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Resumo

ROBERTO, K. M. A. Multianeis e a Câmara Secreta: relações funtoriais entre teorias ab-

stratas de formas quadraticas. 2019. 285 f. Dissertação (Mestrado) - Instituto de Matemática

e Estat́ıstica, Universidade de São Paulo, São Paulo, 2019.

O principal objetivo deste trabalho é estabelecer precisamente quais são as conexões funtori-

ais entre as teorias abstratas de formas quadráticas, criando uma via introdutória entre a teoria

clássica e as abstratas durante este processo. Há uma gama de literatura desenvolvida tanto na

teoria clássica quanto nas abstratas, mas nenhuma intercalando-as “geograficamente”. Nesta per-

spectiva, discutiremos os aspectos fundamentais da teoria clássica e reduzida de formas quadráticas,

encapsulando as teorias das Estruturas Quaterniônicas, Esquemas de Cordes, Anéis de Witt Ab-

stratos, Espaços de Ordens Abstratos, Grupos Especiais, Espectro Real Abstratos e Semigrupos

Reais em um quadro funtorial, inserindo os novos elementos envolvendo a teoria recente dos Multi-

anéis e Multi-corpos.

Palavras-chave: Multi-anéis, grupo especial, semigrupo real, quadro funtorial.
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Abstract

ROBERTO, K. M. A. Multirings and The Chamber of Secrets: relationships between

abstract theories of quadratic forms. 2019. 285 f. Dissertação (Mestrado) - Instituto de

Matemática e Estat́ıstica, Universidade de São Paulo, São Paulo, 2019.

The aim of this work is to establish precisely what are the functorial connections between the

abstract theories of quadratic forms, as well as, to create a short and introductory path from the

classic theory to the abstract ones. There is a large amount of literature developed about classic and

abstract theories but does note relate them “geographically”. In this perspective, we discuss the

fundamental aspects of the classic and reduced theory of quadratic forms, and sum up the theories

of Quaternionic Structures, Cordes Schemes, Abstract Witt Rings, Abstract Ordering Spaces,

Special Groups, Abstract Real Spectra and Real Semigroups in a functorial picture, inserting the

new aspects involve the recent theory of Multirings and Multifields.

Keywords: multirings, special group, real semigroup, functorial picture.
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Introduction

The aim of this present work is establish precisely what are the functorial connections between
the abstract theories of quadratic forms as soon as to create a short and introductory path from
the classic theory to the abstract ones. This is an important contribution, since there are an
amount of good literature developed in classic and abstract theories but no one interchanging
them “geographically”.

Chapter 1 is a “crash course” in algebraic theory of quadratic forms, in the sense to provide a
good introduction to quadratic forms for the readers that are not familiar with this subject (and
it is crucial since we will work with abstract versions of quadratic forms).

In chapter 2 we talk about the very first “abstract theory” of quadratic forms, the reduced
theory. It is nothing more than a theory of quadratic forms “in the point of view” of a fixed
preordering. Almost all of the results in chapter 1 is immediated translated in this new context.
Beside this, a new phenomena appears (we call it the “Lam’s triangle”), that is the interchanging
of information between quadratic forms, orderings and valuations:

Orderings

Valuations
Quadratic

Forms

In chapter 3 we treat about the first generation of abstract theories. The first abstract theories
appears in 70’s, by the hands of M. Marshall and C. M. Cordes. These theories appears for a
reason: they are interested in the existence (or not) of fields with prescribed properties relating to
quadratic forms.

In chapter 4, we discuss the second generation of abstract theories. The first one appears in
the decade of 80’s, the Marshall’s Abstract Space of Orderings (AOS). They are important because
generalize both theory of orderings on fields and the reduced theory of quadratic forms. Since the
abstract theories of chapter 3 does not have field-theoretic methods to deal with the reduced case,
the AOS solves this issue. But only in the decade of 90’s that arise a (finitary) first-order theory
that generalize the reduced and non-reduced theory of quadratic forms simultaneously. This theory
is the Special Groups of F. Miraglia and M. Dickmann. It takes as primitive the binary isometry,
is a first-order theory and treat the reduced and non-reduced case in a very elegant way. This
simplicity brings new methods and tools to the algebraic theory of quadratic forms, culminating
in a proof of Marshall’s and Lam conjecture.

In chapter 5 the paradigm changes drastically. We start with a third generation of abstract
theories, that appears in a first atempt to develop a theory of quadratic forms over (general)
coefficients on rings. As we will see, the ring-theoretic case is much more difficult that the field

1
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one, the isometry is not well behaved and an algebraic counterpart of the ARS’s appears just
in years 2000, with the realsemigroups (RS) of Dickmann and Petrovich. The RS appears in an
atempt to creat a duality RS ' ARSop likewise SG ' AOSop. They are successful in explore
the analogies with the SG case (e.g, the Duality RS ' ARSop), but this is not pay off in deep
theorems yet, since the theory still is in development.

In chapter 6 the Chamber of The Secrets is opening: here we connect the new theory of
multirings and multifields with the most significant theories of quadratic forms. This is (in some
way) a new picture: despites of the Marshall’s and Miraglia’s observation about these connections,
it is the first time that this is made explicit. So, because this, the implications of the multirings
and multifieds theory in the abstract theory of quadratic forms are a road to discover.



Chapter 1

Quadratic Forms over Fields

At a first moment, we gather the principal results from the “classic” algebraic theory of
quadratic forms. These are the Witt ring and its properties, Pfister’s Local-Global Principle,
Pfister forms and Hauptsatz, first connections between quadratic forms and orderings and so on.
In this intent, we made a compiled of the chapters 1, 2, 8 and 10 of Lam’s book [Lam05].

Our aim here, is to provide a good introduction to quadratic forms for the readers that are not
familiar with this subject (and it is crucial since we will work with abstract versions of quadratic
forms). Unfortunately, because this, we do not present many beauty applications as the field
invariants, connections with Milnor’s K-theory, quaternion algebras and more deep results on
function fields. We will make some remarks on this direction in section 1.12, but for the readers
interested on these applications, we strongly recomend the already cited book [Lam05], that covers
all these aspects.

1.1 Foundations

Here, we will estabilish the “Rules of the Game”, i.e, the list of the basic definitions and results
from algebraic quadratic forms theory.

Definition 1.1.1. An (n-ary) quadratic form over an field1 F is a polynomial f in n variables
over F that is homogeneous of degree 22. It has the general form

f(X1, ..., Xn) =

n∑
i,j=1

aijXiXj ∈ F [X1, ..., Xn] = F [X].

To render the coefficients symmetric, it is customary to rewrite f as

f(X) =
n∑

i,j=1

1

2
(aij + aji)XiXj =

n∑
i,j=1

bijXiXj ,

where bij = 1
2(aij + aji). In this way, f determines uniquely a symmetric matrix (bij) (denoted by

1All fields consider in this present work have characteristic different from 2.
2An homogeneous polynomial f ∈ F [X1, ..., Xn] is a polynomial whose nonzero monomials all have the same total

degree.

3



4 CHAPTER 1. QUADRATIC FORMS OVER FIELDS

Mf ) such that:

f(X) = (X1, ..., Xn)t ·Mf ·


X1

X2
...
Xn


where t is the transposition and X is viewed as a column vector. Quadratic forms arise naturally
in many contexts of mathematics. There are some examples:

• The real inner product 〈x, y〉 = x1y1 + ...+ xnyn;

• The discrete variance of a random variable X = {x1, ..., xn}:

Var(X) =

n∑
i=1

pi(xi − x)2

where x is the mean of X and pi is the probability associated to xi.

Indeed, it is a valuable analogy consider a quadratic form as a “generalized inner products”.
Now, as “good mathematicians”, we will study the behavior of such “generalized inner products”.
The very first thing to do, is “collapse” quadratic forms that “describes the same phenomena”:

Definition 1.1.2. Let f and g be n-ary quadratic forms. We say that f is equivalent to g, notation
f ∼= g, if there exists an invertible matrix C ∈ GLn(F ) such that f(X) = g(C ·X).

This means that there exists a nonsingular, homogeneous linear substitution of the variables
X1, ..., Xn that takes the form g to the form f . Since

g(C ·X) = (C ·X)t ·Mg · (C ·X) = Xt · (Ct ·Mg · C) ·X,

the equivalence condition f(X) = g(C ·X) stipulated above amounts to a matrix equation

Mf = Ct ·Mg · C.

Thus, equivalence of forms amounts to congruence of the associated symmetric matrices (once that
Ct ·Mg · C remains a symmetric matrix).

Example 1.1.3. Let f(X1, X2) = X1X2. We have that f is equivalent to the form g(X1, X2) =
X2

1 −X2
2 by the computation

g

((
1/2 1/2
1/2 −1/2

)
·
(
X1

X2

))
= g(X1/2 +X2/2, X1/2−X2/2) =

= (X1/2 +X2/2)2 − (X1/2−X2/2)2 =

= X2
1/4 +X1X2/2 +X2

2/4−X2
1/4 +X1X2/2−X2

2/4

= X1X2 = f(X1, X2),

or in matricial terms,(
1/2 1/2
1/2 −1/2

)(
1 0
0 −1

)(
1/2 1/2
1/2 −1/2

)
=

(
0 1/2

1/2 0

)
.

Remember that char(F ) 6= 2.
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Our point of view here is axiomatic, so is worthy to point out that we have another categorical
equivalent axiomatizations for quadratic forms. We will discuss briefly the quadratic spaces and
more information can be found in the chapter 1 of [San15].

Definition 1.1.4. A quadratic space (V,B) consist of a finite-dimensional F -vector space V and
a symmetric bilinear pairing B : V ×V → F on V . The map qB : V → F given by qB(x) = B(x, x)
for all x ∈ V will called quadratic map associated to the quadratic space (V,B). Sometimes we will
denote (V,B) by (V, qB).

Definition 1.1.5. If (V,B) and (W,C) are quadratic spaces, we say that they are isometric,
notation V ∼= W if there exists a linear isomorphism τ : V →W such that

C(τ(x), τ(y)) = B(x, y)

for all x, y ∈ V .

Naturally, we want to get something like this:

Proposition 1.1.6. Let F be a field. Then there is a one-one correspondence between the equiv-
alence classes of n-ary quadratic forms QF and the isometry classes of n-dimensional quadratic
spaces QuadF .

Proof. Given a quadratic form f , define Qf : Fn → F by Qf (x) = xt ·Mf · x. In the sequel, define
Bf : Fn × Fn → F by

Bf (x, y) =
1

2
(Qf (x+ y)−Qf (x)−Qf (y)).

Let f ∼= g be isometric forms, where Mf = Ct ·Mg · C with C ∈ GLn(F ).

2Bf (x, y) = Qf (x+ y)−Qf (x)−Qf (y)

= (x+ y)t ·Mf · (x+ y)− xt ·Mf · x− yt ·Mf · y
= (x+ y)t · (Ct ·Mg · C) · (x+ y)− xt · (Ct ·Mg · C) · x− yt · (Ct ·Mg · C) · y
= (C · (x+ y))t ·Mg · (C · (x+ y))− (C · x)t ·Mg · (C · x)− (C · y)t ·Mg · (C · y)

= 2Bg(C(x), C(y)).

Then we have a (well-defined) map

Φ: Qf → QuadF

[f ] 7→ [(Fn, Bf )]

On the other hand, given a quadratic space (V,B), for a choice of a base {e1, ..., en} of V , we can
define a quadratic form

fB(X1, ..., Xn) =
∑
i,j

B(ei, ej)XiXj

with Mf = (B(ei, ej)). If we choose another base {f1, ..., fn}, the quadratic form f ′ resulting from
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the new choice of basis will be equivalent to f . In fact, if fi =
n∑
k=1

ckiek, then

(M ′f )ij = B (fi, fj)

= B

(
n∑
k=1

ckiek,

n∑
l=1

cljej

)

=

n∑
k=1

n∑
l=1

cki ·B(ek, el) · clj

= (Ct ·Mf · C)ij

where C = (ckl). Therefore, this form is invariant under change of base, and since every n-
dimensional F -vector space is isomorphic (and so on, isometric as quadratic space) to Fn, we have
a map

Ψ: QuadF → Qf
[(V,B)] 7→ [fB]

Finally, we have Φ ◦Ψ = Id (because MfB = (B(ei, ej))ij) and Ψ ◦Φ = Id by construction, finising
the proof.

Then quadratic forms and quadratic spaces describes the same thing, so we will switch between
these notions according the convenience.

Our next step, is answer the question:

What class of quadratic forms matters? What properties they have?

So we need to classify them, by introducing new definitions and operations. In this sense, we start
with the following lemma: let (V,B) be a quadratic space and M be a symmetric matrix associated
to one of the forms in the equivalence class of fB.

Lemma 1.1.7. The following statements are equivalent:

a - M is a nonsingular matrix.

b - x 7→ B( , x) defines an isomorphism V → V ∗, where V ∗ denotes the vector space dual of V .

c - For x ∈ V , B(x, y) = 0 for all y ∈ V implies that x = 0.

Proof. The equivalence (b) ⇔ (c) is just the fact that isomorphism are injective functions and
dim(V ) = dim(V ∗), so if B(x, y) = 0 for all y ∈ V , then x is in the kernel of the morphism
x 7→ B( , x). And (a)⇔ (b) is consequence of the fact that M (by the appropriate choice of basis)
is the matrix associated to the morphism x 7→ B( , x).

Definition 1.1.8. Let (V,B) be a quadratic space. (V,B) is a regular (or nonsingular) quadratic
space if one (and hence all) of the equivalent statements of the lemma 1.1.7 holds.

Keeping in mind the “generalized inner product” analogy, we equip our theory with some
terminology provenient from linear algebra:
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Definition 1.1.9. Let (V,B) be a quadratic space, and S be a subspace of V . Then (S,B|S×S) is
a quadratic space in its own right. The orthogonal complement of S is defined by

S⊥ = {x ∈ V : B(x, y) = 0, ∀y ∈ S}.

The orthogonal complement of V itself is called the radical of (V,B), denoted by V ⊥ = rad(V ).

Lemma 1.1.10. Let (V,B) be a regular quadratic space and S be a subspace of V . Then:

a - dimS + dimS⊥ = dimV ;

b - (S⊥)⊥ = S.

Proof. Let ϕ : V → V ∗ be the linear isomorphism defined in the item (b) of 1.1.7. Then S⊥ is
precisely the subspace of V annihilated by the functionals in ϕ(S). By the usual duality theory in
linear algebra, we have

dimS⊥ = dimV ∗ − dimϕ(S)

= dimV − dimS,

since ϕ is an isomorphism. This estabilishes (a). Applying (a) twice, we get

dim(S⊥)⊥ = dimV − (dimV − dimS) = dimS.

Since (S⊥)⊥ ⊇ S, we get (b).

Definition 1.1.11. If (V1, B1), (V2, B2) are quadratic spaces, we may form the orthogonal sum
(V,B) of (V1, B1), (V2, B2), notation (V,B) = (V1, B1) ⊥ (V2, B2) in this way: V = V1 ⊕ V2 and
B : V × V → F is given by

B((x1, y1), (x2, y2)) = B1(x1, y1) +B2(x2, y2).

And hence, qB = qB1 + qB2.

Example 1.1.12. If q1 is the ternary form XY − 3Z2 and q2 is the binary form X2−Y 2, q1 ⊥ q2

is the form XY − 3Z2 + V 2 −W 2 in the five variables V,W,X, Y, Z.

Lemma 1.1.13. Let (V1, B1), (V2, B2) be quadratic spaces. Then (V1, B1) ⊕ (V2, B2) is regular if
and only if (V1, B1) and (V2, B2) are regular.

Proof. Is direct consequence of

MfB1
⊥fB2

=

(
MfB1

0

0 MfB2

)
,

where fB1 , fB2 are the unique form up to isometry determined by B1 and B2 respectively and
MfB1

,MfB2
are the symmetric matrix associated to one of the forms in the equivalence class of fB1

and fB2 respectively.

Now, we advance another step in our purpose of classify quadratic forms. The next definition
is crucial:

Definition 1.1.14. Let F be a quadratic form over F and d ∈ Ḟ := F \ {0}. We shall say that f
represents d if there exists x1, x2, ..., xn ∈ F such that f(x1, ..., xn) = d.
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Note that (x1, ..., xn) is a nonzero vector. We shall write DF (f) = D(f) to denote the set of
values in Ḟ represented by f . This set depends only on the equivalence class of f . Beside this,
d ∈ D(f) if and only if da2 ∈ D(f) for all a ∈ Ḟ .

For d ∈ F , we shall write 〈d〉 to denote the isometry class of the 1-dimensional space corre-
sponding to the quadratic form dX2. Follow by definition 1.1.8 that 〈d〉 is regular if and only if
d ∈ Ḟ .

Proposition 1.1.15. Let (V,B) be a quadratic space and d ∈ Ḟ . Then d ∈ D(V ) if and only if
there exists another quadratic space (V ′, B′) such that V ∼= 〈d〉 ⊥ V ′.

Proof. If we have V ∼= 〈d〉 ⊥ V ′, then d ∈ D(〈d〉 ⊥ V ′) = D(V ). Conversely, suppose d ∈ D(V ),
so there exists v ∈ V with q(v) = d (where q = qB). We first make a reduction to the case
where V is regular. Take any subspace W such that V = (radV ) ⊕W = (radV ) ⊥ W . We have
D(V ) = D(W ) be definition of orthogonal sum, and W is regular (by construction). Hence, we
may assume without loss of generality that V is regular.

The quadratic subspace F · v is isometric to 〈d〉, and (F · v) ∩ (F · v)⊥ = 0. Since

dim(F · v) + dim(F · v)⊥ = dimV

by lemma 1.1.10, we conclude that V ∼= 〈d〉 ⊥ (F · v)⊥.

Corollary 1.1.16. If (V,B) is any quadratic space over F , then there exist scalars d1, ..., dn ∈ F
(an “orthogonal basis”) such that V ∼= 〈d1〉 ⊥ 〈d2〉 ⊥ ... ⊥ 〈dn〉. In other words, any n-ary quadratic
form is equivalent to some diagonal form, d1X

2
1 + ...+ dnX

2
n.

Proof. If D(V ) is empty, then B ∼= 0 and V is isometric to an orthogonal sum of 〈0〉’s. If there
exists some d ∈ D(V ), then V ∼= 〈d〉 ⊥ V ′ for some (V ′, B′), and the proof proceeds by induction
on dimV .

We shall abbreviate the diagonal form 〈d1〉 ⊥ 〈d2〉 ⊥ ... ⊥ 〈dn〉 by 〈d1, d2, ..., dn〉. The n-ary
diagonal form 〈d, ..., d〉 will be abbreviated as n〈d〉. For example, 2〈a〉 ⊥ 3〈b〉 means the 5-ary form
〈a, a, b, b, b〉. Another corollary follows:

Corollary 1.1.17. Let f be an n-dimensional quadratic form over F . Then b ∈ D(f)⇔ there exist
b2, ..., bn ∈ Ḟ such that f ∼= 〈b, b2, ..., bn〉. Moreover, if f is regular then we can choose b2, ..., bn ∈ Ḟ .

Proof. (⇐) is a natural consequence of the definitions of isometry and representation. For (⇒),
consider the quadratic space (V,Bf )associated to f . We have V ∼= 〈b〉 ⊥ V ′ by proposition 1.1.15.
Hence, the result follows diagonalizing V ′.

Proposition 1.1.15 and corollaries 1.1.16, 1.1.17 are a powerful tools in deal with quadratic
forms. These reduces the study of quadratic forms to diagonal forms, i.e, instead of deal with
matrices, polynomials and vector spaces we only need to worry with n-tuple of elements in Ḟ . Of
course, we will use (and abuse) of this method from now to the end of the dissertation.

However, we do not forget the intuition and geometric appeal that linear algebra and matrices
got to us! In face of this, we still work with spacial notions in this and next section.

Corollary 1.1.18. If (V,B) is a quadratic space and S is a regular subspace, then:

a - V = S ⊥ S⊥.

b - If T is a subspace of V such that V = S ⊥ T , then T = S⊥.
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Proof. a - Since S ∩ S⊥ = radS = 0, it is suffices to show that V is spanned by S and S⊥.
By corollary 1.1.16, S has an orthogonal basis x1, ..., xp, and the regularity of S implies that
B(xi, xi) 6= 0 for all i. Given z ∈ V , consider the vector

y = z −
p∑
i=1

B(z, xi)

B(xi, xi)
xi.

We have

B(y, xj) = B(z, xj)−
p∑
i=1

B(z, xi)

B(xi, xi)
B(xi, xj)

= B(z, xj)−
B(z, xj)

B(xj , xj)
B(xj , xj) = 0.

Thus y ∈ S⊥, and

z = y +

p∑
i=1

B(z, xi)

B(xi, xi)
xi ∈ S ⊥ S⊥.

b - If V = S ⊥ T , then T ⊆ S⊥. But

dimT = dimV − dimS = dimS⊥

and dimT, dimS⊥ ≤ dimV ∈ N. So, we must have T = S⊥.

Corollary 1.1.19. Let (V,B) be a regular quadratic space. Then a subspace S is regular if and
only if there exists T ⊆ V such that V = S ⊥ T .

Proof. (⇒) Take T = S⊥ and apply the item (a) of the corollary 1.1.18.
(⇐) If V = S ⊥ T , then radS ⊆ radV = 0, so S is regular and T = S⊥, by item (b) of corollary

1.1.18.

Definition 1.1.20. Let f be a nonsingular quadratic form. The discriminant of f is defined to be
d(f) = det(Mf ) · Ḟ 2 (an element of Ḟ /Ḟ 2), where Mf is the symmetric matrix associated with f .

Note that if f ∼= g, then Mf = CtMgC for some nonsingular matrix C, and hence

d(f) = det(Mf ) · Ḟ 2 = det(Mg) · (detC)2 · Ḟ 2 = d(g).

This shows that d(f) is an invariant of the equivalence class of f .
Let (V,B) be a (regular) quadratic space that corresponde to the equivalence class of f . If

V ∼= 〈d1, ..., dn〉 is a “diagonalization” of V , then d(f) = d1...dn · Ḟ 2. It is sometimes convenient to
call this quantity the discriminant of V , written d(V ).

We had seen some cool results about regular quadratic forms, so you could be thinking

Our job is done! Regular forms classify quadratic forms!

But it is not enough. For example, let the binary form q = 〈1,−1〉 (say in R). q is a regular
form, but q(x, x) = 0 for all x ∈ R, so from the “q-point of view”, all vectors in the line y = x have
“length” zero. In an ideal world, non-zero vectors must be “positive length”! So regular forms do
not “see” these “strange” vectors.
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Definition 1.1.21. Let v be a nonzero vector in a quadratic space (V,B). We say that v is an
isotropic vector if B(v, v) = 0 and say that v is anisotropic otherwise. The quadratic space (V,B) is
isotropic if it contains a (nonzero) isotropic vector and is said to be anisotropic otherwise. Finally,
we shall say that (V,B) is totally isotropic if all nonzero vectors in V are isotropic (that is, if
B ≡ 0).

Theorem 1.1.22. Let (V, q) be a 2-dimensional quadratic space. The following four statements
are equivalent:

a - V is regular and isotropic.

b - V is regular, with d(V ) = −1 · Ḟ 2.

c - V is isometric to 〈1,−1〉.

d - V corresponds to the equivalence class of the binary form X1X2.

The isometry class of a 2-dimensional quadratic space satisfying these conditions is called hyperbolic
plane and will be denoted by H.

Proof. We already seen that (c)⇔ (d) in example 1.1.3, and (d)⇒ (a) is immediate.

(a)⇒ (b): Let x1, x2 be an orthogonal basis for V . Regularity of V implies that q(xi) = di 6= 0
(i = 1, 2). Let ax1 + bx2 be an isotropic vector with a 6= 0 (without loss of generality). Then

0 = q(ax1 + bx2) = a2d1 + b2d2 ⇒ d1 = −(ba−1)2 · d2

⇒ d(V ) = d1d2 · Ḟ 2 = −1 · Ḟ 2.

(b)⇒ (c): Under the hypothesis of (b), we have a diagonalization V ∼= 〈a,−a〉 for some a ∈ Ḟ .
By the argument in example 1.1.3, we know that aX2 − aY 2 is equivalent to aXY . The latter
represents all elements in Ḟ . In particular, (V, q) itself represents 1. By the proposition 1.1.15, we
conclude that V ∼= 〈1,−1〉.

An orthogonal sum of hyperbolic planes will be called a hyperbolic space. The corresponding
quadratic form may be taken either as (X2

1−X2
2 )+ ...(X2

2m−1−X2
2m) or as X1X2 + ...+X2m−1X2m.

Definition 1.1.23. A quadratic form (or quadratic space) is called universal if it represents all
the nonzero elements of F .

Theorem 1.1.24. Let (V,B) be a regular quadratic space. Then:

a - Every totally isotropic subspace U ⊆ V of positive dimension r is contained in a hyperbolic
subspace T ⊆ V of dimension 2r.

b - V is isotropic if and only if V contains a hyperbolic plane.

c - If V is isotropic, then V is universal.

Proof. a - We shall prove by induction on r. Take any basis x1, ..., xr in U , and let S be the span
of x2, ..., xr. Of course, U⊥ ⊆ S⊥. Since V is regular, we may apply the proposition 1.1.15 to
get

dimS⊥ = dimV − dimS > dimV − dimU = dimU⊥.
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This means that there exists a vector y1 ∈ S⊥ that is orthogonal to x2, ..., xr, but not orthogonal
to x1. In particular, x1, y1 are linearly independent vectors (since x1 is isotropic). The subspace
H1 = Fx1 + Fy1 has discriminant

d(H1) = det

(
0 B(x1, y1)

B(x1, y1) B(y1, y1)

)
· Ḟ 2 = −1 · Ḟ 2,

so H1
∼= H by the theorem 1.1.22. We have thus a splitting V = H1 ⊥ V ′, where V ′ = H⊥1

contains x2, ..., xr (corollary 1.1.18). Since V ′ is regular (corollary 1.1.19), the proof proceeds
by induction.

b - Follow by (a) putting r = 1.

c - Is imediatly consequence of the fact that H is universal.

Theorem 1.1.25. Let f, g be arbitrary quadratic forms over a field F , a1, ..., an, b1, ..., bn ∈ Ḟ and
π ∈ Sn3. Then:

a - f ∼= g ⇒ dim(f) = dim(g) and d(f) = d(g).

b - f ∼= g ⇒ af ∼= ag for all a ∈ Ḟ .

c - 〈a1b
2
1, ..., anb

2
n〉 ∼= 〈a1, ..., an〉.

d - 〈aπ(1), ..., aπ(n)〉 ∼= 〈a1, ..., an〉.

e - If 〈a1, ..., ak〉 ∼= 〈b1, ..., bk〉 and 〈ak+1, ..., an〉 ∼= 〈bk+1, ..., bn〉 then 〈a1, ..., an〉 ∼= 〈b1, ..., bn〉.

Proof.

a - Isometry is already defined on forms of the same dimension. Now, suppose that Mf = CtMgC.
Then

det(Mf ) = det(CtMgC) = det(Mg) det(C)2 ⇒ d(f) = det(Mf ) · Ḟ 2 = det(Mg) · Ḟ 2 = d(g).

b - If g(X) = f(C ·X) for some C ∈ GLn(F ), then the same matrix C gives ag(X) = af(C ·X).

c - Is just the fact that the symmetric matrix

B =


b1 0 ... 0
0 b2 ... 0
...

...
. . .

...
0 0 ... bn


transform 〈a1, ..., an〉 to 〈a1b

2
1, ..., anb

2
n〉.

d - Consider the matrix A = (aij) where aiπ(i) = 1 and the other entries are 0. We have that
A ∈ GLn(F ) and A transform 〈a1, ..., an〉 to 〈aπ(1), ..., aπ(n)〉.

3The group of bijections π : {1, 2, ..., n} → {1, 2, ..., n}.
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e - If B transform 〈a1, ..., ak〉 into 〈b1, ..., bk〉 and C transform 〈ak+1, ..., an〉 into 〈bk+1, ..., bn〉 then

D =

(
B 0
0 C

)
transform 〈a1, ..., an〉 into 〈b1, ..., bn〉.

Corollary 1.1.26. Let a, b, c, d ∈ Ḟ . Then:

a - 〈a〉 ∼= 〈b〉 ⇔ a ≡ b (mod Ḟ 2).

b - 〈a, b〉 ∼= 〈c, d〉 ⇔ ab ≡ cd (mod Ḟ 2) and there exist x, y ∈ F such that c = ax2 + by2.

Proof.

a - Is just the items (a) and (c) of corollary 1.1.25.

b - (⇒) ab ≡ cd (mod Ḟ 2) comparing discriminants and by theorem 1.1.17(e), we have c ∈ D(a, b).
Then there exist x, y ∈ F such that c = ax2 + by2.

(⇐) As c = ax2 + by2 for some x, y ∈ F , we have c ∈ D(a, b). Hence by corollary 1.1.17
〈c, e〉 ∼= 〈a, b〉 for some e ∈ Ḟ . Thus ce · Ḟ 2 = ab · Ḟ 2 = cd · Ḟ 2 so e · Ḟ 2 = d · Ḟ 2. By item (a)
〈e〉 ∼= 〈d〉 and by corollary 1.1.25 〈c, e〉 ∼= 〈c, d〉. Then by transitivity of isometry 〈a, b〉 ∼= 〈c, d〉.

Corollary 1.1.27. 〈a,−a〉 ∼= 〈1,−1〉 holds for all a ∈ Ḟ .

Proof. a(−a) · Ḟ 2 = 1(−1) · Ḟ 2 and

a =

(
a+ 1

2

)2

−
(
a− 1

2

)2

.

Thus by item (b) of corollary 1.1.26 we have 〈a,−a〉 ∼= 〈1,−1〉.

Corollary 1.1.28. Let f be a regular quadratic form over F of dimension n. Then f is isotropic
if and only if there exist b3, ..., bn ∈ Ḟ with f ∼= 〈1,−1, b3, ..., bn〉. In particular, this implies n ≥ 2.

Proof. If f ∼= 〈1,−1, b3, ..., bn〉, then 12 − 12 + b3(0)2 + ... + bn(0)2 = 0 and f is isotropic (for the
vector v = (1, 1, 0, 0, ..., 0), we have f(v) = 0 and v 6= 0). Now suppose that f ∼= 〈a1, ..., an〉 is
isotropic. Then for some x1, ..., xn ∈ F not all zero, we have a1x

2
1 + ... + anx

2
n = 0. By 1.1.25(d)

we may assume x1 6= 0. Take a = a1x
2
1. Then −a = a2x

2
2 + ...+ anx

2
n ∈ D(a2, ..., an) so bycorollary

1.1.17, there exist b3, ..., bn ∈ Ḟ such that 〈a2, ..., an〉 ∼= 〈−a, b3, ..., bn〉. Also 〈a1〉 ∼= 〈a〉 by corollary
1.1.26(a) so by 1.1.25(e) and corollary 1.1.27

f ∼= 〈a1, ..., an〉 ∼= 〈a,−a, b3, ..., bn〉 ∼= 〈1,−1, b3, ..., bn〉.

Proposition 1.1.29. Leq q = 〈a, b〉, q′ = 〈c, d〉 be regular binary forms. Then q ∼= q′ if and only
if d(q) = d(q′) and q, q′ represents a common element e ∈ Ḟ .
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Proof. We just need to prove (⇐). Assume that d(q) = d(q′) ∈ Ḟ /Ḟ 2 and let e ∈ D(q) ∩ D(q′).
By proposition 1.1.15, we know that q ∼= 〈e, e′〉 for some e′ ∈ Ḟ . Taking discriminant, we have
abḞ 2 = cdḞ 2, so q ∼= 〈e, abe〉. Similarly, q′ ∼= 〈e, cde〉. But abḞ 2 = cdḞ 2, so q ∼= q′.

Now we know what we need to do: it is necessary to look for some criteria to decompose general
diagonal forms to anisotropic diagonal forms. But before this, let is get more familiarity operating
quadratic forms. Our classification task will return in the future.

So, we already know how to “sum” quadratic forms. A natural question is:

Is it possible “multiply” forms?

Of course is, and this is the subject of the next definition:

Definition 1.1.30. Let (V1, B1, q1), (V2, B2, q2) be two quadratic spaces over F , of dimension m
and n. We define a new vector space V = V1⊗V2 (⊗ = ⊗F ), and let B : V ×V → F be the unique
simmetric bilinear pairing satisfying

B(v1 ⊗ v2, v
′
1 ⊗ v′2) = B1(v1, v

′
1)B2(v2, v

′
2), v1, v2 ∈ V1, v

′
1, v
′
2 ∈ V2.

and therefore, qB(v1 ⊗ v2) = q1(v1)q2(v2). The pair (V,B) is a new quadratic space over F with
dimension mn, called the Kronecker product (or tensor product) of V1 and V2.

Let {e1, ..., em} and {f1, ..., fn} be basis of V1 and V2 respectively. Taking aij = B1(ei, ej) and
blk = B2(fl, fk), we have that M = (aij) and N = (blk) are the symmetric matrices associated with
q1 and q2 in the given choice of base (respectively). Now, consider the basis of V = V1 ⊗ V2 given
by {e1 ⊗ f1, e1 ⊗ f2, ..., e1 ⊗ fn, ..., em ⊗ f1, ..., em ⊗ fn}. With respect to this choice of basis, the
form q gives rise to the symmetric matrix

a11b11 a11b12 · · · a12b11 a12b12 · · · · · ·
a11b21 a11b22 · · · a12b21 a12b22 · · · · · ·

...
...

. . .
...

...
. . . · · ·

a21b11 a21b12 · · · · · · · · · · · · · · ·
...

... · · · · · · · · · · · · · · ·

 =


a11N a12N · · · a1mN
a21N a22N · · · a2mN

...
...

. . .
...

am1N am2N · · · ammN


which is precisely the ordinary Kronecker product of the two matrices M,N . In particular,

〈a〉 ⊗ 〈b〉 ∼= 〈ab〉 for all a, b ∈ F .
As consequence of this matricial property, we have the following lemma:

Lemma 1.1.31. The Kronecker product operation for quadratic forms satisfies the following prop-
erties:

a - q1 ⊗ q2
∼= q2 ⊗ q1.

b - (q1 ⊗ q2)⊗ q3
∼= q1 ⊗ (q2 ⊗ q3).

c - The “distributive law” q ⊗ (q1 ⊥ q2) ∼= (q ⊥ q1)⊗ (q ⊥ q2).

Using the distributive law, we obtain the following rule:

〈a1, ..., am〉 ⊗ 〈b1, ..., bn〉 ∼= 〈a1b1, ...a1bm, a2b1, ..., a2bm, ..., anb1, ..., ambn〉.

If r is a nonnegative integer and f is a form, r · f (or sometimes rf) denotes the orthogonal
sum of r copies of f .
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Corollary 1.1.32. If q is any regular quadratic form, then q ⊗H ∼= (dim q) ·H.

Proof. By induction on dim q, we reduce to the case where q = 〈a〉, a 6= 0. But then, 〈a〉 ⊗ H =
〈a, 〉 ⊗ 〈1,−1〉 ∼= 〈a,−a〉 ∼= H, by the theorem 1.1.22.

1.2 Witt’s theorems and its consequences

We are aware equipped with basic facts about isometry, sum and product of forms, so we are
prepared to deal with our classification task. We will get the desired decomposition in this section,
as consequence of some classical theorems due to Ernest Witt.

To proof the first one, the Cancellation Theorem, we need the notion of a hyperplane refletion.
Let (V,B, q) be any quadratic space. We shall write Oq(V ) = O(V ) to denote the group of
isometries of (V, q). This so-called orthogonal group is the symmetry group which underlies the
geometry of our quadratic spaces. The following construction associates an element τy ∈ O(V ) to
every anisotropic vector y ∈ V . As a map from V to itself, τy is defined by

τy(x) = x− 2B(x, y)

q(y)
y

for every x ∈ V . Below, are some properties of τy:

a - τy is a linear endomorphism.

b - τy is the identity map on (F · y)⊥. In fact, in the above formula, if B(x, y) = 0, then τy(x) = x.
Furthermore, if we apply τy to y itself, we get

τy(y) = y − 2B(y, y)

q(y)
y = y − 2y = −y.

In particular, τy is an involution (τ2
y = id): it leaves the hyperplane (F · y)⊥ pointwise fixed,

and reflects the vector λy across (F · y)⊥ to −λy.

c - τy ∈ O(V ) by the calculation:

B(τy(x), τy(x
′)) = B

(
x− 2B(x, y)

q(y)
y, x′ − 2B(x′, y)

q(y)
y

)
= B(x, x′)− 4B(x, y)B(x′, y)

q(y)2
B(y, y)− 4B(x, y)B(x′, y)

q(y)

= B(x, x′) (since B(y, y) = q(y)).

d - As a linear automorphism, τy has discriminant −1.

e - The set of hyperplane refletions {τy : q(y) 6= 0} is closed under conjugation in the orthogonal
group O(V ). In fact, if σ ∈ O(V ), then one has στyσ

−1 = τσy:

στyσ
−1(x) = σ[τyσ

−1x]

= σ

[
σ−1x− 2B(σ−1x, y)

q(y)
y

]
= x− 2B(x, σy)

q(σy)
σy = τσy(x)
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for every x ∈ V .

Proposition 1.2.1. Let (V, q) be a quadratic space, and let x, y be vectors in V such that q(x) =
q(y) 6= 0. Then there exists on element τ ∈ O(V ) such that τ(x) = y.

Proof. Geometrically, if we consider the reflection with respect to the hyperplane (F · (x − y))⊥,
then x should be taken to y. But, is x − y necessarily anisotropic? We derive first the law of
parallelogram:

q(x+ y) + q(x− y) = B(x+ y, x+ y) +B(x− y, x− y)

= 2B(x, x) + 2B(y, y) = 4q(x) 6= 0.

This implies that q(x + y), q(x − y) cannot be both zero. Replacing y by −y if necessary, we
may assume that q(x − y) 6= 0 (because if we can find τ ∈ O(V ) such that τ(x) = −y, then
q(−y) = q(y) 6= 0, so τ−y(τ(x)) = τ−y(−y) = y). Applying the reflection τx−y to x, we obtain

τx−y(x) = x− 2B(x, x− y)

q(x− y)
(x− y).

But

q(x− y) = B(x− y, x− y)

= B(x, x) +B(y, y)− 2B(x, y)

= 2(B(x, x)−B(x, y)) = 2B(x, x− y).

Thus, τx−y(x) = x− (x− y) = y, finishing the proof.

We are in position to prove

Theorem 1.2.2 (Witt’s Cancellation). If q, q1, q2 are arbitrary quadratic forms, then

q ⊥ q1
∼= q ⊥ q2 ⇒ q1

∼= q2.

Proof. Suppose it is given that q ⊥ q1
∼= q ⊥ q2.

Case 1: q is totally isotropic and q1 is regular. Let M1,M2 be the symmetric matrices associated

with q1 and q2. The hypothesis implies that

(
0 0
0 M1

)
is congruent to

(
0 0
0 M2

)
, so there

exists an invertible matrix E =

(
A B
C D

)
, dim(A) = dim(q), dim(D) = dim(q1) = dim(q2),

such that (
0 0
0 M1

)
=Et

(
0 0
0 M2

)
E

=

(
At Bt

Ct Dt

)(
0 0
0 M2

)(
A B
C D

)
=

(
At Bt

Ct Dt

)(
0 0

M2C M2D

)
=

(
CtM2C CtM2D
DtM2C DtM2D

)
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In particular M1 = DtM2D. Since M1 is nonsingular, so is D, and hence M1,M2 are
congruent. This gives q1

∼= q2.

Case 2: q is totally isotropic. To see this, diagonalize q1, q2 and assume that q1 has exactly r
zeros coefficients in the diagonalization, while q2 has exactly r zeros or more. Rewriting the
hypothesis, we have

q ⊥ r〈0〉 ⊥ q′1 ∼= q ⊥ r〈0〉 ⊥ q′2.

Since q′1 is regular, the case 1 implies that q′1
∼= q′2. By tagging on r terms of 〈0〉, we conclude

that q1
∼= q2.

Case 3: general case. Let 〈a1, ..., an〉 be a diagonalization of q. Inducting on n, we are reduced
to the case n = 1. The case a1 = 0 has been handled in case 2, so we may assume that
q = 〈a1〉, a1 6= 0. The hypothesis now reads: 〈a1〉 ⊥ q1

∼= 〈a1〉 ⊥ q2. Let p1 = 〈a1〉 ⊥ q1 and
p2 = 〈a1〉 ⊥ q2. Since a1 6= 0, there exists x1, y1, x2, y2 ∈ V (eventually x1 = y1 and x2 = y2)
such that p1(x1) = p1(y1) 6= 0 and p2(x2) = p2(y2) 6= 0.

By proposition 1.2.1, there exists τ1, τ2 ∈ O(V ) isometries such that τ1(x1) = τ1(y1) and
τ2(x2) = τ2(y2). Since τ1 �(F ·x1)⊥ : (F ·x1)⊥ → (F · y1)⊥ and τ2 �(F ·x2)⊥ : (F ·x2)⊥ → (F · y2)⊥

are isometries and q1 = (V, q) �(F ·x1)⊥ , q2 = (V, q) �(F ·x2)⊥ ; τ−1
2 �(F ·y2)⊥ ◦τ1 �(F ·x1)⊥ is the

isometry that witness q1
∼= q2.

Finally, we get our desired decomposition theorem:

Theorem 1.2.3 (Witt’s Decomposition). Any quadratic space (V, q) splits into an orthogonal sum

(Vt, qt) ⊥ (Vh, qh) ⊥ (Va, qa),

where Vt is totally isotropic, Vh is hyperbolic (or zero), and Va is anisotropic (or zero). Furthermore,
the isometry types of Vt, Vh, Va are all uniquely determined.

Proof. For the existence, take any subspace V0 such that V = (radV ) ⊕ V0 = (radV ) ⊥ V0. Then
Vt = radV is totally isotropic, and V0 is regular. If V0 is isotropic, we may write V0 = H1 ⊥ V1

(by theorem 1.1.24), where H1
∼= H. If V1 is again isotropic, we may further write V1 = H2 ⊥ V2,

where H2
∼= H. After a finite number of steps, we achieve a decomposition

V0 = (H1 ⊥ ... ⊥ Hr) ⊥ Va, (r ≥ 0),

where H1 ⊥ ... ⊥ Hr = Vh is hyperbolic (or zero), and Va is anisotropic. This proves the existence
part.

To estabilish the uniqueness part, suppose V has another Witt decomposition V = V ′t ⊥ V ′h ⊥
V ′a. Since V ′t is totally isotropic and V ′h ⊥ V ′a is regular, we have

radV = (radV ′t ) ⊥ rad(V ′h ⊥ V ′a) = V ′t ,

so Vt ∼= V ′t . By the Cancellation Theorem 1.2.2, we have now Vh ⊥ Va ∼= V ′h ⊥ V ′a. Write Vh ∼= m ·H
and V ′h

∼= m′ · H. By cancelling H one at time, we conclude that m = m′ since Va, V
′
a are both

anisotropic. After all m hyperbolic planes have been cancelled, we arrive at Va ∼= V ′a, completing
the proof.

So with Witt’s decomposition theorem, we can happily say
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Just anisotropic forms matters!

and consider our classification task done. But the devil is in the details! In a pratical situation,
taking a general (diagonal) anisotropic form of dimension n could lead us to some trouble with
the “length” of n. In other words, we do not want to make heavy calculation with forms of higher
dimension. So would be desirable reduce this “length” as much as possible. This is the content of
the next two theorems.

Then, our ultimate slogan is

Just binary anisotropic forms matters!

If you casually underestimate the power of binary forms, we have a final argument for you: the
Chain Equivalence Theorem. First, we define simply and chain equivalence:

Definition 1.2.4. Let q = 〈a1, ..., an〉 and q′ = 〈b1, ..., bn〉. We shall say that q and q′ are simply-
equivalent, if there exist indices i, j ≤ n, such that

a - 〈ai, aj〉 ∼= 〈bi, bj〉,

b - ak = bk whenever k is different from i and j.

Note that, if i = j, the expression 〈ai, aj〉 is understood to be just 〈ai〉.
More generally, we say that two diagonal forms f and g are chain-equivalent, if there exists a

sequence of diagonal forms f0, f1, ..., fm such that f0 = f , fm = g, and each fi is simply-equivalent
fi+1 (0 ≤ i ≤ m− 1).

Chain equivalence is an equivalence relation on all diagonal forms (of a fixed dimension), and
it will be denoted by the symbol ≈. Of course, f ≈ g implies f ∼= g. It turns out that the converse
is also true, and this is the content of the following celebrated result of Witt:

Theorem 1.2.5 (Witt’s Chain Equivalence). If f and g are arbitrary diagonal forms (of the same
dimension), then f ∼= g ⇒ f ≈ g.

Proof. Say f = 〈a1, ..., an〉 and g = 〈b1, ..., bn〉. Note that if σ is a permutation of the indices
{1, 2, ..., n}, and fσ = 〈aσ(1), aσ(2), ..., aσ(n)〉, then f ≈ fσ. This follows from the observation that
the full symmetric group on {1, ..., n} is generated by the transpositions. Since f ∼= g, the two
forms, f and g, have the same number of zero terms in their diagonalizations. It is, therefore,
sufficient to show that the regular parts of f and g are chain-equivalent. By Witt’s Decomposition
Theorem 1.2.3, the number of zeros in f is equal of the number of zeros in g, so we may assume
that f and g are both regular, that is, ai, bj are all nonzero. The argument is by induction on n.
There is nothing to prove if n = 1, 2, so we consider n ≥ 3 in the following.

Among all diagonal forms that are chain-equivalent to f , choose an f ′ = 〈c1, ..., cn〉 such that
some 〈c1, ..., cp〉 represents b1 and p is smallest possible (the existence of f ′ follows from the Well-
Ordering Principle). We claim that p = 1. In fact, suppose the contrary. Write b1 = c1e

2
1 + ...+cpe

2
p

(p ≥ 2). By the minimality of p, no subsum in this summation can be equal to zero. In particular,
d = c1e

2
1 + c2e

2
2 6= 0. By proposition 1.1.15, 〈c1, c2〉 ∼= 〈d, c1c2d〉. Thus

f ≈ f ′ = 〈c1, c2, ..., cn〉
≈ 〈d, c1c2d, c3, ..., cp, ..., cn〉
≈ 〈d, c3, ..., cp, ..., cn, c1c2d〉,
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and b1 = d + c3e
2
3 + ... + cpe

2
p is already represented by 〈d, c3, ..., cp〉, which has dimension p − 1,

contradicting the choice of p. We have thus shown that p = 1. Hence 〈c1〉 ∼= 〈b1〉, and so
f ≈ 〈b1, c2, ..., cn〉. By Witt’s Cancellation Theorem,

〈b1, c2, ..., cn〉 ∼= 〈b1, b2, ..., bn〉 ⇒ 〈c2, ..., cn〉 ∼= 〈b2, ..., bn〉.

By the inductive hypothesis, this implies that 〈c2, ..., cn〉 ≈ 〈b2, ..., bn〉. So finally,

f ≈ 〈b1, c2, ..., cn〉 ≈ 〈b1, b2, ..., bn〉 = g.

1.3 The Witt Ring

Okay, you define quadratic forms and classify them. In the process, some operations (orthogonal
sum and Kronecker product) appears, and you prove that with these operations, the “quadratic

forms are almost a ring”. What we get if we pursuit these ideas?

If you thought something like that, do not worry, we do not forget about our operations.
Let M(F ) be the set of all isometry classes of nonsingular quadratic forms over F . The binary
operations ⊥ and ⊗ already define the structure of a commutative semiring on M(F ). By Witt’s
Cancellation Theorem (1.2.2), the additive structure (⊥) actually makes M(F ) into a cancellation
monoid, although no nonzero element in M(F ) has an additive inverse. The procedure required to
remedy this is the so-called Grothendieck construction. In fact, this construction is essentially the
same of the construction of Z from N.

In general, let M be any commutative cancelative monoid under addition. We define a relation
∼ on M ×M by

(x, y) ∼ (x′, y′)⇔ x+ y′ = x′ + y.

The cancellation law in M implies that ∼ is an equivalence relation on M ×M . We define the
Grothendieck group of M to be Groth(M) = (M ×M)/ ∼ (the set of equivalence classes) with the
addition induced by

(x, y) + (x′, y′) = (x+ x′, y + y′).

This is a well-defined addition on Groth(M), and that in Groth(M), the two classes (x, y), (y, x)
are additive inverses of each other. So, indeed, Groth(M) is a group. The map i : M → Groth(M)
defined by i(x) = (x, 0) is an injective monoid homomorphism of M into Groth(M), which may be
viewed as an inclusion M ⊆ Groth(M). Note that (x, y) = i(x) − i(y) = x − y, so in particular,
Groth(M) is the additive group generated by M . Any monoid homomorphism f of M into an
abelian group G extends uniquely to a group homomorphism f : Groth(M) → G by the rule
f(x − y) = f(x) − f(y) ∈ G. This is the universal property of Groth(M). Lastly, if M has a
(commutative) multiplication which makes it into a semiring, i.e, that distributes over the sum in
M , then

(x, y)(x′, y′) = (xx′ + yy′, yx′ + xy′)

induces a (commutative) multiplication on Groth(M) that makes it into a (commutative) ring.

We may now apply the above machinery to the commutative semiring M = M(F ).

Definition 1.3.1. Ŵ (F ) = Groth(M(F )) is called the Witt-Grothendieck ring of quadratic forms
over the field F .
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Every element of Ŵ (F ) has the formal expression q1−q2, where q1, q2 are nonsingular quadratic
forms, or rather, isometry classes of such forms. Since M(F ) ⊆ Ŵ (F ), the two statements q1 =
q2 ∈ Ŵ (F ) and q1

∼= q2 are synonymous.
Now, consider the dimension map dim : M(F ) → Z, which is a semiring morphism on M(F ).

This extends uniquely (via the universal property) to a surjective ring morphism dim : Ŵ (F )→ Z,
by dim(q1 − q2) = dim q1 − dim q2.

Definition 1.3.2. The kernel of the morphism dim : Ŵ (F ) → Z, denoted by ÎF is called the
fundamental ideal of Ŵ (F ).

Proposition 1.3.3. ÎF is additively generated by the expressions 〈a〉 − 〈1〉, 0 6= a ∈ F .

Proof. If z ∈ ÎF , then z = q1−q2, where q1 and q2 have the same dimension. Say, q1 = 〈a1, ..., an〉,
q2 = 〈b1, ..., bn〉. Then

z =
∑
i

(〈ai〉 − 〈bi〉) =
∑
i

(〈ai〉 − 〈1〉)−
∑
i

(〈bi〉 − 〈1〉).

By the homomorphism theorem, we have Ŵ (F )/ÎF ∼= Z.

It is important to observe that the Witt-Grothendieck ring has the same problem of regular
forms: hyperbolicity scapes of them. To solve this situation in our ring theoretic point of view, we
consider another important ideal of Ŵ (F ), the ideal of all hyperbolic spaces and their “additive
inverses”, denoted by Z ·H (this is an ideal by corollary 1.1.32.

Definition 1.3.4. The factor ring W (F ) = Ŵ (F )/Z ·H is called the Witt Ring of F .

Now, some consequences of this definition:

Proposition 1.3.5.

a - The elements of W (F ) are in one-to-one correspondence with the isometry classes of all aniso-
tropic forms.

b - Two nonsingular forms q, q′ represent the same element in W (F ) if and only if qa ∼= q′a i.e, if
the anisotropic part (conform 1.2.3) of q and q′ are isometric. In this case, q and q′ are said
to be Witt-similar.

c - If dim q = dim q′, then q and q′ represent the same element in W (F ) if and only if q ∼= q′.

Proof. For the item (a), since the form H represents the element 0 in W (F ) and H ∼= 〈a,−a〉, we
have −〈a〉 = 〈−a〉 ∈ W (F ) for all a ∈ Ḟ . In particular, every element of W (F ) is represented
by a form q. If we write down the Witt decomposition of q, say q = qh ⊥ qa, then q and qa
represent the same element in W (F ) (since qh = 0 in W (F )). Therefore, each element of W (F ) is
represented by a suitable anisotropic form. For the proof of item (a), it remains only to show that,
if q and q′ are anisotropic forms, then q = q′ ∈ W (F ) ⇒ q ∼= q′. But q = q′ ∈ W (F ) implies that
q = q′ +mH ∈ Ŵ (F ) for some integer m. Without loss of generality, we may assume that m ≥ 0.
Then we have an isometry q ∼= q′ ⊥ mH, which implies that m = 0 (since q is anisotropic). Thus,
indeed, q ∼= q′. Items (b) and (c) are direct consequence of item (a).

Moreover, the Witt ring construction behaves functorially:
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Proposition 1.3.6. Ŵ and W are both functors from fields of characteristic not 2 to commutative
rings.

Proof. We just to worry about morphisms. Let f : K → L be a morphism of fields (of characteristic
not 2) and (V,B) be a K-quadratic space. We can built a L-quadratic space (V L, BL) as follow:
V L := L⊗K V and BL is defined by the rule BL(x⊗ u, y ⊗ v) = xy · f(B(u, v)). By the universal
property of tensor product, we have that BL is in fact, a bilinear symmetric form. Then, we have
a semiring morphism f̃ : M(K) → M(L), given by [(V,B)] 7→ [(V L, BL)]. Note that f 7→ f̃ is a
functor (preserves id and 0). Finally, the functoriality of Ŵ is consequence of the universal property
of Grothendieck construction, and the functoriality of W is consequence of the homomorphism
theorem.

Definition 1.3.7. The image of the ideal ÎF under the natural projection Ŵ (F )→W (F ) will be
denoted by IF . This is called the fundamental ideal of W (F ).

Proposition 1.3.8. A form q represents an element in IF ⊆W (F ) if and only if dim q is even.

Proof. (⇒) if q represents an element in IF , then there exists an equation q = q1−q2+mH ∈ Ŵ (F ),
where m ∈ Z and dim q1 = dim q2 = k. Applying the map dim, we see that dim q = 2m+ 2k.

(⇐) We can assume without loss of generality that q is a binary form q = 〈a, b〉. Then q is the
image of 〈a〉 − 〈−b〉 ∈ ÎF under the natural projection Ŵ (F ) → W (F ). By definition, this says
that q ∈ IF ⊆W (F ).

The ring epimorphism dim : Ŵ (F )→ Z induces another epimorphism

Ŵ (F )/Z ·H = W (F )→ Z/2Z,

which we shall denote by dim0. By the above proposition, ker(dim0) = IF , so we obtain

Corollary 1.3.9. dim0 defines an isomorphism W (F )/IF ∼= Z/2Z.

Now, we going to search for the relationships connecting Ŵ (F ) to Ḟ /Ḟ 2 and W (F ) to Ḟ /Ḟ 2.
Let us recall the meaning of the discriminant of a form q ∈ M(F ), d(q) = det(q) · Ḟ 2. We have a
monoid morphism d : M(F )→ Ḟ /Ḟ 2. By

d(q1 − q2) = d(q1)d(q2)−1 = d(q1)d(q2),

this extends to a homomorphism d from the additive group Ŵ (F ) to Ḟ /Ḟ 2. Since d(H) = −1 · Ḟ 2,
the homomorphism d does not factor through W (F ). However, there is a clever way to remedy
this.

Let q be a (nonsingular) form of dimension n. We define the “signed discriminant” of q by
d±(q) = (−1)n(n−1)/2d(q) ∈ Ḟ /Ḟ 2. The obvious advantage of this signed discriminant is that
d±(H) = 1 · Ḟ 2. However, d±(q ⊥ q′) = d±(q)d±(q′) fails in general: d±(H) = 1 · Ḟ 2, d±(〈1, 1〉) =
−1 · Ḟ 2 but d±(〈1, 1〉 ⊥ H) = 1 · Ḟ 2. To restore the homomorphism property, we look at d± together
with dim0, and manufacture a bigger group to receive the combined invariant. This new group is
an extension of Ḟ /Ḟ 2 by Z/2Z. Namely, we define (set theoretically) Q(F ) = Z/2Z× (Ḟ /Ḟ 2), and
introduce on it the binary operation (e, d) · (e′, d′) = (e + e′, (−1)ee

′
dd′) (not the direct product

operation!).

Lemma 1.3.10. Q(F ) with the operation defined above is an abelian group.



1.3. THE WITT RING 21

Proof. Let (a, d), (b, e), (c, f) ∈ Q(F ).

[(a, d) · (b, e)] · (c, f) = (a+ b, (−1)abde) · (c, f)

= (a+ b+ c, (−1)(a+b)c(−1)abdef)

= (a+ b+ c, (−1)ab+ac+bcdef),

and

(a, d) · [(b, e) · (c, f)] = (a, b) · (b+ c, (−1)bcef)

= (a+ b+ c, (−1)a(b+c)(−1)bcdef)

= (a+ b+ c, (−1)ab+ac+bcdef).

Then · is associative. (a, b) ·(0, 1) = (a+0, (−1)a0b1) = (a, b) and (0, 1) ·(a, b) = (0+a, (−1)0a1b) =
(a, b), hence (0, 1) is the identity element. Finally,

(e, d) · (e, (−1)ed) = (e+ e, (−1)ee(−1)edd) = (0, 1).

Therefore, Q(F ) is a group. Moreover,

(a, d) · (b, e) = (a+ b, (−1)abde) = (b+ a, (−1)baed) = (b, e) · (a, d),

so Q(F ) is an abelian group.

Note that the “inclusion” d 7→ (0, d) identifies Ḟ /Ḟ 2 with a subgroup of index 2 in Q(F ).

Proposition 1.3.11. (dim0, d±) defines a monoid epimorphism from M(F ) to Q(F ). This extends
to a group epimorphism Ŵ → Q(F ). The latter induces a group isomorphism f : W (F )/I2F ∼=
Q(F ).

Proof. The map M(F ) → Q(F ) is given by q 7→ (dim0(q), d±(q)) ∈ Q(F ). To check that it is a
monoid homomorphism, we calculate as follows (where dim(q) = n, and dim(q′) = n′):

(dim0, d±)(q) · (dim0, d±)(q′) = (n, (−1)n(n−1)/2d(q)) · (n′, (−1)n
′(n′−1)/2d(q′))

= (n+ n′, (−1)nn
′
(−1)[n(n−1)+n′(n′−1)]/2d(q)d(q′))

= (n+ n′, (−1)(n+n′)(n+n′−1)/2d(q ⊥ q′))
= (dim0, d±)(q ⊥ q′) ∈ Q(F ).

Further, M(F )→ Q(F ) is clearly an epimorphism, since

(dim0, d±)(〈a〉) = (1, a · Ḟ 2) and (dim0, d±)(〈1,−a〉) = (0, a · Ḟ 2).

By the universal property of Ŵ (F ), the map (dim0, d±) extends uniquely to a group epimorphism
from Ŵ (F ) to Q(F ). Moreover, since (dim0, d±)(H) = (0, (−1)d(H)) = (0, 1) is the identity element
of Q(F ), we get an induced epimorphism W (F ) → Q(F ). We claim that this homomorphism is
trivial on I2F . By proposition 1.3.3, IF is additively generated by binary forms 〈1, a〉, so I2F is
additively generated by the four-dimensional forms 〈1, a〉 ⊗ 〈1, b〉. But

(dim0, d±(〈1, a, b, ab〉) = (0, (−1)0a · b · ab · Ḟ 2) = (0, 1),

so we obtain an epimorphism f : W (F )/I2F → Q(F ). We shall show that f is an isomorphism,
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by constructing an inverse g : Q(F ) → W (F )/I2F . We simply set g(0, a) = 〈1, a〉 (mod I2F ),
g(1, a) = 〈a〉 (mod I2F ), and carry out the following computation:

g[(0, a)(0, b)] = g(0, ab) = 〈1,−ab〉 ≡ 〈1,−a, 1,−b〉
≡ g(0, a) + g(0, b) (mod I2F ),

g[(1, a)(1, b)] = g(0,−ab) = 〈1, ab〉 ≡ 〈a, b〉
≡ g(1, a) + g(1, b) (mod I2F )

g[(0, a)(1, b)] = g(1, ab) = 〈ab〉
≡ 〈1,−a, b〉 ≡ g(0, a) + g(1, b) (mod I2F ).

Hence, g is a group homomorphism. By construction, f ◦ g = IdQ(F ), and g splits the surjection
f . But, by g(1, a) ≡ 〈a〉(mod I2F ), g is onto. It follows that f and g are inverse isomorphisms of
each other.

Corollary 1.3.12 (Pfister). I2F consists of classes of even-dimensional forms q for which d(q) =
(−1)n(n−1)/2 (where n = dim(q)).

Proof. This is just restating that f : W (F )/I2F → Q(F ) is a monomorphism.

Corollary 1.3.13 (Pfister). The restriction of f induces an isomorphism from IF/I2F onto Ḟ /Ḟ 2.

Proof. Is just the fact that the image of IF under f is {0} × Ḟ /Ḟ 2.

Corollary 1.3.14. The following are equivalent:

i - Ŵ (F ) is a noetherian ring.

ii - W (F ) is a noetherian ring.

iii - Ḟ /Ḟ 2 is a finite group.

Proof. (1)⇒(2) Is just the fact of W (F ) = Ŵ (F )/ZH, and that a quotient ring of any noetherian
ring is noetherian.

(2)⇒(3) Since W (F ) is assumed noetherian, IF is a finitely generated W (F )-module, so
IF/I2F is a finitely generated W (F )/IF -module. But W (F )/IF ∼= Z2, so IF/I2F must be
finite. It follows from corollary 1.3.13 that Ḟ /Ḟ 2 is finite.

(3)⇒(1) By the diagonalization theorem, Ŵ (F ) is additively generated by 〈a〉. a ∈ Ḟ /Ḟ 2.
Thus, (3) implies that Ŵ (F ) is a finitely generated abelian group. As a ring, of course, Ŵ (F ) is
then noetherian.

Witt rings are amazing, but where are the examples?

Calm down my dear friends. The examples are hard to compute. However, we do not let you
without someone. Let’s start with this definition.

Definition 1.3.15. A field F is said to be quadratically closed if every element of F is a square,
i.e, if F 2 = F .

Proposition 1.3.16. F is a quadratically closed field if and only if dim : Ŵ (F ) → Z is a (ring)
isomorphism. In this case, W (F ) ∼= Z2 (by dim0).
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Proof. (⇒) if F is quadratically closed, then 〈a〉 ∼= 〈1〉 for all a ∈ Ḟ and q ∼= dim q〈1〉 for every
regular form q. This implies that dim is an isomorphism.

(⇐) if dim is an isomorphism, then 〈a〉 ∼= 〈1〉 for every a ∈ Ḟ , so every a ∈ F is a square.

Proposition 1.3.17. Let F = R (or any euclidean field)4. Then:

a - There exist exactly two anisotropic forms up to isometry at each (positive) dimension. For
dimension n > 0, these are n〈1〉) and n〈−1〉.

b - W (F ) ∼= Z.

c - (Sylvester’s Law of Inertia) Two (nonsingular) forms over F are equivalent if and only if they
have the same dimension and the same signature (the term will be defined in the proof).

d - Ŵ (F ) ∼= Z⊕ Z. As a ring, Ŵ (F ) is isomorphic to the integral group ring Z[G] of a 2-element
group G.

Proof. a - The conclusion follow by that if a form is anisotropic, in its diagonalization we cannot
have coefficients of mixed signs.

b - Direct consequence of item a.

c - Let us first define “signature”. We claim that, in a diagonalization of a form q, the number of
positive coefficients (hence also the number of negative coefficients) is uniquely determined. In
fact, let q be a form of dimension n, and suppose that r〈1〉 ⊥ (n−r)〈−1〉, s〈1〉 ⊥ (n−s)〈−1〉 are
two diagonalizations of q, where s ≥ r. Passing to the Witt Ring W (F ), we have an equation

r〈1〉 − (n− r)〈1〉 = s〈1〉 − (n− s)〈1〉 ∈W (F ),

which implies that 2r〈1〉 = 2s〈1〉 ∈W (F ). By the item b, we have r = s. Thus, we may write
n+ = r (number of positive terms) and n− = (n−r) (number of negative terms). The signature
of q is defined to be

n+ − n− = n+ − (n− n+) = 2n+ − n.

Thus, two forms are equivalent if and only if they have the same n and the same n+, i.e, if
and only if they have the same dimension and the same signature. This is Sylvester’s Law of
Inertia.

d - It is suffice to show that 〈1〉, 〈−1〉 form a free Z-basis for Ŵ (F ). We already know that they
span Ŵ (F ). To show that they are independent, let a〈1〉+ b〈−1〉 = 0 in Ŵ (F ), where a, b ∈ Z.
Passing to W (F ), we see that a = b. Then a = b = 0.

Now, we are interested in writing down full sets of generators and relations for Ŵ (F ) in the
category of commutative rings, as well as in the category of abelian groups. Once we estabilish
such results, then similar results may be derived for W (F ), since W (F ) = Ŵ (F )/Z ·H.

We first consider Ŵ (F ) as a commutative ring. The elements 〈a〉 (a ∈ Ḟ ) generate Ŵ (F ), and
satisfy the following properties:

I - 〈a2〉 = 1 (the identity of the ring);

II - 〈a〉 · 〈b〉 = 〈ab〉, for a, b ∈ Ḟ ;

4Euclidean fields will be defined in 1.4.8
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III - 〈a〉+ 〈b〉 = 〈a+ b〉 · (1 + 〈ab〉), where a, b, a+ b ∈ Ḟ .

Our aim is to prove that these are essentially all the relations among the symbols 〈a〉, a ∈ Ḟ .
The precise meaning of this statements the content of the following:

Theorem 1.3.18. Let F be the free commutative ring generated by the symbols [a] (a ∈ Ḟ ). Let
R be the ideal of F generated by the elements

R1 - [1]− 1;

R2 - [ab]− [a] · [b], a, b ∈ Ḟ , and

R3 - [a] + [b]− [a+ b] · (1 + [ab]), a, b, a+ b ∈ Ḟ .

Then, the factor ring X = F/R is isomorphic to Ŵ (F ).

Proof. By the universal property of the free commutative ring F , and by I, II and III, we have
a ring surjection f : X → Ŵ (F ). We need only show that there exists an inverse. Thus, we try
to define first a monoid homomorphism ϕ : M(F ) → X. For a given quadratic form q. take any
diagonalization of q, say, 〈a1, ..., an〉. We propose to set ϕ(q) = [a1]+ ...+[an] ∈ X. We must show,
however, that ϕ(q) does not depend on the particular diagonalization of q chosen above. This
means that if 〈b1, ..., bn〉 is another diagonalization of q, we must show that

∑
[ai] =

∑
[bi] ∈ X.

By Witt’s Chain Equivalence Theorem (1.2.5), we may suppose that 〈a1, ..., an〉 is actually simply-
equivalent to 〈b1, ..., bn〉. Without loss of generality, we may assume that ai = bi for i ≥ 3, and
〈a1, a2〉 ∼= 〈b1, b2〉. Consequently, it is enough to show that

〈a1, a2〉 ∼= 〈b1, b2〉 ⇒ [a1] + [a2] = [b1] + [b2] ∈ X. (*)

Before we proceed, we must deduce some consequences of the relations in (R1),(R2),(R3), in order
to know more about X. We claim that, for every a ∈ Ḟ , [a2] = 1 ∈ X. To see this, we calculate
[a] + [a] in two different ways.

(A) Since a+ a = 2a 6= 0, (R3) implies [a] + [a] = [2a] · (1 + [a2]) /∈ X.

(B) By (R1) and the distributive law, we have

[a] + [a]
R1
= [a] · ([1] + [1])

R3
= [a] · [2] · (1 + [1])

R2
= [2a] · (1 + [1]) ∈ X.

But (R1) implies that each [b] (b ∈ Ḟ ) is a unit in X. Comparison of (A) and (B) then yields the
desired information: [a2] = 1 ∈ X.

Coming back to (*), we write b1 = a1x
2 + a2y

2, and a1a2 = b1b2c
2 (c ∈ Ḟ ). We have two cases:

i - x = 0 or y = 0. Suppose, for instance, x = 0 (y = 0 is similar). Then b1 = a2y
2 ⇒ [b1] =

[a2y
2] = [a2] ∈ X. On the other hand,

[a1] =

[
b2 ·

b1
a2
· c2

]
= [b2y

2c2] = [b2] ∈ X.

Hence, (*) follows.



1.4. ORDERINGS ON FIELDS 25

ii - x 6= 0, y 6= 0. Then, in X, we have

[a1] + [a2] = [a1x
2] + [a2y

2]

= [a1x
2 + a2y

2] · (1 + [a1a2(xy)2])

= [b1] · (1 + [b1b2])

= [b1] + [b2].

Thus ϕ : M(F )→ X is well-defined and is clearly a monoid homomorphism. By the universal
property of Ŵ (F ), ϕ extends to a group homomorphism ϕ : Ŵ (F ) → X, which is evidently
an inverse for f : X → Ŵ (F ). The latter is therefore a ring isomorphism.

Theorem 1.3.19. Let F ′ be the free abelian group generated by the symbols {a}, a ∈ Ḟ . Let R′
be the subgroup of F ′ generated by the elements:

R’1 - {ab2} − {a}, a, b ∈ Ḟ ;

R’2 - {a}+ {b} − {a+ b} − {ab(a+ b)}, a, b, a+ b ∈ Ḟ .

Then, the factor group X ′ = F ′/R′ is isomorphic to Ŵ (F ).

Proof. Analogous the theorem 1.3.18.

It is now easy to derive similar results for W (F ). In the category of commutative rings, we need
only add the relation (R4): [1] + [−1] to (R1),(R2),(R3); and in the category of abelian groups, we
need only add the relation (R’3): {1}+ {−1} to (R’1) and (R’2).

1.4 Orderings on Fields

In atempt to apply quadratic forms in field theory we quickly found orderings in the process.
So, to avoid further complications, we decide to do a brief introduction to orderings on fields and
estabilish some notations.

Definition 1.4.1. A field F is said to be formally real if −1 is not a sum of squares in F .
Otherwise, we say that F is nonreal.

For an arbitrary field F , let σ(F ) denote the set of elements of F that can be expressed as a
sum of squares in F . We shall also write σ̇(F ) for σ(F ) \ {0}.

Proposition 1.4.2.

a - σ̇(F ) is a subgroup of Ḟ that is closed inder addition.

b - If F is nonreal and char(F ) 6= 2, then σ(F ) = F .

c - If F is formally real, then char(F ) = 0.

Proof. a - 1 = 12 ∈ σ(F ). Now, let x, y ∈ σ̇(F ), x = x2
1 + ...+ x2

n and y = y2
1 + ...+ y2

m. We have

xy = (x2
1 + ...+ x2

n)(y2
1 + ...+ y2

m) =
n∑
i=1

m∑
j=1

x2
i y

2
j
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and

x−1 =
x

x2
=
(x1

x

)2
+
(x2

x

)2
+ ...+

(xn
x

)2
.

Therefore, σ̇(F ) is a subgroup of Ḟ .

b - Let x ∈ F . Since the hyperbolic plane 〈1,−1〉 is universal (remember that char(F ) 6= 2), there
exist y, z ∈ F such that x = y2 − z2. If −1 ∈ σ(F ), we get

x = y2 + (−1)z2 ∈ σ(F ) + σ(F ) · σ(F ) ⊆ σ(F ).

Hence, σ(F ) = F .

c - If char(F ) = p 6= 0, then p · 1 = 0 and −1 = 1 + ...+ 1 ((p− 1)-times) is a sum of squares.

Definition 1.4.3. An ordering on a field F is the assignment of a proper subset P ⊆ F (called
the positive cone of the ordering) which posseses the following properties:

P1 - P + P ⊆ P ;

P2 - P · P ⊆ P ;

P3 - P ∪ (−P ) = F .

Given such a set P , we shall say briefly that F is ordered by P , or that (F, P ) is an ordered field.

Proposition 1.4.4. Let (F, P ) be any ordered field. Then:

a - σ(F ) ⊆ P .

b - char(F ) 6= 2.

c - −1 /∈ P , and P ∩ (−P ) = {0}.

d - F is formally real (and so char(F ) = 0).

e - Ṗ := P \ {0} is a subgroup of index 2 in Ḟ .

f - If P ′ ⊆ F gives another ordering on F , then P ⊆ P ′ ⇒ P = P ′.

Proof. a - Since P +P ⊆ P , it is suffices to prove that F 2 ⊆ P . Let x ∈ F . By P3, we have x ∈ P
or −x ∈ P . If x ∈ P , then x2 = x ·x ∈ P ·P ⊆ P . If −x ∈ P , then x2 = (−x)(−x) ∈ P ·P ⊆ P .

b - Otherwise, −1 = 1 ∈ P by (a), and P = −P , contradicting the very definition of an ordering.

c - Assume that −1 ∈ P . For any a ∈ F , we have

a =

(
a+ 1

2

)2

+ (−1)

(
a− 1

2

)2

∈ P + P · P ⊆ P,

contradicting the fact of P be a proper subset of F . Therefore −1 /∈ P . Next, consider
x ∈ P ∩ (−P ). If x 6= 0, we would have −1 = (x−1)2x(−x) ∈ P , contradiction. This shows
that P ∩ (−P ) = {0}.

d - Since −1 /∈ P and σ(F ) ⊆ P , we have −1 /∈ σ(F ), so F is formally real.
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e - For x ∈ Ṗ , we have x−1 = (x−1)2x ∈ Ṗ . Hence Ṗ is a subgroup of Ḟ . Since Ḟ = Ṗ ∪ (−Ṗ ), we
have [Ḟ : Ṗ ] = 2.

f - 1 ∈ σ(F ) ⊆ P and P ⊆ P ′. Assume that there exist x ∈ P ′ ∩ (−P ), x 6= 0. Then −1 =
(x−1)2x(−x) ∈ P ′, contradiction.

In view of P3 and (b) in the above proposition, we see that F is the disjoint union of {0}, Ṗ
and −Ṗ . This is the “law of trichotomy” in an ordered field (F, P ). As usual, we may introduce
the notation x ≤P y to mean that y − x ∈ P . This is a linear ordering compatible with · and +.

Let (F, P ) be an ordered field. For any subfield F0 of F , we may order F0 by taking P0 := P ∩F0

to be its positive cone. This order is said to be induced (on F0) by the ordering P on F .

The quintessential example of an ordered field is F = R, which has (unique) ordering given by
the positive cone P = R2. By what we said in the last paragraph, any subfield F0 ⊆ R inherits
and ordering R2 ∩ F0 from R. Thus, the rational field Q, all real quadratic fields, the field Q( 3

√
2),

and the field of all real algebraic numbers, etc, are all equipped with natural orderings.

But there is nothing new in the last paragraph. There is another “non trivial” example of
ordering?

This is an interesting question. Indeed, is very unintuitive think about “weird” orderings.
Seems that our intuition are limited to the reals... so, let do some examples:

Example 1.4.5. Let F = Q(α) where α2 = 2. We can define an ordering P on F by using the
embedding ϕ : F → R with ϕ(α) =

√
2. Similarly, we can define another ordering P ′ 6= P on F by

using the Q-automorphism ϕ′ : Q(
√

2)→ Q(−
√

2) with ϕ′(α) = −
√

2.

Example 1.4.6. Let F = K(x), where K is a field given with an ordering P0. We can extend this
ordering on F in several ways. First, we declare a polynomial

f(x) = a0 + a1x+ ...+ anx
n ∈ K[x], an 6= 0,

positive if an ∈ Ṗ0. Then we declare a rational function g(x)/f(x) positive if the polynomial
f(x)g(x) is positive. The set of positive elements in F defined in this way, together with 0, gives
an ordering P1 on F . Note that in this ordering, we have

0 < ... < x−2 < x−1 < a < x < x2 < ...

for any a ∈ Ṗ0, as we can readily check. We can also get a second extension of P0 as follows.
Declare a polynomial

f(x) = arx
r + ar+1x

r+1 + ...+ anx
n ∈ K[x], r ≤ n, an, ar 6= 0

positive if ar ∈ Ṗ0, and extend this positivity notion to F = K(x) as before. This results in a
second ordering P2 extending P0. With respect to this ordering P2, we have instead

0 < ... < x2 < x < a < x−1 < x−2 < ...

for any a ∈ Ṗ0. These orderings are examples of nonarchimedean orderings on F : these are
orderings with respect to which there are elements that are larger than all integers (and hence all
rational numbers) in F .
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Example 1.4.7. Consider P0 the usual ordering on R. Let C be any subset of R with the property

For any pair a < b ∈ R : b ∈ C ⇒ a ∈ C

(for example, take C as an open interval (−∞, b)). We can define an ordering PC on F = R(x) as
follows. For any nonzero polynomial f(x) ∈ R[x], write down the factorization of f into irreducible
factors

f(x) = r(x− a1)...(x− an)q1(x)...qm(x),

where r, a1, ..., an ∈ R and the qi’s are monic irreducible quadratic polynomials. We shall take
f(x) ∈ ṖC iff r ∈ Ṗ0 and the number of ai /∈ C is even, or r /∈ Ṗ0 and the number of ai /∈ C is
odd. For nonzero rational functions g(x)/f(x), we take (as before) g/f ∈ ṖC iff gf ∈ ṖC . It can
be shown that the PC obtained in this manner is an ordering on R(x), and is, in fact, the unique
ordering P on R(x) with respect to which C = {b ∈ R : b <P x}.

We finalize this section with some definitions and results that will be used throughout the entire
chapter.

Definition 1.4.8. A field F is called euclidean if F is formally real and |Ḟ /Ḟ 2| = 2 (in such field,
Ḟ = Ḟ 2∪(−Ḟ 2)). A field F is called pythagorean if the sum of two squares in F is always a square.
In such field, σ(F ) = F 2.

Let F be a field and a, b ∈ Ḟ . How a2 + b2 = a2(1 + (b/a)2), to prove that F is pythagorean, is
suffice to show that 1 + y2 ∈ F 2 for all y ∈ F .

Proposition 1.4.9. If F is euclidean, then F is pythagorean with a unique ordering.

Proof. We claim that P := F 2 is an ordering. For this P , we already have P 6= F , P · P ⊆ P and
P ∪ (−P ) = F . Thus, we only need to prove that P + P ⊆ P , that is, F is pythagorean.

Consider a sum 1 + y2, where y ∈ F . If 1 + y2 ∈ −F 2, then −1 = −(1 + y2) + y2 ∈ F , and
F is nonreal, absurd since F is euclidean. Hence, 1 + y2 ∈ F 2 and P is an ordering. Follow by
proposition 1.4.4(e) that P is the unique ordering on F .

The next result offers several important characterization of euclidean fields:

Theorem 1.4.10. For any field F (of any characteristic), the following are equivalent:

i - F is euclidean.

ii - F is formally real, but every quadratic extension of F is nonreal.

iii -
√
−1 /∈ F and F (

√
−1) is quadratically closed (that is, K2 = K).

iv - char(F ) 6= 2 and there exist a quadratic extension L ⊇ F that is quadratically closed.

Example 1.4.11. Two immediate examples of euclidean fields are the real field R and the field
A of algebraic numbers. Here A = Q ∩ R, where Q denotes the algebraic closure of Q. Another
interesting example: let Q̃ be the field of constructible numbers, that is, Q̃. Then F : Q̃ ∩ R is an
euclidean field, with F (

√
−1 = Q̃.

Definition 1.4.12. A field F is called real-closed if F is formally real, but no proper algebraic
extension of F is formally real.

An immediate consequence of 1.4.10 is
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Corollary 1.4.13. Let F be a real-closed field. Then F is euclidean (with a unique ordering F 2),
and F (

√
−1) is quadratically closed.

Of course, we need to prove that this definition make sense, i.e, that there is an abundant
supply of real-closed fields.

Proposition 1.4.14. Let F be any formally real field, and F be its algebraic closure. Then there
exists a real-closed field R between F and F .

Proof. Consider the collection S of all formally real subfields of F containing F . If {Fα} is a
chain (relative to inclusion) of such fields, then F0 =

⋃
α Fα belongs to the same family S. By

Zorn’s Lemma, there exists R ∈ S that is a maximal member of S with respect to inclusion. By
maximality, such a field R must be real-closed.

We note the following property of a formally real field.

Proposition 1.4.15. If F is formally real, so is every odd-degree extension K of F .

Corollary 1.4.16. If F is real-closed, then any odd-degree polynomial f ∈ F [x] has a root in F .

Theorem 1.4.17. For any field F , the following are equivalent:

i - F is real-closed.

ii - F is euclidean, and every odd-degree polynomial in F [x] has a root in F .

iii -
√
−1 /∈ F and F (

√
−1) is algebraically closed.

Corollary 1.4.18. The real field R is real-closed, and the complex field C = R(
√
−1) is algebraically

closed.

Proof. To begin with, R is a euclidean field. By the usual continuity argument in calculus, every
real polynomial of odd degree has a real root. Therefore, (ii) in the above theorem is satisfied for
F = R, and we get the desired conclusions from (i) and (iii).

We shall introduce the notion of “real-closure”, which will be used in the next section.

Definition 1.4.19. Let F be a field ordered by a positive cone P . An extension field R ⊇ F is
called a real closure of F (relative to P ) if it satisfies the following three conditions:

i - R is real-closed.

ii - R is algebraic over F .

iii - The given ordering on F is induced by the unique ordering on R (in other words, P = R2∩F ).

We have the following existence and uniqueness result.

Theorem 1.4.20.

i - Every ordered field (F, P ) posseses a real-closure.

ii - If (F1, P1), (F2, P2) are ordered fields and R1, R2 are their real-closures, then any order iso-
morphism f : F1 → F2 (isomorphism such that f(P1) = P2) extends uniquely to an isomor-
phism f̃ : R1 → R2, which is automatically an order isomorphism.

This theorem means that the possible orderings which can be put on F are in 1-1 correspondence
with the F -isomorphism classes of the real-closed algebraic extensions of F .
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1.5 Pfister’s Local-Global Principle

Now, we will make our first application of theory of ordered fields to theory of quadratic forms.
For a field F , let us write XF (or sometimes X(F ) and Sper(F )) for the (possibly empty) set of
orderings on F . In order to work with XF as a set of “points”, we shall write α for a typical
element in XF , and write “≤α” for the total ordering given by α on F . To reconcile this with our
earlier notation, we shall write Pα = {a ∈ F : a ≥α 0} for the positive cone of the ordering α.

For each α ∈ XF , let us fix a real-closure Fα with respect to α (i.e, a real-closed field con-
taining the ordered field (F, α)). Letting rα : F → Fα be the inclusion map, we have a functorial
homomorphism r∗α : W (F ) → W (Fα). Now, just as in 1.3.17, we have a canonical isomorphism
W (Fα) ∼= Z. The composition of these two maps gives a surjection sgnα : W (F )→ Z, which sends
an F -quadratic form q to its signature sgnα(q) with respect to Fα.5

Letting α range over the set of orderings XF , we get a “total signature” map

sgn : W (F )→
∏
α∈XF

W (Fα) ∼=
∏
α∈XF

Z,

which sends a form q to (sgnα(q))α∈XF on the right hand side. One of the contents of the Pfister’s
Local-Global Principle is to compute the kernel of this total signature map.

Theorem 1.5.1 (Pfister’s Local-Global Principle). For any field F , Ker(sgn) = Wt(F ), the torsion
subgroup of the Witt group W (F ). Moreover, every element in Wt(F ) is 2-primary torsion.

An equivalent way to state the first part of the theorem is that two quadratic forms q1, q2 over
F has the same signature relative to all orderings on F iff n · q1 = n · q2 ∈ W (F ) for some integer
n ≥ 1. The second part of the theorem says that, in this case, we could taken n to be of the
form 2r for some r. Yet another way to express 1.5.1 is to say that, if a form q is hyperbolic in
all real-closures of F , then for some integer r ≥ 0, 2r · q is hyperbolic over F . These alternative
formulations of 1.5.1 explain why this result is called a Local-Global Principle.

Before we proceed to the proof of 1.5.1, we need some technical results.

Theorem 1.5.2. Let F be a field, K = F (
√
a) be a quadratic extension of F and q be an anisotropic

form over F . Then qK is isotropic over K if and only if contains a binary subform isometric to
〈b〉 · 〈1,−a〉 for some b ∈ Ḟ .

Proof. (⇒) Is just the fact that 〈1,−a〉 ∼= 〈1,−1〉.
(⇐) Let 〈b1, ..., bn〉 be a diagonalization of q and assume that qK is isotropic. Then there exists

an equation
n∑
i=1

bi(xi + yi
√
a)2 = 0

where xi, yi ∈ F are not all zero. Then

n∑
i=1

bi(xi + yi
√
a)2 = 0⇒

n∑
i=1

bi(x
2
i + ay2

i + 2xiyi
√
a) = 0

⇒
n∑
i=1

bix
2
i +

n∑
i=1

biay
2
i =

n∑
i=1

bixiyi = 0,

5We could prove that the map sgnα does not depend on the choice of Fα, or on the fact that Fα is uniquely
determined up to an isomorphism.
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hence the vectors x = (x1, ..., xn) and y = (y1, ..., yn) are orthogonal in the quadratic space
(Fn, q). Moreover, q(x) = −aq(y), and this implies that x and y must both be nonzero (since
q is anisotropic). Therefore, q contais the binary form

〈q(x), q(y)〉 = 〈−aq(y), q(y)〉 ∼= 〈q(y)〉 · 〈1,−a〉.

Theorem 1.5.3. Let F be a field and K = F (
√
a) be a quadratic extension of F . An anisotropic

F -form q becomes hyperbolic over K if and only if q ∼= θ⊗〈1,−a〉 for some F -form θ. In particular,
the kernel of r∗ : W (F )→W (K) is given by the principal ideal W (F ) · 〈1,−a〉.

Proof. The if part is just the fact that that 〈1,−a〉 ∼= 〈1,−1〉 and that θ⊗〈1,−1〉 ∼= (dim θ)·〈1,−1〉.
For the another part, we induct on m = (dim q)/2. In the case m = 0 is nothing to do, and starts
the induction. If m > 0, the theorem 1.5.2 gives an isometry q ∼= b〈1,−a〉 ⊥ q′, where b ∈ Ḟ
and (dim q′)/2 = m − 1. By Witt’s Cancellation Theorem, (q′)K is hyperbolic over K. Our
inductive hypothesis then gives a form θ′ such that q′ ∼= θ′ ⊗ 〈1,−a〉. We now have q ∼= b〈1,−a〉 ⊥
(θ′ ⊗ 〈1,−a〉) = θ ⊗ 〈1,−a〉, where θ = 〈b〉 ⊥ θ′.

Corollary 1.5.4. Let q be an F -form of dimension 2m that becomes hyperbolic over K = F (
√
a).

Then:

a - −a · q ∼= q over F .

b - If q is anisotropic over F , then d(q) = (−a)m.

c - If q also becomes hyperbolic over F (
√
a), then 2q = 0 ∈W (F ).

Proof. a - By theorem 1.5.3, we can write q ∼= r · HF ⊥ θ ⊗ 〈1,−a〉 for some F -form θ. Since
−a ·HF ∼= HF and −a〈1,−a〉 ∼= 〈1,−a〉, it follows that −a · q ∼= q.

b - If q is anisotropic over F , we have r = 0, so dim θ = m, and computing discriminants from
q ∼= θ ⊗ 〈1,−a〉, show that d(q) = (−a)m.

c - Assume that q is also hyperbolic over K = F (
√
a). If K = F , then q = 0 ∈ W (F ). If K 6= F ,

then by the item (a) (applied to the quadratic extension K|F ), we have a · q ∼= q, along with
−a · q ∼= q. Adding these, we get 2q = 0 ∈W (F ).

Now, our strategy for proving 1.5.1 is as follows. We first check the truth of 1.5.1 in two special
cases, and then give the general proof by making a reduction to these special cases.

The first special case is when F is a euclidean field. In this case, F has a unique ordering α
with Pα = F 2, and the total signature map

sgn : W (F )→W (Fα) ∼= Z

is an isomorphism. Here Wt(F ) = {0}, so 1.5.1 is certainly true.
The second special case of 1.5.1 is when F is a nonreal field, for which XF is the empty space.

Here,
∏
α∈XF W (Fα) is an “empty” direct product, which is, as usual, taken to be {0}. In this

case, 1.5.1 asserts that W (F ) is a 2-primary torsion group. This is equivalent to saying that the
ring W (F ) has characteristic 2r for some integer r, so the proof of 1.5.1 boils down to checking
this statement for any nonreal field F . We shall do this by appealing to the following observation
on the prime ideals of W (F ) for any field F .
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Lemma 1.5.5. Let F be a field and p be any (proper) prime ideal in W (F ).

a - If 2 ∈ p, then p = IF .

b - If 2 /∈ p, then P := {0} ∪ {a ∈ Ḟ : 〈a〉 ≡ 〈1〉 (mod p)} is an ordering on F .

Proof. Note that for any a ∈ Ḟ , 〈a〉2 = 1 ∈ W (F ) implies that 〈a〉 ≡ ±1 (mod p) (since W (F )/p
is an integral domain). If 2 ∈ p, then 〈a〉 ≡ 1 (mod p), so for any 2n-dimensional form q, we have
q ≡ 2n ≡ 0 (mod p). Thus, IF ⊆ p and the equality must hold (because IF is a maximal ideal
with WF/IF ∼= Z/2Z).

Now assume 2 /∈ p and define P := {0} ∪ {a ∈ Ḟ : 〈a〉 ≡ 〈1〉 (mod p)}. Is immediate that
P · P ⊆ P , P ∪ (−P ) = F and 〈−1〉 6≡ 〈1〉 yelds −1 /∈ P . We finish by checking that a, b ∈ P ,
c := a+ b 6= 0 implies that c ∈ P . From the isometry 〈a, b〉 ∼= 〈c〉〈1, ab〉, we have 2 ≡ 2〈c〉 (mod p).
Since 2 /∈ p, we have 〈c〉 ≡ 1 (mod p), as desired.

For a nonreal field F , the above lemma implies that IF is the unique prime ideal of W (F ).
But then, by a standard theorem in commutative algebra, IF must be the nilradical of W (F ). In
particular, for the element 2 ∈ IF , we have 2r = 0 ∈ W (F ) for some r ≥ 1. This proves 1.5.1 for
nonreal fields.

Now we are in a good position to complete the proof of 1.5.1.

Proof of Pfister’s Local-Global Principle 1.5.1. For any F , we Wt(F ) ⊆ Ker(sgn) (since
∏
α Z is

torsion free). The main job is to show that if a form q ∈ W (F ) is not 2-primary torsion, then
sgnαq 6= 0 for some ordering α ∈ XF . By Zorn’s Lemma, there exists a field K ⊇ F within
the algebraic closure of F that is maximal with respect to the property that qK ∈ W (K) is not
2-primary torsion. We claim that K is euclidean.

Surely, K is formally real (for otherwise 2rW (K) = 0 for some r). Assume for the moment,
that K has an element a /∈ ±K2. By the “maximality” of K, qK must become 2-primary torsion
in K(

√
a) and K(

√
−a), and so for a large integer N , 2NqK is hyperbolic ober both K(

√
a) and

K(
√
−a). But then, by corollary 1.5.4(c), 2 · 2NqK = 0 ∈W (K), a contradiction. This shows that

K is euclidean, and we have sgnα(q) 6= 0 for the ordering α ∈ XF induced on F by the unique
ordering on K.

1.6 Harrison Topology on XF

Orderings seems to be an efficient tool to deal with questions in quadratic forms. So to accurate
our results, we introduce the Harrison topology on the space XF of orderings of a field F . For
pratical reasons, let us assume that XF 6= ∅ i.e, that F is formally real.

To set up the Harrison topology on XF , first note that each ordering α ∈ XF determines a
map (actually a group epimorphism) Ḟ → {±1}, given by α(x) = sgnα(x). Thus, we have an

embedding XF ↪→ {±1}Ḟ (on the set of the functions from Ḟ to {±1}).
The function space {±1}Ḟ has a natural product topology, if {±1} is given the discrete topology.

Thus, there is a subspace topology induced on XF ; this is, by definition, the Harrison topology,
named after David Harrison who first pointed out its existence in his work.

To get a better view of this topology, let us first write down the defining subbase of the product
topology on {±1}Ḟ :

Ha,ε = {f : Ḟ → {±1} : f(a) = ε} (a ∈ Ḟ , ε = ±1).
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This is a clopen (closed and open) set, since its complement is Ha,−ε. Thus, {±1}Ḟ is a Boolean
space; that is, it is compact, Hausdorff, and totally disconnected. 6 Here, of course, the Tychonoff
Theorem is needed to guarantee the compactness of the space {±1}Ḟ .

Theorem 1.6.1. XF , with the Harrison topology, is also a Boolean space.

Proof. It is suffice to show that XF is a closed subspace of {±1}Ḟ (since any closed subspace of
a Boolean space remains Boolean). Take any map s : Ḟ → {±1} that does not yield an ordering.
If s is identically 1 (or −1), the subbasic open set H1,−1 (resp. H1,1) separates s from XF . We
may thus assume that s is surjective. Using this s, we can thus talk about “positive” elements
(s(x) = 1) and “negative” elements (s(x) = −1) in Ḟ . However, there must exist some “positive”
a, b such that a+ b or ab will be “negative” (since s does not yield an ordering). But then the basic
open set Ha,1 ∩Hb,1 ∩Hc,−1 separates s from XF .

To get a subbasis (of open sets) for XF , we need only take the following intersections:

H(a) := Ha,1 ∩XF = {α ∈ XF : a >α 0} (a ∈ Ḟ ).

The reason we can restrict our attention to ε = 1 is, of course, that Ha,−1 ∩ XF is given by
H(−a). The family {H(a) : a ∈ Ḟ} may be called the Harrison subbasis for the Boolean space
XF .

Corollary 1.6.2. Let K|F be a field extension. Then the map ρ : XK → XF obtained by the
restriction of orderings is continuous and closed (with respect to the Harrison topologies on XK

and XF ).

Proof. For any a ∈ Ḟ , ρ−1(HF (a)) = HK(a), where the subscripts refer to the respective fields.
Since {HF (a) : a ∈ Ḟ} is a subbasis for XF , the continuity of ρ follows. If C is a closed subset of
XK , then C is compact (since XK is), and therefore ρ(C) is also compact. It follows that ρ(C) is
closed in XF .

Next, we note that each quadratic form q over F defines a map

q̂ : XF → Z, where q̂(α) := sgnα(q).

The significance of the Harrison topology is largely clarified by the following observation:

Proposition 1.6.3. For each quadratic form q, the signature map is continuous with respect to
the Harrison topology on XF and the discrete topology on Z. In fact, with the latter topology fixed,
the Harrison topology is the coarsest topology on XF that makes all the maps q̂ continuous.

Proof. To prove the continuity of q̂, it is sufficient to treat the case q = 〈a〉 (since the sum of
continuous functions into an additive topological group is continuous). In this case, we note that

q̂−1(i) = {α ∈ XF : sgnα〈a〉 = i} =


∅ if i 6= ±1,

H(a) if i = 1,

H(−a) if i = −1.

From these calculations, the desired conclusion in the proposition follow immediately.

6A topological space is called totally disconnected if is Compact, Hausdorff and has a base of clopens.
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Proposition 1.6.3 is another evidence that quadratic forms and orderings are “naturally” related.

Previously, we have written the total signature map in the form

sgn : W (F )→
∏
α∈XF

Z,

where the right hand side of the equation is just ZXF (the set of all functions f : XF → Z). Since
each q̂ in 1.6.2 is continuous, we may as well use a smaller target set for “sgn”, and re-express the
latter as a ring homomorphism

sgn : W (F )→ C(XF ,Z) given by q 7→ q̂,

where C(XF ,Z) denotes the ring of continuous functions from XF to Z (XF with the Harrison
topology and Z with discrete topology).

The advantage of using the smaller target group C(XF ,Z) is that we can now more meaninfully
study the cokernel of the map “sgn”. In 1.5.1, we have shown that ker(sgn) is a 2-primary torsion
group. Our first main result in this section is the following “dual” statement.

Theorem 1.6.4. For the map sgn, coker(sgn) is also a 2-primary torsion group.

The proof of this is based on the lemma below concerning to the existence of quadratic forms
in InF with certain prescribed signature properties. Here, InF denotes the n-th power of the
“fundamental ideal” IF .

Lemma 1.6.5. For any clopen set C ⊆ XF , there exists a form q ∈ InF (for some n ≥ 0) such
that 2nχC = sgn(q), where χC denotes the characteristic function on XF associated with the subset
C ⊆ XF .

Proof. Step 1. If the lemma holds for two clopen sets C1, C2, then it holds for C1 ∪ C2. Indeed,
suppose q1, q2 ∈ ImiF are such that 2m1χC1 = sgn(q1) and 2m2χC2 = sgn(q2). After multiplying
these equations by powers of 2 if necessary, we may assume that m1 = m2 = m. Now take the
equation

χC1∪C2 = χC1 + χC2 − χC1χC2 ,

and multiply it by 22m to get

22mχC1∪C2 = 2msgn(q1 + q2)− sgn(q1q2) = sgn(q),

where q = 2m(q1 + q2)− q1q2 ∈ I2mF .

Step 2. A basis of open sets in XF is given by the sets

H(a1, ..., an) := H(a1) ∩ ... ∩H(an), ai ∈ Ḟ . (1.1)

Since XF is compact, so is the given clopen set C. Thus, C can be written as a finite union of
sets of the form H(a1, ..., an). By Step 1, the proof of the lemma is now reduced to the case where
C = H(a1, ..., an).

Step 3. Let qi = 〈1, ai〉 ∈ IF . We have sgn(qi) = 2χH(ai). Therefore, for q = q1 · ... · qn ∈ InF ,
we have

sgn(q) = 2nχH(a1)...χH(an) = 2nχH(a1,...,an).
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This proves the lemma for the case C = H(a1, ..., an).

We are now in a good position to supply the following:

Proof of Theorem 1.6.4. Given a continuous function f ∈ C(XF ,Z), let Ci = f−1(i) (i ∈ Z). These
sets are clopens, and form a partition of XF (remember that the topology in Z is discrete!). Since
XF is compact, all but a finite number of the Ci’s must be empty. This means that f is a bounded
function on XF , so we can express f as a finite sum

∑n
j=1 i · χCi . By 1.6.5,

2niχCi ∈ Im(sgn) for suitable ni ≥ 0.

From this, it follows immediately that 2nf ∈ Im(sgn) for some ni, as desired.

Returning to 1.6.5, we note that there is a further self-strenghthening of this result that can be
stated in the form of a “separation theorem”. We shall call this “Urysohn Lemma”, in view of its
resemblance to the familiar topological results about separation in normal spaces.

Lemma 1.6.6 (Urysohn). For any two disjoint closed sets A,B in XF , there exists q ∈ InF (for
some n) such that sgn(q) ≡ 0 on B, and sgn(q) ≡ 2n on A.

Proof. The complement of B is a union of sets of the form 1.1. Since A is compact, a finite
number of these, say C1, ..., Cr, will cover A, and Ci ∩ B = ∅. If we apply 1.6.5 to the clopen set
C = C1 ∪ ... ∪ Cr, the conclusion in Urysohn’s Lemma follows immediately.

As another application of 1.6.5, we shall give a characterization for quadratic forms q with the
property that sgnα(q) is divisible by 2n for every α ∈ XF , where n is a given integer. Note that
these are precisely the forms q such that sgn(q) ∈ C(XF , 2

nZ).

Theorem 1.6.7. For n ≥ 0 and any quadratic form q, the following are equivalent:

i - sgn(q) ∈ C(XF , 2
nZ).

ii - 2t · q ∈ It+nF for some integer t ≥ 0.

Proof. (ii)⇒(i): Since even-dimensional forms have even signature at any ordering, sgn(IF ) ⊆
C(XF , 2Z). Recalling that sgn is a ring homomorphism, we have sgn(ImF ) ⊆ C(XF , 2

mZ) for any
m. Thus, if 2t · q ∈ It+nF , we get 2t · sgn(q) ∈ C(XF , 2

t+nZ), and cancelling 2t, we have (i).

(i)⇒(ii): Assuming (i), let Di = (sgn(q))−1(2ni): these clopen sets form a partition of XF . As
before, at most a finite number of these clopen sets can be nonempty, so we can resolve sgn(q) in
a finite sum

sgn(q) =
∑
i

2ni · χDi .

For each Di 6= ∅, apply 1.6.5 to find a form qi ∈ ImiF such that 2miχDi = sgn(qi). Since only a
finite number of these are involved, we may again arrange that all mi’s be equal (say = m). Thus,

2m · sgn(q) =
∑
i

2ni · 2mχDi =
∑
i

2ni · sgn(qi).

By Pfister’s Local-Global Principle 1.5.1, it follows that

2m · sgn(q) =
∑
i

2ni · qi +Wt(F ).
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Multiplying this by a sufficiently large power of 2, say 2k, we can eliminate the torsion (error) term,
and arrive at

2k+mq = 2n+k
∑
i

i · qi ∈ In+k+mF,

which proves (ii) with t = k +m.

There is another condition on the form q that is related to the two conditions in 1.6.7:

q ∈ InF +Wt(F ). (Lam)

The argument above on the elimination of torsion error terms shows that (Lam) implies 1.6.7(ii),
and in any case, an application of the map sgn shows that (Lam) implies 1.6.7(i). In 1976, T. Y.
Lam asked if (Lam) is equivalent to 1.6.7(i) and 1.6.7(ii). At around the same time, M. Marshall had
raised the same question for formally real pythagorean fields F (for whichWt(F ) = 0), and answered
it affirmatively in the case where |XF | < ∞. Later, a possible “yes” answer for this equivalence
(for general fields F ) became known as “Lam’s Conjecture”. More recently, this conjecture has
been proved by M.Dickmann and F. Miraglia ([DM00]) using the solution of Milnor’s Conjecture
due to Voevodsky.

1.7 Prime ideals of W (F )

Returning to the “quadratic forms world”, in this section we shall determine the prime ideal
spectrum of the Witt Ring W (F ). Recall that, for any commutative ring A, the set of proper
prime ideals of A, denoted by Spec(A), is called the prime spectrum of A. This is a topological
space carrying the Zarisk topology, in which the closed sets are of the form

V (I) = {p ∈ Spec(A) : p ⊇ I}, (1.2)

where I is any ideal in A. This prime spectrum is usually not Hausdorff, but it is always compact,
and a subbasis of its topology is given by the sets

D(a) = {p ∈ Spec(A) : a /∈ p}, (1.3)

where a is any element of A.

If p ∈ Spec(A), then A/p is an integral domain, so it has characteristic p, where p is a prime
number or 0. We shall say, for short, that p is a prime ideal of characteristic p (or symbolically,
char(p) = p).

The main idea needed for determine the prime spectrum of the Witt ring W (F ) is already
implicit in lemma 1.5.5. Let us recall its two-part statement here. First, only prime ideal of
characteristic 2 in W (F ) is IF ; and second, if p ∈ Spec(W (F )) has characteristic 6= 2, then

αp := {0} ∪ {a ∈ Ḟ : 〈a〉 ≡ 1(mod p)} (1.4)

is an ordering on F . In the case where F is nonreal, therefore, we have Spec(W (F )) = {IF}. We
may dismiss this case in the following, and shall assume henceforth, until further notice, that F is
formally real.

We start out by defining some prime ideals in W (F ). Eventually, these will be shown to be all
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of the prime ideals. For any ordering α ∈ XF , we fix a real-closure Fα for (F, α), and define

pα = ker(sgnα : W (F )→W (Fα) ∼= Z),

pα,p = {ϕ ∈W (F ) : sgnα(ϕ) ≡ 0(mod p)}, (p = prime). (1.5)

We have that pα ( pα,p are both prime ideals of W (F ), with char(pα) = 0 and char(pα,p) = p.
In fact, we have W (F )/pα ∼= Z and W (F )/pα,p ∼= Z/pZ.

Also, from our earlier remark about prime ideals of characteristic 2, we see that pα,2 = IF
for every α ∈ XF . This means that the pα,2’s only gives one prime ideal (namely IF ). But on
the other hand, there is no more “collapsing” among the prime ideals defined in 1.5. First, the
pα’s are parwise distinct from one another and from the pα,p’s. Second, if pα,p = pβ,q, considering
characteristics we obtain p = q. Third, if pα,p = pβ,p, then

a >α 0⇒ 〈a〉 ≡ 1(mod pα,p)

⇒ 〈a〉 ≡ 1(mod pβ,p)

⇒ a >β 0

since char(pβ,p) = p 6= 2. This shows that α = β ∈ XF .

Proposition 1.7.1. The map α 7→ pα gives a one-one correspondence between XF and the set YF
of prime ideals of characteristic 0 in W (F ).

Proof. If p ∈ YF , 1.4 defines an ordering αp ∈ XF . Now, we will check that α 7→ pα and p 7→ αp

are mutually inverse maps between XF and YF .
Let a ∈ αpα , a 6= 0. Since

a ∈ αpα ∩ Ḟ ⇔ 〈a〉 ≡ 1(mod pα)

⇔ 〈a〉 − 1 ∈ ker(sgnα)

⇔ sgnα(〈a〉 − 1) = 0

⇔ sgnα(〈a〉) = 1

⇔ a ∈ α,

we have αpα = α.
Now, we want to show that pαp = p. For this, observe that if a ∈ Ḟ , then 〈a〉2 = 1 ∈ W (F ),

and this implies that 〈a〉 ≡ ±1(mod p). Now, let ϕ = 〈a1, ..., an〉 ∈ p. Then ϕ ≡ 0(mod p) implies
〈a1〉+ ...+ 〈an〉 ≡ 0(mod p). Since 〈ai〉 ≡ ±1(mod p) and char(p) = 0, we get n = 2k and we can
suppose without loss of generality that 〈ai〉 ≡ 1(mod p) for i = 1, ..., k and 〈ai〉 ≡ −1(mod p) for
i = k + 1, ..., n. Hence, sgnαp

(ϕ) = 0, and ϕ ∈ pαp . Conversely, if ϕ = 〈a1, ..., an〉 ∈ ker(sgnϕp
), we

have sgnϕp
〈a1〉 + ... + sgnϕp

〈an〉 = 0, and again, we get n = 2k and we can suppose without loss
of generality that sgnϕp

〈ai〉 = 1 if i = 1, ..., k and sgnϕp
〈ai〉 = −1 if i = k + 1, ..., n. From this, we

obtain 〈a1〉+ ...+ 〈an〉 ≡ 0(mod p) and hence ϕ ∈ p.

From this partial result, we get the full classification of prime ideals in W (F ):

Theorem 1.7.2 (Harrison). Spec(W (F )) consists of three types of prime ideals:

I - pα, α ∈ XF . These are all prime ideals of characteristic 0.

II - pα,p, α ∈ XF . These are prime ideals of characteristic p 6= 2.

III - IF = pα,2, α ∈ XF . This is the unique prime ideal of characteristic 2.
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Proof. It only remains to analyze the prime ideals of odd prime characteristic p. Let p ⊆ W (F )
be such a prime ideal. Then the construction in 1.4 produces an ordering α = αp. Consider
ϕ = 〈a1, ..., an〉 such that sgnα(ϕ) = 0. We already argue that n = 2k and sgnϕp

〈ai〉 = 1 if
i = 1, ..., k and sgnϕp

〈ai〉 = −1 if i = k + 1, ..., n. From this, we conclude that ϕ ≡ 0( mod p) and
pα ⊆ p. Since pα,p is the unique prime ideal of characteristic p that contains pα (Z/pZ is rigid), we
conclude that p = pα. This completes the classification of prime ideals.

Now, we have a picture to ilustrate the prime spectrum of W (F ):

IF

pα

pα,p pβ

pβ,p

pγ pγ,p

pδ

pδ,p

pε

pε,p

The corollary below (especially its last statement) shows that the Harrison topology is indeed
the most reasonable topology to be put on the space XF .

Corollary 1.7.3. Max(W (F )) (the maximal ideal spectrum of W (F )) consists of the height one
primes pα,p. On the other hand, MinSpec(W (F )) (the minimal prime spectrum) is just the space YF
in 1.7.1 consisting of the pα’s. The one-one correspondence in 1.7.1 is a homeomorphism between
XF (with the Harrison topology) and MinSpec(W (F )) (with the induced Zarisk topology).

Proof. Only the last statement needs a verification. Using the notation in 1.3, consider a subbasic
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open set in MinSpec(W (F )), which has the form

D(q) ∩MinSpec(W (F )) = {pα : q /∈ pα}
= {pα : sgnα(q) 6= 0},

where q ∈ W (F ). Under the one-one correspondence in 1.7.1, this corresponds to the following
subset in XF :

{α ∈ XF : sgnα(q) 6= 0},

which is open in XF , since α 7→ sgnα(q) is a continuous mapping from XF to Z. Conversely,
specializing the above information to the form q = 〈1, a〉 where a ∈ Ḟ , we have

{α ∈ XF : sgnα〈1, a〉 6= 0} = {α ∈ XF : a >α 0},

which is the Harrison subbasic set H(a) ⊆ XF . Therefore, under the one-one correspondence in
1.7.1, H(a) ⊆ XF also corresponds to a subbasic open set in MinSpec(W (F )). This shows that
the one-one correspondence in question is a homeomorphism.

Corollary 1.7.4. The Witt ring W (F ) has Krull dimension one if F is formally real, and Krull
dimension zero if F is nonreal.

Proof. This follows direclty from the enumeration of prime ideals in W (F ) 1.7.2.

Another direct consequence of 1.7.2 follows below:

Corollary 1.7.5. The following three statements are equivalent:

i - F is nonreal;

ii - W (F ) has a unique prime ideal (which must be IF );

iii - W (F ) is a local ring (which maximal ideal IF ).

1.8 Applications to the Structure of W (F )

We are in good position to make a more precise study of the Witt ring. In this section, we use
the results of the three previous sections to determine the following objects which are of interest
for the structure of the Witt Rings:

i - nil(W (F )): this is the nilradical, consisting of all nilpotent elements in W ((F )). By commu-
tative ring theory, we know that nil(W (F )) is the intersection of all prime ideals in W (F ).

ii - rad(W (F )): this is the Jacobson radical of W (F ), i.e, the intersection of all maximal ideals
of W (F ).

iii - zd(W (F )): the set of zero-divisors in W (F ) (including 0).

iv - Id(W (F )): the set of idempotents in W (F ).

v - U(W (F )): the multiplicative group of units in W (F ).

We begin with nil(W (F )) and rad(W (F )):

Theorem 1.8.1.
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i - If F is nonreal, then nil(W (F )) = rad(W (F )) = IF .

ii - If F is formally real, then nil(W (F )) = rad(W (F )) = Wt(F ).

Proof. (i) is direct consequence of theorem 1.7.5. For (ii), note that, for any ordering α on F , the
intersection

⋂
pα,p (p ranging over all primes 6= 0) is just pα). Thus

rad(W (F )) =
⋂
α,p

pα,p =
⋂
α

pα. (1.6)

This is just the intersection of all the prime ideals inW (F ). Consequently, rad(W (F )) = nil(W (F )).
Further, 1.6 says that rad(W (F )) is the intersection of the kernels of W (F ) → W (Fα), where Fα
ranges over all the real-closures of F . By Pfister’s Local-Global Principle 1.5.1, we conclude that
rad(W (F )) = Wt(F ).

Next, we try to determine the set of zero-divisors zd(W (F )). We need the following general
observation about zd(R) for any commutative ring R.

Lemma 1.8.2. If R is a comutative ring, zd(R) is the union of a certain set of prime ideals in R.

Proof. It is suffices to show that any 0-divisor z is contained in a prime ideal p ⊆ zd(R). Let S
be the multiplicative set of all non 0-divisor (S = R \ zd(R)). By Zorn’s Lemma, there exist an
ideal p maximal with respect to the properties p ∩ S = ∅ and z ∈ p. We finish by showing that
p is prime. Indeed, suppose xy ∈ p with x, y /∈ p. By the maximality property of p, there exist
s, s′ ∈ S such that s ∈ p + xR and s′ ∈ p + yR. Multiplying these equations, we get ss′ ∈ p ∩ S,
which contradicts the choice of p.

Theorem 1.8.3.

i - If F is nonreal, zd(W (F )) = IF .

ii - If F is formally real but not pythagorean, then also zd(W (F )) = IF .

iii - If F is formally real and pythagorean, then zd(W (F )) is the union of the minimal prime ideals
pα, α ∈ XF .

Proof.

i - In this case, by corollary 1.7.5 IF = nil(W (F )) and W (F ) \ IF = U(W (F )). Hence
zd(W (F )) = IF .

ii - Suppose F is formally real but not pythagorean. Then there exists 0 6= q ∈Wt(F ) (because if
Wt(F ) = {0}, we have for any c = a2 + b2 6= 0 an isometry 〈1, 1〉 ∼= 〈c, c〉, which implies that
〈c〉 = 〈1〉 ∈ W (F ), so c ∈ F 2, i.e, F is formally real and pythagorean). Since the additive
order of q is a power of 2 (i.e, q is 2-primary torsion), we see that 2 ∈ zd(W (F )). Now, IF
is the unique prime ideal of characteristic 2, so lemma 1.8.2 implies that IF ⊆ zd(W (F )).
On the other hand, any prime ideal of the form pα,p (α ∈ XF , p 6= 2) cannot be contained in
zd(W (F )), since p ·1 ∈ pα,p is not a 0-divisor. The remaining primes pα are already contained
in IF ⊆ zd(W (F )). Thus lemma 1.8.2 yields IF = zd(W (F )).

iii - In this case, W (F ) is torsion free. For this, suppose that q = 〈a1, ..., an〉 ∈ W (F ) is an
anisotropic form. Note that r · q is also anisotropic for any natural number r. Indeed, if r · q
vanishes on a vector (e11, ..., e1r, ..., en1, ..., enr), i.e,

a1e
2
11 + ...+ a1e

2
1r + ...+ ane

2
n1 + ...+ ane

2
nr = 0,
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we can write e2
i1 + ...+ e2

ir = e2
i for suitable ei ∈ F (remember that F is pythagorean!) to get

a1e
2
1 + ...+ ane

2
n = 0.

This implies that ei = 0 for all i, and there fore eij = 0 for all i, j (by formal reality). This
implies, in particular, that W (F ) is torsion free.

Made this digression, if F is formally real and pythagorean, the prime ideals pα,p (α ∈ XF ,
p any prime) cannot be contained in zd(W (F )), since W (F ) is torsionfree. Therefore lemma
1.8.2 implies that zd(W (F )) ⊆

⋃
pα (α ranging over XF ). We finish by proving that, for each

α ∈ XF , pα consists entirely of zero-divisors. If a form q ∈ pα, then

q = 〈a1, ..., am,−b1, ..., bm〉

with all ai, bj positive at α. Letting q′ be the product of the binary forms 〈ai, bi〉 (1 ≤ i ≤ m),
we have q′ 6= 0 in W (F ) (since sgnα(q′) = 2m〈1〉 ∈W (Fα)), and q ·q′ = 0 ∈W (F ). Therefore,
q ∈ zd(W (F )), as desired.

It is perhaps a little surprising that, in the formally real case, the determination of zd(W (F ))
depends on wheter or not F is pythagorean. But, as we saw from the proof above, this distinction
of cases is necessary since we need to know wheter or not 2 is a 0-divisor. There is, however, a nice
piece of information that is common to all three cases in 1.8.3; we record this below.

Corollary 1.8.4. For any field F , q ∈ zd(W (F )) only if dim q is even. In other words, odd-
dimensional forms cannot be 0-divisors in W (F ).

Proof. In the first two cases in theorem 1.8.3, we know that even the “if and only if” statement
holds. But, in the formally real case, each prime ideal pα (α ∈ XF ) lies in IF , so even in case iii
in theorem 1.8.3, we have

zd(W (F )) ⊆
⋃

α∈XF

pα ⊆ IF.

We come now to the determination of the idempotents in W (F ). It turns out, however, that
there are no interesting ones!

Theorem 1.8.5. The only idempotents in W (F ) are 0 and 1 (i.e, W (F ) is a “connected” ring).

Proof. Suppose we have an equation 1 = e1 + e2 ∈ W (F ), where e1, e2 are mutually orthogonal
idempotents, other than 0, 1. Then, e1, e2 ∈ zd(W (F )) ⊆ IF by corollary 1.8.4, and 1 = e1 + e2 ∈
IF gives the desired contradiction.

Our final task is that of describing U(W (F )), the group of units of the Witt ring W (F ). A
preliminar result is the following:

Theorem 1.8.6.

i - If F is nonreal, U(W (F )) consists of all odd-dimensional forms.

ii - If F is formally real, a form q lies in U(W (F )) iff sgnα(q) = ±1 for every α ∈ XF .

Proof.
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i - Follows by theorem 1.7.5(iii), i.e, by the fact that if F is nonreal then W (F ) is a local ring
with unique maximal ideal IF .

ii - ⇒ follow by the fact that U(Z) = {1,−1}. For ⇐, consider any form q with the given
signature property. Then sgnα(q2) = 1 for every α ∈ XF , and hence by Pfister’s Local-Global
principle

q2 − 1 ∈Wt(F ) = nil(W (F )).

We then have q2 ∈ 1 + nil(W (F )) ⊆ U(F ), so certainly q ∈ U(W (F )).

A more sofisticate computation is:

Theorem 1.8.7. Let I2
t (F ) = I2F ∩Wt(F ). Then 1 + I2

t F is a multiplicative group, and

U(W (F )) ∼= (Ḟ /Ḟ 2)× (1 + I2
t F ).

Here Ḟ /Ḟ 2 is identified with the subgroup of W (F ) consisting of the unary forms. In particular,
I2F is torsionfree iff U(W (F )) ∼= Ḟ /Ḟ 2.

Proof. First, note that, by 1.8.1 I2
t (F ) is a nil ideal. Thus, 1 + I2

t F is a subgroup of U(W (F )).
This subgroup has trivial intersection with Ḟ /Ḟ 2, since if 〈a〉 ∈ 1+I2

t F , then 1−〈a〉 ∈ I2F implies
that 〈a〉 = 1 ∈ W (F ). It only remains to check that Ḟ /Ḟ 2 and 1 + I2

t F generate U(W (F )). If
q ∈ U(W (F )), then dim(q) must be odd, and we’ll have q0 := q ⊥ 〈−a〉 ∈ I2F for some a ∈ Ḟ .
This gives a · q = 1 + q1, where q1 = a · q0 ∈ I2F . We are done if we can show that q1 ∈ Wt(F ).
We may assume that F is formally real (for otherwise W (F ) = Wt(F )). Taking signatures with
respect to any α ∈ XF , we have

sgnα(a · q) = 1 + sgnα(q1) ≡ 1 (mod 4).

By theorem 1.8.6(ii), the left side of this equation can only be ±1, so it must be 1, which implies
that sgnα(q1) = 0. Now, Pfister’s Local-Global principle implies that q1 ∈Wt(F ), as desired.

Our more refinated result in calculation of U(W (F )) is

Theorem 1.8.8. U(W (F )) is a 2-primary torsion group.

In the following, we shall try to give an elementary proof for this result using solely the fact that
Wt(F ) is a 2-primary torsion group. This will be done with the help of the following ring-theoretic
lemma:

Lemma 1.8.9. Let x be an element in any ring (with 1) such that mx = 0 = x2r , where m > 1
and r ≥ 0 are given integers. Then (1 + x)m

r
= 1.

Proof. The proof is by induction on r. The case r = 0 being clear, we assume r > 0. Since mx = 0,
the binomial theorem gives (1+x)m = 1+x2y, where y is a polinomial in x with integer coefficients.
Since m(x2y) = 0 and (x2y)2r−1 = x2ry2r−1 = 0, the inductive hypothesis applied to the element
x2y implies that

1 = (1 + x2y)m
r−1 = [(1 + x)m]m

r−1 = (1 + x)m
r
.

We now return to
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Proof of theorem 1.8.8. Let q ∈ I2
t F . Since Wt(F ) is 2-primary torsion, we have mq = 0 for some

m = 2k. By 1.8.1, q is also nilpotent, so q2r = 0 for some r. Applying lemma 1.8.9, we see that
(1 + q)2kr = 1. Thus the results follow by 1.8.7.

We can obtain the following refinement of 1.8.8 in a special case:

Corollary 1.8.10. If F is a field such that I3F is torsionfree, then U(W (F )) is a group of exponent
≤ 2.

Proof. In view of theorem 1.8.7, it suffices to show that (1 + q)2 = 1 for every q ∈ I2
t F . Now 2q ∈

2 ·I2
t F ⊆ I3F ∩Wt(F ) = 0 and q2 ∈ q ·I2

t F ⊆ I3F ∩Wt(F ) = 0, so indeed (1+q)2 = 1+2q+q2 = 1,
as desired.

1.9 Pfister forms and chain P-equivalence

The so called Pfister forms provides an entire revolution in the study of quadratic forms. We
reproduce some pieces of this work, with the climax in Hauptsatz, proved two sections later. We
begin by formally defining Pfister forms:

Definition 1.9.1. For an n-tuple of elements a1, ..., an ∈ Ḟ , we write 〈〈a1, ..., an〉〉 to denote the
2n-dimensional form ⊗ni=1〈1, ai〉 and will refer to this as an n-fold Pfister form (over F ).

A 0-fold Pfister form is, by convention, taken to be the form 〈1〉.
In working with Pfister forms, it is useful to note that, if some ai = −1, then 〈〈a1, ..., an〉〉

becomes hyperbolic. On the other hand, we have

〈〈1, a2, ..., an〉〉 ∼= 2〈〈a2, ..., an〉〉

where 2q means q ⊥ q. In particular, 〈〈1, ..., 1〉〉 ∼= 2n〈1〉. Another important motivation for
studying Pfister forms is, of course, the following:

Proposition 1.9.2. Let IF denote (as usual) the ideal of all even-dimensional forms in W (F ).
Then InF is generated as an abelian group by all the n-fold Pfister forms over F .

Proof. We have shown in 1.3.3 that IF is additively generated by 〈1, a〉 = 〈〈a〉〉, a ∈ Ḟ . Thus, InF
is additively generated by the n-fold product

〈〈a1〉〉...〈〈an〉〉 = 〈〈a1, ..., an〉〉, ai ∈ Ḟ .

We’ll begin our study by assembling some basic formulas for 2-fold Pfister forms. Recall that
D(q) = DF (q) denotes the set of values in Ḟ represented by q.

Proposition 1.9.3.

i - For any x ∈ D〈〈a〉〉, 〈〈a, b〉〉 ∼= 〈〈a, bx〉〉.

ii - For any y ∈ D〈a, b〉, 〈〈a, b〉〉 ∼= 〈〈a, by〉〉.
Proof. These follow from the following isometries:

〈〈a, b〉〉 ∼= 〈1, a〉 ⊥ 〈b〉〈x, xa〉 ∼= 〈〈a, bx〉〉;
〈〈a, b〉〉 ∼= 〈1, ab, a, b〉 ∼= 〈1, ab, y, aby〉 ∼= 〈〈y, ab〉〉.
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The goal of this section is to build up the properties of n-fold Pfister forms from those of 1-fold
and 2-fold Pfister forms. To this end, we proceed in analogy with Witt’s notion of chain equivalence
1.2.4

Definition 1.9.4. Let 〈〈a1, ..., an〉〉 and 〈〈b1, ..., bn〉〉 be two n-fold Pfister forms. We say that they
are simply P -equivalent if there exist two indices i and j, 1 ≤ i, j ≤ n such that

i - 〈〈ai, aj〉〉 ∼= 〈〈bi, bj〉〉, and

ii - ak = bk for any k 6= i, j.

In condition (i) above, if i is equal to j, the expression 〈〈ai, aj〉〉 is understood to be just 〈〈ai〉〉.
More generally, we say that two n-fold Pfister forms ϕ, γ are chain P -equivalent if there exists a
sequence of n-fold Pfister forms ϕ = ϕ0, ϕ1, ..., ϕn = γ, and that each ϕi is simply P -equivalent to
ϕi+1 (0 ≤ i ≤ m− 1).

Chain P -equivalence is an equivalence relation on all n-fold Pfister forms; it will be denoted
by the symbol ≈. Of course, ϕ ≈ γ implies that ϕ ≡ γ. It is by no means obvious, at this point,
that the converse also holds. Nevertheless, this turns out to be the case, and will be one of the
theorems we prove in this section. To this end, let us first observe that, if π is any permutation of
{1, ..., n}, then

〈〈a1, ..., an〉〉 ≈ 〈〈aπ(1), ..., aπ(n)〉〉.

This follows immediately from the fact that, for n ≥ 2, the symmetric group on n letters is generated
by the transpositions.

Since any n-fold Pfister form ϕ represents 1, we may write ϕ ∼= 〈1〉 ⊥ ϕ′. We shall call ϕ′ the
pure subform of ϕ (in analogy with the “pure quaternions”). This terminology is justified, since the
isometry type of ϕ′ is uniquely determined by that ϕ, according to Witt’s Cancellation Theorem.
From here, we shall write ϕ′ for the pure subform of a Pfister form ϕ.

Theorem 1.9.5 (Pure subform). Let ϕ = 〈〈a1, ..., an〉〉 be an n-fold Pfister form (n ≥ 1), and let
b ∈ DF (ϕ′). Then there exist b2, ..., bn ∈ Ḟ such that ϕ ≈ 〈〈b, b2, ..., bn〉〉.

Proof. We induct on n. If n = 1, then ϕ = 〈1, a1〉. Since b ∈ DF (ϕ′) = DF (a1), we have 〈b〉 ∼= 〈a1〉,
and the result follows. Now assume the result for (n− 1)-fold Pfister forms. Let

τ = 〈〈a1, ..., an−1〉〉 ∼= 〈1〉 ⊥ τ ′.

Then ϕ ∼= τ〈1, an〉 ∼= τ ⊥ 〈an〉τ , so ϕ′ ∼= τ ′ ⊥ 〈an〉τ . Since by hypothesis b ∈ DF (ϕ′), there exist

x ∈ DF (τ ′) ∪ {0} and y ∈ DF (τ) ∪ {0}

such that b = x+ any. We may further write y = t2 + y0, where y0 ∈ DF (τ ′)∪ {0}. Then, we have
two cases:

Case 1 - If y = 0, then 0 6= b = x ∈ DF (τ ′). By induction hypothesis, there exist d2, ..., dn−1 ∈ Ḟ
such that τ ≈ 〈〈x, d2, ..., dn−1〉〉. Thus

ϕ ≈ 〈〈x, d2, ..., dn−1, an〉〉 = 〈〈b, d2, ..., dn−1, an〉〉

and we are done.



1.9. PFISTER FORMS AND CHAIN P-EQUIVALENCE 45

Case 2 - Suppose y 6= 0. We claim that

ϕ ≈ 〈〈a1, a2, ..., an−1, any〉〉.

There is nothing to prove if y0 = 0, for then y = t2. So we may assume y0 ∈ DF (τ ′). By the
inductive hypothesis again, τ ≈ 〈〈y0, c2, ..., cn−1〉〉 for some ci ∈ Ḟ . Thus,

ϕ ≈ 〈〈y0, c2, ..., cn−1, an〉〉
≈ 〈〈y0, c2, ..., cn−1, an(t2 + y0)〉〉 (by 1.9.3(i))

≈ 〈〈a1, ..., an−1, any〉〉,

proving our claim. If x = 0, then the last entry any above is just b, and we are done. So we may
assume that x ∈ DF (τ ′). Again, our inductive hypothesis implies that τ ≈ 〈〈x, d2, ..., dn−1〉〉
for some di ∈ Ḟ , and so

ϕ ≈ 〈〈x, d2, ..., dn−1, any〉〉
≈ 〈〈x+ any, d2, ..., dn−1, anxy〉〉 (by 1.9.3(ii))

≈ 〈〈b, d2, ..., dn−1, anxy〉〉.

For the later reference, we record here one of the key steps used in the proof of 1.9.5:

Proposition 1.9.6. Let τ = 〈〈a1, ..., an−1〉〉 and y ∈ DF (τ). Then for any an ∈ Ḟ :

〈〈a1, ..., an−1, an〉〉 ≈ 〈〈a1, ..., any〉〉.

In particular, 〈〈a1, ..., an−1, y〉〉 is isometric to 2τ , and 〈〈a1, ..., an−1,−y〉〉 is hyperbolic.

Proof. This is just the “Claim” in case 2 in the proof of 1.9.5. Since 1.9.5 is now fully proved, this
“Claim” is valid for all n. The last statement of the proposition follows immediately from this, by
setting an = ±1.

Using the Pure subform theorem 1.9.5, we shall now derive two of the principal properties of
Pfister forms. The first one is

Theorem 1.9.7. If a Pfister form ϕ is isotropic, then it is hyperbolic.

Proof. Since ϕ contains a hyperbolic plane, we have −1 ∈ DF (ϕ′) by Witt’s cancellation. By 1.9.5
ϕ ≈ 〈〈−1, ..., 〉〉, which is hyperbolic.

The next property has to do with the similarity factors of a Pfister form. For any quadratic
form q over F , Gq(F ) = GF (q) = {c ∈ Ḟ : 〈c〉q ∼= q} denotes the group of similarity factors of q.

Theorem 1.9.8. For any Pfister form ϕ over F , DF (ϕ) = GF (ϕ). In particular, ϕ is a group
form over F .

Proof. Since ϕ represents 1, we have that GF (ϕ) ⊆ DF (ϕ). To prove that c ∈ DF (ϕ)⇒ 〈c〉ϕ ∼= ϕ,
we appeal to some argument on the Witt ring. The Pfister form ϕ〈〈−c〉〉 ∼= ϕ ⊥ 〈−c〉ϕ (of one
higher fold) contains a subform 〈c,−c〉 ∼= H, so by proposition 1.9.6 ϕ〈〈−c〉〉 is hyperbolic. Hence
ϕ〈〈−c〉〉 = 0 ∈ W (F ) and since dim(〈c〉ϕ) = dim(ϕ), it follows that 〈c〉ϕ = ϕ ∈ W (F ), then
〈c〉ϕ ∼= ϕ.
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The special case of theorem 1.9.8 for the Pfister form 〈〈1, ..., 1〉〉 is already worthy of some
celebration:

Corollary 1.9.9. For any n ≥ 0, the nonzero sums of 2n squares in F form a subgroup of Ḟ .

Next, we shall further generalize the Pure Subform Theorem 1.9.5. This generalization will be
the key step in our subsequent proof of the theorem that isometry of Pfister forms implies their
chain P-equivalence.

Theorem 1.9.10. If τ = 〈〈b1, ..., br〉〉 (r ≥ 0), γ = 〈〈d1, ..., ds〉〉 (s ≥ 1), and e1 ∈ DF (τγ′), then
there exist e2, ..., es ∈ Ḟ such that

〈〈b1, ..., br, d1, ..., ds〉〉 ≈ 〈〈b1, ..., br, e1, ..., es〉〉.

Proof. We prove by induction on s. If s = 1, then e1 ∈ DF (〈d1〉τ), so e1 = d1x, where x ∈ DF (τ).
Proposition 1.9.6 implies that

〈〈b1, ..., br, d1〉〉 ∼= 〈〈b1, ..., br, d1x〉〉 ∼= 〈〈b1, ..., br, e1〉〉.

By induction, we may assume the result for 〈〈b1, ..., br, d1, ..., ds−1〉〉. Let σ = 〈〈d1, ..., ds−1〉〉, so

γ = σ〈ds, 1〉 ∼= 〈ds〉σ ⊥ σ and γ′ ∼= 〈ds〉σ ⊥ σ′.

Therefore, τγ′ ∼= 〈ds〉τσ ⊥ τσ′. Since e1 ∈ DF (τγ′), there exist x ∈ DF (τσ) ∪ {0} and y ∈
DF (τσ′) ∪ {0} such that e1 = dsx+ y. If x 6= 0 and y 6= 0 we get the desired in the following two
steps:

Step 1 - 〈〈b1, ..., br, d1, ..., ds〉〉 ≈ 〈〈b1, ..., br, d1, ..., dsx〉〉 by 1.9.9.

Step 2 - By induction, there exist e2, ..., es−1 ∈ Ḟ such that

〈〈b1, ..., br, d1, ..., ds−1〉〉 ≈ 〈〈b1, ..., br, y, e2, ..., es−1〉〉. (*)

Therefore, by Step 1,

〈〈b1, ..., br, d1, ..., ds−1, ds〉〉 ≈ 〈〈b1, ..., br, d1, ..., ds−1, dsx〉〉
≈ 〈〈b1, ..., br, y, e2, ..., es−1, dsx〉〉
≈ 〈〈b1, ..., br, e1, e2, ..., es−1, dsxy〉〉,

where the last “≈” follows from 1.9.3(ii).

We are now left with the case where one of x, y is zero. If y = 0, then 0 6= e1 = dsx, and Step 1
provides the needed proof. If x = 0, then e1 = y, and from (*), we get

〈〈b1, ..., br, d1, ..., ds〉〉 ≈ 〈〈b1, ..., br, e1, ..., es−1ds〉〉,

which completes the proof.

The following special case of 1.9.10 (with r = 1) is already noteworthy.

Corollary 1.9.11. Let q be a Pfister form. If q ∼= 〈1, b, e, ...〉 with b, e ∈ Ḟ , then

q ∼= 〈〈b, e, e2, ..., es〉〉

for suitable ei ∈ Ḟ .
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Proof. By the Pure Subform Theorem, q ∼= 〈〈b〉〉γ for a suitable Pfister form γ = 〈〈b2, ..., bs+1〉〉.
Comparing 〈〈b〉〉γ ∼= 〈〈b〉〉 ⊥ 〈〈b〉〉γ′ with q ∼= 〈〈b〉〉 ⊥ 〈e, ...〉, we see that e ∈ 〈〈b〉〉γ′. We are now
done by applying 1.9.10 with τ = 〈〈b〉〉.

We are now in position to prove the following main result on chain P-equivalence:

Theorem 1.9.12 (Chain P-equivalence). Let ϕ,ψ be n-fold Pfister forms. Then ϕ ∼= ψ iff ϕ ≈ ψ.

Proof. It suffices to prove the ⇒ part. Write ϕ = 〈〈a1, ..., an〉〉 and ψ = 〈〈b1, ..., bn〉〉. Assuming
that ϕ ∼= ψ, we claim that, for any integer r such that 0 ≤ r ≤ n holds:

ϕ ≈ 〈〈b1, ..., br, cr+1, ..., cn〉〉 for some cr+1, ..., cn ∈ Ḟ . (Ar)

If this is estabilished, then for r = n, the statement (An) implies the desired conclusion that
ϕ ≈ ψ. Now we prove (Ar) by induction on r. There is nothing to prove in case r = 0. Assume
inductively, that (Ar) is true, where r < n. We must proceed to prove (Ar+1). Set τ = 〈〈b1, ..., br〉〉,
β = 〈〈br+1, ..., bn〉〉 and γ = 〈〈cr+1, ..., cn〉〉. Then γ is an s-fold Pfister form, where s = n− r. We
have, from the various hypothesis, τ · β = ψ ∼= ϕ ∼= τγ; that is, τ ⊥ τβ′ ∼= τ ⊥ τγ′. By cancellation
theorem, it follows that τβ ∼= τγ′. But then

br+1 ∈ DF (β′) ⊆ DF (τβ′) = DF (τγ′).

By 1.9.10, we get
〈〈b1, ..., br, cr+1, ..., cn〉〉 ≈ 〈〈b1, ..., br, br+1, c

′
r+2, ..., c

′
n〉〉

for suitable c′i ∈ Ḟ . From this and the inductive hypothesis (Ar), we deduce

ϕ ≈ 〈〈b1, ..., br, br+1, c
′
r+2, ..., c

′
n〉〉,

which estabilishes the truth of (Ar+1).

1.10 Function Fields

In view of Hauptsatz proof, we must present a brief introduction to function fields. The main
idea is that in algebraic geometry, a function field is associated with every irreducible algebraic
variety. In the case of an irreducible quadratic form ϕ, we have therefore a function field associated
with the quadratic hypersurface defined by the quadratic equation ϕ = 0. Not surprisingly, the
study of such function fields holds the key to many basic issues in the algebraic theory of quadratic
forms over fields.

In this section, we give a introduction to the idea of the function field of a quadratic form as
soon as some basic results derived from this. A preamble for the construction of such a function
field is the following.

Lemma 1.10.1. Let ϕ(x0, ..., xn) be a regular (n + 1)-dimensional quadratic form over F , where
n ≥ 1. Then ϕ is reducible as a polynomial in F [x0, ..., xn] iff n = 1 and ϕ ∼= H.

Proof. If ϕ(x0, ...xn) factors nontrivially, it must factor into a product of two linear forms. Since
ϕ is regular and n ≥ 1, this happens iff ϕ is isometric to the quadratic form x0x1, that is, iff
ϕ ∼= H.

Definition 1.10.2. The (“big”) function field of ϕ, if ϕ is irreducible in (n+1)-variables, is defined
to be the quotient field of the integral domain F [X]/(q(X)). This is a field of transcendence degree
n over F ; we shall denote it by F [ϕ].
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As we mentioned at the beggining of this section, F [ϕ] is the usual function field, in the sense
of algebraic geometry, of the affine quadric hypersurface ϕ(X) = 0 in Fn+1. Besides this, we have
that F [ϕ] depends (up to an F -isomorphism) only on the isometry class of ϕ.

A computation shows that F [ϕ] can be expressed as a quadratic extension of a rational function
field in n variables over F . Indeed, if we write F [ϕ] as F (x0, ..., xn) (where the xi’s should have
been written as xi’s), the relation a0x

2
0 + ...+ anx

2
n = 0 shows that

F [ϕ] = F (x1, ..., xn)

(√
−(a1x2

1 + ...+ anx2
n)/a0

)
(1.7)

as claimed.

The reason we called F [ϕ] the “big” function field is that we could have formed a smaller one,
defined by

F (ϕ) := F (x1/x0, x2/x0, ..., xn/x0) ⊆ F [ϕ]. (1.8)

Note that this subfield of F [ϕ] is uniquely determined, i.e, it does not depend on the choice of
x0 as the denominators in 1.8. Indeed, since

xi
xj

=

(
xi
x0

)
/

(
xj
x0

)
∈ F [ϕ],

F (ϕ) could have been expressed as F ({xi/xj}) ⊆ F [ϕ], which exhibts no dependence on any
particular subscript. The field F (ϕ) may be called the homogeneous function field of ϕ, since, in
algebraic geometry, it is just the function field of the projective variety defined by the homogeneous
equation ϕ(X) = 0 in Pn(F ).

The two function field F [ϕ] and F (ϕ) are related by the relation

F [ϕ] = F (ϕ)(x0),

and they have pretty much the same behavior. In practice, it is sufficient to work with just one of
them.

Note that F (ϕ) is also a quadratic extension of a rational function field (this time in n − 1
variables). Indeed, if we write ti = xi/x0 (1 ≤ i ≤ n), the equation

a0 + a1t
2
1 + ...+ ant

2
n = 0

show that

F (ϕ) = F (t1, ..., tn−1)

(√
−(a0 + a1t21 + ...+ an−1t2n−1)/a0

)
,

which is to be compared with 1.7.

Now, we shall develop the main properties of function fields of quadratic forms. The main
focus will be on the nature of the quadratic forms that become isotropic or hyperbolic over these
function fields. From here, it will be more convenient to work with the “big” function fields F [ϕ],
although we could have equally well used the small function fields F (ϕ). We remind the reader
again that, whenever the notation F [ϕ] is used, it will be assumed that dim(ϕ) ≥ 2 and ϕ 6= H,
for otherwise F [ϕ] is undefined.

Theorem 1.10.3. A function field F [ϕ] is purely transcendental7 iff the form ϕ is isotropic over F .

7A field extension K|F is purely transcedental if there is a subset S of K that is algebraically independent over
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In particular, any two isotropic quadratic forms of the same dimension have isomorphic function
fields.

To prove this theorem, we will need the following lemma:

Lemma 1.10.4. Let γ be a quadratic form over a field F . If γ is anisotropic over F , then γ remains
anisotropic over the rational function field F (x). In particular, the Witt kernel W (F (x)/F ) is the
zero ideal in W (F ).

Proof. Let γ = 〈a1, ..., an〉, ai ∈ Ḟ . Assume that γ is isotropic over F (x). After clearing denomina-
tors, we obtain an equation

∑
aifi(x)2 = 0, where fi(x) ∈ F [x] are not all zero. Changing the fi’s

if necessary, we may further assume that x does not divide all of the polynomials fi(x). Setting
x = 0, we get

∑
aifi(0)2 = 0, where the fi(0) ∈ F are not all zero. This says that γ is isotropic

over F . The last part of the theorem now follows immediately.

Proof of Theorem 1.10.3. First assume F [ϕ] is purely transcendental. Since ϕ becomes isotropic
over F [ϕ], lemma 1.10.4 implies that ϕ must already be isotropic over F . Conversely, assume that
ϕ is isotropic over F . After changing variables, we may express ϕ in the form x0x1 +ψ(x2, ..., xn),
where ψ is a regular quadratic form in x2, ..., xn. Using the expression of ψ to calculate F [ϕ], we
see that F [ϕ] is isomorphic to the rational function field F (x1, ..., xn).

Since ϕ always becomes isotropic over F [ϕ], it is of interest to ask what other forms over F
might also become isotropic, or even hyperbolic, over F [ϕ]. Although various results have been
obtained on this direction, a full answer to the above question has remained unknown up to this
date.

Now, we introduce some notation to facilitate our discussions:

Definition 1.10.5. For any quadratic form q, we write q > ϕ (resp. q � ϕ)8 to express the fact
that q becomes isotropic (resp. hyperbolic) over the function field F [ϕ] of the quadratic form ϕ.

Definition 1.10.6. Let ϕ and γ be forms. If ϕ is isometric to a subform of the form γ we will
write ϕ ⊆ γ.

For any field extension K|F , we have introduced earlier the Witt kernel notation W (K|F ) for
the kernel of the functorial map W (F ) → W (K). This ideal of W (F ) is called the Witt kernel
of the extension K|F . In terms of this Witt kernel notation, the relation q � ϕ in 1.10.5 simply
amounts to q ∈W (F [ϕ]/F ).

Example 1.10.7.

a - Of course, ϕ > ϕ.

b - Suppose q1 = q2 + q3 ∈W (F ). If qi � ϕ holds for two values of i, then it holds for all three.

c - If dim(q) > 0, then q � ϕ ⇒ q > ϕ. The converse fails in general, but does hold when q is a
Pfister form (by 1.9.7).

We will end this section with the following theorem, that gives a significant necessary conditions
on the forms q � ϕ (for a given ϕ).

K (i.e, the elements of S do not satisfy any non-trivial polynomial equation with coefficients in K) and such that
L = K(S).

8It will be convenient sometimes to write also q < ϕ instead of q > ϕ and ϕ� q instead of q � ϕ.
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Theorem 1.10.8. Suppose q � ϕ where q, ϕ are quadratic forms over F , with 1 ∈ DF (ϕ). Then
ϕ(X) ∈ GF (X)(q), where X = (x0, ..., xn), and dim(ϕ) = n+1 (in other words, we have ϕ(X)·q ∼= q
over the rational function field F (X)). If q is anisotropic, then a·ϕ ⊆ q (over F ) for any a ∈ DF (q);
in particular, we must have dim(q) ≥ dim(ϕ) (if dim(q) 6= 0).

Unfortunately, the proof of theorem 1.10.8 involve some techniques of quadratic forms under
transcendental extensions that escape from the scope of this dissertation. However, the reader can
found the proof in theorem 4.5 on chapter 10 of [Lam05], and read about this methods on chapter
9 of the same book.

1.11 Hauptsatz and Forms in InF

This section offers the begginings of an in-depth study of the quadratic forms in InF , the n-
power of the fundamental ideal IF . The first word in the section title above refers to the following
beautiful result of Arason and Pfister proved in 1971 in their joint paper:

Theorem 1.11.1 (Hauptsatz). Let q be a positive-dimensional anisotropic form over F . If q ∈
InF , then dim q ≥ 2n.

An equivalent way to state this result is the following: if a form q belongs to In(F ) and
dim(q) < 2n, then q must be a hyperbolic form.

The significance of the Hauptsatz lies in the fact that it offers an important dimension-theoretic
sufficient condition for a form to belong to InF . This Hauptsatz may be regarded as the first step
towards finding a set of necessary and sufficient conditions for the quadratic forms in InF (for
given n).

Before we proof 1.11.1, we will estabilish the power of the Hauptsatz given a few immediate
consequences. The first one is the “Krull Intersection Property” in part (i) below.

Corollary 1.11.2.

i - In the Witt ring W (F ), ∩∞j=0I
jF = 0.

ii - More generally, if K|F is any field extension, and J is the kernel of the functorial map
r∗ : W (F )→W (K), then ∩∞j=0(J + IjF ) = J .

Proof.

a - Let q be a form belonging to ∩∞j=0I
jF . Pick a large integer n such that dim(q) < 2n. Since

q ∈ InF , the Hauptsatz implies that q = 0 ∈W (F ).

b - This is a self-strenghthening of item (a). If q ∈ ∩∞j=0(J + IjF ), then r∗(q) = qK ∈ IiK for all i

(since r∗(IiF ) ⊆ IiK). By item (a), we have r∗(q) = 0 ∈W (K), so q ∈ J .

Corollary 1.11.3. Let ϕ, γ be a pair of 2n-dimensional forms which represent a common value
a ∈ Ḟ . Then

ϕ ≡ γ (mod In+1F )⇒ ϕ ∼= γ.

Proof. Since a ∈ DF (ϕ) ∩ DF (γ), there exist forms ϕ0 and γ0 such that ϕ ∼= 〈a〉 ⊥ ϕ0 and
γ ∼= 〈a〉 ⊥ γ0. Consider σ := ϕ0 ⊥ 〈−1〉γ0. Since

ϕ ⊥ 〈−1〉γ ∼= 〈a,−a〉 ⊥ ϕ0 ⊥ 〈−1〉γ0
∼= H ⊥ σ,
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the hypothesis ϕ ≡ γ (mod In+1F ) leads to σ ∈ In+1F . Since dim(σ) < 2n + 2n = 2n+1, the
Hauptsatz implies that σ is hyperbolic, and hence ϕ ∼= γ.

Corollary 1.11.4. Let r, s ∈ Ḟ , and let ϕ, γ be n-fold Pfister forms over F . Then

ϕ ∼= γ ⇔ 〈r〉ϕ ≡ 〈s〉γ(mod In+1F ).

Proof. We have that ϕ ≡ 〈r〉ϕ and ψ ≡ 〈s〉ψ modulo In+1F . This proves ⇒ and reduces ⇐ to the
case r = s = 1. This case follows from 1.11.3 since ϕ and ψ represents 1.

Although we can prove 1.11.1 and 1.11.2 in several special cases, the methods used for this
proves do not generalize to the case for arbitrary n and arbitrary fields F . In order to prove 1.11.1
in general, we’ll need the method of function fields. As it turns out, with the function field results
in the last section at our disposal, the proof of 1.11.1 boils down to a simple induction, as follows.

Proof of theorem 1.11.1. Let q ∈ InF be as in 1.11.1. Since the n-fold Pfister forms additively
generate InF , there exists an expression

q = ε1ϕ1 + ...+ εrϕr ∈ InF,

where εi = ±1 and ϕi are anisotropic n-fold Pfister forms. To show that dim(q) ≥ 2n, we induct
on r. If r = 1, we have q ∼= 〈±1〉ϕ1, so dim(q) = 2n. For the general case, we go up to the function
field L = F [ϕ1]. Over this field, we have a shorter expression

qL = ε2(ϕ2)L + ...+ εr(ϕr)L ∈ InL.

If qL is hyperbolic, 1.10.8 yields direclty dim(q) ≥ dim(ϕ1) = 2n. Thus we may assume that (qL)an
(the anisotropic part of qL) is a positive-dimensional form in InL. Thus, the inductive hypothesis
(invoked over the field L) implies that dimL(qL)an ≥ 2n. But then,

dimF (q) = dimL(qL) ≥ dimL(qL)an ≥ 2n.

The very short proof of the Hauptsatz above perhaps belies its true depth. Of course, this proof
made crucial use of 1.10.8, which is a centerpiece in the function field theory of quadratic forms.

1.12 How quadratic forms are useful to mathematicians?

As promised, we cover in this chapter all the concepts that will be taken as primitive in the
chapters 3-6. However, you probably thought:

Why all this matters? Where are the connections with maistream mathematics?

This is a central question and we are not in position to give a full answer. But the work seems
to be incomplete if we do not include some substantial application of algebraic theory of quadratic
forms. So in this section, we give a few comments about Milnor’s algebraic K-theory (as developed
in [Mil70]), that in our point of view, are a beatiful way to illustrate the applications of the theory
of algebraic quadratic forms.
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So, let us start. To any field F we associate a graded ring

K∗F = (K0F,K1F,K2F, ...)

as follows. By definition, K0
∼= Z and K1F is the multiplicative group Ḟ written additively. To

keep notation straight, we introduce the canonical isomorphism

l : Ḟ → K1F,

where l(ab) = l(a) + l(b) (the “logarithm”). Then K∗F is defined to be the quotient of the tensor
algebra

(Z,K1F,K1F ⊗K1F,K1F ⊗K1F ⊗K1F, ...)

by the ideal generated by all l(a) ⊗ l(−a), with a 6= 0, 1. In other words each KnF , n ≥ 2, is the
quotient of the n-fold tensor product K1F ⊗ K1F ⊗ ... ⊗ K1F by the subgroup generated by all
l(a1)⊗ ...⊗ l(an) such that ai+ai+1 = 1 for some i. If mentally we relate l(a) with the Pfister form
〈1,−a〉, this relation is just saying that “an n-fold hyperbolic Pfister form is zero in In/In+1.”

In terms of generators and relations, K∗F can be described as the associative ring with unit
which is generated by the symbols l(a), a ∈ Ḟ , subject only to the defining relations l(ab) =
l(a) + l(b) and l(a)l(−a) = 0.

Think in KnF in terms of relations between Pfister forms is not worthless: setting knF =
KnF/2KnF , we have the following:

Theorem 1.12.1 ([Mil70] Theorem 4.1). There is one and only one homomorphism

sn : knF → InF/In+1F

which carries each product l(a1)...l(an) in knF to 〈〈a1, ..., an〉〉 modulo In+1F . The homomorphisms
s0, s1 and s2 are bijective and every sn is surjective.

Theorem 1.12.1 surprisingly (or not) is saying that k∗F works almost like the graded Witt ring

W∗(F ) = (W (F )/IF, IF/I2F, ..., InF/In+1F, ...).

But we have even more interesting connections: to any field F , let Fs be a separable closure
and G = GF = GalF (Fs) be the Galois group of Fs over F . Then the exact sequence

1→ {±1} → ḞS
2−→ ḞS → 1

upon which G operates, leads to an exact sequence

H0(G, Ḟs)
2−→ H0(G, Ḟs)→ H1(G, {±1})→ H1(G, Ḟs)

of cohomology groups, where the right hand group is zero. Idenfying the first two groups with Ḟ ,
and substituing Z/2Z for {±1}, this yields

Ḟ
2−→ Ḟ

δ−→ H1(G,Z/2Z)→ 0.

The quotient Ḟ /Ḟ 2 can of course be identified with H1(G,Z/2Z).

Theorem 1.12.2 ([Mil70] Lemma 6.1). The isomorphism l(a) 7→ δ(a) from k1F to H1(G,Z/2Z)
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extends uniquely to a graded ring homomorphism

h∗ : kF → H∗(G,Z/2Z).

With these two results, a natural question is:

Are s∗ and h∗ isomorphisms?

This question is known as “Milnor’s Conjecture”. A positive answer is given by V. Voevodsky
and colaborators late 1990’s, given to us a “triangle”

Milnor’s
K-Theory

Quadratic
Forms

Galois Co-
homology

These relations are being object of research even today.
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Chapter 2

The Reduced Theory of Quadratic
Forms

Even though the reduced theory is not yet an “abstract theory”, it is an immediate generaliza-
tion of the concepts in chapter 1. In this chapter, we work in “Lam’s triangle” of reduced theory
of quadratic forms:

Orderings

Valuations
Quadratic

Forms

In our context, chapter 1 is the “Heart” and this chapter is the “Blood” of the generalizations
in the next chapters. Here, we follow chapters 1-7 of Lam’s book [Lam83] and for valuations, we
follow chapter 4 of [End72]. Some examples of valuations are extracted from [Efr06].

2.1 Preorderings and Orderings

Firstly, we need to develop more the theory of orderings on a field1.

Definition 2.1.1. A preordering on a field F is a proper subset T ⊆ F such that F 2 ⊆ T , T+T ⊆ T
and T · T ⊆ T .

Note that, in view of the last three properties of a preordering, the requirement that T 6= F
may be stregthened into −1 /∈ T . For, if −1 ∈ T , then for any x ∈ F , we can write x = y2 − z2,
where y = (1 + x)/2 and z = (1− x)/2, and so we would have x ∈ F 2 + T · F 2 ⊆ T + T · T ⊆ T .

For any preordering T ⊆ F , the set Ṫ = T \ {0} is a subgroup of the multiplicative group Ḟ
(because 1 ∈ Ḟ 2 ⊆ Ṫ and if x ∈ Ṫ , then x−1 = (x−1)2 · x ∈ Ṫ ).

Let T ⊆ F be a preordering, and {ai : i ∈ I} be a set of elements in F . We shall let T [ai : i ∈ I]
denote the subsemiring of F generated by T and {ai : i ∈ I}. This consists of all “polynomial
expressions” in {ai : i ∈ I} with elements of T as “coefficients”. This will be a preordering in F iff
it does not contain −1. In the special case when I is a singleton set, note that T [a] = T + aT .

1Of course, all fields of this chapter are considered with characteristic different of 2.
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Lemma 2.1.2. Let T ⊆ F be a preordering and a ∈ Ḟ . Then T [a] is a preordering iff a /∈ −T .

Proof. If a /∈ −T , we claim that −1 /∈ T [a]. In fact, if we could write −1 = t1 + t2a for some
t1, t2 ∈ T , then −t2a = 1 + t1 ∈ Ṫ , and so a ∈ −Ṫ , a contradiction. Then T [a] is a preordering.

If a ∈ −T , then T [a] contains (−a) · a and hence −1, so T [a] is not a preordering.

Corollary 2.1.3. A preordering T ⊆ F is maximal (with respect to set-theoretic inclusion) iff T
is and ordering.

Proof. (⇒) If T is a maximal preordering, then for any a /∈ T , the above lemma implies a ∈ −T .
This means that F = T ∪ (−T ), so T is an ordering in F .

(⇐) Suppose that there exist another proper preordering T ′, T ) T ′ and an element x ∈
T ′ ∩ (−T ), x 6= 0. Then −1 = (x−1)2 · x · x−1 ∈ T ′, contradiction.

Corollary 2.1.4. Any preordering T ⊆ F is contained in at least one ordering of F .

Proof. Applying the Zorn’s lemma to the family F of all preorderings containing T . Pick any
member P ∈ F which is maximal with respect to inclusion. By corollary 2.1.3, P is an ordering of
F containing T .

Theorem 2.1.5 (Artin-Schreier). A field is formally real iff it has an ordering.

Proof. We already know that a field F is formally real iff F has a preordering. Then, applying the
above corollary we have the desired result.

For any preordering T ⊆ F , we shall write XT for the (nonempty) subset of XF consisting of
all orderings P ⊇ T . We claim that XT is a closed set of XF , so XT will also be a Boolean space
with induced topology. To prove our claim, let P ∈ XF \XT , and fix an element a ∈ T \ P . Then
−a ∈ P and H(−a) is a neighborhood of P disjoint from XT . This shows that XF \XT is open,
so XT is closed. Note that a subbasis for the topology of XT is given by the relative Harrison sets
HT (a) := H(a) ∩XT = {P ∈ XT : a ∈ P}.

Theorem 2.1.6. For any preordering T ⊆ F , we have T =
⋂
P∈XT P .

Proof. It is suffices to show that
⋂
P∈XT P ⊆ T . Let a /∈ T . Then by lemma 2.1.2, T [−a] is a

preordering and by corollary 2.1.4, there exists an ordering P0 ⊇ T [−a]. Since −a ∈ Ṗ0, we have
a /∈ P0, so a /∈

⋂
P∈XT P .

In the special case when T =
∑
F 2, the theorem above was first proved by Artin. In this case,

the theorem states that, in a formally real field F , an element a ∈ F is a sum of squares in F iff
it is nonnegative in every ordering of F (this statement is, of course, also correct for nonreal fields
F , since, in that case,

∑
F 2 = F and XF is empty). We shall refer to theorem 2.1.6 as Artin’s

Theorem.

Note that the intersection of any nonempty family of preorderings is always a preordering.
conversely, Artin’s Theorem tels us that any preordering T ⊆ F arises in this way.

For the later reference, we record the following consequence of 2.1.6:

Corollary 2.1.7. Let T ( T ′ be two preorderings in F . Then:

i - There exists a preordering T ′′ such that T ⊆ T ′′ ⊆ T ′ and [Ṫ ′ : Ṫ ′′] = 2.
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ii - T ′ is minimal (as a preordering) over T iff [Ṫ ′ : Ṫ ] = 2

Proof.

i - By 2.1.6, we have X ′T ( XT . Pick any ordering P ∈ XT \X ′T and let T ′′ : P ∩ T ′. We have
T ⊆ T ′′ ⊆ T ′, and [Ṫ ′ : Ṫ ′′] = [Ḟ : Ṗ ] = 2.

ii - Follow by item (i).

Suppose T ( T ′ and T ′ is minimal over T . Then, for any a ∈ T ′, the following equation holds:

T [a] = T + T · a = T ∪ T · a.

In fact, if a ∈ T , both sides are equal to T , while, if a ∈ T ′ \ T , both sides are equal to T ′ (in view
of 2.1.7).This leads to a useful definition:

Definition 2.1.8. For a given preordering T , an element a ∈ F is said to be T -rigid if T +T ·a =
T ∪ T · a, i.e, if [ ˙T (a) : Ṫ ] ≤ 2.

Elements of T are always T -rigid. For some preorderings T , it may happens that T is already
the set of all T -rigid elements. This is the case, for instance, if T is the weak preordering

∑
F 2

in the field F = Q(x). Note that if T is a preordering such that all T -rigid elements are already
in T , then no preordering T ′ ) T can be minimal over T , and so the set of preorderings properly
containing T will not satisfy the descending chain condition.

The notion of T -rigid elements will emerge again to play a central role when we study the class
of preorderings called “fans”.

2.2 The Reduced Theory

The main goal of this section is to set up a theory of quadratic forms “relative to” a preordering
T (or “reduced” modulo T ). This theory will lead to a relative Witt ring, denoted by WTF , which
shares many of the formal properties of the ordinary Witt ring WF . Actually, WTF turns out to
be isomorphic to a certain quotient ring of WF , namely

WTF ∼= WF/
∑
t∈Ṫ

WF · 〈1,−t〉.

Therefore, one could legitimately take this to be the definition of WTF . Such a definition,
however, would be awkward to work with and would obscure the fact that there is actually a
reasonable quadratic form theory naturally associated with WTF . For better motivation, one
should therefore first develop the relevant “reduced” quadratic form theory relative to T , and then
construct the Witt ring WTF from it.

In the following, let T be a fixed preordering in F . By a (diagonal) T -form, of dimension n, we
shall mean a formal expression ϕ = 〈a1, ..., an〉T , where a1, ..., an ∈ Ḟ . If the preordering T is clear
from the context, we shall often drop the subscript T and simply write ϕ = 〈a1, ..., an〉. For such
T -form ϕ, and any ordering P ∈ XT , we define the P -signature of ϕ by

sgnP (ϕ) =
n∑
i=1

sgnP (ai) ∈ Z,
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where

sgnP (a) =

{
1 if a ∈ Ṗ ,
−1 if a /∈ Ṗ .

Follow that sgnP (ϕ) ∼= dimϕ (mod 2).

We can define the orthogonal sum and the tensor product of T -forms as we did for ordinary
forms, namely:

〈a1, ..., an〉 ⊥ 〈b1, ..., bm〉 :=〈a1, ..., an, b1, ..., bm〉,
〈a1, ..., an〉 ⊗ 〈b1, ..., bm〉 :=〈a1b1, ..., aibj , ..., anbm〉.

A straightforward calculation shows that

sgnP (ϕ ⊥ ψ) = sgnP (ϕ) + sgnP (ψ)

sgnP (ϕ⊗ ψ) = sgnP (ϕ)sgnP (ψ)

for any T -forms ϕ,ψ and any ordering P ∈ XT . To simplify the notation, we shall use the same
conventions adopted in chapter 1: write ϕ · ψ, or just ϕψ, for the tensor product ϕ ⊗ ψ. For any
natural number r, we write r · ϕ or just rϕ for the r-fold orthogonal sum ϕ ⊥ ... ⊥ ϕ.

Definition 2.2.1. We say that two T -forms ϕ,ψ are T -isometric (in symbols, ϕ ∼=T ψ) if ϕ,ψ
have the same dimension and the same signature with respect to any P ∈ X/T .

From this definition, we can verify that following two types of T -isometries:

〈a1, ..., an〉T ∼=T 〈a1t1, ..., antn〉T (ai ∈ Ḟ , t1 ∈ Ṫ ), (2.1)

〈a, b〉T ∼=T 〈a+ b, ab(a+ b)〉T (a, b, a+ b ∈ Ḟ ). (2.2)

These two basics types of T -isometries are particularly important, because it will turn out later
that they can be used to “account for” all T -isometries.

Another immediate consequence of 2.2.1 is the Witt’s Cancellation:

ϕ⊕ ψ1
∼=T ϕ⊕ ψ2 ⇒ ψ1

∼=T ψ2.

A T -form ϕ is said to be T -hyperbolic (or hyperbolic over T ) if sgnP (ϕ) = 0 for every P ∈ XT .
Such a form must have even dimension. If dimϕ = 2n, we have in fact ϕ ∼=T 〈1,−1〉T , i.e, up to
T -isometry, there is only one hyperbolic T -form of dimension 2n. The binary hyperbolic T -form
〈1,−1〉T is called the T -hyperbolic plane and is denoted by HT .

Definition 2.2.2. A T -form ϕ = 〈a1, ..., an〉T is said to be T -isotropic (or isotropic over T ) if
there exist t1, ..., tn ∈ T , not all zero, such that a1t1 + ...+ antn = 0. If such t′is does not exist, ϕ
is said to be T -anisotropic.

To illustrate this notion of T -isotropy, consider the case when T is the weak preordering
∑
F 2

in a formally real field F . To say that ϕ above is (
∑
F 2)-isotropic means that there exists an

equation
n∑
i=1

ai(x
2
i1 + ...+ x2

iri) = 0,

where the xij ’s are not all zero. This means, therefore, that, for some natural number r, r · ϕ is
isotropic as an ordinary quadratic form. If this is the case, we shall say that the form ϕ is weakly
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isotropic. If F happens to be a pythagorean field (i.e,
∑
F 2 = F 2), this will, of course, imply that

ϕ is isotropic. If F is not pythagorean, the implication may no longer be true: for x2
1 + x2

2 /∈ F 2,
the form ϕ = 〈1,−(x2

1 + x2
2)〉 is weakly isotropic (with 2ϕ = 2〈1,−1〉), but ϕ is anisotropic.

Returning to T -forms ϕ = 〈a1, ..., an〉T over a general preordering T , we define DT (ϕ) to be
the set

DT (ϕ) =

{
n∑
i=1

aiti 6= 0 : t1, ..., tn ∈ T

}
=
(∑

T · ai
)
\ {0}.

This is called the set of values of the T -form ϕ; it is a union of Ṫ -cosets in Ḟ . If b ∈ DT (ϕ), we
shall say that b is T -represented by ϕ (or represented by ϕ over T ). It will turn out later that the
set DT (ϕ) depends only on the T -isometry class of ϕ, but this is not at all clear from the definition
above.

Proposition 2.2.3. Let ϕ = 〈a1, ..., an〉T . Then:

i - For any t1, ..., tr ∈ Ṫ ,
DT (〈t1, ..., tr〉ϕ) = DT (ϕ) = DT (r · ϕ)

ii - For any natural number r, ϕ is T -isotropic iff r · ϕ is T -isotropic.

iii - ϕ is T -isotropic iff, for suitable t1, ..., tn ∈ Ṫ , 〈t1, ..., tr〉〈a1, ..., an〉 is isotropic as an ordinary
quadratic form.

Proof. All three conclusions follow from the axioms T · T ⊆ T , T + T ⊆ T for the preordering T
and the definition of T -representation.

Note that the conclusion (iii) above relates the notion of T -isotropy to the usual notion of
isotropy for quadratic forms. The next result, which is considerably deeper, gives the analog of
this for the notion of hyperbolicity.

Theorem 2.2.4. For any T -form ϕ, the following statements are equivalent:

i - ϕ is hyperbolic over T .

ii - 〈〈t1, ..., tr〉〉ϕ = 0 ∈WF for some t1, ..., tn ∈ Ṫ .

iii - 〈t1, ..., tr〉ϕ = 0 ∈WF for some t1, ..., tn ∈ Ṫ .

Proof. (ii)⇒(iii) and (iii)⇒(i) are immediate. So we need only prove (i)⇒(ii). The proof will be
based on the following “Witt Formula”, which holds in the Witt ring WF for all ai ∈ Ḟ :

2n〈a1, ..., an〉 =
∑
ε

〈ε1, ..., εn〉〈〈ε1a1, ..., εnan〉〉 ∈WF. (2.3)

Here ε ranges over all n-tuples 〈ε1, ..., εn〉 with εi ∈ ±1. To prove 2.3, first note that εi〈〈εiai〉〉 ∼=
ai〈〈εiai〉〉, so

〈ε1, ..., εn〉〈〈ε1a1, ..., εnan〉〉 ∼= 〈a1, ..., an〉〈〈ε1a1, ..., εnan〉〉.

Therefore, we are reduced to proving that∑
ε

〈〈ε1a1, ..., εnan〉〉 = 2n〈1〉 ∈WF,
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for all ai ∈ Ḟ . This is checked by induction on n. For n = 1, the sum is 〈〈a1〉〉+ 〈〈−a1〉〉 = 2〈1〉 ∈
WF . Inductively, if we let ε′ = 〈ε1, ..., εn−1〉, then the sum breaks up into∑

ε′

〈〈ε1a1, ..., εn−1an−1, an〉〉+
∑
ε′

〈〈ε1a1, ..., εn−1an−1,−an〉〉

=
∑
ε′

〈〈ε1a1, ..., εn−1an−1〉〉(〈〈an〉〉+ 〈〈−an〉〉)

= 2
∑
ε′

〈〈ε1a1, ..., εn−1an−1〉〉 = 2n〈1〉 ∈WF.

Now, let ϕ = 〈a1, ..., an〉T be T -hyperbolic. To get (ii), we shall try to apply 2.3. For a given
n-tuple ε = (ε1, ..., εn) as above, we have the following two possible cases:

Case 1. T [ε1a1, ..., εnan] 6= F . In this case, there exists an ordering P ⊇ T [ε1a1, ..., εnan]. For
this P , we have sgnP (εi) = sgnP (ai) for all i, so sgnP (〈ε1, ..., εn〉) = sgnP (ϕ) = 0. Thus, half
of the εi’s are 1’s and the other half are −1’s. This gives 〈ε1, ..., εn〉 = 0 ∈ WF , so we can
drop the corresponding term on the right side of 2.3.

Case 2. T [ε1a1, ..., εnan] = F . Note that T [ε1a1, ..., εnan] \ {0} is just DT (ϕε) where ϕε :=
〈ε1a1, ..., εnan〉; in particular −1 ∈ DT (ϕε). This implies that 2ϕε is T -isotropic, so by
2.2.3(ii) and (iii), there exist t′1, ..., t

′
m ∈ Ṫ such that 〈t′1, ..., t′m〉ϕε is isotropic as an ordinary

quadratic form. Hence 〈〈t′1, ..., t′m, ε1a1, ..., εnan〉〉 is isotropic. Since this is a Pfister form, it
must be hyperbolic. Therefore, multiplying the twos sides of 2.3 by a suitably chosen Pfister
form 〈〈t1, ..., tr〉〉 (ti ∈ Ṫ ), we get 〈〈t1, ..., tr〉〉ϕ = 0 ∈WF .

Corollary 2.2.5. If ϕ is T -hyperbolic, then ϕ is T -isotropic. The converse holds if ϕ is a Pfister
form.

Proof. For ordinary quadratic forms, we know that hyperbolicity does imply isotropy. There-
fore, the first conclusion follows from 2.2.3(iii) and 2.2.4(iii). For the second conclusion, let
ϕ = 〈〈b1, ..., bn〉〉 be T -isotropic. By definition, there is an equation

t0 + t1b1 + ...+ tnbn + t12b1b2 + ... = 0,

where ti, tij , ... ∈ T are not all zero. Consider any P ∈ XT . The equation above implies that the
bi’s cannot all be in P , say b1 ∈ −P . Then

sgnP (ϕ) = sgnP 〈1, b1〉sgnP 〈〈b2, ..., bn〉〉 = 0,

so ϕ is T -hyperbolic.

We can now prove the following powerful

Theorem 2.2.6 (Representation Criteria). Let b1 ∈ Ḟ and ϕ = 〈a1, ..., an〉T .Then b1 ∈ DT (ϕ) iff
there exists b2, ..., bn ∈ Ḟ such that ϕ ∼=T 〈b1, b2, ..., bn〉T . In particular, DT (ϕ) depends only on the
T -isometry class of ϕ.

Proof. First assume b1 ∈ DT (ϕ), say b1 = a1t1 + ... + antn, where ti ∈ T . We may assume that
a1t1 + ...+ artr 6= 0 for all r (for otherwise we can just work with 〈ar+1, ..., an〉). Using repeatedly
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the two basic types of T -isometries in 2.1 and 2.2 we obtain

ϕ ∼=T 〈a1t1, ..., antn〉
∼=T 〈a1t1 + a2t2, a1a2t1t2(a1t1 + a2t2), a3t3, ..., antn〉
∼=T 〈a1t1 + a2t2, a3t3, a1a2t1t2(a1t1 + a2t2), a4t4, ..., antn〉
∼=T 〈a1t1 + a2t2 + a3, a3t3(a1t1 + a2t2)(a1t1 + a2t2 + a3t3), a1a2t1t2(a1t1 + a2t2), a4t4, ..., antn〉

and so on. Repeating this process, we get ϕ ∼=T 〈b1, b2, ..., bn〉T for suitable b2, ..., bn ∈ Ḟ .
Conversely, assume we have ϕ ∼=T 〈b1, b2, ..., bn〉T . Then

〈a1, ..., an,−b1, ...,−bn〉T

is T -hyperbolic. By 2.2.4(iii), there exist t1, ..., tr ∈ Ṫ such that

〈t1, ..., tr〉〈a1, ..., an〉 = 〈t1, ..., tr〉〈b1, ..., bn〉 ∈WF.

Since the left hand side and the right hand side above are forms of the same dimension, they must
be isometric (as ordinary forms). In particular, t1b1 ∈ DT (〈t1, ..., tr〉ϕ). In view of 2.2.3(i), this
implies that b1 ∈ t−1

1 DT (ϕ) = DT (ϕ).

Corollary 2.2.7. For any T -form ϕ, the following statements are equivalent:

i - ϕ is T -isotropic;

ii - ϕ ∼=T HT ⊥ ψ for some T -form ψ;

iii - ϕ is T -universal;

iv - There exists an element b ∈ Ḟ such that both ±b ∈ DT (ϕ).

Proof. (ii)⇒(iii)⇒(iv) is immediate.
(iv)⇒(i) From b ∈ DT (ϕ), by 2.2.6 we get ϕ ∼=T 〈b, a2, ..., an〉T for suitable a2, ..., an ∈ Ḟ .

Similarly, from −b ∈ DT (ϕ) we get ϕ ∼=T 〈−b, c2, ..., cn〉T for suitable c2, ..., cn ∈ Ḟ . Then

2ϕ ∼= 〈b,−b, a2, ..., an, c2, ..., cn〉T

that is T -isotropic. By 2.2.3(ii) we conclude that ϕ is itself T -isotropic.
(i)⇒(ii) If ϕ = 〈a1, ..., an〉T is T -isotropic, write a1t1 + ... + antn = 0 where ti ∈ T , and say

t1 6= 0. Then
−1a1t1 = a2t2 + ...+ antn ∈ DT (a2, ..., an),

so by 2.2.6, 〈a2, ..., an〉T ∼=T 〈−a1t1〉T ⊥ ψ for some T -form ψ. Therefore

ϕ ∼=T 〈a1t1,−a1t1〉T ⊥ ψ ∼=T 〈1,−1〉T ⊥ ψ.

Note that the characterizations (iii),(iv) above for T -isotropy are special features in the “mod
T” theory; they do not have analogues in the “absolute” theory of quadratic forms.

Corollary 2.2.8. For any T -form ϕ, there exists a “Witt decomposition” ϕ ∼=T ψ ⊥ rHT , where
r ≥ 0 and ψ is T -anisotropic. Here, r is uniquely determined by ϕ, and so is the T -isometry class
of ψ. We call r the Witt index of ϕ (over T ), and call ψ the T -anisotropic part of ϕ.
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Proof. This proof follows the same sketch of proof of theorem 1.2.3.

For existence part, if ϕ is anisotropic, take ψ = ϕ and r = 0. Let ϕ is isotropic, say ϕ ∼=
〈1,−1〉T ⊥ ψ1. Observe that dimψ1 < dimϕ. Then we repeat this analysis for ψ1: if ψ1 is
anisotropic, take ψ = ψ1 and r = 1, if is not, write ψ1 = 〈1,−1〉T ⊥ ψ2 (and of course, ϕ =
2〈1,−1〉T ⊥ ψ2, with dimϕ2 < dimϕ1 < dimψ). After a finite number of steps (instead, maximum
dimϕ/2), we achieve a decomposition

ϕ ∼=T r〈1,−1〉 ⊥ ψr,

where ψr is anisotropic (or 0). This proves the existence part.

To estabilish the uniqueness part, suppose ϕ has another Witt decomposition ϕ ∼=T s〈1,−1〉T ⊥
ψ′. So

r〈1,−1〉 ⊥ ψ ∼=T s〈1,−1〉 ⊥ ψ′,

and if r < s, by Witt’s cancellation we have ψ ∼=T (s− r)〈1,−1〉 ⊥ ψ′, contradicting the fact that
ψ is anisotropic. Similarly for s < r, then we force r = s. Now, the resulting equation is

r〈1,−1〉 ⊥ ψ ∼=T s〈1,−1〉 ⊥ ψ′,

and by Witt’s cancellation (again!) we get ψ ∼=T ψ
′, finalizing the proof.

Having developed the “mod T” theory thus far, it is now an easy matter to set up the relative
Witt ring WTF and derive its basic properties. Since the procedure here is substantially the same
as that used for ordinary Witt ring WF , we can suppress most of the details in the following
discussion.

By definition, WTF is the Grothendieck group of the T -isometry classes of all T -forms modulo
the ideal generated by the T -hyperbolic plane. Addition in the Grothendieck group is given by
the orthogonal sum of T -forms. Definining multiplication in WTF by using the tensor product
of T -forms, we make WTF into a commutative ring (with identity 〈1〉T ). The elements of WTF
are in a one-one correspondence with the T -isometry classes of T -anisotropic forms (including,
by convention, the “zero form”). Two T -forms ϕ,ϕ′ will give the same element in WTF iff their
T -anisotropic parts are T -isometric (in which case we say that ϕ,ϕ′ are “Witt similar”, over T ).
Just as in the absolute theory, it follows that

ϕ ∼=T ψ iff dim(ϕ) = dim(ψ) and ϕ = ψ ∈WTF. (2.4)

In particular, 〈a〉 ∼=T 〈b〉 if and only if ab ∈ Ṫ .

There is, however, one main phenomenon which distinguishes WTF from WF . For any T -form
ϕ and any integer r ≥ 1, r · ϕ is T -hyperbolic iff ϕ is; this implies that WTF is never torsion-free,
unless F is formally real and pythagorean.

By viewing a form 〈a1, ..., an〉 as a T -form, we can define a surjective ring homomorphism
WF →WTF . The image of IF under this homomorphism is ITF , the ideal of T -isometry classes
of even-dimensional T -forms. Again, the n-th power InTF is additively generated by the T -Pfister
forms 〈〈a1, ..., an〉〉T (ai ∈ Ḟ ). The isomorphisms WTF/ITF ∼= Z/2Z, ITF/I

2
TF
∼= Ḟ /Ṫ can be

checked in the same way as in the absolute theory. For the second isomorphism, however, we need
to know that there is a good notion of discriminants for T -forms. Since this requires a separate
argument, we include it in the following

Proposition 2.2.9. For any T -form ϕ = 〈a1, ..., an〉T , detϕ := a1 · ... · an · Ṫ ∈ Ḟ /Ṫ is uniquely
determined by the T -isometry class of ϕ.
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Proof. Suppose ϕ ∼=T ψ = 〈b1, ..., bn〉T , and let c = a1...an, d = b1...bn. We want to show that
cd ∈ Ṫ ; by Artin’s Theorem 2.1.6, it suffices to show that sgnP (c) = sgnP (d) for every P ∈ XT .
Given P , suppose (say) a1, ..., aR ∈ −Ṗ , ar+1, ..., an ∈ Ṗ , b1, ..., bs ∈ −Ṗ , bs+1, ..., bn ∈ Ṗ . Since

n− 2r = sgnP (ϕ) = sgnP (ψ) = n− 2s,

we have r = s, hence
sgnP (c) = (−1)r = (−1)s = sgnP (d).

Using the idea of the discriminant, we can also compute U(WTF ), the group of units in WTF .

Proposition 2.2.10. U(WTF ) = {〈a〉T : a ∈ Ḟ}.

Proof. It suffices to show that, if ϕ,ψ are T -forms such that ϕψ = 1 ∈WTF , then ϕ = 〈a〉 ∈WTF
for some a ∈ Ḟ . For any P ∈ XT , we have sgnP (ϕ)sgnP (ψ) = 1 so sgnP (ϕ) = ±1. In particular,
ϕ has odd dimension, say ϕ = 〈a1, ..., a2n+1〉. We claim that a := (−1)na1...a2n+1 (the “signed”
discriminant) is what we want. To see this, let P ∈ XT . We may assume that a1, ..., an ∈ −Ṗ , and
an+1, ..., a2n ∈ Ṗ . Then

sgnPa = (−1)n(−1)nsgnPa2n+1 = sgnP (a2n+1) = sgnP (ϕ).

This implies that ϕ ∼=T n〈1,−1〉T ⊥ 〈a〉T , so ϕ = 〈a〉T ∈WTF .

In the proof above, we have implicitly used the idea that a T -form ϕ may be “identified” with
the signature function it defines on the Boolean space XT . We shall now formulate this idea more
precisely. In the following, we shall write C(XT ,Z) for the ring of continuous functions from XT

to Z. Whenever we use this notation, it will always be understood that Z is given the discrete
topology.

Since XT is compact, the image of any continuous function f : XT → Z must be a finite
set, and, for r ranging over this image, the sets f−1(r) form a finite partition of XT into clopens
sets. Conversely, given any finite partition of XT into clopens C1, ..., Ck, we can define continuous
functions f ∈ C(XT ,Z) by sending C1, ..., Ck to arbitrary integers n1, ..., nk. Therefore, as an
abelian group, C(XT ,Z) is generated by the characteristic functions of the clopen sets in XT .

For any T -form ϕ, we can define its “signature function” ϕ̂ : XT → Z by ϕ̂(P ) = sgnP (ϕ), for
every P ∈ XT . Follows that

ˆϕ ⊥ ψ = ϕ̂+ ψ̂ and ψ̂ϕ = ϕ̂ψ̂.

In case ϕ is a unary form 〈a〉T , we have ϕ̂(XT ) ⊆ {±1}, with

ϕ̂−1(1) = HT (a) and ϕ̂−1(−1) = HT (−a). (2.5)

Therefore ϕ̂ is continuous. By the first formula in 2.5, we see that the same is true for higher-
dimensional T -forms ϕ.

If we define cT (ϕ) = ϕ̂ for any T -form ϕ, we get a well-defined map cT : WTF → C(XT ,Z)
(the “cap” map). By 2.5, cT is a ring homomorphism. If cT (ϕ) = 0, then by definition ϕ is a
T -hyperbolic form, so ϕ = 0 ∈ WTF : this shows that cT is a monomorphism. Now consider the
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diagram
WF

εT

��

cT

��
WTF cT

// C(XT ,Z)

where εT 〈a1, ..., an〉 = 〈a1, ..., an〉, and cT = cT ◦ εT .

Theorem 2.2.11 (Pfister, Becker,...). Ker(εT ) = Ker(cT ) = WF/
∑

t∈Ṫ WF · 〈1,−t〉.

Proof. Since cT is injective, we have Ker(εT ) = Ker(cT ) so it suffices to compute the latter. Of
course, it contains U :=

∑
t∈Ṫ WF · 〈1,−t〉. Conversely, let ϕ = 〈a1, ..., an〉 ∈ ker(cT ); we shall

show that ϕ ∈ U by induction on n. The case n = 0 is immediate. If n > 0, since ϕ is T -hyperbolic
as a T -form, there exists an equation

∑
tiai = 0 where ti ∈ T are not all zero (see 2.2.5). Let

a′i =

{
ai if ti = 0

tiai if ti 6= 0

and consider ϕ′ = 〈a′1, ..., a′n〉. Working in WF , we have

ϕ− ϕ′ =
∑
ti 6=0

ai〈1,−ti〉 ∈ U,

so it suffices to show that ϕ′ ∈ U. Since ϕ′ is isotropic, we have ϕ′ ∼=T 〈1,−1〉 ⊥ ϕ′′ for some
(n− 2)-dimensional form ϕ′′. Then

cT (ϕ′′) = cT (ϕ′) = cT (ϕ) = 0,

so by the inductive hypothesis, we have ϕ′′ ∈ U, hence ϕ ∈ U.

In the case when T =
∑
Ḟ 2. Thus, we get back Pfister Local-Global Principle, 1.5.1. Note

that if w is a sum of 2n squares, then 2n〈1,−w〉 is isotropic, and hence (by Pfister form theory)
hyperbolic. This shows that the kernel above is in WtF , the torsion subgroup of WF . On the other
hand, since C(XF ,Z) is torsion-free, WtF must be contained in ker(WF → C(XF ,Z)). Therefore,
this kernel equals WtF , and we get

WTF ∼= WF/
∑

WF · 〈1,−w〉 = WF/WtF

for T =
∑
Ḟ 2. This ring, usually denoted by WredF is called the reduced Witt ring of F .

Returning to a general preordering T , we record for later reference the following consequence
of 2.2.11:

Corollary 2.2.12. WTF is isomorphic to the group G with generators [a], a ∈ Ḟ , and relations

1. [1] + [−1] = 0,

2. [a] + [b] = [a+ b] + [ab(a+ b)], a, b, a+ b ∈ Ḟ ,

3. [a] = [at], a ∈ Ḟ , t ∈ Ṫ .

Proof. If we use only relations of the type (1), (2), together with the following special case of (3):

(3′) [a] = [ac2] (a, c ∈ Ḟ ),
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the group we get is isomorphic to WF , via [a] 7→ 〈a〉 (see 1.3.18). According to 2.2.11, WTF is
isomorphic to WF modulo the subgroup generated by 〈a〉〈1,−t〉 = 〈a,−at〉 (a ∈ Ḟ , t ∈ Ṫ ), and
this finalize the proof.

Another way to prove 2.2.12 is to first estabilish a “chain-equivalence” theorem for T -isometries,
generalizing Witt’s Chain Equivalence Theorem for ordinary isometries (1.2.5). To this end, we
define the notion of chain-T -equivalence as follows: given two T -forms ϕ,ψ of the same dimension
n, ϕ is chain-T -equivalent to ψ if we can change ϕ to ψ by a finite sequence of transformations of
the following types:

A - 〈a1, ..., an〉T → 〈t1a1, ..., tnan〉 (ti ∈ Ṫ );

B - 〈a1, ..., ai, ..., aj , ..., an〉T 7→ 〈a1, ..., ai + aj , ..., aiaj(ai + aj), ..., an〉T ,
(ai, ai + aj ∈ Ḟ , 1 ≤ i ≤ j ≤ n);

C - 〈a1, ..., ai, ..., aj , ..., an〉T 7→ 〈a1, ..., aj , ..., ai, ..., an〉T .

If ϕ is chain-T -equivalent to ψ then ϕ ∼=T ψ. Not surprisingly, we have the following analog of
Witt’s Chain Equivalence Theorem:

Theorem 2.2.13. Let ϕ = 〈a1, ..., an〉T and ψ = 〈b1, ..., bn〉T . If ϕ ∼=T ψ then ϕ is chain T -
equivalent to ψ.

Proof. Since the symmetric group Sn is generated by transpositions, (C) implies that 〈a1, ..., an〉T
is chain-T -equivalent to 〈aσ(1), ..., aσ(n)〉T for any permutation σ. If ϕ ∼=T ψ, 2.2.6 implies that
b1 ∈ DT (ϕ), so, after permuting the ai’s, we may assume that b1 = t1a1 + ... + trar (for some
r ≤ n) where no subsum is equal to zero, and ti ∈ Ṫ . Applying the transformations (A) and
(B) repeatedly (as we made in the proof of 2.2.6), we see that ϕ is chain-T -equivalent to some
〈b1, a′2, ..., a′n〉T . After cancelling 〈b1〉T , we have

〈a′2, ..., a′n〉T ∼=T 〈b2, ..., bn〉T

so, the proof proceeds by induction.

In the definition of chain-T -equivalence, one could have dropped the transformations of type
(C) without affecting the definition. To see this, it suffices to show that 〈a, b〉T can be changed
into 〈b, a〉T by transformations of the type (A), (B). If a+ b = 0, we are done by

〈a,−a〉 (A)→ 〈a,−2a〉 (B)→ 〈−a, 2a3〉 (A)→ 〈−a, a〉.

If c := a+ b 6= 0, we have instead

〈a, b〉 (B)→ 〈c, abc〉 (A)→ 〈b2c, abc〉 (B)→ 〈bc2, bc2 · b2c · abc〉 (A)→ 〈b, a〉.

Using 2.2.13, we could give another proof for 2.2.12: for the group G in 2.2.12, we have a group
homomorphism f : G→WTF defined by f [a] = 〈a〉T ∈WTF . By 2.2.13, we check that

g(〈a1, ..., an〉T ) = [a1] + ...+ [an] ∈ G

gives a well-defined inverse for f . Therefore f is an isomorphism.
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2.3 Some basic stuff about Valuations

We already talk about orderings and quadratic forms. To complet our “Lam’s tripé” we shall
talk about valuations. The concept of valuations are like an Hydra: have many heads and each
time you cut one, three or more borns again! Here, we restrict our atention to three heads of this
“Hydra”: Krull valuations, valuation rings and places.

So, let us start with valuation rings.

Definition 2.3.1. A subring A of a field K is called a valuation ring of K, if x ∈ A or x−1 ∈ A
for any non-zero x ∈ K. Is immediate that K is the quotient field of A.

A non-trivial binary relation |⊆ K×K (i,e, |6= K×K) of a field K is a called a divisibility if:

i - | is a preordering (i.e, is reflexive and transitive);

ii - x | y ⇒ xz | yz for all x, y, z ∈ K;

iii - x | y and x | z ⇒ x | y − z for all x, y, z ∈ K.

Note that x | 0 and does not hold 0 | x for any x ∈ K̇. Beside this, the divisibilities | of K are in
one-to-one correspondence with the subrings D of K by

{x | y ⇔ yx−1 ∈ D} and D = {x ∈ K : 1 | x}.

Moreover, UD = {x ∈ D : x | 1} is the group of units of D.

Theorem 2.3.2. A subring R of K is a valuation ring of K if and only if the corresponding
divisibility |R is an ordering.

Proof. (⇒) Suppose R is a valuation ring and let x - y. If x = 0, then y | x. If x 6= 0, then
yx−1 /∈ R, so (yx−1)−1 = xy−1 ∈ R. Then 1 | xy−1 and y | x, showing that | is an ordering.

(⇐) Suppose |R is an ordering an let x ∈ K \ R with 1 6- x. Since | is an ordering, x | 1, and
1 · x−1 ∈ R. Then R is a valuation ring.

A subset M of K is called R-stable if R ·M ⊆ M , i.e, ax ∈ M for all a ∈ R and x ∈ M . We
show that in the case of a valuation ring R any R-stable non-empty subset of R (resp. K) is an
ideal of R (resp. an R-submodule of K) and this property characterizes valuation rings.

Theorem 2.3.3. Let K be the quotient field of R and J (resp. J ) the set of all R-stable non-empty
subsets of R (resp. K). Then the following conditions are equivalent:

i - R is a valuation ring of K;

ii - J is totally ordered;

iii - J is totally ordered;

iv - The subset of J consisting of all principal ideals of R is totally ordered.

In this case, J (resp. J ) is the set of all ideals of R (resp. R-submodules of K).

Proof. (i)⇒(ii) Suppose that M,N ∈ J . M * N and N * M . Let x ∈ M \ N and y ∈ N \M .
Since x = (xy−1)y /∈ N we have xy−1 /∈ R, and since y = (yx−1)x /∈ M , we have yx−1 /∈ R;
therefore R is not a valuation ring of K.

(ii)⇒(iii) Is immediate since every R-stable set in J provides an R-stable set in J .
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(iii)⇒(iv) Is immediate since this is a subset of a (totally) ordered set.

(iv)⇒(i) Let x = a/b ∈ K, a 6= b, a, b 6= 0. If x /∈ R, then R · a * R · b. By (iv), R · b ⊆ R · a,
and then x−1 = b/a ∈ R. Hence R is a valuation ring of K.

For the last statement, it suffices to show that for any M ∈ J and x, y ∈ M \ {0} we have
x− y ∈M . In fact, if R · x ⊆ R · y then x− y = (xy−1 − 1) · y ∈ R · y ⊆M ; if R · x * R · y, then
R · y ⊆ R · x and x− y = (1− yx−1)x ∈ R · x ⊆M .

Corollary 2.3.4. Any valuation ring is a local ring.

Proof. For any valuation ring A the set A \UA is A-stable, hence by 2.3.3 we get that A \UA is an
ideal.

Valuation rings are not noetherian, in general. However,

Corollary 2.3.5. Any finitely generated ideal of a valuation ring A is principal.

Proof. Let U = A · a1 + ... + A · am. By 2.3.3, {A · a1, ..., A · am} has a largest element, say
A · a1 ⊇ A · ai, i = 1, ...,m. Then U ⊆ A · a1 ⊆ U.

We shall use the fact that, for any subring R of K and any prime ideal p of R, the prime ideals
q of the ring of fractions Rp are in one-to-one correspondence with those prime ideals r of R which
are contained in p, by q = r ·Rp and r = q ∩R. In particular, Rp is a local ring with the maximal
ideal pRp.

Theorem 2.3.6. Let A be a valuation ring of K, P the set of all prime ideals p of A and B the
set of all subrings B of K which contains A. Then any B ∈ B is a valuation ring of K with
mB ⊆ A, and there is an inclusion inverting one-to-one correspondence B ↔ P given by p = mB

and B = Ap.

Proof. Let B ∈ B. For any x ∈ K, x /∈ B implies x /∈ A, hence x−1 ∈ A ⊆ B, whereas x ∈ mB

implies x−1 /∈ B, hence x ∈ A.

For any B ∈ B, mB ∩ A = mB is a prime ideal of A, with AmB ⊆ B. Even AmB = B, since if
x ∈ B \A then x−1 ∈ A ⊆ B, x−1 /∈ mB, hence x ∈ AmB . For any b ∈ B we have Ab ∈ B, and

mAb
= mAb

∩A = b ·Ab ∩A = b.

Finally, by construction (i.e, by general properties of ideals and fractions) the correspondence
B↔ B is inclusion reversing. By 2.3.3 B is (totally) ordered, hence so is B.

Definition 2.3.7. A Krull valuation of a field K is a mapping v : K̇ → Γ∪{∞} onto a (totally)
ordered abelian group Γ, the value group of v, satisfying the axioms:

V0 - v(x) =∞⇔ x = 0 for all x ∈ K;

V1 - v(xy) = v(x) + v(y) for any x, y ∈ K̇;

V2 - v(x+ y) ≥ min{v(x), v(y)} for x, y ∈ K̇.

Two Krull valuations v1, v2 of K with the value groups Γ1,Γ2 respectively, are called equivalent
if there is an isomorphism (of ordered groups) t : Γ1 → Γ2 such that v2 = t◦v1 (with the convention
t(∞) =∞). Note that any bijective order-preserving homomorphism Γ1 → Γ2 is an isomorphism.
In particular, its inverse is also order-preserving.
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Theorem 2.3.8. For any Krull valuation v of K, the set Av = {x ∈ K : v(x) ≥ 0} is a valuation
ring of K.

The mapping v 7→ Av induces a bijection from the set of all equivalence classes of Krull valua-
tions of K onto the set of all valuation rings of K.

Proof. Av is a valuation ring of K, since x ∈ K \Av implies v(x) < 0, and v(x−1) > 0, so x−1 ∈ Av.
For equivalent v1, v2 we have v1(x) ≥ 0 iff v2(x) ≥ 0 for all x ∈ K, hence Av1 = Av2 .

For any valuation ring A of K we define a (the canonical) Krull valuation as follows: the
divisibility of K corresponding to A is an ordering of the multiplicative group K̇ of K, by 2.3.2.
The factor group ΓA = K̇/UA is an ordered abelian group; we write it additively and denote its
ordering by ≤. The canonical homomorphism vA : K̇ → ΓA, extended to K by setting vA(0) =∞,
is a Krull valuation of K with value group ΓA and Av = A. In fact, vA : K → ΓA ∪ {∞} is
surjective and satisfies V0 and V1, as well as x ∈ A ⇔ v(x) ≥ 0 for all x ∈ K. Now, let x, y ∈ K
such that v(x) ≤ v(y). Then x−1y ∈ A and so 1 + x−1y ∈ A. Hence

vA(x+ y) = vA(x(1 + x−1y)) = vA(x) + vA(1 + x−1y) ≥ vA(x) = min{v(x), v(y)};

therefore V2 is satisfied too. We have still to show that if A = Av then v is equivalent to Av.
In fact, since v is surjective and has kernel UA, it induces an ordering preserving bijection ι from
ΓA = K̇/UA onto the value group Γ of v, and this is even an isomorphism ι : ΓA → Γ such that
v = ι ◦ vA.

The preceding proof shows that the Krull valuations of K are essentially (up to equivalence)
the canonical mappings vA : K̇ → ΓA = K̇/UA corresponding to valuation rings A of K. In fact, it
would be possible (but sometimes inconvenient) to work only with these canonical Krull valuations.

Here are some examples of valuations.

Example 2.3.9 (Valuations on Q). Let p be a prime number. We define the p-adic valuation
vp on Q by

vp(p
rn/psm) = r − s

for n,m ∈ Z are not divisible by p. It is a discrete valuation2 with residue field Fp.

Example 2.3.10 (The Degree valuation). Let K be a field and F = K(t). For a polynomial
f ∈ K[t], define v(f(t)) = −deg(f), and for f/g ∈ K(t), set v(f/g) = deg g − deg f . This
mapping define a valuation on K(t), called the degree valuation.

Example 2.3.11 (Laurent Series). Let K((t)) be the field of Laurent series. An typical element
in K((t)) is a serie

∑∞
N ait

i, where N ∈ Z, ai ∈ K for all i ≥ N . When aN 6= 0, we define

v

( ∞∑
N

ait
i

)
= N.

This mapping prescribes a valuation on K((t)).

Now, we show that the valuation rings A of K are in one-to-one correspondence with the
equivalence classes of places of K and that the places corresponding to A are essentially the
canonical homomorphisms from A onto the residue field A/mA.

2A valuation v on a field F is discrete if v(Ḟ ) ∼= Z.
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For the definition of places, we have to extend fields to projective fields, adjoining an element
∞. More precisely, the projective fields obtained from the field K is the set K̃ = K∪{∞} endowed
with the addition and the multiplication of K extended to K̃ by

x+∞ =∞+ x =∞ for all x ∈ K;

x · ∞ =∞ · x =∞ for all x ∈ K.

Moreover, we set 0−1 = ∞, ∞−1 = 0, and −∞ = ∞. Note that ∞ +∞, 0 · ∞ and ∞ · 0 are not
all defined.

Definition 2.3.12. A place of K into L is a mapping π : K̃ → L̃ satisfying the following conditions
for all x, y ∈ K̃:

P1 - If x+ y and π(x) + π(y) are defined then π(x+ y) = π(x) + π(y);

P2 - If xy and π(x)π(y) are defined then π(xy) = π(x)π(y);

P3 - There is some z ∈ K̃ such that π(z) = 1.

We state some elementary properties of places:

Proposition 2.3.13. a - π(1) = 1, π(0) = 0, π(∞) =∞.

b - If π(x) + π(y) (resp π(x)π(y)) is defined then so is x+ y (resp xy).

c - π(−x) = −π(x).

d - π(x−1) = π(x)−1.

e - π−1(L) is a valuation ring Aπ of K, and π|Aπ : Aπ → L is a ring homomorphism with kernel
mAπ .

f - π−1(L̇) = UAπ and π|UAπ : UAπ → L̇ is a multiplicative homomorphism with kernel 1 + mAπ .

Proof.

a - Let z ∈ K̃ such that π(z) = 1. Then z · 1 and π(z) · π(1) are defined, hence

1 = π(z) = π(z · 1) = π(z)π(1) = 1π(1) = π(1).

Since 1 + 0 and π(1) + π(0) are defined, we have

1 = π(1) = π(1 + 0) = π(1) + π(0) = 1 + π(0),

so π(0) = 0. Since 1 +∞ and π(1) + π(∞) are defined, we have

π(∞) = π(1 +∞) = π(1) + π(∞) = 1 + π(∞),

so π(∞) =∞.

b - If π(x)+π(y) is defined then (π(x), π(y)) 6= (∞,∞), hence (x, y) 6= (∞,∞) by (a), so x+y is de-
fined. If π(x)π(y) is defined then (π(x), π(y)) /∈ {(0,∞), (∞, 0)}, since (x, y) /∈ {(0,∞), (∞, 0)}
by (a), xy is defined.
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c - If π(−x) + π(x) is not defined, then π(x) = π(−x) =∞, then −π(x) =∞. If π(−x) + π(x) is
defined then so is −x+ x, then

0 = π(−x+ x) = π(−x) + π(x)

provides π(−x) = −π(x).

d - If π(x−1)π(x) is not defined then (π(x−1), π(x)) ∈ {(0,∞), (∞, 0)}, so π(x−1) = π(x)−1. If
π(x−1π(x) is defined, then so is x−1x, hence

1 = π(1) = π(x−1x) = π(x−1)π(x),

then π(x−1) = π(x)−1.

e - We have π−1(L) ⊆ K since π(∞) =∞. By (b) and (c) we get that π−1(L) is a subring Aπ of
K. If x ∈ K \ Aπ then π(x) = ∞, so π(x−1) = 0 by (d), providing x−1 ∈ Aπ. Therefore Aπ
is a valuation ring of K. Of course, π|Aπ is a ring homomorphism with kernel mπ ⊆ mAπ . We
have even mπ = mAπ , since x ∈ mAπ implies x−1 /∈ Aπ, (π(x))−1 = π(x−1) =∞, π(x) = 0.

f - π−1(L̇) = {x ∈ Aπ : π(x) 6= 0} = Aπ/mAπ , so π|UAπ is a multiplicative morphism. Its kernel is
1 + mAπ , since π(x) = 1 if and only if π(x− 1) = 0, if and only if x− 1 ∈ mAπ .

By 2.3.13(e), any place of K into L induces a homomorphism λ : A→ L from a valuation ring
A of K into L, with kernel mA. The converse is also true:

Theorem 2.3.14. Let A be a valuation ring of K and λ : A→ L a homomorphism into a field L,
with kernel mA. Then the mapping π : K̃ → L̃, defined by π(x) = λ(x) for all x ∈ A and π(x) =∞
for all x ∈ K̃ \A is a place of K into L with Aπ = A.

Proof. It suffices to verify P1 and P2. π(x) + π(y) is defined if and only if (π(x), π(y)) 6= (∞,∞).
If π(x) 6= π(y) and π(y) = ∞, then x ∈ A, y ∈ K̃ \ A, then π(x + y) = ∞ = π(x) + π(y). If
π(x), π(y) 6=∞, then x, y ∈ A, so

π(x+ y) = λ(x+ y) = λ(x) + λ(y) = π(x) + π(y).

The proof of P2 is a similar argument.

A place π : K̃ → L̃ is called trivial if Aπ = K, or equivalently, mAπ = (0). The trivial places
of K into L are exactly the monomorphisms µ : K → L extended by µ(∞) =∞.

Let K0 be any subfield of K. Then K̃0 is a projective subfield of K̃ (i.e, addition and mul-
tiplication in K̃0 are induced by those in K̃) and that, for any place π : K̃ → L̃, the restriction
π|K̃0

: K̃0 → L̃ is a place of K0 into L. In particular, the restriction of π to the prime field of K is
non-trivial if and only if Char(L) 6= Char(K), and in this case, Char(K) = 0.

For any place π : K̃ → L̃, the image π(Aπ) of Aπ is a subfield of L, called the residue field
of π, and π can also be considered as a place of K into π(Aπ). We have L = π(Aπ) if and only
if π : K̃ → L̃ is surjective; in this case, π is called a place of K onto L, or a surjective place. In
particular, for any valuation ring A of K, the canonical homomorphism qA : A → A/mA extends
to a place πA of K onto A/mA, by 2.3.14; πA is called the canonical place corresponding to A.

Places can be composed similarly as homomorphisms:
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Proposition 2.3.15. Let π : K̃ → L̃ and ξ : L̃ → M̃ be places and let Aπ (resp. Bξ) be the
valuation ring of K (resp. L) corresponding to π (resp. L). Then ξ ◦ π : K̃ → M̃ is a place and
Aξ◦π = π−1Bξ ⊆ Aπ. If π is a place of K onto L, then π(Aξ◦π) = Bξ.

Proof. ξ ◦ π satisfies P1, since if (ξ ◦ π)(x) + (ξ ◦ π)(y) is defined then, by 2.3.13(b), π(x) + π(y)
and x+ y are defined and

(ξ ◦ π)(x) + (ξ ◦ π)(y) = ξ(π(x) + π(y)) = (ξ ◦ π)(x+ y).

Similarly P2 is verified. P3 follows from ξ(π(1)) = ξ(1) = 1. For any x ∈ K̃ we have x ∈ A(ξ◦π) if
and only if ξ(π(x)) 6=∞, if and only if π(x) ∈ Bξ, if and only if

x ∈ π−1(Bξ) ⊆ π−1(L) = Aπ.

If π : K̃ → L̃ is surjective, then A(ξ◦π) = π−1(Bξ) implies π(A(ξ◦π)) = Bξ.

We use the composition of places for defining a preordering on the class of all surjective places
of a fixed field K:

Proposition 2.3.16. Let π0, π1 be surjective places of K. Are equivalent:

i - A1 ⊆ A0;

ii - There exists a mapping ξ : L̃0 → L̃1 such that π1 = ξ ◦ π0. In this case ξ is a uniquely
determined place of L0 onto L1.

We write π1 � π0 if one (and therefore all) of the equivalent conditions above holds.

Proof. (i)⇒(ii) It suffices to prove that ξ : π0(x) 7→ π1(x) (x ∈ K̃) is well-defined. Let x, y ∈ K̃
such that π0(x) = π0(y).

If x /∈ A0, then π0(x) = π0(y) =∞, y /∈ A0, and then x, y /∈ A1, hence π1(x) = π1(y) =∞.

If x ∈ A0 then π0(x) 6=∞, hence π0(x) + π0(−y) is defined and

π0(x− y) = π0(x)− π0(y) = 0.

So x− y ∈ mA0 ⊆ mA1 ⊆ A1, by 2.3.6. Let x /∈ A1; then y /∈ A1, π1(x) =∞ = π1(y). Let x ∈ A1;
then π1(x) 6=∞, hence π1(x) + π1(−y) is defined and π1(x− y) = 0, so π1(x) = π1(y).

(ii)⇒(i) To prove that ξ is a place of L0, it suffices to verify P1 and P2 for ξ. Let x, y ∈ L̃0

such that x + y and ξ(x) + ξ(y) are defined, and let x, y ∈ K̃ such that x = π0(x), y = p0(y);
then π1(x) = ξ(x), π1(y) = ξ(y). Since π0(x) + π0(y) (resp. π1(x) + π1(y)) is defined, we have
π0(x+ y) = π0(x) + π0(y) (resp. π1(x+ y) = π1(x) + π1(y)), by 2.3.13(b). Then

ξ(x+ y) = ξ(π0(x+ y)) = π1(x+ y) = π1(x) + π1(y) = ξ(x) + ξ(y).

P2 is proven similarly. Hence ξ is a place of L0, and (i) follow from 2.3.15. Since π0 and π1 are
surjective, ξ is uniquely determined and it is a place of L0 onto L1.

In particular, for any surjective place π of K we have π � tK (the trivial place determined by
the identity of K), and tK � π if and only if π is trivial.

Two surjective places π0, π1 of K are called equivalent if π0 � π1 and π1 � π0. We conclude
from 2.3.16:
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Proposition 2.3.17. With the notation of 2.3.16 the following conditions are equivalent:

i - A1 = A0.

ii - π1 = ξ ◦ π0 for some bijective mapping ξ : L̃0 → L̃1.

iii - π1 = ξ ◦ π0 for some trivial place ξ of L0.

iv - π1 is equivalent to π0.

Moreover, 2.3.14, 2.3.17 yield the following statement, similar to 2.3.8:

Proposition 2.3.18. The mapping π → Aπ induces a bijection from the set of all equivalence
classes of surjective places of K onto the set of all valuation rings of K.

By means of the composition of places, one gets a survey on the set of all valuation rings of
K contained in some given valuation ring A0 of K. In fact, these valuations rings are in one-to-
one correspondence with the valuation rings of the residue field A0/mA0 , as the following theorem
shows:

Theorem 2.3.19. Let A0 be a valuation ring of K and π0 a place of K onto L0 with Aπ0 = A0.
Then there is an inclusion preserving one-to-one correspondence between the set G0 of all valuation
rings A of K contained in A0 and the set B of all valuation rings B of L0, given by B = π0(A)
and A = π−1(B).

Proof. For any A ∈ G0 we have πA = ξ ◦ π0 for some place ξ of L0 onto A/mA, by 2.3.16, and
π0(A) = Bξ ∈ B by 2.3.15. Since A = π−1

0 (Bξ) by 2.3.15, the mapping G0 → B defined by
A 7→ π0(A) is injective. It is also surjective, since if B ∈ B then B = Bξ for some place ξ of L0,
and π = ξ ◦ π0 is a place of K with Aπ ∈ G0 and π0(A0) = B, by 2.3.15. Moreover, this mapping
is inclusion-preserving and so is its inverse.

2.4 Compatibility between Valuations and Orderings

In this section, we shall introduce the important notion of “compatibility between valuations
and orderings in (formally real) fields. This notion provides the main link between valuation theory
and the theory of ordered fields.

Remembering: by a valuation on a field F , we shall always mean a ”Krull valuation“ v : F →
Γ ∪ {∞} in the sense of definition 2.3.7.

The value group Γ will always be written additively, unless it is stated otherwise. For a given
valuation v as above, we can define the following collection of associated objects:

i - The valuation ring of v, A := {x ∈ F : x = 0 or v(x) ≥ 0}.

ii - The maximal ideal of v, m := {x ∈ F : x = 0 or v(x) > 0}.

iii - The group of valuation units, U := A \m.

iv - The residue class field of v, F := A/m.

v - The place associated with v, π : F ∪ {∞} → F ∪ {∞}, defined by

π(x) =

{
x+ m ∈ F if x ∈ A,
∞ if x /∈ A
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Usually, we work with one valuation at a time, so given x ∈ A, we shall simply write x for
x+ m, its image in the residue class field. In the same vein, we shall adopt the following notation:
for any set T ⊆ F , let T denote the image of T ∩ A in the residue field F . We shall refer to T as
the ”pushdown“ of T (along v) into F .

Given a valuation v, we shall often need to refer to one or more of the objects associated with
v and listed above. Therefore, instead of saying “let v be a valuation”, we shall often say “let
(v,A,m,Γ, ...) be a valuation”, with the understanding that we shall be using the notation above
for the valuation v. For instance, if we are dealing with a given valuation ring A in a field F 3, we
shall refer freely to “the valuation associated with A”, and assume the reader knows that we mean
the valuation Ḟ � Γ : Ḟ /U , where U is the group of units of A, and Ḟ /U (a multiplicative group)
is given the natural ordered group structure.

We shall also use the notion of one valuation being finer (or coarser) than another. Roughly,
to “coarsen” a valuation v : F � Γ means composing v with an ordered group homomorphism
Γ → Γ′. From the viewpoint of valuation rings, a coarsening of v corresponds to a valuation ring
containing that of v. Of course, the coarsest valuation is the trivial valuation (with value group
zero), whose valuation ring is F . In our discussion, however, we shall never exclude the trivial
valuation, unless it is otherwise stated explicitly.

Theorem 2.4.1. Let P ∈ XF , and let (ν,A,m,Γ, ...) be a valuation of F . Then the following
statements are equivalent:

i - 0 < a ≤ b (with respect to P ) ⇒ ν(a) ≥ ν(b) in Γ;

ii - A is convex with respect to P ;

iii - m is convex with respect to P ;

iv - 1 + m ⊆ P .

Proof. To say that A is convex means that

x < y < z and x, z ∈ A⇒ y ∈ A.

(i)⇒(ii) Upon a translation, it is sufficient to show that

0 < a < b ∈ A⇒ a ∈ A.

By (i), the left hand side implies that v(a) ≥ v(b) ≥ 0, so indeed a ∈ A.
(ii)⇒(iii) Assume that 0 < a < b ∈ m. Then 0 < b−1 < a−1. But b−1 /∈ A, so by (ii), a−1 /∈ A

and hence a ∈ m.
(iii)⇒(iv) Let a ∈ m. If 1 + a /∈ P , then we have 0 < 1 < −a, and (iii) implies 1 ∈ m, a

contradiction.
(iv)⇒(i) Assume that 0 < a ≤ b, but v(a) < v(b). Then m := b/a ∈ m, and so, by (iv),

1− b/a > 0, which leads to the contradiction a > b.

Definition 2.4.2. If any (and hence all) of the conditions in theorem 2.4.1 hold for ν and P , we
shall say that ν is compatible with P (or P is compatible with ν).

Let A be the valuation ring of v. Since v is essentially determined by A (and vice versa), it is
reasonable to say that A is compatible with P if v is. Similarly, if π is the place associated with v,
it is reasonable to say that π is compatible with P if v is.

3By saying that A is a valuation ring in F , we shall always assume implicitly that F is the quotient field of A.
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If (v,A,m, ...) is compatible with P ∈ XF , then so is any coarser valuation (v′, A′,m′, ...). This
follows by using either (i) or (iv) in the characterization theorem 2.4.1 for compatibility (if we use
(iv), note that A ⊆ A′ implies that m ⊇ m′).

Theorem 2.4.3. Let P ∈ XF . Then the family F of valuation rings in F compatible with P forms
a chain under inclusion, with a smallest member given by the convex hull of Q in F with respect
to P , i.e, A(P ) = {a ∈ F : ∃ r ∈ Q such that − r ≤p a ≤p r}.

In fact, F consists of all subrings of F containing A(P ).

Proof. The fact that members of F form a chain under inclusion is essentially a consequence of
convexity and trichotomy: suppose A,B ∈ F , but A * B. Fix a ∈ A \ B, with, say a > 0 (with
respect to P ). To show that B ⊆ A, consider 0 < b ∈ B. By convexity of B we cannot have
0 < a ≤ b, so we must have 0 < b ≤ a, and by convexity of A, we have b ∈ A.

Now let A(P ) = {a ∈ F : ∃ r ∈ Q such that − r ≤p a ≤p r}. We have that A(P ) is a subring
of F . To see that it is, in fact, a valuation ring of F , we must check that b /∈ A(P )⇒ b−1 ∈ A(P ).
We may assume that b ≥ 0. Since b /∈ A(P ), we have, in particular, b ≥ 1. Therefore, 0 < b−1 ≤ 1
implies that b−1 ∈ A(P ). By definition A(P ) is convex, so A(P ) ∈ F .

Now consider A ∈ F . Since A ⊇ Z and is convex, it contains the convex hull of Z, which is the
same as the convex hull of Q (here we are implicitly using the fact that P induces the usual order
on Q: this is true because Q has only one ordering). Therefore A ⊇ A(P ). Finally, any subring of
F containing a valuation ring of F must itself be a valuation ring of F . Hence F consists precisely
of all subrings of F containing A(P ).

The elements in F \A(P ) are those whose “absolute values” with respect to P are larger than
any rationals. The inverses of these elements comprise the maximal ideal of A(P ), so this maximal
ideals consists of elements which (in the ordering P ) are “infinitesimal” with respect to the rational
numbers.

Definition 2.4.4. We shall call A(P ) the canonical valuation ring of P ; its associated valuation
ν = νP will be called the canonical valuation of P . Note that νP is the trivial valuation iff, with
respect to P , every a ∈ F is bounded “in absolute value” by some r ∈ Q i.e, iff P is an archimedean
ordering.

Proposition 2.4.5. Let P ∈ XF , and (v,A,m, U, F , ...) be a valuation compatible with P . Then
the pushdown P (i.e the image of P under A→ F = A/m) is an ordering on F . For any valuation
unity u ∈ U , we have u ∈ P iff u ∈ P .

Proof. By definition, is immediate that P is closed under addition and multiplication, and that
P ∪ −P = F . Thus, to see that P is an ordering on F , we need only check that −1 /∈ P . Indeed,
if −1 ∈ P , we would have −1 = a for some a ∈ P ∩ A. Then 1 + a ∈ m, so −a ∈ 1 + m ⊆ P by
2.4.1(iv). This forces a = 0, which is absurd. This proves the first conclusion in the proposition.
Since U = A \m and 1 + m ⊆ P , the second assertion follows.

2.5 Compatibility between Valuations and Preorderings

In the last section, we have defined the important notion of compatibility between a valuation
v and an ordering P on a field F . In this section, we shall focus our attention on preorderings
instead of orderings. The first natural question to ask is, therefore: How does one generalize
the notion of valuation-compatibility from orderings to preorderings?

A moment of thought will reveal that we can generalize the compatibility notion to preorderings
in two different ways. One is a “weak” generalization and the other is a “strong” generalization.
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Both are natural, and will play important roles for our future investigations. We set forth these
generalizations in the following basic definition:

Definition 2.5.1. A valuation ν on F is said to be compatible with a preordering T if ν is
compatible with some ordering P ∈ X/T . ν is said to be fully compatible with T if ν is compatible
with all orderings P ∈ X/T .

Theorem 2.5.2. Let (v,A,m, ...) be a valuation on F , and T ⊆ F be a preordering. Then:

i - v is fully compatible with T iff 1 + m ⊆ T ;

ii - v is compatible with T iff (1 + m) ∩ −T = ∅ iff T is a preordering on F .

Recall that F denotes the residue field of the valuation, and T denotes the image of T ∩ A in
F .

In this theorem, (i) is consequence of Artin’s theorem 2.1.6 and characterization theorem 2.4.1.
Indeed, for v to be compatible with all P ∈ XT , the necessary and sufficient condition is that
1+m ⊆

⋂
{P : P ∈ XT }. Since by 2.1.6 this intersection is just T , statement (i) follows. The proof

of (ii) requires more work. For convenience, this proof will be preceded by a lemma:

Lemma 2.5.3 (Wedge Product Lemma). Let (v,A,m, U, ...) be a valuation on F , and π : A→ F
be the projection map. Let T be a preordering on F , and S a preordering on F such that S ⊇ T .
Define the “wedge product” T ∧ S to be T · π−1(Ṡ). Then T ∧ S is a preordering on F ; it is fully
compatible with v, and T ∧ S = S.

Proof. The definition of T ∧ S provides the fact that this set is multiplicative closed and contains
Ḟ 2. Furthermore, −1 /∈ T ∧ S for, if −1 = t · u where t ∈ T and u ∈ A with u ∈ Ṡ, then t ∈ A and
−1 ∈ T · S = S, a contradiction. Thus, it only remains to show that T ∧ S is additively closed.
Consider a = t1u1+t2u2, where ti ∈ Ṫ , and ui ∈ U with ui ∈ Ṡ (i = 1, 2). Without loss of generality,
we may assume that t2u2/t1u1 ∈ A (since A is a valuation ring). Then a = t1u1(1 + t2u2/t1u1),
so it will be sufficient to deal with the simpler case a′ = 1 + tu, where t ∈ T ∩ A, and u ∈ U with
u ∈ Ṡ. In this case, we have a′ = 1 + tu ∈ Ṡ so a′ ∈ π−1(Ṡ). This shows that T ∧S is a preordering
on F . Since T ∧ S contains π−1(Ṡ) ⊇ 1 + m, it is fully compatible with v by 2.5.2(i).

Finally, to show that T ∧ S pushes down to S, take a = tu ∈ A, where t ∈ T , and u ∈ U with
u ∈ Ṡ. Then t ∈ A too and a = tu ∈ T · S = S. Hence T ∧ S = S.

Remark 2.5.4. In the proof above, we have never used the fact that T is additively closed. Thus,
as long as T is a subset of F containing Ḟ , such that Ṫ = T \ {0} is a group under multiplication
(with T ⊆ S), then the wedge product construction will be meaningful, and all conclusions n the
lemma will remain valid.

This important remark will be used consistently in the rest of this chapter, since we will have
several future occasions to invoke the wedge product construction in its more general form. As an
explict example, we can take T = Ḟ 2: the wedge product Ḟ 2 ∧ S := Ḟ 2 · π−1(S) obtained in 2.5.3
may be called the “pullback” os S. we shall denote this by Ŝ; it is a preordering on F which is
fully compatible with b, and pushes down to the given preordering S in F .

Let T be as in 2.5.4. Then the set of orderings in F containing the wedge product T ∧ S can
be explicitly determined as follows:

XT∧S = {orderings P : P ⊇ T and P ∈ XS}.

For, if P lies in the right hand side, then P ⊇ π−1(Ṡ) so T ∧ S ⊆ P · P = P . Conversely, if
P ∈ XT∧S , then P is compatible with v, so P is an ordering containing T ∧ S = S. In view of
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Artin’s Theorem 2.1.6, the equation above leads to the following alternative characterization of the
wedge product preordering:

T ∧ S =
⋂
{orderings P : P ⊇ T and P ∈ XS}.

With the preparation above, we are in position to finalize the proof of 2.5.2:

Proof of the Theorem 2.5.3. We already have proved statement (i), so we just need to prove state-
ment (ii). Assume v is compatible with the preordering T , say it is compatible with P ∈ XT . Then
by proposition 2.4.5 −1 /∈ P ⊇ T . Hence −1 /∈ T , i.e, (1 + m) ∩ (−T ) = ∅. Conversely, assume
−1 /∈ T . Then T is a preordering on F , and we can form the “wedge product” T ∧ T in the sense
of 2.5.3. This is a preordering on F , which is fully compatible with v. Take any P ∈ XT∧T . Then
v is compatible with P , hence (by definition) compatible with T (because P ⊇ T ).

In the proof above, the wedge product T ∧ T could have been replaced by the more direct
expression T · (1 + m). The inclusion T ∧ T ⊇ T · (1 + m) is immediate. For the reverse inclusion,

note that if u ∈ π−1(Ṫ ), then u = t for some t ∈ T ∩ U . But then m := u − t ∈ m and so
u = t(1 + t−1m) ∈ T · (1 + m). Then, T ∧ T = T · (1 + m) is the smallest preordering containing T
which is fully compatible with v.

Definition 2.5.5. In the sequel, this preordering will by denoted by T v. XT v consists of all order-
ings in XT which are compatible with v.

As an example, consider the weak preordering T0 =
∑
F 2 in a formally real field F . To

understand what it means for a valuation v to be compatible with T0, we need a definition and a
lemma.

Definition 2.5.6. We say that a valuation (v,A,m, F , ...) is real if its residue field F = A/m is a
formally real field. If this is the case, we shall say that the valuation ring A is residually real.

Lemma 2.5.7. Let (v,A,m, F , ...) be a real valuation on F with value group Γ. Let a = a2
1 + ...+a2

n

where ai ∈ Ḟ for all i. Then a 6= 0 and v(a) = 2 min{v(ai)} ∈ Γ. In particular, F must be formally
real and v(

∑
Ḟ 2) = 2Γ.

Proof. Say v(a1) = min{v(ai)} ∈ Γ. Then ai/a1 ∈ A for all i, and

a = a2
1(1 + (a2/a1) + ...+ (an/a1)2).

Since F is formally real, the expression in parenthesis above cannot lie in m. Therefore, it is a unit,
and we get a 6= 0, v(a) = v(a1)2 = 2v(a1).

Proposition 2.5.8. A valuation v on a formally real field F is compatible with the weak preordering
T0 =

∑
F 2 iff v is a real valuation. If this is the case, then T0 pushes down to the weak preordering

in F (i.e,
∑
F 2 =

∑
F

2
).

Proof. Suppose v is compatible with T0. Then T 0 is a preordering in F , so F is formally real, i.e,
v is a real valuation. Conversely, suppose v is a real valuation. Consider an element a ∈ Ṫ0 ∩ A,
say a = a2

1 + ...+ a2
n where ai ∈ Ḟ . By 2.5.7, 2v(ai) ≥ v(a) ≥ 0, so ai ∈ A for all i. Going down to

the residue field we have, therefore, a = a2
1 + ...+ a2

n ∈
∑
F

2
. This proves that T 0 =

∑
F

2
. Since

this is a preordering in F , we conclude that v is compatible with T0.
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Recall that, to any ordering P , we can associate its canonical valuation ring, A(P ) defined in
2.4.3. If we consider a preordering T instead, we can associate with two subrings of F , namely

AT =
∏
{A(P ) : P ∈ XT }4 and AT =

⋂
{A(P ) : P ∈ XT },

with AT ⊆ AT . If there is only one valuation ring in {A(P ) : P ∈ XT }, then AT = AT . If there
are at least two distinct valuation rings, then we have AT * AT . The larger ring, AT , is always
a valuation ring; in fact, it is the smallest valuation ring F which is fully compatible with T (of
course, AT may very well be the trivial valuation ring F : this is the case iff no nontrivial valuation
is fully compatible with T ). The smallest ring, AT , is not a valuation ring in general.

For the rest of this section, we shall assume that (v,A,m, U,Γ, ...) is a valuation on
F which is compatible (but not necessarily fully compatible) with the preordering T .

Definition 2.5.9. We shall write Xv
T for the set of orderings in XT which are compatible with v.

Recalling the earlier notation T v := T ∧ T = T · (1 + m), we see that Xv
T is just XT v . In

particular, Xv
T is a closed set of XF , hence a compact Hausdorff space.

Our next goal will be to analyze the exact relationship between Xv
T and XT . This analysis will

involve looking at a given ordering Q ⊇ T on F , and studying the various ways of “lifting” it to
orderings on F . For this purpose, the group

Γ/v(Ṫ ) ∼= Ḟ /UṪ

turns out to play a very important role. To simplify the notation, we shall write G for this group,
and write v′ for the composition

Ḟ
v // Γ // G

Since v(Ṫ ) ⊇ 2Γ, G has exponent ≤ 2 and therefore may be viewed as a vector space over Z2, the
field with two elements.

To begin our analysis, we fix a set {ai}i∈I of elements in Ḟ such that {v′(ai)} form a Z2-basis
for G. Given P ∈ XT , we can define a Z2-linear functional P ∗ : G→ {±1} uniquely by specifying
its effect on the basis {v′(ai)}:

P ∗(v′(ai)) = sgnP (ai).

Thus P ∗ ∈ G∗, the Z2-dual, or the character group, of G (we note however, that P ∗ is not
“naturally” defined, since its definition depends on the choice of the ai’s).

Now let P ∈ Xv
T . Then P gives rise to two objects:

1. a characther P ∗ ∈ G∗ (defined above), and

2. an ordering P ∈ XT .

We have therefore, a mapping g : Xv
T → G∗ ×XT , defined by g(P ) = (P ∗, P ).

Theorem 2.5.10 (Baer-Krull). This mapping g, is a bijection.

Proof. To prove injectivity, let P ∈ Xv
T . It suffices to show that given x ∈ Ḟ , the sign of x with

respect to P is uniquely determined if we know P ∗ and P . In fact, write x = ai1 ...ain · tu, where

4This notation is supposed to mean the product of the subrings A(P ) inside F , not the direct product of the
A(P )’s
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t ∈ Ṫ , u ∈ U , and i1, ..., in are distinct (n ≥ 0). Since T ⊆ P , we have sgnP (t) = 1, and by 2.4.5,
sgnP (u) = sgnPu. Therefore

sgnP (x) = (sgnP (u))
∏
i

sgnP (ai) = (sgnPu)
∏
i

P ∗(v′(ai)),

which proves what we want. To prove the surjectivity of g, let χ ∈ G∗ and Q ∈ XT be given. We
shall try to find an ordering P ∈ Xv

T such that P ∗ = χ and P = Q. The idea is to construct a
certain set T ′ ⊇ T and obtain P as the wedge product T ′∧Q. In order to form this wedge product,
T ′ must be chosen to satisfy the following conditions (conform 2.5.3, 2.5.4):

a - Ṫ ′ is a subgroup of Ḟ containing Ḟ 2;

b - T ′ ⊆ Q.

By composing χ with v′, we have a map Ḟ → {±1}, which for simplicity, we shall again denote by
χ. We now define T ′ by

T ′ := {tεai1 ...ain : t ∈ T, ε = ±1, i1, ..., in are distinct (n ≥ 0) and χ(ai1 ...ain) = ε}. (*)

Since T ⊇ F 2, T ′ satisfies condition (a). To check (b), we shall prove a stronger fact, namely

T ′ ∩ U = T ∩ U (this will imply that T
′

= T ⊆ Q). Let u ∈ T ′ ∩ U and write u = tεai1 ...ain in
the notation of (*). Then n must be zero since the ai’s are Z2-independent in Ḟ /U · Ṫ . Therefore
ε = χ(ai1 ...ain) = 1 and so u = t ∈ T ∩ U , as desired.

To complete the proof, let P be the wedge product T ′ ∧Q, which is a preordering in F . From
(*), we have

P = {tuai1 ...ain : t ∈ T, u ∈ U, i1, ..., in are distinct (n ≥ 0) and χ(ai1 ...ain) = sgnQu}.

From this equation, we see that [Ḟ : Ṗ ] = 2, so P is an ordering on F . Since P ⊇ T and by
2.5.3, P = T ′ ∧Q = Q; therefore P ∈ Xv

T . Finally, to see that P ∗ = χ, it suffices to check that
P ∗(v′(ai)) = χ(ai). If χ(ai) = 1, then ai ∈ T ′ ⊆ P , so P ∗(v′(ai)) = sgnP (ai) = 1. On the other
hand, if χ(ai) = −1, then −ai ∈ T ′ ⊆ P instead and P ∗(v′(ai)) = sgnP (ai) = −1.

As a special case of the theorem, consider the weak preordering T0 =
∑
F 2 in a formally real

field F , and let v : Ḟ → Γ be any real valuation. We shall denote Xv
T0

more simply by Xv
F : this

is the set of all orderings on F which are compatible with v. We have seen before (conform 2.5.7)

that v(Ṫ0) = 2Γ, so the group G is simply Γ/2Γ; also recall that T 0 =
∑
F

2
. Therefore 2.5.10

yields the following

Corollary 2.5.11. There is a one-one correspondence g0 between Xv
F and (Γ/2Γ)∗ ×XF (this is

however, not a natural one-one correspondence).

We can also state 2.5.11 in the following less precise form: given any ordering Q on F , the
various ways of “lifting” Q to an ordering F correspond one-to-one (though not in natural way) to
the characters on Γ/2Γ. In particular, Q will lift uniquely iff Γ is 2-divisible.

2.6 T -forms under a compatible valuation

In this section, we consider a preordering T ⊆ F , and a valuation v on F compatible with T .
The general notations associated with the valuation v, namely (v,Γ, A,m, U, F , ...) will remain in
force. For convenience of this section, we shall view Γ as a multiplicative group.
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Our main goal is to study how T -forms behave under the compatible valuation v. As in section
2.5, the quotient group Γ/v(Ṫ ) turns out to play a crucial role in this analysis. Continuing the
notations used in section 2.5, we shall again denote the group Γ/v(Ṫ ) by G and write v′ for the
composition Ḟ

v−→ Γ→ G.
Note that we have a natural short exact sequence

1 // UṪ/Ṫ // Ḟ /Ṫ
v′ // G // 1 (2.6)

Since the three groups involved are all elementary 2-groups, this is a split exact sequence. For the
rest of this section, we shall choose (and fix) a splitting

λ : Ḟ /Ṫ → UṪ/Ṫ

for the inclusion map in the sequence 2.6. Composing λ with the natural maps

UṪ/Ṫ ∼= U/U ∩ Ṫ → Ḟ /Ṫ ,

we get a surjective homomorphism

λ′ : Ḟ /Ṫ → Ḟ /Ṫ .

Thus we have a surjection (λ′, v′) : Ḟ /Ṫ → Ḟ /Ṫ × G. By abuse of notation, the composition of
this map with Ḟ → Ḟ /Ṫ will again be denoted by (λ′, v′).

We shall consider the group ring of the group G over the Witt ring WT (F ), denoted by
WT (F )[G]; a typical element of this ring will be written in the form

∑
ϕi[gi], where ϕi ∈ WT (F )

and gi ∈ G.
Under the map (λ′, v′) defined above, an arbitrary field element a ∈ Ḟ gives rise to a unary

T -form 〈λ′(a)〉 ∈ WT (F ) and a group element v′(a) ∈ G. Thus, a ∈ Ḟ gives rise to a group ring
element 〈λ′(a)〉[v′(a)] ∈ WT (F )[G]. We shall now prove the following result, which establishes the
connection between WTF and WT (F )[G]:

Theorem 2.6.1. The rule
a 7→ 〈λ′(a)〉[v′(a)] ∈WT (F )[G]

induces a well-defined surjective ring homomorphism f from WTF to WT (F )[G] (this homomor-
phisms does depend on the choice of the splitting λ).

Proof. For a ∈ Ḟ , let us write

f ′(a) = 〈λ′(a)〉[v′(a)] ∈WT (F )[G].

To see that f ′ gives a well-defined ring homomorphism f from WF (F ) to WT (F )[G], we need to
check the following relations (see 2.2.12):

a - f ′(1) + f ′(−1) = 0.

b - f ′(at) = f ′(a) for a ∈ Ḟ and t ∈ T .

c - f ′(ab) = f ′(a)f ′(b) for a, b ∈ Ḟ .

d - f ′(a) + f ′(b) = f ′(a+ b) + f ′(ab(a+ b)) for a, b, a+ b ∈ Ḟ .

Among these, (a) follow by f ′(1) = [1] and f ′(−1) = 〈−1〉[1] = −[1]; (b) follows since both λ′(a) and
v′(a) depends only on a mod T . (c) follows from the fact that λ′ and v′ are both homomorphisms.
Now, we only need to check (d).
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In view of (c), it suffices to check (d) in the special case b = 1, i.e, to check that

f ′(1) + f ′(a) = f ′(1 + a)(f ′(1) + f ′(a)) if a ∈ F, a 6= 0,−1. (2.7)

For this purpose, we may assume that a lies in the valuation ring A of v (for otherwise, replace a
by 1/a which is also 6= 0,−1). There are three possible cases:

Case 1 - a ∈ m. In this case 1 + a is a valuation unit. Thus

f ′(1 + a) = 〈λ′(1 + a)〉[v′(1 + a)] = 〈1〉[1] = [1],

so 2.7 follows.

Case 2 - a ∈ U but 1 + a ∈ m. In this case, λ′(a) = −1 and v′(a) = 1. Thus f ′(1) + f ′(a) =
[1] + 〈−1〉[1] = 0, so 2.7 follows again.

Case 3 - a ∈ U but 1 + a ∈ U . In this case,

f ′(1) + f ′(a) = [1] + 〈λ′(a)〉[v′(a)] = [1] + 〈a〉[1] = 〈1, a〉[1],

f ′(1 + a) = 〈λ′(1 + a)〉[v′(1 + a)] = 〈1 + a〉[1],

so

f ′(1 + a)(f ′(1) + f ′(a)) = 〈1 + a〉[1] · 〈1, a〉[1] = 〈1 + a〉 · 〈1, a〉[1]

= 〈1, 1, a〉[1] = f ′(1) + f ′(a)

again, checking 2.7.

We have now proved that the rule f ′(a) = 〈λ′(a)〉[v′(a)] induces a well-defined ring homomor-

phism f : WT (F ) → WT (F )[G]. Since (λ′, v′) : Ḟ → Ḟ /Ṫ ×G is surjective, we conclude that f is
also surjective.

Take any T -form ϕ, and consider any diagonalization of it. We can “sort out” the diagonal
entries into different “blocks”, putting two entries 〈a〉 and 〈b〉 in the same block if and only if
v′(a) = v′(b) ∈ G. Thus, we have a representation

ϕ ∼=⊥g∈G 〈ag1, ..., agn(g)〉 (2.8)

where v′(ag,i) = g ∈ G for every i. For each g ∈ G, consider the T -form 〈λ′(ag1), ..., λ′(agn(g))〉.
This is called the g-residue form of ϕ (with respect to the given diagonalization). By definition,
we have

f(ϕ) =
∑
g∈G
〈λ′(ag1), ..., λ′(agn(g))〉[g].

Therefore, by theorem 2.6.1, for each g ∈ G the Witt class of the g-residue form 〈λ′(ag1), ..., λ′(agn(g))〉
in WT (F ) is uniquely determined, i.e, it is independent of the particular diagonalization of ϕ which
we have chosen (though still depending on the choice of the splitting λ). We shall write

∂g(ϕ) = 〈λ′(ag1), ..., λ′(agn(g))〉 ∈WT (F )

so
f(ϕ) =

∑
g∈G

∂g(ϕ)[g] ∈WT (F )[G].
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Thus, the group homomorphism ∂g : WTF → WT (F ) (g ∈ G) may be viewed as the “coordinate
projections” of the ring homomorphism f : WTF →WT (F )[G].

The case g = 1 ∈ G is particular noteworthy. In this case, since v′(a1,i) = 1, we can write
a1,i = uiti where ui ∈ U and ti ∈ Ṫ (keep in mind that G = Γ/v(Ṫ )). Thus, the “1-residue form”

〈λ′(a11), ..., λ′(a1n(1))〉 ∼=T 〈u1, ..., un(1)〉

does not even depend on the choice of λ. This will be called the principal residue form of ϕ,
with respect to the diagonalization. Its Witt class ∂1(ϕ) ∈WT (F ) depends only on the Witt class
of ϕ ∈WTF and not on the choice of the splitting λ.

We shall now prove two theorems relating the T -isotropy of a T -form ϕ to the T -isotropy of its
various residue forms.

Theorem 2.6.2. Let v be a valuation compatible with T . If a T -form ϕ diagonal as in 2.8 is
T -isotropic, then there exists an h ∈ G such that the h-residue form 〈λ′(ah,1, ..., λ′(ah,n(h)〉 is T -
isotropic.

Proof. If ϕ is T -isotropic, then its T -anisotropic part ϕ′ has a smaller dimension. Comparing
residue forms of ϕ and ϕ′, we have ∂g(ϕ) = ∂g(ϕ

′) ∈ WT (F ) for every g ∈ G, from which the
conclusion follows.

Theorem 2.6.3. Assume v is fully compatible with T . Then a T -form ϕ as in 2.8 is T -anisotropic
iff all its residue forms (with respect to the diagonalization 2.8) are T -anisotropic.

Proof. (⇒) Assume v is fully compatible with T , and suppose some residue form, say ⊥i 〈λ′(ahi〉 is
T -isotropic. Since v(ahi/ah1) ∈ v(Ṫ ), we can write ahi/ah1 = t−1

i ui where ti ∈ Ṫ and ui ∈ U . Then

λ′(ahi)/λ
′(ah1) = uiṪ and so (by assumption), 〈u1, ..., un〉 is T -isotropic. Write down an equation,

say

0 =

r∑
i=1

uisi (2 ≤ r ≤ n(h)),

where si ∈ T ∩ U , and let m =
∑r

i=1 uisi ∈ m. Plugging in ui = tiahi/ah1, this becomes

0 = (s1t1 −m)−
r∑
i=2

sitiahi/ah1.

Since v is fully compatible with T , and t1 = u1 ∈ T ∩ U , we have s1t1 − m ∈ T · (1 + m) ⊆ T .
Multiplying the equation above by ahi, we see that 〈ah1, ..., ahr〉 is T -isotropic. In particular, so is
ϕ.

(⇐) Is just the preceding theorem which holds already under the weaker assumption that v is
compatible with T .

Corollary 2.6.4. The ring homomorphism f : WTF →WT (F )[G] defined in Theorem 2.6.1 is an
isomorphism iff v is fully compatible with T .

Proof. (⇒) Assume that f is an isomorphism, and consider a = 1 + m, where m ∈ m. Then
ϕ := 〈1,−a〉T has principal residue form 〈1,−1〉T over F (and no other residue forms). Since f
is an isomorphism, it follows that ϕ is T -hyperbolic, i.e, a ∈ T . Thus, 1 + m ⊆ T , so v is fully
compatible with T .

(⇐) Follow by theorem above.
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2.7 Fans I

In this section, we shall introduce and study a very important class of preorderings called fans:

Definition 2.7.1. A preordering T ⊆ F is called a fan if it satisfies the following property: for
any set S ⊇ T such that −1 /∈ S, if Ṡ = S \{0} is a subgroup of index 2 in Ḟ , then S is an ordering
(i.e, S is automatically closed under addition).

Roughly speaking, T is a fan iff XT is as big a set as it could possibly be. Consider, for instance,
the case when T has finite index, say [Ḟ : Ṫ ] = 2n. There are exactly 2n−1 sets S ⊇ T with the
property that −1 /∈ S and Ṡ is a subgroup of index 2 in Ḟ . For T to be a fan, each such S must
be an ordering. Thus, we have |XT | ≤ 2n−1 in general, with equality iff T is a fan. Of course, from
definition, if T is a fan, then so is every preordering containing T .

Proposition 2.7.2. Let T be a preordering with [Ḟ : Ṫ ] ≤ 4. Then T is a fan (we shall say that
such a T is a trivial fan).

Proof. If [Ḟ : Ṫ ] = 2, then T is an ordering, so is a fan. If [Ḟ : Ṫ ] = 4, there are at least two (and
therefore exactly two) orderings in XT , so again T is a fan.

The first nontrivial case to consider is when the index [Ḟ : Ṫ ] = 8. In this case, we have
3 ≤ |XT | ≤ 4. Fix P1, P2, P3 ∈ XT , and let χi be the character on Ḟ /Ṫ (into {±1}) associated to
the ordering Pi. Then χ1, χ2, χ3 must be Z2-linearly independent in the Z2-dual (Ḟ /Ṫ )∗ so they
form a basis in this dual. There is exaclty one more character which takes −Ṫ to −1, namely,
the product χ1, χ2, χ3. In general, this may not be the character of an ordering. It will be the
character of an ordering iff there is a fourth ordering P4 ∈ XT iff T is a fan. If this is the case, we
shall say that T is a “4-element fan” (the terminology refers to the fact that the set of orderings
XT consists of 4 elements). In this case, if χ4 denotes the character of P4, we have χ1χ2χ3χ4 = 1.

We shall now construct an explicit example of a 4-element fan. In the following, for a field K,
K((x)) denote the power serie field in one variable over K. If K is formally real pythagorean field,
then so is K((x)).

Example 2.7.3. Let F = R((x))((y)) and T = F 2. Since F is formally real and pythagorean, T
is just the weak preordering on F . Ḟ /Ṫ has a Z2-basis {−1, x, y}; moreover, XT = XF consists
of four orderings {P1, P2, P3, P4}, under which x, y have the four different combination of signs:
(+.+), (+,−), (−,+), (−, ). Therefore, T is a 4-element fan. Writting again χi for the character
of Pi on Ḟ /Ṫ , we have

P1 P2 P3 P4 χ1χ2χ3χ4

x + + − − 1

y + − + − 1

−1 − − − − 1

Theorem 2.7.4. For any preordering T ⊆ F , the following statements are equivalent:

1 - T is a fan;

2 - for any set S ⊇ T , if −1 /∈ S and Ṡ is a subgroup of Ḟ , then S is a preordering;

3 - for any b ∈ Ḟ \ (−Ṫ ), T + Tb = T ∪ T · b (or, in the terminology of 2.1.8 every b /∈ −T is
T -rigid);

3′ - for any a, b ∈ Ḟ such that ab /∈ −Ṫ , T · a+ T · b = T · a ∪ T · b;
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4 - there exists an ordering P ∈ XT such that, for any b ∈ Ṗ , T + T · b = T ∪ T · b (i.e, P consists
of T -rigid elements);

4′ - there exist an ordering P ∈ XT such that, for any a, b ∈ Ṗ , T · a+ T · b = T · a ∪ T · b;

5 - every preordering T ′ ⊇ T of index 8 in F is a (4-element) fan.

Proof. The equivalences (3) ⇔ (3′) and (4) ⇔ (4′) follow by scaling, so in the following we shall
identify (3) with (3′) and (4′) with (4′).

(1) ⇔ (2) Let S be as in (2).By elementary group theory, we know that Ṡ =
⋂
V where V

ranges over all subgroup of index 2 in Ḟ containing S but not containing −1. By the definition of
a fan, each such V is additively closed. Hence so is Ṡ and so S is a preordering.

(2) ⇔ (3) Consider (T ∪ T · b) \ {0}. This is a multiplicative subgroup of Ḟ containing Ṫ but
not containing −1. By (2), T ∪ T · b is a preordering. Therefore T + T · b ⊆ T ∪ T · b. Since the
reverse inclusion is immediate b is T -rigid.

(3)⇔ (4) Follows by the fact that Ṗ is disjoint from −T .

(4′)⇔ (1) Let S ⊇ T be a set such that −1 /∈ S and Ṡ is a subgroup of index 2 in Ḟ . We need
to show that S is an ordering. Let P be as in (4′) and consider S′ := S ∩ P . Let a, b ∈ Ṡ′. Using
the hypothesis on P , we have a + b ∈ T · a ∪ T · b ⊆ P ∩ S = S′, so S′ is a preordering, and the
index of S′ is 2 or 4. If S′ has index 2, then S = P and we are done, so we may assume that S′ has
index 4. There are three multiplicative groups containing Ṡ′ of index 2 in Ḟ , namely, Ṡ, Ṗ , and
another one containing −1. But there are two orderings containing S′, so S must be one of them
(and P another).

(1)⇔ (5) Immediate from the fact that if T is a fan, then so is every preordering containing T .

(5) ⇔ (3) For b ∈ Ḟ \ (−Ṫ ), it is sufficient to show that 1 + b ∈ T ∪ T · b. Assume this is
false. Then 1 + b, b−1 + 1 as well as b are not in T . By Artin’s Theorem 2.1.6, there exist orderings
P1, P2, P3 ∈ XT which exclude these elements, respectively. Let T ′ = P1 ∩ P2 ∩ P3. Then b /∈ −T ′
and 1 + b /∈ T ′ ∪ T ′ · b. Thus, T ′ is not a fan (by (1)⇒ (3), which is already proved). By 2.7.2 T ′

cannot have index ≤ 4, so necessarily [Ḟ : Ṫ ′] = 8. This contradicts (5).

We shall now record a few consequences of the theorem above:

Corollary 2.7.5. Let F ⊆ K be two fields. If T ′ is a fan in K, then T = T ′ ∩ F is a fan in F .

Proof. Let S ⊇ T be as in 2.7.4(2). Then S · T ′ ∩ F = S, so −1 /∈ S · T ′. Since S · T ′ \ {0} ⊇ T ′ is
a multiplicative group, S · T ′ is a preordering in K. Therefore S is a preordering in F , and so T is
a fan in F .

Another proof of 2.7.5 may also be obtained by checking condition (3) or (3′) in 2.7.4. Note
that these conditions have a natural quadratic form-theoretic interpretation. In fact, let ϕ be the
binary T -form 〈a, b〉; then (T · a+T · b) \ {0} is just DT (ϕ), the set of values represented by ϕ over
T . Thus, in form-theoretic terms, (3′) says that for any T -anisotropic binary form ϕ = 〈a, b〉T , ϕ
represents only the obvious Ṫ -cosets Ṫ · a, Ṫ · b and nothing more. By repeated application of this
property, we obtain the following self-strenghened version of 2.7.4(3′):

Corollary 2.7.6. Let T be a fan and ϕ be the T -form 〈a1, ..., an〉 with the property that aiaj /∈ −T
for all i 6= j. Then DT (ϕ) =

⋃
i
Ṫ · ai.

Expressed informally, the condition on ϕ in 2.7.6 says that there is no T -hyperbolic plane “in
the diagonalization” 〈a1, ..., an〉 of ϕ. If ϕ is T -anisotropic, this condition on ϕ is surely satisfied.
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Therefore, 2.7.6 gives the complete computation of values for all T -anisotropic forms over a fan T
(of course, we need not worry about T -isotropic forms since they are universal).

Since the condition on ϕ in 2.7.6 is a necessary condition for ϕ to be T -anisotropic (for any
preordering T ), one may naturally ask: is it also a sufficient condition? The answer is provided in
2.7.7 below: it is iff T is a fan!

Corollary 2.7.7. For any preordering T , the following are equivalent:

1. T is a fan;

2. for any T -form ϕ = 〈a1, ..., an〉, ϕ is T -isotropic iff there exist i 6= j such that aiaj ∈ −T ;

3. if 〈a1, ..., an〉 ∼=T 〈b1, ..., bn〉 are T -anisotropic, then there is a permutation α of {1, ..., n} such
that Ṫ · ai = Ṫ · bα(i) for all i.

Proof. (1)⇒(2) We only need to prove (⇒) part in (2). Assume ϕ is T -isotropic, but aiaj 6= T
for all i 6= j. Then, by 2.7.6, DT (ϕ) = ∪iṪ · ai. But since ϕ is T -isotropic, we have ±1 ∈ DT (ϕ).
Thus, we can write 1 = tai and −1 = t′aj for some t, t′ ∈ Ṫ , and some i, j. But then ai ∈ Ṫ and
aj ∈ −Ṫ , these imply that i 6= j and aiaj ∈ Ṫ , a contradiction.

(2)⇒(1) To show that T is a fan, we shall check that every element b /∈ −T is T -rigid (conform
2.7.4(3)). Let 6= c ∈ T + T · b; then 〈1, b,−c〉 is T -isotropic. By (2), we have either −c ∈ −Ṫ or
−bc ∈ −Ṫ , so c ∈ Ṫ ∪ Ṫ · b. This shows that b is T -rigid.

(1)⇒(3) Let b, c be as above. Then 〈1, b〉 ∼=T 〈c, bc〉 are T -anisotropic forms, and by (3),
c ∈ Ṫ ∪ Ṫ · b.

(3)⇒(1) From 〈a1, ..., an〉 ∼=T 〈b1, ..., bn〉, we have b1 ∈ DT (a1, ..., an). Since 〈a1, ..., an〉 is T -
anisotropic and T is a fan,

DT (a1, ..., an) = ∪iṪ · ai,

as we have already observed. Thus, we may assume (after reindexing) that bi ∈ Ṫ · ai. Now cancel
and induct.

So far the only example of fans we have given are the “trivial fans” and “4-element fans”. After
the following discussion, we shall be able to construct (using valuations) many example of fans of
index ≥ 16. In fact, by a result of Bröcker, we shall be able to explain precisely, in valuation-
theoretic terms, how all fans can arise. We first make some basic observations relating valuations
and fans.

Proposition 2.7.8. Let (v,A,m, U, ...) be a valuation on F , and T ⊆ F be a preordering.

a - If v is compatible with T , then T is a fan imply T is a fan.

b - If v is fully compatible with T , then T is a fan iff T is a fan.

Proof.

a - Let b ∈ U be such that b /∈ −T (in particular, b /∈ T ). Let t1, t2 ∈ T ∩A, and consider t1 + t2b.
Since T is a fan, t1 + t2b has the form t3 or t4b, where t3, t4 ∈ T . Going down to the residue
field, we have t1 + t2b ∈ T ∪ T · b. This shows that every b /∈ −T is T -rigid, so by 2.7.4(3) T is
a fan.

b - (⇒) Is already proven in item (a).

(⇐) Assume that v is fully compatible with T (so 1 +m ⊆ T ), and that T is a fan. Let W ⊇ T
be a set in F such that −1 /∈ W and Ẇ is a subgroup (of index 2) in Ḟ . We claim that
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−1 /∈ W . For, if −1 = w for some w ∈ W ∩ A, then −1 = w + m for some m ∈ m and so

−w = 1 +m ∈ 1 + m ⊆ T ⊆ W , which is not the case. Since T is a fan, and Ẇ is a subgroup

(of index 2) in Ḟ , W is a preordering (ordering) of F . In view of what we said in 2.5.4, we can
form the wedge product W ∧W , which is a preordering in F . But

W ∧W = W · (1 + m) ⊆W · T ⊆W,

so W = W ∧W is a preordering (ordering) in F as desired.

Corollary 2.7.9. Let v be a valuation on F and T0 ⊆ F be such that Ṫ0 is a subgroup of Ḟ
containing Ḟ 2. Let S be a preordering in F containig T 0. The S is a fan (in F ) imply T0 ∧ S is a
fan (in F ). In particular, the “pullback” Ŝ := F 2 ∧ S of a fan S ⊆ F is always a fan in F .

Proof. We have observed in 2.5.4 that the wedge product T0 ∧ S is fully compatible with v, with
T ∧ S = S. Hence, the proposition 2.7.8 applies. The “pullback” case follows by taking T0 =
F 2.

The corollary above enable us to construct a lot of fans by exploiting (real) valuations. For
instance, fix a real valuation (v,A,m, ...) on a field F , and take any trivial fan S on F . Then the
pullback Ŝ = F 2 ∧S is a fan, and therefore any preordering T ⊇ Ŝ is also a fan. Quite remarkably,
this turns out to be the way to account for all fans, namely, any fan T in fact arises in this way!
This is a consequence of the following beautiful result:

Theorem 2.7.10 (Bröcker’s Trivialization of Fans). Let T be a fan on F . Then there exists a
valuation v on F fully compatible with T with respect to which the pushdown T is a trivial fan.

Note that since v is fully compatible with T , the pullback T̂ = F 2∧T lies in T ∧T = T ·(1+m) =
T (conform 2.5.5), so T contains the pullback of the trivial fan T , we have stated in the paragraph
preceding the theorem.

Since any preordering containing a fan is also a fan, it is particularly important to understand
the structure of “minimal” fans: a fan T0 is called minimal if no smaller preordering T1 $ T0 is a
fan. By what we have said above, we know that any minimal fan in F is the pullback of a trivial
fan (with respect to some valuation on F ).

Unfortunately, we do not prove theorem 2.7.10. We should need to develop much more techini-
calities and go away of our main goal, that is the abstract theories of quadratic forms.

2.8 The Representation Problem I

Recall that, for any preordering T ⊆ F , we have a (injective) ring homomorphism

c : cT : WTF → C(XT ,Z),

where WTF is the Witt ring over T , and C(XT ,Z) is the ring of continuous functions from XT to
Z (the latter given the discrete topology). For any T -form ϕ, we have, by definition, c(ϕ) = ϕ̂,
where ϕ̂(P ) = sgnP (ϕ) for any P ∈ XT .

A very natural question to ask in this context is: what is the image of c? In other words, what
is the criterion for a continuous function XT → Z to be “represented” by a T -form? We shall
refer to this as the “Representation Problem” for such continuous functions. In this section, a full
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solution of this Representation Problem will be presented. Our strategy will be as follows: we shall
first solve the problem in the case when T is a fan. Then in the sequel, we shall solve the problem
in general by making a reduction to fans.

First let us set up some notational and terminological conventions. To differentiate between
forms and functions, we shall denote T -forms by Greek letters α, β, ϕ, ψ, ... and functions from
XT to Z by Latin letters f, g, f ′, g′, .... If T ′ ⊇ T is another preordering, then XT ′ ⊆ XT , so any
function f : XT → Z induces a function XT ′ → Z by restriction. By abuse of notation, we shall
denote the latter function again by f . A function f : XT → Z is said to be represented over T
(by a form) if f = ϕ̂ for some T -form ϕ. If f is represented over T , then it will also be represented
over any bigger preordering T ′ ⊇ T .

Two necessary conditions for a function f : XT → Z to be represented over T are as follows:

a - f must be continuous;

b - f is a function of constant parity, i.e, its values must be either all even or all odd. This is
because if f = ϕ̂ for a T -form ϕ, then

f(P ) = ϕ̂(P ) = sgnP (ϕ) ≡ dimϕ (mod 2).

Let f : XT → Z be a function satisfying (a) and (b). If f is an even-valued function, then
f ∈ 2C(XT ,Z); if f is an odd-valued function, then f ∈ 1 + 2C(XT ,Z). Therefore, the set of
functions f satisfying (a),(b) coincides with the subring Z+ 2C(XT ,Z) of C(XT ,Z), and we have

Im(c) ⊆ Z+ 2C(XT ,Z).

In general, this is not an equality.
We shall now introduce some of the key techniques for studying the Representation Problem.

First we make a crucial definition:

Definition 2.8.1. Let T be a given preordering in F , and let F be a family of preorderings in F
containing T . We shall say that F is a Hasse-Minkowski family (or more briefly, an HM-family)
for T if, for any T -form ϕ, ϕ is T -isotropic iff ϕ is S-isotropic for all S ∈ F .

Given a preordering T , it is an important task to try to identify good families F which are
HM-families for T . If we can find an HM-family F such that for every S ∈ F , we have a criterion
for deciding the S-isotropy of S-forms, then we will also get a criterion for deciding the T -isotropy
of T -forms. This situation reminds us of the usual Hasse-Minkowski Principle for quadratic forms
over number fields, hence the present terminology.

The importance of definition 2.8.1 for the study of the Representation Problem lies in the
fact that, once we identify an HM-family F for a preordering T , we can make a reduction of the
Representation Problem from T to the preorderings S in F . More precisely, we shall now prove
the following result of Becker and Bröcker:

Proposition 2.8.2. Let F be an HM-family for a preordering T ⊆ F , and let f ∈ Z+ 2C(XT ,Z).
Assume that f is represented over every S ∈ F . Then f is also represented over T .

First, let us rewrite Theorem 1.6.4 in the reduced theory context:

Theorem 2.8.3. For any continuous function f ∈ C(XT ,Z), there exists a natural number n such
that 2nf ∈ cT (InTF ). In particular, coker(cT ) is a 2-primary torsion group.

Now, we proceed with the proof.
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Proof of Theorem 2.8.2. By 2.8.3, there exists a natural number k such that 2kf is represented over
T . Using induction, it is enough to deal with the case k = 1. Say 2f = ϕ̂, where ϕ = 〈a1, ..., am〉T .
We may assume ϕ is T -anisotropic and of course, m is an even integer; say m = 2n. To prove that
f is represented over T , we make the following claim:

There exists a T -form ϕ′′ such that ϕ ∼=T 〈a1, a1〉 ⊥ ϕ′′. (2.9)

If we can verify this, then 2(f − 〈̂a1〉) = ϕ̂′′. Repeating this process, we will eventually get

2(f − ̂〈a1, a2, ...〉) = 0, so f = ̂〈a1, a2, ...〉 ∈ Im(CT ) as desired.

To prove claim 2.9, we fix one preordering S ∈ F . By the hypothesis (and the injectivity of cS),
we have ϕ = 2αS ∈ WSF for some S-anisotropic form αS . Note that 2αS remains S-anisotropic,
but ϕ might become isotropic over S. Write down a Witt decomposition (in the context of S-forms)

ϕ ∼=S 2αS ⊥ iS〈1,−1〉 (is ≥ 0) (2.10)

We shall prove that iS ∈ 2Z. Once this is proved (for all S ∈ F), then 2.9 can be deduced as
follows. From 2.10, we have ϕ ∼=S 2βS for some S-form βS . Writting ϕ ∼=T 〈a1〉 ⊥ ϕ′, we have
a1 ∈ DS(2βS) = DS(βS), so βS ∼=S 〈a1〉 ⊥ γS for some γS . But then 〈a1〉 ⊥ ϕ′ ∼=S 〈a1, a1〉 ⊥ γS ⊥
γS , so, after cancellation, we get a1 ∈ DS(ϕ′). This says that ϕ′ ⊥ 〈−a1〉 is S-isotropic, for every
S ∈ F , so ϕ′ ⊥ 〈−a1〉 is, in fact, T -isotropic. Therefore ϕ′ ∼=T 〈a1〉 ⊥ ϕ′′ for some T -form ϕ′′, and
2.9 follows.

Our remaining task is, therefore, to prove that for any given S ∈ F , the Witt index iS in 2.10 is
even. For this purpose, fix an ordering P ∈ XS . Among the diagonal entries in ϕ ∼=T 〈a1, ..., a2n〉,
suppose r elements are in P , and t elements are in −P . Then 2n = r + t and sgnP (ϕ) = r − t.
Upon subtraction, we get

2t = 2n− sgnP (ϕ) = 2n− 2f(P ),

so t = n − f(P ). On the other hand, computing the P -signature of the discriminant of ϕ from
2.10, we get

(−1)iS = sgnP (detϕ) = (−1)t = (−1)n−f(P ).

Since f(P ) has constant parity (for P ∈ XS and S ∈ F), this implies that iS also has constant
parity (for S ∈ F). If all iS ’s were odd, then 2.10 would say that ϕ is S-isotropic, for all S ∈ F ,
and hence ϕ is T -isotropic, a contradiction. Therefore all iS ’s must be even, as we had hoped to
prove.

Of course, how successfully we can apply the proposition above to solve the Representation
Problem over T would depend on what kind of HM -families F we can find for T . The kind of
HM -family used by Becker and Bröcker is described in the following theorem:

Theorem 2.8.4 (Becker and Bröcker). Let T ⊆ Ḟ be any preordering, and let F be the family of
all preorderings containing T which have finite index in F . Then F is an HM-family for T .

If we combine this result with 2.8.2, we see that, in order to solve the Representation Problem,
it is sufficient to do it in the case when the preordering has finite index in F . For preorderings
T ⊆ F of finite index in F , Becker and Bröcker made a further reduction of the problem to the
case when T is a fan (of finite index), in which case the problem had been solved earlier by R.
Brown. To illustrate the situation, consider the following “flow chart” of reduction steps:
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T with
finite Index

a fan with
finite index

General T

T a fan

(a) (b)

(c)(d)

The upper route, with reduction (a) followed by reduction (b), is the route followed by Becker
and Bröcker. This is, however, a difficult route: (a) would depend on 2.8.4, which is a rather deep
result, and (b) is also a very complicated reduction. In these notes, we shall offer an alternative
approach by trying to follow the lower route (marked (c) and (a)) in the “commutative diagram”
above. This lower route is made possibly by the work of M. Marshall, who gave a very ingenuous
proof for the reduction (d). Of course (d) would subsume (b), so if we assume Marshall’s work, the
upper route depend on (a), while the lower route would depend on (c) which is a special case of
(a). In order to get (a), we would need to prove 2.8.4, but, in order to get (c), it will be enough to
prove 2.8.4 in the special case when T is a fan (of course, these statements all assume 2.8.2). The
latter turns out to be easier, and because this, we use the lower route “(c) and (d)” for solving the
Representation Problem without to prove 2.8.4 in full.

Lemma 2.8.5 (Special case of 2.8.4). Let T be a fan, and let F be the family of preorderings
S ⊇ T which have finite index in F . Then F is an HM-family for T .

Proof. Let ϕ = 〈a1, ..., an〉 be a T -form, and assume ϕ is T -anisotropic. Then for all i 6= j, we have
aiaj /∈ −T . By Artin’s Theorem 2.1.6, there exists an ordering Pij ∈ XT such that aiaj ∈ Pij .
Now let S =

⋂
i<j Pij . Then whenever i 6= j, we have aiaj /∈ −S. But S is also a fan since T is, so

by 2.7.7, ϕ is S-anisotropic. Since S ∈ F , this completes the proof of the lemma.

Now we shall give the solution of the Representation Problem in the special case of fans of
finite index. This steps is, of course, necessary no matter which route we want to follow. Note
that, once we solve the Representation Problem for fans of finite index, we will have solved the
Representation Problem for all fans, in view of 2.8.5 and 2.8.2.

Theorem 2.8.6 (R. Brown). Let T be a fan of finite index in F , and let f ∈ C(XT ,Z). Then f
is represented over T iff, for any preordering S ⊇ T , we have a congruence∑

P∈XS

f(P ) ≡ 0 (mod |XS |). (2.11)

Thus, the representability of a continuous function f (by a quadratic form) depends on a whole
bunch of arithmetic conditions, in case T is a fan. Before we proceed to the proof of 2.8.6, let
us take a closer look at some special cases of the congruence above. Of course, if S has index 2,
then S is an ordering and |XS | = 1; in this case the congruence is a tautology. Next consider an
S which has index 4, say S = P1 ∩ P2, where P1, P2 are distinct orderings in XT . In this case,
the congruence says f(P1) + f(P2) ≡ 0 (mod 2). Since P1, P2 are arbitrary, this amounts to the
condition that f has constant parity on XT , which, as we have observed before, is a necessary
condition for representability. In this light, the congruence 2.11 for S with bigger indices may be
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construed as generalizations of the constant parity condition – and according to the theorem, these
will be necessary and sufficient conditions for the representability of f .

After making these miscellaneous remarks, we shall now proceed to the

Proof of Theorem 2.8.6. (⇒) We need only consider the case S = T , and, by additivity, we may
assume that f is represented over T by a unary form 〈a〉T . If a ∈ ±Ṫ , then∑

P∈XT

f(P ) =
∑
P∈XT

sgnP 〈a〉 = ±|XT |,

so we are reduced to checking the case when a /∈ ±T . In this case

T [a] = T + T · a = T ∪ T · a and T [−a] = T + T · (−a) = T ∪ T · (−a)

both exclude −1 and hence are preorderings in F . If [Ḟ : Ṫ ] = 2n, then these preorderings both
have index 2n−1. Since they are also fans, we have

|XT [a]| = |XT [−a]| = 2n−2.

Observing finally that XT is the disjoint union of XT [a] and XT [−a], we get∑
P∈XT

f(P ) =
∑
P∈XT

sgnP 〈a〉 = 2n−2 − 2n−2 = 0,

in particular proving 2.11.

(⇐) To prove the converse, we shall imbed C(XT ,Z) into the larger ring C(XT ,Q) of continuous
functions on XT to Q. Here Q is again given the discrete topology (not the funny topology that it
inherits from the reals). In the ring C(XT ,Q), we introduce the following inner product 〈 , 〉:

〈f, g〉 =
1

|XT |
∑
P∈XT

f(P )g(P ) ∈ Q. (2.12)

Fix an ordering P0 ∈ XT , and let G denote the group Ṗ0/Ṫ with cardinality m = [Ḟ : Ṫ ]/2 = |XT |.
We claim that the functions {â : a ∈ G} form an orthonormal basis for C(XT ,Q) under the inner
product defined in 2.12.

Here (and in the following), we shall identify each a ∈ G with a coset representative a ∈ Ṗ0.
For each such a, we have

〈â, â〉 =
1

m

∑
P∈XT

(sgnP (a))2 =
1

m
|XT | = 1,

and, for distinct a, b ∈ G, we have

〈â, b̂〉 =
1

m

∑
P∈XT

sgnP (a)sgnP (b) =
∑
P∈XT

sgnP (c)

where c := ab. Since c /∈ ±T , by the proof of (⇒) the summation above is zero. Thus {â : a ∈ G}
is an orthonormal set, and since C(XT ,Q) has Q-dimension |XT | = |G| = m, this proves the claim.

Now let f ∈ C(XT ,Z) ⊆ C(XT ,Q) be such that the congruence 2.11 are satisfied for any
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preordering S ⊇ T such that [Ṡ : Ṫ ] ≤ 2. We have a “Fourier expansion”

f =
∑
a∈G
〈f, â〉â

with respect to the orthonormal basis that we found. To check that f ∈ Im(cT ), it suffices to show
that 〈f, â〉 ∈ Z for all a ∈ G. This inner product can be computed as follows:

〈f, â〉 =
1

m

∑
P∈XT

sgnP (a)f(P )

=
1

m

 ∑
P∈XT [a]

f(P )−
∑

P∈XT [−a]

f(P )


=

1

m

 ∑
P∈XT

f(P )− 2
∑

P∈XT [−a]

f(P )


=

1

m

∑
P∈XT

f(P )− 1

m/2

∑
P∈XT [−a]

f(P ).

By 2.11 for S = T , the first term is an integer, so we need only worry about the second term. If
a ∈ Ṫ the second summation is empty, so assume a /∈ Ṫ . Then S := T [−a] = T ∪ T · (−a) is a
preordering. Since a ∈ Ṗ0, we have −a /∈ Ṫ , so

[Ṡ : Ṫ ] = 2, [Ḟ : Ṡ] = 1/2[Ḟ : Ṫ ] = m and |XS | = m/2.

Applying 2.11 to this S, we get the desired conclusion that 〈f, â〉 ∈ Z.

We are now in a good strategic position to follow through the “lower route” approach. The
only missing link is Step (d), which is reduction of the Representation Problem from the case of
general preorderings to the case of fans. The following result will, therefore, be our main goal:

Theorem 2.8.7. Let T0 ⊆ F be a preordering, and f ∈ C(XT0 ,Z). Then f is represented over T0

iff f is represented over any fan containing T0.

Once we have proved 2.8.7, we can combine it with 2.8.2, 2.8.5 and 2.8.6 to get the following
ultimate result:

Theorem 2.8.8 (Representation Theorem). Let T0 ⊆ F be a preordering, and f ∈ C(XT0 ,Z).
Then f is represented over T0 iff, for any fan T ⊇ T0 of finite index in F , we have a congruence∑

P∈XT

f(P ) ∼= 0 (mod |XT |).

Our proof of 2.8.7 follows after three lemmas:

Lemma 2.8.9. Let T ⊆ F be any preordering, and x1, x2 ∈ Ḟ . Suppose ϕ1, ϕ2 are T -forms such
that ϕ1〈1, x1〉 ∼=T ϕ2〈1, x2〉. Then there exists a T -form ϕ such that ϕ〈1, xi〉 ∼=T ϕi〈1, xi〉 for
i = 1, 2.

Proof. If x1 ∈ −Ṫ (resp. x2 ∈ −Ṫ ), the lemma is immediate as we can take ϕ = ϕ2 (resp. ϕ = ϕ1).
Therefore, in the following, we shall assume x1, x2 /∈ Ṫ , so T [xi] (i = 1, 2) are both preorderings.
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To prove the lemma, we shall work with both T -forms and T [xi]-forms. For this purpose, the
following three observations will be useful:

ϕ〈1, xi〉 ∼=T ϕi〈1, xi〉 ⇔ ϕ ∼=T [xi] ϕi. (2.13)

This is checked by signature considerations.

For any T -form, we have DT (ϕ〈1, xi〉) = DT [xi](ϕ). (2.14)

This follows by a straightforward calculation of values.

For any T -form ϕ, ϕ〈1, xi〉 is T -isotropic iff ϕ is T [xi]-isotropic. (2.15)

This is proved by the same calculation used to prove 2.14.
To prove 2.8.9, we proceed by induction on n = dimϕ1 = dimϕ2. If n = 1, the hypothesis

implies that x1Ṫ = x2Ṫ , so we are done by choosing ϕ = ϕ1 or ϕ = ϕ2. Now assume n ≥ 2. From
the hypothesis and 2.14, we have

DT [x1](ϕ1) = DT [x1](ϕ2).

Fix an element y in this set and write ϕi ∼= 〈y〉 ⊥ ϕ′ over T [xi] (i = 1, 2). Then, by 2.13,

ϕ1〈1, xi〉 ∼=T 〈y, yxi〉 ⊥ ϕ′〈1, xi〉.

Using this for i = 1, 2 and cancelling 〈y〉, we get

〈yx1〉 ⊥ ϕ′1〈1, x1〉 ∼=T 〈yx2〉 ⊥ 〈ϕ′2〈1, x2〉. (A)

Since yx2 is T -represented by the left hand side, there exists c ∈ DT (ϕ′1〈1, x1〉) = DT [x1](ϕ
′
1) sicj

that yx2 is T -represented by 〈yx1, c〉, i.e,

〈yx1, c〉 ∼=T 〈yx2, x1x2c〉.

Writing ϕ′1
∼=T [x1] 〈c〉 ⊥ ϕ′′1, (A) becomes

〈yx1〉 ⊥ cx1〈1, x2〉 ⊥ ϕ′′1〈1, x1〉 ∼=T 〈yx2〉 ⊥ 〈ϕ′2〈1, x2〉. (B)

After cancelling 〈yx2〉, we have cx1 ∈ DT (ϕ′2〈1, x2〉), so as before, we can write ϕ′2
∼=T [x2] 〈cx1〉 ⊥

ϕ′′2. Then (B) becomes

cx1〈1, x)2〉 ⊥ ϕ′′1〈1, x1〉 ∼=T cx1〈1, x2〉 ⊥ ϕ′′2〈1, x2〉, (C)

so ϕ′′1〈1, x1〉 ∼=T ϕ
′′
2〈1, x2〉. We have now

ϕ2
∼=T [x2] 〈y, cx1〉 ⊥ ϕ′′2

and
ϕ1
∼= T [x1]〈y, c〉 ⊥ ϕ′′1 ∼=T [x1] 〈y, cx1〉 ⊥ ϕ′′1.

Hence we can let ϕT 〈y, cx1〉 ⊥ ϕ′′, and find ϕ′′ by the inductive hypothesis for the dimension
n− 2.
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Lemma 2.8.10. Let T ⊆ F be a preordering, and let x1, x2 ∈ Ḟ be such that x3 : −x1x2 /∈ ±T ,
and 〈x1, x2〉 ∼=T 〈1,−x3〉. Let f : XT → Z be any (not necessarily continuous) function on XT . If
f is represented by a form ϕi over T [xi] (i = 1, 2, 3), then f is represented by a form ϕ over T .

Note that each T [xi] (i = 1, 2, 3) is a preordering in this lemma. For i = 3, this follows from the
assumption that x3 /∈ −T . Since we also assume x3 /∈ T , 〈1,−x3〉 is not the T -hyperbolic plane.
By 2.2.7, its T -values x1, x2 cannot be in −T , so T [x1], T [x2] are also preorderings.

Proof of lemma 2.8.10. We may assume that ϕ3 = 0 (after replacing f by f − ϕ̂3). Also, we may
assume that ϕi is anisotropic over T [xi], for i = 1, 2. Since x3 = −x1x2, this means that ϕi〈1, xi〉
is anisotropic over T , for i = 1, 2. Since x3 = −x1x2, the symmetric difference of XT [x1] and XT [x2]

is XT [x3], and, since 〈x1, x2〉 ∼=T 〈1,−x3〉, the union of these two sets is XT .
By checking signatures, we see that ϕ1〈1, x1〉 = ϕ2〈1, x2〉 in WTF . Therefore, we have

ϕ1〈1, x1〉 ∼=T ϕ2〈1, x2〉,

since these forms are both T -anisotropic.
By 2.8.9 (and 2.13), there exists a T -form ϕ such that ϕ ∼= ϕi over T [xi], for i = 1, 2. Hence ϕ

will represent f over XT [x1] ∪XT [x2] = XT .

The last lemma we need for the proof of 2.8.7 shows in an interesting way how naturally fans
can arise in dealing with the Representation Problem:

Lemma 2.8.11. Let f be a function from XT to Z (which is not necessarily continuous). Suppose
f is not represented over T , but is represented over any preordering T ′ ) T . Then T must be a
fan.

Proof. Assume T is not a fan. Then by 2.7.4 there exists a nonzero x /∈T such that 〈1, x〉 ∼=T 〈y, x/y〉
for some y /∈ T ∪ T · x. We also have x /∈ T (since the T -form 〈1, 1〉 can represent only elements in
Ṫ ). Now let x1 = y, x2 = x/y and x3 = −x1x2 = −x. Then x3 /∈ ±T and 〈x1, x2〉 ∼=T 〈1,−x3〉, as
in 2.8.10. As noted after the statement of 2.8.10, each T [xi] (i = 1, 2, 3) is a preordering; also we
have each xi /∈ T , so T [xi] % T . By the hypothesis, f is not represented over each T [xi] (i = 1, 2, 3).
But the, by 2.8.10, f is represented over T , a contradiction.

We have now developed all the necessary machinery to prove 2.8.7:

Proof of Theorem 2.8.7. Returning to the notations there, we deal with a function f ∈ C(XT0 ,Z)
which we assume is represented over any fan ⊇ T0. Assume that f is not represented over T0. Let
F be the (nonempty) family of preorderings T ⊇ T0 such that f is not represented over T . If F
has a maximal element T1 (with respect to inclusion), then by 2.8.11 T1 must be a fan, and we get
a contradiction.

To see that F does have a maximal element, we need only check that Zorn’s lemma applies.
Consider, therefore, a family of preorderings {Ti : i ∈ I} which form a chain in F (with respect to
inclusion). We are done if we can show that the preordering T :=

⋃
i∈I Ti belongs to F . Let ϕ be

any T0-form, and let
V = {P ∈ XT0 : f(P ) = ϕ̂(P )}.

This is an open (and closed) set in XT0 , by continuity of f and ϕ̂. Since f cannot be represented
over ϕ over Ti, we have (XTi) \ V 6= ∅. These closed sets form a chain in XT0 , so by compactness
of XT0 , we have

∅ =
⋂
i∈I

((XTi) \ V ) =

(⋂
i∈I

XTi

)
\ V = (XT ) \ V.
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Therefore, f cannot be represented by ϕ over T . Since this holds for any form ϕ, we have T ∈ F .
This completes the proof of 2.8.7.
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Chapter 3

First Abstract Theories

The first abstract theories appears in 70’s, by the hands of M. Marshall and C. M. Cordes.
These theories appears for a reason: they are interested in the existence (or not) of fields with
prescribed properties relating to quadratic forms. Questions like

There is a field with finite number of square classes and non-trivial Kaplansky’s radical (see for
example, [Cor75])? 1

are the guide to their journey.

The very first step in abstracting the theory of quadratic forms is decide

What we take as primitive notions?

There is a reasonable list to take acount: representability, Witt ring, orderings, Pfister forms,
quaternionic structures and so on. And the privilegy of one in relation to the others is none!
Because this, the first theories are not necessarily the most elegant and efficient ones. But they
are important, because they answer some questions about Witt rings and reveal a roadmap to
construct more sophisticate tools to attack difficult questions, like Marshall’s signature conjecture
(see theorem 1.6.7).

In this chapter we expose the quaternionic structures, the abstract witt rings and the Cordes
schemes. This is not the historical order (Cordes schemes are the first and quaternionic structures
the last) but for didatical reasons we choose as well. Chapters 1 and 2 is the basic set of properties
that we want to proof in all abstract theories, so we strongly recommend to keep it in mind and
compare the results in the next chapters with the same ones in chapters 1 and 2 whenever is
possible.

1A quick digression about the Kaplansky’s radical: a central simple algebra over a field F is an algebra A
over F whose center is F , and whose only two-sided ideals are 0 and A. As we will see later in this chapter, each
quaternion algebra over F is such an algebra. By Wedderburn’s structure theorem, every central simple algebra
over F is uniquely of the form A ∼= Mn(D) ∼= D ⊗Mn(F ) for some n ≥ 1 and some central division algebra D
over F . D is referred to as the division algebra component of A. Two central simple algebras A,B over F are
said to be equivalent, denoted A ∼ B if their associated division algebra components are isomorphic as algebras.
This defines an equivalence relation on the class of all central simple algebras over F . Let us denote by Br(F ) the
associated set of equivalence classes. The tensor product induces a binary operation on Br(F ), and with respect to
this operation, Br(F ) is an abelian group. This is known as the Brauer group of F . So, given a, b ∈ Ḟ /Ḟ 2, we can
define a quaternion algebra

(
a,b
F

)
, and therefore, a map (., .) : Ḟ /Ḟ 2 × Ḟ /Ḟ 2 → Br(F ), given by (a, b) 7→

(
a,b
F

)
. The

Kaplansky’s radical of F is the kernel of this map (., .).

95
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3.1 Quaternionic Structure

First of all, we show how the theory of quadratic forms over a field F os characteristic not
2, is describable in terms of the quaternionic structure associated to F , and then, the axioms for
abstract quaternionic structures appears naturally. Here, we follow chapters 1 and 2 of [Mar80].
Of course, we admit that all fields have characteristic not 2.

3.1.1 The Field case

In this section we define the quaternionic structure (G(F ), Q(F ), q) associated to F , prove its
basic properties, and show how the study of quadratic forms over F is reduced to the study of the
quaternionic structure of F .

We define G(F ) to be the quotient group Ḟ /Ḟ 2. This is a group of exponent 2 in the sense
that x2 = 1 for all x ∈ G(F ). In view of theorem 1.1.25(c) we can view quadratic forms over F
to be n-tuples 〈a1, ..., an〉 with a1, ..., an ∈ G(F ). We define Q(F ) to be the set of all isometry
classes of quadratic forms of the type 〈1,−a,−b, ab〉, with a, b ∈ G(F ). We consider Q(F ) to
be a “pointed set” with point 0 equal to the isometry class of 〈1,−1, 1,−1〉. Finally, we define
q : G(F )×G(F )→ Q(F ) to be the map sending (a, b) to the isometry class of 〈1,−a,−b, ab〉. The
triple (G(F ), Q(F ), q) will be referred to as the quaternionic structure associated to F .

The reader could be note these facts: the isometry class of 〈1,−a,−b, ab〉 is nothing else that the
isometry class of the Pfister form 〈〈a, b〉〉 and with the proper identification, we have Q(F ) ⊆W (F ),
the Witt Ring of F . These facts will be useful later.

Theorem 3.1.1. For all a, b, c, d ∈ G(F ) we have:

i - q(a, b) = q(b, a).

ii - q(a,−a) = 0.

iii - q(a, b) = q(a, c)⇔ q(a, bc) = 0.

iv - q(a, b) = q(c, d)⇒ there exist x ∈ G(F ) with q(a, b) = q(a, x), and q(c, d) = q(c, x).

Proof. With the identification Q(F ) ⊆W (F ), theorem 1.1.25(d) and their corollaries, operating on
the Witt ring we obtain (i), (ii) and (iii). To prove (iv), suppose q(a, b) = q(c, d), i.e, the isometry
class of 〈1,−a,−b, ab〉 is equal to the isometry class of 〈1,−c,−d, cd〉. By Witt’s Cancellation,
〈−a,−b,−ab〉 ∼= 〈−c,−d, cd〉. There exist e, f, g ∈ G(F ) with 〈−b, ab〉 ∼= 〈e, f〉, 〈−d, cd〉 ∼= 〈g, f〉
and 〈−a, e〉 ∼= 〈−c, g〉. Comparing discriminants we get ef = −a, gf = −c, so e = −af and
g = −cf . Taking x = −f , we have e = ax, g = cx, so 〈−b, ab〉 ∼= 〈−x, ax〉 and 〈−d, cd〉 ∼= 〈−x, cx〉.
Adding 〈1,−a〉 and 〈1,−c〉 respectively we obtain q(a, b) = q(a, x) and q(c, d) = q(c, x), proving
(iv).

We now give a result which shows how the isometry relation on quadratic forms over F is
determined by the quaternionic structure:

Theorem 3.1.2.

i - 〈a〉 ∼= 〈b〉 ⇔ a = b.

ii - 〈a, b〉 ∼= 〈c, d〉 ⇔ ab = cd and q(a, b) = q(c, d).

iii - For n ≥ 3, 〈a1, ..., an〉 ∼= 〈b1, ..., bn〉 ⇔ there exist a, b, c3, ..., cn ∈ G(F ) with 〈a2, ..., an〉 ∼=
〈a, c3, ..., cn〉, 〈b2, ..., bn〉 ∼= 〈b, c3, ..., cn〉, and 〈a1, a〉 ∼= 〈b1, b〉.
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Proof. Here, we just need to combine the theorems (and corollaries) 1.1.26,1.1.27, 1.1.28 with the
operations on the Witt ring (remember that Q(F ) ⊆W (F )!).

Now, we devote some time to describe the relationship between the elements of Q(F ) and
quaternion algebras over F . This is not a necessary knowledge for the rest of the content of this
work, but quaternion algebras is the classical treatment for the abstract quaternionic structure
that will be presented in the next section.

For fixed a, b ∈ Ḟ , the quaternion algebra
(
a,b
F

)
is defined to be the unitary algebra over F

generated by symbols i, j subject to i2 = a, j2 = b, ij = −ji. It is a 4-dimensional algebra over
F with basis 1, i, j and k = ij. On this so called “standard” basis, the multiplication is given by
i2 = a, j2 = b, k2 = −ab, ij = −ji = k, kj = −jk = bi, and ik = −ki = aj.

Theorem 3.1.3. Let a, b ∈ Ḟ , and let A =
(
a,b
F

)
. Then the center of A is F = F · 1, and A has

only the trivial 2-sided ideals.

Proof. Let x = x0 + x1i + x2j + x3k lie in the center of A. Thus, by definition, xy = yx for all
y ∈ A. In particular,

0 = ix− xi = 2x3j + 2x2k

so x2 = x3 = 0. Using the same argument with j instead of i, we obtain x1 = 0. Thus x = x0 ∈ F .

Now suppose J ⊆ A be a 2-sided ideal and x ∈ J , x 6= 0. We wish to show that J = A. Suppose
x = x0 +x1i+x2j+x3k. Multiplying x by a suitable element of {1, i, j, k}, we can assume x3 6= 0.
Let y = ix− xi. Thus y ∈ J , and, as above, y2j + y3k, where y2 = 2x3a 6= 0, and y3 = 2x2. Now
let z = yj − jy. Thus z ∈ J , and z = 2y2b ∈ Ḟ . Thus z is a unit in A, so J = A.

Corollary 3.1.4. For a, b ∈ Ḟ ,
(
a,b
F

)
is either a division algebra over F or it is isomorphic to

M2(F ) (the algebra of all 2× 2 matrices over F ).

Proof. By theorem 3.1.3, A =
(
a,b
F

)
is a simple algebra over F , so by Wedderburn’s theorem on

simple algebras, A ∼= Mn(D), the algebra of all n×n matrices over D, for some division algebra D
over F . Comparing dimensions, 4 = n2k, where k denote the dimension of D over F . Thus either
n = 2, k = 1, in which case A ∼= M2(F ), or n = 1, k = 4, in which case A ∼= D.

We now establish the connection between quaternion algebras and elements of Q(F ). Suppose

A =
(
a,b
F

)
for some a, b ∈ Ḟ . Let us say an element x = x0 + x1i + x2j + x3k in A is a pure

quaternion if x0 = 0. We denote A0 = {v ∈ A : v is pure}.

Lemma 3.1.5. Suppose x ∈ A, x 6= 0. Then x is pure if and only if x2 ∈ F , x /∈ F .

Proof. One sees by “long-hand” computation that

x2 = x2
0 + ax2

1 + bx2
2 − abx2

3 + 2x0(x1i+ x2j + x3k).

Thus, if x is pure, then x2 = ax2
1 + bx2

2 − abx2
3 ∈ F . Conversely, suppose x2 ∈ F , x /∈ F . Thus

2x0(x1i + x2j + x3k) = 0. But not all of x1, x2, x3 are zero. Since x0x1 = x0x2 = x0x3 = 0, this
implies x0 = 0. Thus x is pure.

It follows that the concept of “purity” is independent of the particular presentation of A.
Another way of putting this is: any isomorphism A ∼= B of quaternion algebras must carry pure
quaternions to pure quaternions.
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Corollary 3.1.6. If A =
(
a,b
F

)
, B =

(
c,d
F

)
and ϕ : A → B is an F -algebra isomorphism, then

ϕ(A0) = B0.

For x = x0 +x1i+x2j+x3k in A, we define the conjugate of x to be x = x0−x1i−x2j−x3k.
Note that for x ∈ F , x = x. One verifies for x, y ∈ A and c ∈ F that x+ y = x + y, cx = cx,
xy = yx, and x = x. Thus conjugation is an algebra anti-isomorphism of order 2.

Let us define the trace tr : A× A→ F by tr(x, y) = 1/2(xy + yx). The trace is in fact, well-
defined, since tr(x, y) = tr(x, y), then tr(x, y) ∈ F . One observe that tr is a symmetric bilinear
mapping on the underlying vector space of A. Thus, as well as being an algebra, A can also be
viewed as a quadratic space. The associated quadratic mapping is referred to as the norm of A.
It is given by

N(x) = tr(x, x) =
1

2
(xx+ xx) = xx.

It is important to note that, the conjugation mapping (and hence the quadratic space structure)

on A is independent of the particular presentation of A. Let A =
(
a,b
F

)
, B =

(
c,d
F

)
and suppose

that ϕ : A → B is an algebra isomorphism. Then corollary 3.1.6 implies that ϕ(A0) = B0. If
x = α + x0, where α ∈ F and x0 ∈ A0, then x = α − x0, and hence ϕ(x) = α + ϕ(x0) and
ϕ(x) = α− ϕ(x0). Since ϕ(x0) ∈ B0, we have ϕ(x) = ϕ(x). Therefore,

N(ϕ(x)) = ϕ · ϕ(x) = ϕ(x) · ϕ(x) = ϕ(xx) = ϕ(N(x)) = N(x),

so ϕ is an isometry. Thus any isomorphism A ∼= B of quaternion algebras is also an isometry of
quadratic spaces.

Observe that if x ∈ F , x = x, whereas if x is pure, x = −x. Thus if x ∈ F and y is pure then

tr(x, y) =
1

2
(−xy + yx) = 0.

Now suppose x, y are both pure. Then

tr(x, y) = 0⇔ 1

2
(−xy − yx) = 0⇔ xy = −yx.

It follows from these remarks, and the fact that i, j, k are pure and anti-comute, that the standard
basis 1, i, j, k forms an orthogonal basis. Since N(1) = 1, N(i) = −a, N(j) = −b, and N(k) = ab,
we see that the quadratic form of A with respect to this basis is 〈1,−a,−b, ab〉. Note that(

ax2, by2

F

)
∼=
(
a, b

F

)
holds for any a, b, x, y ∈ Ḟ . We see this replacing the standard basis {1, i, j, k} of

(
a,b
F

)
by

{1, i′, j′, k′} where i′ = xi, j′ = yj, k′ = i′j′. Then i′2 = x2a, j′2 = y2b. Since we are only

interested in the isomorphism class of the quaternion algebra
(
a,b
F

)
, we are thus able to view a, b

as elements of G(F ). We now prove the following:

Theorem 3.1.7. Let a, b, c, d ∈ G(F ). Then q(a, b) = q(c, d) iff the algebras
(
a,b
F

)
and

(
c,d
F

)
are

isomorphic. Further, q(a, b) = 0 iff
(
a,b
F

)
∼= M2(F ).

Proof. Suppose α :
(
a,b
F

)
∼=
(
c,d
F

)
is an algebra isomorphism. In view of the criterion for purity
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given in lemma 3.1.5, α(x) = α(x) for all x ∈
(
a,b
F

)
. It follows that

tr(α(x), α(y)) = tr(x, y) for all x, y ∈
(
a, b

F

)
.

Thus α is an isometry of quadratic spaces. From the basic correspondence between quadratic forms
and quadratic spaces, follows that the associated quadratic forms 〈1,−a,−b, ab〉 and 〈1,−c,−d, cd〉
are isometric.

Now, conversely, assume 〈1,−a,−b, ab〉 ∼= 〈1,−c,−d, cd〉. Then 〈−a,−b, ab〉 ∼= 〈−c,−d, cd〉
by Witt’s cancellation. Let 1, i, j, k and 1, i′, j′, k′ be the “standard” bases of

(
a,b
F

)
and

(
c,d
F

)
respectively. It follows that the 3-dimensional subspace [i, j, k] of pure quaternions of

(
a,b
F

)
is

isometric to the corresponding subspace [i, j′, k′] of
(
c,d
F

)
. Let α : [i, j, k] ∼= [i′, j′, k′] be any

isometry. Then α(i) is pure so α(i) = −α(i). Thus

N(α(i)) = α(i)α(i) = −α(i)2.

But α is an isometry so N(α(i)) = N(i) = −a. Thus α(i)2 = a. Similarly, α(j)2 = b. Since
tr(i, j) = 0, we also have tr(α(i), α(j)) = 0. In view of an earlier remark, this implies α(i) and

α(j) anti-comutes. Thus, by replacing the standard basis of
(
c,d
F

)
by {1, α(i), α(j), α(i)α(j)}, we

see that
(
c,d
F

)
∼=
(
a,b
F

)
.

Now consider
(

1,−1
F

)
. If 1, i, j, k is the “standard” basis of this algebra, then i2 = 1, j2 = −1,

so
(i+ j)2 = i2 + ij + ji+ j2 = i2 + j2 = 0.

It follows that i+ j is not invertible, so
(

1,−1
F

)
is not a division algebra. Thus, by corollary 3.1.4,(

1,−1
F

)
∼= M2(F ). Thus by the first half of the theorem, and the fact that q(1,−1) = 0,(

a, b

F

)
∼= M2(F )⇔

(
a, b

F

)
∼=
(

1,−1

F

)
⇔ q(a, b) = q(1,−1)⇔ q(a, b) = 0.

3.1.2 Quaternionic structures and the associated form theory

Definition 3.1.8. A quaternionic structure (or Q-structure) is defined to be a triple (G,Q, q)
where G is a group of exponent 2 (i.e, x2 = 1 for all x ∈ G) with a distinguished element denoted
−1, Q is a pointed set with distinguished point denoted 0, and q : G × G → Q is a surjective
mapping satisfying:

Q1 (symmetry) - q(a, b) = q(b, a).

Q2 - q(a,−a) = 0.

Q3 (weak bilinearity) - q(a, b) = q(a, c)⇔ q(a, bc) = 0.

Q4 (linkage) - q(a, b) = q(c, d) ⇒ there exist x ∈ G such that q(a, b) = q(a, x) and q(c, d) =
q(c, x).
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If F is a field of characteristic 6= 2, then we have the associated Q-structure (G(F ), Q(F ), q) (see
theorem 3.1.1). We do not claim that every Q-structure is realized in this way, as the Q-structure
associated to a field, but, on the other hand, is not known if there is a counter example.

Here are basic consequences of these definition:

Lemma 3.1.9. Let (G,Q, q) be a quaternionic structure and a, b ∈ G. Then:

i - q(a, 1) = 0.

ii - q(a, a) = q(a,−1).

iii - q(a,−ab) = q(a, b).

iv - q(a, b) = q(c, d)⇔ there exist x ∈ G with q(a, bx) = 0, q(c, dx) = 0 and q(ac, x) = 0.

Proof.

i - Follow from Q3, since q(a, 1) = q(a, 1).

ii - By Q2 q(a,−a) = q(a, (−1)a) = 0, so by Q3, q(a, a) = q(a,−1).

iii - Since by Q2 q(a,−ab2) = q(a,−a) = 0, Q3 provides q(a,−ab) = q(a, b).

iv - (⇒) From q(a, b) = q(c, d) by Q4 we obtain x ∈ G such that q(a, b) = q(a, x) and q(c, d) =
q(c, x). So using Q3, we have q(a, bx) = q(c, dx) = 0. From q(a, x) = q(a, b) = q(c, d) = q(c, x),
using Q3 again we obtain q(ac, x) = 0.

(⇐) Using Q3 in the equalities q(a, bx) = 0, q(c, dx) = 0 and q(ac, x) = 0 we get q(a, b) =
q(a, x), q(c, d) = q(c, x) and q(a, x) = q(c, x). So q(a, b) = q(c, d).

A morphism between Q-structures (G,Q, q) and (G′, Q′, q′) is a group homomorphism α : G→
G′ satisfying α(−1) = −1 and

q(a, b) = 0⇒ q′(α(a), α(b)) = 0

for all a, b ∈ G. By 3.1.9(iv), the second requirement for a morphism of Q-structures implies the
(apparently stronger) condition

q(a, b) = q(c, d)⇒ q′(α(a), α(b)) = q′(α(c), α(d)).

We now show how to develop an abstract theory of quadratic forms associated to any abstract
quaternionic structure. Of course, these abstract approach generalize the classical one, in the sense
that on case the Q-structure we start with is the Q-structure of some field F , this is just the usual
quadratic form theory over F .

Let (G,Q, q) be a Q-structure which will remain fixed throughout this section. A form of
dimension n ≥ 1 over G is just an n-tuple f ∼= 〈a1, ..., an〉 where a1, ..., an ∈ G. The dimension
of f is denoted by dim(f). The discriminant of f is defined to be disc(f) := a1a2...an ∈ G. If
a ∈ G, we can scale f by a to obtain the form af := 〈aa1, ..., aan〉. The sum of f and a form
g ∼= 〈b1, ..., bm〉 is defined by f ⊕ g = 〈a1, ..., an, b1, ..., bm〉 and the tensor product of f and g is
defined by f ⊗ g = 〈a1b1, ..., aibj , ..., anbm〉.

Isometry of one and two-dimensional forms is defined by 〈a〉 ∼= 〈b〉 ⇔ a = b and 〈a, b〉 ∼= 〈c, d〉 ⇔
ab = cd and q(a, b) = q(c, d). For forms of dimension n ≥ 3 isometry is defined inductively
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by: 〈a1, ..., an〉 ∼=n 〈b1, ..., bn〉 if and only there are x, y, z3, ..., zn ∈ A such that 〈a1, x〉 ∼= 〈b1, y〉,
〈a2, ..., an〉 ∼=n−1 〈x, z3, ..., zn〉 and 〈b2, ..., bn〉 ∼=n−1 〈y, z3, ..., zn〉.

Note that these definitions in the field case is already know basic properties of the isometry.
The next results is to establish another properties for our abstract isometry.

Proposition 3.1.10. Let (G,Q, q) be a quaternionic structure. Then for all a, b, c, d, x ∈ G and
all forms ϕ,ψ:

a - If π is a permutation of {1, ..., n} and ϕ = 〈a1, ...., an〉, ψ = 〈aπ(1), ..., aπ(n)〉 then ϕ ≡ ψ.

b - ϕ ∼= ψ ⇒ dim(ϕ) = dim(ψ) and disc(ϕ) = disc(ψ).

c - 〈b,−bx〉 ∼= 〈c,−cx〉 holds if and only if q(bc, x) = 0.

d - ϕ ∼= ψ ⇒ aϕ ∼= aψ. In particular, if 〈a, b〉 ∼= 〈c, d〉 then 〈xa, xb〉 ∼= 〈xc, xd〉 for all x ∈ G.

e - 〈−a,−b, ab〉 ∼= 〈−c,−d, cd〉 ⇔ q(a, b) = q(c, d).

f - 〈a,−a〉 ∼= 〈1,−1〉.

Proof.

a - We may assume n ≥ 3. If π(1) = i ≥ 2, take a = ai, b = a1, and take c3, ..., cn to be the
elements left after a1 and ai are deleted from the list a1, ..., an. Note that a, c3, ..., cn is a
permutation of a2, ..., an; b, c3, ..., cn a permutation of b2, ..., bn and b1, b is a permutation of
a1, a, so the result is true by induction on n. On the other hand, if π(1) = 1, take a = b = a2,
and ci = ai, i ≥ 3.

b - The first assertion is immediate. Also, the assertion concerning discriminants is true for 1 and 2
dimensional forms. Now, suppose ϕ = 〈a1, ..., an〉, ψ = 〈b1, ..., bn〉, n ≥ 3. By assumption, there
exists a, b, c3, ..., cn the “witness of the isometry”, i.e, with 〈a1, a〉 ∼= 〈b1, b〉, 〈a2, ..., an〉 ∼=n−1

〈a, c3, ..., cn〉 and 〈b2, ..., bn〉 ∼=n−1 〈b, c3, ..., cn〉. By induction, we have a2...an = ac3...cn, a1a =
b1b and bc3...cn = b2...bn. Thus

a1a2...an = a1ac3...cn = b1bc3...cn = b1b2...bn.

c - q(b,−bx) = q(b, x) and −b2x = −x = −c2x so 〈b,−bx〉 and 〈c,−cx〉 have the same discrimi-
nants. Thus

〈b,−bx〉 ∼= 〈c,−cx〉 ⇔ q(b,−bx) = q(c,−cx)
3.1.9(iii)⇔ q(b, x) = q(c, x)⇔ q(bc, x) = 0.

d - Is immediate for 1-dimensional forms. Now suppose ϕ = 〈b, d〉, ψ = 〈c, e〉 and ϕ ∼= ψ. Thus
bd = ce, and setting −x := bd = ce, we get d = −bx and e = −cx. Thus ϕ ∼= 〈b,−bx〉,
ψ ∼= 〈c,−cx〉, aϕ ∼= 〈ab,−abx〉, aψ ∼= 〈ac,−acx〉. Thus, applying (c),

ϕ ∼= ψ ⇔ q(bc, x) = 0⇔ q(abac, x) = 0⇔ aϕ ∼= aψ.

The result for forms of dimension ≥ 3 follows by induction on n.

e - By definition, 〈−a,−b, ab〉 ∼= 〈−c,−d, cd〉 if exists p, q, r ∈ G such that 〈−b, ab〉 ∼= 〈p, r〉,
〈−d, cd〉 ∼= 〈q, r〉 and 〈−a, p〉 ∼= 〈−c, q〉. Comparing discriminants this yields −a = pr, −c = qr.
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Let x = −r. Thus p = ax, q = cx. Thus 〈−a,−b, ab〉 ∼= 〈−c,−d, cd〉 iff exists x ∈ G such that
〈−b, ab〉 ∼= 〈−x, ax〉, 〈−d, cd〉 ∼= 〈−x, cx〉 and 〈−a, ax〉 ∼= 〈−c, cx〉. Using (d) and (c) we get

〈−b, ab〉 ∼= 〈−x, ax〉 ⇔ 〈b,−ab〉 ∼= 〈x,−ax〉 ⇔ q(a, bx) = 0.

Similarly, 〈−d, cd〉 ∼= 〈−x, cx〉 ⇔ q(c, dx) = 0 and 〈−a, ax〉 ∼= 〈−c, cx〉 ⇔ q(x, ac) = 0. Sum-
marizing, we have 〈−a,−b, ab〉 ∼= 〈−c,−d, cd〉 iff there exist x ∈ G such that q(a, bx) = 0,
q(c, dx) = 0 and q(ac, x) = 0. By 3.1.9(iv), we have 〈−a,−b, ab〉 ∼= 〈−c,−d, cd〉 iff q(a, b) =
q(c, d).

f - Is just Q2 and the definition of isometry.

Theorem 3.1.11. Isometry is an equivalence relation (on forms of same dimension).

Proof. Since reflexivity and symmetry follows by definition of ∼=, we just need to worry with
transitivity. Let ϕ,ψ, θ be n-dimensional forms over G with ϕ ∼= ψ and ψ ∼= θ. We show that
ϕ ∼= θ by induction on n. This is immediate if n = 1 or 2. If n = 3, scaling by discriminant we are
reduced to the discriminant 1 case (see 3.1.10(d)). But any 3-dimensional form of discriminant 1
is of the shape 〈−a,−b, ab〉 for suitable a, b ∈ G. Thus, this case follows using 3.1.10(e).

Now assume n ≥ 4. Let ϕ ∼= 〈a〉⊕ϕ′, ψ ∼= 〈b〉⊕ψ′ and θ ∼= 〈c〉⊕θ′. Thus, exists a′, b′, b′′, c′ ∈ G
and n− 2-dimensional forms τ, σ such that

ϕ′ ∼= 〈a′〉 ⊕ τ, ψ′ ∼= 〈b′〉 ⊕ τ and 〈a, a′〉 ∼= 〈b, b′〉.

and
ψ′ ∼= 〈b′′〉 ⊕ σ, θ′ ∼= 〈c′〉 ⊕ σ and 〈b, b′′〉 ∼= 〈c, c′〉.

Thus, by induction, 〈b′〉 ⊕ τ ∼= 〈b′′〉 ⊕ σ, so exists b1, b2 and an n− 3-dimensional form α satisfying

τ ∼= 〈b1〉 ⊕ α, σ ∼= 〈b2〉 ⊕ α and 〈b′, b1〉 ∼= 〈b′′, b2〉.

It follows (using transitivity for n ≤ 3) that

〈a, a′, b1〉 ∼= 〈b, b′, b1〉 ∼= 〈b, b′′, b2〉 ∼= 〈c, c′, b2〉,

so using transitivity for n ≤ 3 (again!) exists a1, c1, x such that

〈a′, b1〉 ∼= 〈a1, x〉, 〈c′, b2〉 ∼= 〈c1, x〉 and 〈a, a1〉 ∼= 〈c, c1〉.

Take β = 〈x〉 ⊕ α. Then

ϕ′ = 〈a′〉 ⊕ τ ∼= 〈a′, b1〉 ⊕ α ∼= 〈a1, x〉 ⊕ α = 〈a1〉 ⊕ β

and
θ′ = 〈c′〉 ⊕ σ ∼= 〈c′, b2〉 ⊕ α ∼= 〈c1, x〉 ⊕ α = 〈c1〉 ⊕ β.

Thus by induction, ϕ′ ∼= 〈a1〉 ⊕ α and θ′ ∼= 〈c1〉 ⊕ α. Since 〈a, a1〉 ∼= 〈c, c1〉, this implies ϕ ∼= θ, as
desired.

Lemma 3.1.12. For arbitrary forms ϕ,ψ, ψ′ over G, ψ ∼= ψ′ ⇔ ϕ⊕ ψ ∼= ϕ⊕ ψ′.
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Proof. By induction, we can assume ϕ is one dimensional, say ϕ := 〈a1〉.
(⇒) let ψ = 〈x, c3, ..., cn〉 and ψ′ = 〈y, d3, ..., dn〉. Then

〈a1, x〉 ∼= 〈a1, x〉
〈x, c3, ..., cn〉 ∼= 〈x, c3, ..., cn〉
〈y, d3, ..., dn〉 ∼= 〈x, c3, ..., cn〉.

Therefore, 〈a1〉 ⊕ ψ ∼= 〈a1〉 ⊕ ψ′ by definition of isometry (take x = y and zj = cj , j = 3, ..., n).

(⇐) By definition of isometry, exists a, b, c3, ..., cn such that ψ ∼= 〈a, c3, ..., cn〉, ψ′ ∼= 〈b, c3, ..., cn〉
and 〈a1, a〉 ∼= 〈a1, b〉 (remember the induction step!). Comparing discriminants, this yields a = b,
so ψ ∼= 〈a, c3, ..., cn〉 ∼= ψ′. Thus ψ ∼= ψ′.

Proposition 3.1.13 (Witt’s Cancellation). Suppose ϕ,ϕ′, ψ, ψ′ are forms over G satisfying ϕ ∼= ϕ′.
Then ψ ∼= ψ′ ⇔ ϕ⊕ ψ ∼= ϕ′ ⊕ ψ′.

Proof. Since ϕ ∼= ϕ′, it follows from lemma 3.1.12 and 3.1.10(a) that ϕ⊕ ϕ′ ∼= ψ ⊕ ψ. Thus

ϕ⊕ ψ ∼= ϕ′ ⊕ ψ′ ⇔ ϕ′ ⊕ ψ ∼= ϕ′ ⊕ ψ′ ⇔ ψ ∼= ψ′

by lemma 3.1.12.

Corollary 3.1.14. If 〈a, b〉 ∼= 〈c, d〉 then 〈a,−c〉 ∼= 〈−b, d〉.

Proof. From 〈a, b〉 ∼= 〈c, d〉, applying 3.1.12, 3.1.13 and 3.1.10 we get:

〈a, b〉 ∼= 〈c, d〉 ⇒ 〈a, b〉 ⊕ 〈−b,−c〉 ∼= 〈c, d〉 ⊕ 〈−b,−c〉
⇒ 〈a, b,−b,−c〉 ∼= 〈c, d,−b,−c〉
⇒ 〈a,−c〉 ⊕ 〈b,−b〉 ∼= 〈−b, d〉 ⊕ 〈c,−c〉
⇒ 〈a,−c〉 ⊕ 〈1,−1〉 ∼= 〈−b, d〉 ⊕ 〈1,−1〉
⇒ 〈a,−c〉 ∼= 〈−b, d〉.

Proposition 3.1.15. If ϕ,ψ, ϕ′, ψ′ are forms over G with ϕ ∼= ϕ′ and ψ ∼= ψ′, then ϕ⊗ψ ∼= ϕ′⊗ψ′.

Proof. If ϕ = 〈a1, ..., an〉, then by 3.1.10(d) and 3.1.13

ϕ⊗ ψ ∼= a1ψ ⊕ ...⊕ anψ ∼= a1ψ
′ ⊕ ...⊕ anψ′ ∼= ϕ⊗ ψ′.

Similarly ϕ⊗ ψ′ ∼= ϕ′ ⊗ ψ′, so ϕ⊗ ψ ∼= ϕ′ ⊗ ψ′.

We say a form ϕ of dimension n represents x ∈ G if there exist x2, ..., xn ∈ G such that
ϕ ∼= 〈x, x2, ..., xn〉. We denote by D(ϕ) the set of elements x ∈ G represented by ϕ in this sense.
In the field-theoretic case elements represented by ϕ ∼= 〈a1, ..., an〉 are also expressible in terms
of a1, ..., an using the operations of F . The following result provide an analogous in the abstract
situation:

Proposition 3.1.16. If ϕ and ψ are arbitrary forms over G, then

D(ϕ⊕ ψ) =
⋃
{D〈x, y〉 : x ∈ D(ϕ), y ∈ D(ψ)}.
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Proof. Let ϕ = 〈a1, ..., ak〉, ψ = 〈ak+1, ..., an〉. For the inclusion ⊇, let

z ∈
⋃
{D〈x, y〉 : x ∈ D(ϕ), y ∈ D(ψ)}.

Then, there exists x ∈ D(ϕ), y ∈ D(ψ) such that z ∈ D(x, y). By definition of representation,
there exists w, x2, ..., xk, yk+2, ..., yn such that

〈z, w〉 ∼= 〈x, y〉
ϕ ∼= 〈x, x2, ..., xk〉
ψ ∼= 〈y, yk+2, ..., yn〉.

By proposition 3.1.13 and the properties in proposition 3.1.10, we have

ϕ⊕ ψ ∼= 〈x, x2, ..., xk, y, yk+2, ..., yn〉
∼= 〈x, y, x2, ..., xk, yk+2, ..., yn〉
∼= 〈z, w, x2, ..., xk, yk+2, ..., yn〉.

Then z ∈ D(ϕ⊕ ψ).

To prove ⊆, let b1 ∈ D(ϕ ⊕ ψ). Thus, exists b2, ..., bn ∈ G such that ϕ ⊕ ψ ∼= 〈b1, b2, ...bn〉.
Choose a, b, c3, ..., cn as witness of this isometry. Thus b1 ∈ D(a1, a). This completes the proof if
k = 1 (take x = a1, y = a). If k ≥ 2, by induction on k, exists x′ ∈ D(a2, ..., ak), y ∈ D(ψ) such
that a ∈ D(x′, y). Thus

b1 ∈ D(a1, a) ⊆ D(a1, x
′, y) = D(y, a1, x

′),

so by the case k = 1, exists x ∈ D(a1, x
′) such that b1 ∈ D(y, x) = D(x, y). Since D(a1, x) ⊆ D(ϕ),

this completes the proof.

Corollary 3.1.17. Suppose ϕ1, ..., ϕn are forms over G. Then

D(ϕ1 ⊕ ...⊕ ϕn) =
⋃
{D〈x1, ..., xn〉 : x1 ∈ D(ϕ), ∀ i = 1, ..., n}.

Proof. Is just an application of induction on proposition 3.1.16.

Note that 〈a,−a〉 ∼= 〈1,−1〉 for all a ∈ G, since q(a,−a) = 0 = q(1,−1). Any form 〈a,−a〉,
a ∈ G will be called a hyperbolic form. A form ϕ will be called isotropic if there exist a form ψ
such that ϕ ∼= 〈1,−1〉 ⊕ ψ. Otherwise f will be called anisotropic. A form is said to be universal
if D(ϕ) = G.

Corollary 3.1.18. Let ϕ,ψ be forms over G. Then ϕ ⊕ ψ is isotropic iff there exist x ∈ D(ϕ)
such that −x ∈ D(ψ).

Proof. (⇒) suppose ϕ⊕ ψ ∼= 〈1,−1〉 ⊕ θ. Decompose ϕ = 〈a〉 ⊕ ϕ′. Then

〈a〉 ⊕ ϕ′ ⊕ ψ ∼= ϕ⊕ ψ ∼= 〈1,−1〉 ⊕ θ ∼= 〈a,−a〉 ⊕ θ,

so by Witt’s cancellation, ϕ′ ⊕ ψ ∼= 〈−a〉 ⊕ θ. Suppose dim(ϕ′) ≥ 1. Then, by proposition 3.1.16,
exists b ∈ D(ψ), c ∈ D(ϕ′), d ∈ G such that 〈b, c〉 ∼= 〈−a, d〉. Adding 〈a,−b〉 to both sides, and
cancelling the hyperbolic forms yields 〈a, c〉 ∼= 〈−b, d〉. Thus −b ∈ D(a, c) ⊆ D(ϕ), i.e, x = −b
satisfies the required conditions. If, on the other hand, dim(ϕ′) = 0, then x = a works.



3.1. QUATERNIONIC STRUCTURE 105

(⇐) If ϕ ∼= 〈x〉 ⊕ ϕ′ and ψ ∼= 〈−x〉 ⊕ ψ′ then

ϕ⊕ ψ ∼= 〈x,−x〉 ⊕ ϕ′ ⊕ ψ′ ∼= 〈1,−1〉 ⊕ ϕ′ ⊕ ψ′.

Can be useful keep in mind the following special subcase of the above corollary:

Corollary 3.1.19. Let ϕ be a form over G and let a ∈ G. Then a ∈ D(ϕ)⇔ 〈−a〉⊕ϕ is isotropic.

3.1.3 The Witt Ring of a Q-structure

Here, we have the same situation of the chapter 1: the set of equivalence classes of forms over
G with respect to the equivalence relation ∼= (isometry) with the operations of sum and product
on forms induce binary operations on this set. The resulting structure is “almost” a ring, except
for the fact that additive inverses fail to exist. To rectify this situation, we got to a slightly coarser
equivalence relation called Witt equivalence. For ϕ a form over G, and an integer n ≥ 0 we define
nϕ = ϕ⊗ ...⊗ϕ (n times) (with the convention 0ϕ = 0, the 0-dimensional form). Now, we say two
forms ϕ,ψ over G (not necessarily of the same dimension) are Witt equivalent, denote ϕ ∼ ψ,
if there exist non-negative integers k, l such that ϕ ⊗ k〈1,−1〉 ∼= ψ ⊗ l〈1,−1〉. Could be fruitful
compare the Witt equivalence with the construction in section 1.3.

Of course, a direct consequence of the definition of Witt equivalence is that this relation is an
equivalence relation. Another consequence is the follow: suppose ϕ ∼ ϕ′, ψ ∼ ψ′ and a ∈ G. Then
ϕ⊕ ψ ∼ ϕ′ ⊕ ψ′, aϕ ∼ aϕ′ and ϕ⊗ ψ ∼ ϕ′ ⊗ ψ′.

Let R be the set of equivalence classes of forms with respect to Witt equivalence. The sum and
product of forms induces binary operations on R. Defining on R the prescriptions 0 := 〈1,−1〉,
1 := 〈1〉 and −〈a1, ..., an〉 := 〈−a1, ...,−an〉, we have that R is a commutative ring with unity.
This ring is called the Witt ring associated to the Q-structure (G,Q, q). In the field case, this
construction coincide with the Witt ring of a field. In fact, this provides an alternative way to
define the Witt ring of a field.

The following proposition shows how to recover the concepts of isometry and isotropy from
Witt equivalence:

Proposition 3.1.20.

a - ϕ ∼= ψ ⇔ ϕ ∼ ψ and dim(ϕ) = dim(ψ).

b - ϕ is isotropic ⇔ there exist a form ψ with ϕ ∼ ψ and dim(ϕ) > dim(ψ).

Proof.

a - (⇒) is just the definition of Witt equivalence. (⇐) suppose ϕ ⊕ k〈1,−1〉 ∼= ψ ⊕ l〈1,−1〉.
Comparing dimensions and using dim(ϕ) = dim(ψ), this yields k = l. Thus ϕ ∼= ψ by Witt’s
cancellation.

b - (⇒) is just the definition of isotropy. (⇐) suppose ϕ⊕k〈1,−1〉 ∼= ψ⊕l〈1,−1〉. Then comparing
dimensions and using dim(ϕ) > dim(ψ) yields k < l. Thus, by Witt’s cancellation, ϕ ∼=
ψ ⊕ (l − k)〈1,−1〉 so ϕ is isotropic.

Observe that any form ϕ over G decomposes as ϕ ∼= ϕan ⊕ k〈1,−1〉 with k ≥ 0 and with ϕan
a (possibly 0-dimensional) anisotropic form. To obtain such a decomposition, just keep extracting
terms 〈1,−1〉 until it is no longer possible.
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Corollary 3.1.21. Suppose ϕ ∼= ϕan⊕ k〈1,−1〉 and ψ ∼= ψan⊕ l〈1,−1〉 with k, l ≥ 0 and ϕan, ψan
anisotropic. Then ϕ ∼ ψ ⇒ ϕan ∼= ψan.

Proof. Observe that ϕ ∼ ϕan, and ψ ∼ ψan, so ϕ ∼ ψ ⇔ ϕan ∼ ψan.Thus, we must verify ϕan ∼
ψan ⇔ ϕan ∼= ψan. (⇐) is just the definition of Witt equivalence. For (⇒), suppose ϕan ∼ ψan.
Since ϕan is anisotropic, by 3.1.20(b) dim(ϕan) ≤ dim(ψan). Similarly, dim(ψan) ≤ dim(ϕan), since
ψan is anisotropic. Thus dim(ϕan) = dim(ψan), so ϕan ∼= ψan by 3.1.20(a).

We refer to ϕan (notation as above) as the anisotropic part of ϕ. The non-negative integer
k is referred to as the Witt index of ϕ.

Note it follows from corollary 3.1.21 that if ϕ and ψ are already anisotropic, then ϕ ∼ ψ ⇔ ϕ ∼=
ψ. Since each element of R is representable by an anisotropic form, R (as a set) can be identified
with the set of isometry class of anisotropic forms. Some care must be taken in doing this, however,
since the sum and product of anisotropic forms need not be anisotropic.

3.1.4 Pfister forms, fundamental ideal and Arason-Pfister property

We already know that Pfister forms are central for quadratic forms on the field case. Here,
we will want to reproduce this concepts in the abstract case. Again, we will work on a fixed
Q-structure (G,Q, q).

A k-folded Pfister form is a form of the type

ϕ : 〈〈a1, ..., an〉〉 := ⊗ki=1〈1, ai〉 with a1, ..., ak ∈ G and k ≥ 0.

A form ϕ over G is said to be round if the elements of G represented by ϕ are just the elements
a ∈ G satisfying aϕ ∼= ϕ (1ϕ = ϕ⇒ 1 ∈ D(ϕ)). Since D(aϕ) = aD(ϕ), one sees if ϕ is round then
aD(ϕ) = D(ϕ) for all a ∈ D(ϕ), i.e, D(ϕ)D(ϕ) = D(ϕ). This implies the set D(ϕ) is a subgroup
of G if ϕ is round.

Proposition 3.1.22. Every Pfister form is round.

Proof. Let ϕ = 〈〈a1, ..., ak〉〉, a1, ..., ak ∈ G. Expanding the products that define ϕ, we see 1 ∈ D(ϕ).
Now suppose a ∈ D(ϕ). If k = 0, ϕ = 〈1〉 so a = 1 and aϕ ∼= ϕ is immediate. Now suppose k ≥ 1.
Thus ϕ ∼= 〈1, a1〉 ⊗ ψ ∼= ψ ⊕ a1ψ, where ψ = 〈〈a2, ..., 〉〉. By 3.1.16, exists c, d ∈ D(ψ) with
a ∈ D(c, a1d). Comparing discriminants, this yields 〈c, a1d〉 ∼= 〈a, a1acd〉. Also cψ ∼= ψ and dψ ∼= ψ
by induction on k. It follows that cdψ ∼= ψ. Thus

aϕ ∼= a(ψ ⊕ a1ψ) ∼= a(ψ ⊕ a1cdψ) ∼= 〈a, aa1cd〉 ⊗ ψ ∼= 〈c, a1d〉 ⊗ ψ ∼= cψ ⊕ a1dψ ∼= ψ ⊕ a1ψ ∼= ϕ.

Corollary 3.1.23. If ϕ is a Pfister form, then D(ϕ) is a subgroup of G.

Proposition 3.1.24. Suppose ϕ is a k-fold Pfister form, k ≥ 1, that ϕ′ is defined by ϕ ∼= 〈1〉⊕ϕ′,
and x ∈ D(ϕ′). Then there exist x1, ..., xk ∈ G with x1 = x and ϕ ∼= ⊗ki=1〈1, xi〉.

Proof. If k = 1 this is immediate since ϕ′ = 〈x〉. Suppose ϕ = 〈〈a1, ..., ak〉〉, k ≥ 2. Thus

ϕ = 〈1, a1〉 ⊗ ψ ∼= ψ ⊕ a1ψ

so ϕ′ ∼= ψ′ ⊕ a1ψ. Here ψ′ = 〈〈a2, ..., ak〉〉 and ψ′ is defined by ψ ∼= 〈1〉 ⊕ ψ′. By 3.1.16, exists
y ∈ D(ψ′), z ∈ D(ψ) such that x ∈ D(y, a1z). Thus, by 3.1.22, zψ ∼= ψ, and by induction on k,
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ψ ∼= 〈1, y〉 ⊗ .... Also, 〈y, a1z〉 ∼= 〈x, a1xyz〉, so

ϕ ∼= ψ ⊕ a1ψ ∼= ψ ⊕ a1zψ ∼= 〈1, a1z〉 ⊗ 〈1, y〉 ⊗ ...
∼= 〈1, y, a1z, a1yz〉 ⊗ ... ∼= 〈1, x, a1xyz, a1yz〉 ⊗ ... ∼= 〈1, x〉 ⊗ 〈1, a1yz〉 ⊗ ... .

Corollary 3.1.25. If ϕ is a Pfister form which is isotropic, then ϕ ∼ 02.

Proof. By assumption, ϕ ∼= 〈1,−1〉 ⊕ ..., so ϕ′ ∼= 〈−1〉 ⊕ ..., i.e, −1 ∈ D(ϕ′), so by 3.1.24, ϕ ∼=
〈1,−1〉 ⊗ ... ∼ 0.

Now, we will work on the fundamental ideal. The argument here is basic the same of the
arguments preceeding proposition 1.3.11.

It is a direct consequence of the definition of Witt equivalence that for arbitrary forms ϕ,ψ
over G, ϕ ∼ ψ ⇒ dim(ϕ) ∼= dim(ψ) (mod 2). The modulo 2 dimension of a form ϕ is defined by
dim2(ϕ) = dim(ϕ) + 2Z ∈ Z/2Z. Thus dim2 is an invariant with respect to Witt equivalence, and
hence defines a ring homomorphism dim2 : R→ Z/2Z. The kernel of dim2 is the fundamental ideal
of R, denoted by I.

Note that every even dimensional form is a sum of two dimensional forms. Also, 〈a, b〉 ∼
〈1, a〉 ⊕ −〈1,−b〉 for all a, b ∈ G. It follows that I is generated, as an additive group, by the set
of 1-fold Pfister forms. Thus the k-th power ideal Ik is additively generated by the k-fold Pfister
forms.

Proposition 3.1.26. Let k ≥ 1. Then the following are equivalent:

a - Ik = 0.

b - ϕ ∼ 0 for all k-fold Pfister form ϕ.

c - ϕ is isotropic for all k-fold Pfister form ϕ.

d - ϕ is universal for all (k − 1)-fold Pfister form ϕ.

Proof. (a)⇔(b) and (b)⇒(c) is immediate from definitions involved. (c)⇒(b) follows from 3.1.25.
(b)⇒(d): let ϕ be a (k − 1)-fold Pfister form and let a ∈ G. Then ϕ⊗ 〈1,−a〉 ∼ 0 by (b), i.e,

ϕ ∼= aϕ. Thus by 3.1.22, a ∈ D(ϕ).
(d)⇒(b): let ϕ = 〈〈a1, ..., ak〉〉 and ψ = 〈〈a1, ..., ak−1〉〉. Then −ak ∈ D(ψ) by (d), so −akψ ∼= ψ

by 3.1.22. Thus ϕ ∼= 〈1, ak〉 ⊗ ψ ∼ 0.

Corollary 3.1.27. a - I = 0⇔ G = 1.

b - I2 = 0⇔ Q = 0.

Proof.

a - By 3.1.26, I = 0⇔ 〈1〉 is universal. Since D(1) = {1}, this in turn, is equivalent to G = 1.

b - If I2 = 0, then every 1-fold Pfister form is universal, so in particular a ∈ D(1, ab) for all a, b ∈ G.
Comparing discriminants, 〈1, ab〉 ∼= 〈a, b〉 so q(a, b) = q(1, ab) = 0. Since this os true for all
a, b ∈ G, this implies Q = 0. Now suppose q(a, b) = 0 for all a, b ∈ G. Thus 〈1, ab〉 ∼= 〈a, b〉 so
〈1,−a,−b, ab〉 ∼ 0 i.e, 〈1,−a〉 ⊕ 〈1,−b〉 ∼ 0 for all a, b ∈ G. This shows I2 = 0.

2The notation ϕ ∼ 0 means the class of ϕ in the Witt ring is 0, i.e, ϕ is isometric to a sum of hyperbolic forms.
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Note that for all a, b ∈ G,

〈1,−a〉⊕ ∼ 〈1,−ab〉 ⊕ 〈1,−a〉 ⊗ 〈1,−b〉.

It folows that the mapping α : G→ I/I2 defined by α(a) = 〈1,−a〉+ I2 is a homomorphism from
the (multiplicative) group G to the additive group I/I2. Since the 1-fold Pfister forms generate I,
this mapping is, in fact, surjective. We wish to show that α is an isomorphism. For this purpose
it is useful to introduce the “signed” discriminant.

First note that the usual discriminant is not invariant with respect to Witt equivalence. To
rectify this, we define the signed discriminant of a form ϕ = 〈a1, ..., an〉 to be

disc±(ϕ) = (−1)n(n−1)/2disc(ϕ) = (−1)n(n−1)/2a1a2...an ∈ G.

Proposition 3.1.28.

a - If dim(ϕ) = n, dim(ψ) = m, then disc±(ϕ⊕ ψ) = (−1)mndisc±(ϕ)disc±(ψ).

b - If ϕ ∼ ψ then disc±(ϕ) = disc±(ψ).

Proof.

a - dim(ϕ⊕ ψ) = n+m and disc(ϕ⊕ ψ) = disc(ϕ)disc(ψ). The result now follows by noting that

(m+ n)(m+ n− 1)

2
=
m(m− 1)

2
+
n(n− 1)

2
+mn.

b - In view of 3.1.10(b), we need only to show that disc±(ϕ ⊕ 〈1,−1〉) = disc±(ϕ), but this is an
immediate consequence of (a).

It follows from 3.1.28(b) that the signed discriminant induces a mapping disc± : R → G. By
3.1.28(a), the restriction of this mapping to I is a group homomorphism. Note that if a, b ∈ G,
then disc±(〈1, a〉 ⊗ 〈1, b〉) = disc±(〈1, a, b, ab〉) = 1 by direct computation. Sice the 2-fold Pfister
forms generate I2 it follows disc±(I2) = 1, so disc± induces a group homomorphism β : I/I2 → G
defined by β(ϕ+ I2) = disc±(ϕ). Finally, if a ∈ G, then

(βα)(a) = β(α(a)) = β(〈1,−a〉+ I2) = disc±(1,−a) = a

so βα = id. On the other hand,

(αβ)(〈1, a〉+ I2) = α(β(〈1, a〉+ I2)) = α(−a) = 〈1, a〉+ I2

and αβ = id. Thus α is an isomorphism with inverse β. This proves the following:

Proposition 3.1.29. I/I2 ∼= G canonically.

Moreover, from the fact that β is the inverse of α we obtain

Corollary 3.1.30. For ϕ,ψ ∈ R, ϕ ≡ ψmod I2 ⇔ dim2(ϕ) = dim2(ψ) and disc±(ϕ) = disc±(ψ).
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In section 1.11, we studied the Witt ring of a field in terms of the filtration

R ⊇ I ⊇ I2 ⊇ ... ⊇ Ik ⊇ ...

determined by the fundamental ideal I. Unfortunately, the proof of Hauptsatz depends on a certain
methods which is available only in the field case. We can, at least, proceed axiomatically as follows.
Let us say that the quaternionic structure (G,Q, q) satisfies AP (k) if f = 〈a1, ..., an〉 ∈ R, f ∈ Ik
and n < 2k ⇒ f ∼ 0. With this terminology we can prove:

Proposition 3.1.31. AP (0), AP (1) and AP (2) holds for any Q-structure.

Proof. AP (0) and AP (1) are trivial statements. To prove AP (2) suppose ϕ ∈ I2, dim(ϕ) < 4 (thus
dim(ϕ) = 0 or 2). By 3.1.30, ϕ is even dimensional and disc±(ϕ) = 1. Disregarding the trivial
case, we may assume ϕ = 〈a, b〉. Thus 1 = disc±(ϕ) = −ab, so b = −a. Thus ϕ = 〈a,−a〉 ∼ 0.

However, we generally have the following problem for arbitrary Q-structures:

Given a arbitrary Q-structure, does AP (k) hold for all k ≥ 3?

3.2 Abstract Witt Rings

We provide a brief account on the abstract Witt rings, as in the chapter 4 of [Mar80]. Un-
fortunately, we just compute the equivalence of this abstract Witt rings with the Witt rings of a
quaternionic structure (and of course, the classical Witt ring of a field). Most of its interesting
application, including an approach to the Representation Problem posed in 2.8 are ommited. The
reader could consult this in [Mar80].

But even though this section is an introdutory one, we can note the simplification of the
language that the abstract Witt rings provides in deal with the study of its ring-theoretic aspects.

Suppose, to begin, that R is the Witt ring of a Q-structure (G,Q, q). Suppose a, b ∈ G. Then
by proposition 3.1.20, and the definition of isometry, 〈a〉 ∼ 〈b〉 ⇔ 〈a〉 ∼= 〈b〉 ⇔ a = b. Thus we may
identify G with a subset GR ⊆ R. This identifies 1 ∈ G with the unity 1 ∈ R and the distinguished
element −1 ∈ G with −1 ∈ R (where, as usual in a ring, −r denotes the additive inverse of r).
Since 〈a〉⊗〈b〉 ∼= 〈ab〉, GR is a subgroup of the multiplicative group Ṙ of R, and G ∼= GR as groups.
Since every form is expressible as the sum of 1-dimensional forms, it follows that GR generates R
as an additive group. With this as motivation, we define an (abstract) Witt ring:

Definition 3.2.1. An abstract Witt ring is a pair (R,GR) where R is a non-trivial commutative
ring with unity 1 (0 6= 1), and GR is a subgroup of the multiplicative group Ṙ which has exponent
2 and contains −1. We assume:

W1 - GR generates R additively.

Since −1 ∈ GR, this is the same as assuming that every element of R is of the form r =
a1 + ... + an, with a1, ..., an ∈ GR, and n ≥ 1. We let IR denote the ideal of R generated by
elements r ∈ R of the form r = a + b with a, b ∈ GR. This is the fundamental ideal of R, and we
can consider the Arason-Pfister property

AP (k) : If r = a1 + ...+ an ∈ Ik, with n < 2k, then r = 0.

It is not quite clear what “should” be assumed concerning AP (k). However, we do assume

W2 - AP (0), AP (1) and AP (2) holds for R.
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Finally, we assume

W3 - If a1 + ... + an = b1 + ... + bn and n ≥ 3, then there exist a, b, c3, ..., cn ∈ GR such that
a2 + ...+ an = a+ c3 + ...+ cn, a1 + a = b1 + b (and hence b2 + ...+ bn = b+ c3 + ...+ cn).

When the context is clear, we will refer to abstract Witt rings just by Witt rings.

Note that the Witt ring associated to a Q-structure is an example of abstract Witt ring (see
3.1.20(a), 3.1.31 and the definition of isometry in a Q-structure). The aim of this section is to
proof the converse is also true.

For r = a1 + ... + ar ∈ R, we define the modulo-2 dimension and the signed discriminant of r
by dim2(r) = n+ 2Z ∈ Z/2Z and disc±(r) = (−1)n(n−1)/2a1...an ∈ GR. It is necessary to verify:

Proposition 3.2.2. dim2 : R→ Z/2Z and disc± : R→ GR are well-defined.

Proof. By AP (1), GR ∩ IR = ∅. From this, it follows that

a1 + ...+ an = b1 + ...bm ⇒ n ≡ m mod 2

thus dim2 is well-defined. Now, we wish to show that

a1 + ...+ an = b1 + ...+ bm ⇒ (−1)n(n−1)/2a1...an = (−1)m(m−1)/2b1...bm.

By adding enough terms of the form 1 + (−1) we are reduced to the case m = n. Since the case
m = n = 1 is immediate, let n = 2. In this case, a1 + a2 = b1 + b2 so

(a1 − b1)(a1 + a2) = a1(a1 + a2)− b1(b1 + b2) = a2
1 + a1a2 − b21 − b1b2

= 1 + a1a2 − 1− b1b2 = a1a2 − b1b2.

Thus a1a2 − b1b2 ∈ I2
R, so by AP (2), a1a2 = b1b2. Now suppose n ≥ 3. Choose a, b, c3, ..., cn as in

W3. Then by induction on n,

a1a2...an = a1ac3...cn = b1bc3...cn = b1b2...bn,

completing the proof.

Now, suppose that R is the Witt ring of some Q-structure (G,Q, q), and that G is identified
with a subgroup of Ṙ in the canonical way. Then for a, b ∈ G, the element (1 − a)(1 − b) ∈ R
is just the equivalence class of the 2-fold Pfister form 〈〈a, b〉〉 ∼= 〈1,−a,−b, ab〉. It follows, using
proposition 3.1.20, Witt cancellation, and 3.1.10(e), that for a, b, c, d ∈ G,

(1− a)(1− b) = (1− c)(1− d)⇔ q(a, b) = q(c, d).

For R an arbitrary Witt ring we define QR to be the subset of R consisting of all elements
(1− a)(1− b), a, b ∈ GR. The mapping qR : Gr ×GR → QR is defined by qR(a, b) = (1− a)(1− b).
we take −1 as the distinguished element of GR, and 0 = qR(1, 1) as the point of QR.

Proposition 3.2.3. For any Witt ring R, (GR, QR, qR) is a Q-structure.

Proof. Q1 is immediate. For Q2, note that (1− a)(1− a) = 1− a2 = 1− 1 = 0. Concerning Q3,

(1− a)(1− bc) = 0⇔ b(1− a)(1− bc) = 0⇔ (1− a)(b− c) = 0

⇔ (1− a)(1− 1 + b− c) = 0

⇔ (1− a)(1− b) = (1− a)(1− c).
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To prove Q4, assume (1−a)(1− b) = (1− c)(1−d), with a, b, c, d ∈ GR. Expanding and cancelling,
this yields −a − b + ab = −c − d + cd. By W3, exists p, q, r ∈ GR such that −b + ab = p + r,
−a+ p = −c+ q, and −d+ cd = q + r. Take x = −r. Comparing signed discriminants, this yields
p = ax, q = cx. Thus

(1− a)(1− b) = 1− a− b+ ab = 1− a+ p+ r

= 1− a+ ax− x = (1− a)(1− x).

Similarly, (1− c)(1− d) = (1− c)(1− x). This completes the proof.

We now obtain a result describing R as quotient of the integral group ring Z[GR]. By W1, there
is a natural surjetive ring homomorphism φ : Z[GR] → R. We denote by [a] the element a ∈ GR
viewed as an element of Z[GR] (this notation is introduced to avoid confusing elements of Z[GR]
with elements of R). Thus φ([a]) = a for all a ∈ GR. Hence there is an exact sequence

0 // JR // Z[GR]
φ // R // 0

where JR denotes the kernel of φ, so R ∼= Z[GR]/JR.

Theorem 3.2.4. JR is generated as an ideal by the element [1] + [−1] and the elements ([1] −
[a])([1]− [b]) such that a, b ∈ GR and qR(a, b) = 0.

Proof. Let KR denote the ideal of Z[GR] generated by [1]+ [−1] and the elements [a]+ [b]− [c]− [d]
such that a+ b = c+ d in R.

Claim 1. KR = JR. Of course, KR ⊆ JR. Thus, the claim will be estabilished if we show
the reduced mapping φ : Z[GR]/KR → R is injective. Since [1] + [−1] ∈ KR, every r ∈ Z[GR] is
expressible as r = [a1] + ...+ [an] mod KR for suitable a1, ..., an ∈ GR. Thus claim 1 reduces to:

Claim 2. If a1 + ...+ an = b1 + ...+ bn in R, then [a1] + ...+ [an] = [b1] + ...+ [bn] mod KR.
By adding suitable number of terms 1 + (−1), we can assume m = n. By definition of KR, we can
also assume n ≥ 3. Let a, b, c3, ..., cn be as in W3. Thus, by induction on n, these congruences
holds modulo KR:

[a2] + ...+ [an] ≡ [a] + [c3] + ...+ [cn],

[a1] + [a] ≡ [b1] + [b],

[b2] + ...+ [bn] ≡ [b] + [c3] + ...+ [cn],

so modulo KR, we have

[a1] + [a2] + ...+ [an] ≡ [a1] + [a] + [c3] + ...+ [cn] ≡ [b1] + [b] + [c3] + ...+ [cn] ≡ [b1] + ...[bn].

This proves claim 2 and hence claim 1.
Now suppose a, b, c, d ∈ GR, and a + b = c + d. Comparing signed discriminants, ab = cd.

Let x = −ab = −cd. Thus b = −ax, d = −cx, so a − ax = c − cx, then 1 − x = ac − acx and
(1 − x)(1 − acx) = 0, so qR(x, ac) = 0. Finally, modulo the ideal generated by [1] + [−1] we have
these congruences

[a] + [b]− [c]− [d] ≡ [a]− [ax] + [c] + [cx] ≡ [a]([1]− [x]− [ac] + [acx])

≡ [a]([1]− [x])([1]− [ac]),

finalizing the proof.
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At this point, we can realize that this theory try to imitate the arguments developed in section
1.3. The class of Witt rings is made into a category as follows. If R and S are Witt rings, a
morphism α : R→ S is a (unitary) ring homomorphism such that α(GR) ⊆ GS .

Corollary 3.2.5. Suppose α : R→ S is a morphism of Witt rings. Then the restriction α : GR →
GS is a morphism of Q-structures. Conversely, each Q-structure morphism α : GR → GS lifts
uniquely to a morphism α : R→ S.

Proof. The first assertion follow from the definition of morphisms of Witt rings. By W1, if a
morphism of the Q-structures lifts at all, then it lifts uniquely. The existence of a lifiting follows
from theorem 3.2.4 using the fact that if (1− a)(1− b) = 0 then (1− α(a))(1− α(b)) = 0.

Finally note that if (G,Q, q) is a Q-structure, there is a (abstract) Witt ring R with (GR, QR, qR)
isomorphic to (G,Q, q) (in fact, R is the Witt ring constructed in section 3.1.3). Combining this
with the results just proved, we have the following major result:

Theorem 3.2.6. The category of Witt rings and the category of Q-structures are naturally equiv-
alent.

For finalizing this section, concerning about morphism of Witt rings, the exact relationship
between then and ring homomorphism is not quite clear. However, it is worth pointing out the
following result:

Proposition 3.2.7. Suppose R and S are Witt rings satisfying AP (3). Then R and S are iso-
morphic as Witt rings iff they are isomorphic as rings.

Proof. (⇒) is immediate. For (⇐), suppose α : R ∼= S is a ring isomorphism. Thus α(IR) is an
ideal of index 2 in S. Thus, if a ∈ GS , then a ≡ 1 mod α(IR) (since a /∈ α(IR)). In particular,
−1 ≡ 1 mod α(IR), so a+ b ≡ 0 mod α(IR) for all a, b ∈ GS . Thus IS ⊆ α(IR), so IS = α(IR) by
maximality of IS . Thus α(IR)k = IkS for all k ≥ 1 so α induces a group isomorphism

αk : IkR/I
k+1
R
∼= IkS/I

k+1
S for all k ≥ 1.

Combining the natural isomorphisms GR ∼= IR/I
2
R, GS ∼= IS/I

2
S with α1, this yields a group

isomorphism β : GR → GS . Note if c ∈ GR, β(c) is characterized as the unique element of GS
satisfying β(c) ≡ α(c) mod I2

S . We claim that β is an isomorphism of Q-structures. This, togheter
with 3.2.5 will complete the proof. But note that the unique lifting of β may not coincide with α.

From α(−1) = −1 ∈ GS follows β(−1) = −1. Now suppose a, b ∈ GR and qR(a, b) = 0.
We wish to show qS(β(a), β(b)) = 0. Applying α to 0 = qR(a, b) = (1 − a)(1 − b) we obtain
0 = (1− α(a))(1− α(b)). Since β(a) ≡ α(a) and β(b) ≡ (α(b) modulo I2

S , this yields

qS(β(a), β(b)) = (1− β(a))(1− β(b)) ≡ (1− α(a))(1− α(b)) ≡ 0 mod I3
S .

Since we are assuming AP (3), this implies qS(β(a), β(b)) = 0. By symmetry, we also have
qS(β(a), β(b)) = 0⇒ qR(a, b) = 0. This proves the claim and hence the proposition.

3.2.1 The local-global property of Pfister

The next natural step for this theory, is to obtain a result related to the Pfister local-global
principle 1.5.1.

Let start with the basic definitions: given a witt ring R, by a signature of R one means a
(unitary) ring homomorphism σ : R → Z. We denote by XR the (possible empty) set of all
signatures of R.
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Recall Z is a Witt ring with GZ = {1,−1}. Also, if σ ∈ XR, then σ(GR) ⊆ σ(Ṙ) = Ż. Thus a
signature of R is just a morphism σ : R→ Z of Witt rings.

Note for a, b ∈ GZ, qZ(a, b) = 0 except if a = b = −1. It follows from this observation
and corollary 3.2.5 that the signatures of R correspond in a one-to-one fashion with the group
homomorphisms σ : GR → {1,−1} (i.e, characters of GR) satisfying σ(−1) = −1 and qR(a, b) =
0⇔ either σ(a) = 1 or σ(b) = 1 for all a, b ∈ GR. Since

qR(a, b) = 0⇔ 1− a = b(1− a)⇔ b ∈ D〈1, a〉,

replacing a by −a, this allows one to rephrase the last condition satisfied by σ as follows:

b ∈ D〈1, a〉 and σ(a) = 1⇒ σ(b) = 1 for all a, b ∈ GR.

In case F is a field of characteristic 6= 2, then the signatures of the Witt ring R(F ) correspond
exactly to the orderings of F .

Proposition 3.2.8. The set of signatures of R(F ) (denoted X(F )) and the set of orderings of F
are in canonical one-to-one correspondence.

Proof. Each ordering P of F correspond to a signature σP by

σP (a) =

{
1 if a ∈ P
−1 if a /∈ P

and if a signature σ is given, we recover an ordering P such that σ = σP via P := {a ∈ Ḟ : σ(a) =
1}.

Theorem 3.2.9 (Pfister Local-Global Principle). Suppose r ∈ R and σ(r) = 0 for all σ ∈ XR.
Then there exist n ≥ 0 such that 2nr = 0.

Let us now denote by Rt the torsion subgroup of (R,+).

Corollary 3.2.10. Rt is 2-primary. For r ∈ R, r ∈ Rt ⇔ σ(r) = 0 for all σ ∈ XR.

Corollary 3.2.11. The following are equivalent:

a - XR = ∅.

b - Rt = R.

c - char(R) > 0.

Corollary 3.2.12. If IkR is torsion-free, then AP (k) holds for R.

Corollary 3.2.13. If I3
R is torsion free then AP (k) holds for all k ≥ 1.

3.2.2 Prime Ideals, the Nilradical and Units

Theorem 3.2.14. Let P be a prime ideal of R, P 6= IR. Then 2 /∈ P and there exists a unique
σ ∈ XR such that ker(σ) ⊆ P .

For the purpose of the next corollary we adopt the following notation: for σ ∈ XR, let Pσ =
ker(sigma). This Pσ is a prime ideal of R and R/Pσ ∼= Z. For σ ∈ XR and p any prime integer
we let Pσ,p be the unique prime ideal of R such that Pσ ⊆ Pσ,p and R/Pσ,p ∼= Z/pZ. The existence
and uniqueness of Pσ,p follows from R/Pσ ∼= Z and the well-know ideal structure of Z.
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Corollary 3.2.15. The prime ideals IR, Pσ, σ ∈ XR; and Pσ,p, σ ∈ XR, p in odd prime, are all
distinct and are the complete set of prime ideals of R.

Corollary 3.2.16. If XR 6= ∅, then IR is the only prime ideal of R.

Corollary 3.2.17.

Nil(R) =
{
Rt, if XR 6= ∅IR, if XR = ∅.

Theorem 3.2.18. a - If XR = ∅, Ṙ = 1 + IR.

b - If XR 6= ∅,
Ṙ = {r ∈ R : σ(r) = ±1 for all σ ∈ XR} = GR(1 +Rt).

Corollary 3.2.19. If R is any abstract Witt ring, then Ṙ = GR(1 + Nil(R)).

3.2.3 Pfister quotients

If J is any ideal of R and R = R/J then we can define GR to be the image of GR in R by the
natural projection. It is of interest to know when R = (R,GR) is again a Witt ring. In this section
we construct an important class of quotients of this type. In particular, we show that R/Nil(R) is
a Witt ring.

Let us fix a Pfister form p = 〈〈a1, ..., ak〉〉 over GR, p 6= 0 and let us denote the associated
Pfister element (1 +a)...(1 +ak) ∈ R by p̃. Let us denote by Ann(p̃) the annihilator of p̃ in R, that
is Ann(p̃) = {r ∈ R : rp̃ = 0}. This is an ideal of R.

Lemma 3.2.20. Ann(p̃) is generated as an ideal by the elements 1− x, x ∈ D(p̃).

Now let R = R/Ann(p̃) and let GR denote the image of GR in R. Note that for a ∈ GR,

a ≡ 1 mod(Ann(p̃))⇔ (1− a)p̃ = 0⇔ ap̃ = p̃⇔ ap = p⇔ a ∈ D(p).

It follow GR = R/D(p).

Proposition 3.2.21. R = (R,GR) is a Witt ring.

We will refer to the quotients R/Ann(p̃), p an anisotropic Pfister form over GR, as Pfister
quotients of R. Thus we have proved that every Pfister quotient of R is a Witt ring. We will
also use the term Pfister quotient to indicate a slightly more general type of quotient of R. A set
S of anisotropic Pfister forms will be called directed if for all p ∈ S there is a r ∈ S such that
D(p), D(q) ⊆ D(r).

Now, suppose S is a directed set of Pfister forms and p, q ∈ S with D(p) ⊆ D(q). Then by
lemma 3.2.20, Ann(p̃) ⊆ Ann(q̃), so the identity map in R induces a morphism of Witt rings
R/Ann(p̃) → R/Ann(q̃). Thus we have a directed system of Witt rings and morphisms. In this
situation we can always form the direct limit.

Lemma 3.2.22. Let {Ri}i∈I be any directed system in the category of Witt rings. Then the direct
limit lim−→

i∈I
Ri exists.

We wish to apply this to the directed system of Witt rings arising from a directed set S of
Pfister forms. In this case,

lim−→
p∈S

R/Ann(p̃) = R/
⋃
p∈S

D(p).
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The associated group for this Witt ring is

lim−→
p∈S

G/D(p) = GR/
⋃
p∈S

D(p).

Such quotients of R will also be reffered to as Pfister quotients. One can, of course, view the
previous definition as being a special case of this one where S is a singleton set {p}.

Now suppose XR 6=. The Nil(R) = Rt ∪n≥0 Ann(2n). Since the system of Pfister forms
{〈1, 1〉n : n ≥ 0} is directed, it follows that R = R/Nil(R) is a Pfister quotient of R and hence
is itself a Witt ring, with GR = GR/ ∪n≥0 D〈1, 1〉n. Note that XR is canonically identified with
XR. On the other hand, if XR = ∅, then Nil(R) = IR so R = R/Nil(R) = Z/2Z. This can also be
viewed as a Witt ring with GR = 1.

Combining the above, we have proved the following:

Corollary 3.2.23. If R is a Witt ring, R = R/Nil(R) and GR = the image of GR in R by the
natural projection, then R = (R,GR) is a Witt ring with Nil(R) = 0.

We will denote the Witt ring R/Nil(R) by Rred. In case F is a field we will refer to Rred as the
reduced Witt ring of F .

3.2.4 Reduced Witt rings

We will say a Witt ring R is reduced if Nil(R) = 0. Thus, if R is any Witt ring, then Rred is
a reduced Witt ring. We now give a necessary and sufficient condition, in terms of the associated
Q-structure, that a Witt ring is reduced.

Theorem 3.2.24. For an arbitrary Witt ring R, R is reduced if and only if qR satisfies

qR(a, a) = 0⇒ a = 1

for all a ∈ GR.

Corollary 3.2.25. Let R be a reduced Witt ring, f be a form over GR, and n ≥ 1. Then

a - D(n× f) = D(f).

b - If dim(f) ≥ 2 and n× f is isotropic, then so is f .

Recall that isotropic forms are always universal. For reduced Witt rings we have the converse:

Corollary 3.2.26. Let R be a reduced Witt ring, f be a form over GR with dim(f) ≥ 2. Then the
following are equivalent:

a - f is isotropic.

b - f is universal.

c - There exist x ∈ GR with x,−x ∈ D(f).
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3.3 Cordes Scheme

As observed by Cordes in [Cor76], the existence of a field with prescribed properties relating
to quadratic forms can frequently be determined by observing what must happen to the value sets
of binary quadratic forms. For this reason, the theory of Cordes schemes borns, and we make a
brief introduction following [Cor76], [Kul79], [KSS88]. Here, we describe the category of Cordes
Schemes and what is the apropriated notion of isometry of forms.

Definition 3.3.1. A pre-quadratic scheme is a triple (G,−1, V ), where G is a group of exponent
2, i.e, g2 = 1 for all g ∈ G; −1 is a distinguished element of G with the notation −a = (−1) · a,
and V is a mapping assigning to each a ∈ G a subgroup V (a) of G, satisfying the following axioms
for all a, b, c ∈ G:

C1 - a ∈ V (a) for every a ∈ G.

C2 - b ∈ V (−a) implies a ∈ V (−b) for all a, b ∈ G.

A pre-quadratic scheme is said to be reduced if satisfies

V (1) = {1}. (red)

Definition 3.3.2. A quadratic form f of dimension n in a pre-scheme G, is any n-tuple f =
〈a1, ..., an〉 of elements of G. The set Df of elements of G represented by f is defined inductively
as follows:

D〈a1〉 = {a1},

D〈a1, ..., an〉 =
⋃
{a1V (a1x) : x ∈ D〈a2, ..., an〉} for n ≥ 2.

In particular, for a binary form 〈a, b〉 we have D〈a, b〉 = aV (ab) = bV (ab) = D(b, a)3.

All these have natural meaning in case of the pre-scheme of a field F of characteristic not 2.
Here G is the group of square classes Ḟ /Ḟ 2, −1 is the coset (−1)Ḟ and V (aḞ 2) is the value group
of the quadratic form 〈1, a〉 viewed as a subgroup of G. However, it turns out that in the abstract
situation the value set D〈a1, ..., an〉 depends in general on the order of diagonal entries. To rectify
this we introduce

Definition 3.3.3. A pre-scheme (G,−1, V ) is said to be a Cordes scheme (or quadratic scheme)
if it satisfies the following axiom:

C3 - D〈a, b, c〉 = D〈b, a, c〉 for all a, b, c ∈ G.

Ilustrating the versatile of Cordes schemes structure, we have the following

Theorem 3.3.4. For a triple (G,−1, V ), where G is a group of exponent 2, i.e, g2 = 1 for all
g ∈ G; −1 is a distinguished element of G, and V is a mapping assigning to each a ∈ G a subgroup
V (a) of G, the following are equivalent:

i - (G,−1, V ) is a Cordes Scheme.

ii - (G,−1, V ) satisfies C2 and C3.

3From a, ab ∈ V (ab) we get b = a(ab) ∈ V (ab). So a, b ∈ V (ab), and since V (ab) is a subgroup, we have
aV (ab) = bV (ab).
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iii - (G,−1, V ) satisfies C1 and

b ∈ V (−a)V (−ac)⇒ a ∈ V (−b)V (−bc). (C4)

iv - (G,−1, V ) satisfies C1 and

bV (−a) ∩ V (−ac) 6= ∅ ⇒ aV (−b) ∩ V (−bc) 6= ∅. (C5)

v - (G,−1, V ) satisfies

b ∈ V (−a)V (−ac)⇒ ab ∈ V (−b)V (−bc). (C6)

Proof. (i)⇒(ii) is immediate.

(ii)⇒(i) observe that without assuming anything on G we have a ∈ D(a, b) = aV (ab) and

a ∈ D(a, b, c) =
⋃

x∈bV (bc)

{aV (ax)}

for all a, b, c ∈ G. Thus a ∈ D(a, 1,−1) and by C3, a ∈ D(1, a,−1). It follows a ∈ V (x), where
x ∈ D(a,−1) = aV (−a). Thus x = ay with y ∈ V (−a) and a ∈ V (ay). By C2, −ay ∈ V (−a) and
so −a = −ay · y ∈ V (−a). By C2 again, a ∈ V (a), proving C1.

(i)⇒(iii) first of all, we claim that y ∈ D(a, b, c) iff −ab ∈ V (bc)V (−ay). For this, note that

D(a, b, c) =
⋃
{aV (au) : u ∈ bV (bc)} =

⋃
{aV (abx) : x ∈ V (bc)}.

Hence y ∈ D(a, b, c) iff exists x ∈ V (bc) with y ∈ aV (abx), i.e, ay ∈ V (abx). By C2, this holds iff
−abx ∈ V (−ay) or equivalently, −ab ∈ xV (−ay) with x ∈ V (bc). Note that we do not use C3 in
this proof.

Now, using the claim, by b ∈ V (−a)V (−ac) we get −c ∈ D(−a, ab,−b) = D(−a,−b, ab). By
C3, −c ∈ D(−b,−a, ab) = D(−b, ab,−a). Using the claim again, we obtain a ∈ V (−b)V (−bc), as
desired.

(iii)⇒(i) by D(a, b, c) =
⋃
{aV (abx) : x ∈ V (bc)} we get

D(a, b, c) = abcD(bc, ac, ab) = abcD(bc, ab, ac).

Similarly, D(b, a, c) = abcD(ac, ab, bc). using C4 and the claim, we get

y ∈ D(ac, ab, bc)⇔ −bc ∈ V (ac)V (−acy)

⇔ −ac ∈ V (bc)V (−bcy)

⇔ y ∈ D(bc, ab, ac)

obtaining C3.

(iii)⇔(iv) follow by a general group-theoretic fact: b ∈ HK iff Hb∩K 6= ∅ where H and K are
subgroups of an arbitrary group G.
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(iii)⇒(v) suppose b ∈ V (−a)V (−ac). Then a ∈ V (−b)V (−bc) and since −b ∈ V (−b)V (−bc),
we get −abV (−b)V (−bc).

(v)⇒(iii) applying C6 twice, we get

b ∈ V (−a)V (−ac)⇒ a ∈ V (ab)V (abc). (*)

Taking b = c = 1 and using (*) we get a ∈ V (a), proving C1. Finally, by C6 and C1 we obtain
b ∈ V (−a)V (−ac)⇒ −a ∈ V (−b)V (−bc), i.e, we prove C4.

Definition 3.3.5. Let (G,−1, V ) and (H,−1,W ) be pre-schemes. A c-morphism is a group ho-
momorphism f : G→ H such that f(−1) = −1 and f(V (a)) ⊆W (f(a)) for all a ∈ G.

The category of pre-schemes and c-morphisms will be denoted by PCS. Similarly, the category
of Cordes schemes (respectively reduced Cordes schemes) and c-morphisms will be denoted by CS
(respectively RCS).

The notion of isometry of quadratic forms can be introduced in abstract pre-schemes in two
different ways.

Definition 3.3.6. Two forms f = 〈a1, ..., an〉 and g = 〈b1, ..., bn〉 in a pre-scheme S are said to be
chain isometric, written f ∼ g if

i - a1 = b1, when n = 1.

ii - a1a2 = b1b2 and D〈a1, a2〉 = D〈b1, b2〉, when n = 2.

iii - For n ≥ 3, there exists a chain of forms f0 = f, f1, f2, ..., fk = g, k ≥ 0, such that for each
i = 0, ..., k − 1, the form fi is simply-equivalent to fi+1 (remember 1.2.4).

Definition 3.3.7. Two forms f and g as above is said to be strongly isometric, written f ∼= g, if

i - a1 = b1, when n = 1.

ii - a1a2 = b1b2 and D〈a1, a2〉 = D〈b1, b2〉, when n = 2.

iii - For n ≥ 3, there exists a, b, c3, ..., cn ∈ G such that 〈a1, a〉 ∼= 〈b1, b〉, 〈a2, ..., an〉 ∼= 〈a, c3, ..., cn〉
and 〈b2, ..., bn〉 ∼= 〈b, c3, ..., cn〉.

Lemma 3.3.8. For arbitrary forms ϕ,ψ, ψ′ over a Cordes scheme S, ψ ∼= ψ′ ⇔ ϕ⊕ ψ ∼= ϕ⊕ ψ′.

Proof. Just copy (literally!) the proof of lemma 3.1.12!

Theorem 3.3.9. For a pre-scheme S the following are equivalent:

i - Strongly isometry ∼= is transitive.

ii - Strongly isometry ∼= is transitive on 3-dimensional forms.

iii - The pre-scheme S is a Cordes scheme.

Proof. (i)⇒(ii) and (ii)⇔(iii) follow by the definitions involved. We just need to prove (ii)⇒(i).
By induction on the dimension, which, when 2 or 3 are taken care of by assumption. Assume that
〈a1, ..., an〉 ∼= 〈b1, ..., bn〉 = ψ and ψ ∼= 〈c1, ..., cn〉, and that ∼= is transitive on forms of dimension
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n − 1 ≥ 3. The hypotheses yield α, β, γ, δ, yi, zi ∈ G, 3 ≤ i ≤ n, such that (I) and (II) below hold
true

〈a1, α〉 ∼= 〈b1, β〉, 〈a2, ..., an〉 ∼= 〈α, ~y〉 and 〈b2, ..., bn〉 ∼= 〈β, ~y〉; (I)

〈b1, γ〉 ∼= 〈c1, δ〉, 〈b2, ..., bn〉 ∼= 〈γ, ~z〉 and 〈c2, ..., cn〉 ∼= 〈δ, ~z〉, (II)

where ~y = 〈y3, ..., yn〉 and ~z = 〈z3, ..., zn〉. By induction, ∼= is transitive on (n − 1)-forms, and so,
〈β, ~y〉 ∼= 〈γ, ~z〉, since both are isometric to b2, ..., bn〉. Thus, there are x, t, y.~t = 〈t4, ..., tn〉 ∈ G such
that

〈β, x〉 ∼= 〈γ, y〉, 〈~y〉 ∼= 〈x,~t〉 and 〈~z〉 ∼= 〈y,~t〉. (III)

Now, by the preservation of isometry by sum (lemma 3.3.8), the first isometry in (I), (II) and (III)
as well as 3-transitivity, we may write

〈a1, α, x〉 = 〈a1, α〉 ⊕ 〈x〉 ∼= 〈b1, β〉 ⊕ 〈x〉 ∼= 〈b1〉 ⊕ 〈β, x〉
∼= 〈b1〉 ⊕ 〈γ, y〉 ∼= 〈b1, γ〉 ⊕ 〈y〉 ∼= 〈c1, δ〉 ⊕ 〈y〉 = 〈c1, δ, y〉.

Therefore, there are u, v, w ∈ G such that

〈a1, u〉 ∼= 〈c1, v〉, 〈α, x〉 ∼= 〈u,w〉 and 〈δ, y〉 ∼= 〈v, w〉. (IV)

The preservation of isometry by sum, the transitivity of ∼= for (n − 1)-forms, the second and the
third isometry in (I) and (II), respectively, together with the last two in (III) and (IV), yield

〈a2, ..., an〉 ∼= 〈α, ~y〉 ∼= 〈α, x,~t〉 ∼= 〈u,w,~t〉 and

〈c2, ..., cn〉 ∼= 〈δ, ~z〉 ∼= 〈δ, y,~t〉 ∼= 〈v, w,~t〉,

isometries which, together with the first one in (IV), prove that 〈a1, ..., an〉 ∼= 〈c1, ..., cn〉.

Theorem 3.3.10. Let S be a Cordes scheme. Given two forms f and g over S, we have

f ∼= g ⇔ f ∼ g.

3.4 A First Functorial Picture

After this introduction to our first abstract theories, we will describe our first functorial picture

PCS

AWR ' // QS ' // CS
?�

OO

RAWR
?�

OO

RCS
?�

OO

Here, RAWR and RCS are the categories of reduced abstract Witt rings and reduced Cordes
schemes respectively. We already describe the equivalence between AWR and QS. So, left to us,
create the connection between QS and CS4.

4Of course, we do not talk about reduced abstract Witt rings. However, once we estabilish the equivalence between
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Proposition 3.4.1. Let (G,Q, q) be a quaternionic structure. For all a ∈ G, define VG(a) = {b ∈
G : q(−a, b) = 0}. Then (G,−1, VG) is a pre-scheme.

Proof. Firstly, we need to prove that VG(a) is in fact a subgroup. By 3.1.9(i) q(−a, 1) = 0 for all
a ∈ G, so 1 ∈ VG(a). Now, let b, c ∈ VG(a).

b, c ∈ VG(a)⇒ q(−a, b) = 0 = q(−a, c) Q3⇒ q(−a, bc) = 0

and bc ∈ VG(a). Therefore VG(a) is a subgroup of G. Note that a ∈ VG(a) since q(−a, a) = 0 by
Q2, and if b ∈ VG(a),

q(−a, b) = 0
Q1⇒ q(b,−a) = 0 = q(−(−b),−a)⇒ −a ∈ VG(−b).

Then, we have that (G,−1, VG) is a pre-scheme.

To prove that (G,−1, VG) is a Cordes scheme, we need to translate the notion of representation
in both theories. Remember, given a form f = 〈a1, ..., an〉 in a pre-scheme (G,V,−1), the set DC〈f〉
of elements of G represented by f (in the sense of Cordes schemes) is:

DC〈a1〉 = {a1},

DC〈a1, ..., an〉 =
⋃
{a1V (a1x) : x ∈ D〈a1, ..., an〉} for n ≥ 2.

In particular, for a binary form 〈a, b〉 we have DC〈a, b〉 = aV (ab) = bV (ab). Hence,

DC〈a1, ..., an〉 =
⋃

x∈DC〈a1,...,an〉

DC(a1, x).

On the other hand, in the sense of quaternionic structures, given a form f = 〈a1, ..., an〉 in a
quaternionic structure (G,Q, q), DQ〈f〉 of elements of G represented by f is:

DQ(f) = {x ∈ G : there exists x2, ..., xn ∈ G such that f ∼= 〈x, x2, ..., xn〉}.

By the inductive description of isometry on quaternionic structures, we have

DQ〈a1, ..., an〉 =
⋃

x∈DQ〈a1,...,an〉

DQ(a1, x).

Now, we are ready to prove the theorem desired:

Theorem 3.4.2. Let (G,Q, q) be a quaternionic structure. With the notation developed in 3.4.1,
(G,−1, VG) is a Cordes scheme. Moreover, this correspondence gives a functor C : QS → CS.

Proof. For the first affirmation, we just need to prove C3. The first step, is to prove that DC(a, b) =
DQ(a, b) for all a, b ∈ G. For this, note that for all a, b ∈ G

DQ(a, b) = {x ∈ G : there exist y ∈ G such that 〈x, y〉 ∼= 〈a, b〉}
= {x ∈ G : there exist y ∈ G such that xy = ab and q(x, y) = q(a, b)}
y=xab

= {x ∈ G : such that 〈x, xab〉 ∼= 〈a, b〉}.

AWR, QS and CS, the equivalence between RAWR and RCS will follow.
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In particular, DQ(1, a) = {x ∈ G : such that 〈x, xa〉 ∼= 〈1, a〉} and q(x, xa) = 0 for all a ∈ G, and
this implies DQ(a, b) = aDQ(1, ab). This yields

V (a) = {x ∈ G : q(−a, x) = 0} q(x,−x)=0⇒
V (a) = {x ∈ G : q(x, xa) = 0} = DQ(1, a)

for all a ∈ G. Therefore

DC(a, b) = aV (ab) = aDQ(1, ab) = DQ(a, b).

The second step is prove that DC(a, b, c) = DQ(a, b, c) for all a, b, c ∈ G:

DC(a, b, c) =
⋃

x∈DC(b,c)

DC(a, x) =
⋃

x∈DQ(b,c)

DQ(a, x) = DQ(a, b, c).

Finally, by proposition 3.1.10(a) we have

DQ(a, b, c) = {x ∈ G : there exist y, z ∈ G such that 〈x, y, z〉 ∼= 〈a, b, c〉}
= {x ∈ G : there exist y, z ∈ G such that 〈x, y, z〉 ∼= 〈b, a, c〉} = DQ(b, a, c),

finalizing the proof of C3. Hence (G,VG,−1) is a Cordes scheme.
Now, for the second affirmation, let f : (G,QG, qG) → (H,QH , qH) be a QS-morphism and

a ∈ G. Of course, we already have f(−1) = −1 (and hence, f(−a) = −f(a)). Now, given b ∈ V (a),
we have

b ∈ VG(a)⇒ qG(−a, b) = 0⇒ qH(f(−a), f(b)) = 0

⇒ qH(−f(a), f(b)) = 0⇒ f(b) ∈ VH(f(a)).

Then f is also a C-morphism. Defining C(G,Q, q) = (G,VG,−1) and C(f) = f we have the desired
functor C : QS → CS.

Now, we will work in the converse of theorem 3.4.2. Let start with a Cordes scheme (G,V,−1).
Here, the construction is exactly the same made for the theorem 3.1.1: we define QG to be the set
of all isometry classes of quadratic forms of the type 〈1,−a,−b, ab〉, with a, b ∈ G and consider QG
to be a “pointed set” with point 0 equal to the isometry class of 〈1,−1, 1,−1〉. In the sequel, we
define qG : G×G→ QG to be the map sending (a, b) to the isometry class of 〈1,−a,−b, ab〉.
Theorem 3.4.3. Let (G,V,−1) be a Cordes scheme. Then (G,QG, qG) is a quaternionic structure.
Moreover, this correspondence provides a functor Q : CS → QS.

Proof. We need to verify the properties of definition 3.1.8 for (G,QG, qG). Let a, b, c, d ∈ G. With
the identification via isometry classes,

q(a, b) = 〈1,−a,−b, ab〉 = 〈1,−b,−a, ba〉 = q(b, a)

gives Q1 and q(a,−a) = 〈1,−a, a,−1〉 = 0 gives Q2. For Q3, suppose that q(a, b) = q(a, c). Then
〈1,−a,−b, ab〉 ∼= 〈1,−a,−c, ac〉, and by Witt’s cancellation, 〈−b, ab〉 ∼= 〈−c, ac〉. By definition of
isometry on Cordes schemes and theorem 3.3.9, we have

〈−b, ab〉 ∼= 〈−c, ac〉 ⇔ −bV (−a) = −cV (−a)⇔ bV (−a) = cV (−a)

⇔ abcV (−a) = aV (−a). (3.1)
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Keeping this in mind, lets us examine what q(a, bc) = 0 means.

q(a, bc) = 0⇔ 〈1,−a,−bc, abc〉 = 〈1,−1, 1,−1〉
⇔ 〈−a,−bc, abc〉 = 〈−1, 1,−1〉,

and this happens if and only if there exists x, y, z ∈ G such that 〈−a, x〉 ∼= 〈−1, y〉, 〈−bc, abc〉 ∼=
〈x, z〉 and 〈1,−1〉 ∼= 〈y, z〉. Taking x = a, y = 1 and z = −1, we already have 〈−a, a〉 ∼= 〈−1, 1〉 and
〈1,−1〉 ∼= 〈1,−1〉. To prove that 〈−bc, abc〉 ∼= 〈a,−1〉, is just observe that (−bc) · (abc) = a · (−1)
and abcV (−a) = aV (−a) by 3.1. Hence, q(a, b) = q(a, c) ⇒ q(a, bc) = 0. Conversely, suppose
q(a, bc) = 0. Then by the same argument above, we conclude abcV (−a) = aV (−a), and by 3.1
follows q(a, b) = q(a, c).

Finally, for Q4 we will repeat the same argument given in the field case: suppose q(a, b) = q(c, d),
i.e, 〈1,−a,−b, ab〉 ∼= 〈1,−c,−d, cd〉. By Witt’s Cancellation, 〈−a,−b,−ab〉 ∼= 〈−c,−d, cd〉. By
definition of isometry on Cordes schemes and theorem 3.3.9, there exist e, f, g ∈ G with 〈−b, ab〉 ∼=
〈e, f〉, 〈−d, cd〉 ∼= 〈f, g〉 and 〈−a, e〉 ∼= 〈−b, g〉. Comparing discriminants we get ef = −a, gf = −c,
so e = −af and g = −cf . Taking x = −f , we have e = ax, g = cx, so 〈−b, ab〉 ∼= 〈−x, ax〉
and 〈−d, cd〉 ∼= 〈−x, cx〉. Adding 〈1,−a〉 and 〈1,−c〉 respectively we obtain q(a, b) = q(a, x) and
q(c, d) = q(c, x). Therefore (G,QG, qG) is a quaternionic structure.

Now, let f : (G,VG,−1) → (H,VH ,−1) be a C-morphism. Since f is in particular a group
homomorphism, we have

qG(a, b) = 0⇒ 〈1,−a,−b, ab〉 = 0⇒ 〈1,−f(a),−f(b), f(a)f(b)〉 = 0⇒ qH(f(a), f(b)) = 0.

Then f is a QS-morphism. Defining Q(G,V,−1) = (G,QG, qG) and Q(f) = f , we have the desired
functor Q : CS → QS.

Corollary 3.4.4. The functors Q and C are quasi-inverse equivalences and the categories CS and
QS are equivalent.

So the first picture is complete. We emphasize this is the first time that these connections are
made with this level of details.



Chapter 4

A second generation of abstract
theories

In the decade of 80’s, a new abstract theory appears: the Marshall’s Abstract Space of Orderings
(AOS). They are important because generalize both theory of orderings on fields and the reduced
theory of quadratic forms. Since the abstract theories of chapter 3 does not have field-theoretic
methods to deal with the reduced case, the AOS solves this issue.

But only in the decade of 90’s that arise a (finitary) first-order theory that generalize the
reduced and non-reduced theory of quadratic forms simultaneously (in the sense that we will see in
subsection 4.2.3). This theory is the Special Groups of F. Miraglia and M. Dickmann. It takes as
primitive the binary isometry, is a first-order theory and treat the reduced and non-reduced case
in a very elegant way. This simplicity brings new methods and tools to the algebraic theory of
quadratic forms, culminating in a proof of Marshall’s and Lam conjecture.

4.1 Space of Orderings

We basically cover almost chapters 1,2 and 3 of [Mar96].

4.1.1 Basic Definitions

We need some elementary facts about groups of exponent 2 and their character groups.

A group of exponent 2 is a (necessarily abelian) group G satisfying a2 = 1 for all a ∈ G. A
character on a group G of exponent 2 is a homomorphism x : G→ {1,−1}. The character group G
of exponent 2 is χ(G) := Hom(G, {1,−1}) the set of all characters on G, with the group operation
defined pontwise, i.e, (xy)(a) := x(a)y(a) for all a ∈ G.

If G is a group of exponent 2, then χ(G) has a natural topology making in into a topological
group. The topology is just the weakest such that the mapping x 7→ x(a), a ∈ G, are continuous,
giving {1,−1} the discrete topology.

Proposition 4.1.1. For any group G of exponent 2:

i - χ(G) is compact.

ii - For each subgroup H of G, χ(G/H) is a closed subgroup of χ(G).

iii - Conversely, if S is any closed subgroup of χ(G) then S = χ(G/H) where H =
⋂
x∈S Ker(x).

123
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Proof. We are identifying characters in G/H with characters of G containing H in their kernels
(we can do it because of homomorphism theorem!).

i - Denote by {−1, 1}G the set of all functions from G to {−1, 1} with the product topology,
giving {−1, 1} the discrete topology. Then χ(G) ⊆ {−1, 1}G and the topology on χ(G) is the
induced topology. Since {−1, 1}G is compact by Tychonoff’s theorem, it suffices to check that
χ(G) is closed in {−1, 1}G. Suppose x ∈ {−1, 1}G is in the closure of χ(G). For each a, b ∈ G,
the set

U = {y ∈ {−1, 1}G : y(a) = x(a), y(b) = x(b), y(ab) = x(ab)}

is a neighbourhood of x in {−1, 1}G. Thus U ∩ χ(G) 6= ∅, say y ∈ U ∩ χ(G). Then y(ab) =
y(a)y(b) so x(ab) = y(ab) = y(a)y(b) = x(a)x(b). This proves that x is a character of G, so
x ∈ χ(G).

ii - χ(G/H) is compact by item (i), so it is closed in χ(G).

iii - Again, by homomorphism theorem, we can identificate S with a subseteq of χ(G/H). Of
course, we shall abuse of this identification and write S ⊆ χ(G/H). For the other inclusion,
replacing G by G/H, we are reduced to the case where H = {1}. Thus we are assuming
S ⊆ χ(G) is a closed subgroup such that

⋂
x∈S Ker(x) = {1}, and we want to show S = χ(G).

It suffices to handle the case where G is finite. Suppose K is any finite subgroup of G
and denote by S|K the set of restrictions x|K , x ∈ S. This is a subgroup of χ(K) and⋂
x∈S Ker(x|K) = {1}. Thus, if we know the result in the finite case, then S|K = χ(K). This

means that, for each y ∈ χ(G) and each finite subgroup K of G, there exist x ∈ S such that
x|K = y|K . Since S is closed in χ(G), this implies (by compacity) that S = χ(G).

So suppose G is finite (then the topology is discrete). Let {x1, ..., xn} be a subset of S chosen
minimal such that ∩ni=1Ker(xi) = {1}. Consider the chain of subgroups

G ⊇ Ker(x1) ⊇ Ker(x1) ∩Ker(x2) ⊇ ... ⊇ ∩ni=1Ker(xi) = {1}.

For j = 1, ..., n, Ker(xj) has index 2 in G and ∩j−1
i=1 Ker(xi) * Ker(xj) by the minimal choice

of the subset {x1, ..., xn}. Thus (∩j−1
i=1 Ker(xi)) ·Ker(xj) = G so

∩j−1
i=1 Ker(xi)

∩ji=1Ker(xi)
∼=

(∩j−1
i=1 Ker(xi)) ·Ker(xj)

Ker(xj)
=

G

Ker(xj)
.

This means ∩ji=1Ker(xi) has index 2 in ∩j−1
i=1 Ker(xi), j = 1, ..., n so {1} = ∩ni=1Ker(xi) has

index 2n in G, i.e, |G| = 2n. Thus, by counting, we see that the natural injection G ↪→∏n
i=1G/Ker(xi) is surjective so we get elements a1, ..., an ∈ G such that xi(aj) = −1 if i = j

and 1 otherwise. Then every element a ∈ G is expressible uniquely as a =
∏n
i=1 a

ei
i , ei ∈ {0, 1},

so {a1, ..., an} is a Z2-basis of G. Follow this that {x1, ..., xn} is the dual basis of χ(G). Since
{x1, ..., xn} ⊆ S, this means S = χ(G).

A topological space X is called a Boolean space if it is compact, Hausdorff and the clopen
sets form a basis for the topology. For example, if G is a group of exponent 2 then χ(G) is
a Boolean Space. Boolean spaces are also characterized as compact Hausdorff spaces which are
totally disconnected (i.e, the connected components are singleton sets). This is a consequence of
the following general result which we record now for future use:
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Lemma 4.1.2. For any compact topological space X which is normal (i.e, disjoint closed sets can
be separated), the connected component of any x ∈ X is the intersection of all clopen sets in X
containing x.

Proof. Let x ∈ X and Z ⊆ X be the intersection of all clopen sets containing x. If Cx is the
connected component of x, Cx must be a subset of Z (because of the topology of subspace). If we
show that Z is connected, it will follow that Z = Cx. Suppose this is false so we have non-empty
closed sets Z1, Z2 in Z with Z1∪Z2 = Z and Z1∩Z2 = ∅. Z is closed in X since it is the intersection
of clopen sets, so Z1, Z2 are closed in X. Since X is normal, there exist disjoint open sets U1, U2

in X with U1 ⊇ Z1 and U2 ⊇ Z2. Consider the closed sets V1 = X \ U1, V2 = X \ U2. Then
V1 ∩ V2 ∩ Z = ∅ so by compactness, V1 ∩ V2 ∩ Y = ∅ for some clopen set Y in X with Z ⊆ Y . Y
decomposees as a disjoint union of two non-empty open sets Y = (U1 ∩ Y )∪ (U2 ∩ Y ). This means
U1 ∩ Y and U2 ∩ Y are clopen in Y (and hence in X). Say x ∈ U1 ∩ Y . Then U1 ∩ Y is a clopen
set containing x and Z * U1 ∩ Y which contradicts the definition of Z.

Now, rewrite some terminology of the reduced theory relative to a fix proper preordering T ⊆ F ,
F a formally real field. Remember that XT = {P ⊇ T : P ∈ Sper(F )}. Let GT = Ḟ /Ṫ .

For any set X, {−1, 1}X denotes the set of all functions a : X → {−1, 1}. This is a group with
operation given by (ab)(x) = a(x)b(x). Note that a2 = 1 for all a ∈ {−1, 1}X .

Lemma 4.1.3. GT is naturally identified with a subgroup of {−1, 1}XT .

Proof. Each a ∈ Ḟ gives rise to a function a = aT : XT → {−1, 1} given by

a(P ) =

{
1 if a ∈ P
−1 if a ∈ −P.

Moreover, ab = ab so we have a group homomorphism from GT into {−1, 1}XT given by aṪ 7→ a.
If a /∈ T then by 2.1.2 and 2.1.4 there exist P ∈ XT with a(P ) = −1. Thus the mapping aT ∗ 7→ a
is injective.

Thus we can identify GT with a subgroup of {−1, 1}XT by identifying the coset aṪ with a = aT
for each a ∈ Ḟ .

A quadratic form with entries in GT is an n-tuple ϕ = 〈a1, ..., an〉, a1, ..., an ∈ GT . n is called the
dimension of ϕ.

∏n
i=1 ai ∈ GT is called the discriminant of ϕ. For each P ∈ XT , the signature of ϕ

at P is ϕ(P ) :=
∑n

i=1 ai(P ) ∈ Z. We say b ∈ GT is represented by ϕ = 〈a1, ..., an〉 if b =
∑n

i=1 aiti
for some t1, ..., tn ∈ T . The value set of ϕ consists of all elements b ∈ GT represented by ϕ. This
is denoted by D(ϕ) or by D〈a1, ..., an〉. Thus, if a ∈ GT , then D〈a〉 = {a} and, if n ≥ 3, then

b ∈ D〈a1, ..., an〉 ⇔ b ∈ D〈a, c〉 for some c ∈ D〈a2, ..., an〉.

Since we are not allowing c = 0, this requires a word of explanation: suppose b =
∑n

i=1 aiti. If∑n
i=1 aiti 6= 0, take c =

∑n
i=1 aiti. If

∑n
i=1 aiti = 0, then b = a1t1 = a1t1 + c0 so, in this case, we

can take c arbitrary in D〈a2, ..., an〉.
Thus by induction on the dimension, the study of value sets reduces to the 2-dimensional case.

In this case, we have the following result giving a description of value sets which does not refer to
the addition on F :

Lemma 4.1.4.

D〈a1, a2〉 = {b ∈ GT : for all P ∈ XT , either b(P ) = a1(P ) or b(P ) = a2(P )}.
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Proof. Let b ∈ Ḟ , b = t1a1 + t2a2, t1, t2 ∈ T , and let P ∈ XT . We want to show b(P ) = a1(P )
or b(P ) = a2(P ). If a2(P ) = −a1(P ) it is immediate. If a1(P ) = a2(P ) = 1, then the equation
b = t1a1 + t2a2 forces b(P ) = 1. Similarly, if a1(P ) = a2(P ) = −1.

To prove the other inclusion, assume for each P ∈ XT , b(P ) = a1(P ) or a2(P ). We want to
show that b ∈ Ta1 +Ta2, i.e, that b/a1 ∈ T +T (a2/a1). Suppose this is not the case, and consider
the preordering T ′ = T + T (a2/a1). By 2.1.2 and 2.1.4 we have an ordering P with b/a1 /∈ P and
P ⊇ T ′. Since T ′ ⊇ T and a2/a1 ∈ T ′, this means P ∈ XT , (a2/a1)(P ) = 1, b/a1(P ) = −1. Thus
a1(P ) = a2(P ) and b(P ) = −a1(P ). This contradicts the assumption.

The next result is perhaps surprising: every represented element has a “transversal” represen-
tation:

Lemma 4.1.5. Suppose a1, ..., an, b ∈ Ḟ . Then the following are equivalent:

i - b ∈ D〈a1, ..., an〉.

ii - b =
∑n

i=1 a
′
i for some a′1, ..., a

′
n ∈ Ḟ such that a′i = ai, i.e, a′i = tiai for some ti ∈ Ṫ ,

i = 1, ..., n.

Proof. (ii)⇒(i) is just the definition. For (i)⇒(ii) we can suppose

b =

n∑
j=1

tjaj , t1, ..., tn ∈ T.

Using the identity p = (p+1
2 )2 − (p−1

2 )2, we get

a1 + ...+ an
b

= r2 − s2 = (1 + r2)− (1 + s2)

for some r, s ∈ F . Thus

(1 + r2)b = a1 + ...+ an + (1 + s2)b =

n∑
j=1

(1 + (1 + s2)tj)aj ,

so b =
∑n

j=1 a
′
j , where a′j =

1+(1+s2)tj
1+r2

aj .

This lemma gives an interesting intrepretation of value sets. The multiplication on GT satisfies
ab = ab, i.e, it is just the operation on GT induced by the multiplication on Ḟ . We could try to do
the same thing with the addition and define a+ b = a+ b, but this is not well-defined. Instead of
getting a single output, we get a whole set of outputs, namely we get the set D〈a, b〉 = {a′ + b′ :
a′ + b′ 6= 0, a′ = a, b′ = b}. Thus, in studying value sets, we are just studying what remains of the
addition when we pass from F to GT .

Spaces of orderings were introduced by Murray Marshall in the 1980’s in an attempt to axiom-
atize the reduced theory of quadratic forms:

Definition 4.1.6 (Space of Orderings). An abstract ordering space or space of orderings, abbrevi-
ated AOS, is a pair (X,G) satisfying:

AX1 - X is a non-empty set, G is a subgroup of {−1, 1}X , G contais the constant function −1,
and G separates points in X (i.e, if x, y ∈ X, x 6= y, then there exists a ∈ G such that
a(x) 6= a(y)).
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Although it is convenient to define elements of G to be functions on X, it is equally important
to realize that we can view elements of X as a characters on G. By AX1 we have a natural
embedding of X into the character group χ(G) obtained by identifying x ∈ X with the character
a 7→ a(x). Since (ab)(x) = a(x)b(x) for all a, b ∈ G this is a character on G and since G separates
points in X this identification is legitimate. Once this is identification is made, x(a) = a(x) so
Ker(x) = {a ∈ G : a(x) = 1} and

⋂
x∈X Ker(x) = {1}. It follows from this and 4.1.1(iii) that X

generates χ(G) topologically, i.e, χ(G) is the smallest closed subgroup of χ(G) containing X.

If a, b ∈ G we define the value set D(a, b) to be the set of all c ∈ G such that for each x ∈ X
either c(x) = a(x) or c(x) = b(x). In particular, a and b are both elements of D(a, b).

AX2 - If x ∈ χ(G) satisfies x(−1) = −1 and a, b ∈ ker(x) ⇒ D(a, b) ⊆ ker(x), then x is in the
image of the natural embedding X ↪→ χ(G).

AX3 (Associativity) - For all a, b, c ∈ G, if t ∈ D(a, r) for some r ∈ D(b, c) then t ∈ D(s, c)
for some s ∈ D(a, b).

Elements of X are often referred to as orderings. If x ∈ X, ker(x) is sometimes called the
positive cone of x.

If x ∈ X then, viewing x as a character on G, we have x(−1) = (−1)x = −1 and a, b ∈ ker(x)⇒
D(a, b) ⊆ ker(x). AX2 is just saying that every character on G having these properties is in X.
AX1 and AX2 are trivial in the sense that they can be “forced” in a natural way: suppose X is any
set and G is any subgroup of {−1, 1}X containing the constant function −1. Let X̃ denote the set
of all characters x ∈ G satisfying the conditions of the hypothesis of AX2. Then (X̃,G) satisfies
AX1 and AX2 and the binary values sets D(a, b) for (X̃,G) are the same as those for (X,G). Of
course, if (X,G) is already itself satisfies AX1 and AX2, then X̃ = X.

Thus, in a certain sense, AX3 is the only non-trivial axiom. In the concrete case (XT , GT ),
AX3 is just saying that what remains of the addition is associative.

Since the definition of a space of orderings is motivated by the example (XT , GT ) considered
above, it is important to chech the following:

Theorem 4.1.7. If T is a proper preordering in a formally real field F , then the pair (XT , GT ) is
a space of orderings.

Proof. Since T is proper, XT 6= ∅. By 4.1.10, GT can be viewed as a subgroup of {−1, 1}XT , and
−1 ∈ GT plays the role of the constant function −1. If P,Q ∈ XT , P 6= Q, then there exists a ∈ P ,
a /∈ Q, so a(P ) = 1, a(Q) = −1. This proves that GT separates points in XT .

Suppose x ∈ χ(GT ) satisfies the conditions of the hypothesis of AX2 and let

P = {a ∈ Ḟ : a ∈ ker(x)} ∪ {0}.

Then P is an ordering containing T (to prove that P+P ⊆ P we use that a+b ⊆ D(a, b) ⊆ ker(x)).
This means that P ∈ XT and x is the character on GT corresponding to P .

Suppose a1, a2, a3 ∈ Ḟ and b ∈ D(a1, c) for some c ∈ D(a2, a3). Using 4.1.4 twice we see
that b = t1a1 + t2a2 + t3a3 for some t1, t2, t3 ∈ T . If t1a1 + t2a2 6= 0 then b ∈ D(d, a3) where
d = t1a1 + t2a2, and d ∈ D(a1, a2). If t1a1 + t2a2 = 0, then b = t3a3, so we can take d ∈ D(a1, a2)
arbitrary in this case.

For any spacing of orderings (X,G), X has a natural topology, namely the weakest topology such
that the functions a : X → {−1, 1}, a ∈ G, are continuous, giving {−1, 1} the discrete topology.
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This can also be described as the topology induced by our natural embedding X ↪→ χ(G) where
χ(G) is topologized as in last section. The sets

U(a) := {x ∈ X : a(x) = 1}, a ∈ G,

are clopens. Using the fact that a(x) = −1 iff −a(x) = 1, we see that these sets form a subbasis
for the topology on X, i.e, the clopens sets

U(a1, ..., an) :=

n⋂
j=1

U(aj) = {x ∈ X : a1(x) = ... = an(x) = 1}

form a basis for the topology on X.

Theorem 4.1.8. For any space of orderings (X,G), X is a Boolean space.

Proof. Let u : X ↪→ χ(G) be the natural embedding. Since χ(G) is a Boolean space, it suffices to
show that u(X) is closed in χ(G). This follows from AX2. Suppose x ∈ χ(G) is in the closure of
u(X). Then, for any elements a, b, c ∈ G, there exist y ∈ X such that x(a) = a(y), x(b) = b(y),
x(c) = c(y) and x(−1) = (−1)(y). This forces x(−1) = −1, and if c ∈ D(a, b), x(a) = 1, x(b) = 1,
it forces x(c) = 1. Thus by AX2, x ∈ u(X).

Spaces of orderings form a category, i.e, we not only have objects, we also have morphisms.

Definition 4.1.9. A morphism α from an AOS (X,G) to an AOS (Y,H) is a mapping α : X → Y
such that for each h ∈ H, the composite function h ◦ α : X → {−1, 1} is an element of G (and in
particular, α is surjective). Note that this implies that α induces a group homomorphism h 7→ h◦α
from H to G. Also α−1(U(h)) = U(h ◦ α) for each h ∈ H, so α is continuous.

An isomorphism from (X,G) to (Y,H) is a morphism α : X → Y which is bijective and such
that the induced group homomorphism h 7→ h ◦ α is also bijective.

4.1.2 Quadratic Forms and the Witt Ring

We work now with a fixed space of orderings (X,G).
Forms, dimension and discriminant of a form, signatures of a form, and isometry of forms are

defined exactly as in the concrete case (X,G) = (XT , GT ): A (quadratic) form with entries in G
is an n-tuple ϕ = 〈a1, ..., an〉, a1, ..., an ∈ G. n is called the dimension of ϕ.

∏n
j=1 aj ∈ G is called

the discriminant of ϕ. For each x ∈ X, the signature of ϕ at x is ϕ(x) :=
∑n

j=1 aj(x) ∈ Z.
The value set of a binary form 〈a, b〉 has already been defined. The value set of an n-dimensional

form is defined inductively if n ≥ 3:

D〈a1, ..., an〉 :=
⋃

b∈D〈a2,...,an〉

D〈a1, b〉.

For a 1-dimensional form, we define D〈a〉 := {a}. We say b is represented by a form ϕ if b ∈ D(ϕ).
We use standard notation from quadratic form theory: If ϕ = 〈a1, ..., an〉, ψ = 〈b1, ..., bm〉 and

c ∈ G, we define

ϕ⊕ ψ := 〈a1, ..., an, b1, ..., bm〉;
ϕ⊗ ψ := 〈a1b1, ..., aibj , ..., anbm〉.

Also, if k ≥ 1, k × ϕ = ϕ⊕ ...⊕ ϕ k times.
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Forms of the shape 〈1, a1〉 ⊗ ... ⊗ 〈1, an〉 are called Pfister forms (specifically n-fold Pfister
forms) and denoted by 〈〈a1, ..., an〉〉.

Theorem 4.1.10.

i - D(ϕ) does not depend on the order of entries of ϕ.

ii - D(cϕ) = cD(ϕ) for any c ∈ G.

iii - c ∈ D(ϕ⊕ ψ) iff c ∈ D(a, b) for some a ∈ D(ϕ), b ∈ D(ψ).

iv - c ∈ D(ϕ1 ⊕ ...⊕ ϕk) iff c ∈ D(a1, ..., ak) for some ai ∈ D(ϕi), i = 1, ..., k.

Proof.

i - We proof by induction on n = dim(ϕ). Let ϕ = 〈a1, ..., an〉. The result is immediate if n = 1
or n = 2. Suppose n ≥ 3. It suffices to show that the value set does not change if we permute
two adjacent entries ai, aj . If i, j ≥ 2, this follows by induction step. This leaves the case
i = 1, j = 2. Suppose b ∈ D〈a2, a1, ..., an〉. Thus b ∈ D〈a2, c〉, c ∈ D〈a1, d〉, d ∈ D〈a3, ..., an〉.
By AX3, b ∈ D〈a1, e〉 for some e ∈ D〈a2, d〉. This proves that b ∈ D〈a1, a2, ..., an〉.

ii - This is an immediate consequence of the definition of D. Recall that c2 = 1.

iii - Let ϕ = 〈a1, ..., ak〉, ψ = 〈ak+1, ..., an〉.
(⇒): If k = 1, c ∈ D〈a1, b〉, b ∈ D〈a2, ..., an〉 so we can take a = a1. If k ≥ 2 then c ∈ D〈a1, d〉,
d ∈ D(ϕ′⊕ψ) where ϕ′ = 〈a2, ..., ak〉. By induction, we have d ∈ D〈e, f〉, e ∈ D(ϕ′), f ∈ D(ψ).
By AX3 we have c ∈ D〈g, f〉 for some g ∈ D〈a1, e〉. Thus g ∈ D(ψ) so we can take a = g,
b = f .

(⇐): If k = 1 then c ∈ D〈a1, b〉 (since a ∈ D〈a1〉 so a = a1) so c ∈ D(ϕ ⊕ ψ). If k ≥ 2 then
a ∈ D〈a1, d〉, d ∈ D(ϕ′) where ϕ′ = 〈a2, ..., ak〉. By AX3, c ∈ D〈a1, e〉 where e ∈ D〈d, b〉. By
induction on k, e ∈ D(ϕ′ ⊕ ψ). This proves c ∈ D(ϕ⊕ ψ).

iv - This follows from (iii) by induction on k.

We say that a set M ⊆ G is additively closed if a, b ∈M implies D〈a, b〉 ⊆M .

Corollary 4.1.11.

i - D(ϕ) is the smallest additively closed set containing the entries of ϕ.

ii - D(k × ϕ = D(ϕ) for each k ≥ 1.

Proof.

i - Say ϕ = 〈a1, ..., an〉. Using

D〈a1, ..., an〉 =
⋃

b∈〈a2,...,an〉

D〈a1, b〉

and induction on n, we see that any additively closed set containing a1, ..., an must contain
D(ϕ). Thus it only remains to check that D(ϕ) is additively closed. Suppose a, b ∈ D(ϕ) and
c ∈ D〈a, b〉. Then c ∈ D(ϕ⊕ ϕ) and by 4.1.10(i),

D(ϕ⊕ ϕ) = D(〈a1, a1〉 ⊕ ...〈an, an〉)
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so, by 4.1.10(iv), c ∈ D〈d1, ..., dn〉 for some d1 ∈ D〈ai, ai〉, i = 1, ..., n. Thus di(x) = ai(x) for
all x ∈ X so di = ai, i = 1, ..., n, hence c ∈ D(ϕ).

ii - This follows by (i) since ϕ and k × ϕ have the same entries.

Definition 4.1.12. The relation ∼= (called isometry) on forms with entries in G is defined as
follows: For 1-dimensional forms 〈a〉 ∼= 〈b〉 is defined to mean a = b. For 2-dimensional forms
〈a1, a2〉 ∼= 〈b1, b2〉 is defined to mean that the two forms have the same signature, i.e, a1(x)+a2(x) =
b1(x)+b2(x) for all x ∈ X. For n ≥ 3, the isometry relation ∼= is defined inductively by 〈a1, ..., an〉 ∼=
〈b1, ..., bn〉 iff there are a, b, c3, ..., cn ∈ A such that 〈a1, a〉 ∼= 〈b1, b〉, 〈a2, ..., an〉 ∼= 〈a, c3, ..., cn〉 and
〈b2, ..., bn〉 ∼= 〈b, c3, ..., cn〉.

Theorem 4.1.13 (Alternative description of value sets and isometry).

i - b1 ∈ D(ϕ)⇔ ϕ ∼= 〈b1, ..., bn〉 for some b1, ..., bn ∈ G, where n = dimϕ.

ii - ϕ ∼= ψ ⇔ dimϕ = dimψ and ϕ(x) = ψ(x) for all x ∈ X.

The proof of this will be made in next section. It is hard to overemphasize the importance of
4.1.13. It allows us to describe a space of orderings in a completely different way:

Definition 4.1.14 (Alternative definition of Space of Ordering). A space of ordering can be defined
to be a pair (X,G) satisfying the following axioms:

(α) X is a non-empty set, G is a subgroup of {−1, 1}X containing the constant function −1, and
G separates points in X.

(β) The image of the natural embedding u : X ↪→ χ(G), x 7→ (a 7→ a(x)) is closed in χ(G).

(γ) If ϕ,ψ are forms with entries in G and c ∈ D(ϕ ⊕ ψ), then c ∈ D(a, b) for some ∈ D(ϕ),
b ∈ D(ψ).

Here (and this is crucial), the value sets and isometry are supposed to be defined as in the
statement of 4.1.13, i.e, ϕ ∼= ψ is defined to mean that dim(ϕ) = dim(ψ) and ϕ(x) = ψ(x) for
all x ∈ X, and D(ϕ) denotes the set of all elements b ∈ G such that ϕ ∼= 〈b, b2, ..., bn〉 for some
b2, ..., bn ∈ G (where n = dim(ϕ)).

Theorem 4.1.15. The two description of a space of orderings are equivalent.

Proof. Suppose (X,G) is a space of orderings. (α) is just AX1. As explained in the proof of 4.1.8,
(β) is a consequence of AX2. According to 4.1.13 the definitions of isometry and value set coincide
with the alternate definitions, so (γ) is just 4.1.10(iii).

Conversely, suppose (X,G) is a space of orderings in the alternate sense. AX1 is just (α). Now,
suppose x ∈ χ(G) satisfies the conditions given in AX2. We want to show that x ∈ X. By (β), X
is closed in χ(G) so if x /∈ X, then we have some open set S in χ(G) with x ∈ S and S ∩X = ∅.
Since x(−1) = −1 we can suppose S has the form

S = {y ∈ χ(G) : y(ai) = 1, a1, ..., an ∈ G}.

Consider the Pfister form ϕ = 〈1, a1〉 ⊗ ...⊗ 〈1, an〉. For any y ∈ X, ai(y) = −1 for some i so

ϕ(y) =

n∏
j=1

(1 + aj(y)) = 0.
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According to our definition of isometry and value sets, this means ϕ ∼= 2n−1×〈1,−1〉, so −1 ∈ D(ϕ).
On the other hand, expanding ϕ as ϕ ∼= ψ ⊕ a1ψ where ψ = 〈1, a2〉 ⊗ ... ⊗ 〈1, an〉, and using (γ)
and induction on n, we see that D(ϕ) ⊆ ker(x). Suppose a ∈ D(ϕ). By (γ), a ∈ D(b, a1c) for
some b, c ∈ D(ψ) and, by induction on n, b, c ∈ ker(x). Since x satisfies the conditions of AX2
and a1 ∈ ker(x), this forces a ∈ ker(x). Since −1 ∈ D(ϕ), this yields −1 ∈ ker(x), a contradiction.
This proves that (X,G) satisfies AX2.

Suppose b ∈ D〈a1, c〉 for some c ∈ D〈a2, a3〉. Then

〈a1, a2, a3〉 ∼= 〈a1, c, a2a3c〉 ∼= 〈b, a1bc, a2a3c〉,

so b ∈ D〈a1, a2, a3〉. By (γ), there exists d ∈ D〈a1, a2〉 such that b ∈ D〈d, a3〉. This proves
AX3.

Actually, there is another description of space of orderings: the structure (X,G,−1) is an AOS
if it verifies the following conditions:

O1 - X is closed in χ(G) (equivalently, in {±1}G).

O2 - σ(−1) = −1 for all σ ∈ X.

O3 -
⋂
σ∈X Ker(σ) = {1}.

O4 - If ϕ,ψ are forms over G and x ∈ G, then x ∈ DX(ϕ⊕ ψ) implies that there are y ∈ DX(ϕ)
and z ∈ DX(ψ) such that x ∈ DX(y, z).

The content of this definition is the same. (α) and (β) collectively are equivalent to O1, O2
and O3. (γ) is just O4.

For the rest of this section we will develop some basic properties of ∼=.

Theorem 4.1.16.

a - If bi = aπ(i), i = 1, ..., n for some permutation π of {1, ..., n}, then 〈a1, ..., an〉 ∼= 〈b1, ..., bn〉.

b - ϕ ∼= ψ ⇒ dimϕ = dimψ, disc(ϕ) = disc(ψ), ϕ(x) = ψ(x) for all x ∈ X, D(ϕ) = D(ψ) and
cϕ ∼= cψ for all c ∈ G.

c - The relation ∼= is an equivalence relation.

d - For any forms ϕ,ϕ′, ψ, ψ′ over G, if ϕ ∼= ϕ′ and ψ ∼= ψ′ then ϕ⊕ ψ ∼= ϕ′ ⊕ ψ′.

e - (Witt’s Cancellation) For any forms ϕ,ϕ′, ψ, ψ′ over G, if ϕ ∼= ϕ′ and ϕ ⊕ ψ ∼= ϕ′ ⊕ ψ′ then
ψ ∼= ψ′.

Proof.

a - We prove by induction on n. If n = 1 or 2 there is nothing to show. Now, suppose n ≥ 3. We
have two cases:

Case π(1) = i ≥ 2 - take a = ai, b = a1 and c3, ..., cn to be the elements left after a1 and ai are
deleted from the list a1, ..., an. Then a, c3, ..., cn is a permutation of a2, ..., an, b, c3, ..., cn
a permutation of b2, ..., bn and b1, b is a permutation of a1, a. So by induction we have

〈a1, a〉 ∼= 〈b1, b〉, 〈a2, ..., an〉 ∼= 〈a, c3, ..., cn〉 and 〈b2, ..., bn〉 ∼= 〈b, c3, ..., cn〉.

Then 〈a1, ..., an〉 ∼= 〈b1, ..., bn〉.
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Case π(1) = 1 - take a = b = a2 and ci = ai for i ≥ 2 to be the witnesses of the isometry
〈a1, ..., an〉 ∼= 〈b1, ..., bn〉.

b - The fact that ϕ ∼= ψ ⇒ dimϕ = dimψ is already encapsuled in definition of ∼= (4.1.12). To
prove the other statements we use induction. Suppose ϕ = 〈a1, ..., an〉 and ψ = 〈b1, ..., bn〉.

For ϕ ∼= ψ ⇒ disc(ϕ) = disc(ψ), if dimϕ = 1 there is nothing to do. If dimϕ = 2 and
a1(x)a2(x) 6= b1(x)b2(x) for some x ∈ X, then a1(x) + a2(x) 6= b1(x) + b2(x), its contradict the
definition of 2-isometry. Now, if dimϕ = n, there are a, b, c3, ..., cn ∈ A such that

〈a1, a〉 ∼= 〈b1, b〉, 〈a2, ..., an〉 ∼= 〈a, c3, ..., cn〉 and〈b2, ..., bn〉 ∼= 〈b, c3, ..., cn〉.

By induction, we have

a1a = b1b

a2...an = ac3...cn

b2...bn = bc3...cn

so

a1a2...an = a1ac3...cn = b1bc3...cn = b1b2...bn.

For ϕ ∼= ψ ⇒ ϕ(x) = ψ(x) for all x ∈ X, if dimϕ = 1 or 2 this is already in definition 4.1.12.
Now, if dimϕ = n, there are a, b, c3, ..., cn ∈ A such that

〈a1, a〉 ∼= 〈b1, b〉, 〈a2, ..., an〉 ∼= 〈a, c3, ..., cn〉 and〈b2, ..., bn〉 ∼= 〈b, c3, ..., cn〉.

By induction, we have

a1(x) + a(x) = b1(x) + b(x)

a2(x) + ...+ an(x) = a(x) + c3(x) + ...+ cn(x)

b2(x) + ...+ bn(x) = b(x) + c3(x) + ...+ cn(x)

so

a1(x) + a2(x) + ...+ an(x) = a1(x) + a(x) + c3(x) + ...+ cn(x)

= b1(x) + b(x) + c3(x) + ...+ cn(x)

= b1(x) + b2(x) + ...+ bn(x).

For ϕ ∼= ψ ⇒ D(ϕ) = D(ψ), since 〈a1, ..., an〉 ∼= 〈b1, ..., bn〉, {a1, ..., an} ⊆ D〈b1, ..., bn〉.
By 4.1.11(ii) D〈a1, ..., an〉 ⊆ D〈b1, ..., bn〉. By the same argument we have D〈b1, ..., bn〉 ⊆
D〈a1, ..., an〉, and so, the equality.

Finally, for ϕ ∼= ψ ⇒ cϕ ∼= cψ for all c ∈ G, if dimϕ = 1 there is nothing to do and if dimϕ = 2,
by

a1(x) + a2(x) = b1(x) + b2(x)⇒ c(x)a1(x) + c(x)a2(x) = c(x)b1(x) + c(x)b2(x)

we obtain cϕ ∼= cψ. Now, if dimϕ = n, there are a, b, c3, ..., cn ∈ A such that

〈a1, a〉 ∼= 〈b1, b〉, 〈a2, ..., an〉 ∼= 〈a, c3, ..., cn〉 and〈b2, ..., bn〉 ∼= 〈b, c3, ..., cn〉.
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By induction, we have

〈ca1, ca〉 ∼= 〈cb1, cb〉, 〈ca2, ..., can〉 ∼= 〈ca, cc3, ..., ccn〉 and〈cb2, ..., cbn〉 ∼= 〈cb, cc3, ..., ccn〉.

Then cϕ ∼= cψ.

c - We just need to prove transitivity. Suppose ϕ,ψ, τ are n-dimensional forms, saying ϕ =
〈a1, ..., an〉, ψ = 〈b1, ..., bn〉, τ = 〈c1, ..., cn〉; such that ϕ ∼= ψ and ψ ∼= τ . We show by in-
duction on n that ϕ ∼= τ . This is immediate if n = 1 or 2 (remember definition 4.1.12).

For n = 3, by item (b) we know that c1 ∈ D(ψ) = D(ϕ) so c1 ∈ D(a1, a) for some a ∈ D(a2, a3).
So there are c, d3 ∈ G with 〈a1, a〉 ∼= 〈c1, c〉 and 〈a2, a3〉 ∼= 〈a, d3〉. Getting these information
together, we have:

〈c1, c2, c3〉 = τ ∼= ψ

ψ ∼= ϕ = 〈a1, a2, a3〉
〈a1, a2, a3〉 = 〈c1, c, d3〉

comparing signatures (by item (b)), we get

c1(x) + c2(x) + c3(x) = c1(x) + c(x) + d3(x)

for all x ∈ X. Hence c2(x) + c3(x) = c(x) + d3(x) wich yields 〈c2, c3〉 ∼= 〈c, d3〉. Thus complete
the proof that ϕ ∼= τ if n = 3.

Now assume n ≥ 4. Let us write

ϕ = 〈a1, ..., an〉 = 〈a1〉 ⊕ ϕ′

ψ = 〈b1, ..., bn〉 = 〈b1〉 ⊕ ψ′

τ = 〈c1, ..., cn〉 = 〈c1〉 ⊕ τ ′

Since ϕ ∼= ψ, there exist x, y ∈ G and a n− 2-dimensional form α with

〈a1, x〉 ∼= 〈b1, y〉, ϕ′ ∼= 〈x〉 ⊕ α and ψ′ ∼= 〈y〉 ⊕ α,

and since ψ ∼= τ , there exist z, w ∈ G and another n− 2-dimensional form β with

〈b1, z〉 ∼= 〈c1, w〉, ψ′ ∼= 〈z〉 ⊕ β and τ ′ ∼= 〈w〉 ⊕ β.

By induction 〈y〉 ⊕ α ∼= 〈z〉 ⊕ β, so there exist u, v ∈ G and a n− 3-dimensional form γ with

〈u, y〉 ∼= 〈v, z〉α ∼= 〈u〉 ⊕ γ and β ∼= 〈v〉 ⊕ γ.

Putting these isometries together and using transitivity in the n = 3, we get

〈a1, x, u〉 ∼= 〈b1, y, u〉 ∼= 〈b1, z, v〉 ∼= 〈c1, w, v〉;

hence 〈a1, x, u〉 ∼= 〈c1, w, v〉 provides a, c, d ∈ G such that

〈a1, a〉 ∼= 〈c1, c〉, 〈x, u〉 ∼= 〈a, d〉 and 〈w, v〉 ∼= 〈c, d〉.
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Take δ = 〈d〉 ⊕ γ. Then

ϕ′ ∼= 〈x〉 ⊕ α ∼= 〈x, u〉 ⊕ γ ∼= 〈a, d〉 ⊕ γ = 〈a〉 ⊕ δ
τ ′ ∼= 〈w〉 ⊕ β ∼= 〈w, v〉 ⊕ γ ∼= 〈c, d〉 ⊕ γ = 〈c〉 ⊕ δ.

By induction again, we get ϕ′ ∼= 〈a〉 ⊕ δ and τ ′ ∼= 〈c〉 ⊕ δ. Since 〈a1, a〉 ∼= 〈c1, c〉, this implies
ϕ ∼= τ .

d - Since ϕ⊕ψ ∼= ψ⊕ϕ and ϕ⊗ψ ∼= ψ⊗ϕ by item (a), it suffices to prove this in the case where
ϕ = ϕ′. Since cψ ∼= cψ′ if ψ ∼= ψ′ by item (b), it suffices to prove the result for ⊕. On the other
hand, since

〈a1, ..., an〉 ⊕ ψ = 〈a1〉 ⊕ (〈a2, ..., an〉 ⊕ ψ),

by induction on dimension, we are reduced to the case where dim(ϕ) = 1, say ϕ = 〈a〉.
Let ψ = 〈x〉 ⊕ δ. Then

〈a, x〉 ∼= 〈a, x〉, ψ ∼= 〈x〉 ⊕ δ and ψ′ ∼= 〈x〉 ⊕ δ.

By definition 4.1.12 〈a〉 ⊕ ψ ∼= 〈a〉 ⊕ ψ′.

e - Using the previous item, if ϕ ∼= ϕ′ then

ϕ⊕ ψ ∼= ϕ′ ⊕ ψ′ ⇒ (ϕ′ ⊕ ϕ)⊕ ψ ∼= (ϕ⊕ ϕ′)⊕ ψ′

and by transitivity of ∼=, it suffices to prove this in the case where ϕ = ϕ′. Again, since

〈a1, ..., an〉 ⊕ ψ = 〈a1〉 ⊕ (〈a2, ..., an〉 ⊕ ψ),

by induction on dimension, we are reduced to the case where dim(ϕ) = 1.

Let ϕ = 〈a〉 and suppose 〈a〉 ⊕ ψ ∼= 〈a〉 ⊕ ψ′. By definition, there are x, y ∈ G and a n − 2
dimensional form δ such that

〈a, x〉 ∼= 〈a, y〉, ψ ∼= 〈x〉 ⊕ δ and ψ′ ∼= 〈y〉 ⊕ δ.

Comparing discriminants we get x = y, then

ψ ∼= 〈x〉 ⊕ δ ∼= 〈y〉 ⊕ δ ∼= ψ′

and by transitivity, ψ ∼= ψ′.

Consider now the set of equivalence classes of forms over G with respect to the equivalence
relation ∼=. By 4.1.16(d), the operations ⊕ and ⊗ on forms induce binary operations of this set.
Associativity and commutativity of these operations and the distributive property follow from
4.1.16(a). Thus, the resulting structure is “almost” a ring, but additive inverse fail to exist.

To retify this situation we got a slightly coarser equivalence relation called Witt equivalence.
A form 〈a,−a〉, a ∈ G, is called a hyperbolic form or a hyperbolic plane. Note that 〈a,−a〉 ∼=
〈1,−1〉 for any a ∈ G. we say ϕ and ψ are Witt equivalent, denoted ϕ ∼ ψ, if there exist integers
k, l ≥ 0 such that

ϕ⊕ k × 〈1,−1〉 ∼= ψ ⊕ l × 〈1,−1〉.
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This is an equivalence relation and the sum and product of forms induce binary operations on the
set of equivalence classes of forms with respect to Witt equivalence. The resulting system is a
commutative ring with 1. We will denote this ring by W = W (X,G), and refer to it as the Witt
ring associated to the space of orderings (X,G). The zero of W is the class of the empty form
0 = 〈〉 and the unity of W is the class of 〈1〉. The additive inverse of the class of ϕ = 〈a1, ..., an〉 is
the class of −ϕ = 〈a1, ..., an〉.

Definition 4.1.17. A form ϕ will be called isotropic if there exists a form ψ such that ϕ ∼=
〈1,−1〉⊕ψ. Otherwise, ϕ will be called anisotropic. A form ϕ is said to be universal if D(ϕ) = G.

Theorem 4.1.18.

i - ϕ ∼= ψ ⇔ ϕ ∼ ψ and dimϕ = dimψ.

ii - ϕ is isotropic iff there exists a form ψ with ϕ ∼ ψ, dimϕ > dimψ.

iii - ϕ is isotropic iff ϕ is universal iff D(ϕ) ∩D(−ϕ) 6= ∅.

iv - If ϕ is anisotropic then so is n× ϕ for any n ≥ 1.

v - If ϕ⊕ ψ is isotropic then there exists b ∈ D(ϕ) with −b ∈ D(ψ).

Proof.

i - (⇒) is clear (taking k = l = 0). For (⇐), suppose

ϕ⊕ k × 〈1,−1〉 ∼= ψ ⊕ l × 〈1,−1〉.

Comparing dimensions and using dimϕ = dimψ, this yields k = l. Thus ϕ ∼= ψ by Witt’s
cancellation.

ii - (⇒) is immediate from definition. For (⇐) suppose

ϕ⊕ k × 〈1,−1〉 ∼= ψ ⊕ l × 〈1,−1〉.

Then, comparing dimensions and using dimϕ > dimψ, this yields k < l. Thus, by Witt’s
cancellation, ϕ ∼= (k − l)× 〈1,−1〉 ⊕ ψ, so ϕ is isotropic.

iii - Suppose ϕ ∼= 〈1,−1〉 ⊕ ψ. Since 〈1,−1〉 ∼= 〈a,−a〉 for all a ∈ G, this yields ϕ ∼= 〈a,−a〉 ⊕ ψ,
so a ∈ D(ϕ) by 4.1.13(a). In the sequence, if ϕ is universal, then

D(ϕ) = G⇒ D(ϕ) ∩D(−ϕ) 6= ∅.

Now suppose D(ϕ) ∩D(−ϕ) 6= ∅, say ϕ = 〈a1, a2, ...., an〉, −a1 ∈ D(ϕ). Since D〈a1〉 = {a1}
and −a1 6= a1, we get n ≥ 2. Also, −a1 ∈ D(ϕ) so −a1 ∈ D(a1, a) for some a ∈ D(a2, ..., an).
Then given x ∈ X, by definition of D we get −a1(x) = a1(x) or −a1(x) = a(x), and we obtain
−a1 = a. Thus −a1 ∈ D(a2, ..., an) and by 4.1.13(i), 〈a2, ..., an〉 ∼= −a1, c3, ..., cn〉 for some
c3, ..., cn ∈ G. Thus

ϕ ∼= 〈a1, ..., an〉 ∼= a1,−a1, c3, ..., cn〉 ∼= 〈1,−1, c3, ..., cn〉.

This proves that ϕ is isotropic.

iv - By 4.1.11(ii), D(n× ϕ) = D(ϕ), so this is immediate from (iii).
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v - Say ϕ = 〈a〉⊕ϕ′. By hypothesis, ϕ⊕ψ ∼= 〈1,−1〉⊕τ ∼= 〈a,−a〉⊕τ , so, by Witt’s cancellation,
ϕ′ ⊕ ψ ∼= 〈−a〉 ⊕ τ , i.e, −a ∈ D(ϕ′ ⊕ ψ). If ϕ is 1-dimensional then ϕ′ ⊕ ψ = ψ and we can
take b = a. Otherwise, by 4.1.13, we get c ∈ D(ϕ′), d ∈ D(ψ) such that −a ∈ D(c, d). Then
〈c, d〉 ∼= 〈−a,−acd〉, i.e, 〈a, c〉 ∼= 〈−d,−acd〉, so −d ∈ D(a, c) ⊆ D(ϕ). Thus we can take
b = −d in this case.

4.1.3 Pfister’s local-global principle

Theorem 4.1.19 (Pfister’s local-global principle). For any forms ϕ,ψ with entries in G,

ϕ ∼ ψ ⇔ ϕ(x) = ψ(x) for all x ∈ X.

Proof. If ϕ ∼ ψ then, using 4.1.16(b) plus the fact that 〈1,−1〉 has signature 0, we see that
ϕ(x) = ψ(x) for any x ∈ X. For the other implication, by considering the form ϕ⊕−ψ, it suffices
to show that if ϕ(x) = 0 for all x ∈ X then ϕ ∼ 0.

Suppose ϕ � 0. By 4.1.18(b), we can suppose ϕ anisotropic. By 4.1.18(d), 2n × ϕ � 0 for all
n ≥ 0. Use Zorn’s lemma to choose a multiplicative set S in the Witt ring W = W (X,G) with
2 ∈ S maximal subject to the condition that ψ ⊗ ϕ � 0 for all ψ ∈ S (i.e, S ∩ Ann(ϕ) = ∅, where
Ann(ϕ) ⊆W denotes the annihilator of ϕ)1.

Claim 1. If a ∈ G then either 〈1, a〉 ∈ S or 〈1,−a〉 ∈ S (but not both).

For this, suppose 〈1, a〉 /∈ S. Since 〈1, a〉 ⊗ 〈1, a〉 ∼ 2 × 〈1, a〉 and 2 ∈ S, the multiplicative
set generated by S and 〈1, a〉 is S ∪ (〈1, a〉 ⊗ S). By the maximality pf S, 〈1, a〉 ⊗ ψ1 ⊗ ϕ ∼ 0
for some ψ1 ∈ S. Similarly, if 〈1,−a〉 ∈ S, 〈1,−a〉 ⊗ ψ2 ⊗ ϕ ∼ 0 for some ψ2 ∈ S. Since
2 ∼ 〈1, 1〉 ∼ 〈1, a〉 ⊗ 〈1,−a〉, this implies that 2× ψ × ϕ ∼ 0 where ψ = ψ1 ⊗ ψ2. Since 2× ψ ∈ S,
this is a contradiction. If both 〈1, a〉 and 〈1,−a〉 are in S, then 〈1, a〉 ⊗ 〈1,−a〉 ∼ 0 ∈ S, a
contradiction.

Using Claim 1, we have a well-defined function x : G→ {1,−1} given by x(a) = 1 if 〈1, a〉 ∈ S
and x(a) = −1 if 〈1,−a〉 ∈ S. Note that

〈1, a〉 ∈ S ⇔ 〈1,−a〉 /∈ S ⇔ 〈1,−a〉 ⊗ ψ ⊗ ϕ ∼ 0,

i.e, aψ ⊗ ϕ ∼ ψ ⊗ ϕ for some ψ ∈ S. It follows from this that x is a character on G.

Claim 2. x ∈ X.

For this, suppose a, b ∈ ker(x), c ∈ D(a, b), and c /∈ ker(x). Then 〈a, b〉 ∼= 〈c, cab〉. Also
aψ⊗ϕ ∼ ψ⊗ϕ, bψ⊗ϕ ∼ ψ⊗ϕ and cψ⊗ϕ ∼ −ψ⊗ϕ for some ψ ∈ S2. Then 〈a, b〉⊗ψ⊗ϕ ∼ 2×ψ⊗ϕ,
〈c, cab〉 ⊗ ψ ⊗ ϕ ∼ −2 ⊗ ψ ⊗ ϕ, so 4 × ψ ⊗ ϕ ∼ 0 contradicting 4 × ψ ∈ S. Thus a, b ∈ ker(x),
c ∈ D(a, b) implies c ∈ ker(x) so, by AX2, x ∈ X.

To complete the proof we need to show the following:

1Of course, sometimes the phrase “use Zorn’s lemma to ...” is not elusive, since we need to find a poset, and
search for some upper bound that is not appear at first sight. In our proof of Pfister local global principle, could be
helpful think in terms of rings and ideals, keeping in mind that this subset S lives in the Witt ring W = W (X,G).

2At first time there is no reason to the form ψ be the same for a, b and c. However, if aψ1 ⊗ ϕ ∼ ψ1 ⊗ ϕ,
bψ2 ⊗ ϕ ∼ ψ2 ⊗ ϕ and cψ3 ⊗ ϕ ∼ −ψ3 ⊗ ϕ, we just take ψ = ψ1 ⊗ ψ2 ⊗ ψ3.
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Claim 3. ϕ(x) 6= 0.

For this, suppose ϕ = 〈a1, ..., an〉 and let ej = aj(x), so

ϕ(x) =

n∑
j=1

aj(x) =

n∑
j=1

ej .

By definition of x, 〈1, a(x)a〉 ∈ S for all a ∈ G. Thus 〈1, ejaj〉 ∈ S so ϕ ⊗
∏n
j=1〈1, ejaj〉 � 0. On

the other hand, ai〈1, eiai〉 ∼= ei〈1, eiai〉, so

ϕ⊗
n∏
j=1

〈1, eiai〉 = 〈a1, ..., an〉 ⊗
n∏
j=1

〈1, ejaj〉 ∼= 〈e1, ..., en〉 ⊗
n∏
j=1

〈1, ejaj〉.

It follows that 〈e1, ..., en〉 � 0. Each ej is 1 or −1 so this means
∑n

j=1 ej � 0.

Now we are in position to prove Theorem 4.1.13:

Proof of Theorem 4.1.13.

i - This is immediate for n = 1. if 〈a1, a2〉 ≡ 〈b1, b2〉 then b1 ∈ D〈a1, a2〉 and a1a2 = b1b2 (so
b2 = a1a2b1). Conversely, if b1 ∈ D〈a1, a2〉 then 〈a1, a2〉 ≡ 〈b1, b2〉, where b2 := a1a2b1. Now,
suppose n ≥ 3. If 〈a1, ..., an〉 ≡ 〈b1, ..., bn〉 then we have a, b, c3, ..., cn satisfying the conditions
written above. Thus b1 ∈ D〈a1, a〉 and, by induction, a ∈ D〈a2, ..., an〉, so b ∈ D〈a1, ..., an〉.
Conversely, suppose b1 ∈ D〈a1, ..., an〉. Then b1 ∈ D〈a1, a〉 for some a ∈ D〈a2, ..., an〉. Thus
〈a1, a〉 ≡ 〈b1, b〉 where b = a1ab1 and, by induction, 〈a2, ..., an〉 ≡ 〈a, c3, ..., cn〉 for some
c3, ..., cn. Thus 〈a1, ..., an〉 ≡ 〈b1, ..., bn〉, where b2 := b and bi : ci for i = 3, ..., n.

ii - (⇒) is just 4.1.16(b).

(⇐) If dimϕ = dimψ and ϕ(x) = ψ(x) for all x ∈ X then, applying 4.1.19, we get ϕ ∼ ψ.
Since dimϕ = dimψ, 4.1.18(i) provides ϕ ∼= ψ.

denote ZX the set of all functions f : X → Z. This is a ring with operations define pontwise,
i.e,

(f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x).

By the (⇒) implication of 4.1.19 we have a well-defined mapping σ : W → ZX sending the
Witt equivalence class of ϕ to the function x 7→ ϕ(x) and it is easy to check that σ is a ring
homomorphism.

Corollary 4.1.20. For any space of orderings (X,G), the natural ring homomorphism

σ : W (X,G)→ ZX

is injective.

Proof. Immediate from 4.1.19.

Thus we can identify W = W (X,G) with a subring of ZX (the subring generated by the
elements of G).
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Recall that X is given the weakest topology such that each a ∈ G is continuous. Using the
fact that any sum of continuous functions is continuous, we see that W is actually a subring of
C(X,Z), the ring of all continuous function from X to Z. Here, Z is given the discrete topology.

Our next result shows how to recover the space of orderings (X,G) from its Witt ring:

Theorem 4.1.21. Suppose (X,G) is a space of orderings with Witt ring W = W (X,G). Then:

i - G is naturally identified with the unit subgroup of W .

ii - X is naturally identified with the set of all ring homomorphisms from W into Z.

Proof.

i - We have
a = b⇔ 〈a〉 ∼= 〈b〉 ⇔ 〈a〉 ∼ 〈b〉

and 〈a〉 ⊗ 〈b〉 ∼ 〈ab〉 so the mapping a 7→ 〈a〉 identifies G with a subgroup of the unity group
of W .

Suppose ϕ = 〈a1, ..., an〉 is a unity in W . For fixed x ∈ X, let k = the number of positive
entries of ϕ and l = the number of negative entries. Then k + l = n and k − l = ϕ(x) = ±1.
This forces n to be odd, say n = 2m + 1, and ϕ(x) = 1 ⇔ k = m, l = m + 1 and ϕ(x) =
−1 ⇔ k = m + 1, l = m. It follows that ϕ(x) = a(x), where a := (−1)m

∏n
j=1 aj . From this

it follows, using 4.1.19 that ϕ ∼ 〈a〉.

ii - Each x ∈ X defines a ring homomorphism ϕ 7→ ϕ(x) from W into Z. Conversely, suppose
f : W → Z is any ring homomorphism. Consider the function x : G → {−1, 1} given by
x(a) = f(〈a〉). Then x(−1) = −1, x(ab) = x(a)x(b). Suppose c ∈ D(a, b) and x(a) = x(b) = 1.
Then applying f to 〈a, b〉 ∼= 〈c, cab〉, we see that

2 = x(a) + x(b) = x(c)(1 + x(a)x(b)) = 2x(c),

so x(c) = 1. Thus, by AX2, x ∈ X. Since f(〈a〉) = x(a) = a(x) for all a ∈ G and W is
generated by the 1-dimensional forms 〈a〉, f coincides with mapping ϕ 7→ ϕ(x).

4.1.4 Subspaces and preorderings

We continue to assume that (X,G) is a space of orderings. Recall: for any a ∈ G, U(a) denotes
the set of all x ∈ X such that a(x) = 1. These sets are clopen and form a subbasis for the topology
on X. The clopens sets

U(a1, ..., an) :=

n⋂
j=1

U(ai), n ≥ 1, a1, ..., an ∈ G,

are a basis for the topology.

Definition 4.1.22. A subset Y ⊆ X is called a subspace of X (more precisely, of (X,G)) if Y
is expressible as Y =

⋂
a∈S U(a) for some (not necessarily finite) subset S ⊆ G. The subspace

generated by a subset Y in X is just the smallest subspace of (X,G) containing Y , i.e, it is the
intersection of all sets U(a) such that a = 1 on Y . For any subspace Y of X, G|Y denotes the group
of all restrictions a|Y , a ∈ G and, for any form ϕ = 〈a1, ..., an〉 with entries in G, ϕ|Y denotes the
associated form with entries in G|Y , i.e, ϕ|Y = 〈a1|Y , ..., an|Y 〉.
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When we speak of a subspace Y of (X,G), we are often referring to the pair (Y,G|Y ). If Y 6= ∅,
we will prove that this is a space of orderings, conform 4.1.25.

Let F be a formally real field. Subspaces of the full space of orderings (X∑
F 2 , G∑

F 2) have the
form (XT , GT ) where T is a preordering in F . If Y ⊆ X∑

F 2 is a subspace, say
⋂
a∈S U(a), then

Y = XT where T is the preordering in F generated by the elements a, a ∈ S, and G|Y = GT . If
T is a preordering of F , then XT =

⋂
a∈T\{0} U(a). If T, T ′ are preorderings in F then XT ′ is a

subspace of XT iff T ′ ⊇ T .

A preordering inG is a subgroup T ofG which is additively closed, i.e, a, b ∈ T ⇒ D(a, b) ⊆ T .

Our first objective is to relate subspaces, preorderings and Pfister forms.

Theorem 4.1.23.

i - Let ψ = 〈1, c1〉 ⊕ ...⊕ 〈1, ck〉, Y = U(c1, ..., ck). Then the preordering generated by c1, ..., ck is

D(ψ) = {b ∈ G : bψ ∼= ψ} = {b ∈ G : b = 1 on Y }.

ii - For any set S ⊆ G, the preordering generated by S is {b ∈ G : b = 1 on
⋂
c∈S U(c)}.

Proof.

i - Denote the preordering generated by c1, ..., ck by T . ψ is the sum of the s-dimensional forms
〈ci1 , ..., cis〉, 1 ≤ i1 < ... < is ≤ k, 0 ≤ s ≤ k, so, according to 4.1.11(i), D(ψ) is the smallest
addtively closed subset of G containing the products ci1 , ..., cis . Since these products are in
T , this yields the inclusion D(ψ) ⊆ T . Since the set {b ∈ G : b = 1 on Y } is a preordering
containing c1, ..., ck we also have T ⊆ {b ∈ G : b = 1 on Y }.

Suppose now that b ∈ G, b = 1 on Y . Comparing signatures and using 4.1.13, we see that
ψ ∼= bψ (the signature of each side at x is 2n if x ∈ Y and 0 otherwise). Finally, since
1 ∈ D(ψ), ψ ∼= bψ implies b ∈ D(ψ), completing the proof.

ii - By the same argument in previous item we have ⊆. For the other, suppose b = 1 on
⋂
c∈S U(c).

Since b is continuous and X is compact, this implies that b = 1 on U(c1, ..., ck) for some finite
subset {c1, ..., ck} ⊆ S. Thus, by item (i), b lies in the preordering generated by c1, ..., ck.

Corollary 4.1.24. There is a natural one-to-one inclusion reversing correspondence between sub-
spaces of X and preorderings in G.

Proof. If Y is any subspace, then T = {b ∈ G : b = 1 on Y } is a preordering. If T ⊆ G is any
preordering then Y =

⋂
c∈T U(c) is a subspace and by 4.1.23(ii), T = {b ∈ G : b = 1 on Y }.

Observe that the kernel of the surjective group homomorphism G 7→ G|Y , a 7→ a|Y , is precisely
the preordering corresponding to Y .

Theorem 4.1.25. For any (non-empty) subspace Y ⊆ X, the pair (Y,G|Y ) is a space of orderings.

We prove 4.1.25 by showing that (Y,G|Y ) satisfies the axioms (α), (β) and (γ) of the alternative
definition. We use the following result:

Theorem 4.1.26.
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i - Suppose ψ = 〈1, c1〉⊕ ...⊕〈1, ck〉, Y = U(c1, ..., ck), ϕ = 〈a1, ..., an〉 and ϕ|Y = 〈a1|Y , ..., an|Y 〉.
Then

b|Y ∈ D(ϕ|Y )⇔ b ∈ D(ϕ⊗ ψ)

⇔ b ∈ D(a1s1, ..., ansn) for some s1, ..., sn ∈ D(ψ).

ii - Suppose Y ⊆ X is any subspace. Then b|Y ∈ D(a1|Y , ..., an|Y ) ⇔ b ∈ D(a1s1, ..., ansn) for
some s1, ..., sn ∈ G such that si = 1 on Y , i = 1, ..., n.

Proof. Here we are using the alternate definition of value sets and isometry. In the end, both
definitions are the same, see 4.1.13.

i - Suppose b|Y ∈ D(ϕ|Y ) so ϕ ∼= 〈b1, ..., bn〉 on Y for some b1, ..., bn ∈ G with b1 = b. Comparing
signatures, ϕ⊗ ψ ∼= 〈b1, ..., bn〉 ⊗ ψ on X. Since 1 ∈ D(ϕ), this proves b = b1 ∈ D(ϕ⊗ ψ). In
turn, using ϕ⊗ ψ ∼= a1ψ ⊕ ...⊕ anψ and (γ), b ∈ D(ϕ⊗ ψ) implies that b ∈ D(a1s1, ..., ansn)
for some s1, ..., sn ∈ D(ψ). In turn, since si = 1 on Y , this implies b|Y ∈ D(ϕ|Y ).

ii - The implication (⇐) follow immediate by the definitions involved in. For (⇒), say Y =⋂
c∈S U(c). By assumption 〈a1, ..., an〉 ∼= 〈b1, ..., bn〉 on Y for some b1, ..., bn ∈ G with b1 = b.

Y is the intersection of the sets U(c1, ..., ck), c1, ..., ck ∈ S and the function

x 7→
n∑
j=1

aj(x)−
n∑
j=1

bj(x)

is continuous so, by compactness, 〈a1, ..., an〉 ∼= 〈b1, ..., bn〉 on U(c1, ..., ck) for some c1, ..., ck ∈
S. By (i) we get b ∈ D(a1s1, ..., ansn) where si ∈ D(〈1, c1〉 ⊕ ... ⊕ 〈1, ck〉), i = 1, ..., n. Since
Y ⊆ U(c1, ..., ck) and si = 1 on U(c1, ..., ck) we see that si = 1 on Y , i = 1, ..., n.

Proof of Theorem 4.1.25. (α) and (β) are direct consequence of definition 4.1.22. For (γ), suppose
a|Y ∈ D(ϕ|Y ⊕ ψ|Y ), ϕ = 〈b1, ..., bn〉, ψ = 〈c1, ..., cl〉. Then, by 4.1.15,

a ∈ D(b1s1, ..., bksk, c1t1, ..., cltl), with si = tj = 1 on Y.

Thus, by (γ) for (X,G), we have b ∈ D(b1s1, ..., bksk), c ∈ D(c1t1, ..., cltl) with a ∈ D(b, c). Then
a|Y ∈ D(b|Y , c|Y ), b|Y ∈ D(ϕ|Y ), c|Y ∈ D(ψ|Y ).

If Y ⊆ X is a subspace, the inclusion Y ↪→ X is a morphism from the space of orderings
(Y,G|Y ) to the space of orderings (X,G). The associated group homomorphism from G to G|Y
is just the restriction mapping a 7→ a|Y . The associated ring homomorphism from W (X,G) to
W (Y,G|Y ) is given by 〈a1, ..., an〉 7→ 〈a1|Y , ..., an|Y 〉. This is surjective because the restriction map
G 7→ G|Y is surjective.

Theorem 4.1.27. For any (non-empty) subspace Y ⊆ X, the kernel of the ring homomorphism
W (X,G)→W (Y,G|Y ) is generated as an ideal by the elements 〈1,−s〉, s ∈ G, s|Y = 1.

Proof. Of course, these elements are in the kernel. Conversely, suppose ϕ = 〈a1, ..., an〉 in the
kernel. Thus ϕ|Y ∼ 0 so, in particular, n is even. Since ϕ ∼ 0 on Y , by continuity of x 7→ ϕ(x)
and compactness, ϕ ∼ 0 on U(c1, ..., ck) for some c1, ..., ck with ci|Y = 1. Thus ϕ ⊗ ψ ∼ 0 where
ψ := 〈1, c1〉⊗...⊗〈1, ck〉 (since ϕ⊗ψ has signature 0 at each x ∈ X). Since ϕ⊗ψ ∼ a1ψ⊕...⊕anψ, this
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means a1ψ⊕...⊕anψ is isotropic so, by 4.1.18(e), we get s1 ∈ D(ψ) with −a1s1 ∈ D(a2ψ⊕...⊕anψ)
so, by 4.1.10, −a1s1 ∈ D(a2s2, ..., ansn) for some s2, ..., sn ∈ D(ψ). Thus 〈a1s1, ..., ansn〉 is isotropic
so 〈a1s1, ..., ansn〉 ∼ τ for some τ of dimension n− 2. Thus

ϕ = 〈a1, ..., an〉 ∼ 〈a1s1, ..., ansn〉 ⊕ a1〈1,−s1〉 ⊕ ...⊕ an〉1,−sn〉
∼ τ ⊕ a1〈1,−s1〉 ⊕ ...⊕ an〈1,−sn〉.

Since si ∈ D(ψ), si|Y = 1, i = 1, ..., n, τ is also in the kernel, so the result follows by induction on
the dimension.

4.1.5 Fans II

Suppose G is any group of exponent 2, with multiplication as the operation. Fix e ∈ G, e 6= 1
(to play the role of the constant function −1), and set X = {x ∈ χ(G) : x(e) = −1}. Elements of
G are viewed as functions on X by defining a(x) = x(a) for all a ∈ G, x ∈ X. The pair (X,G)
constructed in this way, is called a fan.

Theorem 4.1.28. Any fan (X,G) is a space of orderings.

Proof. We check AX1, AX2 and AX3.

Claim 1. If H is any subgroup of G maximal subject to the condition e /∈ H then H = ker(x)
for some x ∈ X. For this, suppose b /∈ H. Then H ∪ bH is a subgroup of G containing H properly,
so e ∈ H ∪ bH. Since e /∈ H, this means e ∈ bH, i.e, b ∈ eH. Thus H ∪ eH = G so we have a
character x : G→ {1,−1} with ker(x) = H. Then e /∈ ker(x), so x(e) = −1, i.e, x ∈ X.

We are identifying G with a subgroup of {1,−1}X by identifying a ∈ G with the function
a : X → {1,−1} given by a(x) = x(a). This is legitimate: if a 6= b, then ab 6= 1 so e /∈ {1, eab}.
Thus by Zorn’s Lemma, we get a subgroup H of G with {1, eab} ⊆ H maximal subject to the
condition e /∈ H. By Claim 1, H = ker(x) for some x ∈ X. Thus x(eab) = 1, i.e, x(a) = −x(b)
i.e, a(x) = −b(x). This proves a, b are distinct as functions on X. AX1 is now proved. Note that
e(x) = x(e) = −1 for all x ∈ X, so e = −1, proving AX2. To prove AX3 we need the following

Claim 2. If a, b ∈ G, ab 6= −1, then D(a, b) = {1, b}. For this, suppose c /∈ {a, b}. Then
−1 /∈ {1, ab,−ac,−bc} so, By Zorn’s Lemma, we have a subgroup H of G with {1, ab,−ac.−bc} ⊆ H
maximal subject to the condition −1 /∈ H. By Claim 1 we have x ∈ X with ker(x) = H. Thus
(ab)(x) = 1, i.e, a(x) = b(x), and (−ac)(x) = 1, i.e, c(x) = a(x) 6= −a(x). Thus

a(x) + b(x) 6= c(x) + a(x)b(x)c(x),

so 〈a, b〉 � 〈c, abc〉, i.e, c /∈ D(a, b).

Now suppose b ∈ D(a1, c) for some c ∈ D(a2, b3). We want to show that b ∈ D(d, a3) for some
d ∈ D(a1, a2). If a1a2 6= −1, a1a3 6= −1, a2a3 6= −1, then, by Claim 2, c = a2 or a3 and b = a1, a2

or a3. Thus we can take d = a1 or a2 in this case. If a1a2 = −1, then D(a1, a2) = G so we can take
d = b. If aia3 = −1, i = 1 or 2, then D(ai, a3) = G, so we can take d = ai. This proves AX3.

Theorem 4.1.29. For a space of orderings (X,G), the following are equivalent:

a - (X,G) is a fan.
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b - D〈1, a〉 = {1, a} for all a ∈ G, a 6= −1.

c - For all a1, ..., an ∈ G, if aiaj 6= −1 for i 6= j, then D〈a1, ..., an〉 = {a1, ..., an}.

d - If x is any element character of G satisfying x(−1) = −1 then x ∈ X.

Proof. (a)⇒(b): Follows by the proof of 4.1.28.
(b)⇒(c): D(a) = {a} is true in general. Also, D(a, b) = aD(1, ab), so if (b) holds, then

D(a, b) = a{1, ab} = {a, b}

if ab 6= −1. Now suppose b ∈ D(a1, ..., an), n ≥ 3 and aiaj 6= −1 for i 6= j. Thus b ∈ D(a1, c) for
some c ∈ D(a2, ..., an). By induction c = aj for some j ≥ 2. Thus b ∈ D(a1, aj) so b = a1 or aj .
Anyway, this means b ∈ {a1, ..., an}.

(c)⇒(d): We have to show that a, b ∈ ker(x) ⇒ D(a, b) ⊆ ker(x). But this is immediate once
ab 6= −1 (since −1 /∈ ker(x)) so, by (c), D(a, b) = {a, b} ⊆ ker(x). Thus, applying AX2, we see
that x ∈ X.

(d)⇒(a): this is immediate fom definition of fan, taking e = −1.

When is a finite space of orderings a fan? Suppose (X,G) is a space of orderings with X finite
(so G is also finite). Viewing elements of X as characters, we have

⋂
x∈X ker(x) = {1}, so we can

find some smallest subset {x1, ..., xn} of X with
⋂n
j=1 ker(xj) = {1}. We refer to any such subset

as a minimal generating set for X. Note that the condition
⋂n
j=1 ker(xj) = {1} just means that

the subspace of (X,G) generated by x1, ..., xn is all of X.

Theorem 4.1.30. Suppose (X,G) is a space of orderings having a minimal generating set x1, ..., xn.
Then:

i - |G| = 2n.

ii - x1, ..., xn is a Z2 basis for the character group χ(G). In particular, each x ∈ X is expressible
uniquely as

x =
n∏
i=1

xeii , ei ∈ {0, 1}.

iii - A necessary condition for a character x =
∏n
i=1 x

ei
i , ei ∈ {0, 1}, to be in X is that

n∑
i=1

e1
∼= 1 (mod 2).

In particular, n ≤ |X| ≤ 2n−1.

iv - (X,G) is a fan iff |X| = 2n−1, so X consists of all products

x =

n∏
i=1

xeii , and

n∑
i=1

e1
∼= 1 (mod 2).

Proof. By the argument in the proof of 4.1.1(ii), the natural injection

G ↪→
n∏
j=1

G/ker(xj)
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is surjective, etc, so (i) and (ii) follows. (iii) and (iv) follows since each x ∈ X must satisfy
x(−1) = (−1)(x) = −1.

If (X,G) is any space of orderings then, by a fan in X (more precisely, a fan in (X,G)), we mean
a subspace Y of X such that the space of orderings (Y,G|Y ) is a fan. For example, in the space of
orderings (X∑

F 2 , G∑
F 2), F a formally real field, we have the fans (XF 2U+

α
, GF 2U+

α
) associated to

the real places α : F → R ∪ {∞}.
A fan is said to be trivial if it has one or two elements. For any x, y ∈ X, {x} and {x, y}

are trivial fans. The 4 elements fans are specially important. These consist of 4 distinct orderings
x1, x2, x3, x4 such that

∏n
j=1 xj = 1 (i.e,

∏4
j=1 a(xj) = 1 for all a ∈ G).

Finally, every fan is realized as the full space of orderings (X∑
F 2 , G∑

F 2) of some formally real
field F . To see this, take F = R((Γ)), where Γ is the direct sum of suitably many copies of Z
ordered in some way (e.g, lexicographically). In this situation, F has a unique real place α and
U+
α ⊆ F 2, so F 2U+

α = F 2 =
∑
F 2.

4.1.6 The Representation Problem II

Let (X,G) be any space of orderings. The representation theorem describes the image of the
Witt ring W = W (X,G) in C(X,Z). We state the representation theorem in 4.1.33 below, but we
start with the following easier result:

Theorem 4.1.31. Suppose f : X → Z is a continuous function. Then 2nf is represented by a
form (i.e, there exists a form ϕ with entries in G such that 2nf = ϕ(x) for all x ∈ X) for some
integer n ≥ 0. In particular, the cokernel of the embedding W ↪→ C(X,Z) is 2-primary torsion.

Proof. f is continuous and Z discrete, so f is locally constant, i.e, for each x ∈ X, there exists a
basic set U(a1, ..., an) with x ∈ U(a1, ..., an) and f constant on U(a1, ..., an). By compactness, there
exist elements aij ∈ G, i = 1, ..., k, j = 1, ..., vi such that X is the union of the sets U(ai1, ..., aivi),
i = 1, ..., k, and f is constant on each U(ai1, ..., aivi). Take G ⊆ G to be the subgroup of G
generated by −1 and the elements aij . For x ∈ X, let

x := {y ∈ X : a(y) = a(x) for all a ∈ G}

and let X = {x : x ∈ X}. Thus, if we view the elements of X as characters on G, then elements
of X are just restrictions of elements of X to the subgroup G. In particular, elements of X can be
viewed as characters on the finite group G, so X is finite. Also, if x = y, then aij(x) = aij(y) for
all i, j so x, y lie in the same U(ai1, ..., aivi), so f(x) = f(y). Thus we get a well-defined function
f : X → Z such that f(x) = f(x) for all x ∈ X. Now fix a Z2-basis −1, a1, ..., an for G and define

px = 〈1, a1(x)a1〉 ⊗ ...⊗ 〈1, an(x)an〉,

x ∈ X (this depends only on x, not on x). Then

px =

{
2n if y = x

0 if y 6= x

Thus ∑
x∈X

f(x)px

 (y) = 2nf(y) = 2nf(y)
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for each y ∈ X so

2nf =
∑
x∈X

f(x)px.

Since px ∈W and f(x) ∈ Z, this proves 2nf ∈W .

We can expand px as px =
∑

S aS(x)〈aS〉, S running through all subsets of {1, ..., n}, where
aS :=

∏
i∈S ai. Then, substituting, we obtain

2nf =
∑
x∈X

f(x)px =
∑
x∈X

f(x)
∑
S

aS(x)〈aS〉 =
∑
S

mS〈aS〉,

where
mS =

∑
x∈X

f(x)
∑
S

aS(x).

In certain cases, we may able to improve on 4.1.31. For example, if each of the integers mS is
divisible by 2n then we get f =

∑
S
mS
2n 〈aS〉 ∈W .

Before deal with the Representation Theorem, we need a lemma:

Lemma 4.1.32. Suppose a1, a2 ∈ G and ϕ1, ϕ2 are forms such that

ϕ1 ⊗ 〈1, a1〉 ∼= ϕ2 ⊗ 〈1, a2〉. (*)

Then there exists a form ϕ such that ϕ|Uai
∼= ϕi|Uai , i = 1, 2.

Proof. Let
S := D(ϕ1 ⊗ 〈1, a1〉) = D(ϕ2 ⊗ 〈1, a2〉).

By 4.1.26(i),
S|D(ϕ1⊗〈1,a1〉) = S|D(ϕ2⊗〈1,a2〉),

i = 1, 2. Pick p ∈ S and decompose ϕi ∼= 〈p〉 ⊕ ϕ′i on U(ai), so

ϕi ⊗ 〈1, ai〉 ∼= 〈p, pai〉 ⊕ ϕ′i ⊕ 〈1, ai〉

on X, i = 1, 2. Rewriting (*) using this, and cancelling the 1-dimensional form 〈p〉, we obtain

〈pa1〉 ⊕ ϕ′i ⊗ 〈1, a1〉 ∼= 〈p, a2〉 ⊗ ϕ′2 ⊕ 〈1, a2〉.

Multiplying this by a2 and adding 〈−pa1, a2〉 to each side yields

〈pa1a2〉 ⊕ a2ϕ
′
1 ⊗ 〈1, a1〉 ∼= 〈p〉 ⊕ ϕ′2 ⊗ 〈1, a2〉

and

〈1,−1〉 ⊕ a2ϕ
′
1 ⊗ 〈1, a1〉 ∼= p〈1,−a1a2〉 ⊕ ϕ′2 ⊗ 〈1, a2〉. (4.1)

It follows that the right side of 4.1 is isotropic so, by 4.1.18(v), there exists s ∈ D(1,−a1a2) such
that −ps ∈ D(ϕ′2 ⊗ 〈1, a2〉). Thus −ps|U(a2) ∈ D(ϕ′2|U(a2)) so ϕ′2

∼= 〈−ps〉 ⊕ ϕ′′2 on U(a2) and then

ϕ′2 ⊗ 〈1, a2〉 ∼= 〈−ps,−psa2〉 ⊕ ϕ′′2 ⊗ 〈1, a2〉
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on X. Also, 〈1,−a1a2〉 ∼= 〈s,−sa1a2〉. Rewriting 4.1 using these last two relations, we obtain

〈1,−1〉 ⊕ a2ϕ
′
1 ⊗ 〈1, a1〉 ∼= 〈ps,−psa1a2,−ps,−psa2〉 ⊕ ϕ′′2 ⊗ 〈1, a2〉.

Cancelling the hyperbolic planes 〈1,−1〉 ∼= 〈ps,−ps〉, and multiplying by a2, this yields

ϕ′1 ⊗ 〈1, a1〉 ∼= 〈−psa1,−ps〉 ⊕ ϕ′′2 ⊗ 〈1, a2〉. (4.2)

It follows that −ps ∈ D(ϕ′1 ⊗ 〈1, a1〉) so ϕ′1
∼= 〈−ps〉 ⊕ ϕ′′1 on U(a1), i.e,

ϕ′1 ⊗ 〈1, a1〉 ∼= 〈−ps,−psa1〉 ⊕ ϕ′′1〈1, a1〉

on X. Rewritting 4.2 using this, and cancelling, we obtain ϕ′′1 ⊗ 〈1, a1〉 ∼= ϕ′′2 ⊗ 〈1, a2〉 on X. Since

ϕi ∼= 〈p〉 ⊗ ϕ′i ∼= 〈p,−ps〉 ⊗ ϕ′′i

on U(ai), i = 1, 2, we are done by induction on the dimension.

Theorem 4.1.33 (Representation Theorem). Suppose f : X → Z is a continuous function. Then
the following are equivalent:

a - 2nf is represented by a form (i.e, there exists a form ϕ with entries in G such that 2nf = ϕ(x)
for all x ∈ X).

b -
∑

x∈Y f(x) ≡ 0 mod |Y | holds for all finite fans Y ⊆ X.

c -
∑

x∈Y a(x)f(x) ≡ 0 mod |Y | holds for all finite fans Y ⊆ X and for all a ∈ G.

Proof. (a)⇒(b) Suppose f is represented by 〈a1, ..., an〉 and Y ⊆ X is a finite fan. Then f(y) =∑n
j=1 ai(y) so ∑

y∈Y
f(y) =

n∑
j=1

(
∑
y∈Y

ai(y)).

Thus we are reduced to showing∑
y∈Y

a(y) ≡ 0 mod |Y | for any a ∈ G.

There are two cases. If a = ±1 on Y then
∑

y∈Y a(y) ± |Y |. If a 6= ±1 on Y , then Y =
U(a|Y ) ∪ U(−a|Y ) and, since Y is a fan, U(a|Y ) and U(−a|Y ) each have half as many elements as
Y so ∑

y∈Y
a(y) = |U(a|Y )| − |U(−a|Y )| = 0.

(b)⇒(c) We want to show that
∑

x∈Y a(x)f(x) ≡ 0 mod |Y | for any finite fan Y ⊆ X. This is
immediate from (b) if a = ±1 on Y . Otherwise∑

x∈Y
a(x)f(x) =

∑
x∈U(a|Y )

f(x)−
∑

x∈U(−a|Y )

f(x)

= 2

 ∑
x∈U(a|Y )

f(x)

−(∑
x∈Y

f(x)

)
≡ 0 mod |Y |.
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Here, we are using the fact that Y = U(a|Y ) ∪ U(−a|Y ) and that U(a|Y ) is a fan with 1/2|Y |
elements, so ∑

x∈U(a|Y )

f(x) ≡ 0 mod 1/2|Y |.

(c)⇒(a) Assume the result is false. Thus f is not represented by a form. We look at all
subspaces Y in X such that f |Y is not represented by a form. We use Zorn’s Lemma to get a
minimal such Y . One has to observe that if Yi, i ∈ I is some chain of subspaces, then Y =

⋂
i∈I Yi

is a subspace and, if f |Y is represented by a form, say 〈a1|Y , ..., an|Y 〉, then, by continuity, the set

U = {x ∈ X : f(x) =
n∑
j=1

aj(x)}

is open inX and contains Y so, by compacteness it contains Yi (so f |Yi is represented by 〈a1|Y , ..., an|Y 〉)
for some i ∈ I. Thus Zorn’s Lemma does apply. So now we have the subspace Y with f |Y not
represented, and Y is minimal with this property. Of course, every fan in Y is also a fan in X, so
our assumption that ∑

x∈Z
a(x)f(x) ≡ 0 mod |Z|

for all a ∈ G still holds for all finite fans Z ⊆ Y . To simplify notation, we replace X by Y . So now
f is not represented, but f |Y is represented for each proper subspace Y of X.

Claim. (X,G) is not a fan. For suppose (X,G) is a fan. Go to the notation used in the proof
of 4.1.31. Pick any subgroup H ⊆ G so that G = G × H (direct product). Let Y consist of all
characters x : G → {−1, 1} such that x|H = 1, and x(−1) = −1. Since X is a fan and Y ⊆ X, so
Y is a fan. Since −1, a1, ..., an is a basis for G, we see that |Y | = 2n. Finally, we see that for each
x ∈ X, there exists a unique y ∈ Y such that x = y. Thus

mS =
∑
x∈X

f(x)aS(x) =
∑
y∈Y

f(y)aS(y) ≡ 0 mod 2n

for each subset S of {1, ..., n} so, f ∈W (each mS is divisible by 2n). This proves the claim.

Thus (X,G) is not a fan, so, by 4.1.29, there exists a ∈ G, a 6= −1, D(1, a) 6= {1, a}. Thus
there exists b ∈ D(1, a), b 6= 1, a. Thus 〈1, a〉 ∼= 〈b, ab〉, i.e, 〈−a, b, ab〉 ∼ 〈1〉. Take a1 = −a, a2 = b,
a3 = ab. Note ai 6= 1, i = 1, 2, 3, so U(ai) is a proper subset of X. By the minimal choice of X,
f |U(ai) is represented, i = 1, 2, 3. Also 〈a1, a2, a3〉 ∼ 〈1〉 so, comparing signatures

For each x ∈ X exactly one of a1(x), a2(x), a3(x) is − 1. (*)

In particular, U(ai) ∩ U(aj) = X if i 6= j. Thus we can assume U(ai) 6= ∅ (otherwise U(aj) =
X). Now, let ϕi be a form with entries in G such that ϕi|U(ai) represents f |U(ai), i = 1, 2, 3.
We can assume ϕ3 ∼ 03. We can also assume ϕi|U(ai) is anisotropic, i = 1, 2. Recall that by
4.1.26(i), D(ϕi|U(ai)) = D(ϕi ⊗ 〈1, ai〉)|U(ai). This means ϕi ⊗ 〈1, ai〉 is anisotropic, i = 1, 2 (see
4.1.18(iii)). Consider these two forms carefully. Let x ∈ X. By (*), there are three possibilities. If
a1(x) = a2(x) = 1, then ϕi(x) = f(x), i = 1, 2, so

(ϕ1 ⊗ 〈1, a1〉)(x) = 2f(x) = (ϕ2 ⊗ 〈1, a2〉)(x).

3Replace f by g : f − ϕ3 if necessary. There is no harm in doing this. f is represented iff g is represented.
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If a1(x) = 1, a2(x) = −1, then a3(x) = 1, so ϕ1(x) = f(x) = ϕ3(x) = 0 and 〈1, a2〉(x) = 0, so

(ϕ1 ⊗ 〈1, a1〉)(x) = 0(ϕ2 ⊗ 〈1, a2〉)(x).

Similarly, if a1(x) = −1 and a2(x) = 1. Thus ϕ1⊗ 〈1, a1〉 and ϕ2⊗ 〈1, a2〉 have the same signature
at each x ∈ X and both are anisotropic, so ϕ1 ⊗ 〈1, a1〉 ∼= ϕ2 ⊗ 〈1, a2〉 (see 4.1.18(i) and 4.1.13).
By lemma 4.1.32 there exists a form ϕ such that ϕ|Uai

∼= ϕi|Uai , i = 1, 2. In particular, this ϕ
represents f , contradiction. So the theorem is proved.

It is important observe that the notion of fans and the representation problem context for
AOS, provides a generalization for the context of the reduced theory of quadratic forms, covered
in chapter 2.

4.2 Special Groups

For special groups, we follow chapters 1,2 and 3 of [DM00]. This is a rich theory, and sadly
the most important applications, like the proof of Marshall’s Conjecture, the Boolean hull and the
invariants are left to a posterior work.

4.2.1 Basic Definitions

Let A be a set and ≡ a binary relation on A×A. We extend ≡ to a binary relation ≡n on An,
by induction on n ≥ 2, as follows:

i - ≡2=≡.

ii - 〈a1, ..., an〉 ≡n 〈b1, ..., bn〉 if and only there are x, y, z3, ..., zn ∈ A such that 〈a1, x〉 ≡ 〈b1, y〉,
〈a2, ..., an〉 ≡n−1 〈x, z3, ..., zn〉 and 〈b2, ..., bn〉 ≡n−1 〈y, z3, ..., zn〉.

Whenever clear from the context, we frequently abuse notation and indicate the aforedescribed
extension ≡ by the same symbol.

Definition 4.2.1 (Special Group). A special group (SG) is an tuple (G,−1,≡), where G is a group
of exponent 2, i.e, g2 = 1 for all g ∈ G; −1 is a distinguished element of G, and ≡⊆ G×G×G×G
is a relation (the special relation), satisfying the following axioms for all a, b, c, d, x ∈ G:

SG 0 - ≡ is an equivalence relation on G2;

SG 1 - 〈a, b〉 ≡ 〈b, a〉;

SG 2 - 〈a,−a〉 ≡ 〈1,−1〉;

SG 3 - 〈a, b〉 ≡ 〈c, d〉 ⇒ ab = cd;

SG 4 - 〈a, b〉 ≡ 〈c, d〉 ⇒ 〈a,−c〉 ≡ 〈−b, d〉;

SG 5 - 〈a, b〉 ≡ 〈c, d〉 ⇒ 〈ga, gb〉 ≡ 〈gc, gd〉, for all g ∈ G.

SG 6 (3-transitivity) - the extension of ≡ for a binary relation on G3 is a transitive relation.

A group of exponent 2 satisfying SG0-SG5 is called pre-special group (PSG). A PSG (or SG)
(G,−1,≡) is reduced (RPSG, RSG respectively) if 1 6= −1 and if 〈a, a〉 ≡ 〈1, 1〉 ⇒ a = 1.
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Definition 4.2.2. Let G be a psg. A form ϕ on G is an n-tuple 〈a1, ..., an〉 of elements of G; n is
called the dimension of ϕ, dim(ϕ). We also call ϕ a n-form.

By convention, two forms of dimension 1 are isometric if and only if they have the same
coefficients. If ϕ = 〈a1, ..., an〉 is a form on G, define

a - The set of elements represented by ϕ as

DG(ϕ) = {b ∈ G : ∃ z2, ..., zn ∈ G such that ϕ ≡G 〈b, z2, ..., zn〉}.

b - The discriminant of ϕ as d(ϕ) =
n∏
i=1

ai.

c - Direct sum as ϕ⊕ θ = 〈a1, ..., an, b1, ..., bm〉.

d - Tensor product as ϕ⊗ θ = 〈a1b1, ..., aibj , ..., anbm〉. If a ∈ G, 〈a〉 ⊗ ϕ is written aϕ.

A form ϕ on G is isotropic if there is a form ψ over G such that ϕ ≡G 〈1,−1〉 ⊕ ψ; otherwise
it is said to be anisotropic. We say that ϕ is universal if DG(ϕ) = G.

Lemma 4.2.3. Let (G,≡G,−1) be a pre-special group. Let a, b, c, d be elements of G and ϕ,ψ be
n-forms on G. Then

a - 〈a, b〉 ≡ 〈c, d〉 if and only if ab = cd and ac ∈ DG(1, cd). Further, c ∈ DG(1, a) if and only if
〈c, ac〉 ≡ 〈1, a〉.

b - ϕ ≡ ψ implies d(ϕ) = d(ψ).

Proof. a - If 〈a, b〉 ≡ 〈c, d〉, then by SG3 ab = cd and by SG5 〈ac, bc〉 ≡ 〈1, cd〉, so ac ∈ DG(c, d).
Conversely, suppose that ab = cd and ac ∈ DG(c, d). Then there exist x ∈ G such that
〈ac, x〉 ≡ 〈1, cd〉, and by SG3, acx = cd⇒ ax = d.

〈ac, x〉 ≡ 〈1, cd〉 ab=cd⇒ 〈ac, x〉 ≡ 〈1, ab〉
SG5⇒ 〈c, ax〉 ≡ 〈a, b〉
⇒ 〈c, d〉 ≡ 〈a, b〉.

b - We proceed by induction on dimϕ = dimψ = n. If n = 1 there is nothing to do, and if n = 2
is just SG3 (or the previous item). Now, Let n ≥ 3 and ϕ = 〈a1, ..., an〉 and ψ = 〈b1, ..., bn〉. If
ϕ ≡ ψ, there exist x, y, z3, ..., zn ∈ G such that 〈a1, x〉 ≡ 〈b1, y〉, 〈a2, ..., an〉 ≡ 〈x, z3, ..., zn〉 and
〈b2, ..., bn〉 ≡ 〈y, z3, ..., zn〉. Therefore a1x = b1y and by induction hypothesis, a2...an = xz3...zn
and b2...bn = yz3...zn. Hence

a2...an = xz3...zn ⇒ a1a2...an = a1xz3...zn = b1yz3...zn = b1b2...bn

and d(ϕ) = d(ψ).

Proposition 4.2.4. Let (G,≡G,−1) be a pre-special group and ϕ,ψ and θ be forms on G. Then

a - The direct sum of isometric forms is isometric.

b - The tensor product of isometric forms is isometric.
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c - If G is a special group, then we also have the Witt cancellation:

ϕ⊕ θ ≡ ψ ⊕ θ ⇒ ϕ ≡ ψ.

d - For all a ∈ G and forms ϕ1, ..., ϕn on G,

a ∈ DG(⊕ni=1ϕi)⇔

{
∃xi ∈ DG(ϕi), 1 ≤ i ≤ n,
such that a ∈ DG(〈x1, ..., xn〉)

.

e - ϕ⊕ ψ is isotropic iff there is x ∈ G such that x ∈ DG(ϕ) and −x ∈ DG(ψ). In particular, if a
is an element of G, a ∈ DG(ϕ) iff 〈−a〉 ⊕ ϕ is isotropic.

Proof. a - Suppose that ϕ1, ϕ2, ψ1, ψ2 are forms over G such that ϕ1 ≡ ϕ2 and ψ1 ≡ ψ2. We prove
that ϕ1 ⊕ ψ1 ≡ ϕ2 ⊕ ψ2 by induction on n = dimϕ1 = dimϕ2. If n = 1, then ϕ1 = ϕ2 = 〈a〉
for some a ∈ G. Let ψ1 = 〈c1, ..., cm〉 and ψ2 = 〈d1, ..., dm〉. The isometries 〈a, c1〉 ≡ 〈a, c1〉,
ψ1 ≡ ψ1 and ψ1 ≡ ψ2 show that 〈a, c1, ..., cm〉 ≡ 〈a, d1, ..., dm〉, as required.

Assume that result true for dimϕ1 = dimϕ2 = n and suppose ϕ1 = 〈a, a1, ..., an〉 and ϕ2 =
〈b, b1, ..., bn〉. Let x, y, ~z = (z2, ..., zn) be witnesses to the isometry ϕ1 ≡ ϕ2, that is

〈a, x〉 ≡ 〈b, y〉, 〈a1, ..., an〉 ≡ 〈x, ~z〉 and 〈b1, ..., bn〉 ≡ 〈y, ~z〉. (*)

The isometries in (*) and the induction hypothesis give

〈a1, ..., an〉 ⊕ ψ1 ≡ 〈x, ~z〉 ⊕ ψ1 and 〈a1, ..., an〉 ⊕ ψ1 ≡ 〈x, ~z〉 ⊕ ψ2.

Hence, these isometries together with the first one in (*) yields

〈a, a1, ..., an〉 ⊕ ψ1 ≡ 〈b, b1, ..., bn〉 ⊕ ψ2

as desired.

b - Suppose that ϕ1, ϕ2, ψ1, ψ2 are forms over G such that ϕ1 ≡ ϕ2 and ψ1 ≡ ψ2. We prove that
ϕ1 ⊗ ψ1 ≡ ϕ2 ⊗ ψ2 by induction on n = dimϕ1 = dimϕ2.

Let n = 1. Then ϕ1 = ϕ2 = 〈a〉 for some a ∈ G. Now, we proceed by induction on m =
dimψ1 = dimψ2. Let ψ1 = 〈c1, ..., cm〉 and ψ2 = 〈d1, ..., dm〉. If m = 1 there is nothing to proof
and if m = 2 the result holds by SG5. Assume that the result holds true for (m − 1) and let
x, y, ~z = (z2, ..., zn) be witnesses to the isometry ψ1 ≡ ψ2, i.e,

〈c1, x〉 ≡ 〈d1, y〉, 〈c2, ..., cm〉 ≡ 〈x, ~z〉 and 〈d2, ..., dm〉 ≡ 〈y, ~z〉. (**)

Multiplying all these isometries by a and using the induction hypothesis, we have

〈ac1, ax〉 ≡ 〈ad1, ay〉, 〈ac2, ..., acm〉 ≡ 〈ax, a~z〉 and 〈ad2, ..., adm〉 ≡ 〈ay, a~z〉,

and hence, aψ1 ≡ aψ2.

The general induction step follow by the argument in the case n = 2. So, let us prove

〈a, b〉 ≡ 〈c, d〉 ⇒ 〈a, b〉 ⊗ ψ1 ≡ 〈c, d〉 ⊗ ψ2 (4.3)

The argument is (again!) by induction on the dimension m of ψ′s. If m = 2, say ψ1 = 〈c1, c2〉 ≡
〈d1, d2〉 = ψ2, by preservation of isometry by sums and multiplication by an element of G we
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have

〈a, b〉 ⊗ 〈c1, c2〉 = a〈c1, c2〉 ⊕ b〈c1, c2〉 ≡ a〈d1, d2〉 ⊕ b〈d1, d2〉 = 〈a, b〉 ⊗ 〈d1, d2〉
= d1〈a, b〉 ⊕ d2〈a, b〉 ≡ d1〈c, d〉 ⊕ d2〈c, d〉 = 〈c, d〉 ⊗ 〈d1, d2〉.

Now, suppose that 4.3 holds for dim(ψ1) = dim(ψ2) = m− 1. From (**) come

〈a, b〉 ⊗ 〈c1, x〉 ≡ 〈c, d〉 ⊗ 〈d1, y〉; (4.4)

〈a, b〉 ⊗ 〈c2, ..., cm〉 ≡ 〈a, b〉 ⊗ 〈x, z〉; (4.5)

〈c, d〉 ⊗ 〈d2, ..., dm〉 ≡ 〈c, d〉 ⊗ 〈y, z〉; (4.6)

〈a, b〉 ⊗ 〈~z〉 ≡ 〈c, d〉 ⊗ 〈~z〉. (4.7)

These isometries and the preservation of isometry by sums yields

〈a, b〉 ⊗ ψ1 = c1〈a, b〉 ⊕ [〈a, b〉 ⊗ 〈c2, ..., cm〉]
= c1〈a, b〉 ⊕ [〈a, b〉 ⊗ 〈x, ~z〉]
= c1〈a, b〉 ⊕ x〈a, b〉 ⊕ [〈a, b〉 ⊗ 〈~z〉]
= d1〈c, d〉 ⊕ y〈c, d〉 ⊕ [〈c, d〉 ⊗ 〈~z〉]
= d1〈c, d〉 ⊕ [〈c, d〉 ⊗ 〈y, ~z〉]
= d1〈c, d〉 ⊕ [〈c, d〉 ⊗ 〈d2, ..., dm〉] = 〈c, d〉 ⊗ ψ2.

Finally, we deal with the general case. By induction, let ϕ1 = 〈a, a1, ..., an〉 and ϕ2 =
〈b, b1, ..., bn〉, n ≥ 3. Let x, y, ~z = (z2, ..., zn) be witnesses to the isometry ϕ1 ≡ ϕ2, i.e, el-
ements satisfying (*). From the isometries in (**) we get, by induction hypothesis and the case
n = 2

〈a, x〉 ⊗ ψ1 = aψ1 ⊕ xψ1 ≡ 〈b, y〉 ⊗ ψ2 = bψ2 ⊕ yψ2; (4.8)

〈a1, ..., an〉 ⊗ ψ1 ≡ 〈x, z〉 ⊗ ψ1; (4.9)

〈b1, ..., bn〉 ⊗ ψ2 ≡ 〈y, z〉 ⊗ ψ2; (4.10)

〈~z〉 ⊗ ψ1 ≡ 〈~z〉 ⊗ ψ2. (4.11)

Then, we get

ϕ1 ⊗ ψ1 = 〈a, a1, ..., an〉 ⊗ ψ1

= aψ1 ⊕ [〈a1, ..., an〉 ⊗ ψ1]

= aψ1 ⊕ [〈x, z〉 ⊗ ψ1]

= aψ1 ⊕ xψ1 ⊕ [〈~z〉 ⊗ ψ1]

≡ bψ2 ⊕ yψ2 ⊕ [〈~z〉 ⊗ ψ2]

= bψ2 ⊕ [〈y, z〉 ⊗ ψ2]

≡ bψ2 ⊕ [〈b1, ..., bn〉 ⊗ ψ2]

= 〈b, b1, ..., bn〉 ⊗ ψ2 = ϕ2 ⊗ ψ2.

c - Let n = dim(ϕ) = dim(ψ). First suppose that θ = 〈a〉, a ∈ G. Then the hypothesis in this
case reads 〈a〉 ⊕ϕ ≡ 〈a〉 ⊕ψ. Thus, there are x, y, ~z = (z3, ..., zn) ∈ G such that 〈a, x〉 ≡ 〈a, y〉,
ϕ ≡ 〈x, ~z〉 and ψ ≡ 〈y, ~z〉. The first isometry tells us that ax = ay and so x = y. But then the
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transitivity of ≡ yields ϕ ≡ ψ. To finish the proof, use induction on dim(θ), noting that the
isometry θ ⊕ ϕ ≡ θ ⊕ ψ can be written as 〈a〉 ⊕ ϕ′ ≡ 〈a〉 ⊕ ψ′, for suitable ϕ′, ψ′.

d - It is enough to prove the statement for n = 2 and use induction. Therefore, we will prove that

a ∈ DG(ϕ⊕ ψ)⇔ there exist x1 ∈ DG(ϕ) and x2 ∈ DG(ψ) such that a ∈ DG(x1, x2). (4.12)

(⇐) Let dim(ϕ) = n, dim(ψ) = m, b ∈ DG(ϕ), c ∈ DG(ψ) and a ∈ DG(b, c). Then, there are
w,~t = (t2, ..., tn) and ~a = (a2, ..., am) in G such that

〈b, c〉 ≡ 〈a,w〉, 〈b,~t〉 ≡ ϕ and 〈c,~a〉 ≡ ψ.

But then,
ϕ⊕ ψ ≡ 〈b,~t〉 ⊕ 〈c,~a〉 ≡ 〈b, c〉 ⊕ 〈~t,~a〉 ≡ 〈a, z〉 ⊕ 〈~t,~a〉 ≡,

showing that a ∈ DG(ϕ⊕ ψ), hence DG(a, b) ⊆ DG(ϕ⊕ ψ).

(⇒) We use induction on dim(ϕ) = n. If ϕ = 〈b〉 and a ∈ 〈b〉 ⊕ ψ, there is ~t = (t1, ..., tn) in G
such that 〈a,~t〉 ≡ 〈b〉 ⊕ψ. This means that we can find x, y and ~z = (z1, ..., zm) in G such that
(among other things), 〈a, x〉 ≡ 〈b, y〉 and ψ ≡ 〈y, ~z〉. Since y ∈ DG(ψ), this is exactly what was
to be proved.

Now suppose ϕ = 〈b,~v〉, where ~v ∈ Gn. If a ∈ DG(ϕ⊕ψ), then there is ~t = (t2, ..., tl) in G, with
l = n + m + 1, such that 〈a,~t〉 ≡ 〈b,~v〉 ⊕ ψ. Just as before, there are x, y and ~z = (z3, ..., zl)
in G such that 〈a, x〉 ≡ 〈b, y〉 and 〈y, ~z〉 ≡ 〈~v〉 ⊕ ψ. By induction, since y is represented by
〈~v〉 ⊕ ψ, there are u ∈ DG(〈~v〉) and w ∈ DG(ψ) such that y ∈ DG(u,w). Now note that we
have a ∈ DG(b, y) and y ∈ DG(u,w).

By what was proven above, we may conclude that a ∈ DG(〈b, u, w〉) = DG(〈b, u〉⊕ 〈w〉). Using
the first step in the induction, we get the existence of t ∈ DG(b, u) such that a ∈ DG(t, w).
But again, by the first part of the proof, DG(b, u) ⊆ DG(〈b〉 ⊕ ~v) = DG(ϕ), and the proof is
complete.

e - If there is x ∈ DG(ϕ) such that −x ∈ DG(ψ), then there are ~t = 〈t1, ..., tn〉 and ~z = 〈z1, ..., zm〉
such that 〈x,~t〉 ≡ ϕ and 〈−x, ~z〉 ≡ ψ. But then

ϕ⊕ ψ ≡ 〈x,−x〉 ⊕ (〈~t〉 ⊕ 〈~z〉) ≡ 〈1,−1〉 ⊕ (〈~t〉 ⊕ 〈~z〉),

i.e, ϕ ⊕ ψ is isotropic. For the converse, we proceed by induction on dim(ϕ) = n. If ϕ = 〈a〉,
then we have

〈a〉 ⊕ ψ ≡ 〈1,−1〉 ⊕ θ ≡ 〈a,−a〉 ⊕ θ,

and so cancelling a on both sides yields ψ ≡ 〈−a〉 ⊕ θ, which shows that −a ∈ DG(ψ). By
induction, write ϕ = 〈a〉 ⊕ γ, thus

ϕ⊕ ψ = 〈a〉 ⊕ γ ⊕ ψ ≡ 〈1,−1〉 ⊕ θ ≡ 〈a,−a〉 ⊕ θ,

which yields, by cancellation of a on both sides, γ ⊕ ψ ≡ 〈−a〉 ⊕ θ. By (d) above, there are
x ∈ DG(γ) and y ∈ DG(ψ) such that −a ∈ DG(x, y), i.e, for some z ∈ G, 〈−a, z〉 ≡ 〈x, y〉.
Using SG1 and SG4, 〈z,−y〉 ≡ 〈a, x〉. By (d), −y ∈ DG(〈a〉 ⊕ γ) = DG(ϕ), completing the
proof.
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Proposition 4.2.5. Let (G,≡G,−1) be a pre-special group and ϕ,ψ and θ be forms on G. Then
are equivalent:

a - G is a reduced special group.

b - For all x, a ∈ G, if x ∈ DG(a, a) then x = a.

c - For any form ψ on G, DG(ψ ⊕ ψ) = DG(ψ).

d - For any form ψ on G, ψ ⊕ ψ isotropic ⇒ ψ isotropic.

e - For all forms ψ, θ on G, ψ ⊕ ψ ≡ θ ⊕ θ ⇒ ψ ≡ θ.

f - For any form ψ of even dimension on G, ψ ⊕ ψ hyperbolic ⇒ ψ hyperbolic.

Proof. (a)⇒(b). If x ∈ DG(a, a), there exist y ∈ G such that 〈x, y〉 ≡ 〈a, a〉. By SG3, xy = a2 = 1,
so xy = 1, and x = y (because G has exponent 2). Now, by SG5 and reduction we have

〈x, x〉 ≡ 〈a, a〉 ⇒ 〈ax, ax〉 ≡ 〈1, 1〉 ⇒ ax = 1⇒ x = a.

(b)⇒(c). Let ψ = 〈a1, ..., an〉 and x ∈ DG(ψ⊕ψ). Then ψ⊕ψ =
⊕n

i=1〈ai, ai〉. Thus, by 4.2.4(c)
there are xi ∈ DG(ai, ai) such that x ∈ DG(〈x1, ..., xn〉). By item (b), xi = ai for all i = 1, ..., n,
proving that x ∈ DG(ψ).

(c)⇒(d). Let ψ′ = 〈a2, ..., an〉. Then ψ ⊕ ψ = 〈a1, a1〉 ⊕ (ψ′ ⊕ ψ′). Since ψ ⊕ ψ is isotropic, by
4.2.4(d), there is x ∈ DG(a1, a1) such that −x ∈ DG(ψ′⊕ψ′). By item (c), x ∈ DG(〈a1〉), so x = a1

and −a1 = −x ∈ DG(ψ′). Invoking 4.2.4(d) again, we conclude that ψ = 〈a1〉 ⊕ ψ′ is isotropic.
(d)⇒(e). Let ψ and ψ′ as above and set θ = 〈b1, ..., bn〉 with θ′ = 〈b2, ..., bn〉. We proceed by

induction on n. Assume ψ ⊕ ψ ≡ θ ⊕ θ; then 〈a1, a1〉 ⊕ (ψ′ ⊕ ψ′) ≡ 〈b1, b1〉 ⊕ (θ′ ⊕ θ′), which from

〈a1, a1〉 ⊕ 〈−b1,−b1〉 ⊕ (ψ′ ⊕ ψ′) ≡ 〈1,−1〉 ⊕ 〈1,−1〉 ⊕ (θ′ ⊕ θ′), (*)

i.e, the form 〈1, 1〉 ⊗ (〈a1,−b1〉 ⊕ ψ′) is isotropic. By item (d), the same is true of 〈a1,−b1〉 ⊕ ψ′ ≡
〈−b1〉 ⊕ ψ. Thus, there is a form θ0 of dimension n− 1 such that

〈−b1〉 ⊕ ψ ≡ 〈1,−1〉 ⊕ θ0 ≡ 〈b1,−b1〉 ⊕ θ0, (**)

where we have used the preservation of isometry by sum and SG2. By Witt cancellation, ψ ≡
〈b1〉 ⊕ θ0. From (*) and (**) we also have

〈1, 1〉 ⊗ (〈1,−1〉 ⊕ θ′) ≡ 〈1, 1〉 ⊗ (〈−b1〉 ⊕ ψ)

≡ 〈1, 1〉 ⊗ (〈1,−1〉 ⊕ θ0);

cancelling out 〈1, 1〉 ⊗ 〈1,−1〉, gives 〈1, 1〉 ⊗ θ′ ≡ 〈1, 1〉 ⊗ θ0. By the induction hypothesis, θ′ ≡ θ0,
which yields

θ ≡ (〈−b1〉 ⊕ θ′) ≡ 〈−b1〉 ⊕ θ0 ≡ ψ,

as desired.
(e)⇒(f). Assume that ψ⊕ψ is hyperbolic. Since dim(ψ) is even, say 2l, our assumption comes

down to

ψ ⊕ ψ ≡
n⊕
i=1

〈1,−1〉 = (2l)× 〈1,−1〉 ≡ θ ⊕ θ

with θ =
⊕l

i=1〈1,−1〉. By item (e), ψ ≡ θ which means ψ hyperbolic.
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(f)⇒(a). Assume that 〈a, a〉 ≡ 〈1, 1〉. Then the form 〈a,−1〉 ⊕ 〈a,−1〉 is hyperbolic. By item
(f), so is 〈a,−1〉, that is, 〈a,−1〉 ≡ 〈1,−1〉, which implies a = 1 by SG3.

Example 4.2.6 (Fan). Let G be a group of exponent 2 with a distinguished element −1 6= 1. For
each a ∈ G, a 6= −1, define Ga = {1, a}, setting G−1 = G. We now define a relation ≡fan on
G⊗G by

〈a, b〉 ≡fan 〈c, d〉 iff ab = cd and ac ∈ Gcd. (fan)

Indeed, (G,≡fan,−1) is a reduced special group with DG(1, a) = Ga. We will make a proof of this
in our second functorial picture, in theorem 4.3.1.

Example 4.2.7. Consider the multiplicative group 2 = {±1} with −1 as the distinguished element.
By the previous example, define for a, b, c, d ∈ 2

〈a, b〉 ≡fan 〈c, d〉 iff a+ b = c+ d (computed in Z).

With this structure, {±1} is a reduced special group with D(1, 1) = {1} and D(1,−1) = 2.
If t is a form over 2 of dimension n (i.e, a sequence of 1’s and −1’s of length n ≥ 1), let pt =

number of 1’s and nt = number of −1’s in t. Then pt + nt = n. If s, t are forms of dimension n
in 2, then the definition of isometry of n-forms and induction, yields

s ≡fan t iff
∑
i≤n

s(i) =
∑
i≤n

t(i)(in Z) iff ps = pt and ns = nt.

This is the only structure of reduced (pre-)special group on 2, with 1 6= −1, to be indicated by Z2.

Example 4.2.8 (The trivial special relation). Let G be a group of exponent 2 and −1 any element
of G distinct from 1. For a, b, c, d ∈ G define

〈a, b〉 ≡t 〈c, d〉 iff ab = cd.

Is an immediate consequence of this that (G,≡t,−1) is a pre-special group. For SG6, we will proof
that For forms ϕ = 〈a1, ..., an〉 and ψ = 〈b1, ..., bn〉 on G,

ϕ ≡t ψ iff d(ϕ) = d(ψ).

Of course, follows by Lemma 4.2.3(b) that ϕ ≡t ψ implies the equality of discriminants. For the
converse, we use induction on n ≥ 2, observing that for n = 2 the equality of discriminants is the
definition of ≡t.

Assume n ≥ 3 and that d(ϕ) = d(ψ). Set α = d(〈a2, ..., an〉) and β = d(〈b2, ..., bn〉). Let
~z = (z3, ..., zn) = (1, ..., 1). Then, using the induction hypothesis,

i - a1α = b1β yields 〈a1, α〉 ≡t 〈b1, β〉;

ii - αd(〈~z〉) = α yields 〈a2, ..., an〉 ≡t 〈α, ~z〉;

iii - βd(〈~z〉) = β yields 〈b2, ..., bn〉 ≡t 〈β, ~z〉.

The three isometries above imply ϕ ≡t ψ, as desired. In particular, ≡t is transitive. We refer to
the relation ≡t as the trivial special group structure on G, denoting it by Gt.

It is straightforward to verify that Gt is never reduced, all binary forms are universal and all
forms of dimension ≥ 3 are isotropic.
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Example 4.2.9 (Extension). Let (G,≡,−1) be a SG and ∆ be a group of exponent 2. Write G[∆]
for the group G × ∆ with its usual (coordinate-wise) group structure, with 1 = (1, 1) as identity
and −1 = (−1, 1) as distinguished element. We write g · δ, instead of (g, δ), for a typical element
of G[∆]. For each g · δ in G[∆] we define a subgroup Eg·δ of G[∆] as follows:

Eg·δ =


DG(1, g)× {1} if g 6= −1 and δ = 1;

G[∆] if g = −1 and δ = 1;

{1, g · δ} if δ 6= 1

(ext)

Define a relation ≡ext on G[∆]×G[∆] by

(g1 · δ1, g2 · δ2) ≡ext (h1 · η1, h2 · η2)⇔

{
g1g2 = h1h2 and δ1δ2 = η1η2

h1g1 · η1δ1 ∈ Eg1g2·δ1δ2 .

Lemma 4.2.10. (G[∆],≡ext,1) is a special group that is reduced iff G is reduced.

Proof. We will verify that ≡ext is a special relation on G[∆]:

SG 0 - 〈g1 · δ1, g2 · δ2〉 ≡ext 〈g1 · δ1, g2 · δ2〉 since g1g1 · δ1δ1 = 1 ∈ Eg1g2·δ1δ2 . If (g1 · δ1, g2 · δ2) ≡ext
(h1 · η1, h2 · η2) then g1g2 = h1h2, δ1δ2 = η1η2 and h1g1 · η1δ1 ∈ Eg1g2·δ1δ2 = Eh1h2·η1η2 , so
(h1 · η1, h2 · η2) ≡ext (g1 · δ1, g2 · δ2). Now, suppose (g1 · δ1, g2 · δ2) ≡ext (h1 · η1, h2 · η2) and
(h1 · η1, h2 · η2) ≡ext (l1 · θ1, l2 · θ2). Then g1g2 = h1h2 = l1l2 and δ1δ2 = η1η2 = θ1θ2. Since
g1h1 · δ1η1 ∈ Eg1g2·δ1δ2 = El1l2·θ1θ2 and h1l1 · η1θ1 ∈ Eh1h2·η1η2 = El1l2·θ1θ2 , we have

g1l1 · δ1θ1 = (g1h1 · δ1η1)(h1l1 · η1θ1) ∈ El1l2·θ1θ2 .

This proves that ≡ext is an equivalence relation.

SG 1 - (g1 · δ1, g2 · δ2) ≡ext (g2 · δ2, g1 · δ1) is just consequence of g1g2 · δ1δ2 ∈ Eg1g2·δ1δ2 .

SG 2 - (g · δ,−g · δ) ≡ext (1,−1) is just consequence of g · δ ∈ E−1.

SG 3 - Follow from the definition of ≡ext.

SG 4 - Let (g1 · δ1, g2 · δ2) ≡ext (h1 · η1, h2 · η2). Then g1g2 = h1h2, δ1δ2 = η1η2 and g1h1 · δ1η1 ∈
Eg1g2·δ1δ2 . Of course, we have −g1h1 = −g2h2 and −δ1η1 = −δ2η2. Then, we just need to
prove that −g1g2 · δ1δ2 ∈ E−g1h1·δ1η1 . We divide this in cases:

Case 1: δ1δ2 6= 1. In this case, Eg1g2·δ1δ2 = {1, g1g2 · δ1δ2}. Then g1h1 · δ1η1 = 1 or
g1h1 · δ1η1 = g1g2 · δ1δ2. In both cases we have −g1g2 · δ1δ2 ∈ E−g1h1·δ1η1 = {1,−g1h1 · δ1η1},
since η1η2 6= 1 too.

Case 2: δ1δ2 = 1 and g1g2 = −1. Then −g1g2 · δ1δ2 = 1 ∈ E−g1h1·δ1η1 .

Case 3: δ1δ2 = 1 and g1g2 6= −1. From g1h1 · δ1η1 ∈ Eg1g2·δ1δ2 we obtain δ1η1 = 1 and
g1h1 ∈ DG(1, g1g2). So there exits t ∈ G such that 〈1, g1g2〉 ≡G 〈g1h1, t〉. From SG4
on G, we have 〈1,−g1h1〉 ≡G 〈−g1g2, t〉, then −g1g2 ∈ DG(1,−h1h2). This imply that
−g1g2 · 1 ∈ E−g1h1·1.

SG 5 - Let (g1 · δ1, g2 · δ2) ≡ext (h1 · η1, h2 · η2). Then

g1g2 = h1h2 and δ1δ2 = η1η2 ⇒ (xg1)(xg2) = (xh1)(xh2) and (θδ1)(θδ2) = (θη1)(θη2)
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and

g1h1 · δ1η1 ∈ Eg1g2·δ1δ2 ⇒ (xg1)(xh1) · (θδ1)(θη1) ∈ E(xg1)(xg2)·(θδ1)(θδ2).

So ((x · θ)(g1 · δ1), (x · θ)(g2 · δ2)) ≡ext ((x · θ)(h1 · η1), (x · θ)(h2 · η2)).

SG 6 - We use a characterization for SG3 that we will prove in theorem 4.2.16: in a psg (G,≡,−1),
≡ is 3-transitive iff for all For all 3-forms ϕ and all b1, b2, b3 ∈ G,

ϕ ≡ 〈b1, b2, b3〉 imples ϕ ≡ 〈b2, b1, b3〉.

Now, let ϕ = 〈a1 · δ1, a2 · δ2, a3 · δ3 and suppose ϕ ≡ext 〈b1 · η1, b2 · η2, b3 · η3〉. Then, there
exist x · δ, y · η, z · θ ∈ G[∆] such that

〈a1 · δ1, x · δ〉 ≡ext 〈b1 · η1, y · η〉, 〈a2 · δ2, a3 · δ3〉 ≡ext 〈x · δ, z · θ〉 and

〈b2 · η2, b3 · η3〉 ≡ext 〈y · η, z · θ〉. (4.13)

Lets keep in mind that we want to prove

〈a1 · δ1, a · α〉 ≡ext 〈b2 · η2, b · β〉, 〈a2 · δ2, a3 · δ3〉 ≡ext 〈a · α, c · γ〉 and

〈b1 · η1, b3 · η3〉 ≡ext 〈b · β, c · γ〉, (4.14)

for some a · α, b · β, c · γ ∈ G[∆]. Now, we have five cases to deal with:

Case 1: δ = η = θ. For this case, we use the following fact:

Fact 4.2.11. Let G be a psg and ∆ be a group of exponent 2. Given ϕ = 〈a1 · δ1, ..., an · δn〉,
ψ = 〈b1 · η1, ..., bn · ηn〉 be forms on G[∆], then

ϕ ≡ext ψ ⇒ δ1...δn = η1...ηn and 〈a1, ..., an〉 ≡G 〈b1, ..., bn〉.

Proof. We prove by induction on n. Let n = 2 and suppose that 〈a1 · δ1, a2 · δ2〉 ≡ext
〈b1 · η1, b2 · η2〉. We already have δ1δ2 = η1η2 and a1a2 = a1a2, so the discriminant part
is done. Of course, the definition of ≡ext yield a1b1 · δ1η1 ∈ Ea1a2·δ1δ2 . Now, to prove that
〈a1, a2〉 ≡G 〈b1, b2〉, we divide the argument in cases:

Case 1: δ1δ2 6= 1. Then Ea1a2·δ1δ2 = {1, a1a2 · δ1δ2}, and a1b1 · δ1η1 = 1 or a1b1 · δ1η1 =
a1a2 · δ1δ2. Then a1b1 = 1 or a1b1 = a1a2 so b1 = a1 and b2 = a2 or b1 = a2 and b2 = a1. In
both cases we have 〈a1, a2〉 ≡G 〈b1, b2〉.
Case 2: δ1δ2 = 1 and a1a2 = −1. Then b1b2 = −1, a2 = −a1 and b2 = −b1. By SG2 on G,
we have 〈a1,−a1〉 ≡G 〈1,−1〉 ≡G 〈b1,−b1〉.
Case 3: δ1δ2 = 1 and a1a2 6= −1. From a1b1 · δ1η1 ∈ Ea1a2·δ1δ2 we get a1b1 ∈ DG(1, g1g2). By
4.2.3(a) we obtain 〈a1, a2〉 ≡G 〈b1, b2〉.
Now, suppose the assertion valid for n − 1 and let ϕ = 〈a1 · δ1, ..., an · δn〉 and ψ = 〈b1 ·
η1, ..., bn · ηn〉. By definition. ϕ ≡ext ψ iff there exists x · δ, y · η, z3 · θ3, ..., zn · ηn ∈ G[∆] such
that

〈a1 · δ1, x · δ〉 ≡ext 〈b1 · η1, y · η〉
〈a2 · δ2, ..., an · δn〉 ≡ext 〈x · δ, z3 · θ3, ..., zn · ηn〉
〈b2 · η2, ..., bn · ηn〉 ≡ext 〈y · η, z3 · θ3, ..., znηn〉
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By induction hypothesis, this imply δ1δ = η1η, δ2...δn = θ2...θn = η2...ηn and

〈a1, x〉 ≡G 〈b1, y〉
〈a2, ..., an〉 ≡G 〈x, z3, ..., zn〉
〈b2, ..., bn〉 ≡G 〈y, z3, ..., zn〉

i.e, δ1...δn = η1...ηn and 〈a1, ..., an〉 ≡G 〈b1, ..., bn〉.

Now, lets return to the case δ = η = θ. From the fact, we have 4.13 imply 〈a1, a2, a3〉 ≡G
〉b1, b2, b3〉, and since G is a special group, we conclude 〈a1, a2, a3〉 ≡G 〈b2, b1, b3〉. Therefore,
exists a, b, c ∈ G such that

〈a1, a〉 ≡G 〈b2, b〉,〈a2, a3〉 ≡G 〈a, c〉 and

〈b2, b3〉 ≡ 〈b, c〉. (4.15)

From 4.13 again, we get

〈a1 · δ1, x · θ〉 ≡ext 〈b1 · η1, y · θ〉, 〈a2 · δ2, a3 · δ3〉 ≡ext 〈x · θ, z · θ〉 and

〈b2 · η2, b3 · η3〉 ≡ext 〈y · θ, z · θ〉. (4.16)

Then δ2δ3 = η2η3 = 1. Moreover, a1b1 · δ1η1 ∈ Ea1x·δ1θ, a2x · δ2θ ∈ Ea2a3·1 and b2y · η2θ ∈
Eb2b3·1. Therefore, δ1 = η1 = λ and

δ = δ2 = δ3 = η = η2 = η3 = θ.

After this, we have two cases: λ = θ and λ 6= θ. If λ = θ, let a, b, c as in 4.15 and set
α = β = γ = θ to obtain 4.14.

If λ 6= θ, from a1b1 · 1 ∈ Ea1x·λθ, we obtain a1b1 · 1 ∈ {1, a1x · λδ}. Since λδ 6= 1, we have
a1 = b1. This implies x = y, and by 4.16 and transitivity of ≡ext on 2-forms (SG0), we have
〈a2 · δ2, a3 · δ3〉 ≡ext 〈b2 · η2, b3 · η3〉. Then

〈a1 · λ, b2 · θ〉 ≡ext 〈b2 · θ, a1 · λ〉, 〈a2 · δ2, a3 · δ3〉 ≡ext 〈b2 · η2, b3 · η3〉 and

〈b1 · λ, b3 · θ〉 ≡ext 〈a1 · λ, b3 · θ〉.

Setting a = b2, b = a1, c = b3 and α = θ, β = λ, γ = θ we get 4.14.

Case 2: δ = θ, δ 6= η. From 4.13 we get

〈a1 · δ1, x · δ〉 ≡ext 〈b1 · η1, y · η〉, 〈a2 · δ2, a3 · δ3〉 ≡ext 〈x · δ, z · δ〉 and

〈b2 · η2, b3 · η3〉 ≡ext 〈y · η, z · δ〉. (4.17)

Then a2x · δ2δ ∈ Exz·1 and since ηδ 6= 1, b2y · η2η ∈ Eb2b3·η2η3 = {1, b2b3 · η2η3}.

If b2y · η2η = 1, we get y = b2, η = η2, z = b3 and δ = η3. Now, the isometries in 4.17 is
rewritten as

〈a1 · δ1, x · η3〉 ≡ext 〈b1 · η1, b2 · η2〉, 〈a2 · δ2, a3 · δ3〉 ≡ext 〈x · η3, b3 · η3〉 and

〈b2 · η2, b3 · η3〉 ≡ext 〈b2 · η2, b3 · η3〉. (4.18)
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Then, setting a = x, b = b1, c = b3 and α = η3, β = η1, γ = η3 we obtain the isometries in
4.14.

If b2y · η2η = b2b3 · η2η3, we get y = b3, η = η3, z = b2 and δ = δ2. Then, the isometries in
4.17 is rewritten as

〈a1 · δ1, x · η3〉 ≡ext 〈b1 · η1, b3 · η3〉, 〈a2 · δ2, a3 · δ3〉 ≡ext 〈x · η2, b2 · η2〉 and

〈b2 · η2, b3 · η3〉 ≡ext 〈b3 · η3, b2 · η2〉. (4.19)

Now, setting a = b2, b = a1, c = x and α = η2, β = δ1, γ = η2 we obtain the isometries in
4.14.

Case 3: η = θ, η 6= δ. Similar to case 2.

Case 4: δ 6= θ, η 6= θ. Here, the argument holds for both δ = η and δ 6= η. From 4.13
we obtain a2x · δ2δ ∈ Ea2a3·δ2δ3 and b2y · η2η ∈ Eb2b3·η2η3 . Since δ 6= θ and η 6= θ, we have
δ2δ3, η2η3 6= 1. Then a2x · δ2δ ∈ {1, a2a3 · δ2δ3} and b2y · η2η ∈ {1, b2b3 · η2η3}.
If a2x · δ2δ = 1 = b2y · η2η, we obtain x = a2, δ = δ2, y = b2, η = η2 and from isometries in
4.13, a3 = z = b3 and δ3 = θ = η3. Then setting a = a2, b = b1, c = b3 = a3 and α = δ2,
β = η1, γ = η3 we obtain the isometries in 4.14.

If a2x · δ2δ = 1 and b2y · η2η = b2b3 · η2η3, we obtain x = a2, δ = δ2, y = b3, η = η3 and from
isometries in 4.13, z = a3 = b2 and θ = δ3 = η2. Then setting a = a3 = b2, b = a1, c = a2

and α = δ3 = η2, β = δ1, γ = δ2 we obtain the isometries in 4.14.

If a2x · δ2δ = a2a3 · δ2δ3 and b2y · η2η = 1, we obtain x = a3, δ = δ3, y = b2, η = η2 and from
isometries in 4.13, z = a2 = b3 and θ = δ2 = η3. Then setting a = a3, b = a1, c = a2 = b3
and α = δ3, β = η1, γ = δ2 = η3 we obtain the isometries in 4.14.

If a2x · δ2δ = a2a3 · δ2δ3 and b2y · η2η = b2b3 · η2η3, we obtain z = a2 = b2 and θ = δ2 = η2.
Then setting a = a2 = b2, b = a1, c = a3 and α = δ2 = η2, β = δ1, γ = δ3 we obtain the
isometries in 4.14.

Finally, the last assertion on the lemma is just the fact that

〈a · θ, a · θ ≡ext 〈1,1〉 iff 〈a, a〉 ≡G 〈1, 1〉.

Definition 4.2.12. A map (G,≡G,−1)
f // (H,≡H ,−1) between PSG’s is a morphism of PSG’s

or PSG-morphism if f : G→ H is a homomorphism of groups, f(−1) = −1 and for all a, b, c, d ∈ G

〈a, b〉 ≡G 〈c, d〉 ⇔ 〈f(a), f(b)〉 ≡H 〈f(c), f(d)〉

A morphism of special groups or SG-morphism is a PSG-morphism between the correspondents
PSG’s. f will be an isomorphism if is bijective and f, f−1 are PSG-morphisms.

If ϕ = 〈a1, ..., an〉 is a form on G, the image form by f is denoted f ?ϕ = 〈f(a1), ..., f(an)〉. Spe-
cial groups (and reduced special groups) and their morphisms are categories, denoted respectively
by SG and RSG.

Lemma 4.2.13. Let (G,≡G,−1), (H,≡H ,−1) be psg’s and ϕ,ψ be n forms on G. Then
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a - A map f : G→ H is a SG-morphism iff its a group homomorphism such that f(−1) = −1 and
satisfies

∀ a ∈ G, f(DG(1, a)) ⊆ DH(1, f(a)). (D)

b - A map σ : G → Z2 is a morphism of psg’s iff it is a group homomorphism taking −1 to −1
and satisfying

∀ a ∈ G, a ∈ Ker(σ)⇒ DG(1, a) ⊆ Ker(σ). (Ker)

Moreover, if f : G → H is a morphism of psg’s and σ : H → Z2 is a group homomorphism
satisfying [Ker], the same is true σ ◦ f : G→ Z2.

c - If f : G→ H is a morphism of special groups and ϕ,ψ are forms on G of the same dimension,
then ϕ ≡G ψ implies f ? ϕ ≡H f ? ψ.

Proof.

a - Suppose that f is a morphism and b ∈ DG(1, a). Then there is u ∈ G such that 〈b, u〉 ≡G 〈1, a〉.
Since f is a morphism, 〈f(b), f(u)〉 ≡H 〈1, f(a)〉, and so f(b) ∈ DH(1, f(a)). Conversely,
assume that f is a group homomorphism, taking −1 to −1 and satisfying [D]. Let a, b, c, d be
elements of G such that 〈a, b〉 ≡G 〈c, d〉. Then ab = cd and ac ∈ DG(1, cd). Since f(ab) =
f(a)f(b) = f(c)f(d) = f(cd), to prove that f is a morphism of special groups, it is enough to
verify (by 4.2.3(a)) that f(ac) ∈ DH(1, f(cd)). But this comes directly from [D].

b - Follow by the fact that in this case, condition [D] is equivalent to [Ker].

c - Follow by induction on the dimension of ϕ and ψ with the fact that the result being true for
forms of dimension 2 by definition.

4.2.2 Caracterization of Special Groups

In this section, we present a useful set of equivalent conditions for a pre-special group to be a
special group.

If G is a group of exponent 2, ϕ = 〈a1, ..., an〉 is a n-form over G and σ ∈ Sn, write ϕσ for the
n-form ϕσ = 〈aσ(1), ..., aσ(n)〉.

Lemma 4.2.14. Let (G,≡,−1) be a pre-special group. Let a, b, c, x, y be elements of G and ϕ,ψ
forms over G. Assume that 〈a, b〉 ≡ 〈x, y〉. Then

a - ϕ ≡ ψ〈a, b〉 ⇒ ϕ ≡ ψ〈x, y〉.

b - For all σ ∈ S3, 〈a, b, c〉 ≡ 〈x, y, c〉σ.

Proof.

a - By induction on dim(ψ). Write ϕ = 〈z〉 ⊕ ϕ1. If dim(ψ) = 1, then ψ = 〈α〉 and we must show
that

ϕ ≡ 〈α, a, b〉 ⇒ ϕ ≡ 〈α, x, y〉.

Then, there are γ, δ, µ ∈ G, such that

〈z, γ〉 ≡ 〈α, δ〉, ϕ1 ≡ 〈γ, µ〉 and 〈a, b〉 ≡ 〈δ, µ〉.
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The third isometry and 〈a, b〉 ≡ 〈x, y〉 yield 〈x, y〉 ≡ 〈δ, µ〉 which, together with the first two
isometries, implies ϕ ≡ 〈α, x, y〉.
Assume the result true for dim(ψ) = n−1 and that ψ = 〈y1, ..., yn〉. Then ϕ ≡ ψ⊕〈a, b〉 means
that there are γ, δ, µ3, ..., µn+2 ∈ G such that

〈z, γ〉 ≡ 〈y1, δ〉;ϕ1 ≡ 〈γ, µ3, ..., µn+2〉; (4.20)

〈y2, ..., yn〉 ⊕ 〈a, b〉 ≡〉δ, µ3, ..., µn+2〉. (4.21)

By the induction hypothesis, 〈δ, µ3, ..., µn+2〉 ≡ 〈y2, ..., yn〉 ⊕ 〈x, y〉. But this isometry, and the
first two isometries above, show that ϕ ≡ ψ ⊕ 〈x, y〉.

b - By item (a) it is sufficient to verify that θ = 〈a, b, c〉 is isometric to 〈x, y, c〉, 〈y, x, c〉 and 〈c, x, y〉.
That the first two are isometric to θ follows directly from the preservation of ≡ by sum and the
hypothesis that 〈a, b〉 ≡ 〈x, y〉 (and 〈a, b〉 ≡ 〈y, x〉 by SG1). For the remaining permutation,
observe that the isometries

〈a, c〉 ≡ 〈c, a〉, 〈b, c〉 ≡ 〈c, b〉 and 〈x, y〉 ≡ 〈a, b〉,

shows that θ ≡ 〈c, x, y〉.

Two forms ϕ = 〈a1, ..., an〉, ψ = 〈b1, ..., bn〉, over the psg G are said to be simply equivalent, if
there are i, j (not necessary distinct) such that

i - 〈ai, aj〉 ≡ 〈bi, bj〉;

ii - ak = bk, whenever k is distinct from i and j.

We say that ϕ,ψ are chain-equivalent, written ϕ ≈ ψ, if there is a sequence of n-forms ϕ0, ϕ1, ..., ϕm,
such that ϕ0 = ϕ, ϕm = ψ, and ϕk is simply equivalent to ϕk+1 for 0 ≤ k ≤ m− 1.

Lemma 4.2.15. Chain-equivalence is an equivalence relation. Moreover, if ϕ,ψ are n-forms over
G and c is an element of G, then:

a - ϕ ≈ ψ iff ∀σ ∈ Sn, ϕ ≈ ψσ.

b - If ϕ ≈ ψ implies 〈c〉 ⊕ ϕ ≈ 〈c〉 ⊕ ψ.

c - ϕ ≡ ψ implies ϕ ≈ ψ.

Proof. The fact that ≈ is an equivalence relation is straightforward. Note that a form ψ is simply
equivalent to ψτ , where τ is a transposition in Sn.

a - Consequence of the fact that ≈ is transitive and that Sn is generated by transpositions.

b - Note that if ϕ is simply equivalent to ψ the same is true of 〈c〉 ⊕ ϕ and 〈c〉 ⊕ ψ. So, any chain
connecting ϕ and ψ becomes, adding 〈c〉 to each term, a chain connecting 〈c〉 ⊕ ϕ to 〈c〉 ⊕ ψ.

c - By induction on dimension of ϕ, noting that for 2-forms there is nothing to prove. So suppose
the result true for forms of dimension n and let ϕ = 〈a〉⊕θ0 and ψ = 〈b〉⊕θ1, where dim(θ0) =
dim(θ1) = n. If ϕ ≡ ψ, there are x, y, ~z = (z1, ..., zn) ∈ G such that

〈a, x〉 ≡ 〈b, y〉, θ0 ≡ 〈x, ~z〉 and θ1 ≡ 〈y, ~z〉.
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By the induction hypothesis, the last two isometries yields θ0 ≈ 〈x, ~z〉 and θ1 ≈ 〈y, ~z〉. By item
(b),

ϕ = 〈a〉 ⊕ θ0 ≈ 〈a, x, ~z〉 and ψ = 〈b〉 ⊕ θ1 ≈ 〈b, y, ~z〉.

Since ≈ is an equivalence relation and 〈a, x, ~z〉 ≈ 〈b, y, ~z〉 (because 〈a, x〉 ≡ 〈b, y〉), we conclude
ϕ ≈ ψ, as desired.

The following result is very useful in verifying that a psg is a special group. It is interesting to
know that it can be presented at an early stage in the development of the theory of special groups.

Theorem 4.2.16. Let (G,≡,−1) be a pre-special group. The following are equivalent:

a - ≡ is 3-transitive (i.e, transitive for 3-forms, and hence G is a special group).

b - ≡ is transitive (i.e, transitive for n-forms for all n ≥ 2).

c - For all n ≥ 2, for all n-forms ϕ,ψ over G and all σ ∈ Sn,

ϕ ≡ ψ implies ϕ ≡ ψσ.

d - For all n ≥ 2, for all n-forms ϕ,ψ over G,

ϕ ≡ ψ iff ϕ ≈ ψ.

e - For all 3-forms ϕ and all b1, b2, b3 ∈ G,

ϕ ≡ 〈b1, b2, b3〉 imples ϕ ≡ 〈b2, b1, b3〉.

Proof. (1)⇒(2). By induction on the dimension, which, when 2 or 3 are taken care of by assump-
tion. Assume that 〈a1, ..., an〉 ≡ 〈b1, ..., bn〉 = ψ and ψ ≡ 〈c1, ..., cn〉, and that ≡ is transitive on
forms of dimension n − 1 ≥ 3. The hypotheses yield α, β, γ, δ, yi, zi ∈ G, 3 ≤ i ≤ n, such that (I)
and (II) below hold true

〈a1, α〉 ≡ 〈b1, β〉, 〈a2, ..., an〉 ≡ 〈α, ~y〉 and 〈b2, ..., bn〉 ≡ 〈β, ~y〉; (I)

〈b1, γ〉 ≡ 〈c1, δ〉, 〈b2, ..., bn〉 ≡ 〈γ, ~z〉 and 〈c2, ..., cn〉 ≡ 〈δ, ~z〉, (II)

where ~y = 〈y3, ..., yn〉 and ~z = 〈z3, ..., zn〉. By induction, ≡ is transitive on (n − 1)-forms, and so,
〈β, ~y〉 ≡ 〈γ, ~z〉, since both are isometric to b2, ..., bn〉. Thus, there are x, t, y.~t = 〈t4, ..., tn〉 ∈ G such
that

〈β, x〉 ≡ 〈γ, y〉, 〈~y〉 ≡ 〈x,~t〉 and 〈~z〉 ≡ 〈y,~t〉. (III)

Now, by the preservation of isometry by sum, the first isometry in (I), (II) and (III) as well as
3-transitivity, we may write

〈a1, α, x〉 = 〈a1, α〉 ⊕ 〈x〉 ≡ 〈b1, β〉 ⊕ 〈x〉 ≡ 〈b1〉 ⊕ 〈β, x〉
≡ 〈b1〉 ⊕ 〈γ, y〉 ≡ 〈b1, γ〉 ⊕ 〈y〉 ≡ 〈c1, δ〉 ⊕ 〈y〉 = 〈c1, δ, y〉.

Therefore, there are u, v, w ∈ G such that

〈a1, u〉 ≡ 〈c1, v〉, 〈α, x〉 ≡ 〈u,w〉 and 〈δ, y〉 ≡ 〈v, w〉. (IV)
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The preservation of isometry by sum, the transitivity of ≡ for (n − 1)-forms, the second and the
third isometry in (I) and (II), respectively, together with the last two in (III) and (IV), yield

〈a2, ..., an〉 ≡ 〈α, ~y〉 ≡ 〈α, x,~t〉 ≡ 〈u,w,~t〉 and

〈c2, ..., cn〉 ≡ 〈δ, ~z〉 ≡ 〈δ, y,~t〉 ≡ 〈v, w,~t〉,

isometries which, together with the first one in (IV), prove that 〈a1, ..., an〉 ≡ 〈c1, ..., cn〉.
(2)⇒(3). By induction on dimension; for 2-forms, the conclusion follows from SG1. Let σ ∈ Sn,

ϕ = 〈a〉 ⊕ ϕ1 and ψ = 〈b1, ..., bn〉.

Case A. σ(1) = 1.

We may write ψσ = 〈b1〉 ⊕ 〈b2, ..., bn〉σ; moreover from ϕ ≡ ψ we get α, β, ~y = 〈y3, ..., yn〉 ∈ G
such that

〈a, α〉 ≡ 〈b1, β〉, ϕ1 ≡ 〈α, ~y〉 and 〈b2, ..., bn〉 ≡ 〈β, ~y〉. (V)

By induction, 〈b2, ..., bn〉σ ≡ 〈β, ~y〉 and this, together with the first two isometries in (V),
yield ϕ ≡ 〈b1〉 ⊕ 〈b2, ..., bn〉σ = ψσ.

Case B. σ is a 2-cycle (1, i) for some i ≥ 2.

From ϕ ≡ ψ we get the isometries in (V). Let ~b = {bk : k 6= 1, i}. By the induction hypothesis
and the third isometry in (V), 〈β, ~y〉 ≡ 〈bi,~b〉, and so it follows that 〈β, ~y, b1〉 ≡ 〈bi,~b, b1〉.

Case A and the preservation of isometry by sum yield the following sequence of isometries:

〈β, ~y, b1〉 ≡ 〈β, b1, ~y〉 = 〈β, b1〉 ⊕ 〈~y〉 ≡ 〈b1, β〉 ⊕ 〈~y〉
≡ 〈a, α〉 ⊕ 〈~y〉 = 〈a〉 ⊕ 〈α, ~y〉 ≡ ϕ.

Since ≡ is transitive, we get ϕ ≡ 〈β, ~y, b1〉, and thus, ϕ ≡ 〈bi,~b, b1〉. We may apply Case A
once more to put b1 in its desired place, preserving isometry, getting 〈bi,~b, b1〉 ≡ ψσ. The
transitivity of ≡ now yields ϕ ≡ ψσ, concluding the proof of Case B.

Cases A and B show that ϕ ≡ ψ implies ϕ ≡ ψσ, for any transposition σ ∈ Sn. Since ≡ is assumed
transitive and Sn is generated by transpositions, we conclude the desired implication for all σ ∈ Sn.

(3)⇒(4). By Lemma 4.2.15(c) it is enough to verify that ϕ ≈ ψ implies ϕ ≡ ψ.

We first verify that simple equivalence implies isometry. If ϕ is simply equivalent to ψ, then
there are a, b, x, y, ~z ∈ G and permutations σ, τ ∈ Sn, such that ϕσ = 〈~z, a, b〉 and ψτ = 〈~z, x, y〉,
with 〈a, b〉 ≡ 〈x, y〉. By Lemma 4.2.14(a), ϕσ ≡ ψτ , and so (3) guarantees that ϕ ≡ ψ, because
(ϕσ)σ

−1
= ϕ, for all σ ∈ Sn and all forms ϕ over G.

We use induction on the length l of chains ϕi, 0 ≤ i ≤ l, which witness ϕ ≈ ψ. If l = 1, ϕ is
simply equivalent to ψ and we have already remarked that (with (3)) ϕ ≡ ψ. Suppose the result
true for chains of lenght l and that ϕi, 0 ≤ i ≤ l + 1, is a chain connecting ϕ = ϕ0 and ψ = ϕl+1.
By induction, ϕ ≡ ϕl with ϕl simply equivalent to ψ. Thus, just as above, there are σ, τ ∈ Sn and
a, b, x, y, ~z ∈ G such that

ϕσl = 〈~z〉 ⊕ 〈a, b〉 and ψτ = 〈~z〉 ⊕ 〈x, y〉,

with 〈a, b〉 ≡ 〈x, y〉. By (3), ϕ ≡ ψσl = 〈~z〉 ⊕ 〈a, b〉. By Lemma 4.2.14(a), ϕ ≡ 〈~z〉 ⊕ 〈x, y〉 = ψτ .
Another application of (3) gives ϕ ≡ ψ, as desired.

(4)⇒(5). This is a special case of Lemma 4.2.14(b).
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(5)⇒(1). We show that if ϕ,ψ are 3-forms over G, then

∀σ ∈ S3, ϕ ≡ ψ implies ϕ ≡ ψσ.

Once this is proven, then, exactly as in the proof of (3)⇒(4), we have that for all 3-forms ϕ,ψ,
ϕ ≡ ψ ⇔ ϕ ≈ ψ. Since ≈ is transitive, the same will be true of ≡.

Let ψ = 〈b1, b2, b3〉, σ ∈ S3, and assume that ϕ ≡ ψ.

i - σ(1) = 1. Since 〈b2, b3〉 ≡ 〈b3, b2〉 (SG1), it follows from Lemma 4.2.14(a) that ϕ ≡ ψ implies
ϕ ≡ ψσ.

ii - σ(1) = 2. In this case we have ψσ = 〈b2, bi, bj〉, {i, j} = {1, 3}. If i = 1, the desired isometry
follows directly from (5). If i = 3, using (5) and (i) in succession, we getting

ϕ ≡ ψ ⇒ ϕ ≡ 〈b2, b1, b3〉 ⇒ ϕ ≡ 〈b2, b3, b1〉,

as needed.

iii - σ(1) = 3. By (i) above, we have ϕ ≡ 〈b1, b3, b2〉; by (5), we can exchange b1 and b3 to get
ϕ ≡ 〈b3, b1, b2〉. Now, case (i) can be applied again, to get ϕ ≡ ψσ.

Corollary 4.2.17. Let (G,≡,−1) be a pre-special group. Let ϕ and ψ be forms over G and
a, b, x, y ∈ G. The following are equivalent:

a - G is a special group.

b - For all forms ϕ,ψ over G and all a, b, x, y ∈ G

ϕ ≡ 〈a, b〉 ⊕ ψ and 〈a, b〉 ≡ 〈x, y〉 ⇒ ϕ ≡ 〈x, y〉 ⊕ ψ.

c - For all 3-forms ϕ,ψ over G and all a, b, c, x, y ∈ G

ϕ ≡ 〈a, b, c〉 and 〈a, b〉 ≡ 〈x, y〉 ⇒ ϕ ≡ 〈x, y, c〉.

Proof. That (a) implies (b) follows from Lemma 4.2.14(a) and the fact that G satisfies condition
(3) in theorem 4.2.16. (b) implies (c) making ψ = 〈c〉. It remains to prove that (c) implies (a). We
verify that, in fact, (c) implies condition (5) of theorem 4.2.16.

Assume that 〈u, v, w〉 ≡ 〈a, b, c〉. Hence, there are α, β, γ in G such that

〈u, α〉 ≡ 〈a, β〉, 〈v, w〉 ≡ 〈α, γ〉 and 〈b, c〉 ≡ 〈β, γ〉. (*)

By 4.2.14(b), from 〈u, α〉 ≡ 〈a, β〉, we get 〈γ, a, β〉 ≡ 〈u, α, γ〉. Lemma 4.2.14(a) (with 〈γ, a, β〉 = ϕ
and 〈u〉 = ψ) and the second isometry in (*) also yield 〈γ, a, β〉 ≡ 〈u, v, w〉. Since 〈a, β〉 ≡ 〈β, a〉,
4.2.14(a) once again (this time with 〈u, v, w〉 = ϕ and 〈γ〉 = ψ), implies 〈u, v, w〉 ≡ 〈γ, β, a〉. Now,
(c) and the third isometry in (*) yield 〈u, v, w〉 ≡ 〈b, c, a〉, and yet another application of 4.2.14(a)
gives 〈u, v, w〉 ≡ 〈b, a, c〉, as desired.

The usual construction of the Witt ring of a field can be carried out, in almost identical terms,
for special groups as well.
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Let (G,≡G,−1) be a special group (not necessarily reduced). Two forms ϕ,ψ over G are called
Witt-equivalent (over G), written ϕ ≈G ψ, if there are integers n,m ≥ 0 such that

ϕ⊕ n〈1,−1〉 ≡G ψ ⊕m〈1,−1〉.

We have that ≈G is an equivalence relation on forms over G, compatible with (and coarser than)
the isometry relation ≡G.

We denote by W (G) the set of equivalence classes of forms over G under Witt-equivalence, and
by ϕ the Witt-equivalence class of the form ϕ. The following proposition summarizes the basic
properties of this construction. The proof follow the same line as the arguments made in chapters
1 and 3.

Proposition 4.2.18. Let G be a special group and let ϕ,ψ be forms over G.

a - Witt-equivalence is a congruence with respect to sum and product of forms.

b - With the operations ϕ + ψ = ϕ⊕ ψ and ϕψ = ϕ⊗ ψ, W (G) is a commutative ring having as
zero the class of hyperbolic forms and 〈1〉 as multiplicative identity.

c - The set I(G) of (classes of) even dimensional forms is a maximal ideal in W (G) (called the
fundamental ideal of W (G)). Moreover W (G)/I(G) is the two element field.

d - For n ≥ 1, the nth power of I(G), denoted In(G) is generated, as an abelian group, by the
multiplies of Pfister forms of degree n, that is, every element of In(G) is Witt-equivalent to a
linear combination ⊕ki=1aiϕi of Pfister forms ϕi of degree n, with coefficients ai ∈ G.

4.2.3 Fields and Special Groups

In this section, we shall present a proof that the usual quadratic form theories over fields of
characteristic distinct from 2 – reduced and not necessarily reduced – yield special groups. These
examples are of course, at the root of the concept of special group.

Let F be a field with char(F ) 6= 2, which will remain fixed in what follow. We set F (G) = Ḟ /Ḟ 2

and in the case F be formally real, we define Gred(F ) = Ḟ /
∑
Ḟ 2. Of course, both G(F ) and

Gred(F ) are groups of exponent 2.
We wish to show that the usual notion of isometry in G(F ) and in Gred(F ) yield special groups,

the latter always reduced. To this end, we introduce the following:

Definition 4.2.19. Let T be a subset of Ḟ and write T ∗ = T ∪ {0}.

a - If a, b ∈ Ḟ ,
DT (a, b) = {t ∈ Ḟ : t = ap+ bq for some p, q ∈ T ∗}

is the set of elements represented by 〈a, b〉 over T . {a, b} ⊆ DT (a, b) is immediate.

b - T is a SG-subgroup of F iff it satisfies the following conditions:

i - T is a proper subgroup of the multiplicative group Ḟ ;

ii - Ḟ 2 ⊆ T ;

iii - For all a ∈ Ḟ , DT (1, a) is a subgroup of Ḟ .

Since T is a subgroup of Ḟ , for all p ∈ Ḟ , p ∈ T iff 1/p ∈ T .

We now show that squares, sums of squares and pre-orderings are examples of SG-subgroups.
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Lemma 4.2.20. With notation as above, let T be a subgroup of Ḟ , containing Ḟ 2 and satisfying:

∀ p, q, u, v ∈ T and ∀ a ∈ Ḟ ∃x ∈ F such that (CS)

(pua2 + qv − xa) ∈ T ∗ and (pv + qu+ x) ∈ T ∗.

Then T is a SG-subgroup of F . In particular, Ḟ 2 is a SG-subgroup of F and if F is formally real,∑
Ḟ 2 and pre-orders are SG-subgroups of F .

Proof. For s, t ∈ DT (1, a) we must show that 1/s and st are in DT (1, a). We may write

s = pq + q and t = ua+ v, (I)

with p, q, u, v ∈ T ∗. Dividing the first equation by 1/s2 ∈ T shows that 1/s ∈ DT (1, a). To verify
that st ∈ DT (1, a), consider the product of the equations in (I), namely

st = pua2 + qv + (pv + qu)a. (II)

Then, (II) implies that if any one of p, q, u, v is zero, then st ∈ DT (1, a). Assume then, that all
these coefficients are in T . By (CS), there is x ∈ F such that

st = pua2 + qv − xa+ xa+ (pv + qu)a =

= (pua2 + qv − xa)︸ ︷︷ ︸
α

+ pv + qu+ x︸ ︷︷ ︸
β

a,

with α, β ∈ T ∗, and hence DT (1, a) is a subgroup of Ḟ .
If T is closed under sums (as is the case of a pre-order or of

∑
Ḟ 2), then it satisfies (CS) with

x = 0, for all a ∈ Ḟ . If T = Ḟ 2, then p = p2
1, q = q2

1, u = u2
1 and v = v2

1; we take x = 2(p1q1u1v1)
to prove (CS) for all a ∈ Ḟ . For instance, pua2 + qv − xa = (p1u1a− q1v1)2.

Let T be a fixed (but otherwise arbitrary) SG-subgroup of F . Let GT (F ) = Ḟ /T be
the exponent-2 quotient of Ḟ by T ; write aT for the class of a ∈ Ḟ in GT (F ). For a, b ∈ Ḟ we have

aT = bT iff a, b ∈ T iff ∃ p ∈ T such that b = ap. (*)

Lemma 4.2.21. With the notation above, let a, b, c, d, t be elements of Ḟ . Then

a - t ∈ DT (a, b)⇒ tT ⊆ DT (a, b).

b - tDT (a, b) = DT (ta, tb).

c - aT = cT and bT = dT ⇒ DT (a, b) = DT (c, d).

Proof. For item (a), let t ∈ DT (a, b). Then, t = ap+ bq for some p, q ∈ Ṫ . If w ∈ tT , by (*) above,
w = tx, for some x ∈ T . Then

w = tx = (ap+ bq)x = a(px) + b(qx), with px, qx ∈ Ṫ .

This implies w ∈ DT (a, b), as desired.
Itens (b) and (c) are immediate consequence of T + T ⊆ T , T · T ⊆ T and (*) above.

We now define a relation ≡ on GT (F )×GT (F ) by

〈aT , bT 〉 ≡ 〈cT , dT 〉 iff (ab)T = (cd)T and DT (a, b) = DT (c, d).
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When T is Ḟ 2 or a pre-order, this relation is precisely the isometry of 2-forms in the non-reduced
or reduced theory of quadratic forms, respectively.

Proposition 4.2.22. If a, b, c, d, t ∈ Ḟ , then

a - t ∈ DT (a, b) iff DT (t, abt) = DT (a, b) iff 〈tT , (abt)T 〉 ≡ 〈aT , bT 〉.

b - 〈aT , bT 〉 ≡ 〈cT , dT iff


(ab)T = (cd)T

and

DT (a, b) ∩DT (c, d) 6= ∅.

Proof.

a - One should keep in mind that Ḟ 2 ⊆ T . To prove (a) it is enough to verify that

t ∈ DT (a, b) implies DT (t, abt) = DT (a, b),

the other implications coming directly from the definition of ≡. We first note that if x ∈
DT (1, y), then

DT (x, xy) = xDT (1, y) = DT (1, y). (4.22)

To verify this, since DT (1, y) is a subgroup of Ḟ , if x ∈ DT (1, y), then 1/x ∈ DT (1, y) and we
have xDT (1, y) ⊆ DT (1, y) and 1/xDT (1, y) ⊆ DT (1, y), relations which, together with Lemma
4.2.21(b), prove xDT (1, y) = DT (1, y), verifying 4.22.

If t ∈ DT (a, b), then at ∈ DT (1, ab) and so, by 4.22, DT (ta, (tab)a) = DT (1, ab). Thus, we have

DT (a, b) = DT (a, ba2) = aDT (1, ab) = aDT (ta, (tab)a)

= DT (ta2, (tab)a2) = DT (t, abt),

which proves (a).

b - We only need to prove ⇐. If t ∈ DT (a, b) ∩DT (c, d) we have

DT (a, b) = DT (t, abt) and DT (t, cdt) = DT (c, d).

Since (ab)T = (cd)T , we get (abt)T = (cdt)T and so, by Lemma 4.2.21(c), DT (t, abt) =
DT (t, cdt), proving that DT (a, b) = DT (c, d) and that 〈aT , bT 〉 ≡ 〈cT , dT 〉.

We take as distinguished element −1 ∈ GT (F ) the class of −1 ∈ Ḟ , (−1)T . We now prove

Theorem 4.2.23. If T is a SG-subgroup of a field F of characteristic 6= 2, then (GT (F ),≡,−1)
is a special group, which is reduced iff T is closed under sums..

Proof. We have to verify conditions [SG0]-[SG6] in definition 4.2.1. Both [SG0] and [SG1] are
straightforward. The validity of [SG3] is required in the very definition of ≡, while [SG5] follows
from Lemma 4.2.21(b). It remains to verify that [SG2], [SG4] and [SG6]. Although is a consequence
of [SG4], the former will be used in the proof of the latter.

SG2 - Note that if a ∈ Ḟ , then there are x, y ∈ F such that a = x2 − y2: just take x = (1 + a)/2
and y = (1 − a)/2. This shows that a ∈ DT (1,−1) ∩ DT (a,−a). Since the discriminant of
〈a,−a〉 is the same as that of 〈1,−1〉 modulo T , 4.2.22(c) yields 〈a,−a〉 ≡ 〈1,−1〉.
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SG4 - By hypothesis, we have aT bT = cTdT and DT (a, b) = DT (c, d). Since the discriminant
equation implies aT (−cT ) = (−bT )dT , it is sufficient to verify, by proposition 4.2.22(c), that
DT (a,−c) ∩DT (−b, d) 6= ∅.

First observe that if bT = dT , then aT = cT , and [SG2] yields the desired conclusion. We
assume, therefore, that bT 6= dT . Since b ∈ DT (c, d), there are p, q ∈ T ∗ such that

b = cp+ dq;

note that p 6= 0, otherwise, bT = dT . But then we may write

−c = d(q/p)− n(1/p),

and −c ∈ DT (−b, d). Since −c is also in DT (a,−c), we have verified [SG4] and thus, that
(GT (F ),≡,−1) is a pre-special group.

SG6 - By condition (e) in theorem 4.2.16, it is enough to show that

〈aT , bT , cT 〉 ≡ 〈xT , yT , zT 〉 implies 〈aT , bT , cT 〉 ≡ 〈yT , xT , zT 〉.

The antecedent of the above implication means that there are α, β, γ ∈ Ḟ such that

〈aT , αT 〉 ≡ 〈xT , βT 〉, 〈bT , cT 〉 ≡ 〈αT , γT 〉 and 〈yT , zT 〉 ≡ 〈βT , γT 〉. (4.23)

From the first isometry in 4.23 we get a ∈ DT (x, β), while the last one implies β ∈ DT (y, z).
Thus, there are pa, qa, pβ, qβ in T ∗ such that the equations below hold true:

a = xpa + βqa (4.24)

β = ypβ + zqβ (4.25)

Substituting equation 4.25 in 4.24, we arrive at

a = xpa + βqa = xpa + qa(ypβ + zqβ)

= xpa + ypβqa + zqβqa = ypβqa + (xpa + zqβqα).

Now define

v = xpa + zqβqα. (4.26)

Then,

a = ypβqa + v. (4.27)

We discuss two cases:

Case I: v = 0. Then, from 4.27, we have aT = yT . Consequently, the third isometry in 4.23
can be written as 〈aT , zT 〉 ≡ 〈βT , γT 〉. This isometry, the first one in 4.23 and SG4 yield

〈xT ,−αT 〉 ≡ 〈aT ,−βT 〉 ≡ 〈−zT , γT 〉,

and so, 〈xT ,−αT 〉 ≡ 〈−zT , γT 〉. Another application of SG4 yields 〈xT , zT 〉 ≡ 〈αT , γT 〉, which
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together with the second isometry in 4.23, gives 〈xT , zT 〉 ≡ 〈bT , cT 〉. Then we have

〈aT , xT 〉 ≡ 〈aT , xT 〉, 〈bT , cT 〉 ≡ 〈xT , zT 〉 and 〈xT , zT 〉 ≡ 〈xT , zT 〉,

which shows that 〈aT , bT , cT 〉 ≡ 〈aT , xT , zT 〉, as required.

Case II: v 6= 0. Equation 4.27 implies a ∈ DT (y, v), while 4.26 yields v ∈ DT (x, z).
Therefore, proposition 4.2.22(a) gives

〈aT , (vay)T 〉 ≡ 〈yT , vT 〉 and 〈vT , (vxz)T 〉 ≡ 〈xT , zT 〉.

These isometries imply that, to prove 〈aT , bT , cT 〉 ≡ 〈yT , xT , zT 〉, it is enough to verify that
〈(vay)T , (vxz)T 〉 ≡ 〈bT , cT 〉. Since the discriminant of these forms in GT (F ) are the same,
by proposition 4.2.22, they are isometric iff DT (vay, vxz) = DT (b, c). From the isometries
in 4.23 we get αT = (axβ)T , γT = (yzβ)T and DT (b, c) = DT (α, γ). By lemma 4.2.21(c) we
conclude DT (b, c) = DT (axβ, yzβ).

Hence, what is need is equivalent to DT (axβ, yzβ) = DT (vay, vxz). Since the discriminants
are the same, it is enough to prove axβ ∈ DT (vay, vxz). Multiplying this relation through
by axv, we arrive at yet another equivalent condition, namely

vβ ∈ DT (xy, az),

which we shall now verify. Equations 4.25, 4.26 and 4.24 yield, with t = zqβ,

vβ = (xpa + tqa)(ypβ + t) = xypapβ + txpa + typβqa + t2qa =

= xypapβ + t(xpa + ypβqa + tqq) =

= xypapβ + t(xpa + qa(ypβ + t)) =

= xypapβ + t(xpa + βqa) =

= xypapβ + ta = xypapβ + azqβ,

showing that vβ ∈ DT (xy, az) and concluding the verification of SG6.

Regarding reduction, note that 〈aT , aT 〉 ≡ 〈1, 1〉 iff a is a sum of elements of T ;

In recent book of Dickmann and Miraglia [DM15], they extend the classical algebraic theory of
quadratic forms over fields to a broad class of commutative rings with unit (of course, which was
mediated by the theory of special groups). The context is of a ring A of characteristic not 2, with
−1 /∈

∑
A2 and 2 ∈ Ȧ.

Given a such ring A and a preordering T on A4, they define that two n-dimensional forms
ϕ = a1X

2
1 + ... + anX

2
n, ψ = b1X

2
1 + ... + bnX

2
n with ai, bi ∈ Ȧ are T -isometric, ϕ ≈T ϕ if there

is a sequence ϕ0, ϕ1, ..., ϕk of n-dimensional diagonal forms over Ȧ, such that ϕ = ϕ0, ψ = ϕk
and for every 1 ≤ i ≤ k, ϕi is either isometric to ϕi−1 in the usual sense that there is a matrix
M ∈ GLn(A) such that ϕi = Mϕi−1M

t or there are t1, ..., tn ∈ Ṫ such that ϕi = 〈t1x1, ..., tnxn〉
and ϕi−1 = 〈x1, ..., xn〉. Value representation relation DT on (A, T ) is given by: for a, b1, ..., bn ∈ Ȧ,

a ∈ Dv
T (b1, ..., bn)⇔ ∃ t1, ..., tn ∈ T such that a =

n∑
i=1

tibi.

4We will see later that A is preordered if and only if −1 /∈
∑
A2.
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Given a preordered ring (A, T ), they associate a structure GT (A), whose domain is Ȧ/Ṫ ,
endowed with the product operation induced by Ȧ, togheter with a binary isometry relation ≡GT (A),

defined on ordered pairs of elements of Ȧ/Ṫ , and having −1 = −1/Ṫ as distinguished element.
The structure (GT (A),≡GT (A),−1) is not quite a special group, but satisfy SG0, SG1, SG2, SG3
and SG5. They observed that the ring-theoretic approach, based on the definition of n-isometry
and the formal approach via GT (A), though related, are far from identical.

Beside this, they called T -faithfully quadratic any preordered ring (A, T ) such that GT (A)
is a special group and T -isometry and value representation in (A, T ) are faithfully coded by the
corresponding formal notions in GT (A). After this brilliant idea, they was able to replicate most
of the consequences of the theory of special groups in field theory in this extended ring-theoretic
context.

4.2.4 Pfister Forms and Saturated Subgroups

Definition 4.2.24. Let G be a special group. A Pfister form over G is a quadratic form ϕ of the
type ⊗ni=1〈1, a〉i, where n ≥ 1 and a1, ..., an ∈ G, or the form 〈1〉. In the first case, the integer n
is called the degree of ϕ and written deg(ϕ); alson deg(〈1〉) = 0. If the coefficients of ϕ happen to
belong to a subgroup ∆ of G, we say that ϕ is Pfister over ∆.

Since a Pfister form ϕ contains 1 as a coefficient, we may write ϕ as 〈1〉 ⊕ ϕ′; ϕ′ is called pure
subform of ϕ.

Proposition 4.2.25 (Basic properties of Pfister forms). Let G be a special group, ϕ = 〈〈a1, ..., an〉〉
a Pfister form over G of degree n ≥ 1 and b ∈ G. Recall that ϕ′ is the pure sub-form of ϕ. Then:

i - b ∈ DG(1, a1)⇒ 〈〈a1, a2〉〉 ≡G 〈〈a1, a2b〉〉.

ii - b ∈ DG(a1, a2)⇒ 〈〈a1, a2〉〉 ≡G 〈〈b, a1a2〉〉.

iii - 〈〈a1b, ..., anb〉〉 ≡G 〈〈1, a1b〉〉 ⊗ 〈〈a1a2, ..., a1an〉〉.

iv - If b ∈ DG(ϕ′), then ϕ ≡G 〈〈b, b2, ..., bn〉〉, with b2, ..., bn ∈ G.

v - An isotropic Pfister form is hyperbolic.

vi - DG(ϕ) = {x ∈ G : xϕ ≡G ϕ}. Hence DG(ϕ) is a subgroup of G. If ψ is a Pfister form over
G, then DG(ϕ)DG(ψ) ⊆ DG(ϕ⊗ ψ).

vii - If a ∈ DG(ϕ), then 〈〈a1, ..., an, b〉〉 ≡G 〈〈a1, ..., an, ab〉〉.

viii - a ∈ DG(ϕ)⇒ 〈1, a〉 ⊗ ϕ ≡G 2⊗ ϕ and 〈1,−a〉 ⊗ ϕ is hyperbolic.

ix - a ∈ DG(ϕ) and b ∈ DG(1, a)⇒ b ∈ DG(2⊗ ϕ).

x - 〈1, a〉 ⊗ ϕ ≡G 2⊗ ϕ⇒ a ∈ DG(ϕ).

xi - 〈1,−a〉 ⊗ ϕ hyperbolic ⇒ a ∈ DG(ϕ).

xii - The following are equivalent:

a - G is a reduced special group.

b - 1 6= −1 and for every Pfister form ϕ over G of degree ≥ 1 and a ∈ G:

a,−a ∈ DG(ϕ)⇒ ϕ hyperbolic.
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c - 1 6= −1 and for every Pfister form ϕ over G and a ∈ G

a ∈ DG(〈1,−a〉 ⊗ ϕ)⇒ a ∈ DG(ϕ).

Proof.

i - If b ∈ DG(1, a1), then 〈b, x〉 ≡ 〈1, a1〉, so x = a1b (by SG3). By SG5, 〈a2, a1a2〉 ≡ 〈a2, a1a2b2〉.
Now, using preservation of isometry by sum we get

〈〈a1, a2〉〉 = 〈1, a1, a2, a1a2〉 = 〈1, a1〉 ⊕ 〈a2, a1a2〉 ≡
〈1, a1〉 ⊕ 〈a2, a1a2b〉 = 〈1, a1, a2, a2b〉 = 〈〈a1, a2b〉〉.

ii - From b ∈ DG(a1, a2) we get 〈b, a1a2b〉 ≡ 〈a1, a2〉. Now, using preservation of isometry by sum
we get

〈〈a1, a2〉〉 = 〈1, a1, a2, a1a2〉 = 〈1, a1a2〉 ⊕ 〈a1, a1a2〉 ≡
〈1, a1a2〉 ⊕ 〈b, a1a2b〉 = 〈1, b, a1a2, a1a2b〉 = 〈〈b, a1a2〉〉.

iii - We proceed by induction on n. If n = 1 there is nothing to do. Suppose that holds for n− 1
and let ϕ = 〈〈a1b, ..., anb〉〉.

ϕ = 〈〈a1b, ..., anb〉〉 = 〈1, anb〉 ⊗ 〈〈a1b, ..., an−1b〉〉
IS
= 〈1, anb〉 ⊗ 〈1, a1b〉 ⊗ 〈〈a1a2, ..., a1an−1〉〉
= 〈1, anb, a1b, a1an〉 ⊗ 〈〈a1a2, ..., a1an−1〉〉
= 〈1, a1b, a1an, anb〉 ⊗ 〈〈a1a2, ..., a1an−1〉〉
= 〈1, a1b〉 ⊗ 〈1, a1an〉 ⊗ 〈〈a1a2, ..., a1an−1〉〉
= 〈1, a1b〉 ⊗ 〈〈a1a2, ..., a1an〉〉.

iv - Proceed by induction on the degree n of ϕ. If n = 1, there is nothing to prove. Assume that
ϕ = 〈1, a〉 ⊗ ψ, where ψ is a Pfister form of degree n. Since ϕ′ = ψ′ ⊗ aψ, the hypothesis
b ∈ DG(ϕ′) and 4.2.4(c) yield x ∈ DG(ψ′) and y ∈ DG(ψ), such that

b ∈ DG(x, ay), that is, 〈b, baxy〉 ≡ 〈x, ay〉. (I)

By the induction hypothesis, there are z2, ..., zn ∈ G, such that,

ψ ≡ 〈〈x, z2, ..., zn〉〉. (II)

Then, (II),(I) and yψ ≡ ψ, yield, with α ≡ 〈〈z2, ..., zn〉〉,

〈1, b〉 ⊗ 〈1, axy〉 ⊗ α = 〈1, b, axy, abxy〉 ⊗ α
= (〈1, axy〉 ⊕ 〈b, abxy〉)⊗ α
= (〈1, axy〉 ⊕ 〈x, ay〉)⊗ α
≡ (〈1, x〉 ⊕ ay〈1, x〉)⊗ α
= (〈1, x〉 ⊗ α)⊕ ay(〈1, x〉 ⊗ α)

= ψ ⊕ ayψ = ψ ⊕ aψ = ϕ,
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completing the induction step.

v - Since ϕ ∼= 〈1,−1〉 ⊕ ψ, we have −1 ∈ DG(ϕ′) by Witt’s cancellation. By item (iv) ϕ ∼=
〈〈−1, b2, ..., bn〉〉, which is hyperbolic.

vi - Denote Gϕ = {x ∈ G : xϕ ≡G ϕ}. Since ϕ represents 1, we have that Gϕ ⊆ DG(ϕ). To prove
that g ∈ DG(ϕ) ⇒ 〈g〉ϕ ∼= ϕ, we appeal to some argument on the Witt ring. The Pfister
form ϕ〈〈−g〉〉 ∼= ϕ ⊥ 〈−g〉ϕ (of one higher fold) contains a subform 〈g,−g〉 ∼= 〈1,−1〉, so by
item (v) ϕ〈〈−g〉〉 is hyperbolic. Hence ϕ〈〈−g〉〉 = 0 ∈ W (G) and since dim(〈g〉ϕ) = dim(ϕ),
it follows that 〈g〉ϕ = ϕ ∈W (G), then 〈g〉ϕ ∼= ϕ.

vii - Proceed by induction on the degree n of ϕ. If n = 1, this is just item (i). Now, suppose the
assertion true for n− 1, and let a ∈ DG(ϕ) (remember: ϕ = 〈〈a1, ..., an〉〉). Then

〈〈a1, ..., an, b〉〉 = 〈〈a1〉〉 ⊗ 〈〈a2, ..., an, b〉〉
IS≡ 〈〈a1〉〉 ⊗ 〈〈a2, ..., an, ab〉〉 = 〈〈a1, a2, ..., an, ab〉〉.

viii - Using the previous item, we have

2⊗ 〈〈a1, ..., an〉〉 = 〈1, 1〉 ⊗ 〈〈a1, ..., an〉〉 = 〈〈a1, ..., an, 1〉〉
∼= 〈〈a1, ..., an, a〉〉 = 〈1, a〉 ⊗ 〈〈a1, ..., an〉〉.

Using SG4 on this isometry we obtain 〈1,−a〉 ⊗ ϕ hyperbolicity.

ix - Since ϕ is a Pfister form, 〈1, a〉 ⊗ ϕ = 〈1, a〉 ⊕ ψ. Now, is just use the previous item and
4.2.4(c).

x - Just an application of Witt’s Cancellation to the fact that 2⊗ ϕ = 〈1, 1, 1〉 ⊕ ψ.

xi - Use the fact that 〈1,−a〉 ⊗ ϕ hyperbolic implies 〈−a〉 ⊕ ϕ hyperbolic and 4.2.4(d).

xii - (a)⇒(b): by item (viii), both 〈1,−a〉 ⊗ ϕ and 〈1, a〉 ⊗ ϕ are hyperbolic, so, by adding these
forms we obtain 〈1, 1〉⊕ϕ⊕ϕ hyperbolic, and in particular, ϕ⊕ϕ is hyperbolic (and isotropic).
Since G is reduced, by lemma 4.2.5 ϕ is isotropic, and by item (v), ϕ is hyperbolic.

(b)⇒(a): from 〈a, a〉 ≡ 〈1, 1〉 we obtain 〈a,−1〉 ≡ 〈1,−a〉 by SG4. Then a,−a ∈ DG(〈〈−a〉〉),
and by item (b), 〈〈−a〉〉 is hyperbolic. Thus 〈1,−a〉 ≡ 〈1,−1〉, so a = 1, by SG3.

(b)⇒(c): In this case, a,−a ∈ DG(〈1,−a〉⊗ϕ). By (b), 〈1,−a〉⊗ϕ is hyperbolic and by (xi),
a ∈ DG(ϕ).

(c)⇒(a): We proof by induction. If b,−b ∈ 〈〈x〉〉 = 〈1, x〉, we have

〈b, bx〉 ≡ 〈1, x〉 ≡ 〈−b,−bx〉 ⇒ 〈b, bx〉 ≡ 〈−b,−bx〉 SG5⇒ 〈1, x〉 ≡ 〈−1,−x〉.

Then −x ∈ D(〈1, x〉 ⊗ 〈1〈), so by (c), −x ∈ D(〈1〉) and −x = 1.

Now, suppose that holds for n − 1 and let ϕ = 〈〈a1, ..., an〉〉. Let ψ = 〈〈a1, ..., an−1〉〉. If
b,−b ∈ D(ϕ), then by item (vi), bϕ ≡ ϕ ≡ −bϕ. Hence ψ ⊗ 〈1, an〉 ≡ −ψ ⊗ 〈1,−a〉, so
−an ∈ D(〈1, an〉⊗ψ). By induction step, −an ∈ D(ψ) and by item (viii), ϕ = 〈1,−(−an)〉⊗ψ
is hyperbolic, finalizing the proof.
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Definition 4.2.26. Let G be a special group and let ∆ ⊆ G be a subgroup. We say that ∆ is
saturated if for all a ∈ G,

a ∈ ∆⇒ DG(1, a) ⊆ ∆. (sat)

Note that if, in addition, −1 ∈ ∆, then ∆ = G. Thus we will reserve the noun saturated for those
subgroups satisfying [sat] such that −1 /∈ ∆, while G will be called the improper saturated subgroup
of itself.

Lemma 4.2.27. Let G be a special group and ∆ a subgroup of G.

a - The intersection of any family of saturated subgroups is saturated. The union of an upward
directed family of saturated subgroup is saturated.

b - The following are equivalent:

i - ∆ is saturated.

ii - For any Pfister forms ϕ,ψ over ∆ and any b, c ∈ ∆

DG(ϕ), DG(ψ) ⊆ ∆⇒ DG(bϕ⊕ cψ) ⊆ ∆.

iii - For any Pfister form ϕ over ∆, DG(ϕ) ⊆ ∆.

Proof.

a - Is an immediate consequence of the definition of saturatedness.

b - (i)⇒(ii): If a ∈ Dg(bϕ ⊕ cψ), there are x ∈ DG(ϕ) and y ∈ DG(ψ) such that a ∈ DG(bx, cy),
which implies abx ∈ DG(1, bcxy). SinceDG(ϕ) andDG(ψ) are contained in ∆, we have x, y ∈ ∆;
hence bcxy ∈ ∆ and, by (i), abx ∈ ∆. Since bx ∈ ∆, we get a ∈ ∆.

(ii)⇒(iii): By induction on the deg(ϕ) = n. The case n = 0 is immediate. For the induction
step, ϕ can be written

ϕ = 〈1, a〉 ⊗ ψ ≡G ψ ⊕ aψ,

with a ∈ ∆ and ψ a Pfister form over ∆ of degree n−1. Hence, DG(ψ) ⊆ ∆ and the conclusion
follows from (ii) for the values b = 1 and c = a.

(iii)⇒(i): Just use ϕ = 〈1, a〉 = 〈〈a〉〉.

In the sequel it will be shown that saturated subgroups exist in profusion:

Lemma 4.2.28. Let G be a special group and let ∆ be a subgroup of G.

a - The family P∆ of all Pfister forms over ∆ contains the form 2 = 〈1, 1〉 and is closed under
tensor products.

b - The following are equivalent:

i - ∆ is a proper saturated subgroup of G.

ii - There is a family S of anisotropic Pfister forms over G containing 2, closed under tensor
products and such that ∆ =

⋃
{DG(ϕ) : ϕ ∈ S}.
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Proof.

a - It is just the fact that 1 ∈ ∆ and the definition of Pfister forms.

b - (i)⇒(ii): If ∆ is saturated, consider S = P∆. Lemma 4.2.27(c) implies that

∆ =
⋃
{DG(ϕ) : ϕ ∈ S}.

If some ϕ ∈ S is isotropic, then −1 ∈ DG(ϕ) ⊆ ∆, and so ∆ = G.

(ii)⇒(i): Suppose that S is as in (ii), and ∆ =
⋃
{DG(ϕ) : ϕ ∈ S}. Let a ∈ ∆ and b ∈ DG(1, a).

Thus, a ∈ DG(ϕ) for some ϕ ∈ S and by 4.2.25(ix), we have b ∈ DG(2⊗ ϕ). Since this form is
in S, we conclude that b ∈ ∆. If −1 ∈ DG(ϕ) for some ϕ ∈ S, then by 4.2.25(vi), −ϕ ≡G ϕ.
But this means that ϕ⊕ ϕ ≡G 2⊗ ϕ is an isotropic form in S.

Lemma 4.2.28 yields at once

Proposition 4.2.29. Let G be a special group and let ∆ be a subgroup of G. Then

∆ =
⋃
{DG(ϕ) : ϕ ∈ P∆} (saturation)

is the smallest saturated subgroup of G containing ∆. In particular, if ∆ is saturated and ϕ is a
Pfister form over ∆, then DG(ϕ) ⊆ ∆.

Proof. Items (a) and (b) of Lemma 4.2.28 show that ∆ is saturated (possibly improper). Since
〈1, a〉 is in P∆, forall a ∈ ∆, we have ∆ ⊆ ∆. If Γ is a saturated subgroup containing ∆ and ϕ ∈ P∆,
then ϕ is Pfister over Γ and item (iii) in 4.2.27(b) shows that DG(ϕ) ⊆ Γ. Hence, ∆ ⊆ Γ.

Definition 4.2.30. We call ∆ the saturation of ∆. If ∆ = {1}, we write {1} = Sat(G).

Remark 4.2.31.

i - ∆ may be improper even if −1 is not in ∆.

ii - Sat(G) is the smallest saturated subgroup of G and

Sat(G) =
⋃
{DG(

n∏
i=1

〈1, 1〉) : n ∈ ω}
⋃
{DG(2k〈1〉) : k ∈ ω}.

iii - Sat(G) = {1} if and only if G is reduced.

In case G is a reduced special group, there are further examples of saturated subgroups.

Lemma 4.2.32. Let G be a special group.

a - XG 6= 0 if and only if Sat(G) 6= G if and only if −1 /∈ Sat(G).

b - If σ ∈ XG, then Sat(G) ⊆ Ker(σ). Thus σ factors through π to give a character σ̂ ∈ XG/Sat(G)

satisfying σ̂ ◦ π = σ, where π : G→ G/Sat(G) is the canonical quotient map.

c - The map XG/Sat(G) 7→ XG given by τ 7→ τ ◦ π, is a homeomorphism.

Proof.
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a - By SG2 we have DG(1,−1) = G. So (Sat(G) 6= G)⇔ (−1 /∈ Sat(G)) follow this. Now, suppose
XG 6= ∅ and let σ ∈ XG. If −1 ∈ Sat(G), say −1 ∈ DG(〈〈1, ..., 1〉〉) we have

σ(−1) ∈ DZ2(〈〈σ(1), ..., σ(1)〉〉)⇒ −1 ∈ DZ2(〈〈1, ..., 1〉〉),

contradiction. Finally, suppose −1 /∈ Sat(G). Define σ : G→ Z2 by the rule

σ(g) =

{
1 if g ∈ Sat(G);

−1 otherwise.

We have that σ is a SG-morphism, finalizing the proof.

b - Sat(G) ⊆ Ker(σ) follow by the very definition of Sat(G), XG and SG-morphisms. The rest is
just an application of the homomorphism theorem for groups.

c - Another application of homomorphism theorem.

Definition 4.2.33. Any special group verifying the equivalent conditions in 4.2.32(a) will be called
formally real.

It is immediate that a field F is formally real iff the group G(F ) is formally real.

Lemma 4.2.34. Let G be a reduced special group. Then:

a - For any Pfister form ϕ on G, DG(ϕ) is a saturated subgroup of G. In fact, if ϕ = 〈〈a1, ..., an〉〉
then

DG(ϕ) = DG(1, a1)DG(1, a2)...DG(1, an).

b - For any form ψ on G, the set {a ∈ G : aψ ≡G ψ} is a saturated subgroup of G.

Proof.

a - Proposition 4.2.25(ix) shows that a ∈ DG(ϕ) and b ∈ DG(1, a) imply b ∈ DG(2⊗ ϕ). Now use
4.2.5(b) to conclude that b ∈ DG(ϕ).

If Γ is a saturation subgroup of G containing DG(1, ai), 1 ≤ i ≤ n, then it follows from 4.2.29
that Γ contains DG(ϕ), since ϕ is a Pfister form over Γ. Hence, DG(ϕ) is in fact the saturation
of the product of the DG(1, ai).

b - If a, b ∈ G, then a(bψ) ≡ aψ ≡ ψ, so G is a subgroup. Assume that a ∈ DG(1, b), where aψ ≡G
ψ. Then, 〈a, ab〉 ≡ 〈1, b〉; tensoring both sides of this isometry with ψ yields aψ⊕abψ ≡G ψ⊕bψ,
and hence aψ ⊕ aψ ≡ ψ ⊕ ψ. Now 4.2.5(d) gives aψ ≡ ψ, as required.

Now we will prove two important properties of maximal saturated subgroups. The next lemma
will be used in both proofs.

If S is a subset of a group G, let [S] denote the subgroup generated by S in G.

Lemma 4.2.35. Let G be a special group, ∆ a saturated subgroup of G and x ∈ G. Then,

[∆ ∪ {x}] = G iff − x ∈ ∆.
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Proof. If −x ∈ ∆, then the subgroup generated by ∆ and x will have −1, and so its saturation is
G.

Now assume that the saturation Γ of [∆∪ {x}] = ∆∪ x∆ is equal to G. Thus, −x ∈ Γ, and by
the definition of saturation (proposition 4.2.29) there is a Pfister form ϕ over ∆ ∪ {x} such that
−x ∈ DG(ϕ). We may write ϕ in the form

ϕ = 〈〈a1, ..., an, b1x, ..., bmx〉〉, (*)

with a1, ..., an, b1, ..., bm ∈ ∆. By proposition 4.2.25(iii)

〈〈b1x, ..., bmx〉〉 ≡ 〈〈b1b2, ..., b1bm〉〉 ⊗ 〈1, b1x〉.

Substituting this isometry in (*) we get

ϕ ≡G ψ ⊗ 〈1, b1x〉 ≡G ψ ⊕ b1xψ, (**)

where ψ = 〈〈a1, ..., an, b1b2, ..., b1bm〉〉, a Pfister form over ∆. Since −x ∈ DG(ϕ), (**) implies the
existence of y, z ∈ DG(ψ) such that −x ∈ DG(y, b1xz), i.e,

〈−x,−b1yz〉 ≡G 〈y, b1xz〉.

It follows that
〈−y,−b1yz〉 ≡G 〈x, b1xz〉,

and hence −xy ∈ DG(1, b1z). Since ∆ is saturated, Lemma 4.2.27(b) yields y, z ∈ ∆ and so
b1z ∈ ∆. By saturatedness again, we get −xy ∈ ∆ and hence −x = (−xy)y ∈ ∆.

Proposition 4.2.36. Let ∆ be a saturated subgroup of a special group G. Then, ∆ is a maximal
saturated subgroup iff for all x ∈ G, x ∈ ∆ or (exclusive) −x ∈ ∆.

Proof. If x /∈ ∆ and ∆ is maximal, the saturation of the subgroup generated by ∆ and x must be
G. By lemma 4.2.35, we conclude −x ∈ ∆.

Conversely, suppose ∆ is saturated and such that either x or −x is in ∆, for all x ∈ G. Then
any proper saturated extension Γ of ∆ will contain z and −z, for some z ∈ G, which from Γ = G,
by proposition 4.2.29. Thus, ∆ is a maximal saturated subgroup of G.

Theorem 4.2.37 (Separation Theorem). Let G be a special group, ∆ a saturated subgroup of G
and a an element of G such that a /∈ ∆. Then there is a maximal saturated subgroup Γ of G such
that ∆ ⊆ Γ and a /∈ Γ.

Proof. Let Σ = [∆ ∪ {−a}]; Lemma 4.2.35 implies that Σ is a proper subgroup of G, otherwise a
would be in ∆. In particular, a /∈ Σ. Now, consider

V = {Λ : Λ is a proper saturated subgroup of G, Σ ⊆ Λ and a /∈ Λ},

ordered by inclusion. Σ ∈ V, and since an upward directed family of saturated subgroups is again
saturated (Lemma 4.2.27(a)), Zorn’s Lemma furnishes a maximal element Γ in V. To see that Γ is
indeed a maximal saturated subgroup of G, let Θ be a saturated subgroup of G properly containing
Γ. Then Θ is not in V and so a ∈ Θ. Since Θ contains Σ, we have both a and −a in Θ, which
implies that Θ = G.

Corollary 4.2.38. A special group G is formally real if and only if admits a maximal saturated
subgroup.
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4.2.5 Quotients

Definition 4.2.39. Let ∆ be a subgroup of a special group (G,≡G,−1). We define a quaternary
relation on the quotient group G/∆ as follows:

〈a/∆, b/∆〉 ≡∗G 〈c/∆, b/∆〉 iff


∃ a′, b′, c′, d′ ∈ G such that

aa′, bb′, cc′, dd′ ∈ ∆ and

〈a′, b′〉 ≡G 〈c′, d′〉.

Remark that no conditions are imposed on ∆.

Proposition 4.2.40. With notation as in definition 4.2.39, we have

a - The relation ≡∗G/∆ is well defined.

b - (G/∆,≡∗G/∆,−1/∆) verifies the axioms [SG1]-[SG5] of special groups. The relation ≡∗G/∆ (on

G/∆×G/∆) is reflexive and symmetric, but not transitive in general. The canonical quotient
map π : G→ G/∆ satisfies, ∀ a, b, c, d ∈ G

〈a, b〉 ≡G 〈c, d〉 ⇒ 〈π(a), π(b)〉 ≡∗G/∆ 〈π(c), π(d)〉. (quo)

c - ≡∗G/∆ is the smallest binary relation ≡ on G/∆ × G/∆ satisfying contidion (quo) for all
a, b, c, d ∈ G.

Definition 4.2.41. Let G be a special group. A collection S of Pfister forms is said to be (upward)
directed if for every ϕ,ψ ∈ S, There is θ ∈ S such that DG(ϕ), DG(ψ) ⊆ DG(θ).

A subgroup ∆ of G is a Pfister subgroup iff there is a directed family S of Pfister forms over
G such that ∆ =

⋃
{DG(ϕ) : ϕ ∈ S}.

Lemma 4.2.28(b) proves that any saturated subgroup is Pfister, since a family of Pfister forms
closed under tensor products is directed (proposition 4.2.25(vi)). Note that the subgroups DG(ϕ),
ϕ a Pfister form, are Pfister (S = {ϕ} is directed).

The class of Pfister and saturated subgroups are not identical, except in the case of reduced
special groups – and only in that case – as shown by the following:

Proposition 4.2.42. Let G be a special group such that 1 6= −1. Then G is reduced iff every
Pfister subgroup of G is saturated.

Proof. Suppose G is reduced and ∆ is a Pfister subgroup, say ∆ =
⋃
{DG(ϕ) : ϕ ∈ S}, S a directed

family of Pfister forms. By corollary 4.2.34, DG(ϕ) is saturated, for each ϕ ∈ S. Thus, ∆ is the
directed union of saturated subgroups, and so itself saturated. The converse follows from item (iii)
of the remarks after definition 4.2.30: since 〈1〉 is a Pfister form such that {1} = DG(〈1〉), {1} is
saturated. But this is equivalent to G being reduced.

Proposition 4.2.43. Let G be a special group and ∆ a Pfister subgroup of G, ∆ =
⋃
{DG(ϕ) :

ϕ ∈ S}, S a directed family of Pfister forms. For a, b, c, d ∈ G, the following are equivalent:

a - 〈a/∆, b/∆〉 ≡∗G/∆ 〈c/∆, d/∆〉.

b - There is a ϕ ∈ S such that 〈a, b〉 ⊕ ϕ ≡G 〈c, d〉 ⊕ ϕ.

Before proving this result we will deal with the particular case where S consists of a single
form.



176 CHAPTER 4. A SECOND GENERATION OF ABSTRACT THEORIES

Lemma 4.2.44. Let G be a special group and ϕ a Pfisfer form over G.

a - For a, b, c, d ∈ G, the following are equivalent:

i - 〈a, b〉 ⊗ ϕ ≡G 〈c, d〉 ⊗ ϕ.

ii - There are a′, b′, c′, d′ ∈ G such that aa′, bb′, cc′, dd′ ∈ DG(ϕ) and 〈a′, b′〉 ≡G 〈c′, d′〉.

b - Conditions (i) or (ii) imply abcd ∈ DG(ϕ).

Proof.

a - (i)⇒(ii): By assumption, aϕ⊕ bϕ ≡G cϕ⊕ dϕ; in particular, a ∈ DG(cϕ⊕ dϕ). By proposition
4.2.4, there are x, y ∈ DG(ϕ) such that a ∈ DG(cx, dy), i.e

〈a, acdxy〉 ≡G 〈cx, dy〉. (*)

Setting a′ = a, b′ = acdxy, c′ = cx and d′ = dy we have 〈a′, b′〉 ≡G 〈c′, d′〉. Further, aa′ = 1,
cc′ = x and dd′ = y are in DG(ϕ). Tensoring (*) with ϕ gives

aϕ⊕ b′ϕ ≡G cxϕ⊕ dyϕ ≡G cϕ⊕ dϕ ≡G aϕ⊕ bϕ.

Cancelling aϕ on both sides (4.2.4) yields bϕ ≡G b′ϕ, that is, bb′ ∈ DG(ϕ).

(ii)⇒(i): Assume 〈a′, b′〉 ≡G 〈c′, d′〉 with aa′, bb′, cc′, dd′ ∈ DG(ϕ). Then

(a) a′ϕ⊕ b′ϕ = langlea′, b′〉 ⊗ ϕ ≡G 〈c′, d′〉 ⊗ ϕ = c′ϕ⊕ d′ϕ.

(b) a′ϕ ≡ aϕ, b′ϕ ≡ bϕ, c′ϕ ≡ cϕ, d′ϕ ≡ dϕ.

Substituting the isometries in (2) for the corresponding terms in (1), we get

aϕ⊕ bϕ ≡ cϕ⊕ dϕ

i.e, 〈a, b〉 ⊗ ϕ ≡G 〈c, d〉 ⊗ ϕ as required.

b - Using (ii) we obtain a′b′c′d′ = 1. Since aa′, bb′, cc′, dd′ ∈ DG(ϕ), which is a subgroup, we
conclude that abcda′b′c′d′ = abcd ∈ DG(ϕ).

Proof of proposition 4.2.43. (a)⇒(b): by assumption (a) there are elements a′, b′, c′, d′ ∈ G such
that aa′, bb′, cc′, dd′ ∈ ∆ and 〈a′, b′〉 ≡G 〈c′, d′〉. Since ∆ is Pfister, there are forms ϕ1, ..., ϕ4 in S
such that aa′ ∈ DG(ϕ1), bb′ ∈ DG(ϕ2), cc′ ∈ DG(ϕ3) and dd′ ∈ DG(ϕ4). Using the directedness
of S, pick a form ϕ ∈ S so that SG(ϕi) ⊆ DG(ϕ), i = 1, 2, 3, 4. Now (2) follows from (ii)⇒(i) of
lemma 4.2.44(a) applied to ϕ.

(b)⇒(a): is immediate from (i)⇒(ii) in lemma 4.2.44(a).

Lemma 4.2.45. Let G be a special group and let ϕ1, ϕ2 be anisotropic Pfisfer forms over G, such
that DG(ϕ1) ⊆ DG(ϕ2). Then, for all forms ψ, θ over G,

ψ ⊗ ϕ1 ≡G θ ⊗ ϕ1 ⇒ ψ ⊗ ϕ2 ≡G θ ⊗ ϕ2.
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Proof. By induction on n = dim(ψ) = dim(θ). For n = 1, the conclusion is immediate, while
for n = 2 it is a consequence of lemma 4.2.35(a). Assume the result is true for n ≥ 2, and that
ψ = 〈a〉 ⊕ λ, where dim(λ) = n. Write θ = 〈b1, ..., bn, bn+1〉; thus

(〈a〉 ⊕ λ)⊗ ϕ1 ≡ θ ⊗ ϕ1 = 〈b1ϕ1, ..., bnϕ1, bn+1ϕ1〉,

and so, by proposition 4.2.4(c), there are xj ∈ DG(ϕ1), 1 ≤ j ≤ n+ 1, such that

a ∈ DG(b1x1, ..., bn+1xn+1),

or equivalently, there are c2, ..., cn+1 ∈ G, such that

〈a, c2, ..., cn+1〉 ≡ 〈b1x1, ..., bn+1xn+1〉. (I)

Multiplying (I) by ϕ1 yields

aϕ1 ⊕ 〈c2ϕ1, ..., cn+1ϕ1〉 ≡ b1x1ϕ1 ⊕ ...⊕ bn+1xn+1ϕ1 (II)

≡ b1ϕ1 ⊕ ...⊕ bn+1ϕ1 ≡ aϕ1 ⊕ (λ⊗ ϕ1).

Cancelling aϕ1 on both sides of (II) gives

〈c2, ..., cn+1〉 ⊗ ϕ1 ≡ c2ϕ1 ⊕ ...⊕ cn+1ϕ1 ≡ λ⊗ ϕ1. (III)

From the induction hypothesis, we get

〈c2, ..., cn+1〉 ⊗ ϕ2 ≡ c2ϕ2 ⊕ ...⊕ cn+1ϕ2 ≡ λ⊗ ϕ2. (IV)

Tensoring (I) with ϕ2, yields, recalling that DG(ϕ1) ⊆ DG(ϕ2),

ϕ2 ⊕ (c2ϕ2 ⊕ ...⊕ cn+1ϕ2) ≡ b1x1ϕ2 ⊕ ...⊕ bn+1xn+1ϕ2

≡ b1ϕ2 ⊕ ...⊕ bn+1ϕ2 ≡ θ ⊗ ϕ2.

The substitution of (IV) in this last isometry shows that ψ⊗ϕ2 ≡ θ⊗ϕ2, completing the induction
step and the proof.

Proposition 4.2.43 with lemmas 4.2.44 and 4.2.45, yield

Proposition 4.2.46. Let G be a special group and ∆ a Pfister subgroup of G, determined by the
directed family S of Pfister forms over G. Then (G/∆,≡∗G/∆,−1/∆) is a special group, and the

quotient map π : G→ G/∆ is a morphism of special groups. Further, 1 6= −1 in G/∆ iff −1 /∈ ∆.
Moreover, in this situation we have

a - If ϕ,ψ are n-forms in G, then π ? ϕ ≡∗G/∆ π ? ψ iff there is a Pfister form P in S such that
ϕ⊗ P ≡G ψ ⊗ P.

b - If f : G → H is a morphism of special groups satisfying ∆ ⊆ Ker(f), then there is a unique
SG-morphism f̂ : G/∆→ H such that f = f̂ ◦ π.

Proof.

a - Transitivity of the relation ≡∗G/∆ follows from lemma 4.2.45, using proposition 4.2.43. Likewise,

axiom [SG6] is an immediate consequence of (a), which is proven by induction on n, using 4.2.45
and 4.2.43.
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b - It is straightforward to verify that, setting f̂(π(a)) = f(a) one gets a well defined morphism of
special groups.

The theory of quotients presented above yields the following result which in fact, is a version
of Pfister’s local-global principle:

Theorem 4.2.47 (Pfister local-global principle). For a1, ..., an, b1, ..., bn in a reduced special group
G, the following are equivalent:

a - 〈a1, ..., an〉 ≡G 〈b1, ..., bn〉.

b - 〈a1/∆, ..., an∆〉 ≡G/∆ 〈b1/∆, ..., bn/∆〉 for all maximal saturated subgroups ∆ of G.

Before proving this result, we show that it implies a more general version, holding in all special
groups, reduced or not.

Proposition 4.2.48. Let G be a special group such that 1 6= −1 and a1, ..., an, b1, ..., bn ∈ G. The
following are equivalent:

a - For some integer k ≥ 0, 2k · 〈a1, ..., an〉 ≡G 2k · 〈b1, ..., bn〉.

b - 〈a1/∆, ..., an∆〉 ≡G/∆ 〈b1/∆, ..., bn/∆〉 for all maximal saturated subgroups ∆ of G.

Proof. (a)⇒(b): is consequence of Proposition 4.2.5 and that the quotient map G → G/∆ is a
SG-morphism.

(b)⇒(a): We apply Theorem 4.2.47 to G/Sat(G). Assume

2k〈a1, ..., an〉 6≡ 2k〈b1, ..., bn〉

for every k ≥ 0. Proposition 4.2.46 applied to the family {2n : n ≥ 1} of Pfister forms yields:

〈a1/Sat(G), ..., an/Sat(G)〉 6≡ 〈b1/Sat(G), ..., bn/Sat(G)〉. (*)

By the preceding theorem, G/Sat(G) contains a maximal saturated subgroup, Γ, such that (*)
holds modulo Γ, i.e, in (G/Sat(G))/Γ. Let ∆ = π−1[Γ], where π is the canonical map from G to
G/Sat(G). Using proposition 4.2.40(c), ker(π) ⊆ ∆, and the surjectivity of π, we check that ∆ is a
maximal saturated subgroup of G. Since Γ = ∆/Sat(G) and G/∆ is isomorphic to (G/Sat(G))/Γ
(as special groups), we obtain

〈a1/∆, ..., an/∆〉 6≡G/∆ 〈b1/∆, ..., bn/∆〉,

contrary to (2).

Proof of Theorem 4.2.47. Lemma 4.2.13(c) gives (a)⇒(b). To prove the converse, assume G is
reduced and 〈a1, ..., an〉 6≡G 〈b1, ..., bn〉. Then by proposition 4.2.5

2k〈a1, ..., an〉 6≡G 2k〈b1, ..., bn〉

for all k ≥ 0. Hence, every Pfister form ϕ in the family {2n : n ≥ 0} has the property

〈a1, ..., an〉 ⊗ ϕ 6≡G 〈b1, ..., bn〉 ⊗ ϕ; (*)
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further, it is closed under tensor products. By Zorn’s Lemma, there is a maximal family L of Pfister
forms over G containing 〈1, 1〉, closed under tensor products, and such that every ϕ ∈ L verifies
(*). Note that every Pfister form ϕ verifying (*) is anisotropic; otherwise, ϕ would be hyperbolic
(proposition 4.2.25(v)), and we know that for l ≥ 1

〈a1, ..., an〉 ⊗ l〈1,−1〉 6≡G 〈b1, ..., bn〉 ⊗ l〈1,−1〉, (**)

as the coefficients on each side occur in pairs c, −c.
Let ∆ =

⋃
{DG(ϕ) : ϕ ∈ L}. By lemma 4.2.28(b), ∆ is a proper saturated subgroup of G. We

show that ∆ is maximal saturated. By 4.2.36 it is suffices to show that, for x ∈ G, either x ∈ ∆ or
−x ∈ ∆.

For y ∈ G, let Ly = L∪{〈1, y〉⊗ϕ : ϕ ∈ L}. Ly contains L and is closed under tensor products
(because 〈1, y〉 ⊗ 〈1, y〉 ≡G 〈1, 1〉 ⊗ 〈1, y〉). If y /∈ ∆, by the maximality of L, the isometry

〈a1, ..., an〉 ⊗ 〈1, y〉 ⊗ ϕ ≡G 〈b1, ..., bn〉 ⊗ 〈1, y〉 ⊗ ϕ (***)

holds for some form ϕ ∈ L. Note that if we have y, z /∈ ∆ and ϕ1, ϕ2 are the forms in L satisfying
(***) in relation to y and z, respectively, then ϕ = ϕ1 ⊗ϕ2 is in L and satisfies (***) with respect
to y and z, simultaneously. Thus, we may assume that (***) holds as stated for x and −x.

Assume x,−x ∈ ∆. Applying (***) to x and −x, and adding up the instance of (***) thus
obtained, yields:

〈a1, ..., an〉 ⊗ ϕ⊗ (2⊕ 〈1,−1〉) ≡G 〈b1, ..., bn〉 ⊗ ϕ⊗ (2⊕ 〈1,−1〉),

recalling that 〈1, x, 1,−x〉 ≡G 〈1, 1〉 ⊕ 〈1,−1〉. Cancelling out the terms

〈a1, ..., an〉 ⊗ ϕ⊗ 〈1,−1〉 ≡G 〈b1, ..., bn〉 ⊗ ϕ⊗ 〈1,−1〉,

in agreement with (**), we get

〈a1, ..., an〉 ⊗ 2ϕ ≡G 〈b1, ..., bn〉 ⊗ 2ϕ,

in contradiction to (*), since 2ϕ ∈ L.

4.2.6 Duality

Here, we want to construct a duality between the categories of RSG and AOS, i.e, we want
to prove that the categories of RSG and AOSop are equivalent. Here, we will work with the third
version of abstract ordering spaces, i.e, the structure (X,G,−1) is an AOS if it verifies the following
conditions:

O1 - X is closed in χ(G) (equivalently, in {±1}G).

O2 - σ(−1) = −1 for all σ ∈ X.

O3 -
⋂
σ∈X Ker(σ) = {1}.

O4 - If ϕ,ψ are forms over G and x ∈ G, then x ∈ DX(ϕ⊕ ψ) implies that there are y ∈ DX(ϕ)
and z ∈ DX(ψ) such that x ∈ DX(y, z).

In her thesis, Lira [dL96] proves the following interesting result:
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Proposition 4.2.49. Let G be a group of exponent 2 with a distinguished element −1, and
X ⊆ χ(G). If the structure (X,G,−1) satisfies the axioms [O1], [O2] and [O3], the following
are equivalent:

a - (X,G,−1) satisfies [O4].

b - Strong and weak isometry modulo X are identical on forms of all dimensions.

c - Strong isometry modulo X is transitive on forms of dimension 3, and (X,G,−1) verifies the
following maximality condition:

O5 - For every σ ∈ χ(G), such that σ(−1) = −1, if for all a ∈ G [a ∈ Ker(σ) ⇒ DX(1, a) ⊆
Ker(σ)], then σ ∈ X.

We further use this characterization. Also, our notion of morphism here is:

Definition 4.2.50. Let (X,G,−1) and (Y,H,−1) be AOS’s. A map γ : X → Y is a morphism
of AOS’s iff there is a continuous group homomorphism Γ : χ(G)→ χ(H), such that γ = Γ|X .

Definition 4.2.51. Let G be a special group. The space of orderings of G is the set XG of all
SG-morphisms of G into Z2, endowed with the topology induced by the product {±1}G.

The space of orderings has the following properties:

Proposition 4.2.52. Let G be a rsg. Then

a - XG is closed in {±1}G (and in χ(G)).

b - XG is a Boolean space.

c -
⋂
σ∈XG Ker(σ) = 1.

Proof. For itens (a) and (b), just reproduce the proof in 1.6.1. For (c), follows from the Separation
Theorem 4.2.37: since G is reduced, {1} is saturated; given a 6= 1, there is a maximal saturated
subgroup ∆ of G such that a /∈ ∆. But we have ∆ = ker(σ), for some σ ∈ XG.

For a form ϕ = 〈a1, ..., an〉 ver G and a map σ : G → {±1}, we set sgnσ(ϕ) =
∑n

i=1 σ(a1)
(addition in Z). sgnσ(ϕ) is called the signature of ϕ at σ. With notation as in 4.2.32, if ϕ is a form
over a formally real special group G, then for all σ ∈ XG, sgnσ(ϕ) = sgnσ̂(π ? ϕ).

Our next result, a reformulation of theorem 4.2.47, is another abstract version of Pfister local-
global principle. It will be of crucial importance in the sequel.

Proposition 4.2.53 (Pfister’s Local-Global Principle). For a1, ..., an, b1, ..., bn in a reduced special
group G, the following are equivalent:

a - 〈a1, ..., an〉 ≡G 〈b1, ..., bn〉.

b - For every σ ∈ XG, sgnσ(〈a1, ..., an〉) = sgnσ(〈b1, ..., bn〉).

Proof. Immediate from Theorem 4.2.47.

Definition 4.2.54. Let G be a group of exponent 2 with a distinguished element −1. Let X ⊆ χ(G).

a - The notion of weak isometry modulo X, denoted ≡X , is defined as follows: for forms ϕ =
〈a1, ..., an〉 and ψ = 〈b1, ..., bn〉 over G

ϕ ≡X ψ iff for all σ ∈ X, (sgnσ(ϕ) = sgnσ(ψ)).
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b - If ϕ is a form of dimension n over G, define

DX(ϕ) = {b ∈ G : ∃ b2, ..., bn ∈ G such that ϕ ≡X 〈b, b2, ..., bn〉},

the set of elements weakly represented by ϕ modulo X.

c - We denote by ≡∗X the extension to forms of arbitrary dimension of the weak isometry relation
on binary forms. The relation ≡∗X is referred to as strong isometry modulo X.

Now, we state some properties of weak isometry:

Lemma 4.2.55. Let G be a group of exponent 2 and X ⊆ χ(G). Then

a - Weak isometry modulo X is transitive on forms of any dimension.

b - Strong isometry implies weak isometry (but not conversely!)

c - Let ϕ, θ1, θ2 be forms over G, then

ϕ⊕ θ1 ≡X ϕ⊕ θ2 ⇔ θ1 ≡X θ2.

The results proved above at once yield

Proposition 4.2.56. If (G,≡G,−1) is a rsg, then (XG, G,−1) is an AOS.

Proof. O1 and O3 come from Lemma 4.2.52(a) and (c); O2 is contained in the definition of XG;
O4 is an immediate consequence of Proposition 4.2.53 and 4.2.4(c).

Conversely, any abstract order space generates a reduced special group, as follows:

Proposition 4.2.57. If (X,G,−1) be an AOS, then (G,≡X ,−1) is a reduced special group.

Proof. Checking that (G,≡X ,−1) satisfies SG0-SG5 and the reduction axiom [red] is straightfor-
ward calculations. As for SG6, since weak isometry modulo X is transitive, it would be sufficient
to show that, under our assumptions, strong and weak isometry modulo X are identical on forms
of dimension 3. Indeed, this follows from O4, as we now prove: assume

〈a1, a2, a3〉 ≡X 〈b1, b2, b3〉; (4.28)

then, b1 ∈ DX(a1, a2, a3). By O4, there is x ∈ DX(a2, a3) such that b1 ∈ DX(a1, x), i.e, there are
y, z ∈ G so that

〈a1, x〉 ≡X 〈b1, y〉; (4.29)

〈a2, a3〉 ≡X 〈x, z〉. (4.30)

It only remains to show that

〈b2, b3〉 ≡X 〈y, z〉. (4.31)

The isometry 4.30 and 4.2.55(c) give 〈a1, a2, a3〉 ≡X 〈a1, x, z〉. Similarly, 4.29 and 4.2.55(c) yield
〈a1, x, z〉 ≡X 〈b1, y, z〉.

Since ≡X is transitive, 4.28 and the last two isometries prove 〈b1, b2, b3〉 ≡X 〈b1, y, z〉, which,
using 4.2.55(c) again, implies 4.31.
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Summarizing, we have two correspondences between reduced special groups and abstract order
spaces, as follows:

Φ : RSG → AOS, (G,≡G,−1) 7→ (XG, G,−1)

Ψ : AOS → RSG, (X,G,−1) 7→ (G,≡X ,−1).

We show next that these correspondences are reciprocal to each other.

Proposition 4.2.58. We have Φ ◦Ψ = IdAOS and Ψ ◦ Φ = IdRSG.

Proof. First, we will prove that Ψ ◦ Φ = IdRSG . Since

Ψ ◦ Φ(G,≡G,−1) = (G,≡XG ,−1),

it suffices to show that the relations ≡G and ≡XG are identical on binary forms. This is asserted
by proposition 4.2.53.

Now, we will prove that Φ ◦ Ψ = IdAOS . Let us denote Ψ(X,G,−1) = (G,≡X ,−1) by G[X].
Thus, Φ(G[X]) = (XG[X], G,−1), and we have to prove that X = XG[X].

By definition of the relation ≡X each σ ∈ X is a SG-morphism from G[X] into Z2, so X ⊆
XG[X] follows. Conversely, since the special relation of G[X] is ≡X , every σ ∈ XG[X] verifies the
assumption of the maximality condition O5 in proposition 4.2.49 above; hence σ ∈ X.

The final step is to extend the correspondences Φ,Ψ to functors. For this, we need to show
that every morphism of AOS’s is the restriction of a unique continuous group homomorphism of
χ(G) into χ(H). This is an immediate consequence of

Proposition 4.2.59. Let G be a group of exponent 2 and X a subset of χ(G) satisfying the
separation axiom [O3]. Then, the subgroup of χ(G) generated by X, [X], is dense in χ(G).

For the proof of this result we need the following

Lemma 4.2.60. Let K be a finite group of exponent 2, and let σi ∈ χ(K), 1 ≤ i ≤ n. Then,
{σ1, ..., σn} generates χ(K) iff

⋂n
i=1 Ker(σi) = {1}.

Proof. (⇒) If the conclusion fails, consider a ∈
⋂n
i=1 Ker(σi), a 6= 1, and any character σ such

that σ(a) = −1 (such a σ exists because {a} is an F2-linearly independent subset of K); then
σ /∈ [σ1, ..., σn].

(⇐) We may assume that the character constantly equal to 1, 1, is not in {σ1, ..., σn}. By
induction on n we select an irredundant subset of {σ1, ..., σn}, say σ1, ..., σm, i.e, a subset with the
following properties:

m⋂
i=1

Ker(σi) = {1} (4.32)

For 2 ≤ j ≤ m,
j−1⋂
i=1

Ker(σi) * ker(σj). (4.33)

By induction on m we choose elements b1, ..., bm ∈ K such that

b1 /∈ ker(σ1) (4.34)

For 2 ≤ j ≤ m, bj ∈
j−1⋂
i=1

Ker(σi), bj /∈ ker(σj). (4.35)



4.2. SPECIAL GROUPS 183

Claim. {b1, ..., bm} is a F2-basis of K.

We prove by induction on m. If m = 1, by 4.32, ker(σ1) = {1}, that is, σ1 is an isomorphism
between K and {±1}. By 4.34, b1 = −1, a basis for K. Now suppose the claim true for m − 1,
m ≥ 2. Consider the (proper) subgroup K1 = ker(σ1). For i ≥ 2, let σ′ = σi|K1 ; then σ′2, ..., σ

′
m

are in χ(K1), b2, ..., bm are in K1 and

m⋂
i=2

Ker(σ′i) =

n⋂
i=1

Ker(σi) = {1};

If 3 ≤ j ≤ m, then

j−1⋂
i=2

Ker(σ′i) =

j−1⋂
i=1

Ker(σi) * ker(σj);

whence
⋂j−1
i=2 Ker(σ′i) * ker(σ1)∩ker(σj) = ker(σ′j). By induction hypothesis, {b2, ..., bm} is a basis

for K1. Since b1 /∈ K1, {b1, ..., bm} is a basis of K, proving the Claim.

The claim implies that {σ1, ..., σm} is an F2-basis of χ(K). Observe first that {σ1, ..., σm} is
F2-linearly independent: if 1 ≤ j ≤ m, we have σj(bj) = −1, while σi(bj) = 1 for 1 ≤ i ≤ j; hence
σj /∈ [σ1, ..., σj−1]. Now, the F2-dimension of K is equal to the F2-dimension of χ(K) (since χ(K)
is the dual of K). So {σ1, ..., σm} is a basis for χ(K).

Proof of theorem 4.2.59. Let U 6= ∅ be a clopen in χ(G); we show that [X] ∩ U 6= ∅. The set U is
of the form

U =
n⋂
i=1

{σ ∈ X : σ(ai) = δ(i)},

for some {a1, ..., an} ⊆ G, and δ : {1, ..., n} → {±1}. Let K = [a1, ..., an]; K is finite, and so is
χ(K). Also, the finite set X|K = {σ|K : σ ∈ X} separates points in K, i.e,

⋂
γ∈X|K ker(γ) = {1}.

Hence, tehre is a finite set {σ1, ..., σn} ⊆ X such that
⋂n
i=1 Ker(σi|K) = {1}. Lemma 4.2.60 shows

that S = {σi|K : i ≤ n} generates χ(K). Thus, if λ ∈ U , we have that λ|K is a linear combination
of S, say λ|K =

∏r
j=1 σij |K . Consequently, we have

∏r
j=1 σij ∈ [X] ∩ U , as required.

Now, we are in position to construct the functors Φ and Ψ. Let G,H be reduced special groups
and f : G → H be a SG-morphism. The map Φ(f) : (XH , H,−1) → (XG, G,−1) is obtained by
composition

Φ(f)(σ) = σ ◦ f for σ ∈ XH . (4.36)

σ ◦ f is a SG-morphism, so it is in XG. Also Φ(f) is the restriction of the map χ(H)→ χ(G) given
by 4.36, which is a continuous group homomorphism. Hence Φ(f) is a morphism of AOS’s.

Extending Ψ to morphisms is a more delicate task which requires a simple case of Pontrjagin’s
duality Theorem, namely

Theorem 4.2.61. Let G be a group of exponent 2 and χc(χ(G)) be the group of continuous group
character of χ(G) into {±1}. Let ev : G→ χc(χ(G)) denote the evaluation map: for g ∈ G,

ev(g) : χ(G)→ {±1}, σ 7→ σ(g).

Then, ev is a group isomorphism between G and χc(χ(G)).
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Let µ : (X1, G1,−1) → (X2, G2,−1) be a morphism of AOS’s. By proposition 4.2.59, µ is the
restriction of a unique continuous homomorphism of χ(G1) into χ(G2), which we also denote by µ.
By composition, µ induces a group homomorphism µ : χc(χ(G2))→ χc(χ(G1)):

µ(γ) = γ ◦ µ for γ ∈ χc(χ(G)).

If b ∈ G2, then ev2(b) ∈ χc(χ(G2)), and hence µ(ev2(b)) ∈ χc(χ(G1)). Since ev1 is an isomorphism
between G1 and χc(χ(G1)), there is a unique a ∈ G1 such that

ev1(a) = ev2(b) ◦ µ = µ(ev2(b)). (4.37)

χ(G1)
µ //

ev1(a)

��

χ(G2)

ev2(b)

��
{±1}

This is equivalent to:

For all σ ∈ χ(G1), σ(a) = µ(σ)(b). (dual)

We now define,
Ψ(µ)(b) = a.

Thus, setting µ∗ = Ψ(µ), we have µ∗ : G2 → G1, while from [dual] comes

For every σ ∈ χ(G1) and b ∈ G2, σ(µ∗(b)) = µ(σ)(b). (4.38)

Moreover, 4.37 and the fact that ev1(a) is an isomorphism yield

µ∗ = ev−1
1 ◦ µ ◦ ev2. (4.39)

Now we prove,

Theorem 4.2.62 (Duality Theorem). The correspondences Φ,Ψ are contravariant functors. Fur-
ther, the compositions Φ ◦Ψ and Ψ ◦Φ are the identity functors, which shows that the pair (Φ,Ψ)
establishes an equivalence between the categories RSG and AOSop.

Proof. In view of Propositions 4.2.56, 4.2.57 and 4.2.58, only the assertions concerning morphisms
require proof.

Straightforward checking shows that Φ and Ψ are contravariant functors (use identity 4.39 to
check that Ψ reverses composition). The assertion of the statement are items (1), (2) and (3)
below.

1. The map µ∗ = Ψ(µ) is a SG-morphism of (G2,≡X2 ,−1) into (G1,≡X1 ,−1).

(a) µ∗ is a group homomorphism. THis follows at once from 4.39, since ev2, µ and ev−1
1 are

group homomorphisms.

(b) µ∗(−1) = −1. For this, let a = µ∗(−1); by 4.38,with b = −1 yields, for all σ ∈ X1,

σ(a) = µ(σ)(−1) = −1,
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since µ(σ) ∈ X2 (axiom O2). But then, axiom O3 guarantees that a = −1, since for all
σ ∈ X1, σ(−a) = 1.

(c) For a, b, c, d ∈ G2,

〈a, b〉 ≡X2 〈c, d〉 ⇒ 〈µ∗(a), µ∗(b)〉 ≡X1 〈µ∗(c), µ∗(d)〉.

For this, let σ ∈ X1. Since µ(σ) ∈ X2, we have

µ(σ)(a) + µ(σ)(b) = µ(σ)(c) + µ(σ)(d).

From 4.38 we get:

σ(µ∗)(a) + σ(µ∗)(b) = σ(µ∗)(c) + σ(µ∗)(d).

Since this holds for arbitrary σ ∈ X1, we have µ∗(a), µ∗(b)〉 ≡X1 〈µ∗(c), µ∗(d)〉.

2. Φ ◦ Ψ(µ) = µ for any morphism µ : (X1, G1,−1) → (X2, G2,−1) of AOS’s. Writing µ′ =
Φ(µ∗), we have µ′(σ) = σ ◦ µ∗, for σ ∈ χ(G1) (see 4.36). The left hand side of 4.38 gives
σ(µ∗(a)) = σ ◦ µ∗(a) = µ′(σ)(a); hence

µ′(σ)(a) = µ(σ)(a)

for arbitrary a ∈ G2, σ ∈ χ(G1). Fixing σ, this shows that µ′(σ) = µ(σ), and hence µ′ = µ.

3. For every SG morphism f : (G2,≡G2 ,−1) → (G1,≡G1 ,−1), Ψ ◦ Φ(f) = f . Let Φ(f) = f ′

and f∗ = Ψ(f ′). From 4.36 we have f ′(σ) = σ ◦ f , for σ ∈ χ(G1). Computing the right side
of 4.38 for µ∗ = f∗ and µ = f ′, gives

σ(f∗(a)) = f ′(σ)(a) = σ(f(a))

for arbitrary a ∈ G2, σ ∈ χ(G1). Fixing a, this shows that f∗(a) = f(a) and so f = f∗.

4.2.7 Boolean Algebras and Special Groups

One of the reasons why special group theory is so unique is its connection to Boolean algebras.
This is the road that allows the applications of model theory to problems of quadratic forms. Here,
let’s just take a look at this story (a full proof of Marshall and Lam Conjectures stands for an
upcoming work). Our main goal here is to define a group’s boolean hull and sketch one of its
applications in the next section, with the Invariants. In this purpose, we just list definitions and
results, following closely chapters 4 and 5 of [DM00].

Definition 4.2.63. A Boolean algebra B is a tuple B = (B,∨,∧,¬,⊥,>) where (B,∨,∧,⊥,>)
is a commutative ring with unit and 1 6= 0, satisfying the following properties for all a, b ∈ B:

Absorption - a ∧ (a ∨ b) = a e a ∨ (a ∧ b) = a;

Complementation - a ∨ ¬a = > e a ∧ ¬a = ⊥.

Lemma 4.2.64. Let B be a Boolean algebra. Then for all x, y ∈ B:

a - x ∧ y = 0 and x ∨ y = 1 imply x = y.
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b - ¬(¬x) = x.

c - (De Morgan’s Laws) ¬(x ∨ y) = ¬x ∧ ¬y and ¬(x ∧ y) = ¬x ∨ ¬y.

d - (Idempotence) x ∨ x = x and x ∧ x = x.

e - x ∨ y = y if and only if x ∧ y = x.

Lemma 4.2.65. For every Boolean algebra B, the relation ≤ defined by

x ≤ y if and only if x ∨ y = y

(iff x ∧ y = y by 4.2.64(e)) is a partial order in B.

Definition 4.2.66. Let B,B′ be Boolean algebras and f : B → B′ be a map between them. f is a
morphism of Boolean algebras, or BA-morphism if

1. f(⊥) = ⊥, f(>) = >;

2. f(¬x) = ¬f(x);

3. f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y).

An isomorphism between B and B′ is just a bijective BA-morphism f : B → B′. The category of
(non-trivial) Boolean algebras, i.e, ⊥ 6= >, and Boolean algebra homomorphisms shall be denoted
by BA.

If B is a BA, define the operation of symmetric difference on B by

a M b = (a ∧ ¬b) ∨ (¬a ∧ b), (a, b ∈ B).

We have that (B,M,⊥) is a group of exponent 2. A subgroup of B is a subset of B containing
> and closed under M.

So, in this context, given a Boolean algebra B, we define:

Product the symmetric difference a∆b = (a ∧ −b) ∨ (a ∧ b);

Distinguished elements 1 = ⊥ and −1 = >;

Isometry 〈a, b〉 ≡B 〈a, b〉 if and only if a ∧ b = c ∧ d e a∆b = c∆d.

Since for all a, b ∈ B a M b = a ∨ b⇔ a ∧ b = ⊥ and

(a M b) ∨ (a ∧ b) = (a M b) M a ∧ b = a ∨ b,

we verify that 〈a, b〉 ≡B 〈a, b〉 if and only if a ∧ b = c ∧ d e a ∨ b = c ∨ d.

Definition 4.2.67. A Boolean algebra B endowed with the structure defined above, will be denoted
by Sg(B) = (B,≡B,−1).

So, naturally, we desire a result like this:

Proposition 4.2.68. If B is a BA, Sg(B) = (B,≡B,−1) is a reduced special group.

The next natural question, is if Sg(B) with the structure of pre-special group defined above is
in fact, a special group. We obtain this with the following theorem:
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Theorem 4.2.69. Let G be a subgroup of a BA, and p, q, u, v ∈ G. The following are equivalent:

i - 〈p, q, p M q〉 ∼=G 〈u, v, u M v〉;

ii - There is γ ∈ G such that
p ∨ γ = u ∨ γ = p ∨ q = u ∨ v.

Corollary 4.2.70. Let B be a Boolean Algebra and p, q, u, v be elements in B. Then:

a - 〈p, q, p M q〉 ≡B 〈u, v, u M v〉 if and only if p ∨ q = u ∨ v.

b - Sg(B) = (B,≡B,−1) is a reduced special group.

c - p ∈ DB(1, q) if and only if p ≤ q (in B).

Now, is the time to deal with morphisms:

Proposition 4.2.71. Let A,B be a Boolean Algebras and f : |A| → |B| a map between their
underlying sets. The following are equivalent:

i - f is a SG-morphism from Sg(A) to Sg(B).

ii - f is a morphism of BA’s.

Corollary 4.2.72. The correspondence which assigns to each BA, B its special group structure
Sg(B), and to every BA-morphism f : A→ B the same mapping f : Sg(A)→ Sg(B) is a functor
Sg : BA → RSG.

Proposition 4.2.73. Let B be a BA and ∆ ⊆ B. Then,

a - ∆ is a saturated subgroup of Sg(B) if and only if ∆ is an ideal in B.

b - If ∆ is a saturated subgroup of Sg(B), then Sg(B)/∆ is naturally isomorphic (as a BA and as
a special group) to Sg(B/∆).

c - Any reduced SG-homomorphic image of B is (the special group of) a BA.

With notation as in section 4.2.6, let BG be the Boolean algebra of clopens in XG. Define a
map εG by

εG : G→ BG, where εG(a) = [a = −1], a ∈ G.

Proposition 4.2.74. Let (G,≡G,−1) be a RSG. Then

a - εG is an injective group homomorphism from (G, ·, 1,−1) into (BG,M, ∅, XG), where M denotes
the symmetric difference in BG.

b - If u is an element in BG, then there is a family {Fi : 1 ≤ i ≤ n} of finite subsets of G such
that

u =
⋃
i≤n

⋂
a∈Fi

εG(a).

Proposition 4.2.75. Let G be a RSG, ϕ = 〈1, a1〉⊗ ...⊗〈1, an〉 be a Pfister form on G, and a ∈ G.
Let ∆ = DG(ϕ). Then

a - {σ ∈ XG : sgnσ(ϕ) = 2n} = {σ ∈ XG : ∆ ⊆ ker(σ)} = ∩ni=1[ai = 1].
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b - a ∈ DG(ϕ) if and only if εG(a) ⊆
⋃
i≤n εG(a).

Corollary 4.2.76. The map εG is an injective SG-morphism from G into Sg(BG). In fact, for
all a, b ∈ G,

b ∈ DG(1, a) if and only if εG(b) ⊆ εG(a).

Corollary 4.2.77. Let (G,≡,−1) be a RSG, and T be a subgroup of G. T denotees the saturation
of T (4.2.30). Then,

a - T = {y ∈ G : ∃finite subset F ⊆ T such that εG(y) ⊆
⋃
x∈F εG(x).}

b - T is a proper subgroup of G if and only if εG(T ) = {εG(x) : x ∈ T} generates a proper ideal in
BG.

Definition 4.2.78.

a - If G is a RSG, Σ(G) denotes the set, partially ordered by inclusion, of proper saturated subgroups
of G. If B is a Boolean algebra, I(B) denotes the set, partially ordered by inclusion, of proper
ideals in B.

b - Given a saturated subgroup ∆ of a RSG G, let

I(∆) = {u ∈ BG : ∃ a finite subset F ⊆ ∆ such that u ≤
⋃
g∈F

εG(g)},

denote the ideal generated by ∆ in BG. If ∆ ⊆ Γ then I(∆) ⊆ I(Γ).

c - If I is an ideal in BG, let
Σ(I) = {g ∈ G : εG(g) ∈ I}.

It follows from Corollary 4.2.77 that Σ(I) is a saturated subgroup of G. In fact, if we identify
G with its image in BG, Σ(I) is simply I ∩G. If I ⊆ J then Σ(I) ⊆ Σ(J).

Corollary 4.2.77(b) implies that, in fact, we have increasing maps

Σ : I(BG)→ Σ(G) and I : Σ(G)→ I(BG).

The main properties of these maps are given by

Proposition 4.2.79. Let G be a reduced special group and BG be its associated BA. With notations
as above, we have:

a - Σ ◦ I = idΣ(G).

b - Σ and I are inverse bijective correspondences between the maximal saturated subgroup of G
and the maximal ideals in BG.

We now establish the existence of a functor from SG to BA, in fact right adjoint to the functor
Sg : BA → SG defined in Corollary 4.2.72.

Definition 4.2.80. Let G and H be reduced special groups and let f : G→ H be a SG-morphism.
Let f∗ : XH → XG be the continuous map dual to f given by the Duality Theorem 4.2.62. We
define B(f) to be the Stone dual of f∗, that is the BA-morphism B(f) : BG → BH given by

B(f)(u) = (f∗)−1[u] ∈ BG.
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Theorem 4.2.81. Let G and H be reduced special groups. With notation as above:

1. The correspondence B defined by

G 7→ BG (G
f−→ H) 7→ (BG

B(f)−−−→ BH ,

is a functor from the category of reduced special groups (with SG-morphisms) to the category
of Boolean Algebras (with BA-morphisms).

2. For all SG-morphisms G
f−→ H, we have

εH ◦ f = B(f) ◦ εG, (BH)

that is, the following diagram is commutative:

G
f //

εG

��

H

εH

��
BG

B(f)
// BH

(BH)

3. (Uniqueness) Given a SG-morphism G
f−→ H and a BA-morphism F : BG → BH such that

the diagram

G
f //

εG

��

H

εH

��
BG

F
// BH

(**)

commutes, then F = B(f).

4. The pair (BG, εG) is a hull for G in the category of BA’s: given a BA, B, any SG-morphism

G
f−→ Sg(B) factors through εG, i.e, the following diagram of special groups is commutative

G
εG //

f

��

Sg(BG)

B(f)

��
Sg(B)

modulo the identification of B with the BA of clopens in S(B), via the canonical map.

5. The functor in (1) is right adjoint to the (forgetful) functor Sg from BA to RSG.

In view of item (4), the Boolean algebra BG will in the sequel be referred to as the Boolean Hull
of the RSG G.
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Definition 4.2.82. Let G,H be special groups. A group homomorphism f : G → H such that
f(−1) = −1 is a complete embedding if for all forms ϕ and ψ over G

ϕ ≡G ψ if and only if f ? ϕ ≡H f ? ψ.

Theorem 4.2.83 (Corollary 5.4 [DM00]). Let G be a RSG and let εG : G→ BG be the canonical
embedding of G into BG.

a - εG is a complete embedding.

b - Every σ ∈ XG extends uniquely to BG.

4.2.8 Invariants and the Hauptsatz

In this subsection, we will present some usage for the “toys” in the last subsection. Here, we
following closely chapter 7 of [DM00]. Indeed, the main philosophy is

“The isometry of quadratic forms over arbitrary dimension n over a reduced special group G is
equivalent to the validity, in the Boolean hull BG of G, of a finite number of (actually n) Boolean

identities among their coefficients.”

This is exactly the content of Theorem 4.2.85. A seemingly simple and innocent statement is the
heart of substantial results, like this one:

Theorem 4.2.84 (The Arason-Pfister Hauptsatz). Let G be a reduced special group. Fix an
integer n ≥ 2. Assume that ψ is a form over G of dimension m < 2n, Witt equivalent to a linear
combination of Pfister forms of degree n over G. Then, ψ is hyperbolic over G.

Now, start our job with the invariants:

Theorem 4.2.85. Let G be a reduced special group, and let a1, ..., an, b1, ..., bn be elements of G.
For each 1 ≤ k ≤ n, let Sn,k be the set of all strictly increasing sequences of length k of elements
of {1, ..., n}, denoted p = (p1, ..., pk). Then, the following are equivalent:

1. 〈a1, ..., an〉 ≡G 〈b1, ..., bn〉.

2. For all 1 ≤ k ≤ n, the following identities hold in the Boolean Hull BG of G:

∨
p∈Sn,k

k∧
i=1

api =
∨

p∈Sn,k

k∧
i=1

bpi . (HTk)

3. For all 1 ≤ k ≤ n, the following identities hold in the Boolean Hull BG of G:

4p∈Sn,k

k∧
i=1

api = 4p∈Sn,k

k∧
i=1

bpi . (SWk)

Definition 4.2.86. Let G be a reduced special group. We define the Horn-Tarski and the Stiefel-
Whitney invariants of a form ϕ = 〈a1, ..., an〉 over G to be the following elements of the
Boolean Hull BG of G:

HT k =
∨

p∈Sn,k

k∧
i=1

api =
∨

p∈Sn,k

k∧
i=1

bpi . (Horn-Tarski invariants)
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SWk = 4p∈Sn,k

k∧
i=1

api = 4p∈Sn,k

k∧
i=1

bpi . (Stiefel-Whitney invariants)

for every integer 1 ≤ k ≤ n.

Now, is the time to state some basic properties of the Horn-Tarski and Stiefel-Whitney invari-
ants.

Proposition 4.2.87. Let G be a reduced special group, BG the Boolean hull of G, and ϕ =
〈a1, ..., an〉 be a form of dimension n over G. Then,

HT1 - SW1(ϕ) = d(ϕ), the discriminant of ϕ.

HT2 - HT n(ϕ) = SWn(ϕ) = a1 ∧ ... ∧ an.

HT3 - The Horn-Tarski invariants are decreasing:

HT 1(ϕ) ≥ HT 2(ϕ) ≥ ... ≥ HT n(ϕ).

HT4 - Assume that the sequence of coefficients in ϕ is decreasing, a1 ≥ ... ≥ an (in the partial
order x ≤ y if and only if x ∈ DG(1, y), x, y ∈ G). Then, for 1 ≤ k ≤ n

HT k(ϕ) = ak.

HT5 - ϕ ≡BG 〈HT 1(ϕ),HT 2(ϕ), ...,HT n(ϕ)〉.

The next result gives explict formulas for both types of invariants in terms of each other, in a
way that depends only on k and the dimension of the form, but not on its coefficients!

Theorem 4.2.88. With notation as in Proposition 4.2.87, we have:

HT6 - For 1 ≤ k ≤ n,

SWk(ϕ) = SWk(〈HT 1(ϕ),HT 2(ϕ), ...,HT n(ϕ)〉) = 4p∈Sn,kHT pk(ϕ).

HT7 - 4n
i=1HT i(ϕ) = d(ϕ) ∈ G.

HT8 - For 2 ≤ k ≤ n,
SWk(ϕ) = 4n

l=k[HT l(ϕ)]cl,k ,

where cl,k is the parity of the binomial coefficient
(
l−1
k−1

)
, i.e, cl,k = 0 (resp. 1) if it is even

(resp. odd).

HT9 -

a - SW2(ϕ) = 4[n/2]
j=1 HT 2j(ϕ).

b - SWn−1(ϕ) =

{
HT n−1(ϕ) if n is odd

HT n−1(ϕ) M HT n(ϕ) if n is even.

HT10 - For 1 ≤ k ≤ n,
HT k(ϕ) = 4n

p=k[SWp(ϕ)]s(k,p),
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where s(, k, k + j) is defined by induction on j ≥ 0 as follows:

s(k, k) = 1 and s(k, k + j) =

j−1∑
i=0

ck+j,k+i · s(k, k + i).

Definition 4.2.89.

a - For a form ϕ over G, we set

HT 0(ϕ) = SW0(ϕ) = > = (= −1).

b - Let n,m and k be positive integers such that k ≤ n+m. We define

An,m,k = {(s, r) : 0 ≤ s ≤ min{k, n}, 0 ≤ r ≤ min{k,m}, and s+ r = k}.

Proposition 4.2.90 (Addition formulas). Let ϕ,ψ be forms over a reduced special group G, of
dimension n,m respectively. With notation as in definition 4.2.89(b), we have, for 1 ≤ k ≤ n+m:

HT11 - HT k(ϕ⊕ ψ) =
∨

(s,r)∈An,m+k

(HT s(ϕ) ∧HT r(ψ)).

HT12 - SWk(ϕ⊕ ψ) = 4(s,r)∈An,m+k(SWs(ϕ) ∧ SWr(ψ)).

Corollary 4.2.91. Let ϕ be a form of dimension n over a reduced special group G and y ∈ G.
Then for 1 ≤ k ≤ n, we have:

HT k(ϕ⊕ 〈y〉) = HT k(ϕ) ∨ (HT k−1(ϕ) ∧ y) (HT13)

SWk(ϕ⊕ 〈y〉) = SWk(ϕ)4(SWk−1(ϕ) ∧ y)

HT n+1(ϕ⊕ 〈y〉) = SWn+1(ϕ⊕ 〈y〉) = HT n(ϕ) ∧ y.

Another natural question is wheter the Horn-Tarski and Stiefel-Whitney invariants of a tensor
product can be expressed as Boolean functions of those of the factors in a reasonably simple
and meaningful way. Proposition 4.2.92 below gives one such expansion for the Stiefel-Whitney
invariants. However, we have not been able to find an expression of this kind for the Horn-Tarski
invariants; the difficult lies in the absence of a tractable distributive law of join over symmetric
difference.

Proposition 4.2.92. Let G be a reduced special group, ϕ = 〈a1, ..., an〉, ψ = 〈x1, ..., xm〉 be forms
over G of dimensions n,m, respectively. For ε ∈ {±1} and x ∈ G, set

εx =

{
x if ε = 1

−xif ε = −1.

For integers k, n,m such that k ≤ mn, define

Fmk,n = {(s1, ..., sm) : 0 ≤ sj ≤ n and

n∑
j=1

sj = k}.
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Then, the following identities hold in BG, for 1 ≤ k ≤ nm:

SWk(ϕ⊗ ψ) = 4ε∈2m

4s∈Fmk,n

m∧
j=1

SWsj (−εjϕ)

 ∧ ε1x1 ∧ ... ∧ εmxm (HT14)

= 4η∈2n

(
4t∈Fnk,m

n∧
i=1

SWti(−ηiψ)

)
∧ η1a1 ∧ ... ∧ ηnan.

The case m = 1 of Proposition 4.2.92 is interesting in its own right:

Proposition 4.2.93. Let G be a RSG. Let ϕ be a form of dimension n over G and x ∈ G. Then,
for 1 ≤ k ≤ n:

SWk(xϕ) = (SWk(ϕ) ∧ −x)4(SWk(−ϕ) ∧ x). (HT15)

HT k(xϕ) = (HT k(ϕ) ∧ −x)4(HT k(−ϕ) ∧ x). (HT16)

Now, we are deal with computations of the Horn-Tarski and Stiefel-Whitney invariants of Pfister
forms and their multiples:

Theorem 4.2.94. Let G be a reduced special group. Let a ∈ G, and ϕ = 〈1, a1〉 ⊗ ...⊗ 〈1, an〉 be a
Pfister form over G of degree n ≥ 1. Then:

HT k(aϕ) =


a ∨

n∨
i=1

ai = HT 1(aϕ) for 1 ≤ k ≤ 2n−1

a ∧ −
n∨
i=1

ai = HT 2n(aϕ) for 2n−1 + 1 ≤ k ≤ 2n.

In particular,

HT k(ϕ) =


n∨
i=1

ai = HT 1(ϕ) for 1 ≤ k ≤ 2n−1

⊥ = HT 2n(ϕ) for 2n−1 + 1 ≤ k ≤ 2n.

Theorem 4.2.95. Let G be a reduced special group. Let ϕ1, ..., ϕr (r ≥ 1) be Pfister forms over G
of the same degree n ≥ 1. Let a1, ..., ar be elements of G. Given an integer m, 1 ≤ m ≤ r2n, let k
be the unique integer such that (k − 1)2n−1 + 1 ≤ m ≤ k2n−1. Then

HT k

(
r⊕
i=1

aiϕi

)
= HT k(〈HT 1(a1ϕ1), ...,HT 1(arϕr), ...,HT 2n(a1ϕ1), ...,HT 2n(arϕr)〉).

4.3 The Second Functorial Picture

Here is our second functorial picture
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PCS
∼= // PSG

AWR ' // QS ' // CS
?�

OO

∼= // SG
?�

OO

RAWR
?�

OO

RCS
?�

OO

∼= // RSG ' //?�

OO

AOSop

Since we already know the Duality Theorem 4.2.62, our task is establish the functors between
special groups and quaternionic structures and special groups and Cordes schemes. Again, we do
not have founded these explicit relations in literature.

Theorem 4.3.1. Let (G,−1, V ) be a pre-quadratic scheme. Define a relation ≡S⊆ G×G×G×G
by 〈a, b〉 ≡S 〈c, d〉 if and only if ab = cd and ac ∈ V (cd). Then (G,−1,≡S) is a pre-special group.
Moreover, (G,−1,≡S) is a special group iff (G,−1, V ) is a Cordes scheme and (G,−1,≡S) is
reduced iff (G,−1, V ) is reduced.

Proof. We will check each axiom of pre-special group:

SG0 - 〈a, b〉 ≡S 〈a, b〉 since a2 = 1 ∈ V (ab). If 〈a, b〉 ≡S 〈c, d〉, then ab = cd and ac ∈ V (cd) =
V (ab). Hence 〈a, b〉 ≡S 〈c, d〉. Now, suppose 〈a, b〉 ≡S 〈c, d〉 and 〈c, d〉 ≡S 〈e, f〉.

SG1 - 〈a, b〉 ≡S 〈b, a〉 since ab ∈ V (ab).

SG2 - 〈a,−a〉 ≡S 〈1,−1〉 since a · (−a) = −1 ∈ V (−1).

SG3 - Is just the definition of ≡S .

SG4 - 〈a, b〉 ≡S 〈c, d〉 implies ab = cd and ac ∈ V (cd) = V (ab). ab = cd⇒ ab(−bc) = cd(−bc)⇒
−ac = −bd and by C2 we have

ac ∈ V (ab)⇒ −ab ∈ V (−cd).

Then 〈a,−c〉 ≡S 〈−b, d〉.

SG5 - 〈a, b〉 ≡S 〈c, d〉 implies ab = cd and ac ∈ V (cd) = V (ab), i.e, (ag)(bg) = (cg)(dg) and
(ag)(cg) ∈ V ((cg)(dg)). Hence 〈ag, bg〉 ≡S 〈cg, dg〉.

This proves the first part of theorem. Since SG6 is the prescription of theorem 3.3.9 and 〈a, a〉 ≡S
〈1, 1〉 ⇔ a ∈ V (1), we have the second part.

Corollary 4.3.2. The correspondence (G,−1, V ) 7→ (G,−1,≡S) induces functors S : PCS →
PSG, S : CS → SG and S : RCS → RSG.

Proof. let f : (G,VG,−1) → (H,VH ,−1) be a C-morphism. Since f is in particular a group
homomorphism, we have

〈a, b〉 ≡S 〈c, d〉 ⇒ ab = cd and ac ∈ VG(cd)

f(VG(cd))⊆VH(f(cd))⇒ f(a)f(b) = f(c)f(d) and f(a)f(d) ∈ V (f(c)f(d))

⇒ 〈f(a), f(b)〉 ≡S 〈f(c), f(d)〉.

Then f is a SG-morphism. Defining S(G,V,−1) = (G,≡S ,−1) and S(f) = f , we have the desired
functors.
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Theorem 4.3.3. Let (G,−1,≡) be a pre-special group. For each g ∈ G, set VG(g) as the sub-
group DG〈1, g〉. Then (G,−1, VG) is a pre scheme. Moreover, (G,−1, VG) is a Cordes scheme iff
(G,−1,≡) is a special group and (G,−1, VG) is reduced iff (G,−1,≡) is reduced.

Proof. Note that a ∈ VG(1, a) = D(1, a). Now, suppose g ∈ VG(a). Then g ∈ DG(1, a), and
there exist x ∈ G such that 〈g, x〉 ≡ 〈1, a〉. By SG3, gx = a and x = ga. So 〈g, ga〉 ≡ 〈1, a〉,
and by SG4 〈1,−g〉 ≡ 〈−a, ga〉, and −a ∈ DG(1,−g) = VG(−g). Then (G,VG,−1) is a pre
scheme. This proves the first part of theorem. Since SG6 is the prescription of theorem 3.3.9 and
〈a, a〉 ≡S 〈1, 1〉 ⇔ a ∈ VG(1), we have the second part.

Corollary 4.3.4. The correspondence (G,−1,≡) 7→ (G,VG,−1) induces functors C : PSG →
PCS, C : SG → CS and C : RSG → RCS.

Proof. Let f : (G,≡G,−1)→ (H,≡H ,−1) be a SG-morphism.

g ∈ VG(a)⇒ g ∈ DG(1, a)⇒ 〈g, ag〉 ≡G 〈1, a〉 ⇒ 〈f(g), f(ag)〉 ≡H 〈f(1), f(a)〉
⇒ f(g) ∈ DH(1, f(a))⇒ f(g) ∈ VH(f(a)).

Then f is a C-morphism. Defining C(G,−1,≡) = (G,VG,−1) and C(f) = f we have the desired
functors.

Theorem 4.3.5. The functors S and C are quasi-inverse equivalences. In particular, PCS ∼= PSG,
CS ∼= SG and RCS ∼= RSG.

Theorem 4.3.6. Let (G,Q, q) be a quaternionic structure. Define a relation ≡Q⊆ G×G×G×G by
〈a, b〉 ≡Q 〈c, d〉 if and only if ab = cd and q(a, b) = q(c, d) (this relation is just the binary isometry
in quaternionic structures). Then (G,−1,≡Q) is a special group. Moreover, this correspondence is
functorial.

Proof. The results in section 3.1.2 yields the axioms SG0-SG6 for (G,−1,≡Q). Then we only need
to treat about morphisms. Let f : (G,QG, qG) → (H,QH , qH) be a QS-morphism and a ∈ G. Of
course, we already have f(−1) = −1 (and hence, f(−a) = −f(a)). Now, for a, b ∈ G we have:

〈a, b〉 ≡Q 〈c, d〉 ⇒ ab = cd and q(a, b) = q(c, d)

⇒ f(a)f(b) = f(c)f(d) and q(f(a), f(b)) = q(f(c), f(d))

⇒ 〈f(a), f(b)〉 ≡Q 〈f(c), f(d)〉

then f is a SG-morphism. Defining S(G,Q, q) = (G,≡Q,−1) and S(f) = f we have the desired
functor S : QS → SG.

For the converse of theorem 4.3.6 we will make (again!) the same construction made for the
theorem 3.1.1. Let (G,≡,−1) be a special group. We define QG to be the set of all isometry classes
of quadratic forms of the type 〈1,−a,−b, ab〉, with a, b ∈ G and consider QG to be a “pointed set”
with point 0 equal to the isometry class of 〈1,−1, 1,−1〉. In the sequel, we define qG : G×G→ QG
to be the map sending (a, b) to the isometry class of 〈1,−a,−b, ab〉.

Theorem 4.3.7. Let (G,−1,≡) be a special group. Then (G,QG, qG) is a quaternionic structure.
Moreover, this correspondence provides a functor Q : SG → QS.

Proof. Using the forms theory for special groups, the verification of Q1-Q4 is the same made in
theorem 3.4.3. Now, let f : (G,≡G,−1)→ (H,≡H ,−1) be a SG-morphism. Since f is in particular
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a group homomorphism, we have

qG(a, b) = 0⇒ 〈1,−a,−b, ab〉 = 0⇒ 〈1,−f(a),−f(b), f(a)f(b)〉 = 0⇒ qH(f(a), f(b)) = 0.

Then f is a QS-morphism. Defining Q(G,≡G,−1) = (G,QG, qG) and Q(f) = f , we have the
desired functor Q : QS → SG.

Corollary 4.3.8. The functors Q and S are quasi-inverse equivalences and the categories QS and
SG are equivalent.



Chapter 5

A third generation of abstract
theories

We see how abstract ordering spaces and special groups generalizes almost entire classical and
reduced theory of quadratic forms over fields. But in the sense of generalization, we could ask

Is there some reasonable theory of quadratic forms over general coefficients in rings?

There is an excellent book, [Knu91], that deal with quadratic forms in an style near to that was
presented in chapter 1, in the most general possible setting. And of course, some abstract theories
appears trying to deal with this question. In 90’s Marshall generalizes the AOS to rings, and called
his new theory by “Abstract Real Spectrum”. As we will see, the ring-theoretic case is much more
difficult that the field one, the isometry is not well behaved and an algebraic counterpart of the
ARS’s appears just in years 2000, with the real semigroups (RS) of Dickmann and Petrovich.

The RS appears in an atempt to creat a duality RS ' ARSop likewise SG ' AOSop. They
are successful in explore the analogies with the SG case (e.g, the Duality RS ' ARSop), but this
is not pay off in deep theorems yet, since the theory still is in development.

5.1 Abstract Real Spectra

The ring-theoretic case is entire new for us, so we need to describe the basic facts about orderings
and quadratic forms over rings. The axioms for ARS will be verified as we make in chapter 4. We
cover chapters 5 and 6 of [Mar96].

5.1.1 Orderings on rings

All rings we consider here are commutative with 1. Let A be a ring and p a prime ideal of
A. We denote by k(p) the field Frac(A/p), the field of quotients of A/p. k(p) is referred to as the
residue field of A at p. Here, all prime ideals are considered to be proper, i.e, p 6= A.

An ordering on A is a subset P ⊆ A such that P +P ⊆ P , PP ⊆ P , P ∪−P = A and P ∩−P
is a prime ideal of A. The prime ideal is called the support of P .

Note that as in the field case, for an ordering P ,
∑
A2 ⊆ P and −1 /∈ P , since 1 = 12 ∈ P and

if −1 ∈ P , then 1 ∈ P ∩ −P , contradicting the fact that P ∩ −P is proper.

Proposition 5.1.1. The set of orderings on A is in natural one-to-one correspondence with the
set of pairs (p, P ) where p ⊆ A is a prime ideal and P is an ordering on k(p).

197
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Proof. It suffices to show for each prime ideal p ∈ Spec(A), that the set of orderings in A with
support p is in natural one-to-one correspondence with the set of orderings in k(p). The natural
homomorphism A → k(p) is the composite of the natural homomorphism q : A → A/p with the
inclusion A/p ⊆ k(p). Because of this, the proof breaks into two parts:

1. Orderings in A with support p are in natural one-to-one correspondence with orderings in
A/p with support {0} (via q−1(0)).

2. If D is an integral domain with field of quotients k, then orderings in D with support {0}
are in natural one-to-one correspondence with orderings in k. If P is an ordering in k, then
Q = P ∩D is an ordering in D with support {0}. We must show that if Q is any ordering on
D with support {0}, then there exists a unique ordering P on k with P ∩D = Q. Suppose
a, b ∈ D, b 6= 0. Since a/ab = ab/b2 and P contain squares, follow that a/b ∈ P iff ab ∈ Q.
Thus P is unique. To complete the proof it remains to check that

P = {a/b : a, b ∈ D, b 6= 0, ab ∈ Q}

is an ordering on k. It follows by properties of fractions on k and by the fact that Q is an
ordering.

Orderings play roughly the same role in real algebraic geometry that prime ideals play in
classical algebraic geometry. The set of all orderings in A is called the real spectrum of A,
denoted by Sper(A).

We have a natural mapping Sper(A) → Spec(A) given by P 7→ P ∩ −P . This is neither
surjective nor injective in general (for a given prime ideal p in A, there may be no orderings on
k(p) or there may be many).

A prime ideal is said to be real if there exist an ordering on A with support p, i.e, if k(p) is
formally real, i.e, if −1 /∈

∑
k(p)2. If a2

0 + ...+ a2
n ∈ p and a0 /∈ p, then

−1 + p =

n∑
j=1

(
aj + p

a0 + p

)2

and conversely. Thus, since we can always choose a common denominator for elements in k(p), we
see that the condition for p to be real is that a2

0 + ...+ a2
n ∈ p⇒ a0 ∈ p.

A preordering in A is a subset T of A satisfying T + T ⊆ T , TT ⊆ T and A2 ⊆ T . A
preordering T of A is said to be proper if −1 /∈ T . Every ordering is a proper preordering.

∑
A2

us a preordering, and is the unique smallest preordering of A.
If 2 is a unit in A, then we have the identity a = (a+1

2 )2 − (a−1
2 )2 holding on A so, in this case,

a preordering T ⊆ A is proper iff T 6= A. If 2 is not a unit in A, the situation is more complicated.

Lemma 5.1.2. A proper preordering P ⊆ A is an ordering iff it satisfies the following condition:
a /∈ P, b /∈ P ⇒ −ab /∈ P .

Proof. (⇒) Suppose P is an ordering with support p and suppose a /∈ P , b /∈ P . Then −a,−b ∈ P
so ab = (−a)(−b) ∈ P . If −ab ∈ P , then ab ∈ p so one of a, b is in p, say a ∈ p. This contradicts
a /∈ P .

(⇐) If a /∈ P and −a /∈ P then −(a)(−a) = a2 /∈ P , a contradiction. This proves P ∪−P = A.
Let p = P ∩ −P . Then −p = p, p + p = p, and Pp = p. Since A = P ∪ −P , this shows Ap = p,
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i.e, p is an ideal. If a /∈ p, b /∈ p, but ab ∈ p then, replacing a, b by ±a,±b if necessary, we get
a /∈ P, b /∈ P , but ab ∈ −P , a contradiction. This proves p is a prime ideal.

Theorem 5.1.3. If T is a proper preordering in A then there exists an ordering P of A with
T ⊆ P . In particular, A has an ordering iff A has a proper preordering iff −1 /∈

∑
A2.

Proof. Let P be a proper preordering containig T and maximal with respect to inclusion. Such a
P exists by Zorn’s lemma. Suppose a /∈ P , b /∈ P , but ab ∈ −P . Then P + aP is a preordering
containing P properly so −1 ∈ P + aP . Thus −1 = s1 + t1a, s1, t1 ∈ P . Similarly, −1 = s2 + t2b,
s2, t2 ∈ P . Thus abt1t2 = (−t1a)(−t2b) = (1 + s1)(1 + s2) = 1 + s, s = s1 + s2 + s1s2 ∈ P , so
−1 = s− abt1t2 ∈ P , a contradiction.

Suppose α : A→ B is a ring homomorphism. If P is a some ordering of B, then α−1(P ) is an
ordering on A. We refer to α−1(P ) as the induced ordering on A. The support of α−1(P ) is
α−1(p) where p is the support of P .

Example 5.1.4.

1. Suppose a is an ideal of A and α : A→ A/a is the natural homomorphism. Then P 7→ α−1(P )
is a one-to-one correspondence between orderings in A/a and orderings in A containing a in
their support.

2. Consider the natural homomorphism α : A → S−1(A), where S ⊆ A is a multiplicative
set. We don’t exclude the zero ring, it could be 0 ∈ S. Also, α is not generally injective:
α(a) = 0 ⇔ as = 0 for some s ∈ S. Then, P 7→ α−1(P ) is a one-to-one correspondence
between orderings in S−1(A) and orderings in A whose supports have empty intersection with
S.

3. If p ⊆ A is a prime ideal, the associated mapping P 7→ α−1(P ) is a one-to-one correspondence
between orderings of k(p) and orderings in A having support p. This has already been proved
in 5.1.1.

Now, we will make a couple of examples of orderings on rings:

Example 5.1.5. Orderings on fields.

Example 5.1.6. If P,Q are orderings in A with P ⊆ Q then Q = P ∪ (Q∩−Q) (for, if a ∈ Q\P ,
then −a ∈ P so −a ∈ Q). Of course, in the field case, Q∩−Q = {0}, so this implies P = Q. In the
ring case, on the other hand, ordeings can exist which are not maximal with respect to inclusion.
For example, take A to be the polynomial ring R[t], and let

P0 = {a0 + a1t+ ...+ akt
k : k ≥ 0, a0 ≥ 0} ∪ {0}

P0+ = {ajtj + ...+ akt
k : 0 ≤ j ≤ k, aj > 0} ∪ {0}.

Then P0, P0+ are orderings in R[t] and P0+ ( P0. Observe that P0+ has support {0} where as P0

has support (t), the principal ideal generated by t.

Example 5.1.7. An ordering P can be maximal without the prime ideal P ∩ −P being maximal.
For example, take A to be the polynomial ring R[t] again, and

P∞+ = {a0 + a1t+ ...+ akt
k : k ≥ 0, ak > 0} ∪ {0}.

Then P∞+ is an ordering in A which is maximal but the support of P∞+ is {0} which is not
maximal.



200 CHAPTER 5. A THIRD GENERATION OF ABSTRACT THEORIES

Example 5.1.8. In 5.1.6 and 5.1.7 we constructed three orderings P0, P0+ , P∞+ on R[t]. Applying
the automorphism t 7→ −t to P0+ , P∞+ yields two additional orderings P0− , P∞−. Applying the
automorphism t 7→ t− a (a ∈ R) to P0, P0+ , P0− yields orderings Pa, Pa+ , Pa− with Pa+ , Pa− ( Pa.
The orderings Pa+ , Pa− for a ∈ R together with P∞+ , P∞− have support {0}. The ordering Pa has
as support (t− a). We have

Sper(R[t]) = P∞+ ∪ P∞− ∪ {Pa, Pa+ , Pa−}a∈R[t].

The support {0} orderings on R[t] are just the orderings on the field R(t).

Example 5.1.9. For the study of semi-algebraic sets in Rn, one is interested in the real spectrum
of the polynomial ring R[t1, ..., tn]. As the reader may well imagine, this is pretty complicated in
n ≥ 2. On the other hand, as in the case n = 1, there is a small subset of Sper(R[t1, ..., tn]) which
is easily described. For each a ∈ Rn, define

Pa = {f ∈ R[t1, ..., tn] : f(a) ≥ 0}.

This is an ordering with support equal to the maximal ideal (t1−a1, ..., tn−an) where a1, ..., an are
the coordinates of a. The mapping a 7→ Pa from Rn into Sper(R[t1, ..., tn]) is injective. If a ∈ Rn,
let

f =
n∑
j=1

(tj − aj)2.

Then f(a) = 0, f(b) > 0 if b 6= a. Thus −f ∈ Pa, −f /∈ Pb, if b 6= a.

Example 5.1.10. Suppose A = C(Y,R), the ring of all continuous functions from Y to R, where
Y is some compact Hausdorff space. For each x ∈ Y , we get the maximal ideal mx = {a ∈ A :
a(x) = 0}, and every maximal ideal of A is of this form. Otherwise we have a maximal ideal
m 6= mx for all x ∈ Y so, for each x ∈ Y , we get ax ∈ m with ax(x) 6= 0. By compactness of Y , we
have a finite set a1, ..., ak ∈ m such that, for all x ∈ Y , ai(x) 6= 0 for some i. Let b = a2

1 + ...+ a2
k.

Then b ∈ m and b(x) > 0 for all x ∈ Y , so b is a unity of A, a contradiction.
On the other hand, it is known that, except in very special cases, there are a lots of prime ideals

of A which are not maximal. Observe that if a, b ∈ A, then
√
a2 + b2 ∈ A. Using this we see that∑

A2 = A2. For any prime p ⊆ A, let

P = A2 + p := {a2 + b : a ∈ A, b ∈ p}.

Using (A2)(A2) = A2 and A2 + A2 = A2, we see that PP = P and P + P = P . If a ∈ A, then
|a| ∈ A and (|a| − a)(|a|+ a) = a2− a2 = 0 ∈ p, so either a ≡ |a| mod p, or a ≡ −|a| mod p. Since
|a| is a square in A, this proves P ∪ −P = A. Suppose a2 ≡ −b2 mod p, and let

c =


a2

a2 + b2
if a 6= 0

0 if a = 0

Then c ∈ A so a3 = (a2 + b2)c ∈ p, so a ∈ p. This proves P ∩−P = p. Thus P is an ordering with
support p. In fact, it is the only ordering with support p: if Q is an ordering with support p, then
A2 ⊆ Q, p ⊆ Q so P = A2 + p ⊆ Q. If a ∈ Q, a /∈ P , then −a ∈ P ⊆ Q, so Q ∩ −Q = p ⊆ P , a
contradiction.

Thus the natural mapping Sper(A)→ Spec(A) is a bijection in this example.
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Example 5.1.11. The ring Z of integers is uniquely ordered. The unique ordering has support
{0} and corresponds to the unique ordering on Q. The remaining residue fields are the finite fields
Zp, p prime integer, and these have no orderings. Thus Sper(Z) is a singleton set.

Example 5.1.12. Suppose (X,G) is a space of orderings and W is the Witt ring of (X,G).
Suppose P ⊆W is an ordering and p is the support of P . If a ∈ G then a2 = 1 so

〈1,−a〉 ⊗ 〈1, a〉 ∼= 〈1, a,−a,−1〉 ∼ 0 ∈ p.

Thus either 〈1,−a〉 ∈ p or 〈1, a〉 ∈ p, i.e, 〈a〉 ≡ ±1 mod p. Since the 1-dimensional forms generate
W , this means W/p ∼= Z or Zp for some prime integer p. Since the finite field Zp has no orderings,
the second case is impossible, i.e, W/p is the only possibility. By 4.1.21(ii), there is some unique
x ∈ X such that p = {ϕ ∈ W : ϕ(x) = 0} and, since Z is uniquely ordered. P = {ϕ ∈ W : ϕ(x) ≥
0}. Thus the mapping

x 7→ Px := {ϕ ∈W : ϕ(x) ≥ 0}

defines a natural one-to-one correspondence between elements of X and orderings on W .

5.1.2 Constructible sets and semi-algebraic sets

The main motivation for studying the real spectrum comes from real algebraic geometry and
model theory. We explain this now. Fix an ordered field (k,Q) and a real closed extension field R
of (k,Q) (so Q = R2 ∩ k). We are interested in semi-algebraic sets in Rn defined over k (we define
this terminology below).

Our first result is an consequence of Lang’s homomorphism theorem:

Theorem 5.1.13. Let f1, ..., fk, g1, ..., gl ∈ k[t1, ..., tn] and suppose there exists an ordering P ⊆
k[t1, ..., tn] with Q ⊆ P such that fi ∈ P \ −P , i = 1, ..., k and gj ∈ P , j = 1, ..., l. Then there
exists a ∈ Rn such that fi(a) > 0, i = 1, ..., k and gj(a) ≥ 0, j = 1, ..., l.

We just state this theorem, because the proof involves Tarski’s Transfer Principle, and this
escapes of the escope of this work:

Theorem 5.1.14 (Lang’s Homomorphism Theorem). Suppose (k,Q) is an ordered field with real
closure R and suppose D is a finitely generated k-algebra which is an integral domain and that the
ordering Q extends to an ordering in the quotient field of D in some way. Then

i - There exists a k-algebra homomorphism ϕ : D → R.

ii - More generally, if a1, ..., an ∈ D are positive in this extended ordering then there exists a
k-algebra homomorphism ϕ : D → R such that ϕ(a1) > 0, i = 1, ..., n.

Now, we proof our result:

Proof of Theorem 5.1.13. Let p = P ∩ −P and let P be the ordering on the residue field k(p)
induced by P . By 5.1.14, we have a ring homomorphism

γ : k[t1, ..., tn]/p→ R

such that γ(fi + p) > 0, i = 1, ..., k and γ(gj + p) > 0 for those j satisfying gj ∈ P \−P (of course,
γ(gj + p = 0 if gj ∈ p). Define a = (a1, ..., an) where ai = γ(ti + p). Then γ(f + p) = f(a) for all
f ∈ k[t1, ..., tn]. It follows that fi(a) > 0, i = 1, ..., k and gj(a) ≥ 0, j = 1, ..., l.
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Thus, we are interested in a certain part of the real spectrum of the polynomial ring k[t1, ..., tn],
namely, those orderings P on k[t1, ..., tn] with Q ⊆ P . We denote this set by SperQ(k[t1, ..., tn]).
More generally, for any k-algebra A, we denote by SperQ(A) the set of all orderings P in A with
Q ⊆ P . For a ∈ Rn, define

Pa := {f ∈ k[t1, ..., tn] : f(a) ≥ 0}.

This is an ordering in k[t1, ..., tn] and Q ⊆ Pa so we have a mapping

Φ : Rn → SperQ(k[t1, ..., tn])

given by a 7→ Pa. The argument in example 5.1.9 shows that Φ is injective if k = R, but Φ
is generally not injective. On the other hand, and this is an important point, 5.1.13 says that,
for a certain natural topology on SperQ(k[t1, ..., tn]), the image of Rn in SperQ(k[t1, ..., tn]) is
dense. When we describes this topology eventually, we need notation for various sorts of subsets
of SperQ(A). We introduce this notation now. Namely, for f ∈ A, we define:

U(f) := {P ∈ SperQ(A) : f ∈ P \ −P}
Z(f) := SperQ(A) \ (U(f) ∪ U(−f)) = {P ∈ SperQ(A) : f ∈ P ∩ −P}
W (f) := SperQ(A) \ U(−f) = U(f) ∪ Z(f) = {P ∈ SperQ(A) : f ∈ P}

We explain the reason for the “bar” in the next section. Also, for f1, ..., fk ∈ A, we define:

U(f1, ..., fn) :=

n⋂
j=1

U(f j)

Z(f1, ..., fn) :=

n⋂
j=1

Z(f j)

W (f1, ..., fn) :=
n⋂
j=1

W (f j)

A subset C ⊆ SperQ(A) is said to be constructible if it can be built up from the sets U(f),
f ∈ A in a finite number of steps, by taking complements, finite intersections and finite unions.
A subset of Rn is said to be semi-algebraic (defined over k) if it has the form Φ−1(C) for
some constructible C ⊆ SperQ(k[t1, ..., tn]), i.e, if it can be built up from the sets Φ−1(U(f)),
f ∈ k[t1, ..., tn] in a finite number of steps, by taking complements, finite intersections and finite
unions.

Note that the sets Z(f),W (f) are constructible too. Beside this, for f ∈ k[t1, ..., tn],

Φ−1(U(f)) = {a ∈ Rn : f(a) > 0}
Φ−1(Z(f)) = {a ∈ Rn : f(a) = 0}

Φ−1(W (f)) = {a ∈ Rn : f(a) < 0}

Any constructible set is expressible as a finite union of sets of the form

U(f1, ..., fk) ∩W (g1, ..., gl).

The proof just amounts to checking that sets of this form are closed under taking complements,
finite intersections and finite unions. Consequently, any semi-algebraic set is expressible as a finite
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union of sets of the form

{a ∈ Rn : fi(a) > 0, gj(a) ≥ 0, i = 1, ..., k, j = 1, ..., l}

where f1, ..., fk, g1, ..., gl ∈ k[t1, ..., tn].

Corollary 5.1.15. The natural mapping Φ : Rn → SperQ(k[t1, ..., tn]) induces a one-to-one corre-
spondence C 7→ Φ−1(C) between constructible sets in SperQ(k[t1, ..., tn]) and semi-algebraic sets in
Rn.

Proof. From 5.1.13 it follows that for any constructible set C, C 6= ∅ ⇒ Φ−1(C) 6= ∅. Let C1, C2

be constructible, and let C be the constructible set defined by C = (C1 \ C2) ∪ (C2 \ C1). Then
C1 = C2 ⇔ C = ∅, and similarly, Φ−1(C1) = Φ−1(C2)⇔ Φ−1(C)∅. Putting these together, we get
C1 6= C2 ⇒ Φ−1(C1) 6= Φ−1(C2).

We often use a “relative” version of 5.1.15. Let a ⊆ k[t1, ..., tn] be an ideal and let V (a) ⊆ Rn

denote the zero set, i.e,
V (a) = {a ∈ Rn : f(a) = 0 for all f ∈ a}.

By the Hilbert Basis Theorem, a is finitely generated, so

V (a) = {a ∈ Rn : fi(a) = 0, i = 1, ...,m}

where f1, ..., fm are generators for a, i.e, V (a) is the semi-algebraic set in Rn corresponding to the
constructible set Z(f1, ..., fm) in SperQ(k[t1, ..., tn]). On the other hand, the natural homomor-
phism

k[t1, ..., tn]→ k[t1, ..., tn]/a

identifies orderings in SperQ(k[t1, ..., tn]/a) with orderings in Z(f1, ..., fm). Thus we have the
following immediate consequence of 5.1.15:

Corollary 5.1.16. The natural mapping

Φ|V (a) : V (a)→ SperQ(k[t1, ..., tn]/a)

induces a one-to-one correspondence between semi-algebraic sets in V (a) and constructible sets in
SperQ(k[t1, ..., tn]/a).

There are some subtle points to the theory. Rn has a natural topology namely the product
topology, where R is given the usual order topology. A subset C ⊆ SperQ(A) is said to be open
constructible (resp. closed constructible) if C is expressible as a finite union of the sets of
the form U(f1, ..., fk) (resp. of the form U(f1, ..., fk). The topological meaning of this terminology
will be made clear later.

5.1.3 Nullstellensatz and Positivstellensatz

We work relative to a fixed preordering in a ring A. We are trying to generalize what we did
in the field case for AOS, as in section 4.1. If T ⊆ A is any preordering, XT denotes the set of all
orderings of A lying over T , i.e,

XT = {P ∈ Sper(A) : P ⊇ T}.
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We consider the subset {−1, 0, 1} ⊆ Z viewed as a monoid, with multiplication as the operation.
For any set X, {−1, 0, 1}X denotes the set of all functions a : X → {−1, 0, 1}. Thus {−1, 0, 1}X is
a monoid with operation given by (ab)(x) = a(x)b(x). For a, b{−1, 0, 1}X ,

i - If a(x) = 0⇒ b(x) = 0 for all x ∈ X, then b = a2b, and conversely.

ii - a3 = a, a4 = a2, etc.

iii - If a(x) ≥ 0 for all x ∈ X then a = a2, and conversely.

iv - If a(x) 6= 0 for all x ∈ X, then a2 = 1, and conversely.

We denote the constant functions in {−1, 0, 1}X by −1, 0, 1. For any submonoid G ⊆ {−1, 0, 1}X
containing −1, 0, 1, Ġ denote the multiplicative group of the monoid G (also called the unit group),
i.e,

Ġ := {a ∈ G : there exists b ∈ G such that ab = 1} = {a ∈ G : a2 = 1}.

G2 denotes the set of idempotents of G, i.e,

G2 = {a ∈ G : a2 = a} = {a ∈ G : a(x) ≥ 0 for all x ∈ X} = {a2 : a ∈ G}.

Let T be a proper preordering in the ring A, i.e, −1 /∈ T . We know by 5.1.3 that XT 6= ∅. Each
a ∈ A defines a function a = aT : XT → {−1, 0, 1} given by

a(P ) =


1 if a ∈ P \ −P
0 if a ∈ P ∩ −P
−1 if a ∈ −P \ P

Let GT = {a : a ∈ A}. Since ab = a · b, GT is a submonoid of {−1, 0, 1}XT that contains the
constant functions −1, 0, 1.

Theorem 5.1.17. Suppose T is a proper preordering on a field k. Then GT = G∗T ∪ {0} and G∗T
is naturally isomorphic to k̇/Ṫ . Here, k̇ = k \ {0}, Ṫ := T \ {0}.

Proof. Since orderings in k have support {0}, GT = ĠT ∪ {0}. By 4.1.10, the mapping aṪ 7→ a
defines an isomorphism from k̇/Ṫ onto ĠT .

Observe that what was denoted by GT in 4.1 is now being denoted by ĠT .
If α : A→ B is a ring homomorphism and T, S are preorderings in A and B respectively with

α(T ) ⊆ S, then we have an induced mapping α∗ : XS → XT given by P 7→ α−1(P ) and an induced
mapping α∗ : GT → GS is given by aT 7→ α(a)S . Observe that α∗(aT ) = aT ◦ α∗ where ◦ denotes
composition.

Example 5.1.18.

a- Commonly, we start with T as given and take S =
∑
α(T )B2, the set of all finite sums∑

α(ti)b
2
i , ti ∈ T , bi ∈ B. This is called the preordering in B induced by T (note that

if T =
∑
A2, then S =

∑
B2). Or, we start with B = A, α = the identity mapping, S, T pre-

orderings of A with T ⊆ S, to get the inclusion α∗ : XS ⊆ XT and the restriction α∗ : GT → GS.

b- If a ⊆ A is an ideal and T ⊆ A is a preordering, then T + a is a preordering. The induced
preordering on A/a is

T/a := (T + a)/a = {t+ a : t ∈ T}.
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The mapping XT/a → XT corresponding to A→ A/a is injective (since GT → GT/a is surjective)
and it identifies XT/a with the Zariski-closed set

XT+a = {P ∈ XT : aT (P ) = 0 for all a ∈ a}

in XT .

c- Suppose S ⊆ A is any multiplicative set and T ⊆ A is a preordering. The preordering on S−1(A)
induced by T is

S−2(T ) := {t/s2 : t ∈ T, s ∈ S}.

An ordering P on A with support p extends to an ordering on the localization S−1(A) iff p∩S = ∅.
The unique extension on P to S−1(A) is S−2P . The mapping XS−2(T ) → XT corresponding to
A→ S−1(A) indentifies XS−2(T ) with

{P ∈ XT : aT (P ) 6= 0 for all a ∈ S}.

Note that (a/s)S−2(T ) = (as)S−2(T ), so GT → GS−2(T ) is surjective.

Paraphrasing M. Marshall ([Mar96], pg 93):

“It is important to realize that, in replacing A by GT , we are already in deep water.”

For a, b ∈ A, what does the statement aT = bT really means? By 5.1.17, we know the answer
in the field case. In general, using 5.1.3, we have the following:

Theorem 5.1.19. Suppose T is a preordering in A. Then

i - aT = 0 iff −a2k ∈ T for some integer k ≥ 0.

ii - aT = 1 iff (1 + s)a = 1 + t for some s, t ∈ T .

iii - aT ≥ 0 iff (a2k + s)a = a2k + t for some s, t ∈ T and some k ≥ 0.

These results are abstract versions of results in real algebraic geometry: the real Nullstellensatz
of Dubois and Risler and the real Positivstellensatz of Stengle.

Proof of Theorem 5.1.19.

i - (⇒) Go to the localization

A[1/a] := {b/ak : b ∈ A, k ≥ 0},

the localization of A at the multiplicative set {ak : k ≥ 0}, and the induced preordering

T [1/a2] := {t/a2k : t ∈ T, k ≥ 0}

in A[1/a]. If a = 0 then XT [1/a2] = ∅ and −1 ∈ T [1/a2] so −1 = t/s2 for some s ∈ T ,

k ≥ 0. Clearing fractions by multiplying by a2(k+l), l ≥ 0 sufficiently large, we obtain
−a2(k+l) = sa2l ∈ T .

(⇐) If −a2k ∈ T for some k ≥ 0, then −a2k ∈ T ∩ −T ⊆ P ∩ −P for all P ∈ XT (since

A2 ⊆ T ). Hence −a2k
T = 0, and this implies a = 0 (because if aT 6= 0, then a2

T = 1).
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ii - (⇒) Go to the preordering T−aT in A. Then XT−aT = ∅ so −1 ∈ T−aT . Also 1−a ∈ T−aT
and T − aT is closed under multiplication so −(1− a) = t− sa, i.e, (1 + s)a = 1 + t for some
s, t ∈ T .

(⇐) Follow by definition of a.

iii - (⇒) Go to preordering T [1/a2] in the localization A[1/a2] and apply (ii) to get (1+s′)a = 1+t′

for some s′, t′ ∈ T [1/a2], say s′ = s/22k, t′ = t/a2l, s, t ∈ T . Clearing fractions, this yields

(a2(k+l) + sa2l)a = a2(k+l) + ta2l

for some integer l ≥ 0.

(⇐) Follow by definition of a (if necessary, use itens (i) and (ii)!).

Corollary 5.1.20. aT = bT iff sab = (a2 + b2)k + l for some s, t ∈ T and some k ≥ 0.

Proof. (⇒) Go to the localization A[1/a2 +b2] and the induced preordering T [1/a2 +b2] in A[1/a2 +
b2]. Since aT = bT on XT , it follows that aT bT = 1 on XT [1/a2+b2] so, by 5.1.19(ii), s′ab = 1 + t′

for some s′, t′ ∈ T [1/a2 + b2]. Clearing fractions by multiplying by (a2 + b2)k, k sufficiently large,
yields what we want.

(⇐) Follow by definition of a.

Suppose we are in the set up of section 5.1.2, a ⊆ k[t1, ..., tn] is an ideal, and T :=
∑
k[t1, ..., tn]2Q.

Then SperQ(k[t1, ..., tn]) = XT , and the constructible set in SperQ(k[t1, ..., tn]) corresponding to
V (a) is

SperQ (k[t1, ..., tn]/a) = {P ∈ XT : aT (P ) = 0 for all a ∈ a} = XT+a.

Thus, combining 5.1.16 and 5.1.19(i), we see that, for any f ∈ k[t1, ..., tn], f = 0 on V (a) iff
−f2k ∈ T + a for some k ≥ 0. Parts (ii) and (iii) of 5.1.19 have similar concrete interpretations in
this special case.

There are several equivalent ways of expressing the condition aT = 1. Multiplying both sides
of (1 + s)a = 1 + t by (1 + s), we get ab2 = 1 + t′ for some b ∈ A and some t′ ∈ T . This implies
as′ = 1 + t′ for some s′, t′ ∈ T . Finally, if the latter holds, then aT = 1, so all these conditions are
equivalent. Similarly, there are several equivalent ways of expressing the condition aT ≥ 0.

If T is a preordering in a field k, the situation in 5.1.19 simplifies drastically: aT = 0 just means
a = 0, aT = 1 just means a ∈ Ṫ , and aT ≥ 0 just means a ∈ T . This is immediate from the proof
of 5.1.17.

5.1.4 Value Sets of quadratic forms

We continue to assume that T is a proper preordering in a ring A. We introduce quadratic
form terminology as in the field case. A (quadratic) form of dimension n with entries in GT
is just an n-tuple ϕ = (a1, ..., an), a1, ..., an ∈ A. The discriminant of ϕ is

∏n
j=1 aj ∈ GT . The

signature of ϕ at P ∈ XT is

ϕ(P ) :=
n∑
j=1

aj(P ) ∈ Z.

We write ϕ ∼= ψ (read ϕ is isometric to ψ) to indicate that ϕ and ψ have the same dimension and
the same signature at each P ∈ XT .
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From the reduced theory of quadratic forms developed in chapter 2 we know isometry and
value sets are well-behaved in the field case. In the ring case, the isometry relation is not very
well-behaved. On the other hand, we do have reasonably good results concerning value sets. We
define the value set of ϕ = 〈a1, ..., an〉 to be

D(ϕ) = D(a1, ..., an) := {b : b ∈ Ta1 + ...+ Tan}.

We say b is represented by ϕ if b ∈ D(ϕ). Note that we are including 0 in the value sets now. In
AOS case, 0 was specifically excluded.

Proposition 5.1.21.

i - D(a) = {ta : t ∈ A, t ≥ 0} = {b : b
2
a = b}

= {b : for each P ∈ XT either b(P ) = 0 or a(P )b(P ) > 0}.

ii - D(a, b) = {c : 〈ac2, bc2〉 ∼= 〈c, ab, c〉} =
{c : for each P ∈ XT , either c(P ) = 0 or a(P )c(P ) > 0 or b(P )c(P ) > 0}.

iii - If n ≥ 3, D(a1, ..., an) =
⋃

c∈D(a2,...,an)

D(a1, c).

iv - D(a1, ..., an) depends only on a1, ..., an (not on the particular representatives a1, ..., an).

v - b ∈ D〈a1, ..., an〉 iff t0b =
∑n

i=1 tiai for some t0, ..., tn ∈ T with t0b = b.

Proof.

i - Follow by calculations with the definition of D.

ii - Comparing the signatures of 〈ac2, b, c2〉 and 〈c, abc〉 we obtain the equality between the second
and third set. If c = t1a + t2b, t1, t2 ∈ T , then c2 = t1ac + t2bc. From this, we obtain the
inclusion of the first set in the third. To prove the inclusion of the third set in the first,
pick c ∈ A such that c belongs to the third set. Go to the preordering T ′ = T [1/c2] in
the localization A′ = A[1/c]. Let a′ = ac, b′ = bc. On XT ′−a′T ′ , b

′ > 0, so by 5.1.19(ii),
(1 + s)b′ = 1 + t for some s, t ∈ T ′ − a′T ′. Thus

(1 + s)2b′ = (1 + s)(1 + t) = 1 + u

for some u ∈ T ′−a′T ′, say u = t0− t1a′, t0, t1 ∈ T ′, so 1 + t0 = t1a
′+ t2b

′ where t2 = (1 + s)2.
Multiplying by c2m+1, m sufficiently large, we get

c1 := (c2m + s0)c = s1a+ s2b, s0, s1, s2 ∈ T.

Since c1 = c, this completes the proof.

iii - Let
x ∈

⋃
c∈D(a2,...,an)

D(a1, c).

Then x ∈ D(a1, c) for some c ∈ D(a2, ..., an), and hence x = t1a1+t0c, c = t2a2+...+tnan, tj ∈
T , j = 0, ..., n. So, x = t1a1 + t0t2a2 + ...+ t0tnan, and by definition of D, x ∈ D(a1, a2, ..., an).
Conversely, if x ∈ D(a1, a2, ..., an), say x = t1a1 + ... + tnan, tj ∈ T , j = 1, ..., n. Taking
c := t2a2 + ...+ tnan, we have x = t1a1 + 1c, and c ∈ D(a2, ..., an), so

x ∈
⋃

c∈D(a2,...,an)

D(a1, c).
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iv - This is true when n = 1 or 2 using (i) and (ii). For n ≥ 3, it follows by induction on n, using
(iii).

v - (⇐) is just the definition of D. For (⇒), suppose b ∈ D(a1, ..., an). Then by definition, there

exists b′ and s1, ..., sn ∈ T such that b′ =
∑n

i=1 siai and b = b
′
. By 5.1.20,

sbb′ = (b2 + b′2)k + t for some s, t ∈ T and some k ≥ 0.

Then

((b2 + b′2)k + t)b = sb2b′ =
n∑
i=1

sb2siai

so t0b =
∑n

i=1 tiai where t0 = (b2 + b′2)k + t and ti = sb2si, i = 1, ..., n.

It is important to realize that value sets are not preserved by isometry. For example,

〈1,−1〉 ∼= 〈0, 0〉, D(1,−1) = GT , D(0, 0) = {0}.

The reader will also note that 5.1.21 is more complicated than the corresponding result in the field
case. In the ring case, the situation is further complicated by the fact that there are two sorts of
value sets, both important. We denote the second sort of value set by Dt(a1, ..., an) and refer to it
as the transversal value set of 〈a1, ..., an〉. This is defined to be the set of all b ∈ GT such that

there exists b′, a′1, ..., a
′
n ∈ A such that b = b

′
, ai = a′i, i = 1, ..., n, and b′ =

∑n
j=1 a

′
j . We say b is

transversally represented by 〈a1, ..., an〉 if b ∈ Dt(a1, ..., an).

The multiplication on GT satisfies ab = ab, i.e, it is just the operation on GT induced by
multiplication on A. On the other hand, the addition a + b = a+ b is not well-defined. The
outcome of adding in GT is not a single element, but rather is the set of elements Dt(a, b). Thus,
in studying transversal values sets, we are just studying what remains of the addition when we
pass from A to GT .

Since we know D(a1, ..., an), we have Dt(a1, ..., an) ⊆ D(a1, ..., an).

Proposition 5.1.22. The following are equivalent:

a - b ∈ D〈a1, ..., an〉.

b - b ∈ Dt〈b2a1, ..., b
2
an〉.

c - b ∈ D(t1a1, ..., tnan) for some t1, ..., tn ∈ T .

Proof. (a)⇒(b): We can suppose b =
∑n

i=1 tiai for some t1, ..., tn ∈ T . Go to the localization
A[1/2b]. 1/2 = b/2b and 1/b = 2/2b belong to A[1/2b]. Using the identity p = (p+1)2/2−(p−1)2/2,
we get

a1 + ...+ an
b

= r2 − s2 = (1 + r2)− (1 + s2)

for some r, s ∈ A[1/2b]. Thus

(1 + r2)b = a1 + ...+ an + (1 + s2)b =
n∑
i=1

(1 + (1 + s2)ti)ai
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in A[1/2b]. Multiplying each side by 4kbk sufficiently large, to clear fractions, this yields an equation

t′0b = t′1a1 + ...+ t′nan

in A, with t′0, ..., t
′
n ∈ T , t

′
i = b

2
, i = 0, ..., n. Since b

3
= b, this means b ∈ Dt(b

2
a1, ..., b

2
an).

(b)⇒(c): Take ti = b
2
.

(c)⇒(a): Follow from

Dt(t1a1, ..., tnan) ⊆ D(ta1, ..., tnan) ⊆ D(a1, ..., an).

Suppose T is a preordering in a field F and a1, ..., an ∈ Ḟ . If b ∈ F , b 6= 0, then b
2

= 1 so by
5.1.22,

b ∈ D(a1, ..., an)⇔ b ∈ Dt(a1, ..., an),

i.e, D(a1, ..., an), Dt(a1, ..., an) have the same non-zero elements.
5.1.22 gives a description of value sets in terms of transversal value sets. The next result reverses

the process, describing transversal value sets in terms of value sets.

Proposition 5.1.23. The following are equivalent:

a - b ∈ Dt(a1, ..., an).

b - b ∈ D(a1, ..., an) and −ai ∈ D(a1, ..., ai−1,−b, ai+1..., an), i = 1, ..., n.

Proof. (a)⇒(b): We can assume b =
∑n

i=1 ai. Then b ∈ D(a1, ..., an) and

−ai = a1 + ...+ ai−1 − b+ ai+1 + ...+ an,

so −ai ∈ D(a1, ..., ai−1,−b, ai+1, ..., an), i = 1, ..., n.
(b)⇒(a): By 5.1.21(v), we get n + 1 equations t0jb =

∑n
i=1 tijai, j = 0, ..., n with tij ∈ T ,

t00b = b, and tiiai = ai, i = 1, ..., n. Adding these yields an equation

b′ =
n∑
i=1

a′i where b′ =
n∑
j=0

t0jb, a
′
i =

n∑
j=0

tijai.

Then b′ = b and a′ = ai, i = 1, ..., n so b ∈ Dt(a1, ..., an).

Proposition 5.1.24.

a - Dt(a) = {a}.

b - Dt(a, b) = {c : 〈a, b〉 ∼= 〈c, abc}.

c - If n ≥ 3 then Dt(a1, ..., an) =
⋃
c∈Dt(a2,...,an)D

t(a, c).

Proof.

a - Follow from definition.

b - Suppose c ∈ Dt(a, b). We can suppose c = a+ b. Then

a(P ) + b(P ) = c(P ) + a(P )b(P )c(P ) for each P ∈ XT .



210 CHAPTER 5. A THIRD GENERATION OF ABSTRACT THEORIES

For the other inclusion, suppose 〈a, b〉 ∼= 〈c, abc〉. Using 5.1.21(b), we see that c ∈ D(a, b) and
also that −a ∈ D(−c, b) and −b ∈ D(a, c). Thus, by 5.1.23, c ∈ Dt(a, b).

c - Suppose b ∈ Dt(a1, ..., an). We may as well suppose b =
∑n

i=1 ai. Then b ∈ Dt(a, c) and
c ∈ Dt(a2, ..., an) where c :=

∑n
i=2 ai. Now suppose b ∈ Dt(a1, c), c ∈ Dt(a2, ..., an). Then

b ∈ D(a1, c), −a1 ∈ D(b, c), c ∈ D(a2, ..., an) so b ∈ D(a1, ..., an) and −a1 ∈ D(−b, a2, ..., an).
Also −a2 ∈ D(−c, a3, ..., an) and −c ∈ D(a1,−b) so −a2 ∈ D(a1,−b, a3, ..., an). Similarly,
−ai ∈ D(a1, ..., ai−1, b, ai+1, ..., an), i = 3, ..., n. By 5.1.23, this means b ∈ Dt(a1, ..., an).

5.1.5 Axioms for abstract real spectra

Recall that for any set X, {−1, 0, 1}X denotes the set of all function a : X → {−1, 0, 1}. This
is a monoid with operation given by (ab)(x) = a(x)b(x).

Definition 5.1.25 (Abstract Real Spectra). An abstract real spectrum or space of signs, abreviatted
to ARS, is a pair (X,G) satisfying:

AX1 - X is a non-empty set, G is a submonoid of {−1, 0, 1}X , G contais the constants functions
−1, 0, 1, and G separates points in X.

If a, b ∈ G, the value set D(a, b) is defined to be the set of all c ∈ G such that, for all x ∈ X,
either a(x)c(x) > 0 or b(x)c(x) > 0 or c(x) = 0. The value set Dt(a, b) is defined to be the set of all
c ∈ G such that, for all x ∈ X, either a(x)c(x) > 0 or b(x)c(x) > 0 or c(x) = 0 and b(x) = −a(x).
Note that c ∈ Dt(a, b)⇒ c ∈ D(a, b). Conversely, c ∈ D(a, b)⇒ c ∈ Dt(ac2, bc2).

AX2 - If P is a submonoid of G satisfying P ∪ −P = G, −1 /∈ P , a, b ∈ P ⇒ D(a, b) ⊆ P and
ab ∈ P ∩ −P ⇒ a ∈ P ∩ −P or b ∈ P ∩ −P , then there exists x ∈ X (necessarily unique)
such that P = {a ∈ G : a(x) ≤ 0}.

AX3a (Weak Associativity) - For all a, b, c ∈ G, if p ∈ D(a, r) for some q ∈ D(b, c) then
p ∈ D(r, c) for some r ∈ D(a, b).

AX3b - For all a, b ∈ G, Dt(a, b) 6= ∅.

We hasten to point out that AX3a and AX3b combined are equivalent to the simgle axiom AX3
below:

AX3 (Strong Associativity) - For all a, b, c ∈ G, if p ∈ Dt(a, r) for some q ∈ Dt(b, c) then
p ∈ Dt(r, c) for some r ∈ Dt(a, b).

We begin immediately by checking the easy half of this:

Proposition 5.1.26. AX3 ⇒ AX3a and AX3b.

Proof. Suppose b ∈ D(a1, c) for some c ∈ D(a2, a3). Then b ∈ Dt(b2a1, b
2c), and c ∈ Dt(c2a2, c

2a3)
(so b2c ∈ Dt(b2c2a2, b

2c2a3)). By AX3, this implies b ∈ Dt(d, b2c2a3) for some d ∈ Dt(b2a1, b
2c2a2).

Since Dt(b2a1, b
2c2a2) ⊆ D(b2a1, b

2c2a2) ⊆ D(a1, a2) and Dt(d, b2c2a3) ⊆ D(d, b2c2a3) ⊆ D(d, a3),
this complete the proof of AX3a.

For AX3b just note that 1 ∈ Dt(a, 1) and 1 ∈ Dt(b, 1), so by AX3, 1 ∈ Dt(d, 1) for some
d ∈ Dt(a, b).
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AX3 is certainly very natural and elegant and is the desirable axiom to use from this point of
view. We use AX3a and AX3b because they seem to be easier to check than AX3. The reader will
already have some feeling for why this is so from the proofs in last section. It is also reflected in
the fact that the proof of the convers of 5.1.26 is quite difficult.

We prove the converse of 5.1.26 later. For now we concentrate on more elementary results. We
begin with our main example.

Theorem 5.1.27. If T is a proper preordering on a ring A, then the pair (XT , GT ) is an abstract
real spectrum.

Proof. AX1 is immediate from definitions involved. For AX2, suppose P is a submonoid of GT
satisfying the hypothesis of AX2. Let P = {a ∈ A : a ∈ P}. If t ∈ T , then t = t

2 ∈ P . This proves
T ⊆ P . PP ⊆ P and, since a+ b ∈ Dt(a, b), P + P ⊆ P . Also, P ∪ P = A and P ∩ −P is a
prime ideal, so P is an ordering. Since P = {a ∈ GT : a(P ) ≥ 0}, this complete the proof. AX3a
is immediate from description of value sets given in last section and 5.1.21. Of couser, AX3b is
immediate using the fact that a+ b ∈ Dt(a, b).

Just as in the case of space of orderings, AX1 and AX2 are trivial in the sense that they can be
forced in a natural way: suppose X is any non-empty set and G is any submonoid of {−1, 0, 1}X
containing the constant functions. First identify points in X which are not separated by elements
of G and then add in the extra points required by AX2. The binary value sets D(a, b), Dt(a, b) are
not changed by this process.

Just as we allow the zero ring in ring theory, it is sometimes convenient to allow the trivial
abstract real spectrum, obtained by taking X = ∅ and G = {0} (so −1 = 0 = 1 in G). If T is a
preordering in a ring A and T is not proper, then (XT , GT ) is the trivial abstract real spectrum.

Let (X,G) be an abstract real spectrum. Elements of X are sometimes referred to as orderings.
The positive cone of x ∈ X is

Px := {a ∈ G : a(x) ≥ 0}.

For x ∈ X, the support of x is

px = Px ∩ −Px = {a ∈ G : a(x) = 0}.

Supp(X) denotes the set {px : x ∈ X}. We have a natural mapping

X → Supp(X) given by x 7→ px.

Recall that G∗ denotes the unit group of the monoid G, i.e,

G∗ = {a ∈ G : ab = 1 for some b ∈ G} = {a ∈ G : a2 = 1},

and G2 denotes the set of idempotents, i.e,

G2 = {a2 : a ∈ G} = {a ∈ G : a(x) ≥ 0 for all x ∈ X}.

It is important to understand the relationship between spaces of orderings and abstract real spectra:

Proposition 5.1.28. For any abstract real spectrum (X,G), the following are equivalent:

a - All x ∈ X have the same support (= {0}).

b - G = G∗ ∪ {0}.
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c - G2 = {0, 1}.

Proof. (a)⇒(b): suppose px = py for all x ∈ X. Then for any a ∈ px, a(y) = 0 for all y ∈ X so
a = 0. In other words, if a 6= 0, then a(x) 6= 0 for all x ∈ X, so a ∈ G∗.

(b)⇒(c): is immediate.

(c)⇒(a): if a 6= 0 then a2 = 1 so a ∈ G∗ so a(x) 6= 0 for each x ∈ X. This means px = {0} for
each x ∈ X.

It is not necessary to distinguish between a space of orderings and an abstract real spectrum
with G = G∗ ∪ {0}. This is the content of the next result.

Proposition 5.1.29. If (X,G) is an abstract real spectrum with G = G∗ ∪ {0}, then (X,G∗) is a
space of orderings. Conversely, if (X,G∗) is a space of orderings then we obtain an abstract real
spectrum (X,G) with G = G∗ ∪ {0} by adjoining 0 to G∗.

Proof. (⇒) We want to show that AX1, AX2 and AX3 for (X,G∗) as an AOS are consequence
of AX1, AX2, AX3a and AX3b for (X,G) (as an ARS). AX1 is immediate. AX2: suppose x is a
character on G∗ satisfying the hypothesis of AX2 for (X,G∗). Then P = ker(x) ∪ {0} satisfies the
hypothesis of AX2 for (X,G). Thus, by AX2 for (X,G), we have y ∈ X satisfying P = Py and y
viewed as a character on G∗ is equal to x. AX3: suppose a1, a2, a3 ∈ G∗ and b ∈ D(a1, c) for some
c ∈ D(a2, a3), b, c 6= 0. By AX3a, b ∈ D(d, a3) for some d ∈ D(a1, a2). if d 6= 0, we are done. If
d = 0, then b = a3 sp we can replace d by a1 in this case.

(⇐) AX1 and AX2 for (X,G) (as an ARS) is consequence of AX1 and AX2 for (X,G∗) (as an
AOS). AX3a: suppose b ∈ D(a1, c) for some c ∈ D(a2, a3). We want to show that b ∈ D(d, a3)
for some d ∈ D(a1, a2). The existence of d is immediate if one of b, c, a1, a2, a3 is 0. So suppose
b, c, a1, a2, a3 are non-zero. In this case, existence of d follows from AX3 for (X,G∗). AX3b: i f a, b
are both zero, then 0 ∈ Dt(a, b). Otherwise, if a 6= 0 say, then a ∈ Dt(a, b).

Later, when working with the topology on X, we need notation for various sorts of subsets of
X. We introduce this notation now. Namely, for a ∈ G

U(a) := {x ∈ X : a(x) > 0}.

Thus

U(−a) = {x ∈ X : a(x) < 0}
U(a2) = {x ∈ X : a(x) 6= 0} = U(a) ∪ U(−a).

Now, define

Z(a) := X \ (U(a) ∪ U(−a)) = X \ U(a2) = {x ∈ X : a(x) = 0}.
W (a) = X \ U(−a) = U(a) ∪ Z(a) = {x ∈ X : a(x) ≥ 0}.
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For a1, ..., ak ∈ G,

U(a1, ..., ak) :=
k⋂
i=1

U(ai)

Z(a1, ..., ak) :=
k⋂
i=1

W (ai)

W (a1, ..., ak) :=

k⋂
i=1

W (ai)

More generally, for any subset S ⊆ G,

U(S) :=
⋂
a∈S

U(a),

Z(S) :=
⋂
a∈S

Z(a),

W (S) :=
⋂
a∈S

W (a).

We make frequent use of the following:

Proposition 5.1.30.

i - For any a, b ∈ G, Dt(a2, b2) = {c2} for some unique c2 ∈ G2.

ii - For any a, b ∈ G, there exists c ∈ G such that Z(a, b) = Z(c).

iii - For any a, b, d ∈ G, D(a2d, b2d) = {c2d} for some unique c2d ∈ G.

Proof.

i - Let c ∈ Dt(a2, b2). Then for all x ∈ X, c(x) ≥ 0 and c(x) = 0 iff a(x) = b(x) = 0. This proves
that c is unique and also that c = c2 ∈ G2.

ii - Pick c such that c ∈ Dt(a2, b2).

iii - Is the same argument of item (i).

We mention briefly the idea of a morphism of abstract real spectra. This generalizes the
corresponding idea for space of orderings.

Definition 5.1.31. A morphism of ARS’s (X,G)→ (Y,H) is a mapping τ : X → Y such that for
each a ∈ H, the composite mapping is a ◦ τ : X → {−1, 0, 1} is an element of G (so τ is surjective
and induces a mapping a 7→ a ◦ τ from H to G). τ is said to be an isomorphism if the mappings
X → Y and H → G are bijective.

With this definition and proposition 5.1.29, we have a full and faithfull functor AOS → ARS,
that is injective on the objects.
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5.1.6 Properties of value sets

Let (X,G) be an abstract real spectrum. Dimension and discriminant of forms, signature of
forms, etc, are defined exactly as in the concrete case (X,G) = (XT , GT ). A form of dimension
n with entries in G is just an n-tuple ϕ = 〈a1, ..., an〉, a1, ..., an ∈ G. The discriminant of ϕ is
disc(ϕ) = a1...an ∈ G. The signature of ϕ at x ∈ X is

ϕ(x) :=
n∑
i=1

ai(x) ∈ Z.

We write ϕ ∼= ψ (read ϕ is isometric to ψ) to indicate that ϕ and ψ have the same dimension and
the same signature at each x ∈ X. Initially at least, we will be mainly interested in the isometry
of binary (2-dimensional) forms. It is important to note that

D(a, b) = {c ∈ G : 〈c2a, c2b〉 ∼= 〈c, abc〉},
Dt(a, b) = {c ∈ G : 〈a, b〉 ∼= 〈c, abc〉}.

For the remaining dimensions, value sets and transversal value sets are defined as in 5.1.21 and
5.1.24 i.e,

D(a) := {b ∈ G : for all x ∈ X, b(x) = a(x) or b(x) = 0} = {b2a : b ∈ G},

and
D(a1, ..., an) :=

⋃
x∈D(a2,...,an)

D(a1, c) if n ≥ 3.

Similarly, Dt(a) = {a} and

Dt(a1, ..., an) :=
⋃

x∈Dt(a2,...,an)

Dt(a1, c) if n ≥ 3.

The form notation and terminology we use is standard: if ϕ = 〈a1, ..., an〉, ψ = 〈b1, ..., bm〉 are
forms with entries in G and c ∈ G then

ϕ⊕ ψ := 〈a1, ..., an, b1, ..., bn〉,
cϕ := 〈ca1, ..., can〉

ϕ⊗ ψ := a1ψ ⊕ ...⊕ anψ = 〈a1b1, ..., aibj , ..., anbm〉.

Also, if k ≥ 1,
k × ϕ := ϕ⊕ ...⊕ ϕk-times.

A form of shape 〈1, a1〉⊗ ...⊗〈1, an〉 is called a n-fold Pfister form, and denoted by 〈〈a1, ..., an〉〉.
As mentioned before, isometry is badly behaved in general. We have the example

〈1,−1〉 ∼= 〈0, 0〉D(1,−1) = G, D(0, 0) = {0}.

On the positive side, by 5.1.32(i) below, value sets are preserved under permutation of entries
at least. Thus, for what we do here there is no harm in identifying two forms ϕ,ψ if the entries of ψ
are some permutation of the entries of ϕ. This allows us to write ϕ⊕ψ = ψ⊕ϕ and ϕ⊗ψ = ψ⊗ϕ,
for example.
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Proposition 5.1.32.

i - D(ϕ) does not depend on the order of the entries of ϕ.

ii - If b ∈ D(ϕ) then bc ∈ D(cϕ) for any c ∈ G. Conversely, if b ∈ D(cϕ) then b = bc2 = (bc)c
and bc ∈ D(c2ϕ) ⊆ D(ϕ).

iii - c ∈ D(ϕ⊕ ψ) iff c ∈ D(a, b) for some a ∈ D(ϕ), b ∈ D(ψ).

iv - c ∈ D(ϕ1 ⊕ ...⊕ ϕk)⇔ c ∈ D(a1, ..., ak) for some ai ∈ D(ϕi), i = 1, ..., k.

Proof.

i - Let ϕ = 〈a1, ..., an〉. If n = 1 or 2 we are done. Suppose n ≥ 3. It suffices to show the
value set does not change if we permute two adjacent entries ai, aj . If i, j ≥ 2, this follows
by induction. This leaves the case i = 1, j = 2. Suppose b ∈ D(a2, a1, a3, ..., an). Thus
b ∈ D(a2, c), c ∈ D(a1, d), d ∈ D(a3, ..., an). By AX3a, b ∈ D(a1, e) for some e ∈ D(a2, d).
This proves b ∈ D(a1, a2, ..., an).

ii - The first assertion is immediate for n = 1 or 2 and follows by induction for n ≥ 3. If b ∈ D(cϕ)
then c = 0 ⇒ b = 0 so b = bc2. The second assertion is immediate from the first once this
observation is made.

iii - Let ϕ = 〈a1, ..., ak〉, ψ = 〈ak+1, ..., an〉.
(⇒) If k = 1, c ∈ D(a1, b), b ∈ D(a2, ..., an) so we can take a = a1. If k ≥ 2 then c ∈ D(a1, d),
d ∈ D(ϕ′ ⊕ ψ), where ϕ′ = 〈a2, ..., ak〉. By induction, we have d ∈ D(e, f), e ∈ D(ϕ′),
f ∈ D(ψ). By AX3a we have c ∈ D(g, f) for some g ∈ D(a1, e). Thus g ∈ D(ϕ) so we can
take a = g, b = f .

(⇐) If k = 1 then c ∈ D(a1, b) (since a ∈ D(a1)) so c ∈ D(ϕ⊕ψ). If k ≥ 2 then a ∈ D(a1, d),
d ∈ D(ϕ′) where ϕ′ = 〈a2, ..., an〉. By AX3a, c ∈ D(a1, c) where e ∈ D(d, b). By induction on
k, e ∈ D(ϕ′ ⊕ ψ). This proves c ∈ D(ϕ⊕ ψ).

iv - This follows from (iii) using induction on k.

We use the following key result:

Lemma 5.1.33.

i - Suppose Z(a) ∩W (c) ⊆ Z(c). Then there exists a1 ∈ Dt(a, b) a1 = a on W (c).

ii - If b ∈ D(ea1, ea2, a3) then b ∈ D(ed, a3) for some d ∈ Dt(b2a1, b
2a2).

Proof.

i - By hypothesis, b2 ∈ D(a2b2,−b2c) so b2 ∈ D(−a2b2, a2b2,−b2c). Since D(−a2b2, a2b2) =
D(−ab, ab), this implies b2 ∈ D(−ab, ab,−b2c) so, there exists e ∈ D(ab,−b2c) such that
b2 ∈ D(−ab, e). Pick any a1 ∈ Dt(a, be). We claim that a1 ∈ Dt(a, b) and a1 = a on W (c).
On the part of X where b = 0 it follows (from a1 ∈ Dt(a, be)). On the part of X where
b 6= 0, either e ≥ 0 or ab < 0 (since b2 ∈ Dt(−ab, e)). If e ≥ 0 then a1 ∈ Dt(a, b) (since
a1 ∈ Dt(a, be)) and, if we also have c ≥ 0, then ab > 0 (since e ∈ D(ab,−b2c)) so a1 = a. This
leaves the part of X where ab < 0 and e ≥ 0. So a1 ∈ Dt(a, b) on this part and, since e ≤ 0
and a1 ∈ Dt(a, be), we must have a1 = a on this part. This proves the claim.
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ii - Scaling by b and applying 5.1.32, b2 ∈ D(f0, a3b) for some f0 ∈ D(ea1b, ea2b). Let f = ef0.
Then ef = e2f0 = f0, so b2 ∈ D(ef, a3b) and f ∈ D(a1b, a2b). Thus, on W (−a3b) ∩ U(b2),
ef > 0 (so f2 > 0) so b2 ∈ D(f2, a3b). Pick g ∈ Dt(a1b, a2b). Then Z(f) ∩ W (−a3b) ⊆
Z(b) ⊆ Z(g) so, by (i), there exists f1 ∈ Dt(f, g) such that f1 = f on W (−a3b). We claim
that f1 ∈ Dt(a1b, a2b) and b2 ∈ D(ef1, a3b). Since f ∈ D(a1b, a2b) and g ∈ Dt(a1b, a2b) and
f1 ∈ Dt(f, g), it follows that f1 ∈ D(a1b, a2b). If f1 = 0 then f = −g. If g = 0, this forces
a1b = −a2b. If g 6= 0 it also forces a1b = −a2b. This proves f1 ∈ Dt(a1b, a2b). From a3b > 0
we get b2 ∈ D(ef1, a3b). If a3b ≤ 0, then f1 = f and b2 ∈ D(ef, a3b). This proves the claim.
By the claim, f1b ∈ Dt(a1b

2, a2b
2), b ∈ D(ef1b, a3b

2). Now, just take d = f1b to complete the
proof.

Theorem 5.1.34. Suppose X is a non-empty set and G is a submonoid of {−1, 0, 1}X containing
the constant functions. Then the following are equivalent:

a - AX3 holds.

b - AX3a and AX3b holds.

c - b ∈ D(a1, c) for some c ∈ D(a2, a3) ⇒ b ∈ D(d, a3) for some d ∈ Dt(b2a1, b
2a2).

Proof. (a)⇒(b): is just 5.1.26.
(b)⇒(c): Follow from 5.1.33(ii), taking e = 1.
(c)⇒(a): AX3a follows from (c), so 5.1.32 holds. Also AX3b follows from c using the fact

that 1ainD(a, b, 1). Now suppose b ∈ Dt(a1, c) for some c ∈ Dt(a2, a3). Let a0 = −b. Thus
−a0 ∈ Dt(a1, c), c ∈ Dt(a2, a3). Also −a1 ∈ Dt(a0, c), c ∈ Dt(a2, a3). Similarly, −a2 ∈ Dt(a3,−c),
−c ∈ Dt(a0, a1) and −a3 ∈ Dt(a2,−c), −c ∈ Dt(a0, a1). Thus, using (c) there exists d0, d1, d2, d3 ∈
G such that

−a0 ∈ Dt(a3a
2
0, d0), d0 ∈ Dt(a1a

2
0, a2a

2
0),

−a1 ∈ Dt(a2a
2
1,−d1), −d1 ∈ Dt(a0a

2
1, a3a

2
1),

−a2 ∈ Dt(a1a
2
2,−d2), −d2 ∈ Dt(a0a

2
2, a3a

2
2),

−a3 ∈ Dt(a0a
2
3, d3), d3 ∈ Dt(a1a

2
3, a2a

2
3).

In summary, d0, d1, d2, d3 satisfy

−a0a
2
i ∈ Dt(a3a

2
i , di), di ∈ Dt(a1a

2
i , a2a

2
i ), i = 0, 1, 2, 3. (*)

Pick any element d ∈ Dt(d0, d1, d2, d3) (d exist by AX3b and induction). A straightforward check
shows that −a0 ∈ Dt(a3, d), d ∈ Dt(a1, a2) as required. We check that −d ∈ Dt(a0, a3) (the
proof that d ∈ Dt(a1, a2 is similar). Since d ∈ D(d0, d1, d2, d3) and −di ∈ D(a0, a3) by (*),
−d ∈ D(a0, a3). It remains to show that, at each point in X, a0 6= a3 ⇒ d 6= 0. So suppose
a0 6= a3. One of a0, a3 is not zero, say a3 6= 0 (so a0 = a3 or a0 = 0). By (*), di = −a3d

2
i , so each

di has the same sign as −a3, or di = 0. Also, d3 = −a3a
2
3 = −a3 6= 0. Since d ∈ Dt(d0, d1, d2, d3)

this forces d to have the same sign as −a3 so d 6= 0.

Proposition 5.1.35.

a - Dt(ϕ) does not depend on the order of the entries of ϕ.

b - If b ∈ Dt(ϕ) then bc ∈ Dt(cϕ) for any c ∈ G.
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c - c ∈ Dt(ϕ⊕ ψ)⇔ c ∈ Dt(a, b) for some a ∈ Dt(ϕ), b ∈ Dt(ψ).

d - c ∈ Dt(ϕ1 ⊕ ...⊕ ϕk)⇔ c ∈ Dt(a1, ..., ak) for some ai ∈ Dt(ϕi), i = 1, ..., k.

Proof. This is basically the same as the proof of 5.1.32 except now we use AX3 instead of AX3a.

Value sets are describable in terms of transversal value sets as follows:

Proposition 5.1.36. The following are equivalent:

a - b ∈ D(a1, ..., an).

b - b ∈ Dt(c2
1a1, ..., c

2
nan) for some c1, ..., cn ∈ G.

c - b ∈ Dt(b2a1, ..., b
2an).

Proof. This is immediate if n = 1 or n = 2 so we assume n ≥ 3.
(a)⇒(b): this follows immediately by induction on n.
(b)⇒(c): by assumption b ∈ Dt(c2

1a1, c) for some c ∈ Dt(c2
2a2, ..., c

2
nan). Thus b ∈ D(a1, c) so

b ∈ Dt(b2a1, b
2c). Since b2c ∈ Dt(b2c2

2a2, ..., b
2c2
nan) this proves b ∈ Dt(b2a1, c

2
2a2, ..., c

2
nan). Now

permute the entries of 〈b2a1, c
2
2a2, ..., c

2
nan〉 so that b2c2

2a2 is in the first position and repeat the
argument, etc (using the fact that b2b2 = b2).

(c)⇒(a): this follows immediately from

Dt(b2a1, ..., b
2an) ⊆ D(b2a1, ..., b

2an) ⊆ D(a1, ..., an).

Proposition 5.1.37. For a0, ..., an ∈ G, the following are equivalent:

a - −a0 ∈ Dt(a1, ..., an).

b - −ai ∈ Dt(a1, ..., ai−1, ai+1, ..., an) for all i ∈ {0, ..., n}.

c - −ai ∈ D(a1, ..., ai−1, ai+1, ..., an) for all i ∈ {0, ..., n}.

Proof. (a)⇒(b): In view of 5.1.35(i), it suffices to show −a0 ∈ D(a1, ..., an) implies −a1 ∈
Dt(a0, a2, ..., an). Say −a0 ∈ Dt(a1, c), c ∈ Dt(a2, ..., an). Then −a1 ∈ Dt(a0, c), c ∈ Dt(a2, ..., an),
so −a1 ∈ Dt(a0, a2, ..., an).

(b)⇒(c): is immediate.
(c)⇒(a): since−ai ∈ D(a0, ..., ai−1, ai+1, ..., an), −ai = −aia2

i ∈ Dt(a0a
2
i , ..., ai−1a

2
i , ai+1a

2
i , ..., ana

2
i )

so, using the implication (a)⇒(b),

−a0a
2
i ∈ Dt(a1a

2
i , ..., ana

2
i ), i = 0, ..., n.

Observe that ai ∈ Dt(ai〈a2
0, ..., a

2
n〉), in fact, by 5.1.30(iii) and induction, ai is the only element in

Dt(ai〈a2
0, ..., a

2
n〉). In particular, −a0 ∈ Dt(−a0〈a2

0, ..., a
2
n〉) so, by 5.1.35(iv),

−a0 ∈ Dt(a1a
2
0, ..., ana

2
0)⊕ ...⊕Dt(a1a

2
n, ..., ana

2
n).

The entries of a1〈a2
0, ..., a

2
n〉⊕ ...⊕an〈a2

0, ..., a
2
n〉 are a permutation of the entries of 〈a1a

2
0, ..., ana

2
0〉⊕

...⊕ 〈a1a
2
n, ..., ana

2
n〉 so, by 5.1.35(i),

−a0 ∈ Dt(a1〈a2
0, ..., a

2
n〉 ⊕ ...⊕ an〈a2

0, ..., a
2
n〉).
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Thus, by 5.1.35(iv) again, −a0 ∈ Dt(a′1, ..., a
′
n) where a′i ∈ Dt(ai〈a2

0, ..., a
2
n). Since ai is the unique

element of Dt(ai〈a2
0, ..., a

2
n〉), this means −a0 ∈ Dt(a1, ..., an).

Theorem 5.1.38.

i - b ∈ D(cϕ⊕ ψ)⇒ b ∈ D(〈cd〉 ⊕ ψ) for some d ∈ Dt(b2ϕ).

ii - If b ∈ D(c1ϕ1 ⊕ ...⊕ ckϕk) then b ∈ D(c1d1, ..., ckdk) for some di ∈ Dt(b2ϕi), i = 1, ..., k.

Proof.

i - Let ϕ = 〈a1, ..., an〉. If n = 1, taking d = b2a1 we obtain the desired. Suppose n ≥ 2 and
let ϕ′ = 〈a3, ..., an〉. Thus b ∈ D(ca1, ca2, e), e ∈ D(cϕ′ ⊕ ψ). By 5.1.33(ii), b ∈ D(cf, e),
f ∈ Dt(b2a1, b

2a2). Thus b ∈ D(c(〈f〉 ⊕ ϕ′) ⊕ ψ). By induction on n, b ∈ D(〈cd〉 ⊕ ψ),
d ∈ Dt(〈b2f〉 ⊕ b2ϕ′). Since b2f = f and f ∈ Dt(b2a1, b

2a2), this means d ∈ Dt(b2ϕ).

ii - This follows by repeated use of (i).

5.2 Real semigroups

Here introduce a new class of algebraic structures dual to the category of abstract real spectra.
This structure first appear in [DP04], and was baptised real semigroups (abbreviated RS).

We realize that both ARS’s and real semigroups provides a reduced theory of quadratic forms
over rings, but the non-reduced case is still unknown. In view of this, we avoid as much as possible
the uses of the reduction axiom, and as contribution, we gave new elementary proofs of basic facts
in real semigroups.

5.2.1 Ternary semigroups

As a preliminary step, we devote some attention to the ternary semigroups, a class of semigroups
underlying the RS’s in very much same sense that the groups of exponent 2 underlie the notion of
special group.

Definition 5.2.1. A ternary semigroup (abbreviated TS) is a struture (S, ·, 1, 0,−1) with individual
constants 1, , 0,−1 and a binary operation “·” such that:

TS1 - (S, ·, 1) is a commutative semigroup with unity;

TS2 - x3 = x for all x ∈ S;

TS3 - −1 6= 1 and (−1)(−1) = 1;

TS4 - x · 0 = 0 for all x ∈ S;

TS5 - For all x ∈ S, x = −1 · x⇒ x = 0.

We shall write −x for (−1) · x. The semigroup verifying conditions [TS1] and [TS2] (no extra
constants) will be called 3-semigroups.

Example 5.2.2.

a - The three-element structure 3 = {1, 0,−1} has an obvious ternary semigroup structure.
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b - For any set X, the set 3X under pointwise operation and constant functions with values 1, 0,−1,
is a TS.

c - The class of ternary semigroups is closed under direct product and subestructures.

d - Any group of exponent 2 is a 3-semigroup; the pointed group of exponent 2 with a distinguished
element −1 6= 1 underlying a RSG also verifies [TS3]. Any such group G, becomes a ternary
semigroup by adding a new absorbent element 0, i.e, extending the operation by x · 0 = 0 for
x ∈ G∪{0}. Note that the set of invertible elements of a 3-semigroup is a group of exponent 2.

e - For any commutative ring A with 1, the set GA of all functions a : Sper(A) → 3, for a ∈ A,
where

a(α) =


1 if a ∈ α \ (−α)

0 if a ∈ α ∩ (−α)

−1 if a ∈ (−α) \ α

with the operation induced by product in A is a TS.

By a subsemigroup we mean a subset closed under the operation · and containing 1. Thus,
a subsemigroup of a TS may not contain 0 or −1 and hence may not be a substructure for the
language used in 5.2.1. A TS-morphism is a function f : (S, ·, 1, 0,−1) → (T, ·, 1, 0,−1) such that
f(ab) = f(a)f(b) and f(−1) = −1. A TS-character is a TS-morphism into 3.

An ideal in a semigroup S is a subset I ⊆ S such that I ·S ⊆ I. An ideal is prime if it is proper
and ab ∈ I ⇒ a ∈ I or b ∈ I, for all a, b ∈ S.

Of course, given a ternary semigroup T and a subset X ⊆ T , the ideal generated by X is

[X] =
⋂
{I ideal : I ⊇ X} = {1} ∪

{
n∏
i=1

riai : ai ∈ X, ri ∈ T n ∈ N

}
.

The basic properties of ideals holds here: intersection of ideals is an ideal, directed union of
ideals is an ideal, etc.

Lemma 5.2.3. Let I be an ideal in a TS, T , and let ∆ be a subsemigroup of T such that I∩∆ = ∅.
Let J be an ideal of G containing I and maximal with respect to being disjoint from ∆. Then J
is prime. In particular, if a /∈ I (by setting ∆ = {1, a2}) it follows that an ideal maximal for not
containing a is prime.

Proof. Suppose by absurd that J is not prime, i.e, that ab ∈ J with a /∈ J and b /∈ J . Let
J1 = [J ∪ {a}] and J2 = [J ∪ {b}]. Since J ( J1 and J ( J2, by maximality of J we must have
x ∈ ∆∩ J1 and y ∈ ∆∩ J2. Note that x = ax′ and y = by′ (because J ∩∆ = ∅). Then xy ∈ ∆ and
xy = ab(x′y′) ∈ [J ∪ {ab}] = J , contradiction. Therefore a ∈ J or b ∈ J .

Definition 5.2.4. Let T be a TS and S ⊆ T . S will be called a prime subsemigroup of T if

i - S is a subsemigroup of T containing Id(T ) (the idempotents of T ).

ii - S ∩ −S is a prime ideal.

iii - S ∪ −S = T .
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The prime subsemigroups S of T are in one-one correspondence with the TS-characters of T ;
indeed, S defines a TS-character upon setting, for x ∈ T :

hS(x) =


1 if x ∈ S \ (−S)

0 if x ∈ S ∩ −S
−1 if x ∈ (−S) \ S.

The following lemma gives the tool used in practice to construct TS-characters:

Lemma 5.2.5. Let T be a TS and let I be a prime ideal of T . Let S be a subsemigroup of T such
that:

1. Id(T ) ∪ I ⊆ S.

2. S is maximal such that S ∩ −S = I.

Then S is a prime subsemigroup, i.e, S ∪ −S = T . The TS-character hS defined by S (as above)
verifies I = h−1

S [0] and S = h−1
S [{0, 1}].

Proof. Suppose that there exist x ∈ T with x,−x /∈ S. Let S1 = [S ∪ {x}] and S2 = [S ∪ {−x}].
Since S ( S1 and S ( S2, by maximality of S we must have a ∈ (S1∩−S1)\I and b ∈ (S2∩−S2)\I.
From (2) we have a, b /∈ S ∩−S. Note that we cannot either have a,−a ∈ Sx or b,−b ∈ S(−x). If
for instance a,−a ∈ Sx, then a = s1x and −a = s2x. Multiplying both these equalities by x, we
get ax = s1x

2 and −ax = s2x
2, both which are in S, by (1). Since x, a /∈ I, I cannot be prime.

Thus, one of a or −a in S and the other in Sx, and similarly for b,−b. However, each of
these situations contradicts the primality of I. For illustration, say a ∈ S, −a ∈ Sx, b ∈ S(−x),
−b ∈ S. Then −ab ∈ S, −a = s1x, −b = s2x with s1, s2 ∈ S. Multiplying these equalities given
ab = (−a)(−b) = s1s2x

2 ∈ S, by (1). Then ab ∈ I, but a, b /∈ I, a contradiction.

Theorem 5.2.6 (Weak separation theorem). Let T be a TS, I be an ideal of T , and a ∈ T \ I.
Then:

a - There is a TS-character h of T such that h[I] = 0 and h(a) 6= 0.

b - If, in addition, −a · Id(T ) ∩ Id(T ) ⊆ I, then there is a character h such that h[I] = 0 and
h(a) = 1.

If I is prime, in both (a) and (b) the character h can be chosen such that h−1[0] = I

The following will be used in the proof of theorem 5.2.6(b):

Lemma 5.2.7. Let T be a TS, I an ideal of T , and a ∈ I. Assume that −a · Id(T ) ∩ Id(T ) ⊆ I.
Then, for x ∈ T ,

x,−x ∈ Id(T ) ∪ a · Id(T )⇒ x ∈ I.

Proof. If x,−x ∈ Id(T ), then −x = (−x)2 = x2 = x and by TS5 x = 0 ∈ I. If x,−x ∈ −a · Id(T ),
then x = ay2, −x = az2. Squaring both these equalities gives x2 = a2y2 = (−x)2 = a2z2. Scaling
by a we get ay2 = az2, i.e, x = −x, and hence x = 0. If x ∈ Id(T ), −x ∈ a · Id(T ), then x = x2

and −x = ay2, so −ay2 = x = x2 ∈ −a · Id(T ) ∩ Id(T ) ⊆ I by hypothesis. The remaining case is
similar.

proof of theorem 5.2.6.
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a - First of all, by lemma 5.2.3 we get a prime ideal J ⊇ I maximal for not a /∈ J . If I is itself
prime, just pick J = I. Now, let

F = {S ⊆ G subsemigroup : S ⊇ J ∪ Id(T ) and S ∩ (−S) = J}.

F 6= ∅ since J ∪ Id(T ) ∈ F . Hence, by Zorn’s Lemma there is a maximal element R ∈ F . By
lemma 5.2.5 there exist a character hR determined by R. This character has the properties
stated in (a), since a /∈ J = h−1[0].

b - As in the previous case we may assume I prime. Now, we will factory a subsemigroup S ⊇
{a}∪ I ∪ Id(T ) maximal for S ∩−S = I. Using Zorn’s Lemma it is suffice to show that there is
a subsemigroup S′ with these two properties. We claim S′ = Id(T ) ∪ a · Id(T ) ∪ I meets these
conditions. Of course, S′ is a subsemigroup of T . To prove S′ ∩ −S′ = I, assume x,−x ∈ S′.
In the non-trivial case where x,−x ∈ Id(T )∪ a · Id(T ), our assumption and lemma 5.2.7 entail
that x ∈ I, as required. Since a ∈ S \ I = S \ (−S), we have h(a) = 1, where h is the character
determined by S.

Definition 5.2.8. For c ∈ T , let Ic = {x ∈ T : c2x = x}.

Theorem 5.2.9 (Separation theorem for ternary semigroups). Let T be a TS and let a, b ∈ T ,
a 6= b. Then, there is a TS-character h of T such that h(a) 6= h(b). In other words, the set XT

of TS-characters separates points (in T ). Equivalently, the evaluation map from T to 3XT is an
injective TS-homomorphism.

Proof. We consider two cases:

1. a2 6= b2.

If a ∈ Ib and b ∈ Ia, then a2b = b and b2a = a, from which a2b2 = b2 = a2, contrary to this
case assumption. Assume, without loss of generality, that a /∈ Ib. Let I ⊇ Ib be an prime
ideal maximal for not containing a (conform lemma 5.2.3). By theorem 5.2.6(a) we get a
character h of T such that I = h−1[0]; hence h(b) = 0 and h(a) 6= 0.

2. a2 = b2.

Let J = {x ∈ T : ax = bx}. Of course, J is an ideal. If a ∈ J , then a2b = ba, and hence
b2 = ba. Scaling by b we get b = b3 = b2a = a2a = a, contrary to the assumption a 6= b.
Hence a /∈ J . Let I ⊇ J be an ideal maximal for a /∈ I. Then b /∈ I; otherwise, a2 = b2 ∈ I,
which implies a = a2a ∈ I. Since I is prime, we get b /∈ I, from which −ab /∈ I. By showing
that ab · Id(T ) ∩ Id(T ) ⊆ I, theorem 5.2.6(b) applied to −ab yields a character h so that
h(−ab) = 1, which proves h(a) 6= h(b).

Elements in Id(T ) ∩ Id(T ) are of the form aby2 with aby2 = (aby2)2 = a2b2y2. Scaling by b
and using a2 = b2 gives

ab2y2 = a3y2 = ay2,

a2b3y2 = a2by2 = b3y2 = by2,

i.e, ay2 = by2. Then y2 ∈ J ⊆ I, from which aby2 ∈ I, as required.
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Consider XT , the set of TS-characters of T , as a subset of 3T . The set XT becomes a closed
subset of 3T , when the latter is endowed with the product topology. Hence, with the induced
topology, it is a Boolean space having the sets of the form

n⋂
i=1

[ti = 1] ∩
m⋂
j=1

[t′j ∈ {0, 1}], ti, t′j ∈ T

as a basis of clopen sets, where [t = i] = {f ∈ XT : f(t) = i}, t ∈ {−1, 0, 1}. This is the
constructible (or patch) topology on XT . Thus, with the sets

H(t1, ..., tn) =

n⋂
i=1

[t1 = 1], ti ∈ T

as a basis of clopens, XT becomes a spectral space whose associated patch topology is as described
above.

5.2.2 Real semigroups

Here, we will enrich the language {·, 1, 0,−1} with a ternary relation D. In agreement with
5.1.25, we shall write a ∈ D(b, c) instead of D(a, b, c). We also set:

a ∈ Dt(b, c)⇔ a ∈ D(b, c) ∧ −b ∈ D(−a, c) ∧ −c ∈ D(b,−a). (trans)

The relations D and Dt are called representation and transversal representation respectivel.

Definition 5.2.10. A real semigroup (abbreviated RS) is a ternary semigroup (G, 1, 0,−1) together
with a ternary relation D satisfying:

RS0 - c ∈ D(a, b) if and only if c ∈ D(b, a).

RS1 - a ∈ D(a, b).

RS2 - a ∈ D(b, c) implies ad ∈ D(bd, cd).

RS3 (Strong Associativity) - If a ∈ Dt(b, c) and c ∈ Dt(d, e), then there exists x ∈ Dt(b, d)
such that a ∈ Dt(x, e).

RS4 - e ∈ D(c2a, d2b) implies e ∈ D(a, b).

RS5 - If ad = bd, ae = be and c ∈ D(d, e), then ac = bc.

RS6 - c ∈ D(a, b) implies c ∈ Dt(c2a, c2b).

RS7 (Reduction) - Dt(a,−b) ∩Dt(b,−a) 6= implies a = b.

RS8 - a ∈ D(b, c) implies a2 ∈ D(b2, c2).

A pre-real semigroup(abbreviated PRS) is a ternary semigroup (G, 1, 0,−1) together with a ternary
relation D satisfying [RS0]-[RS6], [RS8] and

RS7’ - x ∈ Dt(0, a)⇔ x = a.
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Note that, as the special groups, the theory of real semigroups is a (finitary) first-order theory.
Moreover, we will see later, as consequence of 5.2.14, that every pre-real semigroups is a real
semigroup.

The definition of morphism is quite standard: f : (G, ·, 1, 0 − 1) → (H, ·, 1, 0 − 1) is an RS-
morphism (respectively PRS) if f : G → H is a morphism of semigroups, (i.e, f(ab) = f(a)f(b),
f(1) = 1 and f(0) = 0); f(−1) = −1 and a ∈ D(b, c)⇒ f(a) ∈ D(f(b), f(c)) (hence a ∈ Dt(b, c)⇒
f(a) ∈ Dt(f(b), f(c))). The category of real semigroups (respectively pre-real semigroups) and
their morphisms will be denoted by RS (respectively PRS).

Example 5.2.11 (RS and Rings). For any semi-real ring A, let the set GA consist of all functions
a : Sper(A)→ 3, for a ∈ A, where

a(α) =


1 if a ∈ α \ (−α)

0 if a ∈ α ∩ −α
−1 if a ∈ (−α) ∩ α.

with the operation induced by product in A is a TS. More generally, given a (proper) preorder T
of a ring A one can relativize the definition above to T , by considering functions a defined on
Sper(A, T ) = {α ∈ Sper(A) : α ⊇ T}, instead of Sper(A). The corresponding ternary semigroup
will be denoted GA,T .

Now, we will equip the ternary semigroup with the representation and transversal representation
relations given by:

c ∈ DA(a, b)⇔ ∀α ∈ Sper(A)[c(α) = 0 ∨ a(α)c(α) = 1 ∨ b(α)c(α) = 1].

c ∈ Dt
A(a, b)⇔ ∀α ∈ Sper(A)[(c(α) = 0 ∧ a(α) = −b(α)) ∨ a(α)c(α) = 1 ∨ b(α)c(α) = 1]

for a, b, c ∈ A. We have that GA is a real semigroup. A similar definition with Sper(A) replaced by
Sper(A, T ) (T a proper preordering of A) also endows the ternary semigroup GA,T with a structure
of real semigroup.

Example 5.2.12 (RS and RSG). The notion of a RS generalizes that of a reduced special group.
Given a RSG G, we adding a absorbent element 0 to give raise to a ternary semigroup G∗ = G∪{0}.
Extending the representation relation G to G∗ by

DG∗(a, b) =

{
{a, b} if a = 0 or b = 0;

DG(a, b) ∪ {0} if a, b ∈ G,

gives a representation relation to G∗. The axioms RS1-RS8 are immediate consequence of the
special group axioms SG0-SG6 plus the following property: in a RSG we have

a ∈ D(b, c)⇒ −b ∈ D(−a, c),

then D and Dt coincide on binary forms with entries in G.

Corollary 5.2.13. There is an inclusion functor R : RSG ↪→ RS.

Proof. Follows by defining for a RSG (G,≡,−1), R(G,≡,−1) = (G∗, DG∗ , D
t
G∗ , 0, 1,−1) and for a

SG-morphism f : (G,≡G,−1) → (H,≡H ,−1), R(f) = f∗, where f∗(0) = 0 and f∗(a) = f(a) for
all a ∈ G∗ \ {0}.

Proposition 5.2.14. The properties below holds in any pre-real semigroup G, for all a, b, c, d ∈ G:
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1. a ∈ D(b, c)⇔ a ∈ Dt(a2b, a2c).

2. a ∈ Dt(b, c)⇒ −b ∈ Dt(−a, c).

3. 0 ∈ D(a, b).

4. a ∈ Dt(b, c)⇒ ad ∈ Dt(bd, cd).

5. d ∈ D(ca, cb)⇒ d = c2d. In particular, D(0, a) ⊆ {a2x : x ∈ G}.

6. a2 ∈ D(1, b).

7. a ∈ D(0, 0)⇔ a = 0.

8. 1 ∈ Dt(1, a).

9. Dt(1,−1) = G.

10. ab ∈ D(1,−a2).

11. Dt(a, b) 6= ∅.

12. (Weak Associativity) a ∈ D(b, c) ∧ c ∈ D(d, e)⇒ ∃x[x ∈ D(b, d) ∧ a ∈ D(x, e)].

If G is a real semigroup, then:

13. 0 ∈ Dt(a, b)⇔ a = −b. In particular, every real semigroup is a pre-real semigroup1.

14. a ∈ D(0, 1) ∪D(1, 1)⇒ a = a2.

15. a ∈ Dt(b, b)⇔ a = b.

Proof.

1. a ∈ D(a, b) implies a ∈ Dt(a2b, a2c) by (RS6). Conversely, a ∈ Dt(a2b, a2c) implies a ∈
D(a2b, a2c) by (trans), and by (RS4) we have a ∈ D(b, c).

2. By (trans), we have:

a ∈ Dt(b, c)⇔ a ∈ D(b, c) ∧ −b ∈ D(−a, c) ∧ −c ∈ D(b,−a)

⇔ −b ∈ D(−a, c) ∧ a ∈ D(b, c) ∧ −c ∈ D(b,−a)

[RS0]⇔ −b ∈ D(−a, c) ∧ a ∈ D(b, c) ∧ −c ∈ D(−a, b)
⇔ −b ∈ Dt(−a, c).

3. By axiom (RS1), 0 ∈ D(0, 0) = D(02a, 02b). From (RS4) we get 0 ∈ D(a, b).

4. Again, by trans, we have

a ∈ Dt(b, c)⇔ a ∈ D(b, c) ∧ −b ∈ D(−a, c) ∧ −c ∈ D(b,−a)

[RS2]⇒ ad ∈ D(bd, cd) ∧ −bd ∈ D(−ad, cd) ∧ −cd ∈ D(bd,−ad)

⇔ ad ∈ Dt(bd, cd).

1In fact, 0 ∈ Dt(a, b)⇔ a = −b is equivalent to RS7’.
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5. By (RS8), d ∈ D(ca, cb) implies d2 ∈ D(c2a2, c2b2). Since by (RS4) D(c2a2, c2b2) ⊆ D(c2, c2),
we get d2 ∈ D(c2, c2). Since c2 · c2 = 1 · c2, (RS5)2 gives c2d2 = 1 · d2 = d2, and hence
c2d2 = d2 ⇒ c2d3 = d3 ⇒ c2d = d.

Now, if x ∈ D(0, b), then x ∈ D(0 · b2, b · b2). Hence, the above argument gives us x = b2x.
Of course, if x ∈ D(0, b), by RS6, xb2 ∈ D(0 · b2, b · b2) = D(0, b). Therefore, D(0, b) = {b2x :
x ∈ G}.

6. By (RS1), a2 ∈ D(a2, a2b), and by (RS4), a2 ∈ D(1, b).

7. 0 ∈ D(0, 0) by (RS1). Conversely, if a ∈ D(0, 0) = D(0·1, 0·1), then by item (5) a = a·02 = 0.

8. By (RS1), 1 ∈ Dt(1, a), and by (RS6), 1 ∈ Dt(1 · 12, a · 12) = Dt(1, a).

9. Follow from item (1) and item (8).

10. Let x ∈ G. By item (9), x ∈ D(1,−1), and from (RS6) we get x ∈ Dt(1 · x2,−1 · x2) ⊆
D(x2,−x2). With x = ab this yields ab ∈ D(a2b2,−a2b2) = D((ab)2,−a2 · b2); using (RS4)
we obtain ab ∈ D(1,−a2).

11. By the item (8), 1 ∈ Dt(a, 1) and 1 ∈ Dt(b, 1). By (RS3), there exist some d ∈ Dt(a, b) such
that d ∈ Dt(d, 1).

12. Let a ∈ D(b, c) and c ∈ D(d, e). By (RS6), a ∈ Dt(a2b, a2c) and c ∈ D(c2d, c2e). Then,
a ∈ Dt(a2b, a2c) and a2c ∈ D(a2c2d, a2c2e). By (RS3), there exist x ∈ Dt(a2b, a2c2d)
such that a ∈ Dt(x, a2c2e). Since by (RS4) Dt(a2b, a2c2d) ⊆ D(a2b, a2c2d) ⊆ D(b, d) and
Dt(x, a2c2e) ⊆ D(x, a2c2e) ⊆ D(x, e), we have the desired.

13. (⇒) By RS7 it suffices to prove Dt(a, b)∩Dt(−a,−b) 6= ∅. But 0 ∈ Dt(a, b) implies 0 = −0 ∈
Dt(−a,−b).

14. If a ∈ D(1, 1), by RS6 a ∈ Dt(a2, a2), and then −a2 ∈ Dt(−a, a2). On the other hand,
−a2 ∈ D(−a2, a2) implies −a ∈ Dt((−a2)2 · (−a)2, (−a2)2 · a) = Dt(−a2, a). Hence −a2 ∈
Dt(−a2, a) ∩Dt(−a, a2) and RS7 yields a = a2.

Next, if a ∈ D(0, 1), by RS6 a ∈ Dt(0, a2), and then 0 ∈ Dt(−a, a2). Scaling by −1 we obtain
−0 = 0 ∈ Dt(a,−a2). Hence 0 ∈ Dt(−a2, a) ∩Dt(−a, a2) and applying again RS7 we have
a = a2.

15. b ∈ Dt(b, b) is immediate from RS1 and RS6, so we just need to proof⇒. Let a ∈ Dt(b, b). In
particular, a ∈ D(b, b), and item (5) yields a = b2a. From (2) we also have −b ∈ Dt(−a, b).
On the other hand, from −b ∈ D(−b, a) and RS6 we get −b ∈ Dt((−b)2(−b), (−b)2a) =
Dt(−b, b2a) = Dt(−b, a). This shows that −b ∈ Dt(−a, b) ∩Dt(−b, a), and then RS7 yields
a = b.

Now, we are in condition to exhibt another axiomatization for real semigroups in terms of Dt:
we will enrich the language {·, 1, 0,−1} with a ternary relation Dt. Now, we set

a ∈ D(b, c)⇔ a ∈ Dt(a2b, a2c). (rep)

2setting a′ = c2, b′ = 1, c′ = d2, d′ = c2, e′ = c2 and use RS5 on the new variables a′, b′, c′, d′, e′.
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Definition 5.2.15. A pre real semigroup (abbreviated PRS) is a ternary semigroup (G, 1, 0,−1)
together with a ternary relation Dt satisfying:

DT0 - a ∈ Dt(b, c) if and only if a ∈ Dt(c, b).

DT1 - a ∈ Dt(b, c) implies −b ∈ Dt(−a, c).

DT2 - 1 ∈ Dt(1, a) for all a ∈ G.

DT3 - a ∈ Dt(b, c) implies ad ∈ Dt(bd, cd).

DT4 (Strong Associativity) - If a ∈ Dt(b, c) and c ∈ Dt(d, e), then there exists x ∈ Dt(b, d)
such that a ∈ Dt(x, e).

DT5 - If ad = bd, ae = be and c ∈ Dt(c2d, c2e), then ac = bc.

DT6 - e ∈ Dt(c2e2a, d2e2b) implies e ∈ Dt(e2a, e2b).

DT7 - c ∈ D(a, b) implies c ∈ Dt(c2a, c2b).

DT8 - a ∈ Dt(a2b, a2c) implies a2 ∈ Dt((ab)2, (ac)2).

DT9 - x ∈ Dt(0, a)⇔ x = a.

A real semigroup (abbreviated RS) is a pre-real semigroup satisfying

DT10 (Reduction) - Dt(a,−b) ∩Dt(b,−a) 6= implies a = b.

The definition of morphism is the same. Then, we have the following lemma:

Lemma 5.2.16. The definition 5.2.10 and 5.2.15 are equivalent.

Proof. We already proof 5.2.10⇒5.2.15 in proposition 5.2.14. The converse 5.2.15⇒5.2.10 is just
an application of the definition of D in terms of Dt, as in rep.

Corollary 5.2.17. The ternary semigroup 3 = {1, 0,−1} has a unique structure of real semigroup
with representation given by:

D3(0, 0) = {0};
D3(0, 1) = D3(1, 0) = D3(1, 1) = {0, 1};
D3(0,−1) = D3(−1, 0) = D3(−1,−1) = {0,−1};
D3(1,−1) = D3(−1, 1) = 3;

and transversal representation given by:
Dt

3(0, 0) = {0};
Dt

3(0, 1) = Dt
3(1, 0) = Dt

3(1, 1) = {1};
Dt

3(0,−1) = Dt
3(−1, 0) = Dt

3(−1,−1) = {−1};
Dt

3(1,−1) = Dt
3(−1, 1) = 3.

Proof. Is just an analysis of cases approach for the verification of axioms RS0-RS8.

Of course, the theory of real semigroups has the interpretation of the basic concepts and notation
of quadratic forms theory: given a real semigroup G, an n-form is a tuple ϕ = 〈a1, ..., an〉. If
ϕ = 〈a1, ..., an〉 is a form on G, define
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• The set of elements represented by ϕ as

DG(ϕ) =
⋃
{D(a1, b) : b ∈ D〈a2, ..., an〉},

with the convention that D(〈a〉) = {b2a : b ∈ G}.

• The set of elements transversaly represented by ϕ as

Dt
G(ϕ) =

⋃
{Dt(a1, b) : b ∈ Dt〈a2, ..., an〉},

with the convention that Dt(〈a〉) = {a}.

• The discriminant of ϕ as d(ϕ) =
n∏
i=1

ai.

• Direct sum as ϕ⊕ θ = 〈a1, ..., an, b1, ..., bm〉.

• Tensor product as ϕ⊗ θ = 〈a1b1, ..., aibj , ..., anbm〉. If a ∈ G, 〈a〉 ⊗ ϕ is written aϕ.

• For forms ϕ,ψ over G, we set ϕ ∼ ψ ⇔ DG(ϕ) = DG(ψ) and ϕ ∼t ψ ⇔ Dt
G(ϕ) = Dt

G(ψ)
with a subscript G, if necessary.

Proposition 5.2.18. Let G be a real semigroup and let ϕ,ψ be forms with entries in G. Then:

a - D(ϕ) and Dt(ϕ) do not depend on the order of the entries of ϕ, i.e, for any permutation σ of
those entries, ϕ ∼ ϕσ and ϕ ∼t ϕσ.

b - For a, c ∈ G, a ∈ D(ϕ)⇒ ac ∈ D(cϕ) and a ∈ Dt(ϕ)⇒ ac ∈ Dt(cϕ).

c - a ∈ D(cϕ)⇒ a = c2a and a ∈ D(ϕ)⇒ a ∈ Dt(a2ϕ).

d - If ϕ = 〈a1, ..., an〉 and c1, ..., cn ∈ G, then D(〈c2
1a1, ..., c

2
nan〉) ⊆ D(ϕ).

e - a ∈ D(ϕ ⊕ ψ) ⇔ there are b ∈ D(ϕ), c ∈ D(ψ) such that a ∈ D(b, c). A similar statement
holds replacing D by Dt.

f - If a is a coefficient of ϕ, then a ∈ D(ϕ).

g - The relations ∼ and ∼t are compatible with the sum of forms:

ϕ1 ∼ ψ1 and ϕ2 ∼ ψ2 ⇒ ϕ1 ⊕ ϕ2 ∼ ψ1 ⊕ ψ2,

and similarly for ∼t.

h - ϕ⊕ ϕ ∼ ϕ and ϕ⊕ ϕ ∼t ϕ.

i - a ∈ D(ϕ) ∧ b ∈ D(ψ)⇒ ab ∈ D(ϕ⊗ ψ). A similar statement holds replacing D by Dt.

j - Are equivalent:

1 - a ∈ Dt(〈a1, ..., an〉);
2 - −ai ∈ Dt(〈a1, ..., ai−1,−a, ai+1, ..., an〉) for i = 1, ..., n;

3 - a ∈ D(〈a1, ..., an〉) and −ai ∈ D(〈a1, ..., ai−1,−a, ai+1, ..., an〉) for i = 1, ..., n.

k - For b ∈ G and n ≥ 1, n〈b〉 = 〈b, ..., b〉 ∼t 〈b〉.
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Proof.

a - The statement for Dt follows by the statement for D. Next, we wil proceed by induction on n.
If n = 2, the statement follow by RS0. Now, suppose that the statement holds for n − 1 and
let σ ∈ Sn, ϕ = 〈a1, ..., an〉. We have two cases:

Case A - σ(1) = 1. Let θ = 〈a2, ..., an〉. Using the induction hypothesis we have

D(ϕ) =
⋃
{D(a1, b) : b ∈ D(θ)} HI

=
⋃
{D(a1, b) : b ∈ D(θσ)} = D(ϕσ).

Case B - D(a1, a2, ..., an) = D(a2, a1, ..., an). The case n = 2 is RS0. For n ≥ 3 we have

x ∈ D(a1, a2, ..., an)⇒ x ∈ D(a1, b) for some b ∈ D(a2, ..., an)

⇒ x ∈ D(a1, b) and b ∈ D(a2, c) for some c ∈ D(a3, ..., an).

By weak associativity 5.2.19(12), there exist y ∈ G such that y ∈ D(a1, c) and x ∈ D(y, a2).
Reorganizing these informations we have

y ∈ D(a1, c) ∧ x ∈ D(y, a2) ∧ c ∈ D(a3, ..., an)⇒
x ∈ D(a2, y) ∧ [y ∈ D(a1, c) ∧ c ∈ D(a3, ..., an)]⇒

x ∈ D(a2, y) ∧ y ∈ D(a1, a3, ..., an)⇒ x ∈ D(a2, a1, ..., an).

Hence D(a1, a2, ..., an) ⊆ D(a2, a1, ..., an). Now, we repeat the same argument starting
with D(a2, a1, ..., an) to obtain D(a2, a1, ..., an) ⊆ D(a1, a2, ..., an).

Case C - σ is a 2-cycle (1, i) for some i ≥ 2. Here, we have

D(a1, a2, ..., an) = D(a2, a1, ..., an)

=
⋃
{D(a2, b) : b ∈ D(a1, a3, ..., an)}

HI
=
⋃
{D(a2, b) : b ∈ D(〈a1, a3, ..., an〉σ}

=
⋃
{D(a2, b) : b ∈ D(〈ai, a3, ...ai−1, a1, ai+1, an〉}

= D(a2, ai, a3, ...ai−1, a1, ai+1, an)

= D(ai, a2, a3, ...ai−1, a1, ai+1, an) = D(ϕσ).

Cases A,B and C show that ϕ ∼ ϕσ for any transposition σ ∈ Sn. Since Sn is generated by
transpositions and ∼ is transitive, we conclude the desired implication.

b - We use induction on dim(ϕ) = n. If n = 1 there is nothing to show, and if n = 2, the assertion
for D is consequence of RS0 and for Dt is consequence of proposition 5.2.14(4). Now, suppose
that the assertion holds for n − 1 and let ϕ = 〈a1, ..., an〉. Let a ∈ D(ϕ). Hence a ∈ D(a1, x),
for some x ∈ D(a2, ..., an). By induction hypothesis, ac ∈ D(a1c, xc) and xc ∈ D(a2c, ..., anc),
therefore ac ∈ D(a1c, ..., anc) = D(cϕ). The assertion for Dt follows by the same argument.

c - Induction on dim(ϕ) = n. For the first assertion, if ϕ = 〈a1〉, then a ∈ D(cϕ) means a = b2ca1

for some b ∈ G. Then c2a = c3b2a1 = cb2a1 = a. If a ∈ D(cϕ), the inductive definition
of representation implies that a ∈ D(ca1, x) for some x ∈ D(cϕ′). By inductive hypothesis,
x = c2x. Then a ∈ D(ca1, c

2x), and 5.2.14(5) yields a = c2a.
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For the second assertion, first we prove by induction on n that

a ∈ D(a1, ..., an)⇒ a ∈ Dt(c2
1a1, ..., c

2
nan) for some c1, ..., cn ∈ G.

In fact, if n = 1 there is nothing to show, and the case n = 2 is just 5.2.14(1). Now, suppose
that the claim holds for (n− 1) ≥ 3, and let a ∈ D(a1, ..., an).

a ∈ D(a1, ..., an)⇒ a ∈ D(a1, x) for some x ∈ D(a2, ..., an)

HI⇒ a ∈ Dt(c2
1a1, c

2
1x) and x ∈ Dt(c2

2a2, ..., c
t
nan)

so a ∈ Dt(c2
1a1, c

2
1x) and c2

1x ∈ Dt(c2
1c

2
2a2, ..., c

2
1c
t
nan), then a ∈ Dt(c2

1a1, c
2
1c

2
2a2, ..., c

2
1c
t
nan) and

the claim is proved.

Now, for the proof of second assertion, if ϕ = 〈a1〉, then a ∈ D(ϕ) means a = b2a1 for some
b ∈ G. So a2a1 = b2a3

1 = b2a1 = a, and by definition, a ∈ Dt(a2ϕ). If dim(ϕ) = 2, the assertion
is axiom RS6. Now, suppose that the claim holds for (n− 1) ≥ 3, and let a ∈ D(a1, ..., an). By
the claim, a ∈ Dt(c2

1a1, ..., c
2
nan), so a ∈ Dt(c2a1, x) for some x ∈ Dt(c2

2a2, ..., c
2
nan). Thus

a ∈ D(a1, x) therefore a ∈ D(a2a1, a
2x). Since a2x ∈ Dt(a2c2

2a2, ..., a
2c2
nan), this proves

a ∈ Dt(a2a1, a
2c2

2a2, ..., a
2c2
nan). Now permute the entries of 〈a2a1, a

2c2
2a2, ..., a

2c2
nan〉 putting

a2c2
2a2 in the first position and repeat the argument (using the fact that a2a2 = a2). At the

end of the process, we shall obtain a ∈ Dt(a2a1, ..., a
2an).

d - Induction on dim(ϕ) = n. If ϕ = 〈a1〉, the definition of D(〈a1〉) is suffice to show that
D(〈c2

1a1〉) ⊆ D(〈a1〉). Suppose that holds for n − 1 and let ϕ = 〈a1〉 ⊕ 〈a2, ..., an〉. Given
x ∈ D(c2

1a1, ..., c
2
nan), the inductive definition of representation provides x ∈ D(c2

1, a1, y) for
some y ∈ D(c2

2a2, ..., c
2
nan), and from the induction hypothesis we get y ∈ D(a2, ..., an). Since

y = y2 · y, axiom RS4 yields x ∈ D(a1, y), and hence x ∈ D(ϕ).

e - Let ϕ = 〈a1, ..., ak〉 and ψ = 〈ak+1, ..., an〉. We prove the both implications (⇒ and ⇐) by
induction on k:

(⇒) If k = 1, c ∈ D(〈a1〉 ⊕ 〈a2, ..., an〉) implies c ∈ D(a1, b) for some b ∈ D(a2, ..., an), so we
can take a = a1. Now, suppose the assertion valid for k − 1 ≥ 2 and let c ∈ D(ϕ ⊕ ψ). Then
c ∈ D(a1, d) for some d ∈ D(ϕ′ ⊕ ψ), ϕ′ = 〈a2, ..., ak〉. By induction, we have d ∈ D(e, f),
e ∈ D(ϕ′), f ∈ D(ψ). By weak associativity we have c ∈ D(g, f) for some g ∈ D(a1, e). Thus
g ∈ D(ϕ) so we can take a = g, b = f .

(⇐) If k = 1 then c ∈ D(a, b) with a ∈ D(a1) b ∈ D(ψ) implies a = d2a1 for some d ∈ G,
so c ∈ D(a1, b) with b ∈ D(ψ), hence c ∈ D(ϕ ⊕ ψ). Now, suppose the assertion valid for
k − 1 ≥ 2 and let c ∈ D(a, b) with a ∈ D(ϕ), b ∈ D(ψ). Then a ∈ D(a1, d) for d ∈ D(ϕ′),
ϕ′ = 〈a2, ..., ak〉. By weak associativity c ∈ D(a1, e) for some e ∈ D(d, b). By induction on k,
e ∈ D(ϕ′ ⊕ ψ). This proves c ∈ D(ϕ⊕ ψ).

To proof the afirmation for Dt, just use the same argument replacing weak associativity by
RS3.

f - Induction on dim(ϕ) using item (e).

g - First, note that by item (a) and transitivity of ∼ it suffices to prove the statement for ϕ2 =
ψ2 = θ. Further, by symmetry it suffices to show D(ϕ1 ⊕ θ) ⊆ D(ψ1 ⊕ θ)., which follows
immediately from item (e). The same argument works in the case of Dt.
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h - The inclusion Dt(ϕ) ⊆ Dt(ϕ⊕ ϕ) is immediate from definition of representation and item (e).
For the other inclusion we proceed by induction on dim(ϕ) = n. If ϕ = 〈b〉 then Dt(ϕ⊕ ϕ) =
Dt(b, b), and the result follows from 5.2.14(15). Now, suppose that holds for n− 1 and let ϕ =
〈b〉⊕ϕ′. Since Dt does not depend on the order of the entries, Dt(ϕ⊕ϕ) = Dt(〈b, b〉⊕(ϕ′⊕ϕ′)).
Let a ∈ Dt(ϕ ⊕ ϕ). By item (e), a ∈ Dt(c, d) with c ∈ Dt(b, b) and d ∈ Dt(ϕ′ ⊕ ϕ′). From
5.2.14(15) we get c = b, and the induction hypothesis gives d ∈ Dt(ϕ′). By item (e) again,
a ∈ Dt(ϕ).

The inclusion D(ϕ) ⊆ D(ϕ ⊕ ϕ) follows at once from a ∈ D(a, a) and item (e). For the other
inclusion, let a ∈ D(ϕ⊕ ϕ). Item (c) implies that a ∈ Dt(a2ϕ⊕ a2ϕ), which – by the above –
coincides with Dt(a2ϕ). But Dt(a2ϕ) ⊆ D(a2ϕ) ⊆ D(ϕ), and so a ∈ D(ϕ), as required.

i - Induction on dim(ψ) = m. Let a ∈ Dt(ϕ), and b ∈ Dt(ψ). If ψ = 〈c〉, then b = c, and item (b)
implies ac = ab ∈ Dt(cϕ) = Dt(ϕ⊗ψ). Now, suppose that holds for n− 1 and let ψ = 〈c〉⊗ψ′.
Then, b ∈ Dt(c, d) for some d ∈ Dt(ψ′), which frm ab ∈ Dt(ac, ad). By induction hypothesis we
also have ad ∈ Dt(ϕ⊗ ψ′). Hence ab = Dt(〈ac〉 ⊕ (ϕ⊗ ψ′)) ⊆ Dt(cϕ⊕ (ϕ⊗ ψ′)) = Dt(ϕ⊗ ψ),
as required. This fact and item (c) imply at once the same result for D.

j - (1)⇒(2) As the representation does not depend on the order of the entries, it suffices to
show −a1 ∈ Dt(−a, a2, ..., an). From a ∈ Dt(a1, ..., an) we get a ∈ Dt(a1, c) for some c ∈
Dt(a2, ..., an). Then by 5.2.14(2)

−a1 ∈ Dt(−a, c) and c ∈ Dt(a2, ..., an),

so −a1 ∈ Dt(−a, a2, ..., an).

(2)⇒(1) By symmetry, using the argument in (1)⇒(2) above.

(2)⇒(3) Is immediate from the definition of D and Dt.

(3)⇒(1) Since −ai ∈ D(〈a1, ..., ai−1,−a, ai+1, ..., an〉),

−ai = −aia2
i ∈ Dt(a1a

2
i , ..., ai−1a

2
i ,−aa2

i , ai+1a
2
i , ..., ana

2
i )

so, using the implication (i)⇒(ii), aa2
i ∈ Dt(a1a

2
i , ..., ana

2
i ), for all i = 1, ..., n.

k - Induction on n, using 5.2.14(15) and 5.2.18(e).

Observe that the itens (a)-(g), (i) and the implications (1)⇔(2), (2)⇒(3) in the item (j) are
valid on a pre-real semigroup.

Corollary 5.2.19. The properties below holds in any real semigroup G, for arbitrary a, b, c, x, y ∈
G:

a - a ∈ D(b, c) ∧ b, c ∈ D(x, y)⇒ a ∈ D(x, y).

b - a ∈ D(b, c)⇔ ab ∈ D(1, bc) ∧ ac ∈ D(1, bc) ∧ a2 ∈ D(b2, c2).

Proof.

a - By assumption and by proposition 5.2.18(a), a ∈ D(b, c) ⊆ D(x, y, x, y) = D(x, x, y, y). By
5.2.18(e) there are p ∈ D(x, x) and q ∈ D(y, y) such that a ∈ D(p, q). From proposition
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5.2.14(5) p = x2p. Further, xp ∈ D(x2, x2) ⊆ D(1, 1), and by 5.2.14(14) xp is an idempotent.
Hence, we have

p = x2p = x(xp) = x(x2p2) = x3p2 = xp2.

Likewise, q = yq2. Using RS4 we obtain a ∈ D(p, q) = D(xp2, yq2) ⊆ D(x, y).

b - (⇒) Assume a ∈ D(b, c). By RS8 and symmetry, only ab ∈ D(1, bc) needs proof. Scaling by b
in the assumption and using RS4 we get ab ∈ D(b2, bc) ⊆ D(1, bc).

(⇐) Multiplying the first conjunction on the right-hand side by b and the second by c, gives
ab2 ∈ D(b, b2c) and ac2 ∈ D(c, bc2). By RS4 both these sets are included in D(b, c). Scaling
a2 ∈ D(b2, c2) by a we obtain a = a3 ∈ D(ab2, ac2). Now use item (a) to conclude the desired.

5.2.3 RS-characters

Next we shall proceed to the construction of RS-characters with specific properties. These
constructions will play a key role in the next sections.

Definition 5.2.20. Let G be a PRS. A subset S ⊆ G is saturated iff for all a, b ∈ S, DG(a, b) ⊆ S.

If h : G → H is a RS-homomorphism, h−1[0] is a saturated prime ideal of G, and if H = 3,
then h−1[{0, 1}] is a saturated prime subsemigroup of G. The following lemma establishes some
consequences of the definition of saturation.

Lemma 5.2.21. Let G be a RS.

a - If I is a saturated ideal of G and a1, ..., an ∈ I then DG(a1, ..., an) ⊆ I.

b - If S is a saturated subsemigroup of G then a1, ..., an ∈ S then DG(a1, ..., an) ⊆ S.

c - For any saturated subsemigroup S of G, Id(G) = DG(1, 1) ⊆ S.

d - Any set of the form DG(a, b) is saturated. Those of the form DG(1, b) are, in addition, sub-
semigroups of G.

Proof. Itens (a) and (b) follows by induction on n, and item (c) is an immediately consequence
of item (b). For the item (d), we have that DG(a, b) is saturated by 5.2.19(a). For the secont
assertion in item (d), let x, y ∈ DG(a, b). By 5.2.18(i), xy ∈ DG(1, b, b, b2). Hence by 5.2.18(e)
there are elements p ∈ DG(1, b) and q ∈ DG(b, b2) such that xy ∈ DG(p, q). From RS4 we get
q ∈ DG(b, b2) = DG(12 · b, b2 · 1) ⊆ DG(1, b). Then, saturatedness entails xy ∈ DG(1, b).

Of course, all the contents of lemma 5.2.21 holds on a PRS, except the fact that Id(G) =
DG(1, 1).

Proposition 5.2.22. Let G be a RS.

a - If I ⊆ G is an ideal, then [I] =
⋃
{DG(ϕ) : ϕ is a form with entries in I} is the smallest

saturated ideal containing I.

b - If S ⊆ G is a subsemigroup, then [S] =
⋃
{DG(ϕ) : ϕ is a form with entries in S} is the

smallest saturated subsemigroup containing S.
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c - Let I be a saturated ideal and x ∈ G. Then

[I ∪ x ·G] =
⋃
{DG(〈i〉 ⊕ xϕ) : i ∈ I and ϕ is a form over G}.

d - Let S be a saturated subsemigroup and x ∈ G. Then

[S ∪ x · S] =
⋃
{DG(s, xt) : s, t ∈ S}.

Proof. We shall write I(x) for X ∪ x ·G, and S(x) for S ∪ x · S. For A ⊆ G, the expression “form
over A” means a form with entries in A.

a - Let J =
⋃
{D(ϕ) : ϕ a form with entries in I}. J is an ideal containing I. If a, b ∈ J and ϕ,ψ

are forms over I such that a ∈ D(ϕ), b ∈ D(ψ), then D(a, b) ⊆ D(ϕ ⊕ ψ) (by 5.2.18(e)) and
ϕ⊕ ψ is also a form over I, so that D(a, b) ⊆ J . Follow by 5.2.21(a) that any ideal containing
I also contains J .

b - The proof is similar to that of item (a). To prove that the set on the right-hand side is
multiplicative use 5.2.18(i).

c - We just need to prove ⊆. It follows from item (a) that a ∈ [I(x)] iff a ∈ D(ϕ) for some form
ϕ over I(x). Since D(ϕ) does not depend on the order of the entries of ϕ, there are forms
ϕ1 over I and ϕ2 so that D(ϕ) = D(ϕ1 ⊕ xϕ2). Let a ∈ D(ϕ1 ⊕ xϕ2). Id dim(ϕ1) = 0 then
a ∈ D(xϕ2) ⊆ D(〈0〉 ⊕ xϕ2), and a belongs to the right-hand side of the equation of item (c).
If dim(ϕ2) = 0, then a ∈ I because I is saturated and ϕ1 has entries in I. If both ϕi’s have
positive dimension, then a ∈ D(b, c) for some b ∈ D(ϕ1), c ∈ D(xϕ2). Since I is saturated,
b ∈ I, and a is in the right-hand side of the equation of item (c).

d - We just need to prove ⊆. Arguing as in item (c), a ∈ [S(x)] iff there are forms ϕ1 and ϕ2 over
S such that a ∈ D(ϕ1 ⊕ xϕ2). Then, a ∈ D(b, c) for some b ∈ D(ϕ1), c ∈ D(xϕ2). By letting
b = 1, c = a if dim(ϕ1) = 0 and b = a, c = x if dim(ϕ2) = 0, and invoking saturatedness and
5.2.18(c) otherwise, in all cases we have b ∈ S and c = x2c = x(xc). Since xc ∈ D(x2ϕ2) and
x2 ∈ S, x2ϕ2 is a form over S and, by saturatedness again, xc ∈ S. Then, with s = b and
t = xc, the inclusion ⊆ holds.

Note that all this also holds in a pre-real semigroup.

Corollary 5.2.23. Let M be a multiplicative subset of a RS, G, and let I be a saturated ideal
disjoint from M . Let J be a saturated ideal containing I and maximal for being disjoint from M .
Then J is prime. In particular, a saturated ideal maximal for not containing a given element is
prime.

Proof. Assume, towards a contradiction, that there are a, b /∈ J such that ab ∈ J . By the max-
imality assumption, [J(a)] ∩M 6= ∅ and [J(b)] ∩M 6= ∅. Let x and y be, respectively, in these
sets. By proposition 5.2.22(c) there are i, j ∈ J and forms ϕ1, ϕ2 such that x ∈ D(〈i〉 ⊕ aϕ1) and
y ∈ D(〈j〉 ⊕ bϕ2). Hence

xy ∈ D((〈i〉 ⊕ aϕ1)⊕ (〈j〉 ⊕ bϕ2)).

Since ab ∈ J , all entries of the latter form are in J , which from, by saturatedness, xy ∈ J . But we
also have xy ∈M , contradictiong that M ∩ J = ∅.

For the last assertion, let M = Dt(〈a2〉) = {a2}, where a is the element of G to be avoided.
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The following lemma is the analog of Lemma 5.2.5 for RS. This result, together with Lemma
5.2.6 below, are the main tools in constructing RS-characters.

Lemma 5.2.24. Let G be a RS. Let I ⊆ G be a saturated prime ideal. Let S ⊆ G be a saturated
subsemigroup maximal for the condition S ∩ −S = I. Then, S ∪ −S = G. Such an S determines
a RS-character h : G→ 3, such that h−1[0] = I and h−1[0, 1] = S.

Proof. Assume, towards a contradiction, that there is a ∈ G \ (S ∪ −S). By maximality of S we
have [S(a)]∩−[S(a)] ⊇ I and [S(−a)]∩−[S(−a)] ⊇ I. Let x1, x2 ∈ G\I be such that ±x1 ∈ [S(a)]
and ±x2 ∈ [S(−a)]; then −x2

1 ∈ [S(a)] and −x2
2 ∈ [S(−a)]. By proposition 5.2.22(d) there are

elements s1, s2, t1, t2 ∈ S such that −x2
1 ∈ Dt(s1, s2a) and −x2

2 ∈ Dt(t1, t2(−a)). From RS6 we
get −x2

1 ∈ Dt(x2
1s1, x

2
1s2a) and −x2

2 ∈ Dt(x2
2t1,−x2

2t2a), which from, −x2
1s2a ∈ Dt(x2

1, x
2
1s1) and

x2
2t2a ∈ Dt(x2

2, x
2
2t1). Since a2 ∈ S, it follows that x2

1x
2
2s2t2a

2 ∈ S ∩ −S = I. Since I is prime and
x1, x2, a /∈ I, one of s2 or t2 must be in I. Suppose, for example, that s2 ∈ I; then s2a ∈ I ⊆ S,
and from −x2

1 ∈ D(s1, s2a) we get −x2
1 ∈ S. Thus, x2

1 ∈ S ∩ −S = I, a contradiction. Likewise,
t2 ∈ I leads to a contradiction.

Now, to finalize the proof, get h = hS as the character constructed for the Lemma 5.2.5.

Lemma 5.2.25. Let G be a RS and let a ∈ G. If S is a saturated subsemigroup of G maximal
for the condition a /∈ S, then S is a prime subsemigroup. Such an S determines a RS-character
h : G→ 3 such that h−1[0, 1] = S and h(a) = −1.

Proof. The strategy here, is use 5.2.24 with I = S ∩ −S.

Claim 1. −a2 /∈ S. If −a2 ∈ S, then

a ∈ D(1,−1)⇒ a = a3 ∈ D(a2,−a2) ⊆ S

a contradiction.

Claim 2. S is prime, i.e, if b, c /∈ S then bc /∈ S. For this, suppose bc ∈ S. Since b, c /∈ S,
then by 5.2.22(d), there exists r, s, t, v ∈ S such that −a2 ∈ D(r, bs) and −a2 ∈ D(t, cv). So
−a2 ∈ Dt(a2r, a2bs) and −a2 ∈ Dt(a2t, a2cv), and −a2bs ∈ Dt(a2, a2r) and −a2cv ∈ Dt(a2, a2t).
Then

bca2sv ∈ Dt(−a2rcv,−a2cv) ⊆ Dt(a2r, a2tr, a2, a2t).

Thus, bca2sv ∈ Dt(a2r, w) for some w ∈ Dt(a2tr, a2, a2t). Thus w ∈ S and −a2 ∈ Dt(bca2sv, w) ⊆
S, contradicting Claim 1.

The result now follows from Claim 2 and 5.2.24.

5.2.4 Duality

Theorem 5.2.26 (The Duality Theorem). There is a functorial duality between the category RS
of real semigroups with RS-morphisms and ARS of abstract real spectra with ARS-morphisms.
Moreover, the duality establishes an equivalence between the categories RS and ARSop, the opposite
category of ARS.

Theorem 5.2.27. Let G be a RS and let a ∈ G. Then:

a - If I is a saturated ideal of G not containing the element a, then there exists a RS-character h
such that h(a) 6= 0 and h(x) = 0 for all x ∈ I.
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b - If S is a saturated subsemigroup of G not containing the element a, then there exists a RS-
character h such that h(a) = −1 and h(x) ∈ {0, 1} for all x ∈ S.

Proof.

a - Using Zorn’s Lemma get a saturated ideal J containing I and maximal for the condition a /∈ J ;
J is prime (corollary 5.2.23). Let S be the saturated subsemigroup generated by J ∪ Id(G). We
claim that S ∩ −S = J .

To see this, let x ∈ S ∩ −S; then −x2 ∈ S. By proposition 5.2.22, −x2 ∈ DG(j, y2) for
some j ∈ J , y ∈ G. It follows that −x2 ∈ Dt

G(jx2, y2x2). Scaling by y2 we obtain −x2y2 ∈
Dt
G(jx2y2, x2y2), and then −jx2y2 ∈ Dt(x2y2, x2y2) = {x2y2}, which from x2y2 ∈ J . Since J

is prime, we have either x ∈ J or y ∈ J . If y ∈ J , then saturatedness of J and the condition
−x2 ∈ DG(j, y2) yield x ∈ J , as claimed.

Let T be a saturated subsemigroup containing S and maximal for the property T ∩ −T = J .
By lemma 5.2.24, hT is a RS-character such that h−1

T [0] = J . Since a /∈ J , it follows that
hT (a) 6= 0.

b - Is an immediate consequence of Lemma 5.2.25.

Theorem 5.2.28. Let G be a RS, and let a, b ∈ G. Then:

a - If a /∈ DG(1, b), then there is a RS-character h ∈ XG such that h(b) ∈ {0, 1} and h(a) = −1.

b - If a2 /∈ DG(b2, c2), then there is a RS-character h ∈ XG such that h(b2) = h(c2) = 0 and
h(a2) = 1.

Proof.

a - Assume that a /∈ D(1, b). Since this set is a saturated subsemigroup of G, by theorem 5.2.27(b)
there is a RS-character h such that h(a) = −1 and h(x) ∈ {0, 1} for all x ∈ D(1, b). In
particular, h(b) ∈ {0, 1}.

b - Assume that a2 /∈ D(b2, c2). Let I be the saturated ideal generated by b2 and c2. If a ∈ I, there
are elements x1, ..., xn, y1, ..., yk ∈ G such that a ∈ D(b2x1, ..., b

2xn, c
2y1, ..., c

2yk). Squaring this
representation we obtain

a2 ∈ D(b2x2
1, ..., b

2x2
n, c

2y2
1, ..., c

2y2
k) ⊆ D(b2, ..., b2, c2, ..., c2) ⊆ D(b2, c2),

in contradiction to our assumption. Hence a /∈ I. Theorem 5.2.27(a) gives a RS-character h
such that h(a) 6= 0 and h(x) = 0 for all x ∈ I. In particular, h(a2) = I and h(b) = h(c) = 0.

Finally, the separation result that we actually need in the proof of theorem 5.2.26 is a conse-
quence of the foregoing theorem, and takes the following form:

Theorem 5.2.29 (Separation theorem). Let G be a RS, and let a, b, c ∈ G. Then:

a - a ∈ DG(a, b) iff for all h ∈ XG, h(a) ∈ D3(h(b), h(c)).

b - a ∈ Dt
G(a, b) iff for all h ∈ XG, h(a) ∈ Dt

3(h(b), h(c)).
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c - If a 6= b, there is h ∈ XG such that h(a) 6= h(b).

Proof.

a - We only need to prove the non-trivial implication⇐. Assume a /∈ DG(b, c). By 5.2.19(b) this is
equivalent to ab /∈ D(1, bc) or ac /∈ D(1, bc) or a2 /∈ D(b2, c2). In the first case, 5.2.28(a) yields a
character h ∈ XG such that ab = −1 and h(bc) ∈ {0, 1}. The assumption h(a) ∈ D3(h(b), h(c))
yields h(ab) = h(a)h(b) ∈ D3(h(b2), h(bc)). Note that h(ab) = −1 implies h(b) 6= 0, which
from h(b2) = 1. Thus, we have −1 ∈ D3(1, h(bc)) with h(bc) ∈ {0, 1}, contrary to corollary
5.2.17. A similar argument also excludes the case ac /∈ DG(1, bc). Finally, if a2 /∈ DG(b2, c2),
5.2.28(b) gives a character h such that h(a2) = 1 and h(b2) = h(c2) = 0. The assumption
h(a) ∈ D3(h(b), h(c)) yields, then, ±1 ∈ D3(0, 0), again in contradiction with corollary 5.2.17.

b - Is just consequence of item (a), using the definition of Dt in terms of D.

c - We consider two cases:

Case 1 - a2 = b2.

First remark that either a /∈ DG(1, b) or b /∈ DG(1, a). Oterwise, RS6 would imply a ∈
Dt
G(a2, a2b) = Dt

G(b2, b) and b ∈ Dt
G(b2, b2a) = Dt

G(b2, a), which from −b2 ∈ Dt
G(−a, b)

and −b2 ∈ Dt
G(a,−b), respectively. From RS7 we conclude a = b, contrary to hypothesis.

Theorem 5.2.28(a) yields a character h ∈ XG such that h(a) = −1 and h(b) ∈ {0, 1} or
h(b) = −1 and h(a) ∈ {0, 1}. In both cases, h(a) 6= h(b).

Case 2 - a2 6= b2.

In this case we note that either a2 /∈ DG(b2, b2) or b2 ∈ DG(a2, a2); otherwise, from
RS6 we would have a2 ∈ Dt

G(a2b2, a2b2) and b2 ∈ Dt
G(a2b2, a2b2) and from 5.2.14(15),

a2 = a2b2 = b2, absurd. In either case Theorem 5.2.28(b) yields a character h so that
h(b) = 0 and h(a2) = 1 or h(b) = 1 and h(a) = 0, as required.

We divide the assertion of theorem 5.2.26 in two minors theorems. The reason for this, is
because the functorial analysis in the next sections.

Theorem 5.2.30. Let (G, ·, 1, 0,−1, D,Dt) be a RS. Let XG be the set of RS-characters of G and
G be the image under the evaluation map, i.e, G = {a : a ∈ G}, where a ∈ 3XG denotes the
evaluation at a, i.e, for σ ∈ XG, a(σ) = σ(a). Then (XG, G) is an ARS.

Proof. Verification of the axioms for ARSs becomes an easy matters once it is establishes that our
(axiomatically given) relation DG coincides with the representation relation DXG defined in terms
of XG by the formula

c ∈ DXG(a, b)⇔ ∀x ∈ XG[c(x) = 0 ∨ a(x)c(x) = 1 ∨ b(x)c(x) = 1], ([R])

for a, b, c ∈ G. That is,

a ∈ DG(b, c)⇔ a ∈ DXG(b, c), (D)

or equivalently,

a ∈ Dt
G(b, c)⇔ For every h ∈ XG(h(a) ∈ D3(h(b), h(c))).
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This condition is precisely item (a) of theorem 5.2.29. Note that the corresponding condition for
transversal representation, namely

a ∈ Dt
G(b, c)⇔ a ∈ Dt

XG
(b, c). (Dt)

follows readily from item (b) of theorem 5.2.29 and the characterization of Dt
3 in corollary 5.2.17.

Now we have:

AX1 - Follow by 5.2.29(c).

AX2 - This axiom says, in our terminology, that if S is a saturated subsemigroup of G verifying
−1 /∈ S, S ∪ −S = G and S ∩ −S is a prime ideal, then there is h ∈ XG such that S =
h−1[{0, 1}]. This is just the last assertion of Lemma 5.2.24.

AX3 - Is simply our axiom RS3. The equivalence Dt is used here.

Corollary 5.2.31. The correspondence (G, ·, 1, 0,−1, D,Dt) 7→ (XG, G) provides a functor Φ :
RS → ARS.

Proof. We just need to treat about morphisms. The functor Given a RS-morphism f : G→ H, its
dual Φ(f) = f∗ is defined by composition: given σ ∈ XH , we set f∗(σ) = σ ◦ f .

The map f∗ : (XH , H)→ (XG, G) is, indeed, a morphism of ARSs: for a ∈ G, we have

a ◦ f∗ = f(a); (*)

in fact, for σ ∈ XH ,

(a ◦ f∗)(σ) = a(f∗(σ)) = a(σ ◦ f) = (σ ◦ f)(a) = σ(f(a)) = f(a)(σ),

and the proof is complete.

Theorem 5.2.32. Let (X,G) be an ARS. Then the semigroup (G, ·, 1, 0,−1) endowed with the
representation relation DX defined by [R] above (with XG replaced by X) is a RS.

Proof. The representation relation here is

c ∈ DX(a, b)⇔ ∀x ∈ X[c(x) = 0 ∨ a(x)c(x) = 1 ∨ b(x)c(x) = 1],

for a, b, c ∈ G. Now, we will verify some axioms of RS:

RS 0 - Immediate.

RS 1 - Is just the fact that a(x)a(x) = a(x)2 ∈ {0, 1}.

RS 2 - Let c ∈ DX(a, b). Suppose that c(x)a(x) = 1 (the other cases are similar). Hence,

c(x)d(x)a(x)d(x) ∈ {0, 1},

and this implies that cd ∈ DX(ad, bd).

RS 3 - Is just AX3.
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The axioms RS4-RS8 follows by straightforward calculation as consequence of the fact that a(x)2 ∈
{0.1} for all a ∈ G and all x ∈ X (as we make in RS2 case).

Corollary 5.2.33. The correspondence (X,G) 7→ (G, ·, 1, 0,−1, DX , D
t
X) provides a functor Ψ :

ARS → RS.

Proof. Again, we just need to treat about morphisms. We know that every ARS morphism g :
(Y,H)→ (X,G) induces a RS-morphism g∗ : G→ H: for a ∈ G put

g∗(a) = the unique b ∈ H such that a ◦ g = b.

Now, the desired is consequence of making Ψ(g) = g∗.

Proof of theorem 5.2.26. After 5.2.32, 5.2.30 and their corollaries, we just need to proof that Ψ◦Φ ∼=
IdRS and Φ ◦ Ψ ∼= IdRS . Of course, from 5.2.32 and 5.2.30 is immediate that Ψ ◦ Φ = IdRS and
Φ ◦Ψ = IdRS on objects of both categories. Then, we just need to prove this on the morphisms.

Let f : G → H be a RS-morphism. We must show that Φ(f∗) = f , where Φ(f) = f8 :
(XH , H)→ (XG, G), as defined in 5.2.33. Let Ψ(f∗) = f ′. From the definition of Ψ on morphisms
we have

a ◦ f∗ = f ′(a) for a ∈ G.

This equality, together with (*), yields f(a) = f ′(a) for a ∈ G. Since the evaluation map a 7→ a is
injective (theorem 5.2.29(c)) we get f(a) = f ′(a) for all a ∈ G, i.e, f = f ′.

Let f : (X,G)→ (Y,H) be an ARS-morphism. Given x ∈ X, we have

Φ ◦Ψ(f)(x) = Φ(b ◦ f(x))
(∗)
= f(x) ∼= f(x).

Here, b ∈ H is the unique such that b = a ◦ f and f(x) ∈ Φ(Ψ(H)) ∼= H. Hence, Ψ ◦ Φ ∼= IdRS
and Φ ◦Ψ ∼= IdARS , as desired.

5.3 The Third Functorial Picture

At this moment, our functorial picture is like this:

PCS
∼= // PSG

AWR ' // QS ' // CS
?�

OO

∼= // SG
?�

OO

CSfr
∼= //?�

OO

SGfr
?�

OO

� � // PRS

RAWR
?�

OO

RCS
?�

OO

∼= // RSG
'

%%

?�

OO

� � // RS
?�

OO

AOSop �
� // ARSop

OO

Here SGfr is the category of formally real special groups and and CSfr the category of formally
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real Cordes schemes. For us, CSfr is just the image of the restriction

(SG
∼=−→ CS) �SGfr .

The situation in the ring-theoretic case is drastically harder than the field case. We could
observe that the axioms of real semigroups are more techinical and difficult to deal in comparison
with the special group ones. Because this, there is less intuition and less space to work. We propose
a new approach to this in the next chapter.



Chapter 6

New lands to explore

In this last chapter, we will witness which is, maybe, the most beauty aspect of quadratic forms
theory: the capacity of abstractness the main theorems of the theory. In other words,

The change of point of view again, would produce a new first-order theory of quadratic forms!

Then, over this perspective, we will present the theory of multirings and multifields and “open
the Chamber of The Secrets”!

6.1 An introduction to the Multivalued World

Here, we will present a new theory of Multirings and Multifields, created by M. Marshall and
presented to us in his article [Mar06]. Multirings are just “rings with a multivalued addition”.
With this new approach, many ideas of the ring theory can be imported. We cover and present
the entire article [Mar06].

6.1.1 Multigroups, Multirings and Multifields

Multigroups are a generalization of groups. We can think that a multigroup is a group with a
multivalued operation:

Definition 6.1.1. A multigroup is a quadruple (G, ∗, r, 1), where G is a non-empty set,
∗ : G×G→ P(G) \ {∅} and r : G→ G are functions, and 1 is an element of G satisfying:

i - If z ∈ x ∗ y then x ∈ z ∗ r(y) and y ∈ r(x) ∗ z.

ii - y ∈ 1 ∗ x iff x = y.

iii - With the convention x ∗ (y ∗ z) =
⋃

w∈y∗z
x ∗ w and (x ∗ y) ∗ z =

⋃
t∈x∗y

t ∗ z,

x ∗ (y ∗ z) = (x ∗ y) ∗ zfor all x, y, z ∈ G.

A multigroup is said to be commutative if

iv - x ∗ y = y ∗ x for all x, y ∈ G.

Example 6.1.2. Suppose (G, ·, 1) is a group. Defining ∗(a, b) = {c ∈ G : c = a ·b} and r(g) = g−1,
we have that (G, ∗, r, 1) is a multigroup.

239



240 CHAPTER 6. NEW LANDS TO EXPLORE

We have too, an another description to multigroups, due by Marshall in [Mar06]:

Definition 6.1.3. A multigroup is a quadruple (G,Π, r, i) where G is a non-empty set, Π is a
subset of G×G×G, r : G→ G is a function and i is an element of G satisfying:

I - If (x, y, z) ∈ Π then (z, r(y), x) ∈ Π and (r(x), z, y) ∈ Π.

II - (x, i, y) ∈ Π iff x = y.

III - If ∃p ∈ G such that (u, v, p) ∈ Π and (p, w, x) ∈ Π then ∃q ∈ G such that (v, w, q) ∈ Π and
(u, q, x) ∈ Π.

A multigroup is said to be commutative if

IV - (x, y, z) ∈ Π iff (y, x, z) ∈ Π.

In fact, these definitions decribes the same object, and that connection is estabilished by the
following lemma:

Lemma 6.1.4. For any multigroup G as in the second version, we have:

a - r(i) = i.

b - r(r(x)) = x.

c - (x, y, z) ∈ Π iff (r(y), r(x), r(z)) ∈ Π.

d - (i, x, y) ∈ Π iff x = y.

e - If ∃q ∈ G such that (v, w, q) ∈ Π and (u, q, x) ∈ Π then ∃p ∈ G such that (u, v, p) ∈ Π and
(p, w, x) ∈ Π.

f - For each a, b ∈ G, there exists c ∈ G such that (a, b, c) ∈ Π.

Proof. a - As i = i, (i, i, i) ∈ Π by II. By I, (r(i), i, i) ∈ Π and by II, r(i) = i.

b - x = x
II⇒ (x, i, x) ∈ Π

I⇒ (r(x), x, i) ∈ Π
I⇒ (r(r(x)), i, x) ∈ Π

II⇔ r(r(x)) = x.

c - (x, y, z)
I⇔ (z, r(y), x) ∈ Π

I⇔ (r(z), x, r(y)) ∈ Π
I⇔ (r(y), r(x), r(z)) ∈ Π.

d - Let (i, x, y) ∈ Π.

(i, x, y) ∈ Π
I⇒ (y, r(x), i) ∈ Π

I⇒ (r(y), i, r(x)) ∈ Π

I⇒ r(y) = r(x)
(b)⇒ y = r(r(y)) = r(r(x)) = x.

Conversely, suppose x = y.

x = y ⇒ r(x) = r(y)
II⇒ (r(y), i, r(x)) ∈ Π

I+(b)⇒ (y, r(x), i) ∈ Π
I⇒ (i, x, y) ∈ Π.
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e - (u, q, x) ∈ Π
I⇒ (x, r(q), u) ∈ Π

(c)⇒ (q, r(x), r(u)) ∈ Π. Then, (v, w, q) ∈ Π and (q, r(x), r(u)) ∈
Π, so by axiom III, there exists t ∈ G such that (w, r(x), t) ∈ Π and (v, t, r(u)) ∈ Π.

(w, r(x), t) ∈ Π
(b)⇒ (x, r(w), t) ∈ Π

I⇒ (r(t), w, x) ∈ Π, and

(v, t, r(u)) ∈ Π
(b)⇒ (r(t), r(v), u) ∈ Π

I⇒ (u, v, r(t) ∈ Π.

Hence Defining p = r(t), we have (u, v, p) ∈ Π and (p, w, x) ∈ Π.

f - Hence (b, r(b), i) ∈ Π and (a, i, a) ∈ Π, by (e), there exists c ∈ G such that (a, b, c) ∈ Π and
(c, r(b), a) ∈ Π.

Now, let (G, ∗, r, 1) a multigroup in the sense 6.1.1. We can define a multigroup (G,Π∗, r, i)
taking i = 1 and Π∗ = {(a, b, c) : c ∈ a ∗ b}. The validate of the axioms I,II, III (and IV) for
(G,Π∗, r, i) are direct consequence of axioms i,ii, iii and (iv) in (G, ∗, r, 1).

Conversely, let (G,Π, r, i) a multigroup in the sense 6.1.3. By 6.1.4(f), the function ∗Π : A×A→
P(A)\{∅}, gives by ∗Π(a, b) = a∗Π b := {c ∈ G : (a, b, c) ∈ Π} is well defined. Hence, Let (G, ∗Π, 1)
with 1 = i. Then, the validate of the axioms i,ii (and iv) for (G, ∗Π, 1) are direct consequence of
I,II (and IV) for (G,Π, r, i). For the axiom iii, let x ∈ a ∗Π (b ∗Π c). Then x ∈ a ∗Π q for some
q ∈ b ∗Π c. As (b, c, q) ∈ Π and (a, q, x) ∈ Π, by 6.1.4(e), there exists p ∈ Π such that (a, b, p) ∈ Π
and (p, c, x) ∈ Π and then, x ∈ p ∗Π c with p ∈ a ∗Π b that imply x ∈ (a ∗Π b) ∗Π c. Finally, let
y ∈ (a ∗Π b) ∗Π c. So y ∈ p ∗Π c for some p ∈ a ∗Π b, then and (a, b, p) ∈ Π and (p, c, y) ∈ Π. By III,
there exists q ∈ Π such that (b, c, q) ∈ Π and (a, q, y) ∈ Π. Hence y ∈ a ∗Π q and q ∈ b ∗Π c, that
imply y ∈ a ∗Π (b ∗Π c). Therefore, (G, ∗Π, 1) is a multigroup in the sense 6.1.1.

From here, we will define multirings and study this structure with more details:

Definition 6.1.5. A multiring is a sextuple (R,+, ·,−, 0, 1) where R is a non-empty set, + :
R × R → P(R) \ {∅}, · : R × R → R and − : R → R are functions, 0 and 1 are elements of R
satisfying:

i - (R,+,−, 0) is a commutative multigroup;

ii - (R, ·, 1) is a commutative monoid;

iii - a0 = 0 for all a ∈ R;

iv - If c ∈ a+ b, then cd ∈ ad+ bd. Or equivalently, (a+ b)d ⊆ ab+ bd. If the equality holds, i.e,
(a+ b)d = ab+ bd, we said that R is an hyperring.

R is said to be a multidomain if do not have zero divisors, and R will be a multifield if 1 6= 0 and
every non-zero element of R has multiplicative inverse. We will use two conventions: if Z,W ⊆ R
and x ∈ R, Z +W =

⋃
{x+ y : x ∈ Z, y ∈W} and Z + x = Z + {x} =

⋃
{z + x : z ∈ Z}.

Example 6.1.6.

a - As in example 6.1.2(a), every ring, domain and field is a multiring, multidomain and multifield
respectively.
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b - Q2 = {−1, 0, 1}1 is a multifield with the usual product and the multivalued sum defined by
relations 

0 + x = x+ 0 = x, for every x ∈ Q2

1 + 1 = 1, (−1) + (−1) = −1

1 + (−1) = (−1) + 1 = {−1, 0, 1}

c - Let K = {0, 1} with the usual product and the sum defined by relations x + 0 = 0 + x = x,
x ∈ K and 1 + 1 = {0, 1}. This is a multifield called Krasner’s multifield [Jun18].

Example 6.1.7. Let be V ⊆ Rn an algebraic set and A as the coordinate ring of V , i.e, the ring
R[V ] of polinomial functions f : V → R. Define an equivalence relation ∼ on A by f ∼ g ⇔
f(x) and g(x) has the same sign for all x ∈ V . Thus, Qred(A) = A/ ∼ is called the real reduced
multiring. The operations are defined by:

f ∈ g + h⇔ ∃f ′, g′, h′ ∈ A
such that f ′ = g′ + h′, f ′ = f, g′ = g, and h′ = h

gh = gh, −f = −f, 0 = 0, 1 = 1

Taking n = 1, we have a counter-example to show that ad + bd ( (a + b)d in general: x2 + x3 ∈
xx + x1 but x2 + x3 /∈ x(x + 1), and this not happen because x2 + x3 > 0 and x(x + 1) < 0 for x
near to 0 with x 6= 0 (see [Mar06]).

Example 6.1.8. In the set R+ of positive real numbers, we define a5 b = {c ∈ R+ : |a − b| ≤
c ≤ a+ b}. We have that R+ with the usual product and 5 multivalued sum is a multifield, called
(real) triangle multifield [Vir10]. We denote this multifield by T R+. Note that a5 0 = {a} and
a5 a = {x ∈ R+ : |x| ≤ a}.

We have some different ways to generalize this construction. If (F,≤) is an ordered field,
we can define the triangle multifield T F = (F+,5, ·, 0, 1), by the same prescription, a 5 b =
{c ∈ F+ : |a − b| ≤ c ≤ a + b}. Here, F+ = {a ∈ F : a ≥ 0}. If (R,P ) is an ordered ring
with supp(P ) = {0} (for example, Z), we can define the triangle multiring T R = (R+,5, ·, 0, 1),
a5 b = {c ∈ R+ : |a− b| ≤ c ≤ a+ b}. Again, R+ = {x ∈ R : x ≥ 0}.

Example 6.1.9. Let n ∈ N and define Xn = {−n, ..., 0, ..., n}. We define + : Xn × Xn →
P(Xn) \ {∅} by:

a+ b =


{sgn(ab) max{|a|, |b|}} if a, b 6= 0

{a} if b = 0

{b} if a = 0

{−a, ..., 0, ..., a} if b = −a

,

and · : Xn ×Xn → P(Xn) \ {∅} by:

a · b =

{
sgn(ab) max{|a|, |b|} if a, b 6= 0

0 if a = 0 or b = 0
.

We will verify that (Xn,+, ·, 0, 1) is a multiring.

i - By construction, a+ b = b+ a, a+ 0 = {a} and 0 ∈ a− a for all a, b ∈ Xn.

1According Marshall’s notation in [Mar06].
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ii - d ∈ a+ b⇔ b ∈ d− a: We divide the proof in cases. Let a 6= −b and suppose without loss of
generality that |a| < |b|. Thus a + b = {b} and a, b ∈ Xb = b − b. If a = −b and d ∈ a − a
then |d| ≤ |a|. Then a ∈ a + d and −a ∈ −a + d. This proves ⇒. For the converse ⇐, just
rewrite the above argument.

iii - (a+ b) + c = a+ (b+ c): Again we divide in cases. We suppose without loss of generality that
a, b, c 6= 0. If a 6= −b and b 6= −c, (a+ b) + c = a+ (b+ c) = {sgn(abc) max{|a|, |b|, |c|}}.
Now let a = −b. We want to prove that (a− a) + c = a+ (−a+ c). If |a| ≤ |c|, (a− a) + c =
Xa + c = {c} and a + (−a + c) = a + c = {c}. If |c| < |a|, then (a − a) + c = Xa + c = Xa

and a+ (−a+ c) = a− a = Xa. The case b = −c is analogous.

iv - Again, by construction (Xn, ·, 1) is a commutative monoid and a · 0 = 0 for all a ∈ Xn.

v - d(a+ b) ⊆ da+ db: If d = 0 there is nothing to prove. Let d 6= 0. If a 6= −b, suppose without
loss of generality that |a| < |b|. Then a+ b = {b} and d(a+ b) = {db} = db+ db.

Now let a = −b. We have two cases:

(a) |d| ≤ |a|: since da = sgn(da)|a|, we have da−da = Xda = Xa and d(a−a) = dXa ⊆ Xa.

(b) |d| > |a|: since da = sgn(da)|d|, we have da−da = Xda = Xd and d(a−a) = dXa ⊆ Xd.

Thus Xn is a multiring (that is not a hyperring if n ≥ 1!). In fact, Xn is a real reduced multiring
for all n ≥ 1. Now define XN =

⋃
n∈N

Xn. XN is a real reduced multiring too, and we can think that

this is a “graded multiring”.

Lemma 6.1.10. Let F be a multifield. Then (a+ b)d = ad+ bd for every a, b, d ∈ F .

Proof. We have (a + b)d ⊆ ad + bd already. For the other inclusion, if d = 0, it is done. If d 6= 0,
we have:

(ad+ bd)d−1 ⊆ (ad)d−1 + (bd)d−1 = ad+ bd⇒
ad+ bd = [(ad+ bd)d−1]d ⊆ (a+ b)d.

Now, we treat about morphisms:

Definition 6.1.11. Let A and B multirings. A map f : A→ B is a morphism if for all a, b, c ∈ A:

i - c ∈ a+ b⇒ f(c) ∈ f(a) + f(b);

ii - f(−a) = −f(a);

iii - f(0) = 0;

iv - f(ab) = f(a)f(b);

v - f(1) = 1.

For multirings, there are various sorts of “substrucutre” that one can consider. If A,B are
multirings, we say A is embedded in B by the morphism ι : A → B if ι is injective. We say A is
strongly embedded inB ifA is embedded inB and, for all a, b, c ∈ A, ι(c) ∈ ι(a)+Bι(b)⇒ c ∈ a+Ab.
We say A is a submultiring of B if A is strongly embedded in B and, for all a, b ∈ A and all c ∈ B,
c ∈ ι(a) +B ι(b)⇒ c ∈ ι(A). Note that in the rings case, these all definitions coincide.
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The category of multifields (respectively multirings) and theirs morphisms will be denoted by
MF (respectively MR).

Some of the properties of rings morphisms are not extend to multirings morphisms. Next, are
some counterexamples:

Example 6.1.12.

a - Let f : A→ B be a multiring morphism. Define

Ker(f) := {a ∈ A : f(a) = 0}.

Ker(f) is a submultiring of A.

b - Let f : A → B be a multiring morphism. If f is injective, them Im(f) := {f(a) : a ∈ A}
is embedded in B, but is not a strong embedding and Im(f) is not a submultiring of B in
general. For example, let R be a ring and define a very trivial multioperation ∗ by a ∗ 0 = {a}
for all a ∈ R and a ∗ b = R if a, b 6= 0. (R, ∗, ·, 0, 1) is a multiring, and considering R as a
multiring, the embedding (R,+, ·, 1, 0) ↪→ (R, ∗, ·, 0, 1) is a bijective multiring morphism that is
a strong embedding but (R,+, ·, 1, 0) is not a submultiring of (R, ∗, ·, 0, 1). If we consider K as
in 6.1.6(b), the inclusion K ↪→ (R, ∗, ·, 0, 1) is a multiring morphism that is an embedded and
is not a strong embedding.

c - Let f : R → Q2 be f(x) = sgn(x), (with convention that sgn(0) = 0). f is a multiring
morphism, but f is not injective and Kerf = {0}. Also R/Kerf is not isomorphic to Q2.

d - The inclusions functions Q2 ↪→ R and T R+ ↪→ R are not multiring morphisms.

e - The inclusion function ι : K → Q2 (K as in 6.1.6(b)) is not a multiring morphism.

6.1.2 Commutative Multialgebra

In the sequel, we will extend some terminology of commutative algebra from multirings and
multifields. As expected, many concepts such that morphisms, ideals, fractions and localizations
has a natural generalization for multirings. We treat of them and explain some pathologies that
appears in the multivalued world.

Definition 6.1.13. An ideal of a multiring A is a non-empty subset of A such that a+ a ⊆ a and
Aa = a. An ideal p of A is said to be prime if 1 /∈ p and ab ∈ p ⇒ a ∈ p or b ∈ p. An ideal m is
maximal if m ⊆ a ⊆ A⇒ a = m or a = A. We will denote Spec(A) = {p ⊆ A : p is a prime ideal}.

With the notion of ideal, we can define some new multirings structures with the language of
commutative algebra in mind:

Definition 6.1.14.

a - If {Ai}i∈I is a family of multirings, then the product Πi∈IAi is a multiring in the natural
(componentwise) way.

b - Let a ⊆ A an ideal. Elements of A/a are cosets a = a + a, a ∈ A. We define a multiring
structure on A/a by a + b = {c : c ∈ a + b}, −a = −a, the zero and the unit element of A/a
are 0 = 0 and 1 = 1 respectively and mutiplication on A/a is defined by ab = ab.
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c - Let S be a multiplicative set in A. Elements of S−1A have the form a/s, a ∈ A, s ∈ S,
a/s = b/t iff atu = bsu for some u ∈ S. 0 = 0/1, 1 = 1/1 and the operations are defined by
(a/s) · (b/t) = ab/st, and c/u ∈ a/s+ b/t iff cstv ∈ atuv + bsuv for some v ∈ S.

d - If D is a multidomain, we define the multifield of fractions ff(D) := (D \ {0})−1D.

Now, we present a construction that will be used several times below:

Definition 6.1.15. Fix a multiring A and a multiplicative subset S of A. Define an equivalence
relation ∼ on A by a ∼ b iff as = bt for some s, t ∈ S. Denote by a the equivalence class of a and
set A/mS = {a : a ∈ A}. Defining a + b = {c : cv ∈ as + bt, for some s, t, v ∈ S}, −a = −a, and
ab = ab we have that (A/mS,+, ·,−, 0, 1) is a multiring, called the Marshall’s quotient of A by
S. When A is a multifield and S =

∑
A∗2, we will denote A/m

∑
A∗2 = Qred(A).

Let S be a non-empty subset of a multiring A. We define the ideal generated by S as
〈S〉 :=

⋂
{a ⊆ A ideal : S ⊆ a}. If S = {a1, ..., an}, we easily check that

〈a1, ..., an〉 =
∑

Aa1 + ...+
∑

An, where
∑

Aa =
⋃
n≥1

{a+ ...+ a︸ ︷︷ ︸
n times

}.

If A satisfy the second-half distributive, then
∑
Aa = Aa.

Lemma 6.1.16.

a - An ideal p of a multiring A is prime iff A/p is a multidomain.

b - An ideal m of a multiring A is maximal iff A/m is a multifield.

c - Every ideal maximal is prime.

Proof. The proof is the same of the ring case.

We cite the following proposition:

Proposition 6.1.17. For any multiring A, Spec(A) has a natural topology giving it the structure
of a spectral space [Hoc69]. Basic open sets have the form D(a) := {p ∈ Spec(A) : a /∈ p}.

We do not deal with spectral spaces here, but there is an excellente and recent book about this
subject [DST19].

6.1.3 Ordering Structures and Artin-Schreier

The standart Artin-Schreier theory (as presented in chapter 2) can be extended to the multifield
theory.

Definition 6.1.18. Let F be a multifield. A subset P of F is called an ordering if P + P =⊆ P ,
P ·P ⊆ P , P ∪−P = F and P ∩−P = {0}. The real spectrum of a multifield F , denoted Sper(F ),
is defined to be the set of all orderings of F .

Proposition 6.1.19. Sper(F ) has a natural topology giving it the structure of a Boolean space.
The sets U(a) := {P ∈ Sper(F ) : a /∈ P}, a ∈ F , are a subbasis for the topology.

Proof. Analogous to proposition 6.1.17.
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Definition 6.1.20. A preordering of a multifield F is defined to be a subset T of F satisfying
T + T ⊆ T , T · T ⊆ T and F 2 ⊆ T . Here, F 2 := {a2 : a ∈ F}. A multifield F is said to be real if
−1 /∈

∑
F 2. If F is real, then −1 6= 1. A preordering T of F is said to be proper if −1 /∈ T .

Lemma 6.1.21. Suppose F is a multifield with −1 6= 1. For a preordering T of F , the following
are equivalent:

i - T is proper.

ii - T 6= F .

Proof. (i)⇒ (ii) is just the definition. For (ii)⇒ (i), suppose that −1 ∈ T and let a ∈ F . If a = 0
then a ∈ T . Suppose a 6= 0 . Fix b ∈ 1 + a. Then b2 ∈ 1 + a+ a+ a2, so b2 ∈ 1 + u+ a2, u ∈ a+ a.
Then u ∈ b2 − 1 − a2 ∈ T . u/a ∈ 1 + 1, so u/a ∈ T . Since −1 6= 1, u 6= 0 and Ṫ is a subgroup of
Ḟ , then a/u = (u/a)−1 ∈ T . Hence a = (a/u)u ∈ T .

Lemma 6.1.22.

a - A preordering which is maximal and proper is an ordering.

b - F has ordering if and only if F is real.

Proof. a - Let P be a preordering of the multifield F which is maximal and proper. If a ∈ F , then
P−aP is also a preordering. If −1 ∈ P−aP , then there exists s, t ∈ P such that −1 ∈ s−at. If
t = 0, then −1 = s ∈ P , a contradiction. Thus t 6= 0. Then at ∈ 1 + s, so a ∈ 1/t+ s/t ⊆ P . If
−1 /∈ P −aP , then by maximality of P , −a ∈ P . This proves that P ∪−P = F . If s ∈ P ∩−P ,
s 6= 0, then s = −t ∈ P , so −1 = s/t ∈ P , contradiction. This proves that P ∩ −P = {0}.

b - By Zorn’s lemma, every preordering is containing in an ordering. This fact with the item (a)
proves the desired.

For a preordering T of F , we will denote by XT the set of all orderings of F with T ⊆ F .

Proposition 6.1.23. Let F be an multifield and T a proper preordering of F . Then T =
⋂

P∈XT
P ,

where XT = {P ∈ Sper(F ) : T ⊆ P}.

Proof. The inclusion “⊆” is immediate. For the inclusion “⊇”, fix a ∈ F , a /∈ T . Then T − aT is a
proper preordering of F (the argument is the same of 6.1.22). By the Zorn’s lemma, there exists
a maximal and proper preordering P such that T − aT ⊆ P . By 6.1.22, P is an ordering, and
−a ∈ P , so a /∈ P .

6.1.4 Real Reduced Multifields

Consider the multifield Q2. {0, 1} is an ordering on Q2. For any ordering P on a multifield F ,
QP (F ) = F/mP ∼= Q2 by a unique isomorphism. Orderings of a multifield F correspond bijectively
to a multiring homomorphism σ : F → Q2 via P = σ−1({0, 1}).

Proposition 6.1.24. For a real multifield F are equivalent:

a - The multiring morphism F → Qred(F ) is an isomorphism;

b -
∑
F 2 = {0, 1};
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c - For all a ∈ F , a3 = a and (a ∈ 1 + 1)⇒ (a = 1).

Proof. (a)⇔(b) Is just the general fact that if σ : F → K is a morphism of real multifields, then
σ
(∑

F 2
)
⊆
∑
K2 and that

∑
Qred(F )2 = {0, 1}.

(a)⇒(c) Qred(F ) already satisfy a3 = a for all a and 1 + 1 = {1}.
(c)⇒(b) We have a2 = 1 for all a 6= 0 and 1 + 1 + ...+ 1︸ ︷︷ ︸

n

= {1} by induction on n. It follows

that
∑
F 2 = F 2 = {0, 1}.

Definition 6.1.25. A multifield F is said to be real reduced if satisfies the equivalent conditions
of proposition 6.1.24.

A morphism of real reduced multifield is just a morphism of multifields. The category of real
reduced multifields will be denoted by MFred.

Corollary 6.1.26. A multifield F is real reduced if and only if a3 = a for all a ∈ F and a ∈
1 + 1⇒ a = 1.

Proof. (⇒) is already done. For (⇐), by proposition 6.1.24 is suffice to prove that F is real.
Therefore, suppose that a3 = a for all a ∈ F and a ∈ 1 + 1 ⇒ a = 1. Then

∑
F 2 = {0, 1}. If

−1 ∈ {0, 1}, then −1 = 0, so 1 = 0 or −1 = 1, so 0 ∈ 1 + 1 = {1}. In both cases, we conclude that
1 = 0, contradiction. Thus −1 /∈

∑
F 2, then F is real.

For any proper preordering T of a real reduced multifield F , QT (F ) is a real reduced multifield.
In particular, Qred(F ) is a real reduced multifield. If p : F1 → F2 is a multiring homomorphism
of real multifields, then p induces a morphism Qred(F1) → Qred(F2). In this way, Qred defines a
functor (a reflection) from the category of real multifields onto the subcategory of real reduced
multifields.

Proposition 6.1.27. Let F be a real reduced multifield, T =
∑
F 2. For any a, b ∈ Ḟ ,

(a+ b)∗ = (Ta+ Tb)∗ = {c ∈ Ḟ : ∀σ ∈ Sper(F ), σ(c) = σ(a), or σ(c) = σ(b)}.

Proof. Since F is a real reduced multifield, T = {0, 1}, so Ta+Tb = {0, a, b}∪(a+b). In particular,
F = T −T = {0, 1,−1}∪ (1−1). To prove (a+ b)∗ = (Ta+Tb)∗, it remais to show a, b ∈ a+ b. By
symmetry, it suffices to show a ∈ a+b. If a 6= ±b, then b/a 6= ±1 so b/a ∈ 1−1, i.e, b ∈ a−a and so
a ∈ a+b. If a = b, 1 ∈ 1+1⇒ a ∈ a+a = a+b, and if a = −b, −b ∈ −b−b⇒ a ∈ a−b⇒ a ∈ a+b.
Therefore (a+ b)∗ = (Ta+ Tb)∗.

If c ∈ Ta+Tb, then σ(a) = σ(b) implies that σ(c) = σ(a). Thus σ(c) = σ(a) or σ(c) = σ(b) for
any σ ∈ Sper(F ). Conversely suppose this holds for any σ. Then σ(b/a) = 1 implies σ(c/a) = 1
for any σ, so by proposition 6.1.23, c/a ∈ T + T (b/a). Multiplying by a, this yields c ∈ Ta+ Tb as
required.

Real reduced multifields have a natural representation in terms of functions:

Theorem 6.1.28 (Local-Global principle). For any real reduced multifield F , the natural embed-

ding F ↪→ Q
Sper(F )
2 is a strong embedding.

Proof. Let F be a real reduced multifield and T =
∑
F 2 = {0, 1}. By proposition 6.1.23, {0, 1} =⋂

P∈XT P (in other words, 1 is the unique element that is positive in all orderings). Hence, if

σ(a) = σ(b) for all σ ∈ XT , then ab is positive in all orderings, so ab = 1 and as a2 = 1, we have
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a = b. Therefore, the multiring morphism from F to Q
Sper(F )
2 defined by a 7→ (σ(a))σ∈Sper(F ) is

injective.
It remais to show that if σ(c) ∈ σ(a) + σ(b) for all σ ∈ Sper(F ) then c ∈ a+ b. If a = 0, then

σ(c) = σ(b) for all σ ∈ XT , so by the argument above. b = c. Similarly, if b = 0 then c = a and if
c = 0, then b = −a. Suppose now that a, b, c are not zero. Then c ∈ a+b by proposition 6.1.27.

In particular, for any real reduced multifield, Sper(F ) separate points of F and c ∈ a+ b ⊆ F
if and only if, for every σ : F → Q2, σ(c) ∈ σ(a) + σ(b).

6.1.5 The Positivstellensatz

We define the real spectrum of a multiring and prove an abstract version of the positivstellen-
satz.

Let A be a multiring. A subset P of A is an ordering if P + P ⊆ P , PP ⊆ P , P ∪ −P = A
and P ∩−P is a prime ideal of A (called the support of A). Orderings of a multiring A correspond
bijectively to multiring homomorphisms σ : A → Q2 via P = σ−1({0, 1}). For a prime ideal p of
A, orderings on A having support contained in p (resp., containing p, resp., equal to p) correspond
bijectively to orderings on the localization of A (resp., on A/p, on ff(A/p)). The real spectrum of
A, denoted Sper(A), is the set of all orderings of A.

Proposition 6.1.29. Sper(A) is endowed with a natural topology making it a spectral space. The
sets U(a) := {σ ∈ Sper(A) : σ(a) = 1}, a ∈ A, are a subbasis for the topology.

Proof. Analogous to proposition 6.1.17.

A preordering of a multiring A is a subset T of A satisfying T + T ⊆ T , TT ⊆ T and A2 ⊆ T .
A preordering T of A is said to be proper if −1 /∈ T . Every ordering is a proper preordering.

∑
A2

us a preordering, and is the unique smallest preordering of A. A multiring A is said to be semireal
if −1 /∈

∑
A2.

Fix a preordering T of A. Define XT := {σ ∈ Sper(A) : σ(T ) = {0, 1}}. A T -module in A is
defined to be a subset M of A satisfying M +M ⊆M , TM ⊆M , and 1 ∈M (so T ⊆M).

Proposition 6.1.30. Suppose T is a preordering of A and M is a T -module in A which is maximal
subject to −1 /∈M . Then M ∩ (−M) is a prime ideal of A, and M ∪ (−M) = A.

Proof. First we show that p = M ∩ −M is an ideal. Let M ′ = {a ∈ A : (a + a) ∩M 6= ∅}. Then
M ′ ⊇ M and M ′ is a T -module. If −1 ∈ M ′, then (−1 − 1) ∩M 6= ∅, say a ∈ (−1 − 1) ∩M .
Then −1 ∈ 1 + a ⊆ M , a contradiction. Thus −1 /∈ M ′. By maximality of M , M = M ′. By
construction, we have p + p ⊆ p, −p = p and Tp ⊆ p. Suppose a ∈ A, b ∈ p are given. Fix
c ∈ 1 + a. Then c2 ∈ 1 + a+ a+ a2, so c2 ∈ 1 + d+ a2 for some d ∈ a+ a. Then d ∈ c2 − 1− a2,
so db ∈ c2b− b− a2b ⊆ p ⊆M . At same time, db ∈ (a+ a)b ⊆ ab+ ab. This proves ab ∈M ′ = M .
A similar argument shows that ab ∈ −M . Thus ab ∈M ∩ −M = p. This proves that p is an ideal
of A.

Next we show that p is prime. Suppose ab ∈ p, a /∈ p, b /∈ p. Replacing a by −a and b by −b
if necessary, we can assume a /∈ M , b /∈ M . Thus −1 lies in the T -module M +

∑
aT and also in

the T -module M +
∑
bT . Then −b2 ∈Mb2 +

∑
ab2T ⊆M (using the fact that ab ∈ p), so b2 ∈ p.

Writing −1 ∈ q + c, q ∈ M , c ∈
∑
bti, ti ∈ T , we have −c ∈ 1 + q, so c2 ∈ 1 + q + q + q2. on the

other hand, c2 ∈
∑
b2titj ⊆ p. This implies −1 ∈ −c2 + q + q + q2 ⊆ M , a contradiction. This

proves that p is a prime ideal.



6.1. AN INTRODUCTION TO THE MULTIVALUED WORLD 249

Finally, we prove that A = M ∪ −M . Suppose a ∈ A with a /∈ M and a /∈ −M . Then
−1 ∈ M +

∑
aT and −1 ∈ M −

∑
aT . Multiplying by a2, and noting that a (

∑
aT ) ⊆ T , this

yelds −a2 ∈M + t1a− a2 and −a2 ∈M − t2a, for some t1, t2 ∈ T . Then −t1a ∈ a2 +M ⊆M , and
t2a ∈ a2 + M ⊆ M , so t1t2a ∈ p. This is not possible. If either of t1 or t2 is in p, then −a2 ∈ M ,
so −1 ∈ M +

∑
aT ⇒ a ∈ −M +

∑
(−a2)T , and −1 ∈ M −

∑
aT ⇒ −a ∈ M +

∑
(−a2)T , then

a ∈ p. If a ∈ p, then a ∈M (and also a ∈ −M), which contradiction our assumption. This proves
A = M ∪ −M .

Corollary 6.1.31. Sper(A) 6= ∅ if and only if −1 /∈
∑
A2. For a preordering T of A, XT 6= ∅ if

and only if T is proper.

Proof. The first assertion follows from the second. If XT 6= ∅ then clearly T is proper. Suppose
now that T is proper. Use Zorn’s lemma to choose a maximal proper preordering P in A with
T ⊆ P , and a P -module M of A maximal subject to −1 /∈M . If P 6= M then for any a ∈M \ P ,
P +

∑
aP is a preordering and P +

∑
aP ⊆ M , so P +

∑
aP is proper. This contradicts the

maximality of P . It follows that P = M . Proposition 6.1.30 implies that P is an ordering.

For a fixed preordering T of A we have a multiring homomorphism A → QXT2 (the product
multiring), given by a 7→ a, where a is defined by a(σ) = σ(a) for all σ ∈ XT .

Proposition 6.1.32. Suppose c, d ∈ A. Then c ≥ 0⇒ d = 0 holds on XT (i.e, σ(c) ≥ 0⇒ σ(d) =
0) if and only if −d2k ∈ T +

∑
A2c for some integer k ≥ 0.

Proof. (⇒) Let B = S−1A, T ′ = S−1T , where S := {d2k : k ≥ 0}, and consider the T -module
T +

∑
A2c and the T ′-module T ′ +

∑
B2c. If −S ∩ (T +

∑
A2c) = ∅, then −1 /∈ T ′ +

∑
B2c,

so there is a T ′-module M in B containing T ′ +
∑
B2c and maximal subject to −1 /∈ M . By

proposition 6.1.30, p := M ∩ −M is a prime ideal. Also, T ′ ⊆ M , so (T ′ + p) ∩ (−T ′ + p) = p.
It follows that the preordering T ′′ := {(a + p)/(b + p) : a, b ∈ T ′, b /∈ p} is a proper preordering
in the multifield F := ff(A/p). Since d /∈ p (d is invertible in B), it follows from our assumption
that c + p ∈/∈ P for all orderings P of F containing T ′′. According to proposition 6.1.23, this
implies that c+ p ∈ −T ′′. This yields elements s, t ∈ T ′ + p with s, t /∈ p such that −sc = t. Then
st ∈ T ′ + p ⊆M and −st = s2c ∈

∑
B2c ⊆M , so st ∈M ∩ −M = p, a contradiction.

(⇐) We already know that σ(d2k) ≥ 0 for all σ ∈ XT . If −d2k ∈ T +
∑
A2c, then −σ(d2k) ≥ 0

for all σ ∈ XT . Hence σ(d2k) = −σ(d2k) = 0 for all σ ∈ XT , and this implies that σ(d) = 0 for all
σ ∈ XT .

Corollary 6.1.33.

a - a = 0 on XT if and only if −a2k ∈ T for some k ≥ 0.

b - a = 1 on XT if and only if −1 ∈ T −
∑
A2a.

c - a ≥ 0 on XT if and only if −a2k ∈ T −
∑
A2a for some k ≥ 0.

d - Fix a ∈ b2 + c2. Then b = c on XT if and only if −a2k ∈ T −
∑
A2bc for some k ≥ 0.

Proof. Apply proposition 6.1.32 as follows: (a) take c = 0, d = a. (b) Take c = −a, d = 1. (c)
Take c = −a, d = a. (d) Take c = −bc, d = a.
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6.1.6 Real Ideals

We indicate briefly how the theory of real ideals and real prime ideals extends to multirings.
An ideal a in a multiring A is said to be real if (

∑
a2
i ) ∩ a 6= ∅ ⇒ ai ∈ a for each i. Every real

ideal is radical in the sense that a2 ∈ a⇒ a ∈ a, i.e, a is the intersection of prime ideals of A. The
converse is not true.

Proposition 6.1.34. For a prime ideal p in a multiring A, the following are equivalent:

a - p is real.

b - The residue multifield ff(A/p) is real.

c - p is the support of some ordering of A.

Proof. (a)⇒(b) If −1 + p ∈
∑
a2
i + p, then 0 ∈ 1 +

∑
a2
i + p, and (1 +

∑
a2
i ) ∩ p 6= ∅. As p is real,

1 ∈ p, contradiction. Then −1 /∈
∑

(A/p)2, and therefore −1 /∈
∑
ff(A/p)2.

(b)⇒(c) By proposition 6.1.22, ff(A/p) has an ordering P . Let P̃ = {ai, bi : ai/bi ∈ P} and
Q = q−1[P̃ ], where q : A→ A/p is the canonical projection. Then Q is the desired ordering.

(c)⇒(a) Is just the fact that an ordering P contains
∑
A2.

Definition 6.1.35. The real radical of an ideal a in A is

R
√
a :=

{
a ∈ A : ∃ bi ∈ A and k ≥ 0 such that

(
a2k +

∑
b2i

)
∩ a 6= ∅

}
.

Proposition 6.1.36. R
√
a is the intersection of all real prime ideals of A containing a.

Proof. The inclusion ⊆ is immediate because R
√
a is real. For ⊇, we use corollary 6.1.33(a). Suppose

that a ∈ p for each real prime ideal p with a ⊆ p. Consider T =
∑
A2 + a (the preordering in A

generated by a). Then a = 0 on XT so, by corollary 6.1.33(a), −a2k ∈ T for some k ≥ 0. Then(
a2k +

∑
b2i
)
∩ a 6= ∅ for some bj , and a ∈ R

√
a.

Proposition 6.1.37. For an ideal a of a multiring A, the following are equivalent:

a - a is real.

b - R
√
a = a.

c - a is the intersection of real prime ideals.

d - a is radical and every minimal prime ideal over a is real.

Proof. We already have (a)⇔(b), and (b)⇔(c) is consequence of proposition 6.1.36. If a is radical,
then a is the intersection of the minimal prime ideals over a, so (d)⇒(3). It remains to show that
(c)⇒(d). Suppose q is a minimal prime ideal over a which is not real. Thus, for every real prime
ideal p of A which a ⊆ p, there exists ap ∈ p such that ap /∈ q. By the compactness of Sper(A) in
the patch topology, there exist finitely many elements a1, ..., an of A such that ai /∈ q for each i,
and for each real prime ideal p with a ⊆ p, ai ∈ p for some i. Let a = a1 · ... · an. Then a ∈ p for
each real prime ideal p containing a so, by (c), a ∈ a. This contradicts a /∈ q.

Definition 6.1.38. A multiring A (with 1 6= 0) is said to be real if the ideal {0} is real.

If a is a real proper ideal of A, then A/a is real. In particular, if −1 /∈
∑
A2, then A/ R

√
{0} is

real.
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6.1.7 Real Reduced Multirings

We assume that A is a multiring with −1 /∈
∑
A2 and T is a proper preordering of A. We

use the notation of section 8.4, where we define the multiring homomorphism A→ QXT2 , given by
a 7→ a, where a is defined by a(σ) = σ(a) for all σ ∈ XT . We want to prove that the image of A
in QXT2 is a multiring which is strongly embedded in QXT2 . Now, we will introduce some notation:

Definition 6.1.39. For a1, ..., an ∈ A, we define the value set of φ = (a1, ..., an) to be

D(φ) = D(a1, ..., an) =
{
b : b ∈

∑
Ta1 + ...+

∑
Tan

}
.

We say that b is represented by φ if b ∈ D(φ).

Lemma 6.1.40.

i - D(a) = {b2a : b ∈ A} = {ta : t ∈ A, t ≥ 0} =
{b : for each σ ∈ XT either b(σ) = 0 or a(σ)b(σ) > 0}.

ii - D(a, b) = {c : for each σ ∈ XT , either c(σ) = 0 or a(σ)c(σ) > 0 or b(σ)c(σ) > 0}.

iii - If n ≥ 3, D(a1, ..., an) =
⋃

c∈D(a2,...,an)

D(a1, c).

iv - D(a1, ..., an) depends only on a1, ..., an (not on the particular representatives a1, ..., an).

Proof. i - Is immediate from definition of D(a).

ii - If c ∈
∑
Ta+

∑
Tb, then c2 ∈

∑
Tac+

∑
Tbc. Follow this, that for any σ ∈ XT , either c(σ) =

0 of one of a(σ)c(σ), b(σ)c(σ) is strictly positive, so c belongs to the second set. Now pick c
such that c belongs to the second set. Denote by A′ the localization of A and the multiplicative
set S = {c2k|k ≥ 0} and let T ′ be the preordering in A′ defined by T ′ = {t/22k : k ≥ 0}. Let
a′ = ac, b′ = bc. On XT ′−

∑
T ′a′ , b > 0, so by corollary 6.1.33(b), −1 ∈ T ′−

∑
T ′a′−

∑
A′2b′.

Multiplying by c2m+1, m sufficiently large, −c2m+1 ∈ Tc −
∑
Ta −

∑
Tb. This yields c1 ∈

(
∑
Ta+

∑
Tb) ∩ (c2m+1 + Tc). It follows that c = c1 ∈ D(a, b).

iii - This folloes from (ii) by induction. Note that D(a, c) depends only on c, not on the particular
representative of c.

iv - For n = 1 and 2, this is immediate from (i) and (ii). For n ≥ 3, it follows by induction on n
using (iii).

Lemma 6.1.41. For a0, ..., an ∈ A, the following are equivalent:

i - There exists a′i ∈ A such that a′i = ai and 0 ∈ a′0 + ...+ a′n.

ii - −ai ∈ D(a1, ..., ai−1, ai+1, ..., an) for i = 0, ..., n.

Proof. (i)⇒(ii) By symmetry, it is suffice to show −a0 ∈ D(a1, ..., an). Since 0 ∈ a′0 + ... + a′n,
−a′0 ∈ a′1 + ...+ a′n, so a0 = a′0 ∈ D(a′1, ..., a′n) = D(a1, ..., an), using lemma 6.1.40(iii).

(ii)⇒(i) We have a′i with a′i = ai such that 0 ∈ a′i+
∑

i 6=j
∑
Taj . Then 0 ∈ 0+...+0 ⊆

∑n
i=0(a′i+∑

i 6=j
∑
Taj) =

∑n
i=0(a′i +

∑
Tai), so there exist a′′i ∈ a′i +

∑
Tai such that 0 ∈ a′′0 + ... + a′′n.

Hence a′′i = ai.
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Denote the image ofA inQXT2 byQT (A). Addition onQT (A) is defined by a+b := {c : c ∈ a+b},
ab := ab, −a := −a. The zero element of QT (A) is 0.

Proposition 6.1.42 (Local-Global principle). Let A be a multiring with −1 /∈
∑
A2 and T a

proper preordering of A. Then:

i - QT (A) is a multiring.

ii - QT (A) is strong embedded in QXT2 .

Proof.

i - Everything is straightforward calculations except the associativity. Let x, u, v, w, p ∈ A such
that p ∈ u + v and x ∈ p + w. Then x ∈ D(p, w) and p ∈ D(u, v), so x ∈ D(u, v, w). Also
−w ∈ −x+p, so −w ∈ D(−x, p), i.e, −w ∈ D(−x, u, v). Also −u ∈ −p+ v and −p ∈ −x+w,
so −u ∈ D(−p, v) and −p ∈ D(−x,w) i.e., −u ∈ D(−x, v, w). According to lemma 6.1.41,
this implies there exist x′, u′, v′, w′ ∈ A such that x′ = x, u′ = u, v′ = v, w′ = w and
x′ ∈ u′ + v′ + w′. Pick q ∈ v′ + w′ such that x′ ∈ u′ + q. Then q ∈ v + w and x ∈ u+ q.

ii - Let a, b, c ∈ A. According to lemma 6.1.41, c ∈ a + b iff c ∈ D(a, b), −a ∈ D(−c, b) and
−b ∈ D(−c, a). According to lemma 6.1.40(ii), this occurs iff for all σ ∈ XT , c(σ)a(σ) > 0
or c(σ)b(σ) > 0 or a(σ)b(σ) < 0 or a(σ) = b(σ) = c(σ) = 0, i.e., iff for all σ ∈ XT ,
c(σ) ∈ a(σ) + b(σ).

The real spectrum of QT (A) is naturally identified with XT . Now that we know that addition is
a well-defined associative operation on subsets of QT (A), we have another more intrinsic description
of value sets:

Corollary 6.1.43. Let T = {t : t ∈ T} = {t : t ∈ A, t ≥ 0}. Then:

i - Ta1 + ..+ Tan = {b : b ∈
∑
Ta1 + ...+

∑
Tan}.

ii - 0 ∈ a1 + ... + an ⇔ −ai ∈
∑

j 6=i Taj, for i = 0, ..., n ⇔ there exists a′0, ..., a
′
n such that

0 ∈ a′1 + ...a′n and a′i = ai, i = 0, ..., n.

Proof. (i) is direct consequence of lemma 6.1.40 and (ii) is direct consequence of 6.1.41.

We restrict our attention now to the case where T =
∑
A2 and consider the multiring morphism

a 7→ a from A into Q
Sper(A)
2 . We denote Q∑

A2(A) by Qred(A) which we refer to as the real
reduced multiring associated to A. The multirings A such that the morphism A → Qred(A) is an
isomorphism are obviously of special interest.

Proposition 6.1.44. For a multiring A with −1 /∈
∑
A2, the map a 7→ a from A onto Qred(A) is

an isomorphism if and only if A satisfies the following properties:

a - a3 = a.

b - a+ ab2 = {a}.
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c - a2 + b2 contains a unique element.

Proof. (⇒) By construction we have (a) and (b) (since a+a = a and b
2

= 1 or b
2

= 0 in Qred(A)).
For (c), if c ∈ a2 + b2, then c2 ∈ (a2 + b2)(a2 + b2) ⊆ a4 +a2b2 +a2b2 + b4 = (a2 +a2b2)+(b2 +a2b2).
Since a2 + a2b2 = {a2} and b2 + a2b2 = {b2}, this implies c2 ∈ a2 + b2. Consequently, c2 = c,
i.e., the unique element of a2 + b2 is necessarily a square. It follows by induction that, for any
a1, ..., an ∈ A, a2

1 + ...+a2
n contains a unique element, which is a square. In particular,

∑
A2 = A2.

(⇐) Let T =
∑
A2 = A2. suppose that a = b. Let c ∈ a2 + b2. Thus −c2k ∈ A2 −

∑
A2ab.

Since c3 = c, c2k = c2. Thus, there exists d ∈
∑
A2ab with d ∈ c2 + A2. ac ∈ a(a2 + b2) ⊆

a3 +ab2 = a+ab2 = a, so ac = a. Similarly, bc = b and cd = c. Thus, ad = (ac)d = a(cd) = ac = a
and, similarly, bd = b. Say d ∈

∑
e2
i ab. Then ab = abd ∈

∑
e2
i a

2b2 ⊆ A2. This implies ab ∈ A2, so
ab = a2b2. Thus, a2 = a2d ∈

∑
e2
i a

3b =
∑
e2
i ab =

∑
e2
i a

2b2 and, similarly, b2 ∈
∑
e2
i a

2b2. Since∑
e2
i a

2b2 is a singleton set, this implies a2 = ab = b2. Finally,

a = a3 = aa2 + ab2 = a(ab) + ab2 = a2b+ ab2 = (ab)b+ ab2 = (ab)b = b2b = b3 = b,

as required.

Definition 6.1.45. A multiring satisfying −1 /∈
∑
A2 and the equivalent conditions of proposi-

tion 6.1.44 will be called real reduced multiring. A morphism of real reduced multirings is just a
morphism of multirings. The category of real reduced multirings will be denoted by MRred.

Corollary 6.1.46. A multiring A is real reduced if and only if the following properties holds for
all a, b, c, d ∈ F :

i - 1 6= 0;

ii - a3 = a;

iii - c ∈ a+ ab2 ⇒ c = a;

iv - c ∈ a2 + b2 and d ∈ a2 + b2 implies c = d.

Proof. As noted above, (ii),(iii) and (iv) imply
∑
A2 = A2. If −1 ∈

∑
A2, then −1 = a2 for some

a, so 0 ∈ 1 + a2. By (iii), 0 = 1 and this contradicts (i). Thus −1 /∈
∑
A2. Now apply proposition

6.1.44 to conclude that A is a real reduced multiring. The converse is immediate.

6.2 Opening the Chamber of The Secrets: The Final Functorial
Picture

In the very end of the work the Chamber of The Secrets is opening: here we connect the new
theory of multirings and multifields with the most significant theories of quadratic forms. This is
(in some way) a new picture: despites of the Marshall’s and Miraglia’s observation about these
connections, it is the first time that this is made explicit. So, because this, the implications of the
multirings and multifieds theory in the abstract theory of quadratic forms are a road to discover.

6.2.1 Multirings, Abstract Ordering Spaces and Special Groups

Theorem 6.2.1. Let (X,G) a space of orderings and set M(G) = G∪ {0} where 0 := {G}. Then
(M(G),+, ·,−, 0, 1) is a real reduced multifield with the extended operations:



254 CHAPTER 6. NEW LANDS TO EXPLORE

• a · b =

{
0 if a = 0 or b = 0

a · b otherwise

• −(a) = (−1) · a

• a+ b =


{b} if a = 0

{a} if b = 0

M(G) if a = −b, and a 6= 0

D(a, b) otherwise

Proof. Firstly, observe that + is well-defined. Then, we will verify the conditions of definition
6.1.5:

i - For this, we will check the conditions of definition 6.1.1.

a - If a = 0 or a = −b, then d ∈ a+b implies trivially that a ∈ d+(−b) and b ∈ (−a)+d. Now,
let a, b 6= 0 with a 6= −b (this implies d 6= 0). We prove that (d(x) ∈ {a(x), b(x)} ∀x ∈
X) ⇒ (a(x) ∈ {d(x),−b(x)} ∀x ∈ X), and it is suffice for prove that a ∈ d + (−b) and
b ∈ (−a) + d. Let x ∈ X. If c(x) = a(x) is done. If c(x) 6= a(x) then c(x) = b(x). If
c(x) = b(x) = 1, then a(x) = −1 = −b(x), and if c(x) = b(x) = −1, then a(x) = 1 =
−b(x), finalizing the argument.

b - (y ∈ x+ 0)⇔ (x = y) is direct consequence of the definition of sum.

c - a+ 0 = 0 + a and a+ (−a) = M(G) = (−a) + a. Let a, b ∈ M(G), a, b 6= 0 and a 6= −b.
How D(a, b) = D(b, a), we have a+ b = b+ a. Then, the commutativity holds.

d - Now we prove the associativity. Let a = 0 (the cases b = 0 and c = 0 are analogous).
Then 0 + (b+ c) = {0 + g : g ∈ b+ c} = b+ c and (0 + b) + c = ({b}) + c = b+ c.

Now, let a, b, c 6= 0 with a = −c.

(a+ b) + (−a) =
⋃
{g + (−a) : g ∈ a+ b} = M(G) (I)

because a ∈ a+ b; and

a+ (b+ (−a)) =
⋃
{a+ h : h ∈ b+ (−a)} = M(G) (II)

because −a ∈ b + (−a). So (I) = (II) and (a + b) + (−a) = a + (b + (−a)). For the case
a, b, c 6= 0, a = −b (the cases b 6= −c is analogous) we have

(a+ (−a)) + c =
⋃
{g + c : g ∈M(G)} = M(G) (III)

and

a+ ((−a) + c) =
⋃
{a+ h : h ∈ (−a) + c} = M(G) (IV)

because −a ∈ (−a) + c. So (III) = (IV) and (a+ (−a)) + c = a+ ((−a) + c). Finally, let
a, b, c 6= 0, a 6= −b, b 6= −c and a 6= −c.

(a+ b) + c = c+ (a+ b) =
⋃
{c+ g : g ∈ a+ b} =

⋃
g∈D(a,b)

D(c, g) (V)
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and
a+ (b+ c) =

⋃
{h+ a : h ∈ b+ c} =

⋃
h∈D(b,c)

D(h, a) (VI)

By the inductive description of the value sets (as in 2.2 of [Mar96]) we have (V) = (VI).
Then (a+ b) + c = a+ (b+ c) for all a, b, c ∈M(G).

ii - We conclude that (M(G), ·, 1) is a commutative monoid as consequence of (G, ·, 1) is an abelian
group and the extended definition of · to M(G). Beyond this, we have that every nonzero
element of M(G) has an inverse.

iii - a · 0 = 0 for all a ∈ M(G) is a consequence of the extended definition of multiplication to
M(G).

iv - If a = 0 or a 6= −b, then (d ∈ a+ b)⇒ ∀g(gd ∈ ga+ gb) is direct consequence of the definition
of sum. Next this, let a, b 6= 0 with a 6= −b and d ∈ a + b = D(a, b). Then d(x) = a(x) or
d(x) = b(x) for all x ∈ X. Hence, g(x)d(x) = g(x)a(x) or g(x)d(x) = g(x)b(x) for all x ∈ X
and gd ∈ ga+ bg. Thus we have g(a+ b) ⊆ ga+ gb for all a, b, g ∈M(G).

Then, (M(G),+,−, ·, 0, 1) is a multifield. As G is a subgroup of {−1, 1}X , we have that G is a
group of exponent 2, i.e, g2 = 1 for all g ∈ G and then, a3 = a for all a ∈M(G). If a ∈ 1 + 1, then
a(x) = x for all x ∈ X. This implies a = 1. Consequently, M(G),+,−, ·, 0, 1) is a real reduced
multifield.

Corollary 6.2.2. The correspondence G 7→M(G) defines a contravariant functor
M : AOSop →MFred.

Proof. Let (X,G) and (Y,H) abstract ordering spaces and α : Y → X be an AOS-morphism. By
definition 4.1.9, α induces a group homomorphism ϕ : G → H given by ϕ(g) = g ◦ α. Define
M(α) = ϕ̃ : M(G)→M(H) extending this morphism ϕ to M(G) making ϕ̃(0) = 0. Note that we
alread have ϕ(1) = 1 and ϕ(−1) = −1.

Then, we just need to prove that for all a, b, c ∈ G, c ∈ a + b ⇒ ϕ̃ ∈ ϕ̃ + ϕ̃. We can suppose
a, b, c 6= 0 and a 6= −b without loss of generality. Hence, we will prove that c ∈ D(a, b) ⇒ ϕ(c) ∈
D(ϕ(a), ϕ(b)).

c ∈ D(a, b)⇒ c(x) = a(x) ∨ c(x) = b(x) ∀x ∈ X ⇒
c(α(y)) = a(α(y)) ∨ c(α(y)) = b(α(y))∀ y ∈ Y ⇒

c ◦ α ∈ D(a ◦ α, b ◦ α)⇒ D(ϕ(a), ϕ(b))

therefore M(ϕ) is a MF-morphism. If (Z,K)
β // (Y,H)

α // (X,G) are AOS-morphism, with

ϕ : G→ H and τ : H → K the respectively induced group homomorphisms, the fact of M(αβ) =
M(β)M(α) is direct consequence of αβ be an AOS-morphism.

Let F be an real reduced multifield. Observe that by the local-global principle for multifield
6.1.28 we have the following identities:

• a ∈ a+ b;

• If a 6= 0, then a+ (−a) = F ;

• a 6= 0⇒ σ(a) 6= 0 for all σ ∈ Sper(F ).
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Now, let χ(F ) = {σ ∈ {−1, 1}F : σ(ab) = σ(a)σ(b)} and define{
X = {x ∈ χ(F ) : x(−1) = −1 and a, b ∈ Ker(x)⇒ a+ b ⊆ Ker(x)}
G = {σ ∈ {−1, 1}X : ∃ f ∈ F such that σ(x) = x(f), ∀x ∈ X}

Lemma 6.2.3. There are bijective correspondences X → Sper(F ) and G→ F .

Proof. We will proof that the correspondence x 7→ x′ : F → Q2, x′(f) = x(f) if f 6= 0 and x′(0) =)
define a bijection A : X → Sper(F ) and the correspondence σ 7→ fσ when σ(x) = x(fσ) for all
x ∈ X define a bijection B : G→ F .

• A and B are well-defined. We need to prove that x′ : F → Q2 is a multifield morphism
and that

⋂
x∈X Ker(x) = {1}, hence by this, x(f) = x(g) for all x ∈ X implies that fg−1 ∈⋂

Ker(x) = {1} and then, f = g.

i - x′ is a morphism. In fact, we just need to prove that a ∈ b + c ⇒ x(a) ∈ x(b) + x(c).
How the zero case is undefined, let a, b, c 6= 0. If x(b) 6= x(c), then x(b) + x(c) = Q2

and it is done. If x(b) = x(c) = 1, a ∈ (b + c)∗ ⊆ Ker(x) ⇒ x(a) ∈ x(b) + x(c). If
x(b) = x(c) = −1, then −a ∈ (−b− c)∗ ⊆ Ker(x)⇒ x(a) ∈ x(b) + x(c).

ii -
⋂
x∈X Ker(x) = {1}. Let a 6= 1 in F ∗. How F is a real reduced multifield,

a /∈ {0, 1} =
∑

F 2 =
⋂

P∈Sper(F )

P.

Let P an ordering such that a /∈ P and σ : F → Q2 its associate morphism. Note that
σ(a) = −1 and σ|F ∗ ∈ X, because

a, b ∈ Ker(σ)⇒ σ(a+ b) ⊆ σ(a) + σ(b) = {1} ⇒ (a+ b)∗ ⊆ Ker(σ|F ∗)

Therefore a /∈
⋂
x∈X Ker(x).

• A and B are injective.

x 6= y ∈ X ⇒ ∃ f ∈ F ∗ such that x(f) 6= y(f)⇒ x′(f) = x(f) 6= y(f) = y′(f).

σ 6= γ ∈ G⇒ ∃x ∈ X such that σ(x) 6= γ(x)⇒ x(fσ) 6= x(fγ)⇒ fσ 6= fγ .

• A and B are surjective. Given σ ∈ Sper(F ), we already proof that σ|F ∗ ∈ X and so A(σ|F ∗) =
σ. For B, let f ∈ F ∗, define σf ∈ {−1, 1}X given by σf (x) = x(f) for all x ∈ X. Then
σf ∈ G and B(σf ) = f .

Theorem 6.2.4. With the above notation, (X,G) is an abstract ordering space.

Proof. Notation: if σ ∈ G, fσ = B(σ) and if f ∈ F ∗, σf = B−1(f). Given σ, γ ∈ G, define
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D(σ, γ) = {τ ∈ G : ∀x ∈ X, τ(x) ∈ {σ(x), γ(x)}}. We have D(σ, γ) = {τ : fτ ∈ (fσ + fγ)∗}.

τ ∈ D(σ, γ)⇔ τ(x) = σ(x) ∨ τ(x) = γ(x)⇔
∀x ∈ X, τ(x) ∈ σ(x) + γ(x)

lemma 6.2.3⇔ K ∈ Sper(F ),K(fτ ) ∈ K(fσ) + (fγ)

local-global principle 6.1.28⇔ fτ ∈ (fσ + fγ).

Now, we will check each axiom of definition 4.1.6:

AX1 - G ⊆ {−1, 1}X is a subgroup, because σfσg = σfg, 1 ∈ G and (σf )−1 = σf−1 . Moreover,
−1 = σ−1 ∈ G, because x(−1) = −1 for all x ∈ X. We alread have that G separate points.

AX2 - Let Π ∈ χ(G) with Π(σ−1) = −1 and σ, γ ∈ Ker(Π) ⇒ D(σ, γ) ⊆ Ker(Π). We need to
find x ∈ X such that Π(σ) = σ(x) for all σ ∈ G.

Define x : F ∗ → {−1, 1} by x(f) = Π(σf ). Note that x ∈ χ(F ) and x(−1) = −1. To proof
that x ∈ X we need that a, b ∈ Ker(x)⇒ (a+ b)∗ ⊆ Ker(x).

a, b ∈ Ker(x)⇒ σa, σb ∈ Ker(Π)⇒ D(σa, σb) ⊆ Ker(Π)

Then
c ∈ (a+ b)∗ ⇒ σc ∈ D(σa, σb) ⊆ Ker(Π)⇒ c ∈ Ker(x)

Therefore, x ∈ X. Moreover, given σ = σf ∈ G, we have

Π(σ) = Π(σf ) = x(f) = σf (x) = σ(x)

finalizing the argument for AX2.

AX3 - Given σ, γ, τ ∈ G, let i ∈ D(σ, j) with j ∈ D(γ, τ). We will show that i ∈ D(σ, j), j ∈
D(γ, τ) ⇒ fi ∈ (fσ + fτ )∗ and fj ∈ (γ+fτ )∗. How the sum in F is associative, there exist
l ∈ fσ + fγ with fi ∈ fl + fγ .

If l = 0, we have fσ = −fγ and fi − fγ and then, fi ∈ (1 + fγ)∗ and 1 ∈ (fσ + fγ)∗ ⇒
i ∈ D(σ1, γ) and σ1 ∈ D(σ, γ). If l 6= 0, i ∈ D(σl, γ) with σl ∈ D(σ, γ).

Theorem 6.2.5. There is an equivalence of categories between AOSop and MFred.

Proof. Define M : AOSop → MFRed and Spec : MFRed → AOSop as we already defined in
corollary 6.2.2 and theorem 6.2.4. Follow that M ◦ Spec ∼= IdMFRed and Spec ◦M ∼= IdAOSop .

Proposition 6.2.6. Let (G,≡,−1) be a special group and define M(G) = G∪{0} where 0 := {G}2.
Then (M(G),+,−, ·, 0, 1) is a multifield, where

• a · b =

{
0 if a = 0 or b = 0

a · b otherwise

• −(a) = (−1) · a
2Here, the choice of the zero element was ad hoc. Indeed, we can define 0 := {x} for any x /∈ G.
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• a+ b =


{b} if a = 0

{a} if b = 0

M(G) if a = −b, and a 6= 0

DG(a, b) otherwise

Proof. Firstly, observe that + is well-defined. Then, we will verify the conditions of definition
6.1.5:

i - For this, we will check the conditions of definition 6.1.1.

a - d ∈ a + 0 = {a} imply d = a, and by this, follow that a ∈ d + (−0) and 0 ∈ (−a) + d.
Let a = −b and d ∈ a + (−a) = M(G). If d = 0, then a ∈ d + (−(−a)) = 0 + a and
−a ∈ (−a)+0. If d 6= 0, then a ∈ DG(d, a) and −a ∈ DG(−a, d) so a ∈ d+(−(−a)) = d+a
and −a ∈ (−a) + d. Finally, let a, b 6= 0 with a 6= −b, and d ∈ a + b. Then there exist
g ∈M(G)\{0} such that 〈d, g〉 ≡ 〈a, b〉. By SG4, 〈d,−a〉 ≡ 〈−g, b〉 (and 〈b,−g〉 ≡ 〈−a, d〉
by SG1). So a ∈ d+ (−b) and b ∈ (−a) + d.

b - (y ∈ x+ 0)⇔ (x = y) is direct consequence of the definition of sum.

c - a+ 0 = 0 + a and a+ (−a) = M(G) = (−a) + a. Let a, b ∈ M(G), a, b 6= 0 and a 6= −b.
How DG(a, b) = DG(b, a), we have a+b = b+a. Then, the commutativity holds. Observe
that if a, b 6= 0 with a 6= −b, then 0 /∈ a+ b.

d - Now we prove the associativity. Let a = 0 (the cases b = 0 and c = 0 are analogous).
Then 0 + (b+ c) = {0 + g : g ∈ b+ c} = b+ c and (0 + b) + c = ({b}) + c = b+ c.

Now, let a, b, c 6= 0 with a = −c.

(a+ b) + (−a) =
⋃
{g + (−a) : g ∈ a+ b} = M(G) (I)

because a ∈ a+ b, and

a+ (b+ (−a)) =
⋃
{a+ h : h ∈ b+ (−a)} = M(G) (II)

because −a ∈ b + (−a). So (I) = (II) and (a + b) + (−a) = a + (b + (−a)). For the case
a, b, c 6= 0, a = −b (the cases b 6= −c is analogous) we have

(a+ (−a)) + c =
⋃
{g + c : g ∈M(G)} = M(G) (III)

and

a+ ((−a) + c) =
⋃
{a+ h : h ∈ (−a) + c} = M(G) (IV)

because −a ∈ (−a) + c. So (III) = (IV) and (a+ (−a)) + c = a+ ((−a) + c). Finally, let
a, b, c 6= 0, a 6= −b, b 6= −c and a 6= −c.

(a+ b) + c = c+ (a+ b) =
⋃
{c+ g : g ∈ a+ b} =

⋃
g∈DG(a,b)

DG(c, g) (V)

and
a+ (b+ c) =

⋃
{h+ a : h ∈ b+ c} =

⋃
h∈DG(b,c)

DG(h, a) (VI)

By SG7 (applying SG5) we have (V) = (VI). Then (a + b) + c = a + (b + c) for all
a, b, c ∈M(G).
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ii - We conclude that (M(G), ·, 1) is a commutative monoid as consequence of (G, ·, 1) is an abelian
group and the extended definition of · to M(G). Beyond this, we have that every nonzero
element of M(G) has an inverse.

iii - a · 0 = 0 for all a ∈ M(G) is a consequence of the extended definition of multiplication to
M(G).

iv - If a = 0 or a 6= −b, then (d ∈ a+ b)⇒ ∀g(gd ∈ ga+ gb) is direct consequence of the definition
of sum. Next this, let a, b 6= 0 with a 6= −b and d ∈ a + b. By SG5 gd ∈ ga + bg. Thus we
have g(a+ b) ⊆ ga+ gb for all a, b, g ∈M(G).

Then, (M(G),+,−, ·, 0, 1) is a multifield.

Corollary 6.2.7. The correspondence G 7→ M(G) defines a full and faithful functor M : SG →
MF .

Proof. Let f : G → H be a SG-morphism. We will extend f to M(f) : M(G) → M(H) by
M(f) �G= f and M(f)(0) = 0. By the definition of SG-morphism we have M(f)(1) = 1,
M(f)(−a) = −a andM(f)(ab) = M(f)(a)M(f)(b). As d ∈ DG(a, b) implies f(d) ∈ DH(f(a), f(b))
we have d ∈ a + b ⇒ M(f)(d) ∈ M(f)(a) + M(f)(b) for all a, b ∈ M(G). So M(f) is a multiring

morphism. Now, let G
f // H

g // K be SG-morphisms. How M(f ◦ g) �G= f ◦ g = M(f) �G
◦M(g) �G and M(f ◦ g)(0) = 0 = M(f) ◦M(g)(0), we have M(f ◦ g) = M(f) ◦M(g). Then
M : SG →MF is a functor.

This functor is faithful, because if G and H are special groups and f, g : G → H are SG-
morphisms such that M(f),M(g) : M(G)→M(H) are equal, then

M(f)|M(G)\{0} = M(g)|M(G)\{0}

and therefore f = g, since M(G) \ {0} = G.

Proposition 6.2.8. Let G be an SG and M(G) as above. Then:

i - a2 = 1 for all a ∈M(G)•;

ii - 1 ∈ 1 + a for all a ∈M(G);

iii - 1 + a is closed by multiplication for all a ∈M(G);

iv - If there exists x, y, z ∈ Ṁ(G) such that
ax = cy

a = xz

d = yz

and


a ∈ c+ y

b ∈ x+ z

c ∈ y + z

then there exists t, v, w ∈ Ṁ(G) such that
bt = cv

b = tw

c = vw

and


b ∈ c+ v

a ∈ t+ w

d ∈ v + w

Proof.
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i - Is just the fact of G be a group of exponent 2.

ii - Trivial.

iii - If a = 0 or a = −1 it is trivial. If a 6= 0,−1, given x, y ∈ 1 + a = DG(1, a), we have
〈x, xa〉 ≡ 〈1, a〉 and 〈y, ya〉 ≡ 〈1, a〉. Multiplying the first equality by one, we have 〈xy, xya〉 ≡
〈y, ya〉 ≡ 〈1, a〉 and then xy ∈ DG(1, a) = 1 + a ≡G.

iv - Is the 3-transitivity.

Definition 6.2.9. A multifield F satisfying the properties i-iv of proposition 6.2.8 will be called a
special multifield (SMF). Note that, if G is a SG, then M(G) is a SMF.

Theorem 6.2.10. If F is a special multifield the (F •,≡,−1) is a special group where 〈a, b〉 ≡
〈c, d〉 ⇔ ab = cd and a ∈ c+ d.

Proof. By (i), we have that (F •, 1) is a group of exponent 2. Now, we will check each axiom of
definition 4.2.1:

SG0 - By (ii) 1 ∈ 1 + ab, so ab ∈ 1 + ab and a ∈ b + a. As ab = ab, then 〈a, b〉 ≡ 〈a, b〉, i.e, ≡ is
reflexive. If 〈a, b〉 ≡ 〈c, d〉, then ab = cd and a ∈ c + d. Then ab ∈ cb + db, so by ab = cd,
we have cd ∈ ad + db and then c ∈ a + b. So 〈c, d〉 ≡ 〈a, b〉 and ≡ is symmetric. Finally,
suppose that 〈a, b〉 ≡ 〈c, d〉 and 〈c, d〉 ≡ 〈e, f〉. First, ab = cd and cd = ef implies ab = ef .
Second, in order to show that a ∈ e + f , note that a ∈ c + d ⇒ ac ∈ 1 + cd = 1 + ef and
c ∈ e + f ⇒ ce ∈ 1 + ef ; then by (iii), we have ae ∈ 1 + ef and so a ∈ e + f . Therefore
〈a, b〉 ≡ 〈e, f〉.

SG1 - As F is a multifield, ab = ba. By (ii), 1 ∈ 1 + ab, then ab ∈ 1 + ba and b ∈ a+ b. Therefore
〈a, b〉 ≡ 〈b, a〉.

SG2 - Since 1 ∈ 1− a, we have a ∈ 1− 1. Therefore 〈a,−a〉 ≡ 〈1,−1〉.

SG3 - Follow by definition.

SG4 - 〈a, b〉 ≡ 〈c, d〉 ⇒ ab = cd and a ∈ c+ d.

ab = cd⇒ −abbc = −bccd⇒ −ac = −bd (6.1)

a ∈ c+ d⇒ ad ∈ 1 + cd = 1 + ab⇒ d ∈ a+ b⇒ a ∈ −b+ d (6.2)

so by 6.1 and 6.2 follow that 〈a,−c〉 ≡ 〈−b, d〉.

SG5 - 〈a, b〉 ≡ 〈c, d〉 ⇒ ab = cd and a ∈ c + d
I⇒ (ga)(gb) = (gc)(gd) and ga ∈ gc + gd ⇒

〈ga, gb〉 ≡ 〈gc, gd〉.

SG6 - We use the equivalences in theorem 4.2.17. 〈a, b, ab〉 ≡ 〈c, d, cd〉 ⇒ there exists x, y, t ∈ F •
such that 

〈a, x〉 ≡ 〈c, y〉
〈b, ab〉 ≡ 〈x, z〉
〈d, cd〉 ≡ 〈y, z〉

⇒


ax = cy and a ∈ c+ y

a = xz and b ∈ x+ z

c = yz and d ∈ y + z
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then by (v) there exists t, v, w ∈ F • such that
bt = cv and b ∈ c+ v

b = tw and a ∈ t+ w

d = vw and d ∈ v + w

⇒


〈b, t〉 ≡ 〈c, v〉
〈a, ab〉 ≡ 〈t, w〉
〈d, cd〉 ≡ 〈v, w〉

this implies 〈b, a, ab〉 ≡ 〈c, d, cd〉.

Corollary 6.2.11. There is a functor S : SMF → SG.

Proof. In the objects of SMF , we define S(F ) = F • how the special group as stated in theorem
6.2.10. Now, let σ : F → K be a SMF-morphism. Define S(σ) = σ|F • . We have that S(σ)
is a group homomorphism with S(σ)(−1) = −1. If a, b 6= 0 and c ∈ a + b, c 6= 0, then there
exists d ∈ F • such that 〈a, b〉 ≡S(F ) 〈c, d〉, and as c ∈ a + b → σ(c) ∈ σ(a) + σ(b), we have
〈σ(a), σ(b)〉 ≡S(K) 〈σ(c), σ(d)〉. Therefore:

(c ∈ a+ b→ σ(c) ∈ σ(a) + σ(b))⇒ (c ∈ DS(F )(a, b)→ σ(c) ∈ DS(K)(σ(a), σ(b)))

And S(σ) is a SG-morphism. Applying the same argument, we proof that S(στ) = S(σ)S(τ).
Hence, S is a morphism.

Theorem 6.2.12. There exist an equivalence of categories between SG and SMF .

Proof. By the corollaries 6.2.7 and 6.2.11, we have functors M : SG → SMF and S : SMF → SG.
We will proof that M ◦ S ∼= IdSMF and S ◦M ∼= IdSG .

i - M ◦ S ∼= IdSMF . Let F be a SMF. How S(F ) = F • and M(S(F )) = S(F ) ∪ {0}, we have
M(S(F )) = F . Next, let σ : F → K be a SMF-morphism. We have that S(σ) = σ|F • and
M(S(σ)) is defined with the extension S(σ)(0) = 0. Therefore M(S(σ)) = σ and M ◦ S ∼=
IdSMF .

ii - S ◦M ∼= IdSG . Let G be a SG. Again, M(G) = G ∪ {0} and S(M(G)) = M(G) \ {0}. Hence
S(M(G)) = G. Next, let f : G → H be a SG-morphism. How M(f) is defined with the
extension f(0) = 0 and
S(M(f)) = M(f)|M(G)\{0}, we have that S(M(f)) = f and S ◦M ∼= IdSG , finalizing the
proof.

We can summarize the functors obtained by the following diagram:

AOSop

' %%
yyRSG
'

99

∼=
//

� _

��

MFredoo

ee

� _

��
SG ∼=

//
SMFoo

Theorem 6.2.13. Let M : SG → SMF the functor defined in 6.2.7.
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i - M preserves products.

ii - M preserves quotients.

iii - M preserves directed limits.

Proof.

i - Firstly, observe that SMF has products, because the categorical equivalence with SG. How-
ever, this product is not the restriction of the product in MF .

Now, let {Gi}i∈I be a family of special groups. The product G =
∏n
i∈I Gi is defined with the

operation and special relation given pontwise, and −1 = (−1,−1, ...), i.e,

〈(ai)i∈I , (bi)i∈I〉 ≡G 〈(ci)i∈I , (di)i∈I〉 ⇔ 〈ai, bi〉 ≡Gi 〈ci, di〉, ∀ i ∈ I.

This implies that (ai)i∈IDG((ci)i∈I , (di)i∈I) iff ai ∈ DGi(ci, di) for all i ∈ I. This argument
shows that

M

(
n∏
i∈I

Gi

)
=

n∏
i∈I

M(Gi).

ii - More specifically, we want to show that if G is a special group and ∆ ⊆ G is a satured
subgroup 3 then M(G/∆) ∼= M(G)/∆̃, when ∆̃ = {M(δ) : δ ∈ ∆}. The isometry relation on
the quotient group G/∆ is:

〈a/∆, b/∆〉 ≡∗G 〈c/∆, d/∆〉 iff


∃ a′, b′, c′, d′ ∈ G such that

aa′, bb′, cc′, dd′ ∈ ∆ and

〈a′, b′〉 ≡G 〈c′, d′〉.

This implies that a/∆ ∈ DG/∆(c/∆, d/∆) iff there exist r, s, t ∈ G such that r ∈ DG(s, t),
with ar, cs, dt ∈ ∆. Multiplying this by arcsdt ∈ ∆, we have a(csdt) ∈ DG(c(ardt), d(arcs)),
and csdt, ardt, arcs ∈ ∆. Aplying the functor, we have a ∈ c+ d in M(G)/∆̃, and the desired
follow by this.

iii - Let G = (Gi, {fij : i ≤ j}, I) be an inductive system of special groups. Let G be the
inductive limit of G and let fi : Gi → G the correspondent SG-morphism associated to this
construction. Then given 〈a, b〉 ≡G 〈c, d〉 iff there exist i ∈ I and ai, bi, ci, di ∈ Gi such that
〈ai, bi〉 ≡Gi 〈ci, di〉 and 〈fi(ai), fi(bi)〉 = 〈a, b〉, 〈fi(ci), fi(di)〉 = 〈c, d〉 (both over G). This is
suffice to show that

M

(
lim−→
i∈I

Gi

)
= lim−→

i∈I
M(Gi).

6.2.2 Multirings, Abstract Real Spectra and Real Semigroups

Theorem 6.2.14. Let (X,G) an abstract real spectra and define a + b = {d ∈ G : d ∈ Dt(a, b)}.
Then (G,+, ·,−, 0, 1) is a real reduced multiring.

3We say that ∆ is saturated if for all a ∈ G, a ∈ ∆⇒ DG(1, a) ⊆ ∆.
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Proof. Firstly, observe that + is well-defined. Then, we will verify the conditions of definition
6.1.5. Commutativity, associativity and neutral element (a ∈ Dt(0, b)⇔ a = b) are immediate. In
fact, the unique non-trivial part of the proof is

a ∈ Dt(b, c)⇒ b ∈ Dt(a,−c) and c ∈ Dt(−b, a).

We will prove that b ∈ Dt(a,−c) and the case c ∈ Dt(−b, a) analogous. Let x ∈ X and a ∈ Dt(b, c).
Remember that a ∈ Dt(b, c) means that a(x)b(x) > 0 or a(x)c(x) > 0 or a(x) = 0 and b(x) = c(x)
happens for all x ∈ X.

If a(x)b(x) > 0, then b(x)a(x) > 0 and it is done. If a(x)c(x) > 0, we have some cases:

• a(x) = c(x) = 1. We can suppose that a(x)b(x) ≤ 0 and b(x) ∈ {0, 1}. If b(x) = 0 it is done.
If b(x) = 1, then b(x)[−c(x)] > 0.

• a(x) = c(x) = 1. Again, we will suppose that a(x)b(x) ≤ 0 and b(x) ∈ {0, 1}. If b(x) = 0 it
is done. If b(x) = 1, then b(x)[−c(x)] > 0.

• a(x) = 0 and b(x) = c(x). If b(x) = c(x) = 0 then b(x) = 0 and a(x) = c(x). If b(x) = c(x) 6=
0, then b(x)c(x) > 0.

Hence G is a multiring. For the real reduced part, we have immediatelly that 1 6= 0 and a3 = a for
all a ∈ G.

c ∈ Dt(a, ab2)⇔ c(x)a(x) = 0 ∨ (c(x) = 0 ∧ a(x) = 0)⇔ c = a

and

c ∈ Dt(a2, b2)⇔ ∀x ∈ G(c(x) = 1 ∨ (c(x) = 0 ∧ a(x)b(x) = 0))

This implies that c is uniquely determined. Therefore, G is a real reduced multiring.

Corollary 6.2.15. There is a functor M : ARSop →MRred.

Proof. Let (X,G) and (Y,H) be abstract real spectras and τ : Y → X be a ARS-morphism.
Define M(X) how the real reduced multiring as in theorem 6.2.14 and M(τ) = f when f : G→ H
is the group homomorphism induced by τ . We have tat c ∈ a + b ⇒ c ∈ Dt(a, b) ⇒ f(c) ∈
Dt(f(a), f(b))⇒ f(c) ∈ f(a) + f(b) by an argument analogous to the corollary 6.2.19. Then M(τ)
is a multiring morphism and this is suffice to prove that M is a (contravariant) functor.

Theorem 6.2.16. Let A be an real reduced multiring and consider the strong embedding i : A →
Q

Sper(A)
2 given by i(a) = â : Sper(A)→ Q2 when â(σ) = σ(a). Define Â = i(A). Then (Sper(A), Â)

is an abstract real spectra.

Proof. We will check each definition of 5.1.25:

AX1 - Is consequence of Â be a submultiring of Q
Sper(A)
2 .

AX2 - Let P be a submonoid of Â such that P ∪ −P = Â, −1 /∈ P , a, b ∈ P ⇒ D(a, b) ⊆ P and
ab ∈ P ∩ −P ⇒ a ∈ P ∩ −P or b ∈ P ∩ −P . First, Fora Temer. Second, observe that

Dt(a, b) = {d : d ∈ a+ b}. (6.3)
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In fact, d ∈ Dt(a, b) if and only if ∀σ ∈ Sper(A), σ(d)σ(a) > 0 or σ(d)σ(b) > 0 or σ(d) = 0,
and σ(a) = −σ(b) if and only if σ(d) ∈ σ(a) + σ(b) for all σ ∈ Sper(A). By the local-global
principle for multirings 6.1.42 we have that this happens if and only if d ∈ a+ b.

AX3 - This is consequence of 6.3 and associativity.

Theorem 6.2.17. There exist an equivalence of categories between ARSop and MRred.

Proof. Define M : ARSop → MRRed and Spec : MRRed → ARS
op as we already defined in

corollary 6.2.15 and theorem 6.2.16. Follow that M ◦Spec ∼= IdMRRed and Spec◦M ∼= IdARSop .

Theorem 6.2.18. Let (G, ·, 1, 0,−1, D) be a realsemigroup and define + : G × G → P(G) \ {∅},
a + b = {d ∈ G : d ∈ Dt(a, b)} and − : G → G by −(g) = −1 · g. Then (G,+, ·,−, 0, 1) is a real
reduced multiring.

Proof. Firstly, observe that by 5.2.14(xv) the sum is well-defined, i.e, Dt(a, b) 6= ∅ for all a, b ∈ G.
Now, we will check that G is a multiring: of course, by RS0 we have a + b = b + a (i.e,

Dt(a, b) = Dt(b, a)) and
d ∈ Dt(a, b)⇔ d ∈ D(a, b) ∧ −a ∈ D(−d, b) ∧ −b ∈ D(a,−d)

a ∈ Dt(d,−b)⇔ a ∈ D(d,−b) ∧ −d ∈ D(−a,−b) ∧ b ∈ D(d,−a)

b ∈ Dt(−a, d)⇔ b ∈ D(−a, d) ∧ a ∈ D(−b, d) ∧ −d ∈ D(−a,−b)

So d ∈ Dt(a, b)⇒ a ∈ Dt(d,−b)∧b ∈ Dt(−a, d), or in other words, d ∈ a+b⇒ a ∈ d+(−b)∧b ∈
(−a) + d. If x = y, by RS1 x ∈ 0 + y. Conversely, let x ∈ 0 + y. We just proved that 0 ∈ x − y
and 0 ∈ y − x then by RS7, x = y. How RS3 states the associativity (like 6.1.3) we have that G is
a commutative multigroup.

Because the commutative semigroup structure of (G, ·,−1, 0, 1), we have that (G, ·, 1) is a
commutative monoid and a · 0 = 0 for all a ∈ G. The distributive law is just 5.2.14(iii), we have
that G is a multiring.

Finally, we prove that G is real reduced. We alread have that −1 6= 0 and a3 = a. We have
too, that 1 ∈ Dt(1, b2) by 5.2.14(ix) then by 5.2.14(iii) a ∈ Dt(a, ab2). Now, how t3 = t we have

t ∈ Dt(v2x,w2y)⇔
t ∈ D(v2x,w2y) ∧ −v2x ∈ D(−t3, w2y) ∧ −w2y ∈ D(v2x,−t3)

RS4⇔ t ∈ D(x, y) ∧ −v2x ∈ D(−t, y) ∧ −w2y ∈ D(x,−t) (6.4)

Hence, how by RS1 −a ∈ D(−a,−x) for all a, x ∈ G, follow

x ∈ Dt(a, ab2)⇔ x ∈ Dt(a2 · a, (ab)2 · a)
6.4⇔

x ∈ D(a, a) ∧ −a ∈ D(−x, a) ∧ −ab2 ∈ D(a,−x)⇔
[x ∈ D(a, a) ∧ −a ∈ D(−x, a) ∧ −a ∈ D(a,−x)] ∧ −ab2 ∈ D(a,−x)⇔

x ∈ Dt(a, a) ∧ −ab2 ∈ D(a,−x)
5.2.14(vii+x)⇔ x = a

Then a + ab2 = {a}. For the last property, we have by theorem 5.2.29(ii), we have that
d ∈ Dt(b2, c2) ⇔ h(d) ∈ Dt

3(h(b2), h(c2)) for every h ∈ XG. Since Dt(t2, s2) is unitary for every
s, t ∈ 3, we have that Dt(b2, c2) is unitary for every b, c ∈ G.
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Hence, by definition 6.1.45 G is a real reduced multiring.

Corollary 6.2.19. There is a full and faithful functor M : RS →MRred.

Proof. Let R,S ∈ RS and f : R → S a RS-morphism. Define M(R) how the real reduced
multiring as in theorem 6.2.18 and M(f) = f . Of course, M(f) is a multiring morphism, because
c ∈ a + b ⇒ c ∈ Dt(a, b) ⇒ f(c) ∈ Dt(f(a), f(b)) ⇒ f(c) ∈ f(a) + f(b). This is suffice to prove
that M is a functor. Full and faithfullyness are immediate.

In order to associate a real semigroup to each real reduced multiring, we are going to set down
some facts about multirings:

Proposition 6.2.20. Let A be a real reduced multiring. Then we have the following:

i - x ∈ ax2 + bx2 if and only if x ∈ aA2 + bA2;

ii - x ∈ a+ b if and only if x ∈ ax2 + bx2, −a ∈ ba2 − xa2 and −b ∈ ab2 − xb2;

iii - If ax = bx, ay = by and z ∈ xz2 + yz2, then az = bz;

iv - If x ∈ ax2 + bx2, then x2 ∈ a2x2 + b2x2.

Proof. Since A is a real reduced multiring, we have by the local-global principle for multirings
6.1.42 that a ∈ b+ c if and only if σ(a) ∈ σ(b) + σ(c) for all σ ∈ Sper(A). So to prove these items
we just need to do it in Q2 which is trivial (it is just an amount of cases).

Theorem 6.2.21. Let A be a real reduced multiring. Then (A, ·, 1, 0,−1, D) is a realsemigroup,
where d ∈ D(a, b)⇔ d ∈ d2a+ d2b.

Proof. Firstly, note that by the preceding proposition, x ∈ D(a, b)⇔ x ∈ aA2 +bA2 and Dt(a, b) =
a+ b.

Now, we will check each axiom of definition 5.2.10:

RS0 - Is just commutativity of sum.

RS1 - It follows by item i of the preceding proposition.

RS2 - a ∈ D(b, c)⇔ a ∈ a2b+ a2c
d3=d⇒ ad ∈ (ad)2bd+ (ad)2cd⇒ ad ∈ D(bd, cd).

RS3 - It is just associativity of sum.

RS4 - It follows by item i of the preceding proposition.

RS5 - It follows by item iii of the preceding proposition.

RS6 - It follows by the characterization of Dt.

RS7 - Since in a real reduced multiring we have a+ a = a, if exist c ∈ a− b with −c ∈ a− b, then
0 ∈ c− c ∈ a− b+ a− b = a− b and then a = b.

RS8 - It follows by item iv of the preceding proposition.

Corollary 6.2.22. There exist an equivalence of categories between
RS and MRred.
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Proof. Define the functor S : MRred → RS as in corollary 6.2.19. The proof of S ◦M ∼= IdRS
and M ◦ S ∼= IdMRred

is mutatis mutandis of theorem 6.2.12.

Of course, we can adapte the proof of theorem 6.2.18 to obtain a functor M : PRS ↪→ MR.
The image of this functor is a subcategory ofMR, that we will call special multirings, and denote
by SMR. Again, we can summarize the functors obtained by the following diagram:

ARSop

' &&
yyRS
'

99

∼=
//

� _

��

MRredoo

ff

� _

��
PRS ∼=

//
SMRoo

Corollary 6.2.23. Let M : RS → MRred the functor defined in 6.2.18. Then M preserves
products and directed limits.

Proof. Follow directly by the definition of product and directed limits in RS.

Finally, we provide a diagram for a better visualization of the functors obtained:

RSG� _

��

//

��

AOSop� _

��

oo

//MFred� _

��

oo

��

SG� _

��

// SMF� _

��

oo

RS //

��

ARSop //

oo MRredoo

��

PRS // SMRoo

6.3 Some final considerations

We hope that our task of

“Establish precisely what are the functorial connections between the abstract theories of quadratic
forms as soon as to create a short and introductory path from the classic theory to the abstract

ones”

has been successfully achieved. The algebraic theory of quadratic forms is a broad and deep subject
of research, and the abstract theories of quadratic forms are teaching us an old an important lesson,
that is
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“If you have a difficult mathematical problem to deal with, it is better to try to abstract it as
many different ways as you can, and ”hear” the ”point of view” that each of these abstractions

would like to say to you.”

Further, we hope that this work has aroused interest in the classical problems of quadratic
form theory and its abstract theories, as well as in this new and promising theory of multirings and
multifields. If this is not the case, at least we leave the complete functorial map of our “Chamber
of The Secrets”4:

ARSop MRred� _

��

RS �
�

// PRS SMR

CSfr QSfr

AOSop
:�

LL

MFred
D$

RR

� _

��

RSG
7�

JJ

� t

''

RAWR �
�

// AWRfr SMFG
'

TT

SGfr
?�

OO

4Here, the arrows without a source and a target indicates equivalence or isomorphism of categories, and the
subscript “fr” indicates a “formally real” notion that, if was not defined, then is the restriction of the equivalence or
isomorphism functor of the entire categorie (like when we define the formally real Cordes Scheme).
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