ab}] = J, contradiction. Therefore a € J or b € J. O

Definition 5.2.4. Let T be a TS and S CT. S will be called a prime subsemigroup of T if
i - S is a subsemigroup of T containing Id(T') (the idempotents of T ).
i - SN =S is a prime ideal.

- SU=S="1T.
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The prime subsemigroups S of T' are in one-one correspondence with the T'S-characters of T
indeed, S defines a T'S-character upon setting, for x € T

lifze S\ (-9)
hs(z) =< 0ifz e SN-S
—lifxe (=9)\5S.

The following lemma gives the tool used in practice to construct T'S-characters:

Lemma 5.2.5. Let T be a TS and let I be a prime ideal of T'. Let S be a subsemigroup of T' such
that:

1. Id(THYuICS.
2. S is maximal such that SN -5 = 1.

Then S is a prime subsemigroup, i.e, S U —S =T. The TS-character hg defined by S (as above)
verifies I = hg'[0] and S = hg'[{0,1}].

Proof. Suppose that there exist € T with z, —x ¢ S. Let S} = [SU {z}] and So = [SU {—z}].
Since S € S7 and S C Sy, by maximality of S we must have a € (S1N—S1)\ and b € (SoN—S52)\I.
From (2) we have a,b ¢ SN —S. Note that we cannot either have a, —a € Sx or b, —b € S(—x). If
for instance a, —a € Sx, then a = s1x and —a = sox. Multiplying both these equalities by x, we
get ax = 5122 and —ax = sox?, both which are in S, by (1). Since x,a ¢ I, I cannot be prime.
Thus, one of @ or —a in S and the other in Sz, and similarly for b, —b. However, each of
these situations contradicts the primality of I. For illustration, say a € S, —a € Sz, b € S(—z),
—b e S. Then —ab € S, —a = s1x, —b = sox with s1,s89 € S. Multiplying these equalities given
ab = (—a)(—b) = s15922 € S, by (1). Then ab € I, but a,b ¢ I, a contradiction. O

Theorem 5.2.6 (Weak separation theorem). Let T' be a TS, I be an ideal of T, and a € T \ I.
Then:

a - There is a TS-character h of T such that h[I] =0 and h(a) # 0.

b - If, in addition, —a - Id(T) N I1d(T) C I, then there is a character h such that h[I] = 0 and
h(a) = 1.

If I is prime, in both (a) and (b) the character h can be chosen such that h=1[0] = I
The following will be used in the proof of theorem |5.2.6{(b):

Lemma 5.2.7. Let T be a TS, I an ideal of T, and a € I. Assume that —a - 1d(T) N 1d(T") C 1.
Then, for x € T,
z,—x € ldT)Ua-1dT)=x€ 1.

Proof. If z,—x € Id(T), then —r = (—x)? =2? =2z and by TS5 2 =0€ . If 2, —x € —a - 1d(T),
then z = ay?, —x = az?. Squaring both these equalities gives 22 = a?y? = (—x)? = a?22. Scaling
by a we get ay? = az?, i.e, v = —x, and hence x = 0. If x € Id(T), —x € a - 1d(T), then z = 22
and —z = ay?, so —ay? =z = 22 € —a - 1d(T) NId(T) C I by hypothesis. The remaining case is
similar. O

proof of theorem[5.2.4,.
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a_

First of all, by lemma we get a prime ideal J O I maximal for not a ¢ J. If I is itself
prime, just pick J = I. Now, let

F ={S C G subsemigroup : S 2 JUId(T') and SN (=S) = J}.

F # 0 since JUIA(T) € F. Hence, by Zorn’s Lemma there is a maximal element R € F. By
lemma there exist a character hp determined by R. This character has the properties
stated in (a), since a ¢ J = h=1[0].

As in the previous case we may assume I prime. Now, we will factory a subsemigroup S 2
{a}UTUId(T) maximal for SN —S = I. Using Zorn’s Lemma it is suffice to show that there is
a subsemigroup S’ with these two properties. We claim S’ = Id(T") U a - Id(T) U I meets these
conditions. Of course, S’ is a subsemigroup of T'. To prove S’ N —S’ = I, assume z, —x € 5'.
In the non-trivial case where z, —z € Id(T") Ua - Id(T"), our assumption and lemma entail
that x € I, as required. Since a € S\ I = S\ (—S5), we have h(a) = 1, where h is the character
determined by S.

O

Definition 5.2.8. Forc€ T, let I, = {z € T : *x = z}.

Theorem 5.2.9 (Separation theorem for ternary semigroups). Let T be a TS and let a,b € T,
a # b. Then, there is a TS-character h of T such that h(a) # h(b). In other words, the set Xp

of

mng

T'S-characters separates points (in T'). Equivalently, the evaluation map from T to 3XT s an
ective TS-homomorphism.

Proof. We consider two cases:

1. a® # b,
If a € I, and b € I,, then a?b = b and b%a = a, from which a?b? = b? = a?, contrary to this
case assumption. Assume, without loss of generality, that a ¢ I,. Let I O I, be an prime

ideal maximal for not containing a (conform lemma [5.2.3). By theorem [5.2.6(a) we get a
character h of T such that I = h=1[0]; hence h(b) = 0 and h(a) # 0.

2. a? = b2,

Let J = {z € T : ar = bx}. Of course, J is an ideal. If a € J, then a?b = ba, and hence
b> = ba. Scaling by b we get b = b = b%a = a?a = a, contrary to the assumption a # b.
Hence a ¢ J. Let I D J be an ideal maximal for a ¢ I. Then b ¢ I; otherwise, a? = b2 € I,
which implies a = a?a € I. Since I is prime, we get b ¢ I, from which —ab ¢ I. By showing
that ab - 1d(T) N1d(T) C I, theorem [5.2.6(b) applied to —ab yields a character h so that
h(—ab) = 1, which proves h(a) # h(b).

Elements in Id(7") N Id(T') are of the form aby? with aby? = (aby?)? = a®b?y?. Scaling by b
and using a? = b? gives

ab2y2 — a3y2 — ay27
a2b3y2 — a2by2 — b3y2 — byQ,

i.e, ay? = by?. Then y? € J C I, from which aby® € I, as required.
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Consider X7, the set of TS-characters of T, as a subset of 3. The set X7 becomes a closed
subset of 37, when the latter is endowed with the product topology. Hence, with the induced
topology, it is a Boolean space having the sets of the form

m

ﬁ 0 (itj €{0,1}), ti,t; €T
=1

Jj=1

as a basis of clopen sets, where [t = i] = {f € Xp : f(t) = i}, t € {—1,0,1}. This is the
constructible (or patch) topology on Xp. Thus, with the sets

n
H(ty,.otn) = (|l =1, ti €T
i=1

as a basis of clopens, X1 becomes a spectral space whose associated patch topology is as described
above.

5.2.2 Real semigroups

Here, we will enrich the language {-,1,0,—1} with a ternary relation D. In agreement with
5.1.25] we shall write a € D(b, ¢) instead of D(a, b, c). We also set:

a € D'(b,c) & a € D(b,c) AN—b€ D(—a,c) A —c € D(b,—a). (trans)
The relations D and D! are called representation and transversal representation respectivel.

Definition 5.2.10. A real semigroup (abbreviated RS) is a ternary semigroup (G, 1,0, —1) together
with a ternary relation D satisfying:

RSO - ¢ € D(a,b) if and only if c € D(b,a).
RS1 - a € D(a,b).
RS2 - a € D(b,c) implies ad € D(bd, cd).

RS3 (Strong Associativity) - If a € D'(b,c) and ¢ € D'(d,e), then there exists v € D'(b,d)
such that a € D'(x,e).

RS4 - e € D(c%a,d?b) implies e € D(a,b).

RS5 - If ad = bd, ae = be and ¢ € D(d,e), then ac = bc.
RS6 - ¢ € D(a,b) implies ¢ € D*(c?a, c?b).

RS7 (Reduction) - D!(a,—b) N D*(b, —a) # implies a = b.
RS8 - a € D(b,c) implies a> € D(b?,c?).

A pre-real semigroup(abbreviated PRS) is a ternary semigroup (G,1,0,—1) together with a ternary
relation D satisfying [RSO]-[RS6], [RS8] and

RS7’ - x € DY(0,a) & z = a.
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Note that, as the special groups, the theory of real semigroups is a (finitary) first-order theory.
Moreover, we will see later, as consequence of that every pre-real semigroups is a real
semigroup.

The definition of morphism is quite standard: f : (G,-,1,0 — 1) — (H,-,1,0 — 1) is an RS-
morphism (respectively PRS) if f : G — H is a morphism of semigroups, (i.e, f(ab) = f(a)f(b),
f(1) =1and f(0) =0); f(—=1) = =1 and a € D(b,c) = f(a) € D(f(b), f(c)) (hence a € D*(b,c) =
f(a) € DY(f(b), f(c))). The category of real semigroups (respectively pre-real semigroups) and
their morphisms will be denoted by RS (respectively PRS).

Example 5.2.11 (RS and Rings). For any semi-real ring A, let the set G 4 consist of all functions
a: Sper(A) — 3, for a € A, where

lifaca\ (—a)
ala) =< 0ifacan—a
—lifae(—a)Na.

with the operation induced by product in A is a TS. More generally, given a (proper) preorder T
of a ring A one can relativize the definition above to T, by considering functions @ defined on
Sper(A,T) = {a € Sper(A) : a 2 T}, instead of Sper(A). The corresponding ternary semigroup
will be denoted G aT.

Now, we will equip the ternary semigroup with the representation and transversal representation
relations given by:

¢ € Dy(a,

b) & Ya € Sper(A)[e(a) = E(a)E( ) =1Vb(a)e(a) = 1].
cc DY(a,b ¢

) & Va € Sper(A)[(e(a) = 0 Aa(a) = —b(a)) Va(a)e(a) = 1V b(a)e(a) = 1]
fora,b,c € A. We have that G 4 is a real semigroup. A similar definition with Sper(A) replaced by

Sper(A,T) (T a proper preordering of A) also endows the ternary semigroup G 41 with a structure
of real semigroup.

Example 5.2.12 (RS and RSG). The notion of a RS generalizes that of a reduced special group.
Given a RSG G, we adding a absorbent element 0 to give raise to a ternary semigroup G* = GU{0}.
Extending the representation relation G to G* by

{a,b} ifa=0o0rb=0

Dg-(a,b) = {Dc(a,b) uU{0} ifa,b € G,

gives a representation relation to G*. The axioms RS1-RS8 are immediate consequence of the
special group axioms SGO-SG6 plus the following property: in a RSG we have

a € D(b,c) = —be D(—a,c),
then D and D! coincide on binary forms with entries in G.

Corollary 5.2.13. There is an inclusion functor R : RSG — RS.

Proof. Follows by defining for a RSG (G, =, -1), R(G,=,-1) = (G*, Dg+, DL.,0,1,—1) and for a
SG-morphism f : (G,=q,—1) = (H,=u,—1), R(f) = f*, where f*(0) = 0 and f*(a) = f(a) for
all a € G*\ {0}. O

Proposition 5.2.14. The properties below holds in any pre-real semigroup G, for all a,b,c,d € G:
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1. a € D(b,c) & a € D'(a?b,a’c).
2. a € DY(b,c) = —b € D'(—a,c).
3. 0 € D(a,b).
4. a € D¥(b,c) = ad € D'(bd, cd).
5. d € D(ca,cb) = d = c2d. In particular, D(0,a) C {a*z : z € G}.
6. a*> € D(1,b).
7. a € D(0,0) < a=0.
8. 1€ D!(1,a).
9. D'(1,-1) = G.
10. ab € D(1,—a?).
11. D%(a,b) # 0.
12. (Weak Associativity) a € D(b,c) Ac € D(d,e) = Jz[x € D(b,d) Na € D(z,e)].
If G is a real semigroup, then:
18. 0 € D%(a,b) & a = —b. In particular, every real semigroup is a pre-real semigrouﬂ.
14. a € D(0,1)UD(1,1) = a = a?.
15. a € DY(b,b) < a=b.
Proof.
1. a € D(a,b) implies a € D'(a?b,a’c) by (RS6). Conversely, a € D'(a’b,a’c) implies a €
D(a?b,a%c) by (trans), and by (RS4) we have a € D(b,c).
2. By (trans), we have:
a € D'(b,c) & a € D(b,c) AN—b€ D(—a,c) A —c € D(b,—a)
& —be D(—a,c) Na € D(b,c) N—c € D(b,—a)
2y e D(—a,c) Na € D(b,c) N —c € D(—a,b)
& —b € D'(—a,c).
3. By axiom (RS1), 0 € D(0,0) = D(0%a,0%b). From (RS4) we get 0 € D(a,b).
4. Again, by trans, we have

a € D'(b,c) < a€ D(b,c) AN—b € D(—a,c) A —c € D(b, —a)

"B 4d € D(bd, ed) A —bd € D(~ad.cd) A —ecd € D(bd, —ad)

< ad € D'(bd, cd).

n fact, 0 € D*(a,b) & a = —b is equivalent to RS7".
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. By (RS8), d € D(ca, cb) implies al2 G D(c?a? 62b2) Since by (RS4) (c a?,c*?) C D(c?, c?),

we get d? € D(c%,¢?). Since ¢2-c? = 1-¢% (RS E| gives 2d?> = 1-d? = d?, and hence
Al =d? = A =d® = Pd = d.

Now, if x € D(0,b), then x € D(0 - b%,b - b?). Hence, the above argument gives us x = b*z.
Of course, if = € D(0,b), by RS6, zb> € D(0-b%,b-b%) = D(0,b). Therefore, D(0,b) = {b*z
z € G}.

By (RS1), a? € D(a?,a?b), and by (RS4), a? € D(1,b).

. 0 € D(0,0) by (RS1). Conversely, ifa € D(0,0) = D(0-1,0-1), then by item (5) a = a-0? = 0.

. By (RS1), 1 € D!(1,a), and by (RS6), 1 € D(1-12,a-1%) = D!(1,a).

Follow from item (1) and item (8).

Let x € G. By item (9), z € D(1,-1), and from (RS6) we get = € Dt(l 2, —1- 1‘2)
D(x?, —2?). With z = ab this yields ab € D(a?b?, —a?b?) = D((ab)?, b?); usmg (RS
we obtain ab € D(1, —a?).

bm

By the item (8), 1 € D!(a,1) and 1 € D!(b,1). By (RS3), there exist some d € D*(a,b) such
that d € D'(d, 1).

Let a € D(b,c) and ¢ 6 D(d,e). By (RS6), a € D*(a®b,a’c) and ¢ € D(c?*d,c®). Then,
a € D'a?b,a%c) and a’c € D(a*c*d,a®c®e). By (RS3), there exist x € D'(ab,a?c*d)
such that a € Di(x, aQCQe) Since by (RS4) D!(a?b,a?c?d) C D(a?b,a*c*d) C D(b,d) and
D¥(z,a%c?e) C D(z,a%c®e) C D(z,e€), we have the desired.

(=) By RST7 it suffices to prove D!(a,b) N D!(—a,—b) # 0. But 0 € D*(a,b) implies 0 = —0 €
Dt(—a, —b).

If a € D(1,1), by RS6 a € D'(a? a?), and then —a? € D!(—a,a?). On the other hand,
—a? € D(—a? a?) implies —a € D¥((—a?)? - (—a)?,(—a?)? - a) = D'(—a? a). Hence —a® €
DY(—a?,a) N D'(—a,a?®) and RS7 yields a = a?.

Next, if a € D(0, 1), by RS6 a € D*(0,a?), and then 0 € D*(—a, a?). Scaling by —1 we obtain
—0 =0 € D!(a,—a?). Hence 0 € D*(—a?,a) N D*(—a,a?) and applying again RS7 we have
a = a.

b € D(b,b) is immediate from RS1 and RS6, so we just need to proof =-. Let a € D*(b,b). In
particular, a € D(b,b), and item (5) yields a = b%a. From (2) we also have —b € D!(—a,b).
On the other hand, from —b € D(—b,a) and RS6 we get —b € D!((—b)?(—=b), (—b)%a) =
D!(—b,b%a) = D'(—b,a). This shows that —b € D*(—a,b) N D'(—b,a), and then RS7 yields
a=b.

O]

Now, we are in condition to exhibt another axiomatization for real semigroups in terms of D:
we will enrich the language {-, 1,0, —1} with a ternary relation D?. Now, we set

a € D(b,c) & a € D'(a%, a’c). (rep)

Zsetting a’ =, 0 =1, ¢ =d?, d =2, ¢ = ¢ and use RS5 on the new variables o', V', ¢, d’, €.
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Definition 5.2.15. A pre real semigroup (abbreviated PRS) is a ternary semigroup (G,1,0,—1)
together with a ternary relation D! satisfying:

DTO - a € D(b,c) if and only if a € D(c,b).
DT1 - a € D(b,c) implies —b € D'(—a,c).
DT2 - 1€ D!(1,a) for alla € G.

DT3 - a € D'(b,c) implies ad € D*(bd, cd).

DT4 (Strong Associativity) - If a € D'(b,c) and ¢ € D'(d,e), then there exists = € D'(b,d)
such that a € D'(x,e).

DTS5 - If ad = bd, ae = be and ¢ € D*(c%d, c%e), then ac = be.
DT6 - e € D¥(c?e%a, d?e?b) implies e € Dt(e%a, e?b).
DT7 - ¢ € D(a,b) implies c € D'(c%a, cb).
DTS - a € D'(a?b, ac) implies a®> € D'((ab)?, (ac)?).
DT9 - z € D!(0,a) & z = a.
A real semigroup (abbreviated RS) is a pre-real semigroup satisfying
DT10 (Reduction) - D!(a,—b) N D' (b, —a) # implies a = b.
The definition of morphism is the same. Then, we have the following lemma:
Lemma 5.2.16. The definition[5.2.10] and[5.2.15 are equivalent.

Proof. We already proof [5.2.10={5.2.15| in proposition The converse [5.2.15=1{5.2.10] is just
an application of the definition of D in terms of D!, as in ]

Corollary 5.2.17. The ternary semigroup 3 = {1,0, —1} has a unique structure of real semigroup
with representation given by:

D3(0,0) = {0};

D3(0,1) = D3(1,0) = D3(1,1) = {0, 1};
D3(0,-1) = D3(-1,0) = Ds(—1,-1) = {0, -1};
D3(1,-1) = D3(-1,1) = 3;

and transversal representation given by:

D5(0,0) = {0};
D3(0,1) = D3(1,0) = D5(1,1) = {1};
D§(0,—1) = D§(—1,0) = D§(—1,-1) = {—1};
D4(1,-1) = D4(—1,1) = 3.
Proof. Is just an analysis of cases approach for the verification of axioms RS0-RSS. O

Of course, the theory of real semigroups has the interpretation of the basic concepts and notation
of quadratic forms theory: given a real semigroup G, an n-form is a tuple ¢ = (ai,...,an). If
v = (a1, ...,ap) is a form on G, define
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e The set of elements represented by ¢ as

Dg(p) = J{D(ar,b) : b € D{as, .., an)},

with the convention that D((a)) = {b%a: b€ G}.

e The set of elements transversaly represented by ¢ as

D () = | J{D'(a1,b) : b € D¥ay, ..., an)},

with the convention that D!({a)) = {a}.

n
e The discriminant of ¢ as d(¢) = [] a;.
i=1

e Direct sum as ¢ 0 = (ay,...,an, b1, ..., bpm).
e Tensor product as ¢ ® 6 = (a1b1, ..., a;bj, ..., anby). If a € G, (a) ® ¢ is written ap.

e For forms ¢, over G, we set ¢ ~ 1) < Dg(p) = Dg(¢) and ¢ ~' ¢ & Dé(p) = DE(v)

with a subscript G, if necessary.

Proposition 5.2.18. Let G be a real semigroup and let v, be forms with entries in G. Then:

D(p) and D'(p) do not depend on the order of the entries of p, i.e, for any permutation o of
those entries, @ ~ ¢ and @ ~* ©°.

For a,c € G, a € D(¢) = ac € D(cyp) and a € D'(p) = ac € D'(cp).
a € D(cp) = a = c?a and a € D(p) = a € D¥(ap).
If o = (a1, ...,a,) and c1,...,c, € G, then D({c}ay, ...,c2a,)) C D(p).

a € D(p @) & there are b € D(p), ¢ € D(¢) such that a € D(b,c). A similar statement
holds replacing D by Dt.

If a is a coefficient of ¢, then a € D(p).

The relations ~ and ~* are compatible with the sum of forms:

1~ Y1 and @2 ~ P2 = 1 D P2 ~ P1 D Po,
and similarly for ~*.
PO~ and p® o~
a€ D(p)Abe D)) = ab € D(p®1)). A similar statement holds replacing D by D?.
Are equivalent:

1- a€ D'({ay,...,an));
2- —a; € Dt(<a1, ey A1, — Ay Ay 1, ...,an>) fori=1,...,n;

3-a€D(ay,...,an)) and —a; € D({a1,...,ai—1, —a, ajy1,...,an)) fori=1,..,n.

Forbe G andn > 1, n(b) = (b, ...,b) ~* (b).



228 CHAPTER 5. A THIRD GENERATION OF ABSTRACT THEORIES

Proof.

a - The statement for D? follows by the statement for D. Next, we wil proceed by induction on n.
If n = 2, the statement follow by RSO. Now, suppose that the statement holds for n — 1 and
let o € Sy, ¢ = (ai,...,a,). We have two cases:

Case A - o(1) =1. Let 6 = (aq, ..., an). Using the induction hypothesis we have

HI o o
D(p) = J{D(a1,b) : b e D(O)} = | J{D(ar,b) : b€ D(67)} = D(¢7).
Case B - D(ay,as,...,a,) = D(ag,ay,...,a,). The case n =2 is RS0. For n > 3 we have

x € D(ay,as,...,an) = = € D(ay,b) for some b € D(aa, ..., an)
=z € D(a;,b) and b € D(ag, ¢) for some ¢ € D(as, ..., ap).

By weak associativity|5.2.19(12), there exist y € G such that y € D(a1,c) and x € D(y, az).
Reorganizing these informations we have

y € D(a1,¢) Nx € D(y,a2) Ac € D(as,...,an) =
x € D(ag,y) ANy € D(ai,c) Ac € D(as,...,a,)] =
x € D(az,y) Ny € D(ay,as,...,an) = x € D(az,a1, ..., an).
Hence D(ay,as,...,a,) € D(ag,a1,...,a,). Now, we repeat the same argument starting
with D(ag,ay,...,a,) to obtain D(ag,ay,...,an) C D(ay,as,...,a,).

Case C - ¢ is a 2-cycle (1,4) for some ¢ > 2. Here, we have

D(ay, a2, ...,a,) = D(ag,aq, ..., an)

= J{D(az,b) : b € D(a1, a3, ..., an)}
I—i:[ U{D(GQ,b) ) S D(<a17a37 --'7an>a}
= U{D(ag,b) b € D({ai, a3, .-ai—1,01,Giy1,an) }

= D(CLQ, a;,ag, ...a;—1, 01, 41, an)

= D(ai>a27(13a ceQi—1, A1, Aj41, an) = D(@“)-

Cases A,B and C show that ¢ ~ ¢? for any transposition ¢ € S,,. Since S,, is generated by
transpositions and ~ is transitive, we conclude the desired implication.

b - We use induction on dim(p) = n. If n = 1 there is nothing to show, and if n = 2, the assertion
for D is consequence of RS0 and for D? is consequence of proposition (4) Now, suppose
that the assertion holds for n — 1 and let ¢ = (a1, ...,a,). Let a € D(p). Hence a € D(ay, z),
for some x € D(aq, ...,a,). By induction hypothesis, ac € D(aic,xzc) and zc € D(agc, ..., anc),
therefore ac € D(ayc, ...,anc) = D(cp). The assertion for D! follows by the same argument.

¢ - Induction on dim(¢) = n. For the first assertion, if ¢ = (a1), then a € D(cp) means a = b*cay
for some b € G. Then c?a = c*b?a; = cb?a; = a. If a € D(cy), the inductive definition
of representation implies that a € D(cai,z) for some x € D(cy'). By inductive hypothesis,
x = c?z. Then a € D(cay,c®z), and [5.2.14{5) yields a = c?a.
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For the second assertion, first we prove by induction on n that
a € D(ay,...,a,) = a € D'(clay, ..., c2ay,) for some cy, ..., ¢, € G.

In fact, if n = 1 there is nothing to show, and the case n = 2 is just [5.2.14(1). Now, suppose
that the claim holds for (n — 1) > 3, and let a € D(ay, ..., an).

a € D(ay,...,an) = a € D(a1,z) for some = € D(aq,...,an)

HI
= a € D'(c}ay,3x) and x € D¥(c3as, ..., ¢\ an)

so a € D¥(2a1,c2z) and 3z € Di(c3c3ay, ..., cichay), then a € D¥(c}ay, cicdas, ..., c3cla,) and
the claim is proved.

Now, for the proof of second assertion, if ¢ = (a1), then a € D(p) means a = b%a; for some
be G. Soa’a; = b%a} = b?a; = a, and by definition, a € D(a?p). If dim(p) = 2, the assertion
is axiom RS6. Now, suppose that the claim holds for (n —1) > 3, and let a € D(ay, ..., a,). By
the claim, a € D(c}ay,...,c2ay), so a € D!(c?ay,x) for some x € D!(c3as,...,c2a,). Thus
a € D(ay,z) therefore a € D(aa1,a’r). Since a’x € D'(a®c3az,...,a*c2ay), this proves

a € D'(a%a1,a’c3asy, ...,a%ca,). Now permute the entries of (a%ay,a’c3as, ...,a’c2a,) putting
a?c3ay in the first position and repeat the argument (using the fact that a?a? = a?). At the

end of the process, we shall obtain a € D*(a%ay, ..., a%ay,).

Induction on dim(p) = n. If ¢ = (a;), the definition of D({a;)) is suffice to show that
D({(c2a1)) € D({a1)). Suppose that holds for n — 1 and let ¢ = (a1) @ (ag,...,a,). Given
r € D(3ay,...,c2ay), the inductive definition of representation provides z € D(c?,a1,y) for
some y € D(c2as, ...,c2a,), and from the induction hypothesis we get y € D(ag, ..., a,). Since
y = y? -y, axiom RS4 yields x € D(ay,y), and hence x € D(yp).

Let ¢ = (a,...,ax) and ¥ = (ag41,...,an). We prove the both implications (= and <) by
induction on k:

(=)If k=1, ce D({a1)® (ag, ...,ap)) implies ¢ € D(ay,b) for some b € D(ay, ..., an), so we
can take a = a;. Now, suppose the assertion valid for £k — 1 > 2 and let ¢ € D(¢ @ ¢). Then
¢ € D(ay,d) for some d € D(¢' ® ), ¢ = (ag,...,ar). By induction, we have d € D(e, f),
e € D(¢'), f € D(¢). By weak associativity we have ¢ € D(g, f) for some g € D(ay,e). Thus
g € D(p) so we can take a =g, b= f.

(<) If k = 1 then ¢ € D(a,b) with a € D(a1) b € D(¢)) implies a = d%a; for some d € G,
so ¢ € D(ay,b) with b € D(v), hence ¢ € D(¢ @ ). Now, suppose the assertion valid for
k—1> 2 and let ¢ € D(a,b) with a € D(p), b € D(¢p). Then a € D(ay,d) for d € D(¢'),
¢ = {ag, ..., ar). By weak associativity ¢ € D(ay,e) for some e € D(d,b). By induction on k,
e € D(¢' @1). This proves ¢ € D(p @ ).

To proof the afirmation for D!, just use the same argument replacing weak associativity by
RS3.

Induction on dim(¢p) using item (e).

First, note that by item (a) and transitivity of ~ it suffices to prove the statement for ps =
19 = 0. Further, by symmetry it suffices to show D(p; @ 6) C D(¢1 @ )., which follows
immediately from item (e). The same argument works in the case of D?.
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h - The inclusion D*(p) C D'(p @ ¢) is immediate from definition of representation and item (e).
For the other inclusion we proceed by induction on dim(p) = n. If ¢ = (b) then D'(p ® p) =
D!(b,b), and the result follows from [5.2.14(15). Now, suppose that holds for n — 1 and let ¢ =
(b)®¢'. Since D! does not depend on the order of the entries, D!(p®p) = D({b,b)® (¢’ ®¢’)).
Let a € D'(¢ @ ¢). By item (e), a € D'(c,d) with ¢ € D¥(b,b) and d € D'(¢' @ ). From
(15) we get ¢ = b, and the induction hypothesis gives d € D!(¢). By item (e) again,
a € D' ().

The inclusion D(¢) C D(¢ @ ¢) follows at once from a € D(a,a) and item (e). For the other
inclusion, let a € D(¢ @ ¢). Item (c) implies that a € D*(a?p @ a?p), which — by the above —
coincides with Df(a?¢). But D!(a?¢) C D(a%p) C D(p), and so a € D(y), as required.

i - Induction on dim(¢)) = m. Let a € D'(p), and b € D'(+)). If ¢» = (c), then b = ¢, and item (b)
implies ac = ab € D'(cp) = D' (o ®1)). Now, suppose that holds for n — 1 and let ¢ = (c) @)'.
Then, b € D(c, d) for some d € D*(¢'), which frm ab € D¥(ac, ad). By induction hypothesis we
also have ad € D*(¢ ®1"). Hence ab = D((ac) ® (¢ @ ') C D¥(co @ (p @ ")) = D (p @ 1)),
as required. This fact and item (c) imply at once the same result for D.

j- (1)=(2) As the representation does not depend on the order of the entries, it suffices to
show —a; € DY(—a,as,...,a,). From a € D(ay,...,a,) we get a € D'(aj,c) for some ¢ €

D%(as, ...,ay). Then by [5.2.14(2)
—ay € D'(—a,c) and ¢ € D'(ay, ..., an),

so —aj € DY(—a,ag, ..., ay).
(2)=-(1) By symmetry, using the argument in (1)=-(2) above.
(2)=(3) Is immediate from the definition of D and D!.
(3):>(1) Since —a; € D(<ala sy Q=15 =@y At 15 -eoy an>)7
—a; = —a;al € DY aya?, ..., a;_1a2, —aa?, aiy 102, ..., anal)
so, using the implication (i)=>(ii), aa? € D!(aja?, ..., ana?), for all i = 1,...,n.

k - Induction on n, using|5.2.14(15) and [5.2.18(e).
O

Observe that the itens (a)-(g), (i) and the implications (1)<(2), (2)=(3) in the item (j) are
valid on a pre-real semigroup.

Corollary 5.2.19. The properties below holds in any real semigroup G, for arbitrary a,b,c,z,y €
G:

a-a€ D(bc)ANbce D(x,y) = ac D(z,y).
b-ac D(bc)eabe D(1,be) Aac € D(1,bc) Aa? € D(b?,c?).
Proof.

a - By assumption and by proposition |5.2.18(a), a € D(b,¢) C D(z,y,z,y) = D(z,z,y,y). By
5.2.18|(e) there are p € D(z,z) and ¢ € D(y,y) such that a € D(p,q). From proposition
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5.2.14|5) p = 2?p. Further, zp € D(2?,2%) C D(1,1), and by [5.2.14(14) zp is an idempotent.
Hence, we have
p=a’p = x(zp) = x(2*p?) = 2’p* = ap®.
Likewise, ¢ = yq?. Using RS4 we obtain a € D(p,q) = D(xp?,yq*) C D(z,y).
b - (=) Assume a € D(b,c). By RS8 and symmetry, only ab € D(1, bc) needs proof. Scaling by b
in the assumption and using RS4 we get ab € D(b?,bc) C D(1,bc).

(<) Multiplying the first conjunction on the right-hand side by b and the second by ¢, gives
ab? € D(b,b%c) and ac® € D(c,bc?). By RS4 both these sets are included in D(b,c). Scaling
a’ € D(b?,c?) by a we obtain a = a® € D(ab?, ac?). Now use item (a) to conclude the desired.

O]

5.2.3 RS-characters

Next we shall proceed to the construction of RS-characters with specific properties. These
constructions will play a key role in the next sections.

Definition 5.2.20. Let G be a PRS. A subset S C G is saturated iff for all a,b € S, Dg(a,b) C S.

If h : G — H is a RS-homomorphism, h~1[0] is a saturated prime ideal of G, and if H = 3,
then h1[{0,1}] is a saturated prime subsemigroup of G. The following lemma establishes some
consequences of the definition of saturation.

Lemma 5.2.21. Let G be a RS.

a - If I is a saturated ideal of G and ay,...,a, € I then Dg(a,...,an) C 1.

b - If S is a saturated subsemigroup of G then ay,...,a, € S then Dg(ay,...,an) C S.
¢ - For any saturated subsemigroup S of G, Id(G) = Dg(1,1) C S.

d - Any set of the form Dg(a,b) is saturated. Those of the form Dg(1,b) are, in addition, sub-
semigroups of G.

Proof. Ttens (a) and (b) follows by induction on n, and item (c) is an immediately consequence
of item (b). For the item (d), we have that Dg(a,b) is saturated by |5.2.19 m . For the secont
assertion in item (d), let =,y € Dg(a,b). By m ), 2y € Dg(1,b,b,b?). Hence by m

there are elements p € Dg(1,b) and g € Dg(b,b%) such that xy € Dg(p, q). From RS4 we get
q € Dg(b,b?) = Dg(12-b,b? - 1) C Dg(1,b). Then, saturatedness entails 2y € Dg(1,b). O

Of course, all the contents of lemma [5.2.21] holds on a PRS, except the fact that Id(G) =
D¢g(1,1).

Proposition 5.2.22. Let G be a RS.

a-If I C G is an ideal, then [I] = \J{Dg(¢) : ¢ is a form with entries in I} is the smallest
saturated ideal containing I.

b-If S C G is a subsemigroup, then [S] = U{Dc(p) : ¢ is a form with entries in S} is the
smallest saturated subsemigroup containing S.
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¢ - Let I be a saturated ideal and x € G. Then

[[TUz-G]= U{Dg(<2> @ xp) i €1 and ¢ is a form over G}.

d - Let S be a saturated subsemigroup and x € G. Then

[Suz-S] = [{Da(s,at): s,t € S}.

Proof. We shall write I(x) for X Uz - G, and S(z) for SUz - S. For A C G, the expression “form
over A” means a form with entries in A.

a- Let J =J{D(¢) : ¢ a form with entries in I}. J is an ideal containing I. If a,b € J and ¢,
are forms over I such that a € D(p), b € D(¢), then D(a,b) C D(¢ @ 1) (by [.2.18(e)) and
@ @ is also a form over I, so that D(a,b) C J. Follow by a) that any ideal containing
I also contains J.

b - The proof is similar to that of item (a). To prove that the set on the right-hand side is

multiplicative use [5.2.18[1).

¢ - We just need to prove C. It follows from item (a) that a € [I(x)] iff a € D(p) for some form
¢ over I(x). Since D(¢) does not depend on the order of the entries of ¢, there are forms
@1 over I and @2 so that D(p) = D(p1 @ xp2). Let a € D(¢p1 @ z¢2). Id dim(¢1) = 0 then
a € D(xp2) € D({0) ® x¢2), and a belongs to the right-hand side of the equation of item (c).
If dim(p2) = 0, then a € I because I is saturated and ¢, has entries in /. If both ¢;’s have
positive dimension, then a € D(b,c) for some b € D(p1), ¢ € D(zgz). Since I is saturated,
b e I, and a is in the right-hand side of the equation of item (c).

d - We just need to prove C. Arguing as in item (c), a € [S(x)] iff there are forms ¢; and @3 over
S such that a € D(¢1 @ xp2). Then, a € D(b,c) for some b € D(p1), ¢ € D(xp2). By letting
b=1,c=aif dim(p;) =0 and b = a, ¢ = x if dim(p2) = 0, and invoking saturatedness and
5.2.18|(c) otherwise, in all cases we have b € S and ¢ = x%c = x(xc). Since zc € D(z%p2) and
22 € S, 229y is a form over S and, by saturatedness again, zc € S. Then, with s = b and
t = xc, the inclusion C holds.

Note that all this also holds in a pre-real semigroup. O

Corollary 5.2.23. Let M be a multiplicative subset of a RS, G, and let I be a saturated ideal
disjoint from M. Let J be a saturated ideal containing I and mazimal for being disjoint from M.
Then J is prime. In particular, a saturated ideal maximal for not containing a given element is
prime.

Proof. Assume, towards a contradiction, that there are a,b ¢ J such that ab € J. By the max-
imality assumption, [J(a)] N M # 0 and [J(b)] N M # 0. Let x and y be, respectively, in these
sets. By proposition [5.2.22)(c) there are i,j € J and forms ¢, s such that = € D({i) & ap1) and
y € D((j) @ bp2). Hence

zy € D(((i) ® ap1) @ ((j) @ bp2)).
Since ab € J, all entries of the latter form are in J, which from, by saturatedness, zy € J. But we

also have zy € M, contradictiong that M N J = {.
For the last assertion, let M = D!((a?)) = {a?}, where a is the element of G to be avoided. [J



5.2. REAL SEMIGROUPS 233

The following lemma is the analog of Lemma for RS. This result, together with Lemma
below, are the main tools in constructing RS-characters.

Lemma 5.2.24. Let G be a RS. Let I C G be a saturated prime ideal. Let S C G be a saturated
subsemigroup mazimal for the condition SN —S = 1. Then, SU—S = G. Such an S determines
a RS-character h: G — 3, such that h=[0] = I and h=1[0,1] = S.

Proof. Assume, towards a contradiction, that there is a € G\ (S U —S). By maximality of S we
have [S(a)]N—[S(a)] 2 I and [S(—a)|N—[S(—a)] D I. Let x1,22 € G\ I be such that +z; € [S(a)]
and x5 € [S(—a)]; then —2? € [S(a)] and —22% € [S(—a)]. By proposition (d) there are
elements sq,s2,t1,to € S such that —x? € D!(sq,s2a) and —x3 € D!(t1,t2(—a)). From RS6 we
get —z3 € D(z%s1,2%s9a) and —23 € D'(z3t1, —23tsa), which from, —2?3sea € D!(z%,2%s1) and
x3taa € DY(x2, x3t1). Since a? € S, it follows that x2x2s9t2a? € SN —S = I. Since I is prime and
x1,2Z2,a ¢ I, one of sy or to must be in I. Suppose, for example, that sy € I; then sqa € I C S,
and from —z? € D(s1, s2a) we get —z% € S. Thus, 22 € SN —S = I, a contradiction. Likewise,
to € I leads to a contradiction.

Now, to finalize the proof, get h = hg as the character constructed for the Lemma [5.2.5 O

Lemma 5.2.25. Let G be a RS and let a € G. If S is a saturated subsemigroup of G mazimal

for the condition a ¢ S, then S is a prime subsemigroup. Such an S determines a RS-character
h:G — 3 such that h=1[0,1] = S and h(a) = —1.

Proof. The strategy here, is use [5.2.24| with I = SN —S.

Claim 1. —a® ¢ S. If —a® € S, then
a€D(,-1)=a=a€ D(a* -d®>)C S

a contradiction.

Claim 2. S is prime, i.e, if b,c ¢ S then bc ¢ S. For this, suppose bc € S. Since b,c ¢ S,
then by (d), there exists r,s,t,v € S such that —a? € D(r,bs) and —a? € D(t,cv). So
—a? € D¥(a®r,a?bs) and —a? € D'(a’t,a’cv), and —a®bs € D'(a? a?r) and —a’cv € D!(a?,a%t).
Then

bea’sv € DY (—a’rev, —a’cev) € DY (a?r, a*tr, a?, a’t).
Thus, bea?sv € D! (a’r,w) for some w € D(a’tr,a?,a’t). Thus w € S and —a? € D*(bca®sv,w) C

S, contradicting Claim 1.

The result now follows from Claim 2 and [£.2.24] O

5.2.4 Duality

Theorem 5.2.26 (The Duality Theorem). There is a functorial duality between the category RS
of real semigroups with RS-morphisms and ARS of abstract real spectra with ARS-morphisms.

Moreover, the duality establishes an equivalence between the categories RS and ARSP, the opposite
category of ARS.

Theorem 5.2.27. Let G be a RS and let a € G. Then:

a - If I is a saturated ideal of G not containing the element a, then there exists a RS-character h
such that h(a) # 0 and h(z) =0 for all x € 1.
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b - If S is a saturated subsemigroup of G not containing the element a, then there exists a RS-
character h such that h(a) = —1 and h(x) € {0,1} for all x € S.

Proof.

a - Using Zorn’s Lemma get a saturated ideal J containing I and maximal for the condition a ¢ J;
Jis prime (corollary [5.2.23)). Let S be the saturated subsemigroup generated by JUId(G). We
claim that SN -5 = J.

To see this, let x € SN —S; then —x? € S. By proposition |5.2.22) —2? € Dg(j,y?) for

some j € J, y € G. It follows that —z? € DL (jx?, y*z?). Scaling by y? we obtain —z?y? €

DL (jz*y?, 2%y?), and then —jz2y? € D¥(2?y?, 2%y?) = {2y}, which from 2%y? € J. Since J
is prime, we have either x € J or y € J. If y € J, then saturatedness of J and the condition
—22 € Dg(j,vy?) yield z € J, as claimed.

Let T be a saturated subsemigroup containing S and maximal for the property T'N =T = J.
By lemma [5.2.24) hr is a RS-character such that h;'[0] = J. Since a ¢ J, it follows that
hr(a) # 0.

b - Is an immediate consequence of Lemma,[5.2.25

Theorem 5.2.28. Let G be a RS, and let a,b € G. Then:
a- Ifa ¢ Dg(1,b), then there is a RS-character h € X such that h(b) € {0,1} and h(a) = —1.

b- If a®> ¢ Dg(b% c?), then there is a RS-character h € X¢ such that h(b?) = h(c*) = 0 and
h(a?) = 1.

Proof.

a - Assume that a ¢ D(1,b). Since this set is a saturated subsemigroup of G, by theorem [5.2.27|(b)
there is a RS-character h such that h(a) = —1 and h(z) € {0,1} for all z € D(1,b). In
particular, h(b) € {0,1}.

b - Assume that a® ¢ D(b?,c?). Let I be the saturated ideal generated by b and c?. If a € I, there
are elements 21, ..., Tn, Y1, ..., yx € G such that a € D(b%xy, ..., b%x,, c2y1, ..., c2yx). Squaring this
representation we obtain

a® € D(b%a?, ... b*22, Pyl ...,c2y,§) C D(b?,...,b%, 2, ....c%) C D(b*, %),

in contradiction to our assumption. Hence a ¢ I. Theorem [5.2.27(a) gives a RS-character h
such that h(a) # 0 and h(x) = 0 for all z € I. In particular, h(a?) = I and h(b) = h(c) = 0.

O

Finally, the separation result that we actually need in the proof of theorem [5.2.26|is a conse-
quence of the foregoing theorem, and takes the following form:

Theorem 5.2.29 (Separation theorem). Let G be a RS, and let a,b,c € G. Then:
a - a € Dg(a,b) iff for all h € X, h(a) € D3(h(b),h(c)).
b - a € DL(a,b) iff for all h € X¢, h(a) € D5(h(b), h(c)).
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c- Ifa#b, there is h € X¢ such that h(a) # h(b).
Proof.

a - We only need to prove the non-trivial implication <. Assume a ¢ D¢ (b, ¢). By[5.2.19(b) this is
equivalent to ab ¢ D(1,bc) or ac ¢ D(1,bc) or a® ¢ D(b?,c?). In the first case, |5.2.28)(a) yields a

character h € X such that ab = —1 and h(bc) € {0,1}. The assumption h(a) € D3(h(b), h(c))
yields h(ab) = h(a)h(b) € Ds(h(b?),h(bc)). Note that h(ab) = —1 implies h(b) # 0, which
from h(b?) = 1. Thus, we have —1 € D3(1,h(bc)) with h(bc) € {0, 1}, contrary to corollary
5.2.17l A similar argument also excludes the case ac ¢ Dg(1,bc). Finally, if a®> ¢ Dg(b?, c?),
5.2.28(b) gives a character h such that h(a?) = 1 and h(b?) = h(c?) = 0. The assumption
h(a) € D3g(h(b),h(c)) yields, then, +1 € D3(0,0), again in contradiction with corollary

b - Is just consequence of item (a), using the definition of D! in terms of D.
¢ - We consider two cases:

Case 1 - a% = b2
First remark that either a ¢ Dg(1,b) or b ¢ Dg(1,a). Oterwise, RS6 would imply a €
Dt (a?,a%b) = DL (b2,b) and b € DL (V% b?a) = DE(b%, a), which from —b? € D% (—a,b)
and —b% € DtG(a, —b), respectively. From RS7 we conclude a = b, contrary to hypothesis.
Theorem [5.2.28(a) yields a character h € X such that h(a) = —1 and h(b) € {0,1} or
h(b) = —1 and h(a) € {0,1}. In both cases, h(a) # h(b).

Case 2 - a? # b2,
In this case we note that either a®> ¢ Dg(b% b%) or b? € Dg(a?,a?); otherwise, from
RS6 we would have a? € D (a%? a?b?) and b* € DL (ab?,a%h?) and from [5.2.14(15),
a? = a®b* = b2, absurd. In either case Theorem [5.2.28(b) yields a character h so that
h(b) = 0 and h(a?) =1 or h(b) = 1 and h(a) = 0, as required.

O

We divide the assertion of theorem [5.2.26] in two minors theorems. The reason for this, is
because the functorial analysis in the next sections.

Theorem 5.2.30. Let (G,-,1,0,—1,D, D') be a RS. Let X¢ be the set of RS-characters of G and
G be the image under the evaluation map, i.e, G = {@ : a € G}, where a € 3%¢ denotes the

evaluation at a, i.e, for o € Xg, a(o) = o(a). Then (X¢g,G) is an ARS.

Proof. Verification of the axioms for ARSs becomes an easy matters once it is establishes that our
(axiomatically given) relation D¢ coincides with the representation relation Dy, defined in terms
of X¢g by the formula

¢ € Dx,(a,b) &V € Xgle(z) =0Va(x)e(z) =1V b(x)e(z) = 1], ([R])
for a,b,c € G. That is,
a € Dg(b,c) & @€ Dx,(b,0), (D)
or equivalently,

a € D& (b,c) < For every h € Xg(h(a) € Ds(h(b), h(c))).
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This condition is precisely item (a) of theorem [5.2.29] Note that the corresponding condition for
transversal representation, namely

a € D&(b,c) & a e Dy, (b,2). (DY)

follows readily from item (b) of theorem [5.2.29| and the characterization of D in corollary
Now we have:

AX1 - Follow by [5.2.29(c).

AX2 - This axiom says, in our terminology, that if S is a saturated subsemigroup of G verifying
—-1¢ 5, SU—-S =G and SN —S is a prime ideal, then there is h € X such that S =
h='[{0,1}]. This is just the last assertion of Lemma [5.2.24

AX3 - Is simply our axiom RS3. The equivalence D! is used here.

O]

Corollary 5.2.31. The correspondence (G,-,1,0,—1,D,D!) v (Xg,G) provides a functor ® :
RS — ARS.

Proof. We just need to treat about morphisms. The functor Given a RS-morphism f: G — H, its
dual ®(f) = f* is defined by composition: given o € Xp, we set f*(0) = oo f.

The map f*: (Xg,H) = (X¢g, G) is, indeed, a morphism of ARSs: for a € G, we have

ao f* = f(a); )

in fact, for o € Xpg,

(@o f*)(o) =a(f*(0)) =a(oo f) = (g0 f)(a) = a(f(a)) = f(a)(o),

and the proof is complete. O

Theorem 5.2.32. Let (X,G) be an ARS. Then the semigroup (G,-,1,0,—1) endowed with the
representation relation Dx defined by [R] above (with X replaced by X ) is a RS.

Proof. The representation relation here is
¢ € Dx(a,b) & Vz € X[e(x) =0Va(z)e(x) =1V b(z)e(z) = 1],
for a,b,c € G. Now, we will verify some axioms of RS:
RS 0 - Immediate.
RS 1 - Is just the fact that a(x)a(z) = a(x)? € {0,1}.
RS 2 - Let ¢ € Dx(a,b). Suppose that ¢(z)a(z) = 1 (the other cases are similar). Hence,
¢(x)d(z)a(x)d(z) € {0,1},
and this implies that ed € Dx (ad, bd).

RS 3 - Is just AX3.
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The axioms RS4-RS8 follows by straightforward calculation as consequence of the fact that a(x)? €
{0.1} for all @ € G and all z € X (as we make in RS2 case). O

Corollary 5.2.33. The correspondence (X,G) — (G,-,1,0,—1, Dx, DY%) provides a functor VU :
ARS — RS.

Proof. Again, we just need to treat about morphisms. We know that every ARS morphism g :
(Y,H) — (X, G) induces a RS-morphism ¢* : G — H: for a € G put

g (a) = the unique b € H such that ao g =b.

Now, the desired is consequence of making ¥(g) = g*. O

Proof of theorem [5.2.26, After[5.2.32 and their corollaries, we just need to proof that Wo® =
Idrs and ® o ¥ = Idps. Of course, from [5.2.32] and [5.2.30] is immediate that ¥ o & = Idrs and
® o U = Idrs on objects of both categories. Then, we just need to prove this on the morphisms.

Let f : G — H be a RS-morphism. We must show that ®(f*) = f, where ®(f) = f% :
(Xg,H) = (Xg,G), as defined in Let W(f*) = f’. From the definition of ¥ on morphisms
we have

o f*=f'(a) forac@.

This equality, together with (*), yields f(a) = f/(a) for a € G. Since the evaluation map a +— @ is
injective (theorem [5.2.29(c)) we get f(a) = f'(a) for all a € G, i.e, f = f'.
Let f:(X,G) — (Y, H) be an ARS-morphism. Given x € X, we have

B oW(f)(z) = B(bo f(z)) L T@) = f(a).

Here, b € H is the unique such that b = ao f and f(z) € ®(V(H)) = H. Hence, ¥ o & = Idgs
and ® o ¥ = Id grs, as desired. O

5.3 The Third Functorial Picture

At this moment, our functorial picture is like this:

PCS —=>PSG

AWR =5 Q8 —=505—=+3¢G
CSjp —= 8G ¢ PRS
RAWR RCS —> RSGC RS
e T

AOSP—— ARSP
Here SG ¢, is the category of formally real special groups and and CS, the category of formally
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real Cordes schemes. For us, CSy, is just the image of the restriction

(8G = CS) 1sgy, -

The situation in the ring-theoretic case is drastically harder than the field case. We could
observe that the axioms of real semigroups are more techinical and difficult to deal in comparison
with the special group ones. Because this, there is less intuition and less space to work. We propose
a new approach to this in the next chapter.



Chapter 6

New lands to explore

In this last chapter, we will witness which is, maybe, the most beauty aspect of quadratic forms
theory: the capacity of abstractness the main theorems of the theory. In other words,

The change of point of view again, would produce a new first-order theory of quadratic forms!

Then, over this perspective, we will present the theory of multirings and multifields and “open
the Chamber of The Secrets”!

6.1 An introduction to the Multivalued World

Here, we will present a new theory of Multirings and Multifields, created by M. Marshall and
presented to us in his article [Mar06]. Multirings are just “rings with a multivalued addition”.
With this new approach, many ideas of the ring theory can be imported. We cover and present
the entire article [Mar(6].

6.1.1 Multigroups, Multirings and Multifields

Multigroups are a generalization of groups. We can think that a multigroup is a group with a
multivalued operation:

Definition 6.1.1. A multigroup is a quadruple (G,*,r,1), where G is a non-empty set,
x:GxG—=P(G)\{0} and r : G — G are functions, and 1 is an element of G satisfying:

i-Ifz€xxythenx € zxr(y) andy € r(z) * z.
n-yelxziffr=uy.

iti - With the convention x x (yxz) = |J x*w and (x*xy)xz= |J txz
WEY*Z teExxy

zx(y*xz)=(r*xy)*zforalzx,y,z € qG.

A multigroup is said to be commutative if

w-xxy=yx*xx forallxz,y € G.
Example 6.1.2. Suppose (G, -, 1) is a group. Defining x(a,b) = {c € G :c=a-b} andr(g) = g},
we have that (G, *,7,1) is a multigroup.

239
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We have too, an another description to multigroups, due by Marshall in [Mar06]:

Definition 6.1.3. A multigroup is a quadruple (G,1I,7,i) where G is a non-empty set, 11 is a
subset of G X G x G, r: G — G is a function and i is an element of G satisfying:

I- If (x,y,2) €I then (z,r(y),x) € II and (r(x), z,y) € IL.
II - (z,i,y) €I iff x = y.

IIT - If 9p € G such that (u,v,p) € I and (p,w,x) € II then 3¢ € G such that (v,w,q) € II and
(u,q,z) €Il

A multigroup is said to be commutative if
IV - (z,y,z) € L iff (y,z,2) € II.

In fact, these definitions decribes the same object, and that connection is estabilished by the
following lemma:

Lemma 6.1.4. For any multigroup G as in the second version, we have:
a-r@i)=i.

b-r(r(e) ==

c- (z,y,2) € L iff (r(y),r(x),r(z)) € II.

d- (,z,y) el iff x =y.

e - If 3g € G such that (v,w,q) € II and (u,q,x) € II then Ip € G such that (u,v,p) € II and
(p,w, z) € IL.

f- For each a,b € G, there exists ¢ € G such that (a,b,c) € II.

Proof. a- Asi=14, (i,i,i) € Il by IL. By I, (r(i),4,7) € II and by II, r(i) = i.

b-z=a2 (z,i,2) €11 2 (r(z),z,i) e I 2 (r(r(x)),i,x) € I PE¢ r(r(z)) = .

c- (z,y,2) & (z,7(y),x) e I & (r(z),z,r(y)) e I & (r(y),r(z),r(z)) € 1L

d- Let (i,z,y) € IL

Conversely, suppose z = y.

r=y=r(@)=rly) = (ry),ir@) el

I-;(}b) (y,r(x),i) € II L (i,z,y) € IL.
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e- (u,q,a) € TS (2,7(q),u) € T2 (¢,r(x), r(u)) € IL. Then, (v,w,q) € I and (¢, r(x), r(u)) €
I1, so by axiom III, there exists t € G such that (w,r(x),t) € II and (v,t,7(u)) € II.
(w,r(z),) € TL (2, r(w),t) € T & (+(t), w, ) € II, and
(,t,r(w)) € T L (r(t), r(v),u) € TT S (u, v, () € ILL
Hence Defining p = r(t), we have (u,v,p) € IT and (p,w, z) € IIL.

f - Hence (b,r(b),i) € II and (a,i,a) € II, by (e), there exists ¢ € G such that (a,b,c) € II and
(¢,r(b),a) € II.
0

Now, let (G,*,r,1) a multigroup in the sense We can define a multigroup (G,IL,, 1)
taking i = 1 and I, = {(a,b,c) : ¢ € a * b}. The validate of the axioms LII, III (and IV) for
(G, 11, 1) are direct consequence of axioms i,ii, iii and (iv) in (G, *,r,1).

Conversely, let (G, 11, r,i) a multigroup in the sense By (f), the function *;; : Ax A —
P(A)\ {0}, gives by *m1(a,b) = axnb:={c € G : (a,b,c) € II} is well defined. Hence, Let (G, *11,1)
with 1 = i. Then, the validate of the axioms i,ii (and iv) for (G, %, 1) are direct consequence of
LII (and IV) for (G,II,r,i). For the axiom iii, let € a *p (b*gc). Then = € a 1 ¢ for some
g €bxmc. As (b,c,q) €Il and (a,q,z) € II, by [6.1.4e), there exists p € II such that (a,b,p) € II
and (p,c,z) € Il and then, x € p* c with p € a *7 b that imply x € (a *1 b) *1 ¢. Finally, let
y € (ax*b) *pc. Soy € px*pyc for some p € a*py b, then and (a, b, p) € II and (p, c,y) € II. By III,
there exists ¢ € II such that (b,¢,q) € Il and (a,q,y) € II. Hence y € a *1 ¢ and g € b *py ¢, that
imply y € a *g1 (b *11 ¢). Therefore, (G, #11, 1) is a multigroup in the sense

From here, we will define multirings and study this structure with more details:

Definition 6.1.5. A multiring is a sextuple (R,+,-,—,0,1) where R is a non-empty set, + :
Rx R — PR)\{0}, -: RxR— R and — : R — R are functions, 0 and 1 are elements of R
satisfying:

i- (R,+,—,0) is a commutative multigroup;

it - (R,-,1) is a commutative monoid;

15 - a0 =0 for all a € R;

- Ifc€a+b, then cd € ad+ bd. Or equivalently, (a + b)d C ab+ bd. If the equality holds, i.e,
(a + b)d = ab + bd, we said that R is an hyperring.

R is said to be a multidomain if do not have zero divisors, and R will be a multifield if 1 # 0 and
every non-zero element of R has multiplicative inverse. We will use two conventions: of ZZ W C R
andrz € R, Z4+W =He+y:zecZ,yeW}land Z+z=2Z+{z}=U{z+x:2¢€ Z}.
Example 6.1.6.

a - As in example (a), every ring, domain and field is a multiring, multidomain and multifield
respectively.
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b- Qs = {—1,0,1}E| 1s a multifield with the usual product and the multivalued sum defined by
relations
O+xz=x+0=x, for every z € Q2

1+1=1,(-1)+(-1)=-1
1+(-1)=(-1)+1={-1,0,1}

¢ - Let K = {0,1} with the usual product and the sum defined by relations  +0 = 0+ x = z,
x€ K and 14+ 1=1{0,1}. This is a multifield called Krasner’s multifield [Juni§].

Example 6.1.7. Let be V C R™ an algebraic set and A as the coordinate ring of V', i.e, the ring
R[V] of polinomial functions f : V. — R. Define an equivalence relation ~ on A by f ~ g <
f(x) and g(x) has the same sign for all x € V. Thus, Q. (A) = A/ ~ is called the real reduced
multiring. The operations are defined by:

feg+he3df,gd,HeA
such that f' =g +h', f'=f, ¢ =g, and W =h
?E:gih, —f:jf70:6’ 1:T

Taking n = 1, we have a counter-example to show that ad + bd C (a + b)d in general: x2+ 23 €
7T + 71 but 22 + 23 ¢ Z(T + 1), and this not happen because x> + 2% > 0 and x(x +1) < 0 for x
near to 0 with x # 0 (see [Mar06]).

Example 6.1.8. In the set Ry of positive real numbers, we define a7 b = {c € Ry : |a —b| <
¢ <a-+b}. We have that Ry with the usual product and <7 multivalued sum is a multifield, called
(real) triangle multifield [Virl(]. We denote this multifield by TR4. Note that a7 0 = {a} and
avva={r Ry :|z| <a}.

We have some different ways to generalize this construction. If (F,<) is an ordered field,
we can define the triangle multifield TF = (Fy,~/,-,0,1), by the same prescription, a 7 b =
{ce Fy :|la—bl <c<a+b}. Here, Fy = {a € F :a > 0}. If (R,P) is an ordered ring
with supp(P) = {0} (for example, Z), we can define the triangle multiring TR = (R+,v/,-,0,1),
avb={ce Ry:|la—0b <c<a+b}. Again, Ry ={z € R:xz>0}.

Example 6.1.9. Let n € N and define X,, = {—n,...,0,....n}. We define + : X,, x X;, —
P(Xn) \ {0} by:

{sgn(ab) max{Jal, [Y}} #f a,b # 0
{a} ifb=0

{b} ifa=0

{—a,...,0,....,a} if b= —a

and - : X, x X, = P(X,) \ {0} by:

a+b=

b sgn(ab) max{|al|, |b|} if a,b# 0
a-b=
0ifa=0o0rb=0

We will verify that (X,,+,-,0,1) is a multiring.

i - By construction, a+b=>b+a, a+0={a} and 0 € a — a for all a,b € X,,.

! According Marshall’s notation in [Mar06].
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ii-d€a+bsbed—a: We divide the proof in cases. Let a # —b and suppose without loss of
generality that |a| < |b|. Thus a+b = {b} and a,b € Xp =b—0b. Ifa=—-bandd € a —a
then |d| < |a|. Then a € a+d and —a € —a + d. This proves =. For the converse <, just
rewrite the above argument.

iii - (a+b)+c=a+ (b+c): Again we divide in cases. We suppose without loss of generality that
a,b,c#0. Ifa# —band b # —c, (a+0b) +c=a+ (b+ ¢) = {sgn(abc) max{|al, |b],|c|}}.

Now let a = —b. We want to prove that (a —a) +c=a+ (—a+c). If la] <|c|, (a —a)+c=
Xo+te={c}anda+ (—a+c)=a+c={c}. If|c| <|a|, then (a —a)+c=Xo+c=X,
and a+ (—a+c¢) =a—a= X,. The case b= —c is analogous.

v - Again, by construction (X, -, 1) is a commutative monoid and a -0 =0 for all a € X,,.

v - d(a+b) Cda+db: If d =0 there is nothing to prove. Let d # 0. If a # —b, suppose without
loss of generality that |a| < |b|. Then a+ b= {b} and d(a + b) = {db} = db + db.

Now let a = —b. We have two cases:
(a) |d] < la|: since da = sgn(da)|a|, we have da—da = X4, = X, and d(a—a) = dX, C X,.
(b) |d| > |a|: since da = sgn(da)|d|, we have da —da = X4, = X4 and d(a —a) = dX, C Xg.

Thus X,, is a multiring (that is not a hyperring if n > 1!). In fact, X,, is a real reduced multiring
for alln > 1. Now define Xy = |J X,. Xy is a real reduced multiring too, and we can think that
neN
this is a “graded multiring”.
Lemma 6.1.10. Let F' be a multifield. Then (a + b)d = ad + bd for every a,b,d € F'.

Proof. We have (a + b)d C ad + bd already. For the other inclusion, if d = 0, it is done. If d # 0,
we have:

(ad +bd)d™* C (ad)d™ + (bd)d™' = ad + bd =
ad + bd = [(ad + bd)d"']d C (a + b)d.

Now, we treat about morphisms:
Definition 6.1.11. Let A and B multirings. A map f: A — B is a morphism if for all a,b,c € A:
i-c€a+b= f(c) € fla)+ f(b);

i - f(—a) =—f(a);
iii - f(0) = 0;

w - f(ab) = f(a)f(b);
v- f(1)=1.

For multirings, there are various sorts of “substrucutre” that one can consider. If A, B are
multirings, we say A is embedded in B by the morphism ¢ : A — B if ¢ is injective. We say A is
strongly embedded in B if A is embedded in B and, for all a, b, ¢ € A, 1(c) € v(a)+pL(b) = ¢ € a+ b.
We say A is a submultiring of B if A is strongly embedded in B and, for all a,b € A and all ¢ € B,
c € u(a)+ptb) = c € 1(A). Note that in the rings case, these all definitions coincide.
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The category of multifields (respectively multirings) and theirs morphisms will be denoted by
MUF (respectively MR).

Some of the properties of rings morphisms are not extend to multirings morphisms. Next, are
some counterexamples:

Example 6.1.12.

a- Let f: A— B be a multiring morphism. Define

Ker(f) :={a€ A: f(a) = 0}.
Ker(f) is a submultiring of A.

b- Let f: A — B be a multiring morphism. If f is injective, them Im(f) := {f(a) : a € A}
is embedded in B, but is not a strong embedding and Im(f) is not a submultiring of B in
general. For example, let R be a ring and define a very trivial multioperation x by a *0 = {a}
foralla € R and axb = R if a,b # 0. (R,*,-,0,1) is a multiring, and considering R as a
multiring, the embedding (R,+,+,1,0) — (R, *,-,0,1) is a bijective multiring morphism that is
a strong embedding but (R,+,-,1,0) is not a submultiring of (R, *,-,0,1). If we consider K as
in[6.1.6(b), the inclusion K < (R,*,-,0,1) is a multiring morphism that is an embedded and
s not a strong embedding.

c-Let f: R — Q2 be f(x) = sgn(x), (with convention that sgn(0) = 0). f is a multiring
morphism, but f is not injective and Kerf = {0}. Also R/Kerf is not isomorphic to Q3.

d - The inclusions functions Q2 — R and TRy — R are not multiring morphisms.

e - The inclusion function v : K — Q2 (K as in[6.1.6(b)) is not a multiring morphism.

6.1.2 Commutative Multialgebra

In the sequel, we will extend some terminology of commutative algebra from multirings and
multifields. As expected, many concepts such that morphisms, ideals, fractions and localizations
has a natural generalization for multirings. We treat of them and explain some pathologies that
appears in the multivalued world.

Definition 6.1.13. An ideal of a multiring A is a non-empty subset of A such that a+a C a and
Aa = a. An ideal p of A is said to be prime if 1 ¢ p and ab € p = a € p orb € p. An ideal m is
mazimal ifm CaC A=a=mora=A. We will denote Spec(A) = {p C A:p is a prime ideal}.

With the notion of ideal, we can define some new multirings structures with the language of
commutative algebra in mind:

Definition 6.1.14.

a - If {A;}ier is a family of multirings, then the product I;crA; is a multiring in the natural
(componentwise) way.

b- Let a C A an ideal. Elements of Aja are cosets a = a+a, a € A. We define a multiring
structure on Afa by a+b={¢:c € a+b}, —a= —a, the zero and the unit element of A/a
are 0 =0 and 1 = 1 respectively and mutiplication on A/a is defined by ab = ab.
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c- Let S be a multiplicative set in A. Elements of S~'A have the form a/s, a € A, s € S,
a/s = b/t iff atu = bsu for some u € S. 0 =0/1, 1 = 1/1 and the operations are defined by
(a/s) - (b/t) = ab/st, and c/u € a/s + b/t iff cstv € atuv + bsuv for some v € S.

d - If D is a multidomain, we define the multifield of fractions ff(D) := (D \ {0})~!D.
Now, we present a construction that will be used several times below:

Definition 6.1.15. Fizx a multiring A and o multiplicative subset S of A. Define an equivalence
relation ~ on A by a ~ b iff as = bt for some s,t € S. Denote by a the equivalence class of a and
set A/mS ={a:a € A}. Defininga+b = {¢:cv € as + bt, for some s,t,v € S}, —a = —a, and
@b = ab we have that (A/,S, +,-,—,0,1) is a multiring, called the Marshall’s quotient of A by
S. When A is a multifield and S =Y A*2, we will denote A/, >, A*? = Qred(a)-

Let S be a non-empty subset of a multiring A. We define the ideal generated by S as
(S):=(NaC Aideal: S Ca}. If S={ay,...,a,}, we easily check that

(a1, ..y apn) = ZAal + o+ ZA”’ where ZACL = U {a+...+a}.

nzl . times
If A satisfy the second-half distributive, then Y Aa = Aa.
Lemma 6.1.16.
a - An ideal p of a multiring A is prime iff A/p is a multidomain.
b - An ideal m of a multiring A is mazimal iff A/m is a multifield.
¢ - Bvery ideal maximal is prime.
Proof. The proof is the same of the ring case. O

We cite the following proposition:

Proposition 6.1.17. For any multiring A, Spec(A) has a natural topology giving it the structure
of a spectral space [Hoc69]. Basic open sets have the form D(a) := {p € Spec(A) : a ¢ p}.

We do not deal with spectral spaces here, but there is an excellente and recent book about this
subject [DST19].
6.1.3 Ordering Structures and Artin-Schreier

The standart Artin-Schreier theory (as presented in chapter 2) can be extended to the multifield
theory.

Definition 6.1.18. Let F' be a multifield. A subset P of F is called an ordering if P+ P =C P,
P.-PCP,PU—P=F and PN—P = {0}. The real spectrum of a multifield F', denoted Sper(F),
1s defined to be the set of all orderings of F'.

Proposition 6.1.19. Sper(F) has a natural topology giving it the structure of a Boolean space.
The sets U(a) := {P € Sper(F) :a ¢ P}, a € F, are a subbasis for the topology.

Proof. Analogous to proposition O
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Definition 6.1.20. A preordering of a multifield F is defined to be a subset T of F satisfying
T+TCT, T-TCT and F? CT. Here, F? :={a® : a € F}. A multifield F is said to be real if
~1¢ > F2 If F is real, then —1 # 1. A preordering T of F is said to be proper if —1 ¢ T.

Lemma 6.1.21. Suppose F' is a multifield with —1 #£ 1. For a preordering T of F', the following
are equivalent:

1 - T 1is proper.

i - T#F.
Proof. (i) = (ii) is just the definition. For (i7) = (i), suppose that —1 € T and let a € F. If a =0
then a € T. Suppose a #0 . Fixbe 1+a. Thenb’> €l +a+a+a? sob’>cl+u+a’ u€a+a.

ThenuGbQ—l—aQGT. u/a €1+1,s0u/aeT. Since —1 # 1, u # 0 and T is a subgroup of
F, then a/u = (u/a)~! € T. Hence a = (a/u)u € T. O

Lemma 6.1.22.
a - A preordering which is maximal and proper is an ordering.
b - F has ordering if and only if F' is real.

Proof. a - Let P be a preordering of the multifield F' which is maximal and proper. If a € F', then
P —aP is also a preordering. If —1 € P—aP, then there exists s,t € P such that —1 € s—at. If
t =0, then —1 = s € P, a contradiction. Thus ¢t # 0. Then at € 1+s,s0a € 1/t+s/t C P. If
—1 ¢ P —aP, then by maximality of P, —a € P. This proves that PU—P =F. If s € PN—P,
s# 0, then s = —t € P, so —1 = s/t € P, contradiction. This proves that P N —P = {0}.

b - By Zorn’s lemma, every preordering is containing in an ordering. This fact with the item (a)
proves the desired.
O

For a preordering T of F', we will denote by X7 the set of all orderings of F' with T' C F.

Proposition 6.1.23. Let F' be an multifield and T a proper preordering of F. Then T = () P,
PGXT
where X7 = {P € Sper(F) : T C P}.

Proof. The inclusion “C” is immediate. For the inclusion “2” fixa € F, a ¢ T. Then T'—aT is a
proper preordering of F' (the argument is the same of . By the Zorn’s lemma, there exists
a maximal and proper preordering P such that T'— aT C P. By P is an ordering, and
—a€P,soa¢ P. O

6.1.4 Real Reduced Multifields

Consider the multifield Q2. {0, 1} is an ordering on Q2. For any ordering P on a multifield F,
Qp(F) = F/mP = Q2 by a unique isomorphism. Orderings of a multifield F’ correspond bijectively
to a multiring homomorphism o : F — Q2 via P = o~ 1({0,1}).

Proposition 6.1.24. For a real multifield F are equivalent:

a - The multiring morphism F — Qyeq(F') is an isomorphism;

b- Y F?=1{0,1};
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c-Forallac F,a®>=aand (a€1+1)= (a=1).

Proof. (a)<(b) Is just the general fact that if o : ' — K is a morphism of real multifields, then
o (X F?) C Y K? and that Y Qeq(F)? = {0,1}.

(a)=(c) Qreq(F) already satisfy a®> = a for all @ and 1+ 1 = {1}.

(c)=(b) We have a® =1 for all @ # 0 and 1+ 1+ ... + 1 = {1} by induction on n. It follows

n

that >° F? = F? = {0,1}. O

Definition 6.1.25. A multifield F' is said to be real reduced if satisfies the equivalent conditions
of proposition [6.1.2].

A morphism of real reduced multifield is just a morphism of multifields. The category of real
reduced multifields will be denoted by MUF cq.

Corollary 6.1.26. A multifield F is real reduced if and only if a® = a for all a € F and a €
1+1=a=1.

Proof. (=) is already done. For (<), by proposition is suffice to prove that F' is real.
Therefore, suppose that a® = a for alla € F anda € 1 +1 = a = 1. Then Y F? = {0,1}. If
—1€{0,1}, then —1 =0,s0 1 =00or =1 =1,s00 € 1+ 1 = {1}. In both cases, we conclude that
1 = 0, contradiction. Thus —1 ¢ > F?, then F is real. O

For any proper preordering T of a real reduced multifield F', Q7 (F) is a real reduced multifield.
In particular, Q,eq(F') is a real reduced multifield. If p : F; — F5 is a multiring homomorphism
of real multifields, then p induces a morphism Qcq(F1) — Qred(F2). In this way, Q,eq defines a
functor (a reflection) from the category of real multifields onto the subcategory of real reduced
multifields.

Proposition 6.1.27. Let F' be a real reduced multifield, T = EFQ. For any a,b € F,
(a+b) = (Ta+Tbh)* ={ce F:Yo e Sper(F), o(c) = o(a), or o(c) = o(b)}.

Proof. Since F is a real reduced multifield, 7' = {0, 1}, so Ta+Tb = {0, a,b}U(a+b). In particular,
F=T-T={0,1,-1}U(1—1). To prove (a+0b)* = (T'a+Tb)*, it remais to show a,b € a+b. By
symmetry, it suffices to show a € a+b. If a # +b, then b/a # +£1sob/a € 1—1,1i.e, b € a—a and so
a€a+b Ifa=0b,1€l14+1=a€a+a=a+b,andifa=—-b, —b€ —b—b=a € a—b=a € a+b.
Therefore (a + b)* = (T'a + Th)*.

If c € Ta+Tb, then o(a) = o(b) implies that o(c) = o(a). Thus o(c) = o(a) or o(c) = o(b) for
any o € Sper(F'). Conversely suppose this holds for any o. Then o(b/a) = 1 implies o(c/a) =1
for any o, so by proposition ¢/a € T+ T(b/a). Multiplying by a, this yields ¢ € Ta+Tb as
required. O

Real reduced multifields have a natural representation in terms of functions:

Theorem 6.1.28 (Local-Global principle). For any real reduced multifield F, the natural embed-

ding F' — prer(F) s a strong embedding.

Proof. Let F be a real reduced multifield and T = Y F? = {0, 1}. By proposition [6.1.23} {0,1} =
Npe Xr P (in other words, 1 is the unique element that is positive in all orderings). Hence, if
o(a) = o(b) for all ¢ € X7, then ab is positive in all orderings, so ab = 1 and as a? = 1, we have
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B .. . Sper(F) .
a = b. Therefore, the multiring morphism from F to Q5 defined by a — (o(a)) is
injective.
It remais to show that if o(c) € o(a) 4+ o(b) for all o € Sper(F) then ¢ € a +b. If a = 0, then
o(c) = o(b) for all 0 € X7, so by the argument above. b = ¢. Similarly, if b = 0 then ¢ = a and if
¢ =0, then b = —a. Suppose now that a,b, ¢ are not zero. Then ¢ € a+b by proposition[6.1.27 O

ceSper(F)

In particular, for any real reduced multifield, Sper(F') separate points of F and c€ a+b C F
if and only if, for every o : F' — Q2, o(c) € o(a) + o(b).

6.1.5 The Positivstellensatz

We define the real spectrum of a multiring and prove an abstract version of the positivstellen-
satz.

Let A be a multiring. A subset P of A is an ordering if P+ P C P, PPC P, PU-P=A
and PN —P is a prime ideal of A (called the support of A). Orderings of a multiring A correspond
bijectively to multiring homomorphisms o : A — Qo via P = ¢71({0,1}). For a prime ideal p of
A, orderings on A having support contained in p (resp., containing p, resp., equal to p) correspond
bijectively to orderings on the localization of A (resp., on A/p, on ff(A/p)). The real spectrum of
A, denoted Sper(A), is the set of all orderings of A.

Proposition 6.1.29. Sper(A) is endowed with a natural topology making it a spectral space. The
sets U(a) := {o € Sper(A) : o(a) =1}, a € A, are a subbasis for the topology.

Proof. Analogous to proposition O

A preordering of a multiring A is a subset T of A satisfying T+ T C T, TT C T and A2 C T.
A preordering T of A is said to be proper if —1 ¢ T. Every ordering is a proper preordering. 3 A2
us a preordering, and is the unique smallest preordering of A. A multiring A is said to be semireal
if —1¢ > A2

Fix a preordering T" of A. Define X7 := {0 € Sper(A) : o(T) = {0,1}}. A T-module in A is
defined to be a subset M of A satisfying M + M C M, TM C M,and 1 € M (so T C M).

Proposition 6.1.30. Suppose T is a preordering of A and M is a T-module in A which is mazimal
subject to —1 ¢ M. Then M N (—M) is a prime ideal of A, and M U (—M) = A.

Proof. First we show that p = M N —M is an ideal. Let M' ={a € A: (a+a)N M # 0}. Then
M’ DO M and M’ is a T-module. If —1 € M’ then (-1 —1)NM # 0, say a € (-1 —1) N M.
Then —1 € 1+ a C M, a contradiction. Thus —1 ¢ M’. By maximality of M, M = M’'. By
construction, we have p4+p C p, —p = p and Tp C p. Suppose a € A, b € p are given. Fix
c€l+a Thenc?cl+a+a+a? soc?€l+d+a?forsomedea+a. Thendec?—1—a?,
sodb € c?h—b—a’hCp C M. At same time, db € (a + a)b C ab + ab. This proves ab € M’ = M.
A similar argument shows that ab € —M. Thus ab € M N —M = p. This proves that p is an ideal
of A.

Next we show that p is prime. Suppose ab € p, a ¢ p, b ¢ p. Replacing a by —a and b by —b
if necessary, we can assume a ¢ M, b ¢ M. Thus —1 lies in the T-module M + > aT and also in
the T-module M + >"bT. Then —b% € Mb? + > ab®*T C M (using the fact that ab € p), so b2 € p.
Writing —1 € ¢+¢, g€ M, c€ > bt;, t; € T, we have —c € 1 +¢q, s0 2 € 1 + ¢+ q+ ¢ on the
other hand, ¢? € Zb2titj C p. This implies —1 € —c? + ¢ + ¢+ ¢*> C M, a contradiction. This
proves that p is a prime ideal.
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Finally, we prove that A = M U —M. Suppose a € A with a ¢ M and a ¢ —M. Then
—1€ M+ > aT and —1 € M — Y aT. Multiplying by a?, and noting that a (3" aT) C T, this
yelds —a? € M +t1a — a? and —a® € M — ta, for some t1,ty € T. Then —tia € a®> + M C M, and
toa € a®> + M C M, so titaa € p. This is not possible. If either of ¢; or s is in p, then —a? e M,
so—leM+Yal =a€-M+>(-a®)T,and -1 € M - > aT = —a € M + > (—a®)T, then
a€p. Ifa€p,then a € M (and also a € —M), which contradiction our assumption. This proves
A=MU-M. O

Corollary 6.1.31. Sper(A) # 0 if and only if —1 ¢ >_ A% For a preordering T of A, X1 # 0 if
and only if T is proper.

Proof. The first assertion follows from the second. If X7 # () then clearly T is proper. Suppose
now that T is proper. Use Zorn’s lemma to choose a maximal proper preordering P in A with
T C P, and a P-module M of A maximal subject to —1 ¢ M. If P # M then for any a € M \ P,
P+ > aP is a preordering and P + Y aP C M, so P + > aP is proper. This contradicts the
maximality of P. It follows that P = M. Proposition implies that P is an ordering. O

For a fixed preordering T' of A we have a multiring homomorphism A — Qg( T (the product
multiring), given by a — @, where @ is defined by a(o) = o(a) for all o € Xp.

Proposition 6.1.32. Suppose c,d € A. Thene > 0= d = 0 holds on X7 (i.e, o(c) >0 = o(d) =
0) if and only if —d?* € T+ A%c for some integer k > 0.

Proof. (=) Let B = S7'A, T' = S7'T, where S := {d?* : k > 0}, and consider the T-module
T + Y A%c and the T'-module T' + Y B?%c. If —SN (T + Y. A%c) = ), then —1 ¢ T' + 3" B2,
so there is a T'-module M in B containing 7" + > B2¢ and maximal subject to —1 ¢ M. By
proposition p:= M N —M is a prime ideal. Also, T" C M, so (T" +p) N (=T" +p) = p.
It follows that the preordering 7" := {(a + p)/(b+p) : a,b € T", b ¢ p} is a proper preordering
in the multifield F := ff(A/p). Since d ¢ p (d is invertible in B), it follows from our assumption
that ¢ +p €¢ P for all orderings P of F containing T”. According to proposition this
implies that ¢+ p € —T”. This yields elements s,t € T" + p with s,¢ ¢ p such that —sc = ¢. Then
stcT' +pC M and —st =s?ce > B?>cC M, sostc MN—M = p, a contradiction.

(«=) We already know that o(d?*) > 0 for all ¢ € Xp. If —d? € T+ A%c, then —o(d**) >0
for all o € X7. Hence o(d?*) = —o(d**) = 0 for all ¢ € X, and this implies that o(d) = 0 for all
o€ Xr. ]

Corollary 6.1.33.

a-a=0 on Xr if and only if —a®* € T for some k > 0.

b-a=1on Xt if and only if -1 € T - A%a.

c-a>0 on Xp if and only if —a®* € T — 3" A%a for some k > 0.

d- Fizacb®+c% Thenb=¢ on Xr if and only if —a®* € T — 3" A%bc for some k > 0.

Proof. Apply proposition [6.1.32] as follows: (a) take ¢ = 0, d = a. (b) Take ¢ = —a, d = 1. (c)
Take ¢ = —a, d = a. (d) Take ¢ = —bc, d = a. O
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6.1.6 Real Ideals

We indicate briefly how the theory of real ideals and real prime ideals extends to multirings.
An ideal a in a multiring A is said to be real if (3" a?) Na # 0 = a; € a for each i. Every real
ideal is radical in the sense that a®> € a = a € a, i.e, a is the intersection of prime ideals of A. The
converse is not true.

Proposition 6.1.34. For a prime ideal p in a multiring A, the following are equivalent:
a - p is real.

b - The residue multifield ff(A/p) is real.

¢ - p is the support of some ordering of A.

Proof. (a)=(b) If —1+p e > a?+p,then 0€ 1+ > a? +p, and (14> a?)Np # 0. As p is real,

1 € p, contradiction. Then —1 ¢ >"(A/p)?, and therefore —1 ¢ > ff(A/p)>.
(b)=(c) By proposition ff(A/p) has an ordering P. Let P = {a;, b; : a;/b; € P} and
Q= q*1[13], where ¢ : A — A/p is the canonical projection. Then @ is the desired ordering.
(c)=>(a) Is just the fact that an ordering P contains Y A2. O

Definition 6.1.35. The real radical of an ideal a in A is
Va:= {aGA:EIbi € A and k > 0 such that <a2k+2b?> ﬂa%@}.

Proposition 6.1.36. {/a is the intersection of all real prime ideals of A containing a.

Proof. The inclusion C is immediate because {/a is real. For D, we use corollary (a). Suppose
that a € p for each real prime ideal p with a C p. Consider T' = Y A2 + a (the preordering in A
generated by a). Then @ = 0 on X7 so, by corollary (a), —a®* € T for some k > 0. Then
(a?* 4+ 3°b2) Na # 0 for some bj, and a € {/a. O

Proposition 6.1.37. For an ideal a of a multiring A, the following are equivalent:

a - a is real.

b- {a=a.

¢ - a is the intersection of real prime ideals.

d - a s radical and every minimal prime ideal over a is real.

Proof. We already have (a)<(b), and (b)<(c) is consequence of proposition If a is radical,
then a is the intersection of the minimal prime ideals over a, so (d)=-(3). It remains to show that
(¢c)=(d). Suppose q is a minimal prime ideal over a which is not real. Thus, for every real prime
ideal p of A which a C p, there exists a, € p such that a, ¢ q. By the compactness of Sper(A) in
the patch topology, there exist finitely many elements a1, ...,a, of A such that a; ¢ q for each i,
and for each real prime ideal p with a C p, a; € p for some i. Let a =ay - ... - a,. Then a € p for
each real prime ideal p containing a so, by (c), a € a. This contradicts a ¢ q. O

Definition 6.1.38. A multiring A (with 1 # 0) is said to be real if the ideal {0} is real.

If a is a real proper ideal of A, then A/a is real. In particular, if —1 ¢ > A2, then A/ §/{0} is
real.
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6.1.7 Real Reduced Multirings

We assume that A is a multiring with —1 ¢ > A% and T is a proper preordering of A. We
use the notation of section 8.4, where we define the multiring homomorphism A — Qg( T given by
a +— a, where @ is defined by a(c) = o(a) for all 0 € X7. We want to prove that the image of A
in Qg( T is a multiring which is strongly embedded in Qg( 7. Now, we will introduce some notation:

Definition 6.1.39. For ay,...,a, € A, we define the value set of ¢ = (ay,...,a,) to be
D(8) = D(ay, ..., ap) = {B be> Tay+ ..+ ZT%} .
We say that b is represented by ¢ if b € D(¢).

Lemma 6.1.40.

i-D(@={ba:beAy={la:tcAT>0}=
{b: for each o € Xt either b(c) = 0 or a(o)b(c) > 0}.

ii - D(a,b) = {¢: for each o0 € Xr, either ¢(o) =0 or a(c)é(a) > 0 or b(o)e(a) > 0}.

it - If n >3, D(ay,...,a,) = U D(ay,¢).
¢eD(aa,...,an)
i - D(ay,...,an) depends only on Gy, ...,a, (not on the particular representatives ay, ..., an).

Proof. i- Is immediate from definition of D(a).

ii - Ifc €Y. Ta+) Th,then c? € Y Tac+) The. Follow this, that for any o € X7, either ¢(c) =
0 of one of @(c)e(c),b(o)e(o) is strictly positive, so € belongs to the second set. Now pick ¢
such that ¢ belongs to the second set. Denote by A’ the localization of A and the multiplicative
set S = {c?*|k > 0} and let T be the preordering in A’ defined by 7" = {t/2% : k > 0}. Let
a' = ac, b = be. On Xqv_sqqr, b > 0, s0 by corollary (b), —1eT' =X T'd - A”.
Multiplying by ™!, m sufficiently large, —c*"*! € Tc — > Ta — > Th. This yields ¢; €
(3> Ta+ > Tb) N (*F! + Te). Tt follows that ¢ = ¢; € D(a,b).

iii - This folloes from (ii) by induction. Note that D(a,¢) depends only on ¢, not on the particular
representative of c.

iv - For n = 1 and 2, this is immediate from (i) and (ii). For n > 3, it follows by induction on n
using (iii).

O
Lemma 6.1.41. For ag,...,a, € A, the following are equivalent:
1 - There exists a’i € A such that a/; = a@; and 0 € a'o +..+a,.
it - —a; € D(@1, ...y @j—1, Qg 1, -y Gp) fori=0,...,n.

Proof. (i)=(ii) By symmetry, it is suffice to show —ay € D(ai, ..., @,). Since 0 € ag + ... + aj,,
—ap € a} + ... + ay, s0 @y = d'o € D(d'1,...,a"y) = D(ay, ..., @), using lemma |6.1.40((iii).

(ii)=(i) We have a; with a’; = @; such that 0 € a;+>,,; >-Ta;. Then0 € 0+...4+0 C 371 ;(a; +
D it ;Taj) = Y olal + > Ta;), so there exist a € a; + > Ta; such that 0 € af + ... + al..
Hence a”; = @;. ]
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Denote the image of A in Qg(T by Qr(A). Addition on Q7 (A) is defined by a+b := {¢ : ¢ € a+b},
@b := ab, —a := —a. The zero element of Q7 (A) is 0.

Proposition 6.1.42 (Local-Global principle). Let A be a multiring with —1 ¢ >. A? and T a
proper preordering of A. Then:

i - Qr(A) is a multiring.
it - Qr(A) is strong embedded in Qg(T
Proof.

i - Everything is straightforward calculations except the associativity. Let x,u,v,w,p € A such
that p e u+7v and T € p+w. Then T € D(p,w) and p € D(u,v), so T € D(u,v,w). Also
—w € —T+p,so —w € D(—Z,p), i.e, —w € D(—Z,u,v). Also —u € —p+7v and —p € —T+w,
so —u € D(—p,v) and —p € D(—7,w) i.e., —u € D(—7,v,w). According to lemma
this implies there exist z/,u/,v,w’ € A such that o/ = 7, =%, v = 7, w = W and
2 eu +v +w'. Pick ¢ € v +w' such that 2’ € v’ + q. Then@eﬁ—i—@ and T € u+q.

ii - Let a,b,c € A. According to lemma 6. 1 41 c
—b € D(—¢,a@). According to lemma ii),
or ¢(o)b(o ) > 0 or a(o)b(c) < 0 or E( ) =

c(o) € a(o) + b(o).

ca+biff e € D(@b), —a € D(—¢,b) and
this occurs iff for all o € X, ¢(o)a ) >0
b(o) = ¢(o) = 0, i.e., iff for all 0 € X7,

O]

The real spectrum of Q7 (A) is naturally identified with X7. Now that we know that addition is
a well-defined associative operation on subsets of Q7 (A), we have another more intrinsic description
of value sets:

Corollary 6.1.43. Let T={t:tcT}={t:t€ A, t>0}. Then:
-Tay+.+Ta,={b:b€>. Tay + ...+ > Tay,}.

ii-0€a+..+a, & —a; € Z#iTﬁj, for i = 0,...n < there exists ay,...,a, such that
0O€a) +..a, anda, =a;, 1 =0,...,n

Proof. (i) is direct consequence of lemma [6.1.40| and (ii) is direct consequence of [6.1.41 O

We restrict our attention now to the case where T' = >~ A? and consider the multiring morphism
a — a from A into QSper( ). We denote Qs 42(A) by Qrea(A) which we refer to as the real
reduced multiring associated to A. The multirings A such that the morphism A — Q,¢q(A) is an

isomorphism are obviously of special interest.

Proposition 6.1.44. For a multiring A with —1 ¢ >" A2, the map a + @ from A onto Qeq(A) is
an isomorphism if and only if A satisfies the following properties:

a-a3:a.

b - a+ab? = {a}.
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¢ - a® + b? contains a unique element.

Proof. (=) By construction we have (a) and (b) (since a+a = @ and ?=Tord =0in Qrea(A)).
For (c), if ¢ € a2 +b?, then ¢ € (a? +b?)(a? +b?) C a +a?b? + a?b? +b* = (a® + a?b?) + (b? + a?b?).
Since a? + a?b? = {a?} and b? + a?b? = {b?}, this implies ¢ € a® + b?. Consequently, ¢? = c,
i.e., the unique element of a? + b? is necessarily a square. It follows by induction that, for any
a1,...,an € A, a2+ ...+ a2 contains a unique element, which is a square. In particular, > A? = A2

(<) Let T = Y A% = A% suppose that @ = b. Let ¢ € a® + b%. Thus —c?* € A2 — " A%ab.
Since ¢ = ¢, ¢ = ¢?. Thus, there exists d € 3. A%ab with d € 2 + A2 ac € a(a® + b?) C
a®+ab? = a+ab? = a, so ac = a. Similarly, bc = b and cd = c. Thus, ad = (ac)d = a(cd) = ac = a
and, similarly, bd = b. Say d € " e?ab. Then ab = abd € 5 e?a?h? C A%, This implies ab € A2, so
ab = a®b®. Thus, a? = a’d € Y e?a®b = 3 e?ab = Y €2a?b? and, similarly, b* € 3 e2a?b?. Since
>~ e2a?b? is a singleton set, this implies a = ab = b?. Finally,

a = a’ = ad® + ab® = a(ab) + ab® = a*b + ab® = (ab)b + ab® = (ab)b = b*b = b> = b,
as required. O

Definition 6.1.45. A multiring satisfying —1 ¢ > A? and the equivalent conditions of proposi-
tion [0.1.44) will be called real reduced multiring. A morphism of real reduced multirings is just a
morphism of multirings. The category of real reduced multirings will be denoted by MR, cq.

Corollary 6.1.46. A multiring A is real reduced if and only if the following properties holds for
all a,b,c,d € F':
i-1#0;

ii-a3:a;

iii - c€a+ab®=c=a;
- c€a’+b® and d € a® + b* implies ¢ = d.
Proof. As noted above, (ii),(iii) and (iv) imply 3. A% = A2, If —1 € }_ A2, then —1 = a? for some

a,s0 0 € 1+ a? By (iii), 0 = 1 and this contradicts (i). Thus —1 ¢ >_ A%2. Now apply proposition
6.1.44] to conclude that A is a real reduced multiring. The converse is immediate. O

6.2 Opening the Chamber of The Secrets: The Final Functorial
Picture

In the very end of the work the Chamber of The Secrets is opening: here we connect the new
theory of multirings and multifields with the most significant theories of quadratic forms. This is
(in some way) a new picture: despites of the Marshall’s and Miraglia’s observation about these
connections, it is the first time that this is made explicit. So, because this, the implications of the
multirings and multifieds theory in the abstract theory of quadratic forms are a road to discover.

6.2.1 Multirings, Abstract Ordering Spaces and Special Groups

Theorem 6.2.1. Let (X, G) a space of orderings and set M(G) = GU {0} where 0 := {G}. Then
(M(G),+,-,—,0,1) is a real reduced multifield with the extended operations:
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a - b otherwise

b_{OUaZOmm:O

{b}ifa=0

{a}ifb=0
M(G)ifa=—b, anda #0
D(a,b) otherwise

Proof. Firstly, observe that + is well-defined. Then, we will verify the conditions of definition

0. 1.5

i - For this, we will check the conditions of definition [6.1.1

a_

If a =0or a = —b, then d € a+b implies trivially that a € d+(—b) and b € (—a)+d. Now,
let a,b # 0 with a # —b (this implies d # 0). We prove that (d(z) € {a(z),b(z)}Va €
X) = (a(z) € {d(z),—b(z)}Vz € X), and it is suffice for prove that a € d + (—b) and
be(—a)+d Letxe X. If ¢(x) = a(x) is done. If ¢(z) # a(x) then c¢(x) = b(zx). If
c(x) = b(x) = 1, then a(z) = —1 = —b(x), and if ¢(z) = b(x) = —1, then a(z) = 1 =
—b(z), finalizing the argument.

(y € 24+ 0) & (z = y) is direct consequence of the definition of sum.

a+0=0+aand a+ (—a) = M(G) = (—a) +a. Let a,b € M(G), a,b# 0 and a # —b.
How D(a,b) = D(b,a), we have a + b = b+ a. Then, the commutativity holds.

Now we prove the associativity. Let a = 0 (the cases b = 0 and ¢ = 0 are analogous).
Then 0+ (b+¢)={0+g:g€b+ct=b+cand (0+b)+c=({b})+c=b+c
Now, let a,b,c # 0 with a = —c.

(@a+0)+(—a) = g+ (—a) : g € a+ b} = M(G) (D)
because a € a + b; and
a+ (b+(—a) = Jfa+h:heb+(—a)} = M(G) ()

because —a € b+ (—a). So (I) = (II) and (a 4+ b) + (—a) = a + (b + (—a)). For the case
a,b,c # 0, a = —b (the cases b # —c is analogous) we have

(a+ (—a)) +e=|Hg+c:ge MG} =M(G) (1)
and
a+((—a)+c)=|J{a+h:he(-a)+c}=M(G)AV)

because —a € (—a) + ¢. So (III) = (IV) and (a + (—a)) + ¢ = a + ((—a) + ¢). Finally, let
a,b,c #0, a# —b, b# —c and a # —c.

(a~l—b)+c:c—|—(a+b):U{c+g:g€a+b}: U D(c,g) (V)
g€D(a,b)
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and
a+@b+c)=[{r+a:heb+cy= |J D(ha) (VD)
heD(b,c)
By the inductive description of the value sets (as in 2.2 of [Mar96]) we have (V) = (VI).
Then (a+b)+c=a+ (b+c) for all a,b,c € M(G).

ii - We conclude that (M(G),-, 1) is a commutative monoid as consequence of (G, -, 1) is an abelian
group and the extended definition of - to M(G). Beyond this, we have that every nonzero
element of M (G) has an inverse.

iii- a-0=0for all a € M(G) is a consequence of the extended definition of multiplication to
M(G).

iv- Ifa=0ora# —b, then (d € a+b) = Vg(gd € ga+ gb) is direct consequence of the definition
of sum. Next this, let a,b # 0 with a # —b and d € a + b = D(a,b). Then d(z) = a(z) or
d(x) = b(x) for all z € X. Hence, g(z)d(z) = g(z)a(z) or g(z)d(x) = g(x)b(x) for all z € X
and gd € ga + bg. Thus we have g(a + b) C ga + gb for all a,b,g € M(G).

Then, (M(G),+,—,-,0,1) is a multifield. As G is a subgroup of {—1,1}¥, we have that G is a
group of exponent 2, i.e, g> = 1 for all g € G and then, a® = a for all a € M(G). If a € 1 + 1, then
a(z) = x for all x € X. This implies a = 1. Consequently, M(G),+,—,-,0,1) is a real reduced
multifield. O

Corollary 6.2.2. The correspondence G — M(G) defines a contravariant functor
M : AOS? — MF

red

Proof. Let (X,G) and (Y, H) abstract ordering spaces and o : Y — X be an AOS-morphism. By
definition a induces a group homomorphism ¢ : G — H given by ¢(g9) = g o a. Define
M(a) =¢: M(G) — M(H) extending this morphism ¢ to M (G) making ¢(0) = 0. Note that we
alread have ¢(1) =1 and ¢(—1) = —1.

Then, we just need to prove that for all a,b,c € G, c € a+b= ¢ € p + ¢. We can suppose
a,b,c # 0 and a # —b without loss of generality. Hence, we will prove that ¢ € D(a,b) = ¢(c) €

D(p(a), ¢(b)).
c € D(a,b) = c(x) =a(z)Ve(r) =bzx)Ver e X =
(o)) = ala(y)) V cla(y)) = b)Yy € ¥ =
coa € D(aoa,boa)= D(p(a),p(d))

therefore M (y) is a MF-morphism. If (Z, K) r (Y,H) —= (X,G) are AOS-morphism, with

¢:G — H and 7: H — K the respectively induced group homomorphisms, the fact of M (af) =
M(B)M («) is direct consequence of a5 be an AOS-morphism. O

Let F be an real reduced multifield. Observe that by the local-global principle for multifield
6.1.28 we have the following identities:

® a€ca+b
o If a #0, then a + (—a) = F}
e a#0=o0(a)#0 for all ¢ € Sper(F).
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Now, let x(F) = {0 € {~1,1}} : o(ab) = o(a)o(b)} and define

X={xex(F):z(—-1)=-1and a,b € Ker(x) = a+bC Ker(z)}
G ={o€{-1,1}*X : 3f € F such that o(z) = 2(f), Vo € X}

Lemma 6.2.3. There are bijective correspondences X — Sper(F) and G — F.

Proof. We will proof that the correspondence z +— 2’ : F — Qq, 2'(f) = z(f) if f # 0 and 2/(0) =)
define a bijection A : X — Sper(F') and the correspondence o — f, when o(z) = z(f,) for all
x € X define a bijection B: G — F.

e A and B are well-defined. We need to prove that 2’ : FF — Q2 is a multifield morphism
and that (0, x Ker(z) = {1}, hence by this, z(f) = z(g) for all z € X implies that fg~! €
(Ker(z) = {1} and then, f =g.

i- 2/ is a morphism. In fact, we just need to prove that a € b+ ¢ = z(a) € z(b) + z(c).
How the zero case is undefined, let a,b,c # 0. If x(b) # z(c), then z(b) + z(c) = Q2
and it is done. If z(b) = z(c) = 1, a € (b+ ¢)* C Ker(x) = z(a) € z(b) + z(c). If
z(b) = z(c) = —1, then —a € (=b —¢)* C Ker(z) = z(a) € x(b) + z(c).

ii - Nyex Ker(z) = {1}. Let a # 1 in F*. How F is a real reduced multifield,

a¢g{0,1}=>"F*= () P

PeSper(F)

Let P an ordering such that a ¢ P and o : F' — @ its associate morphism. Note that
o(a) = —1 and o|p+ € X, because

a,b € Ker(o) = o(a+b) Co(a)+0((b) ={1} = (a+b)* C Ker(o|p~)
Therefore a ¢ (), x Ker(x).

e A and B are injective.

x#y € X =3 f € F* such that a(f) # y(f) = 2'(f) = 2(f) # y(f) = v ().

o #v € G= 3z e X such that o(x) # y(z) = z(f,) # z(fy) = fo # f+-

e A and B are surjective. Given o € Sper(F'), we already proof that o|p« € X and so A(o|p+) =
o. For B, let f € F*, define oy € {—1,1}* given by o¢(z) = z(f) for all z € X. Then
o€ Gand B(of) = f.

Theorem 6.2.4. With the above notation, (X,G) is an abstract ordering space.

Proof. Notation: if 0 € G, f, = B(o) and if f € F*, o = B7I(f). Given 0,7 € G, define
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D(o,y)={re€G:Vxe X, 7(x) € {o(x),v(x)}}. We have D(o,v) ={7: fr € (fo + f7)*}

7€ D(o,y) & 7(x) =0(x) VT(z) =v(x) &
Vee X, 7(x) € o(x) + v(x)

lemmal6.2.3) 1  Sper(FY, K(f,) € K(f2) + ()

local-global principle [6.1.2§]
< fr € (fo + f5)-

Now, we will check each axiom of definition

AX1 - G C {-1,1}* is a subgroup, because o0y = 0y, 1 € G and (oy)~! = oy-1. Moreover,
—1=0_1 € G, because z(—1) = —1 for all z € X. We alread have that G separate points.

AX2 - Let IT € x(G) with II(6_1) = —1 and 0,7 € Ker(Il) = D(o,v) C Ker(II). We need to
find x € X such that II(0) = o(z) for all o € G.
Define x : F* — {—1,1} by z(f) = II(of). Note that x € x(F) and z(—1) = —1. To proof
that © € X we need that a,b € Ker(z) = (a+b)* C Ker(z).
a,b € Ker(x) = 4,04 € Ker(Il) = D(04,05) C Ker(II)
Then
c€(a+b) = 0. € D(og,0p) C Ker(Il) = c € Ker(x)

Therefore, z € X. Moreover, given o = oy € G, we have

(o) = (oy) = x(f) = op(x) = o(x)
finalizing the argument for AX2.

AX3 - Given o0,v,7 € G, let i € D(0o,j) with j € D(v,7). We will show that i € D(o,j), j €
D(y,7) = fi € (fo + fr)* and f; € (y+f-)*. How the sum in F is associative, there exist

lefo'—i_fry with fZ Efl—i-fW.
If | =0, we have f, = —f, and f; — f, and then, f; € (14 fy)* and 1 € (f, + f,)" =
i € D(o1,7) and 01 € D(o,7). If 1 #0, i € D(0y,7v) with o; € D(o,7).

O

Theorem 6.2.5. There is an equivalence of categories between AOS? and MF .4

Proof. Define M : AOS? — MFpgeq and Spec : MFpreq — AOSP as we already defined in
corollary and theorem Follow that M o Spec = Idar,,, and Speco M = Id goger. U

Proposition 6.2.6. Let (G, =, —1) be a special group and define M (G) = GU{0} where 0 := {G}E|
Then (M(G),+,—,-,0,1) is a multifield, where

Oifa=0o0rb=0
e a-b=
a - botherwise

o« ~(@)=(-1)-a

*Here, the choice of the zero element was ad hoc. Indeed, we can define 0 := {z} for any = ¢ G.
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{b}ifa=0

{a}ifb=0

M(G)ifa= —b, and a # 0
D¢(a, b) otherwise

Proof. Firstly, observe that + is well-defined. Then, we will verify the conditions of definition

0.1.0l

i- For this, we will check the conditions of definition

a,_

b -

C_

d € a+ 0 = {a} imply d = a, and by this, follow that a € d + (—0) and 0 € (—a) + d.
Let a = —band d € a + (—a) = M(G). If d = 0, then a € d + (—(—a)) = 0 + a and
—a € (—a)+0. If d # 0, then a € Dg(d,a) and —a € Dg(—a,d) soa € d+(—(—a)) =d+a
and —a € (—a) + d. Finally, let a,b # 0 with a # —b, and d € a + b. Then there exist
g € M(G)\{0} such that (d, g) = (a,b). By SG4, (d, —a) = (—g,b) (and (b, —g) = (—a,d)
by SG1). Soa € d+ (—b) and b € (—a) + d.

(y € 2+ 0) < (x =y) is direct consequence of the definition of sum.

a+0=0+aand a+ (—a) = M(G) = (—a) + a. Let a,b € M(G), a,b # 0 and a # —b.
How Dg(a,b) = Dg(b,a), we have a+b = b+a. Then, the commutativity holds. Observe
that if a,b # 0 with a # —b, then 0 ¢ a + b.

Now we prove the associativity. Let a = 0 (the cases b = 0 and ¢ = 0 are analogous).
Then 0+ (b+c¢)={0+g:g9g€b+ct=b+cand (0+b)+c=({b})+c=b+c.

Now, let a,b,c # 0 with a = —c.

(a+b)+ (—a) = H{g+ (—a) g € a+ b} = M(G) (T)

because a € a + b, and

a+(b+(—a) = Ja+h:heb+(—a)} = M(G) ()
because —a € b+ (—a). So (I) = (II) and (a 4+ b) + (—a) = a + (b + (—a)). For the case
a,b,c # 0, a = —b (the cases b # —c is analogous) we have
(a+(—a)) +e=|Jg+c:ge MG} =M(G) ()

and

a+((—a)+c)=|J{a+h:he(—a)+c}=MG)IV)

because —a € (—a) + ¢. So (III) = (IV) and (a + (—a)) + ¢ =a + ((—a) + ¢). Finally, let
a,b,c#0,a# —b, b# —c and a # —c.

(a+b)+c:c+(a+b):U{c+g:g€a+b}: U D¢(c,g) (V)
g€D¢g(a,b)

and
a+@b+e)=|J{h+a:heb+cy= |J Dg(ha)(VI)
heDg(bc)
By SG7 (applying SG5) we have (V) = (VI). Then (a +b) + ¢ = a + (b + ¢) for all
a,b,c e M(G).
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ii - We conclude that (M(G), -, 1) is a commutative monoid as consequence of (G, -, 1) is an abelian
group and the extended definition of - to M(G). Beyond this, we have that every nonzero
element of M (G) has an inverse.

iii- a-0=0for all a € M(G) is a consequence of the extended definition of multiplication to
M(G).

iv- Ifa=0ora# —b, then (d € a+b) = Vg(gd € ga+ gb) is direct consequence of the definition
of sum. Next this, let a,b # 0 with a # —b and d € a +b. By SG5 gd € ga + bg. Thus we
have g(a + b) C ga + gb for all a,b,g € M(G).

Then, (M(G),+,—,-,0,1) is a multifield. O

Corollary 6.2.7. The correspondence G — M(G) defines a full and faithful functor M : SG —
MF.

Proof. Let f : G — H be a SG-morphism. We will extend f to M(f) : M(G) — M(H) by
M(f) 1¢= f and M(f)(0) = 0. By the definition of SG-morphism we have M(f)(1) = 1,

M(f)(~a) = —aand M(F)(ab) = M(f)(@)M(f)(b). Asd € De(a,b) implies £(d) € Dy (F(a), f(1))
we have d € a +b = M(f)(d) € M(f)(a) + M(f)(b) for all a,b € M(G). So M(f) is a multiring

morphism. Now, let G I H—2~K be SG-morphisms. How M(fog)lg= fog= M(f)la
oM (g) 1¢ and M(f o g)(0) = 0 = M(f) o M(g)(0), we have M(f og) = M(f)o M(g). Then
M :SG — MUF is a functor.

This functor is faithful, because if G and H are special groups and f,g : G — H are SG-
morphisms such that M(f), M(g) : M(G) — M(H) are equal, then

M(f)lamengoy = M (9| oy
and therefore f = g, since M(G) \ {0} = G. O
Proposition 6.2.8. Let G be an SG and M(G) as above. Then:
i-a?=1 forallac M(G)*;
it-1€l+a foralaec M(G);
i1t - 1+ a is closed by multiplication for all a € M(G);

w - If there exists x,y,z € M(G) such that

ar = cy acc+y
a=xz andsbex+z

d=1yz cecy+z
then there exists t,v,w € M(G) such that

bt = cv bec+w
b=tw and{act+w

c=vw dev+w

Proof.
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i- Is just the fact of G be a group of exponent 2.
ii - Trivial.
fii- If a =0 or a = —1itis trivial. If a # 0,—1, given z,y € 1+ a = Dg(1,a), we have
(x,za) = (1,a) and (y,ya) = (1,a). Multiplying the first equality by one, we have (zy, zya) =
(y,ya) = (1,a) and then zy € Dg(1l,a) =1+ a =¢.
iv - Is the 3-transitivity.

O]

Definition 6.2.9. A multifield F' satisfying the properties i-iv of proposition will be called a
special multifield (SMF). Note that, if G is a SG, then M(G) is a SMF.

Theorem 6.2.10. If F is a special multifield the (F*,=,—1) is a special group where (a,b) =
(¢,d) < ab=cd and a € c+d.

Proof. By (i), we have that (F*,1) is a group of exponent 2. Now, we will check each axiom of

definition [4.2.1F

SGO - By (ii)) 1 € 1 +ab, so ab € 1+ ab and a € b+ a. As ab = ab, then (a,b) = (a,b), i.e, = is
reflexive. If (a,b) = (c,d), then ab = ¢d and a € ¢+ d. Then ab € ¢b + db, so by ab = cd,
we have cd € ad + db and then ¢ € a +b. So (¢,d) = (a,b) and = is symmetric. Finally,
suppose that (a,b) = (¢,d) and (c,d) = (e, f). First, ab = c¢d and cd = ef implies ab = ef.
Second, in order to show that a € e+ f, note that a € c+d = ac € 1+cd =1+ ef and
c€e+ f=cee€l+ef; then by (iii), we have ae € 1 + ef and so a € e + f. Therefore

(a,b) = (e, f)-

SG1 - As F'is a multifield, ab = ba. By (ii), 1 € 1 + ab, then ab € 1+ ba and b € a + b. Therefore
{a,b) = (b,a).

SG2 - Since 1 € 1 — a, we have a € 1 — 1. Therefore (a, —a) = (1, —1).
SG3 - Follow by definition.
SG4 - (a,b) = (¢,d) = ab=cd and a € c+d.

ab = c¢d = —abbc = —bccd = —ac = —bd (6.1)

acctd=adc€l+cd=1+ab=dca+b=ac-b+d (6.2)

so by [6.1] and [6.2] follow that (a, —c) = (—b, d).
SG5 - (a,b) = (c,d) = ab = cd and a € c+d EQ (ga)(gb) = (gc)(gd) and ga € gc + gd =
{9a, gb) = (g¢, gd).
SG6 - We use the equivalences in theorem (a,b,ab) = (c,d, cd) = there exists z,y,t € F*
such that
(a,z) = {(c,y) ar=cyanda€c+y
(b,aby = (x,z) = qa=zzandbe€x+z2
(d,cd) = (y, z) c=yzanddey+z
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then by (v) there exists t,v,w € F'® such that

bt =cvand bec+v (b, t) = (c,v)
b=twandact+w = { (a,ab) = (t,w)
d=vwanddev+w (d,cd) = (v, w)

this implies (b, a, ab) = (¢, d, cd).

Corollary 6.2.11. There is a functor S : SMF — SG.

Proof. In the objects of SMF, we define S(F') = F'* how the special group as stated in theorem
Now, let ¢ : FF — K be a SMF-morphism. Define S(o) = o|ps. We have that S(o)
is a group homomorphism with S(c)(—1) = —1. If a,b # 0 and ¢ € a + b, ¢ # 0, then there
exists d € F'® such that (a,b) =g(p) (c,d), and as ¢ € a + b — o(c) € o(a) + o(b), we have
(o(a),a (b)) =s(k) (o(c),a(d)). Therefore:

(c€a+b—o(c)€a(a)+0a(b) = (c€ Dgryla,b) = a(c) € Dgxy(o(a),a(b)))

And S(o) is a SG-morphism. Applying the same argument, we proof that S(o7) = S(0)S(7).
Hence, S is a morphism. O

Theorem 6.2.12. There exist an equivalence of categories between SG and SMF.

Proof. By the corollaries[6.2.7]and [6.2.11], we have functors M : SG — SMF and S : SMF — SG.
We will proof that M oS = Idsypr and So M = Idsg.

i- MoS = Idsmr. Let F be a SMF. How S(F) = F* and M(S(F)) = S(F) U {0}, we have
M(S(F)) = F. Next, let 0 : FF — K be a SMF-morphism. We have that S(c) = o|pe and
M(S(0)) is defined with the extension S(¢)(0) = 0. Therefore M(S(0)) = o and M o S =
Idsmr.

ii- SoM = Idsg. Let G be a SG. Again, M(G) = GU{0} and S(M(G)) = M(G) \ {0}. Hence
S(M(G)) = G. Next, let f : G — H be a SG-morphism. How M(f) is defined with the
extension f(0) =0 and
S(M(f)) = M(f)|m@)\foy, we have that S(M(f)) = f and S o M = Idsg, finalizing the

proof.

O

We can summarize the functors obtained by the following diagram:

ng = Mfred
SG ~ SMF

Theorem 6.2.13. Let M : SG — SMF the functor defined in[6.2.7.
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i - M preserves products.

1 - M preserves quotients.
11 - M preserves directed limits.
Proof.

i - Firstly, observe that SMJF has products, because the categorical equivalence with SG. How-
ever, this product is not the restriction of the product in MJF.

Now, let {G}icr be a family of special groups. The product G = [ ; G; is defined with the
operation and special relation given pontwise, and —1 = (—1,—1,...), i.e,

((ai)ier, (bi)ier) =c ((ci)ier, (di)ier) < (ai, bi) =¢, (i, di), Vi€ 1.

This implies that (a;)icrDa((¢i)ier, (di)ier) iff a; € Dg,(ci,d;) for all ¢ € I. This argument

shows that . .
M (H Gi> =[[ MGy

icl icl
ii - More specifically, we want to show that if G is a special group and A C G is a satured

subgroup | then M(G/A) = M(G)/A, when A = {M () : § € A}. The isometry relation on
the quotient group G/A is:

da',b,d,d € G such that
(a/Ab/A) =5 (e/A,d/A) it < ad, b, cd,dd € A and
(b)) =¢ (d,d).

This implies that a/A € Dg/a(c/A,d/A) iff there exist r,s,t € G such that r € Dg(s,1),
with ar,cs,dt € A. Multiplying this by arcsdt € A, we have a(csdt) € Dg(c(ardt), d(arcs)),

and csdt, ardt, arcs € A. Aplying the functor, we have @ € ¢+d in M(G)/A, and the desired
follow by this.

ili- Let G = (Gi,{fij : i < j},I) be an inductive system of special groups. Let G be the
inductive limit of G and let f; : G; — G the correspondent SG-morphism associated to this
construction. Then given (a,b) =¢ (¢, d) iff there exist i € I and ay, b;, ¢;, d; € G; such that
<ai,bi) EGi <Ci,di> and <fl(az),f2(bz)> = <CL, b), <fz(cz),fz(dz)> = <C, d> (bOth over G) This is
suffice to show that

M <hg GZ-) = lim M(G).

i€l i€l

6.2.2 Multirings, Abstract Real Spectra and Real Semigroups

Theorem 6.2.14. Let (X, G) an abstract real spectra and define a +b = {d € G : d € D'(a,b)}.
Then (G, +,-,—,0,1) is a real reduced multiring.

3We say that A is saturated if for all a € G, a € A = Dg(1,a) C A.
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Proof. Firstly, observe that + is well-defined. Then, we will verify the conditions of definition
Commutativity, associativity and neutral element (a € D(0,b) < a = b) are immediate. In
fact, the unique non-trivial part of the proof is

a € D'(b,¢) = b€ D'(a,—c) and ¢ € D'(—b,a).

We will prove that b € D*(a, —c) and the case ¢ € D'(—b,a) analogous. Let z € X and a € D*(b, c).
Remember that a € D(b, ¢) means that a(z)b(z) > 0 or a(x)c(z) > 0 or a(z) = 0 and b(z) = c(x)
happens for all z € X.

If a(z)b(x) > 0, then b(x)a(x) > 0 and it is done. If a(z)c(x) > 0, we have some cases:

e a(x) = c(zr) = 1. We can suppose that a(x)b(x) < 0 and b(z) € {0,1}. If b(x) = 0 it is done.
If b(x) = 1, then b(z)[—c(z)] > 0.

e a(z) = c¢(x) = 1. Again, we will suppose that a(x)b(x) < 0 and b(x) € {0,1}. If b(z) =0 it
is done. If b(z) = 1, then b(x)[—c(x)] > 0.

e a(x) =0 and b(x

= c¢(z). If b(z) = c(x) = 0 then b(z) = 0 and a(z) = c(z). If b(z) = c(x) #
0, then b(x)c(z) > 0.

Hence G is a multiring. For the real reduced part, we have immediatelly that 1 # 0 and a® = a for
all a € G.

c € D'(a,ab®) & c(z)a(z) =0V (c(z) =0Aa(z) =0) & c=a
and
c€ D' (a? b*) &V e Ge(z) =1V (c(z) = 0Aa(z)b(z) = 0))
This implies that ¢ is uniquely determined. Therefore, G is a real reduced multiring. O

Corollary 6.2.15. There is a functor M : ARS? — MR, .4

Proof. Let (X,G) and (Y, H) be abstract real spectras and 7 : ¥ — X be a ARS-morphism.
Define M (X) how the real reduced multiring as in theorem [6.2.14)and M (7) = f when f: G — H
is the group homomorphism induced by 7. We have tat ¢ € a +b = ¢ € D'a,b) = f(c) €

Di(f(a), f(b)) = f(c) € f(a)+ f(b) by an argument analogous to the corollary [6.2.19, Then M (1)
is a multiring morphism and this is suffice to prove that M is a (contravariant) functor. O

Theorem 6.2.16. Let A be an real reduced multiring and consider the strong embedding i : A —
Q;S'per(A) given by i(a) = a : Sper(A) — Qo when a(o) = o(a). Define A = i(A). Then (Sper(A), A)
is an abstract real spectra.

Proof. We will check each definition of [5.1.25

AX1 - Is consequence of A be a submultiring of st per(4),

AX2 - Let P be a submonoid of A such that PU—P = A, —1 ¢ P,a,be P = D(a,b) C P and
abe PN—P=a€ PN—Porbe PN —P. First, Fora Temer. Second, observe that

D'(a,b) ={d:d € a+b}. (6.3)
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In fact, d € D%(a,b) if and only if Vo € Sper(A), o(d)o(a) > 0 or o(d)o(b) > 0 or o(d) = 0,
and o(a) = —o(b) if and only if o(d) € o(a) 4+ o(b) for all o € Sper(A). By the local-global
principle for multirings [6.1.42| we have that this happens if and only if d € a + b.

AX3 - This is consequence of [6.3] and associativity.

Theorem 6.2.17. There exist an equivalence of categories between ARSP and MR ;.

Proof. Define M : ARS? — MRRqq and Spec : MRRoq — ARS? as we already defined in
corollary [6.2.15|and theorem[6.2.16| Follow that M oSpec = Id R, and SpecoM = Id ggger. [

Theorem 6.2.18. Let (G,-,1,0,—1,D) be a realsemigroup and define + : G x G — P(G) \ {0},
a+b={deG:de D'a,b)} and —: G — G by —(9) = —1-g. Then (G,+,-,—,0,1) is a real

reduced multiring.

Proof. Firstly, observe that by [5.2.14(xv) the sum is well-defined, i.e, D*(a,b) # 0 for all a,b € G.
Now, we will check that G is a multiring: of course, by RSO we have a + b = b+ a (i.e,
Dt(a,b) = D*(b,a)) and

d € D'(a,b) < d € D(a,b) A —a € D(—d,b) A —b € D(a,—d)
a € D¥(d,—b) & a € D(d,—b) A —d € D(—a,—b) ANb € D(d,—a)
be D' (—a,d) & b€ D(—a,d) ANa € D(—b,d) N —d € D(—a, —b)

Sod € D%(a,b) = a € D*(d,—b)Ab € D'(—a,d), or in other words, d € a+b = a € d+(—b)A\b €
(—a)+d. If x =y, by RS1 2 € 0+ y. Conversely, let z € 0+ y. We just proved that 0 € z —y
and 0 € y — x then by RS7, z = y. How RS3 states the associativity (like we have that G is
a commutative multigroup.

Because the commutative semigroup structure of (G,-,—1,0,1), we have that (G,-,1) is a
commutative monoid and a -0 = 0 for all @ € G. The distributive law is just [5.2.14](iii), we have
that G is a multiring.

Finally, we prove that G is real reduced. We alread have that —1 # 0 and a® = a. We have

too, that 1 € D*(1,b?) by [5.2.14{ix) then by |5.2.14{(iii) a € D!(a, ab®). Now, how t3 = t we have
t € D'(v*z,w?y) &
t € D(viz, w’y) A —v?z € D(—t3, w’y) A —w?y € D(v’z, —t%)

R<:S>4 t € D(z,y) A —vix € D(—t,y) A —w?y € D(x, —t) (6.4)

Hence, how by RS1 —a € D(—a, —x) for all a,z € G, follow

x € D'(a,ab?) & z € D'(a® - a, (ab)? - a)@
z € D(a,a) A —a € D(—z,a) A —ab® € D(a, —z) &
[z € D(a,a) A —a € D(—x,a) A —a € D(a, —x)] A —ab® € D(a, —x) &
x € D'(a,a) A —ab® € D(a, —z) ii—m) r=a
Then a + ab®> = {a}. For the last property, we have by theorem (ii), we have that

d € D'(b%,c?) & h(d) € D5(h(b?),h(c?)) for every h € X¢. Since D!(t?,s%) is unitary for every
s,t € 3, we have that D!(b?, c?) is unitary for every b, c € G.
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Hence, by definition G is a real reduced multiring. O
Corollary 6.2.19. There is a full and faithful functor M : RS — MR ,..q-

Proof. Let R,S € RS and f : R — S a RS-morphism. Define M(R) how the real reduced
multiring as in theorem and M(f) = f. Of course, M(f) is a multiring morphism, because
c€a+b=ce Da,b) = f(c) € D(f(a), f(b)) = f(c) € f(a)+ f(b). This is suffice to prove
that M is a functor. Full and faithfullyness are immediate. O

In order to associate a real semigroup to each real reduced multiring, we are going to set down
some facts about multirings:

Proposition 6.2.20. Let A be a real reduced multiring. Then we have the following:
i- x € ax?+bx? if and only if v € aA? + bA?;

i - x € a+bif and only if x € ax® + bx?, —a € ba® — xa® and —b € ab® — xb?;

i - If ax = bx, ay = by and z € x2° + y2z%, then az = bz;

w - If v € ax® 4 bx?, then 22 € a’x? + b?22.

Proof. Since A is a real reduced multiring, we have by the local-global principle for multirings
6.1.42| that a € b+ ¢ if and only if o(a) € o(b) 4+ o(c) for all o € Sper(A). So to prove these items

we just need to do it in @2 which is trivial (it is just an amount of cases). O

Theorem 6.2.21. Let A be a real reduced multiring. Then (A,-,1,0,—1, D) is a realsemigroup,
where d € D(a,b) < d € d*a + d*b.

Proof. Firstly, note that by the preceding proposition, z € D(a,b) < = € aA?4bA% and D(a,b) =
a—+b.
Now, we will check each axiom of definition [5.2.10

RSO - Is just commutativity of sum.

RS1 - It follows by item ¢ of the preceding proposition.

RS2 - a € D(b,c) & a € a’b+ a’c 154 d e (ad)?bd + (ad)?cd = ad € D(bd, cd).
RS3 - It is just associativity of sum.

RS4 - It follows by item ¢ of the preceding proposition.

RS5 - It follows by item i of the preceding proposition.

RS6 - It follows by the characterization of D?.

RST - Since in a real reduced multiring we have a 4+ a = a, if exist ¢ € a — b with —c € a — b, then
0O6cc—c€a—b+a—b=a—>band then a =0b.

RS8 - It follows by item iv of the preceding proposition.

Corollary 6.2.22. There exist an equivalence of categories between

RS and MRTed'
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Proof. Define the functor S : MR .q — RS as in corollary 6.2.19t The proof of So M 2 Idrs
and M oS = IdMRred is mutatis mutandis of theorem 6.2.12} O

Of course, we can adapte the proof of theorem [6.2.18| to obtain a functor M : PRS — MR.
The image of this functor is a subcategory of MR, that we will call special multirings, and denote
by SMR. Again, we can summarize the functors obtained by the following diagram:

TS//W\\
= Mf?/red

PRS ~ SMR

Corollary 6.2.23. Let M : RS — MR,eq the functor defined in |6.2.18. Then M preserves
products and directed limits.

Proof. Follow directly by the definition of product and directed limits in RS. O

Finally, we provide a diagram for a better visualization of the functors obtained:

R‘S\g AO§Op Mf\red

RS ARSP M Rred

PRS SMR

6.3 Some final considerations

We hope that our task of

“E'stablish precisely what are the functorial connections between the abstract theories of quadratic
forms as soon as to create a short and introductory path from the classic theory to the abstract
ones”

has been successfully achieved. The algebraic theory of quadratic forms is a broad and deep subject
of research, and the abstract theories of quadratic forms are teaching us an old an important lesson,

that is
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“If you have a difficult mathematical problem to deal with, it is better to try to abstract it as
many different ways as you can, and "hear” the "point of view” that each of these abstractions
would like to say to you.”

Further, we hope that this work has aroused interest in the classical problems of quadratic
form theory and its abstract theories, as well as in this new and promising theory of multirings and
multifields. If this is not the case, at least we leave the complete functorial map of our “Chamber
of The Secrets”F}

ARSP M,r\:f\red
RSC PRS SMR
S, QS/,
AOSP Fred
//
RSG—— RAWRC AWR ¢, SMF
S\éfr

“Here, the arrows without a source and a target indicates equivalence or isomorphism of categories, and the
subscript “fr” indicates a “formally real” notion that, if was not defined, then is the restriction of the equivalence or
isomorphism functor of the entire categorie (like when we define the formally real Cordes Scheme).
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