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Abstract

SALES, M. T. Extremal and probabilistic problems in order types. Dissertation

(Masters) - Institute of Mathematics and Statistics, University of São Paulo, São Paulo,

2018.

A configuration is a finite set of points in the plane. Two configurations have the same

order type if there exists a bijection between them that preserves the orientation of every

ordered triple. A configuration A contains a copy of a configuration B if some subset of A

has the same order type of B and we denote this by B ⊂ A. For a configuration B and a

integer N , the extremal number

ex(N,B) = max{|A| : B 6⊂ A ⊂ [N ]2}

is the maximum size of a subset of [N ]2 without a copy of B. We give an upper bound for

general and convex cases.

A random N -set is a set obtained by randomly choosing N points uniformly and in-

dependently in the unit square. A configuration is n-universal if contains all order types

in general position of size n. We obtain the threshold for the n-universal property up to

a log log factor, that is, we obtain integers N0 and N1 with log logN1 = O(log logN0) such

that if N � N1 (N � N0), then a random N -set is n-universal with probability tending

to 1 (tending to 0). We also determine a bound for the probability of obtaining a random

set without a copy of a fixed configuration.

Keywords: combinatorial geometry, probabilistic method, order types, combinatorics.
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Resumo

SALES, M. T. Problemas extremais e probabiĺısticos em o-tipos. Dissertação (Mes-

trado) - Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, São Paulo, 2018.

Uma configuração é um conjunto finito de pontos no plano. Duas configurações possuem

o mesmo o-tipo se existe uma bijeção entre elas que preserva a orientação de toda tripla

orientada. Uma configuração A contém uma cópia da configuração B se algum subcon-

junto de A possui o mesmo o-tipo que B e denotamos este fato por B ⊂ A. Para uma

configuração B e um inteiro N , o número extremal

ex(N,B) = max{|A| : B 6⊂ A ⊂ [N ]2}

é o maior tamanho de um subconjunto de [N ]2 sem uma cópia de B. Neste trabalho,

determinamos cotas superiores para o caso geral e para o caso convexo.

Um N -conjunto aleatório é um conjunto obtido escolhendo N pontos uniformemente

e independentemente ao acaso do quadrado unitário. Uma configuração é n-universal se

contém todos os o-tipos de tamanho n. Determinamos o limiar da propriedade de um N -

conjunto aleatório ser n-universal a menos de erros da ordem de log log, isto é, determinamos

inteiros N0 e N1 com log logN0 = O(log logN1) tais que se N � N1 (N � N0), então o N -

conjunto aleatório é n-universal com probabilidade tendendo a 1 (tendendo a 0). Também

obtivemos cotas para a probabilidade de um conjunto aleatório não possuir determinado

o-tipo.

Palavras-chave: geometria combinatória, métodos probabilisticos, o-tipos, combinatória.
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Chapter 1

Introduction

Combinatorial geometry is the branch of combinatorics concerned with the study of

combinatorial properties of geometric objects. Most questions in this area are intuitive

easy-to-understand problems about arrangements of simple euclidean objects like points,

lines and circles. For instance, what is the maximum number of incidences between n points

and n lines? What is the minimum number of unity balls needed to cover a box of a given

volume?

These questions have been studied for more than a century, mainly because of the devel-

opment of combinatorics. However, only in the last decades, with the increasing development

of computer technology, the area had gained great attention. Today combinatorial geometry

is one of the most active and largest areas in combinatorics.

One of the most frequent objects of study in this field are finite configurations of points

in the plane. By configuration we mean a set of points in the real plane. Usually, in the

combinatorial context, what differs one configuration from another is not their euclidean

metric properties, but instead its arrangement of points and lines in the plane. For instance,

it does not matter if the diagonals of a convex quadrilateral are perpendicular or not, however

it matters if the four points that we are looking at are convex or not. This leads us to the

natural feeling that configurations of points should be classified by their arrangements of

lines. Such a classification exists and is called the order type of a configuration.

Two configurations are said to be of the same order type if there is a bijection between

them which preserves the orientation of each ordered triple. This is clearly an equivalence

relation and therefore order types are equivalence classes of configurations in the plane.

One can also notice that this definition is basically the same as realizable oriented matroids,

which there exists a vast literature on it (see [4], [5], [27]). We also refer the reader to the

recent monograph of Eppstein [8].

We shall study combinatorial aspects of order types. Past research was done in this

direction. For instance, Károlyi, Solymosi and Toth [22, 23] studied order types in the

context of generalizing the Erdős–Szekeres theorem [9] and Nešetřil and Valtr [25, 26] studied

Ramsey-type problems. In this thesis we will focus on extremal and probabilistic problems

concerning order types.
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2

A configuration A contains a copy of order type B if there exists a subset of A with same

order type of B. When there is no danger of confusion, we write B ⊂ A to mean that order

type A contains a copy of order type B.

Given an order type B of n points in general position, we let

gr(B) = min{N ∈ N : B ⊂ [N ]2},

that is, the minimum grid size N such that there exists a copy with order type B in [N ]2.

Inspired by the graph-theoretic concept of extremal number, let ex(N,B) be the maximum

integer m such that there exists a subconfiguration of [N ]2, of size m, without a copy

of B. We establish a subquadratic upper bound on ex(N,B) that depends only on the

paramter gr(B).

Theorem 1.1. Let B be a configuration of n points in general position. Then

ex(N,B) ≤ 4N2−η,

where η = 1/3n log(3 gr(B)).

In order to prove Theorem 1.1 we will study another problem of independent interest.

Given a configuration B of n points and α > 0 a real number, let f(B,α) be the minimum

integer m such that there exists a configuration A of m points in the plane such that every α-

proportion of A contains a copy of B, that is, every X ⊂ A with |X| ≥ α|A| contains a copy

of B. Let f(n, α) = max{f(B,α) : B is in general position} be the maximum of f(B,α)

over all order types of size n in general position. We give upper and lower bounds for f(n, α).

Theorem 1.2. Let α ≤ 1/2 and n ≥ 3. Then

n2

20α log n
≤ f(n, α) ≤ n2n log(1/α).

On the probabilistic side, we will study problems related to the following random process.

Given an integer N > 0, we construct a set U ⊂ [0, 1]2 by randomly choosing N points in

the unit square uniformly and independently. We will often call U a random N -set. This

random process is well known and was already used in other combinatorial problems (see

for instance [7]). The problem of computing the probability that U has a certain order type

is not well understood. Valtr [34] computed the probability of a random set being convex,

but we do not know much more about the other cases. One of our goals is to provide bounds

for general order types.

Given an integer n > 0, a configuration A is n-universal if A contains a copy of every

order type of size n in general position. Our first probabilistic result gives the threshold for

the n-universal property up to a log log factor.
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Theorem 1.3. There exist positive real numbers c1 and c2 such that the following holds.

Let N > 0 be an integer and U a random N -set. Then,

lim
n→∞

P(U is n-universal) =

1, if N ≥ 22c1n

0, if N ≤ 22c2n .

The second result is a superexponential upper bound for the probability of obtaining a

random set without a copy of a fixed order type.

Theorem 1.4. For every configuration B, there exists a number c := c(B) such that for

every sufficiently large N the following holds. If U is an N -random set, then

P(B 6⊂ U) ≤
(

1

N

)cN
.

This thesis is organized in the following way. In Chapter 2 we discuss preliminary results

on order types that will be helpful for our work. Section 2.1 contains results on the space of

realizations of order types. Some of these results are original and fundamental to the rest of

the work. Section 2.2 introduces some transformations in the real plane that preserve order

types and Section 2.3 solves Chazelle’s encoding problem, that is, the problem of finding

the minimum grid that contains all order types of a given size.

Chapter 3 is devoted to solving the two extremal problems presented above. Section 3.1

is on the study of the density problem in the plane (Theorem 1.2) and Section 3.2 is about

the study of the density problem in the grid (Theorem 1.1). In Chapter 4 we study the

probabilistic model presented in this introduction. Bounds for the probability of a general

order type and Theorem 1.3 are given in Section 4.1. The proof of Theorem 1.4 is presented

in Section 4.2. Throughout the work, we do not try to optimize the constants.



Chapter 2

Preliminary Results

In this chapter we will introduce some important concepts for our work. Denote by [n]

the set of integers {1, 2, . . . , n}. Given two functions f, g : R → R+, we say that f(x) =

O(g(x)) if and only if there exist some constants C > 0 and x0 such that f(x) ≤ Cg(x) for

every x ≥ x0. Also we say that f(x) = o(g(x)) if and only if for every ε > 0 there exists a x0

such that f(x) ≤ εg(x) for every x ≥ x0. When there exist constants c1 and c2 and x0 such

that c1g(x) ≤ f(x) ≤ c2g(x) we say that f(x) = Θ(g(x)). Now we proceed to introduce

basic properties about order types.

2.1 Order types

Given three points x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ R2 let

[xyz] =
1

2

∣∣∣∣∣∣∣
x1 x2 1

y1 y2 1

z1 z2 1

∣∣∣∣∣∣∣ .
be the signed area of the triangle xyz. Also let

sgnx =


−, if x < 0

0, if x = 0

+, if x > 0

be the sign function of the real numbers.

Define χ : (R2)3 → {−, 0,+} as a function that sends an ordered triple of points in

the cartesian plane to the sign of their corresponding signed area. In other words, for an

oriented triple (x, y, z) ∈ (R2)3 we have

χ(x, y, z) = sgn[xyz].

Definition 2.1. A configuration of n points in the plane is an n-subset A ⊂ R2. We say

4



2.1. ORDER TYPES 5

that two configurations A and B have the same order type, and denote by A ∼= B ( A is

isomorphic to B), if there exist a bijection ι : A→ B such that

χ(x, y, z) = χ(ι(x), ι(y), ι(z)), ∀x, y, z ∈ A,

i.e., if ι preserves the orientation of every ordered triple in A3.

Definition 2.1 says that having the same order type is an equivalence relation and there-

fore one can partition the set of configurations into equivalence classes. We call the equiv-

alence class of a configuration A as the order type of A. Notice that Definition 2.1 allows

configurations not in general position, i.e., configurations with three or more collinear points.

So, there exists order types not in general position.

A more geometric approach for defining order types can be given as follows: Consider

the directed straight line −→xy passing through the points x and y, in this order. This straight

line divides the plane into two open half-planes, H+ and H−, the half-planes on the left and

right side of the straight line, respectively. A simple application of linear algebra gives us

χ(x, y, z) =


+, if z ∈ H+

0, if z ∈ −→xy

−, if z ∈ H−
.

Given a configuration A of n points, one can uniquely characterizes its order type by

counting the number of points on the left or right side of every straight line determined

by A. More precisely, let M := M [A] = (mij) be the matrix of entries in A × A such

that mij is the number of points on the left side of the directed straight line
−→
ij for i 6= j

and mij = −1 for i = j. If two configurations A and B are isomorphic, then there exists

bijection ι : A → B such that M [A] = M [ι(A)]. In other words, if two configurations have

the same order type, then there exists a bijection which preserves the number of points on

each side of a line. The converse is also true.

Proposition 2.2 ([14], Theorem 1.8). Two configurations A and B have the same order

type if and only if there exists a bijection ι : A→ B such that M [A] = M [ι(A)].

This approach has the advantage of connecting the definition of order types with the

notion of classifying configurations by its arrangements of points and lines, which from

a practical point of view, makes it easier to identify different order types. For instance,

consider the configurations in Figure 2.1. A convex quadrilateral and a triangle with an

interior point. Although these two configurations have the same number of points, they do

not have the same order type. One can see that by noticing that the convex quadrilateral

has only two lines that divides the configuration in one point to the left and one to the

right (dashed lines) and a triangle with an interior point contains three such lines. Then by

Proposition 2.2 they have different order types. We can also see, by the same proposition,

that all convex n-gon have the same order type and we call this equivalence class as the

convex order type.



2.1. ORDER TYPES 6

Figure 2.1: Two configurations of size 4.

A very natural questions is to ask the number of distinct order types of size n. A first

try would be to use the natural estimation given by Definition 2.1. Since an order type

is uniquely determined by the orientation of ordered triples and there are only 3 choices

for every ordered triple, we obtain there are at most 3(n3) distinct order types. A suprising

result is that this estimation is actually very far from the true. Goodman and Pollack [15]

showed that the number of distinct order types is almost exponential on n.

Theorem 2.3 ([15]). There are 24n logn+O(n) distinct order types of size n.

In general, we will represent order types by their elements and consider any relation

between order types by its representatives. Thus for configurations A and B, we say that A

contains a copy of B if A contains an actual subset X of the same order type of B. When

there is no danger of confusion, we denote this relation by B ⊂ A. For example, a configu-

ration B contains a copy of a convex 5-gon if there exists a subset of B that it is isomorphic

to a convex 5-gon.

For a configuration B of size n, let

Γ[B] = {A ∈ (R2)n : A ∼= B}

be the set of ordered n-tuples in R2 isomorphic to B, i.e., the set of realizations of the order

type of B in (R2)n. Here we abuse the notation and identify an ordered n-tuple with its

underlying configuration. That is, an ordered n-tuple A = (a1, . . . , an) is isomorphic to B

if the underlying set {a1, . . . , an} is isomorphic to B.

Given an ordered n-tuple A = (a1, . . . , an) in (R2)n we can define the vector χA :
(

[n]
3

)
→

{−, 0,+} as

χA(i, j, k) = χ(ai, aj , ak), ∀ 1 ≤ i < j < k ≤ n.

This definition allows us to characterize an order type by its possible labelings. In fact, for

a configuration B, let B1, . . . , Bn! be all the possible ordering of its points. Then the order

type of a configuration B can be characterized by the vectors χBi , for 1 ≤ i ≤ n!. That is,

if a ordered n-tuple A is such that χA = χBi for some i, then A ∼= B.

Although all definitions so far include configurations not in general position, in the text

we will work almost only with order types in general position. The main observation of this

section is that the set of realizations of an order type in general position is open.



2.1. ORDER TYPES 7

Proposition 2.4. Let B be a configuration of n points in general position. Then Γ[B] is

open in R2n.

Proof. Let χ1, . . . , χm be the distinct vectors for all possible orderings of B, with m ≤ n!

(Although we have n! possible orderings, some of them may generate the same vector). For

an ordered configuration A = (a1, . . . , an) ∈ (R2)n we have that A ∼= B if and only if there

exists t ∈ [m] such that χA = χi. It follows that

Γ[B] =

m⋃
t=0

{A ∈ (R2)n : χA = χt}.

Thus if we prove that {A ∈ (R2)n : χA = χt} is open for every 1 ≤ t ≤ m, then we are

done.

Let Φ : (R2)n → {−, 0,+}(
[n]
3 ) be the function given by Φ(A) = χA. Since B is a

configuration in general position, it follows that χt(i, j, k) = + or χt(i, j, k) = − for dis-

tinct i, j, k ∈ [n] and 1 ≤ t ≤ m, which means that χt corresponds to an open set in R([n]
3 ).

Thus {A ∈ (R2)n : χA = χt} = Φ−1(χt) is the preimage of an open set. Since χ is, by

definition, a polynomial with 6 variables, we obtain that χ is continuous and therefore Φ is

also continuous. Finally, using that preimage of continuous function in a open set is open,

we obtain that {A ∈ (R2)n : χA = χt} is open.

Next we explore two related results: The first one shows that we can approximate the

probability of obtaining an order type in a continuous set by the probability of obtaining it

in a discrete set. The second one uses geometric properties to compute how much we can

perturbate a configuration B without changing its order type.

2.1.1 Probabilistic approximation

In this subsection we study how to approximate the probability of an order type in a

unit square by its probability in a grid. Consider the process described in the introduc-

tion, i.e., a n-random set U is a set obtained by choosing randomly and independently n

points in [0, 1]2. The same process could be discretized by replacing the unit square by

the [m]2: For every integer m let Vm be the n-random set obtained by choosing uniformly

and independently n points in the grid [m]2. The next lemma shows that we can compute

probabilities in U by Vm.

Lemma 2.5. Let U be an n-random set in [0, 1]2 and for every integer m, let Vm be an

n-random set in [m]2. Then for any configuration B of n points, the following equality holds

P(U ∼= B) = lim
m→∞

P(Vm ∼= B).

A remark is that P(U ∼= B) always exists. In fact, P(U ∼= B) =
∫

[0,1]2n
1B dµ = µ(B),

where B = ([0, 1]2)n ∩ Γ[B] is all the possible ordered n-tuples isomorphic to B in the unit

square and µ is the Lebesgue measure defined in R2n. There are two possible cases: If B

is in general position, then by Proposition 2.4 the set B is an intersection of a open and a
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closed set, therefore is Lebesgue measurable. If B is not in general position, one can show

(Corollary 2.7) that B is a subset of a set of measure 0 and is also Lebesgue measurable. This

proves the existence of the probability. Our intention is to show more, that B is measurable

in terms of Riemann integrals.

We will follow the approach in [31]. Given a bounded set C let R be a rectangle such

that C ⊂ R. The next theorem is a well-known result in multidimensional real analysis.

Theorem 2.6 ([31], Theorem 3.9). The function 1C : R→ R is Riemann integrable if and

only if the boundary of C has measure 0.

Theorem 2.6 gives us a characterization of integrable indicator functions by the measure

of the boundary of its set. Fortunately, we know how to calculate the measure of ∂B.

Corollary 2.7. Let B be a configuration with n points, not necessarily in general position,

and let B = ([0, 1]2)n ∩ Γ[B]. Then the indicator function 1B : ([0, 1]2)n → R is Riemann

integrable.

Proof. Let C be the set of all configuration of size n not in general position inside [0, 1]2.

We claim that C has measure 0. By the previous observation, we know that µ(C) =

P(U ∈ C) for an n-random set U . Given a triple {x, y, z} ∈
(
U
3

)
, let Ex,y,z be the event

that x, y, z are collinear. Since a straight line has measure 0 in the euclidean plane, we

obtain that P(Ex,y,z) = 0 for every {x, y, z} ∈
(
U
3

)
. Therefore, an union bound argument

shows that

µ(C) = P(U ∈ C) ≤
∑

{x,y,z}∈(U3)

P(Ex,y,z) = 0.

If B is not in general position, then B ⊂ C. Therefore, µ(B) ≤ µ(C) = 0 and 1B is

Riemann integrable by Theorem 2.6, since µ(∂B) ≤ µ(B) = 0. Now if B is in general

position, note that ∂B is contained in the union of the borders of Γ[B] and ([0, 1]2)n. It is

easy to show that µ(∂([0, 1]2)n) = 0. In the proof of Proposition 2.4 we proved that Γ[B] is

a union of preimages of open sets of a continuous polynomials Φ. Those preimages are of

the form O = {A ∈ (R2)n : χA = χC} = Φ−1(χC) for some ordered n-tuple C isomorphic

to B. Since preimage of a closed set of a continuous function is closed, we obtain that ∂O is

the preimage of the border of the open set defined by the image of χC . However the border

of the image of χC corresponds to the image of configurations D such that for some i, j, k,

we have χD(i, j, k) = 0. That is, the preimage of the border corresponds to a union of order

types not in general position, which implies that ∂O ⊂ C. Since Γ[B] is a union of such O’s,

it follows that µ(∂Γ[B]) = 0 and µ(B) = 0.

A partition of [0, 1]d is a collection P = (P1, . . . , Pd), where each Pi is a partition of

intervals of [0, 1]. Let Pi partitions [0, 1] into 0 = a0,i < a1,i < · · · < ati,i = 1. Thus P

partitions [0, 1]d into t1t2 . . . td rectangles PI of the form [ai1−1,1, ai1,1]×· · ·× [aid−1,d, aid,d].

Define the oscillation of a function f : [0, 1]d → R in a rectangle B as

ω(f,B) = sup
x∈B

f(x)− inf
x∈B

f(x).
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One characterization given in [31] of f being Riemann integrable is that for every ε > 0

there exists a partition P such that∑
I∈[t1]×···×[td]

ω(f, PI)µ(PI) < ε.

Given a rectangle B, let

diam(B) = sup
x,y∈B

‖x− y‖

be the diameter of B. The next theorem is a technical result that shows that the last

characterization holds for every partition with sufficiently small rectangles.

Theorem 2.8. Let f : [0, 1]d → R be a Riemann integrable function and ε > 0. Then

there exists δ > 0 such that any partition P of [0, 1]d with diam(PI) < δ, for every I ∈
[t1]× · · · × [td], satisfies ∑

I∈[t1]×···×[td]

ω(f, PI)µ(PI) < ε.

Proof. Since f is Riemann integrable, there exists a partition Q such that∑
J∈[r1]×···×[rd]

ω(f,QJ)µ(QJ) <
ε

2
.

Consider any partition P of [0, 1]d such that diam(PI) < δ. Fixed a rectangle PI of P there

are two possibilities: Either there exists a rectangle QJ of Q such that PI ⊂ QJ , or PI

intersects two or more rectangles of Q. In the first case, by the definition of oscillation, we

obtain ω(f, PI) ≤ ω(f,QJ). In the second case, we use that ω(f, PI) ≤ 2M , where M =

supx∈[0,1]d |f(x)|. Let P1 be the collection of rectangles satisfying the first case, and let P2

be the collection of rectangles satisfying the second case. Thus,

∑
I∈[t1]×···×[td]

ω(f, PI)µ(PI) ≤
∑
PI∈P1

ω(f,QJ)µ(PI) +
∑
PI∈P2

2Mµ(PI)

≤
∑
PI∈P1

ω(f,QJ)µ(QJ) + 2M
∑
PI∈P2

µ(PI)

<
ε

2
+ 2M

∑
PI∈P2

µ(PI).

Therefore we only need to estimate the volume of all rectangles in P2.

Write Q = (Q1, . . . , Qd) where Qi partitions [0, 1] into 0 = b0,i < b1,i < · · · < bri,i = 1.

Every rectangle in P2 intersects at least one hyperplane of the form [0, 1] × · · · × {bj,i} ×
· · · × [0, 1]. Then it makes sense to estimate the volume of all rectangles intersecting such a

hyperplane. Since diam(PI) < δ, any side of PI measures less than δ. Thus, the volume is

less than δ. Because are r1 + · · ·+ rd points bi,j and therefore r1 + · · ·+ rd hyperplanes, we
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obtain ∑
PI∈P2

µ(PI) < δ(r1 + · · ·+ rd).

Taking δ = ε
4M(r1+···+rd) , we have

∑
I∈[t1]×···×[td]

ω(f, PI)µ(PI) ≤
ε

2
+ 2M

∑
PI∈P2

µ(PI) <
ε

2
+
ε

2
= ε.

Now we are able to prove Lemma 2.5.

Proof of Lemma 2.5. For every m ∈ N, let Pm = (Pm1 , . . . , Pm2n) be a partition of [0, 1]2n,

where Pmi = {0, 1/m, . . . , (m− 1)/m, 1} for every 1 ≤ i ≤ 2n. Thus, every rectangle in Pm

is a hypercube of sides 1/m with diameter
√

3/m. Theorem 2.8 and Corollary 2.7 yields

that ∫
[0,1]2n

1B dµ = lim
m→∞

∑
I∈[m]2n

1B(aI)µ(PmI ),

for any choice of aI inside the rectangle PmI .

On the other hand, for every integer m let Gm be the set of centers of the m×m grid

of size 1/m, i.e.,

Gm =

{(2i− 1

2m
,

2j − 1

2m

)
: 1 ≤ i, j ≤ m

}
.

The probability P(Vm ∼= B) is equal to the probability of choosing uniformly and inde-

pendently n points of the set Gm. Write Vm = {x1, . . . , xn} with xi ∈ Gm, and let x =

(x1, . . . , xn) ∈ [m]2n. It turns out that x is the center of some hypercube in P . Thus,

P(Vm ∼= B) =
∑

I∈[m]2n

1B(cI)µ(PmI ),

where cI is the center of the hypercube PmI . Then by the previous paragraph,

P(U ∼= B) =

∫
[0,1]2n

1B dµ = lim
m→∞

∑
I∈[m]2n

1B(cI)µ(PmI ) = lim
m→∞

P(Vm ∼= B).

2.1.2 Geometric lemma

Another consequence of Γ[B] being open, for B in general position, is that for every

configuration A ∼= B there exists a small neighbourhood in each point of A such that any

transversal is also in Γ[B], i.e, isomorphic to B. This leads to the following natural definition.
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Definition 2.9. A configuration X is an ε-perturbation of Y , if there exists a bijection ι :

X → Y such that ||x− ι(x)|| < ε for every x ∈ X. For ordered n-tuples U, V we say that U

is an ε-perturbation of V if ||ui − vi|| < ε for every 1 ≤ i ≤ n.

One can use Definition 2.9 to restate the definition of Γ[B] being open. Indeed, Γ[B] is

open if for every A ∈ Γ[B], there exists ε := ε(A) > 0 such that every ε-perturbation of A

is in Γ[B]. That is, every ε-perturbation of A is isomorphic to A

Our main lemma in this subsection gives an estimate on the size of ε. For a configura-

tion X define ∆min(X) as the minimum area of a triangle with vertices in X. This value

will be positive because B is in general position.

Lemma 2.10. Let X ⊂ [0, L]2 be a configutation in general position. Then every (∆min(X)

L
√

2
)-

perturbation of X is isomorphic to X.

The proof relies on the following geometric fact.

Proposition 2.11. Let ABC be a triangle and l a straight line. Define d(P, l) as the

minimum distance from a point P to l. If h is the minimal height of ABC, then

max{d(A, l), d(B, l), d(C, l)} ≥ h

2
.

Proof. Fix a direction and consider all lines in this direction. Out of all these lines, there

are two of them l1, l2, each one touching a vertex of ABC, such that the gap between them

contains ABC. It is not hard to see that the optimal line, in the fixed direction, which

minimizes the desired function is the line equally spaced to l1 and l2 (see Figure 2.2).

l1
l2

Figure 2.2: The optimal line in a fixed direction (dashed)

Then it follows that for any line l in the fixed direction, max{d(A, l), d(B, l), d(C, l)} ≥
d(l1, l2)/2, where d(l1, l2) is the distance between lines l1 and l2. It remains now to prove

that d(l1, l2) ≥ h. Suppose without loss of generality that l1 and l2 touch vertices A and B,

respectively, and that C is on the half upper plane defined by the line passing through A

and B. Moreover, suppose that B and C are not in the same half open plane determined

by the perpendicular line s to l1, l2 passing through A. We can divide into two cases:

Case 1: B is on s.

If B is on s, it follows that d(l1, l2) = l(AB). Since the minimum height is less than or

equal the length of any side of ABC we are done.
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Case 2: B is on the lower half open plane determined by s.

Let P be the intersection of s with l2 and D the foot of the altitude from vertex A

(Figure 2.3). It is evident that ∠ABD ≤ ∠ABP . Using this and that ABD and ABP share

the same hypotenuse, we obtain d(l1, l2) = AP ≥ AD ≥ h.

A B

C

D

P

l1 l2

Figure 2.3: B is on the lower half plane of s

Proposition 2.11 allows us to show that any sufficient small perturbation of a triangle

maintains the signed area. This is sufficient to prove Lemma 2.10.

Proof of Lemma 2.10. Let ε = ∆min(X)

L
√

2
and write X = {x1, . . . , xn}. Let Y = {y1, . . . , yn}

be an ε-perturbation of X, i.e., a configuration of points such that ||xi − yi|| < ε for

all 1 ≤ i ≤ n. Our aim is to show that sgn[xixjxk] = sgn[yiyjyk] for every 1 ≤ i, j, k ≤ n,

therefore X ∼= Y . Since X is in general position, this is exactly the same as proving

that [xixjxk][yiyjyk] > 0 for every 1 ≤ i, j, k ≤ n. Suppose that it is not true. Then

there exist 1 ≤ i, j, k ≤ n such that [xixjxk][yiyjyk] ≤ 0. We may assume without loss of

generality that [x1x2x3][y1y2y3] ≤ 0.

For t ∈ [0, 1] and 1 ≤ i ≤ 3, let zi(t) = (1−t)xi+tyi. This continuous curve represents the

straight line trajectory from point xi = zi(0) to point yi = zi(1). Consider the continuous

function φ : [0, 1]→ R given by

φ(t) = [x1x2x3][z1(t)z2(t)z3(t)].

Since [x1x2x3] 6= 0, we have φ(0) = [x1x2x3]2 > 0 and φ(1) = [x1x2x3][y1y2y3] ≤ 0. Thus,

by continuity of φ, there exists t0 ∈ (0, 1] such that φ(t0) = 0.

This means that [z1(t0)z2(t0)z3(t0)] = 0, or in other words, that z1(t0), z2(t0) and z3(t0)

are collinear. Let l be the line passing through these three points. An easy calculation shows

that

d(xi, l) ≤ ||xi − zi(t0)|| ≤ ||xi − yi|| < ε, 1 ≤ i ≤ 3.
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By Proposition 2.11 we have h/2 ≤ min{d(x1, l), d(x2, l), d(x3, l)} < ε, where h is the

minimum height of x1x2x3. Thus,

∆min(X) ≤ |[x1x2x3]| = h ·max1≤i,j≤3 ||xi − xj ||
2

≤ Lh
√

2

2
,

Hence, we obtain ε > ∆min(X)

L
√

2
, which is a contradiction.

2.2 Transformations preserving order types

In the last section we discussed a little about the space of realizations of an order type

in general position being open (Proposition 2.4). This led to the observation that any small

perturbation of a configuration does not change its order type and we were able to estimate

how much we can perturb (Lemma 2.5). However, these perturbations are only local and do

not give us information when the configurations are far from each other. Thus it is necessary

to find other ways to preserve an order type. In this section we will study two families of

transformations that have this property.

2.2.1 Affine transformation

An affine transformation T : R2 → R2 is given by

T (x) = Ax+ b, ∀x ∈ R2,

where A is a non-singular 2 × 2 real matrix and b ∈ R2. Types of affine transformations

includes homothety, stretching and translation.

Figure 2.4: A homothety

Affine transformations preserve ratio between area of triangles. One can see that by

noticing that

[T (x)T (y)T (z)] = det(A) · [xyz], ∀x, y, z ∈ R2.
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Indeed, writing that

A =

[
a b

c d

]
, a, b, c, d ∈ R,

we have

[T (x)T (y)T (z)] =
1

2

∣∣∣∣∣∣∣
(T (x))1 (T (x))2 1

(T (y))1 (T (y))2 1

(T (z))1 (T (z))2 1

∣∣∣∣∣∣∣ =
1

2

∣∣∣∣∣∣∣
ax1 + bx2 cx1 + dx2 1

ay1 + by2 cy1 + dy2 1

az1 + bz2 cz1 + dz2 1

∣∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣∣
x1 x2 1

y1 y2 1

z1 z2 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
a c 0

b d 0

0 0 1

∣∣∣∣∣∣∣ = det(A)[xyz].

Therefore, if x, y, z, u, v, w ∈ R2, then

[T (x)T (y)T (z)]

[T (u)T (v)T (w)]
=

det(A)[xyz]

det(A)[uvw]
=

[xyz]

[uvw]
.

We say that an affine transformation T is positive if det(A) > 0. Otherwise, we say

that T is negative. Another important observation is that positive affine transformations

preserve order types.

Proposition 2.12. If T : R2 → R2 is a positive affine transformation, then for every

configuration X we have that T (X) ∼= X.

Proof. Let X = {x1, . . . , xn} ⊂ R2 be a configuration of size n and write T (x) = Ax + b

for A non-singular and b ∈ R2. We want to prove that T (X) ∼= X or that

χ(T (xi), T (xj), T (xk)) = χ(xi, xj , xk), ∀ 1 ≤ i, j, k ≤ n.

However, this is true since

χ(T (xi), T (xj), T (xk)) = sgn[T (xi)T (xj)T (xk)] = sgn(det(A)[xixjxk]) = sgn[xixjxk],

for det(A) > 0.

2.2.2 Projective transformation

Given two points x, y ∈ R3, we say that x ∼ y if and only if there exists λ ∈ R such

that xi = λyi for every 1 ≤ i ≤ 3. The relation ∼ is an equivalence relation and then it

makes sense to define the quotient R3/ ∼. This quotient is called the real projective plane

and is usually denoted by RP 2. By this definition, points and lines in the projective plane

are the quotient of lines and planes passing through the origin in R3, respectively. Also

points and lines are represented in RP 2 by triples in R3 and a line [a, b, c] in RP 2 passes

through a point [x, y, z] ∈ RP 2 if ax+ by + cz = 0.
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One can view the projective plane as the real plane plus an extra line, which is called the

infinity line. In fact, there exists a bijection between the points of the form [a, b, 1], a, b ∈ R
with the real plane R2. The infinity line consists of all points of the form [a, b, 0] and

therefore it is the quotient of the plane z = 0. One of the major differences created by

adding the infinity line is that in projective geometry every two lines intersect in a point

and the intersection of parallel lines occurs in the infinity line. For a more detailed and

precise introduction we suggest [30] and [32].

A projective transformation S : RP 2 → RP 2 is a transformation given by

S([x1, x2, x3]) =

a11 a12 a13

a21 a22 a23

a31 a32 a33


x1

x2

x3


where A = (aij) is a non-singular matrix. That is, a projective transformation is the quotient

of a linear transformation in R3.

Projective transformations preserve incidence. They send concurrent lines to concurrent

lines, collinear points to collinear points and intersections to their corresponding intersec-

tion. However, they do not preserve ratio between lengths and areas. A visual example

of such transformations can be found in Figure 2.5. In Figure 2.5 we have a projective

transformation that sends plane P to plane Q. This transformation also sends the square

in P to a convex quadrilateral in Q.

O

P

Q

Figure 2.5: A projective transformation

The immersion i : R2 ↪→ RP 2 of the real plane in the projective plane given by

i(x, y) = [x, y, 1], ∀x, y ∈ R

allows us to consider the real plane as a subset of the projective plane. With this in mind,

we consider affine transformations as a particular case of projective transformation. In fact,
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given an affine transformation T : R2 → R2,

T (x, y) =

[
a c

b d

][
x

y

]
+

[
e

f

]
= (ax+ cy + e, bx+ dy + f), ∀x, y ∈ R,

where the 2× 2 matrix is non-singular and a, b, c, d, e, f ∈ R. Then the projective transfor-

mation S : RP 2 → RP 2 given by

S([x1, x2, x3]) =

a c e

b d f

0 0 1


x1

x2

x3

 = [ax1 + cx2 + ex3, bx1 + dx2 + fx3, x3]

sends points of the form [x, y, 1] to [ax+ cy+e, bx+dy+f, 1] and points of the form [x, y, 0]

to [ax+ cy, bx+dy, 0]. That is, restricet to the real plane is the affine transformation T and

sends the infinity line to itself.

We will be interested in projective transformations that send configurations in the real

plane to configurations also in the real plane. Since our definition of order type deals with

arrangement of points and lines and projective transformations preserve incidence, it is

natural to consider them as good candidates to preserve order types. Unfortunately, this

is not always true. The next proposition shows that every four points general position

in R2 ⊂ RP 2 can be sent to the unit square in R2 ⊂ RP 2. The unit square is the square

in RP 2 whose vertices are [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1].

Proposition 2.13. For every four points in general position in the real plane, there exists

a projective transformation that sends them to the unit square.

Proof. Le A,B,C,D ∈ R2 be four points in general position and let P,Q be the intersection

of AB with CD and AD with BC, respectively. Consider a projective transformation S1

that sends the line PQ to the infinity line. This is always possible, since the line PQ and

the infinity line are subspaces of rank 2 in R3.

Note that the configuration A′ = S1(A), B′ = S1(B), C ′ = S1(C), D′ = S1(D) is in the

real plane, because A,B,C,D do not belong to the line PQ. Let P ′ = S1(P ) and Q′ = S(Q)

be the corresponding points to P and Q in the infnity line. Since S1 preserves incidence,

we obtain that A′B′ and C ′D′ intersect on the infinity line. Therefore, A′B′ ‖ C ′D′.
Similarly, we obtain A′D′ ‖ B′C ′ and A′B′C ′D′ is a parallelogram. Consider now the

affine trasnformation T that sends B′ − A′ to (1, 0), D′ − A′ to (0, 1) and A′ to (0, 0).

Then, T sends A′B′C ′D′ to the unit square (Here we consider A′, B′, C ′, D′ as points in R2).

Let S2 be the projective transformation that when restricting to the real plane is the affine

transformation T . Thus S1 ◦ S2 is a projective transformation that sends ABCD into the

unit square.

As a consequence, Proposition 2.13 implies that for every convex quadrilateral and tri-

angle with an interior point, there exists a projective transformation sending one to another.

Although the last result shows that not every projective transformation preserves order

types, we could still hope that the converse is true, that for every pair of isomorphic con-
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figurations there exists a projective transformation sending one to another. However, this

is also not the case. One can notice that the space of configurations obtained by projective

transformations of a fixed configuration X is connected, but there exists order types with

space of realization disonnected. For instance, in [35] N. White provides a configuration X

of size 42 such that Γ[X] is disconnected.

Despite this fact, we shall construct a family of order types such that for every pair

of configurations, there exists a projective transformation sending one to another. This

construction will be helpful later to obtain a lower bound for the Chazelle’s encoding problem

(see Lemma 2.21).

Definition 2.14. A order type X = {x1, x2, . . . , xn} with n ≥ 4 is said to be constructible

if {x1, x2, x3, x4} are in general position and for 4 < i ≤ n, xi is the intersection point of

exactly two previous lines xpxq and xrxs, for 1 ≤ p, q, r, s < i.

For instance, by Definition 2.14 every configuration with 4 poinst in general position is

constructible and the configuration in Figure 2.6 is also constructible. However, a convex

pentagon is not constructible. In general, for n > 4 every constructible configuration with n

points is not in general position.

x1 x2

x3

x4

x5

x6

Figure 2.6: A constructible configuration

As we said previously, constructible order types are a family of examples of order types

such that for every two isomorphic configuration there exists an projective transformation

connecting them.

Proposition 2.15. Let X and Y be isomorphic constructible configuration. Then there

exists a projective transformation S such that Y = S(X).

Proof. Let X = {x1, . . . , xn}, Y = {y1, . . . , yn} and suppose that

χ(xi, xj , xk) = χ(yi, yj , yk), ∀ 1 ≤ i, j, k ≤ n.

SinceX and Y are constructible, they are determined only by the first four points {x1, . . . , x4}
and {y1, . . . , y4}. Thus we just need to prove that there exists a projective transforma-

tion sending {x1, . . . , x4} to {y1, . . . , y4}. Because these two sets of points are in general

position, then by Proposition 2.13 there exists projective transformations SX , SY send-
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ing {x1, . . . , x4}, {y1, . . . , y4} to the unit square, respectively. Thus the projective transfor-

mation S = S−1
Y ◦ SX sends X to Y .

We already stated that projective transformations does not preserve the ratio between

areas of triangles or lenghts of sides. However, they preserve the cross ratio between these

measures. Given three points x, y, z ∈ R3 we can extend the concept of signed area of xyz

by

[xyz] =
1

2

x1 x2 x3

y1 y2 y3

z1 z2 z3


Definition 2.16. Given five points in the projective plane [x], [y], [z], [u], [v] ∈ RP 2 we define

the cross-ratio area of these points by

CR([x]; [y], [z], [u], [v]) =
[xyz][xuv]

[xyu][xzv]
,

where x, y, z, u, v are representatives in R3.

Note that CR is well defined on RP 2. In fact, suppose that we choose other representa-

tives x′ ∼ x, y′ ∼ y, z′ ∼ z, u′ ∼ u, v′ ∼ v. Thus, there exists λx, λy, λz, λu, λv ∈ R such

that x′ = λxx, y′ = λyy, z′ = λzz, u
′ = λuu, v′ = λvv and then it follows that

CR([x′]; [y′], [z′], [u′], [v′]) =
[x′y′z′][x′u′v′]

[x′y′u′][x′z′v′]
=

(λxλyλz[xyz])(λxλuλv[xuv])

(λxλyλu[xyu])(λxλzλv[xzv])

=
[xyz][xuv]

[xyu][xzv]
= CR([x]; [y], [z], [u], [v]).

If the points are in the real plane, we can always choose a representative of the form [a, b, 1]

with a, b ∈ R, and in this case the cross-ratio area is exactly the cross ratio area between

triangles xyz, xuv, xyu, xzv.

Definition 2.16 is similar to the definition of cross-ratio for four points in a line. LetA,B,C,D

be four points in a line, then we can define their cross-ratio as

[A,B,C,D] =
AB · CD
AC ·BD

.

The next proposition shows that cross-ratio area is preserved by projective transformations.

Proposition 2.17. Let S be a projective transformation and [x], [y], [z], [u], [v] ∈ RP 2 points

in the projective plane. Then it follows that

CR([x]; [y], [z], [u], [v]) = CR(S([x]);S([y]), S([z]), S([u]), S([v]))

Proof. Let A be the non-singular 3× 3 matrix that defines the projective transformation S,

i.e., A is the matrix such that S([x]) = [Ax] for every x ∈ R3. Then by a simple calculation
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we obtain

CR(S([x]);S([y]), S([z]), S([u]), S([v])) = CR([Ax]; [Ay], [Az], [Au], [Av])

=
[AxAyAz][AxAuAv]

[AxAyAu][AxAzAv]
=
det(A)2[xyz][xuv]

det(A)2[xyu][xzv]

=
[xyz][xuv]

[xyu][xzv]
= CR([x]; [y], [z], [u], [v]).

For a configuration X in the real plane, let

CR(X) = max
xi,xj ,xk,xl,xm∈X

CR(xi;xj , xk, xl, xm),

be the cross-ratio of X. For an order type X we let

CR(X) = inf
Y∼=X

CR(Y ),

be its cross-ratio. One immediate consequence of Proposition 2.17 is that if a projective

transformation preserves the order type of a configuration, then it also preserves its cross-

ratio.

2.3 Chazelle’s encoding

A consequence of Theorem 2.3 is that we can store all order types of size n in O(n log n)

bits. However, it seems difficult to store this information in O(n log n) bits without losing

the geometric and combinatorial properties of order types. Interested in such a problem, B.

Chazelle proposed the question of finding the minimum size of a grid that contains all order

types in general position of size n. Let

gr(n) = max{gr(B) : B order type of size n}.

be the grid size parameter for the integer n.

Note that we shall only consider order types B in general position since there exists order

types not in general position with no rational realization. That is, there exists an order

type with no configurations with only rational coordinates (see [19], p.33). The problem

of determining gr(n) is known as the Chazelle’s encoding problem and it was solved by

Goodman, Pollack and Sturmfels [13]. They showed that gr(n) is double exponential, which

is quite unexpected.

Theorem 2.18 ([13]). There exist positive real numbers c1 and c2 such that for every

sufficiently large n the following holds,

22c1n ≤ gr(n) ≤ 22c2n .
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In this section, we show their proof of Theorem 2.18. The proof is divided into two

parts (Lemmas 2.23 and 2.25). In the first part, we exhibit an order type with gr parameter

double exponential in n. In the second part, we use a result of algebraic geometry to provide

an upper bound.

2.3.1 The lower bound

We start by giving an overview of the proof. First we construct a constructible (Defini-

tion 2.14) order type C such that its cross-ratio is double exponential in the size of C, this

is the content of Lemma 2.19. However, the order type C will not be in general position.

In order to solve that, we use a method developed by Sturmfels and White [20] to create

an order type B in general position called scattering (Lemma 2.21). By Proposition 2.22

we obtain that the cross-ratio of B is as big as the cross-ratio of C. Finally, we provide

a relation between cross-ratios and the grid parameter, which will imply our lower bound.

Now we give more details.

Lemma 2.19. For every integer r, there exists a constructible order type C of size 3r + 8

with CR(C) ≥ 22r .

Proof. Consider the configuration X4 = {x1, x2, x3, x4} in the projective plane, where x1 =

[1, 0, 0], x2 = [0, 1, 0], x3 = [1, 0, 1] and x4 = [0, 1, 1]. The configuration X4 is in general

position since no three points are collinear. We construct X8 by adding 4 new points in X4.

These new points are defined as follows

x5 = [0, 0, 1] = [1, 0, 0][1, 0, 1] ∩ [0, 1, 0][0, 1, 1],

x6 = [1, 1, 1] = [1, 0, 0][0, 1, 1] ∩ [0, 1, 0][1, 0, 1],

x7 = [1,−1, 0] = [1, 0, 1][1, 1, 0] ∩ [1, 0, 0][0, 1, 0],

x8 = [2, 0, 1] = [1, 1, 1][1,−1, 0] ∩ [1, 0, 1][1, 0, 0].

Now note that from [1, 0, 0], [0, 1, 0], [1, 0, 1], [0, 1, 1], [1,−1, 0] and [a, 0, 1] we can con-

struct the point [a2, 0, 1]. This is done by constructing

[0, a, 1] = [a, 0, 1][1,−1, 0] ∩ [0, 1, 0][0, 1, 1],

[a,−1, 0] = [a, 0, 1][0, 1, 1] ∩ [1, 0, 0][0, 1, 0],

[a2, 0, 1] = [0, a, 1][a,−1, 0] ∩ [1, 0, 0][1, 0, 1],

as shown in Figure 2.7.

Thus we can define recursively 3r + 8 points in the following way. For every 1 ≤ t ≤ r,

we have

x3t+6 = x3(t−1)+8x7 ∩ x2x4 = x3(t−1)+8[1,−1, 0] ∩ [0, 1, 0][0, 1, 1],

x3t+7 = x3(t−1)+8x4 ∩ x1x2 = x3(t−1)+8[0, 1, 1] ∩ [1, 0, 0][0, 1, 0],

x3t+8 = x3t+6x3t+7 ∩ x1x3 = x3t+6x3t+7 ∩ [1, 0, 0][1, 0, 1].
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[1, 0, 1]

[a, 0, 1] [a2, 0, 1] [1, 0, 0]

[0, 1, 1]

[0, a, 1]

[0, 1, 0]

[a,−1, 0]

[1,−1, 0]

Figure 2.7: Constructing [a2, 0, 1].

Let X3r+8 be the configuration obtained by these 3r + 8 points. A simple induction using

the contruction of Figure 2.7 shows that X3r+8 contains the points x4 = [0, 1, 1], x5 =

[0, 0, 1], x3r+8 = [22r , 0, 1], x3 = [1, 0, 1] and x1 = [1, 0, 0]. Then we can estimate the

cross-ratio of X3r+8 by

CR(X3r+8) ≥ CR(x4;x5, x3r+8, x3, x1) =
[x4x5x3r+8][x4x3x1]

[x4x5x3][x4x3r+8x1]

=

∣∣∣∣∣∣∣
0 1 1

0 0 1

22r 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
0 1 1

1 0 1

1 0 0

∣∣∣∣∣∣∣ /
∣∣∣∣∣∣∣
0 1 1

0 0 1

1 0 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

0 1 1

22r 0 1

1 0 0

∣∣∣∣∣∣∣ = 22r .

Finally, let s be a line in RP 2 such that s contains no points of X3r+8. The projective

transformation S : RP 2 → RP 2 that sends s to the infinity line, sends X3r+8 to a config-

uration C in the real plane. We claim that every configuration A isomorphic to C is such

that CR(A) ≥ 22r . Indeed, since X3r+8 is determined by its first four points and projec-

tive transformations preserve incidence we have that the order type of C is constructible.

Thus, by Proposition 2.15, there exists a projective transformation T : RP 2 → RP 2 such

that A = T (C). By Proposition 2.17, we obtain

CR(A) = CR(T (C)) = CR((T ◦ S)(X3r+8)) = CR(X3r+8) ≥ 22r ,

therefore CR(C) ≥ 22r .

The order type C obtained in Lemma 2.19 is not in general position. In order to obtain

a order type in general position we will use a method developed by Sturmfels and White [20]

called scattering. The method basically consists of replacing every point of a constructible

order type by four points such that the original point is contained in the convex hull of the

new ones.

Definition 2.20. A scattering of a point x ∈ R2 is the process of replacing x by four

points x1, x2, x3, x4 such that x is in the convex hull of {x1, x2, x3, x4}. We say that a

configuration Y is scattered from X if Y is obtained from X by scattering some of its points.



2.3. CHAZELLE’S ENCODING 22

We say that an order type Y is scattered from X if for every configuration A ∼= Y , there

exists a configuration B ∼= X such that A is scattered from B.

Figure 2.8: Scattering of a configuration

Figure 2.8 shows a scattering of a configuration. The white points are the points of the

original configuration that were replaced by scattering. The next lemma shows that for

every constructible order type X we can always create an order type X ′ in general position

by this process.

Lemma 2.21. Let X be a constructible order type of size n. Then there exists an order

type X ′ in general position, of size 4n− 12, scattered from X.

Proof. Write X = {x1, . . . , xn}. We will construct a sequence of order types Yn, Yn−1, . . . , Y4

in the following way. Let Yn ∼= X. For every 4 ≤ i ≤ n− 1, we construct an order type Yi of

size 4n−3i scattered from Yi+1 by replacing xi+1 with new points xi+1,1, xi+1,2, xi+1,3, xi+1,4

such that xi+1 is in the interior of the convex hull of those points. The order type Yi also

has the property that any collinear triple of points is in {x1, . . . , xi}.
In order to do that, consider the configuration Yi+1 = {x1, . . . , xi+1, xi+2,1, . . . , . . . , xn,4}.

Since X is constructible and i + 1 > 4, we have that xi+1 is the intersection point of two

lines xpxq∩xrxs for 1 ≤ p, q, r, s ≤ i. Let Yi be the configuration obtained by replacing xi+1

with

xi+1,1 = xi+1 + ε1(xp − xq) + ε2(xr − xs),

xi+1,2 = xi+1 − ε3(xp − xq) + ε4(xr − xs),

xi+1,3 = xi+1 − ε5(xp − xq)− ε6(xr − xs),

xi+1,4 = xi+1 + ε7(xp − xq)− ε8(xr − xs),

where ε1, . . . , ε8 > 0 are small enough such that χ(xi+1,j , y, z) = χ(xi+1, y, z) for ev-

ery 1 ≤ j ≤ 4 and {y, z} ⊂ Yi+1 \ {xi+1} such that {xi+1, y, z} are not collinear. Also

we choose ε1, . . . , ε8 in such a way that every line determined by the set {xi+1,1, . . . , xi+1,4}
does not intersect any point of Yi. This can be done, for instance, by choosing ε1 � ε2 �
· · · � ε8. If χ(xi+1, y, z) = 0, then because ε1, . . . , ε8 are all greater than zero we have

that χ(xi+1,j , y, z) 6= 0, for 1 ≤ j ≤ 4. This implies that every collinear triple in Yi does
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not contain xi+1,1, . . . , xi+1,4 as a element and therefore by induction every collinear triple

of Yi is in {x1, . . . , xi}. It remains to prove that the order type Yi is scattered from Yi+1,

that is, for every configuration A ∼= Yi, there exists a configuration B ∼= Yi+1 such that A is

scattered from B.

We define a function φ : Γ[Yi] → (R2)4n−3i−3 in the following way. Let A ∈ Γ[Yi]

and ap, aq, ar, as, ai+1,1, ai+1,2, ai+1,3, ai+1,4 ∈ A be the points corresponding to xp, xq,

xr, xs, xi+1,1, xi+1,2, xi+1,3, xi+1,4 ∈ Yi, respectively. Define φ(A) as the configuration

obtained by removing ai+1,1, ai+1,2, ai+1,3 and ai+1,4 from A and adding the point ai+1 =

apaq ∩ aras. First note that A is scattered from φ(A). Indeed, because A ∼= Yi we have

that {ai+1,1, . . . , ai+1,4} is a convex quadrilateral and apaq, aras intersects in its interior.

Therefore {ai+1,1, . . . , ai+1,4} is a scattering of ai+1.

Now we claim that φ(A) ∈ Γ[Yi+1]. Let ι : Yi → A be a bijection such that χ(x, y, z) =

χ(ι(x), ι(y), ι(z)) for every (x, y, z) ∈ Y 3
i . Then since that χ(xi+1, y, z) = χ(ai+1,1, ι(y), ι(z)) =

· · · = χ(ai+1,4, ι(y), ι(z)) for every y, z ∈ Yi+1 \ {xi+1} such that {xi+1, y, z 6= 0} are not

collinear and ai+1 is in the interior of {ai+1,1, . . . , ai+1,4}, we obtain that χ(ai+1, ι(y), ι(z)) =

χ(xi+1, y, z). If χ(xi+1, y, z) = 0 and y, z ∈ Yi+1 \ {xi+1}, then {xi+1, y, z} are collinear. By

Definition 2.14, this implies that y, z are on the lines xpxq or xsxr. Therefore ι(y), ι(z) are on

the lines apaq or asar, which yields χ(ai+1, ι(y), ι(z)) = 0. Thus the function ι̃ : Yi+1 → φ(A)

defined by ι̃(xi+1) = ai+1 and ι̃(y) = ι(y) for y ∈ Yi+1 \ {xi+1} is such that

χ(x, y, z) = χ(ι̃(x), ι̃(y), ι̃(z)), ∀x, y, z ∈ Yi+1,

and φ(A) ∼= Yi+1. This concludes that Yi is scattered from Yi+1.

Finally, let X ′ ∼= Y4. By induction, we obtain that a collinear triple in X ′ only contain

points of {x1, x2, x3, x4}. However, the subconfiguration {x1, x2, x3, x4} is in general posi-

tion. Therefore, X ′ is in general position. Also because scattering is transitive, we obtain

that X ′ is scattered from X and X ′ has size n+ 3(n− 4) = 4n− 12.

The next proposition shows that scattering configurations only increases its cross-ratio.

Proposition 2.22. Let x, y, z, u, v ∈ R2 such that y, z, u, v are collinear. Consider

the twenty points {xi}1≤i≤4, {yi}1≤i≤4, {zi}1≤i≤4, {ui}1≤i≤4, {vi}1≤i≤4 obtained by scat-

tering x, y, z, u, v. Then there exists 1 ≤ i, j, k, l,m ≤ 4 such that

CR(x; y, z, u, v) ≤ CR(xi; yj , zk, ul, vm).

Proof. First note that because y, z, u, v are collinear, we have that

CR(x; y, z, u, v) =
[xyz][xuv]

[xyu][xzv]
=
|y − z| · |u− v|
|y − u| · |z − v|

= [y, z, u, v]

where [y, z, u, v] is the cross-ratio between these four points. This is a consequence of the

fact that xyz, xyu, xuv and xzv have the same height. Therefore, the cross-ratio does not



2.3. CHAZELLE’S ENCODING 24

depend of x and we obtain that

CR(x; y, z, u, v) = CR(xi; y, z, u, v), ∀ 1 ≤ i ≤ 4.

Another important observation is that we can compute the cross-ratio only using the angles

determined by x. Let θyz, θuv, θyu, θzv be the angles determined by the lines xy with xz, xu

with xv, xy with xu and xz with xv, respectively. Thus,

CR(x; y, z, u, v) =
[xyz][xuv]

[xyu][xzv]
=

(|x− y| · |x− z| sin θyz)(|x− u| · |x− v| sin θuv)
(|x− y| · |x− u| sin θyu)(|x− z| · |x− v| sin θzv)

=
sin θyz sin θuv
sin θyu sin θzv

.

Fix the point x1. Suppose without loss of generality that y, z, u, v are in the order shown

in Figure 2.9. Since y is in the convex hull determined by y1, y2, y3, y4, there exists a choice

of yj that increases θyz, θyu and a choice of yj that decreases θyz, θyu. It turns out, by

a quick computation, that one of those choices does not decrease the ratio sin θyz/ sin θyu.

Therefore, for the chosen j, we have

CR(x1; y, z, u, v) ≤ CR(x1; yj , z, u, v).

x1

y z u v
y1

y2

y3

y4

Figure 2.9: Choosing yj

Fixing yj and repeating the process for z, u, v we can choose zk, ul, vm such that

CR(x; y, z, u, v) ≤ CR(x1; yj , z, u, v) ≤ CR(x1; yj , zk, ul, vm),

which concludes the proof.

Now we are able to provide a lower bound for gr(n).

Lemma 2.23. For n ≥ 240, there exists an order type B of size n such that

gr(B) ≥ 22n/15 .
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Proof. The proof now is just a compilation of the previous results. Consider the order

type C of 3r + 8 points obtained by Lemma 2.19. By Lemma 2.21, there exists an order

type B in general position, of 12r + 20 points, such that B is scattered from C.

Let X ∼= B be a configuration of order type B. Since B is scattered from C, there

exists a configuration Y ∼= C such that X is scattered from Y . However, as we already

saw in the proof of Lemma 2.19, there exists a projective transformation S : RP 2 → RP 2

such that Y = S(X3r+8). Let x = S([0, 1, 1]), y = S([0, 0, 1]), z = S([22r , 0, 1]), u =

S([1, 0, 1]), v = S([1, 0, 0]) be the corresponding points in Y . By Proposition 2.17, we obtain

that

CR(Y ) ≥ CR(x; y, z, u, v) = 22r .

Also y, z, u, v are collinear because projective transformations preserve incidence. Therefore,

by Proposition 2.22, there exists points xi, yj , zk, ul, vm ∈ X such that

CR(X) ≥ CR(xi; yj , zk, ul, vm) ≥ CR(x; y, z, u, v) = 22r .

Thus, by the generality of X, we obtain CR(B) ≥ 22r .

Now let M = gr(B) and suppose that X ∼= B is a configuration isomorphic to B with

vertices in [M ]2. Then it is possible to estimate CR(X) by the grid. Indeed,

CR(X) = max
x,y,z,u,v∈X

[xyz][xuv]

[xyu][xzv]
≤

M2

2 ·
M2

2
1
2 ·

1
2

= M4.

Therefore,

M ≥ CR(X)1/4 ≥ CR(B)1/4 ≥ 22r−2

and we are done by setting r = 1
12 (n− 20).

2.3.2 The upper bound

For the upper bound we will use the following result by Grigor’ev and Vorobjov [18] on

solutions of simultaneous inequalities of a semi-algebraic set.

Theorem 2.24 ([18], Lemma 10). Suppose the polynomials h1, . . . , hk ∈ Z[X1, . . . , Xn]

satisfy the bounds deg(hi) ≤ d and all coefficients are smaller in absolute value than M .

If W is any connected component of the semi-algebraic set defined by the system h1 ≥
0, . . . , hk ≥ 0, then W intersects the ball in Rn of radius R = exp((logM + log k)(dqn))

centered at the origin for some natural number q that does not depend on h1, . . . , hk.

As a consequence we can prove the following result.

Lemma 2.25. There exists a positive constant c such that for sufficiently large n the fol-
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lowing holds. If X is an order type of size n, then it follows that

gr(X) ≤ 22cn .

Proof. Let X be an order type of size n. Our goal is to describe the set Γ[X] as a semi-

algebraic set as in Theorem 2.24. However, the space Γ[X] is defined as a union of systems

composed by strict inequalities. Nevertheless, one can circumvent this issue by considering

a smaller subset of Γ[X].

Fix an ordering X = (x1, . . . , xn) and consider the subsetW ′ = {A ∈ R2n : χA = χX} ⊂
Γ[X]. Note that the set W ′ is represented by a system of the form

χ(ai, aj , ak) = χ(xi, xj , xk), ∀ ai, aj , ak ∈ A,

where these functions assume values {−,+} when the indices are distinct. In other words,

we can represent W ′ by a system of
(
n
3

)
strict inequalities given by

hijk(ai, aj , ak) > 0, ∀1 ≤ i < j < k ≤ n,

where hijk ∈ Z[X1, . . . , X6] are polynomials such that |hijk(x, y, z)| = |[xyz]| for x, y, z ∈ R2.

Therefore, by the definition of χ, hijk is a polynomial with 6 variables, maximum absolute

value of a coefficient 1 and degree 2.

Now let W be the set of solutions of the following system

hijk(ai, aj , ak) ≥ 1, ∀ 1 ≤ i < j < k ≤ n,

for the same polynomials defined earlier. Note that a solution to this system is a solution

to the previous one. That is, W ⊂ W ′. Therefore we can use Theorem 2.24 to obtain a

configuration A ∈ W ⊂ W ′ ⊂ Γ[X] with bounded size. Indeed, by Theorem 2.24, we have

that W intersects a ball centered at the origin of radius

R = e(logM+log k)(d2qn) ≤ e3·22qn logn ≤ 223qn

for sufficiently large n. This implies that there exists a configuration A ∼= X inside [−R,R]2.

By doing a translation, we can actually assume that A is inside the [0, 2R]2 square. Also

because A ⊂ W, we have that

|[aiajak]| = |hijk(ai, aj , ak)| ≥ 1,

and therefore ∆min(A) ≥ 1, where ∆min(A) is the minimum area of a triangle in A.

Consider the configuration obtained by a dilation A′ = {2R ·a : a ∈ A}. Since dilation is

an affine transformation, we have that A′ ∼= A. Also note that A ⊂ [0, 4R2] and ∆min(A′) ≥
4R2. Therefore, by Lemma 2.10, every (

√
2

2 )-perturbation of A′ is isomorphic to X. Since

every point in R2 is at distance less than
√

2
2 from a lattice point, there exists a configuration
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in [d4R2e+ 1]2 isomorphic to X. Thus we conlude that

gr(X) ≤ 4R2 + 2 ≤ 5R2 ≤ 227qn

.

for sufficiently large n



Chapter 3

Extremal Results

We study now extremal aspects of order types. One of the main topics in extremal

combinatorics is to study how large or small a collection of finite objects satisfying certain

property can be. There are many examples of objects and properties that can be studied in

this way. For instance, one of the major theorems in the field is the Erdős-Stone theorem

[11], which determines the maximal number of edges in a graph G without containing a fixed

subgraph H. In this work, our objects will be order types in general position and from now

on, unless otherwise stated, we assume that all configuration and order types are in general

position. We are interested in two different extremal questions.

The first one deals with the minimal size of configuration such that every dense subset

contains a copy of a fixed order type.

Definition 3.1. Given two configuration A,B ∈ R2 and a real number α > 0, we say

that A →α B if and only if for every X ⊂ A with |X| ≥ α|A|, there exists a subset Y ⊂ X

such that B ∼= Y . In other words, A→α B if and only if every α-proportion of A contains

a copy of B.

Let α = 2/3 and B be the order type of a triangle with an interior point. Then Figure 3.1

is an example of configuration A such that A →α B. The reader is invited to check that

every subset of size 6 of A contains a triangle with an interior point.

Figure 3.1: Configuration A

For an order type B of n points and a real number α > 0, let

f(B,α) = min{|A| : A→α B},

28
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be the minimum size of an configuration such that every α-proportion contains a copy of B.

Also let

f(n, α) = max{f(B,α) : B order type with n points}

be the maximum of f over all order types of size n. A natural problem is to estimate those

two functions.

For instance, if B is a convex n-gon, then f(B,α) = dnαe. In fact, if A is a configuration

such that A →α B, then every α-proportion of A contains a copy of B. Therefore α|A| ≥
|B| = n and we obtain that f(B,α) ≥ dnαe. Now let C be a convex dnαe-gon. Then every α-

proportion of C is convex and has size at least n. Therefore C →α B and f(B,α) ≤ dnαe.
In Section 3.1 we shall explore more on this problem, providing general bounds and also

studying some specific configurations.

The second problem deals with the maximal subset of the grid without containing a copy

of a fixed order type. For an order type B and an integer N let

ex(N,B) = max{|A| : B 6⊂ A ⊂ [N ]2},

be the maximum size of a subset of [N ]2 without a copy of B. The natural question is to

determine bounds for ex(N,B).

For instance, if N = 3 and B is a triangle with an interior point, then Figure 3.2 shows

a subset with 8 points without a copy of B. This proves that ex(3, B) = 8.

Figure 3.2: ex(3, B) = 8

In Section 3.2 we shall give a general bound for the extremal number of a configuration

and a sharper bound for the convex case. We also draw a connection between these two

extremal problems, showing that ideas on the first one can be helpful to the second one.

3.1 Density problem in the plane

Now we give a proof of Theorem 1.2. We divide the proof into two lemmas, which

correspond to the upper and lower bound. The proof of the upper bound is based on

the observation that order types admit blow-ups, while the lower bound is based on the

corresponding graph problem studied by Brown and Rödl [6]. At the end, we provide a

family of configurations which shows that the asymptotic behavior of f as a function of n

depends on α.
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3.1.1 The upper bound

In section 2.1 it was shown that the space of realizations of an order type in general

position is open (Proposition 2.4). In particular, for every configuration B there exists ε

such that every ε-perturbation of B is isomorphic to it. This remark allows us to show the

existence of blow-ups of configurations.

Definition 3.2. A configuration Y is a k-blow-up of a configuration X of size n if Y can be

partitioned into sets Y = Y1 ∪ · · · ∪Yn with |Y1| = · · · = |Yn| = k such that every transversal

is isomorphic to X, i.e., every set {y1, . . . , yn} ⊂ Y , with yi ∈ Yi, is isomorphic to X.

A configuration Z is a Y -blow-up of X if Z can be partitioned into sets Z = Z1 ∪ · · · ∪
Zn with Z1

∼= . . . ∼= Zn ∼= Y such that every transversal is isomorphic to X, i.e., every

set {z1, . . . , zn} ⊂ Z, with zi ∈ Zi, is isomorphic to X.

Given a configuration X, there is an easy way to construct blow-ups from it. Let ε be a

positive real number such that every ε-perturbation of X is isomorphic to X and choose Zk

as any k-subset of Bε(xk), the open ball of radius ε centered at xk. Then Z = Z1 ∪ · · · ∪Zn
is a k-blow-up of X. Moreover, if we choose Zk as a configuration isomorphic to Y , then Z

is a Y -blow-up of X. This is always possible because any positive affine transformation

preserves order type and therefore we can choose a copy of Y inside any open ball.

Figure 3.3: A blow-up

Figure 3.3 shows an Y -blow-up of X when X is a convex pentagon with a point in the

center and Y is a triangle with an interior point. Although Y -blow-ups of X always exist

for any X and Y in general position, they are not uniquely determined. In fact, in order to

have such a blow-up Z = Z1 ∪ · · · ∪ Zn we are only interested in the orientations of triples

that are contained entirely in Zi or have intersection at most one with Zi. Thus we are free

to choose the orientation between triples that has intersection of size 2 with Zi and obtain

non-isomorphic Y -blow-ups of X. With this in mind, define X ⊗ Y as the set of all order

types that are Y -blowups of X. Note that an element of X ⊗ Y has |X| · |Y | points.

We extend this notation to products of more than two elements. Let X1, . . . , Xd ∈ R2

be d configurations of sizes n1, . . . , nd, respectively. We define
⊗d

i=1Xi inductively over d.
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If d = 2, then
⊗d

i=1Xi is just X1 ⊗ X2. For d > 2, we define
⊗d

i=1Xi as the set of

order types Y such that there exists a partition Y = Y1 ∪ · · · ∪ Yn1 with Yk ∈
⊗d

i=2Xi,

for every 1 ≤ k ≤ n1, and such that every transversal is isomorphic to X1. Note, by the

definition, that
⊗d

i=1Xi contains n1 · · ·nd points. It turns out that those extended product

are helpful to provide upper bounds for f(B,α).

Lemma 3.3. Let B be a configuration of size n ≥ 2 and 0 < α ≤ 1. Then,

f(B,α) ≤ ndn log(1/α)e.

Proof. Let A ∈
⊗d

i=1B for a fixed d. We claim that for every α > 0 if X is an α-proportion

of A, then X contains a β-proportion of B with

β = max

{
1, α

(
n

n− 1

)d−1
}
.

The proof is by induction on d. If d = 1, then A ∼= B and any α-proportion of A

contains an α-proportion of B. For d > 1, let X be an α-proportion of A. By definition, the

configurationA have a partitionA = A1∪· · ·∪An such thatAk ∈
⊗d−1

i=1 B for every 1 ≤ i ≤ n
and such that every transversal is isomorphic to B. If X contains one element of each Ai,

then X contains a copy of B and β = 1. Otherwise there exists at least one index k such

that X ∩Ak = ∅. Then by an averaging argument, there exists an index j 6= k such that

|X ∩Aj | ≥
|X|

(n− 1)
≥ α|A|
n− 1

=
αn

n− 1
|Aj |.

Therefore,X∩Aj is an αn
n−1 -proportion ofAj . SinceAj ∈

⊗d−1
i=1 B, there exists, by induction,

a subset Y ⊂ X ∩Aj ⊂ X such that Y contains a β-proportion of B with

β = max

{
1,

(
αn

n− 1

)
·
(

n

n− 1

)d−2
}

= max

{
1, α

(
n

n− 1

)d−1
}
.

Note that the inequality 1/t2 < 1/t holds for t > 1. Thus, by integrating the inequality,

we obtain

1− 1

1 + x
=

∫ 1+x

1

1

t2
dt <

∫ 1+x

1

1

t
dt = log(1 + x),

for x > 0. Applying the last inequality for x = 1/(n−1), we have that log n−log(n−1) > 1/n.

Let d = dn log(1/α)e. Thus, any α-proportion of an element of
⊗d

i=1B contains a beta-

proportion of a copy of B with

β = α

(
n

n− 1

)d−1

>
α(n− 1)

n
·
(

n

n− 1

) log(1/α)
logn−log(n−1)

=
n− 1

n
,

which implies that it actually contains a copy of B. Since any configuration in
⊗d

i=1B

has nd points, we obtain the desired bound.
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3.1.2 The lower bound

For the lower bound we use the Erdős–Szekeres theorem. Let ES(n) be the minimum

integer N such that any configuration of size N in general position contains n points in

convex position. Erdős and Szekeres proved in [9] that ES(n) always exists and in [10] they

proved that ES(n) ≥ 2n−2 + 1 and conjectured this to be sharp. A recent breakthrough due

to Andrew Suk [33] asymptotically solves the conjecture.

Theorem 3.4 ([33]). For n sufficiently large, the following holds

2n−2 + 1 ≤ ES(n) ≤ 2n+O(n2/3 logn).

The lower bound of ES(n) is particularly interesting for us. It shows that there exists

an order type of size 2n−2 that does not contain n points in convex position. Of course, if

one take a subset of this configuration it still does not contain n points in convex position.

Thus, there exists an order type of size N that does not contain dlogNe+2 points in convex

position. Let EN be this order type. The following proof is based on [6].

Lemma 3.5. For n ≥ 3 and α ≤ 1/2 the following holds. If B is a configuration in general

position of size n, then

n2

20α log n
≤ f(B,α).

Proof. Let B be a configuration such that B is a union of two sets B = B1 ∪B2 with B1
∼=

Edn/2e and B2 a convex bn/2c-gon. There are several ways that one can combine B1 and B2

to form an order type B. This ways depends on the orientation of triples intersecting both B1

and B2. Choose an arbitrary combination as the order type of B. We claim that B satisfies

the statement.

Let A be a configuration such that A →α B. We construct a set X by repeatedly

removing convex sets of size bn/2c from A and adding them to X. Let X1 ⊂ A be a convex

set of size bn/2c inside A. Such a set must exist because A contains at least one copy of B.

Suppose the sets X1, . . . , Xk are already defined and now we want to define Xk+1. If the

set A \ (
⋃k
i=1Xi) contains bn/2c points in convex position, then let Xk+1 be this bn/2c

points. Otherwise stop and let X =
⋃k
i=1Xi. Since A is finite, this process eventually

terminates and we end up with a set X = X1 ∪ · · · ∪Xd ⊂ A for some integer d, where Xi

is a convex set of size bn/2c for every 1 ≤ i ≤ d.

By the construction of X, the set A\X does not contain bn/2c points in convex position.

Then A\X does not contain a copy of B and, by hypothesis, it is less than an α-proportion

of A. This implies that

|X| = |A| − |A \X| > (1− α)|A| ≥ α|A|,

which is true for α ≤ 1/2. Thus X is an α-proportion and it contains a copy of B.

Now we do a little refinement. Let d′ be the minimum integer such that X1∪ · · ·∪Xd′ is

an α-proportion of A and set X ′ = X1∪· · ·∪Xd′ . Since any Xi has size bn/2c, a calculation
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shows that

α|A| ≤ |X ′| ≤ α|A|+ bn/2c ≤ α|A|+ n

2
= α|A|+ α

2
· n
α
≤ α|A|+ α

2
|A| = 3α

2
|A|,

which is true because α|A| ≥ n.

By hypothesis, X ′ contains a copy of B and in particular a copy of Edn/2e. We claim

that |Xi ∩ Edn/2e| ≤ log n + 2, for all 1 ≤ i ≤ d′ This is a consequence from the fact that

any subset of a convex set is also a convex set and that the biggest convex subset in Edn/2e

has size less than logdn/2e+ 2 ≤ log n+ 2. Thus,

⌈n
2

⌉
= |Edn/2e| =

d′∑
i=1

|Xi ∩ Edn/2e| ≤ d′(log n+ 2),

which implies that

d′ ≥ 1

log n+ 2

⌈n
2

⌉
.

Therefore we can estimate the size of X ′ and consequently of A by

|A| ≥ 2

3α
|X ′| = 2

3α
d′
⌊n

2

⌋
≥ 2

3α(log n+ 2)

⌊
n2

4

⌋
≥ n2

20α log n
,

giving the desired lower bound for n ≥ 3.

3.1.3 A family of configuration with polynomial bounds

Now we study a particular family of configurations that have polynomial bounds in n

and 1/α. These configurations were introduced by Károlyi and Solymosi [22]. For an

order type B and an integer N > 0. Let ES(B,N) be the maximum integer m such that

there exists a configuration of m points in general position without a copy of B and a

copy of a convex N -gon. In their work they proved that there exist order types B such

that ES(B,N) = 2N−2, which is of the same order of ES(N). However, they provided

examples of B such that ES(B,N) has polynomial bounds on N . These examples are

special cases of the following family of order types.

Definition 3.6. Let d ≥ 1 be an integer and K = (k1, . . . , kd), L = (l1, . . . , ld) with ki ≥ 2,

li ≥ 3, for 1 ≤ i ≤ d be ordered sets of integers. We define the order type

GdK,L = {ai,j : 1 ≤ i ≤ d, 1 ≤ j ≤ ki} ∪ {bi,j : 1 ≤ i ≤ d, 1 ≤ j ≤ li}

as the order type such that a1,1 . . . a1,k1a2,1 . . . ad,1 . . . ad,kd is a convex (k1 + · · · + kd)-gon

listed in clockwise order, bi,1 = ai,ki , bi,li = ai+1,1 and bi,1 . . . bi,li is a convex set on the

interior of the triangles ai,ki−1bi,1bi,li and bi,1bi,liai+1,2, where all indices are taken modulo

d.

It follows from the definition that GdK,L has k1 + · · ·+ kd + l1 + · · ·+ ld− 2d points. The
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assumption that bi,1 . . . bi,li are inside the triangles ai,ki−1bi,1bi,li and bi,1bi,liai+1,2 assures

us that the order type of GdK,L is unique and well defined.

Figure 3.4: A configuration G2
(4,3),(4,5)

Another important observation is that any subset of a GdK,L is a Gd
′

K′,L′ for some d′ ≤ d
and ordered sets K ′, L′ of size d′. We will prove that f(GdK,L, α) is at most quadratic in

both parameters n and 1/α. In order to do that, we need the following lemma.

Lemma 3.7. Let A = A1∪· · ·∪An be a partition of a finite set A such that |A1| = · · · = |An|
and α > 0 a real number. Then for every X ⊂ A with |X| ≥ α|A|, there are at least αn/2

sets Ai such that |X ∩Ai| ≥ α
2 |Ai|.

Proof. Define I = {i ∈ [n] : |X ∩Ai| ≥ α
2 |Ai|}. We want to estimate the size of I. This can

be done by noticing that

α|A| ≤ |X| =
n∑
i=1

|X ∩Ai| =
∑
i∈I
|X ∩Ai|+

∑
i/∈I

|X ∩Ai|

<
∑
i∈I
|Ai|+

∑
i/∈I

α|Ai|
2

=
|A|
n

(|I|+ α

2
(n− |I|)).

Therefore,

|I| >
α
2 n

1− α
2

>
α

2
n.

Theorem 3.8. Let GdK,L be the order type with parameters d ≥ 1, K = (k1, . . . , kd),

L = (l1, . . . , ld). Then the following holds,

f(GdK,L, α) ≤
⌈2k

α

⌉
·
⌈2l

α

⌉
,

where k = k1 + · · ·+ kd and l = max1≤i≤d{li}.

Proof. We will construct a configuration A such that A→α G
d
K,L. Because of the observa-

tion that subsets of order types in the family of Definition 3.6 are also in the family, it is
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natural to consider A as a member of this family. In fact, let A = Gd1K1,L1
with d1 = d 2k

α e,
K ′ = (2, 2, . . . , 2) and L′ = (d 2l

α e, d
2l
α e, . . . , d

2l
α e). One can see that A has

(2 + · · ·+ 2) + (
⌈2l

α

⌉
+ · · ·+

⌈2l

α

⌉
)− 2

⌈2k

α

⌉
=
⌈2k

α

⌉
·
⌈2l

α

⌉
points.

We will prove that A →α B, where B = Gd2K2,L2
with d2 = k, K2 = (2, . . . , 2) and

L2 = (l, . . . , l). Let A = A1 ∪ · · · ∪Ad1 be a partition of A such that

Ai = {bi,j : 1 ≤ j ≤
⌈2l

α

⌉
}

as in the Definition 3.6. This partition makes sense because every element in K1 is 2 and

therefore all the points of A are contained in some Ai. Let X be an α-proportion of A. By

Lemma 3.7, there exists at least α
2 d1 sets Ai with |X ∩ Ai| ≥ α

2 |Ai|. Consider I ⊂ [d1] a

subset of size k ≤ α
2 d1 such that every i ∈ I satisfies |X ∩ Ai| ≥ α

2 |Ai| and for every i ∈ I
consider a set Bi ⊂ Ai∩X of size l ≤ α

2 |Ai|. It is not difficult to verify that B1∪· · ·∪Bk ∼= B

and that B ⊂ X.

Now the theorem follows from the fact that GdK,L ⊂ B. In fact, if B = B1∪· · ·∪Bk is the

partition described in the paragraph above, then one can find a copy of GdK,L in the following

way. Consider a partition GdK,L = G1 ∪ · · · ∪Gm with m ≤ k, where each Gt is an ai,j with

2 ≤ j ≤ ki, or a {bi,1 . . . bi,li}. Now embed Gi inside Bi. Because |Gi| ≤ li ≤ l = |Bi| and

Bi is convex this embedding is always possible and, by the definition of B, it is a copy of

GdK,L. Therefore, GdK,L ⊂ B and A→α G
d
K,L.

The following is a quick corollary of the previous theorem.

Corollary 3.9. Let GdK,L be an order type with n points. Then,

f(GdK,L, α) ≤ 8n2

α2
.

Proof. Because GdK,L has (k1 + · · · + kd) + (l1 + · · · + ld) − 2d = n and ki ≥ 2, lj ≥ 3, for

every 1 ≤ i, j ≤ d, we have that k = k1 + · · · + kd < n and l ≤ l1 + · · · + ln ≤ n < 2n.

Therefore, we obtain by Theorem 3.8 that

f(GdK,L, α) ≤
⌈2k

α

⌉
·
⌈2l

α

⌉
≤ 8n2

α2
.

One can notice in Lemma 3.5 that the condition α ≤ 1/2 was needed. This suggests

that the asymptotic behavior of some configurations may depend on the value of α. We

will show that some configurations described in Definition 3.6 has asymptotic behavior on

n depending on α.
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Theorem 3.10. For every n there exists a configuration B of n points such that

f(B,α) =

Θα(n), if α > 1/2

Θα(n3/2), if α ≤ 1/2

Proof. Let B = GdK,L be a configuration of n points, where d = b
√
nc, K = (bn/2c +

2, 2, 2, . . . , 2) and L = (l1, . . . , ld) with li ∈ {b
√
n

2 c, b
√
n

2 c+ 1}. We claim that this configura-

tion B satisfies the statement.

First notice that B = B1 ∪B2 where B1 = Gd1K1,L1
with d1 = d, K1 = (2, . . . , 2), L1 = L

and B2 is a convex bn/2c-gon. Suppose that α > 1/2 and let ε > 0 be a real number such

that α = 1/2 + ε. Consider a configuration A = Gd
′

K′,L′ with d′ = ddε e , K ′ = (M, 2, . . . , 2),

L′ = (d
√
n
ε e, . . . , d

√
n
ε e) and M = ddε e · d

√
n
ε e. We can also notice that A = A1 ∪ A2 where

A1 = G
d′1
K′1,L

′
1

with d′1 = d′, K ′1 = (2, . . . , 2), L′1 = L′ and A2 is a convex M -gon. We will

prove now that A→α B.

Let X be an α-proportion of A and X1 = X ∩A1, X2 = X ∩A2. Because |A1| = |A2| it
follows that |X1| ≥ ε|A1|. In fact,

α|A| = (
1

2
+ ε)|A| ≤ |X| = |X1|+ |X2| ≤ |X1|+

1

2
|A|.

Therefore |X1| ≥ ε|A| ≥ 2ε|A1|. In a similar way we can also prove that |X2| ≥ 2ε|A2|. Now

as in the proof of Theorem 3.8 a 2ε-proportion of A1 contains a G
d′2
K′2,L

′
2

with d′2 = εd1 ≥ d,

K ′2 = (2, . . . , 2) and L′2 = (b
√
nc, . . . , b

√
nc). However, because b

√
n

2 c+ 1 ≤ b
√
nc, we have

that B1 ⊂ G
d′2
K′2,L

′
2
⊂ X1. A 2ε-proportion of A2 contains a convex set of size 2εM ≥ n

ε ≥
bn/2c and then B2 ⊂ X2. Using the uniqueness of Definition 3.6, we obtain that B ⊂ X.

Computing the number of points of A we obtain

f(B,α) ≤ |A| = 2M ≤ 4n

ε2
=

4n

(α− 1/2)2
.

Using the trivial lower bound made in the introduction of this chapter we obtain that

f(B,α) ≥ n/α and f(B,α) = Θα(n).

If α < 1/2, then we can apply Theorem 3.8 to obtain that

f(B,α) ≤
⌈2k

α

⌉
·
⌈2l

α

⌉
.

Using that k = k1+· · ·+kd = bn/2c+2(b
√
nc+1) < n and l = max1≤i≤d li = b

√
n

2 c+1 <
√
n

we have that

f(B,α) ≤ 4n3/2

α2
.

For the lower bound we use exactly the same proof as that in Lemma 3.5. The only

difference here is that B1 is not the order type provided by the Erdős–Szekeres construction.

Instead B1 = Gd1K1,L1
as described above. It is possible to see that B1 does not contain a
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convex set of size 2
√
n. This happens because in order to construct a convex set we can

either pick at most two vertices from each bi,1 . . . bi,li , or pick vertices of only one bi,1 . . . bi,li .

Now consider A such that A →α B and an α-proportion X ′ consisting of the union of d′

convex bn/2c-gons X1, . . . , Xd′ exactly as in Lemma 3.5. Because B ⊂ X ′, we have that

B1 ⊂ X ′. Therefore,

dn
2
e = |B1| =

d′∑
i=1

|Xi ∩B1| ≤ 2d′
√
n

and we have

d′ ≥ n1/2

4
.

Using now that X ′ was constructed such that |A| ≥ 3
2α |X

′| we conclude that

|A| ≥ 2

3α
|X ′| = 2d′

3α

⌊n
2

⌋
≥ n3/2

15α
,

which proves that f(B,α) = Θα(n3/2).

3.2 Extremal number for the grid

For a configuration B of n points and a real number α > 0 define

N0(B,α) = min{N ∈ Z : [N ]2 →α B}

as the minimum integer N such that an α-proportion of [N ]2 contains a copy of B. As in

the definition of f(B,α) we can also define

N0(n, α) = max{N0(B,α) : B is an order type of size n}

as the maximum over all values of N0(B,α) for |B| = n. First we notice that the problem

of finding bounds on ex(N,B) is closely related to finding bounds on N0(B,α). Indeed,

if N ≥ N0(B,α), then by the definition we have that [N ]2 →α B. Thus we can define a

inverse function α0(N,B) as the smallest real number α0 > 0 such that N ≥ N0(B,α0).

Because any α0-proportion of [N ]2 contains a copy of B, this gives the natural bound

ex(N,B) ≤ α0N
2.

For instance, suppose that for a certain configuration B we obtain the bound

N0(B,α) ≤ n2

α3
.
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Thus in order to obtain a bound for ex(N,B) we could use α0 such that

N ≥ n2

α3
0

≥ N0(B,α0).

This gives us

α0 ≥
n2/3

N1/3

and taking α0 = n2/3

N1/3 we obtain that

ex(N,B) ≤ α0N
2 = n2/3N5/3.

One can derive lower bounds for ex(N,B) from lower bounds of N0(B,α) in exactly the

same way done above. For this reason we will focus our attention for the rest of this section

on the N0(B,α) problem. As we shall see, this formulation of the problem is close to the

f(B,α) problem, which will be helpful later.

We start by noticing that one can give bounds on N0 using the multidimensional Sze-

merédi theorem.

Theorem 3.11. ([12], [17], [24]) For all l ≥ 2, d ≥ 1 and α ≥ 0. There exists N0 =

N0(l, r, α) such that if X ⊂ [N ]r with N ≥ N0 and |X| ≥ αNr, then X contains a homothetic

copy of [l]r, i.e., a set of the form z + j[l]r for some z ∈ [N ]r and j > 0.

In our context, Theorem 3.11 basically states that for every N ≥ N0(gr(B), 2, α) any

α-proportion of [N ]2 contains a homothetic copy of [gr(B)]2. Because [gr(B)]2 contains a

copy of B and homothety preserves order types, we obtain that N0(B,α) ≤ N0(gr(B), 2, α).

Theorem 3.11 was first proved by Furstenberg and Katznelson in [12]. Their proof was

based on arguments in ergodic theory and gives no bounds on N0. Later, quantitatives proofs

were given by Gowers ([17]) and Nagle, Rödl, Schacht and Skokan ([28], [24]), independently.

These proofs rely on regularity lemmas for hypergraphs and because of that they provide

non-practical bounds on N0 and consequently on N0(B,α). For instance, Gowers showed in

[16] a bound for r = 1 that is an exponential tower of height 6.

Our main intention in this section is to give an upper bound for N0(B,α) that avoids

the multidimensional Szemerédi theorem. This is done by creating a relation between the

f(B,α) problem and the problem of embedding configuration in a grid of minimum size.

3.2.1 Averaging lemma

Our proof of Theorem 1.1 strongly relies on the open property of order types (Proposition

2.4). Basically, we are not looking for a homothetic copies of a given configuration as in

Theorem 3.11, but for a homothetic ε-perturbation of a given configuration. This difference

enables us to find upper bounds for N0 using constructions in the real plane. The following

lemma is crucial to realize these ideas.
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Lemma 3.12. Let r > 0 be an integer and X ⊂ [N ]r with |X| ≥ αNr. For any configuration

A ⊂ [N ]r, there exists an z ∈ Zr such that |(A+ z) ∩X| ≥ α
2r |A|.

In other words, Lemma 3.12 says that for a configuration A ∈ [N ]2 and an α-proportion

X, there exists a translation of A, that is, a copy of A in [N ]2 such that X is an α/4-

proportion of this copy. Figure 3.5 exemplifies the content of the lemma.

A

A+ z

X

Figure 3.5: Averaging Lemma

As we can see there is a translation A+z of A such that the intersection of X with A+z

is relatively big. The proof of this lemma is just an application of the averaging method.

Proof of Lemma 3.12. Consider the set Z = [−(N − 1), N ]r ∩ Zr. We will choose z ∈ Z

uniformly at random and estimate the size of |(A+ z)∩X|. Let W be the random variable

counting the size of |(A+ z) ∩X|. By the linearity of expectation we have

E(W ) =
∑
x∈X

P(x ∈ (A+ z)).

For every point x ∈ X, there are exactly |A| elements z ∈ Z such that x ∈ A + z. In

fact, x ∈ (A + z) implies that z ∈ x − A and because x − A has size |A| and is a subset of

Z the result follows. This means that P(x ∈ (A+ z)) = |A|
|Z| for every x ∈ X. Therefore,

E(W ) =
∑
x∈X

|A|
|Z|

=
|X| · |A|
|Z|

≥ αNr|A|
(2N)r

=
α

2r
|A|

and, by the definition of expectation, there exists a z ∈ Z such that |(A+z)∩X| ≥ E(W ) ≥
α
2r |A|.

Lemma 3.12 allows us to give bounds on N0 depending on configurations A related to

the density problem in the plane.

Theorem 3.13. Let B be a configuration and α > 0. If A is a configuration such that

A→α/4 B, then N0(B,α) ≤ gr(A).

Proof. Let N = gr(A) and X be an α-proportion of [N ]2. Thus, by Lemma 3.12 there exists

a copy of A such that X ∩A is an α/4-proportion of A. Using that A→α/4 B we have that

B ⊂ X ∩A ⊂ X and [N ]2 →α B, which finishes the proof.
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The last theorem gives us a method to obtain lower bounds on N0. First we obtain a

configuration in the plane such that A →α/4 B and then we embed this configuration in a

grid gr(A). The problem to find small configurations A in the plane was already studied in

the previous section. Now we will focus on embedding these configurations in reasonably

grids.

3.2.2 Blow-up embedding

In this subsection we will study bounds for embedding a configuration in the grid. In

particular the configuration that we are interested in is one such that A→α/4 B. In Lemma

3.3 we saw that the configurations A ∈
⊗d

i=1B are good candidates. One possible approach

is to use Theorem 2.18 to obtain an upper bound for gr(A) based upon the size of |A|.
Consider the configuration A ∈

⊗d
i=1B, with d = dn log(4/α)e. Lemma 3.3 assures us

that A→α/4 B and then N0(B,α) ≤ gr(A). To estimate the size of the grid we use Theorem

2.18, which gives gr(A) ≤ 22c|A| for a fixed constant c > 0. Since A ∈
⊗d

i=1B has nd points,

we obtain that

N0(B,α) ≤ 22cn
2n log(4/α)

,

for sufficiently large n. This already gives a mouch better upper bound comparing to

the bound by the Szemerédi’s theorem. However, we can further improve it. Notice that

configuration A arises after iterated blow-up constructions over B. If we can emulate this

contruction on the grid, then it is expected that we can bound gr(A) by gr(B). We will

prove that this is indeed the case.

Lemma 3.14. Given configurations X and Y , there exists a configuration A ∈ X ⊗ Y

satisfying the following conditions

(i) gr(A) ≤ 8 gr(X)2 gr(Y ),

(ii) Every 1
2 gr(Y )

√
2

-perturbation of A is in X ⊗ Y .

Proof. Lemma 2.10 will be of great importance. By the definition of gr(X), there exists

some copy of X inside the [gr(X)]2 grid. For simplicity assume that X is exactly this copy.

The open property assures us that there exists ε such that every ε-perturbation of X is

isomorphic to X. Moreover, because X is embedded on a grid, we have ∆min(X) ≥ 1/2.

Thus by Lemma 2.10 with L = gr(X)−1, every ( 1
2
√

2 gr(X)
)-perturbation of X is isomorphic

to X.

For an integer k > 0, consider a homothety that dilates X to a copy X ′ which is k times

greater than X. It is easy to see that X ′ can be embedded in a [k · gr(X)]2 grid and that

every ( k
2
√

2 gr(X)
)-perturbation of X ′ is isomorphic to X. Let X ′ = {x1, . . . , xn} and for

every xi ∈ X ′ let Xi be the open ball centered at xi of radius k
2
√

2 gr(X)
. We know that for

every configuration Z = {z1, . . . , zn} with zi ∈ Xi, the congruence Z ∼= X holds. Our task

is to embed a copy Yi of Y inside each Xi ∩ [0, L]2 (We are assuming that the grid is inside
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X1

X2

X3

X4

X5

X6

Figure 3.6: X and its open balls

the [0, L]2 square). Then by the definition of blow-up, the configuration A = Y1 ∪ · · · ∪ Yn
will be an element of X ⊗ Y .

To embed a copy of Y inside each Xi, each Xi∩ [0, L]2 must contain a grid of size at least

gr(Y ). Because the point xi could be on the border of [0, L]2, the region Xi ∩ [0, L]2 could

be in the worst case a quarter of a circle. By Pythagoras theorem, every quadrant of an

open circle of radius r centered at a point of the grid contains a grid of size r
√

2
2 . Thus each

Xi∩ [0, L]2 contains a grid of size at least k
4 gr(X) . Taking k = 8 gr(X) gr(Y ), each Xi∩ [0, L]2

contains a grid of size 2 gr(Y ). Since 2 gr(Y ) ≥ gr(Y ) + 2, it is possible to embed a copy Yi

of Y in each Xi in a way that every 1-perturbation of this copy is inside Xi. In particular,

every 1
2 gr(Y )

√
2
-perturbation Zi of Yi is inside Xi. By Lemma 2.10, we have that Zi ∼= Y

and we conclude that Z1 ∪ · · · ∪ Zn ∈ X ⊗ Y . Thus, we obtained an element A ∈ X ⊗ Y
inside a grid of size k · gr(X) = 8 gr(X)2 gr(Y ) such that every 1

2 gr(Y )
√

2
-perturbation is in

X ⊗ Y .

The condition (ii) in the lemma will be important later in Section 4.2. Iterated applica-

tions of Lemma 3.14 provides the following result.

Theorem 3.15. Given a configuration X and an integer d ≥ 1, there exists a configuration

A ∈
⊗d

i=1X satisfying the following conditions

(i) gr(A) ≤ 8d−1 gr(X)2d−1,

(ii) Every 1
2 gr(X)

√
2

-perturbation of A is in
⊗d

i=1X.

Proof. The proof is by induction on d. For d = 1, the statement is true. Now suppose that

the theorem is true for every k < d. Let A′ ∈
⊗d−1

i=1 X be a configuration satisfying the

statement for d− 1. By Lemma 3.14, there exists a configuration A ∈
⊗d

i=1X such that

gr(A) ≤ 8 gr(X)2 gr(A′) ≤ 8 gr(X)2 · 8d−2 gr(X)2d−3 = 8d−1 gr(X)2d−1.

The lemma also says, if we read the proof, that there exists a partition A = A1 ∪ · · · ∪ An
such that every Ai ∼= A′ and such that the following holds. If Z = Z1 ∪ · · · ∪ Zn is an

1-perturbation of A such that Zi is an 1-perturbation of Ai, then every transversal of Z

is isomorphic to X. In particular, taking a 1
2g(X)

√
2
-perturbation Z = Z1 ∪ · · · ∪ Zn of A
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we obtain by the induction hypothesis that every Zi ∈
⊗d−1

i=1 X and every transversal is

isomorphic to X. Therefore, Z is an element of
⊗d

i=1X.

3.2.3 Extremal number estimates

Theorem 3.15 allows us to obtain an element A ∈
⊗d

i=1B with gr(A) bounded by gr(B).

This is enough to give the following general bound.

Theorem 3.16. Given ε > 0, there exists n0 such that for every configuration B with

n ≥ n0 points the following holds,

1√
α

(gr(B)− 1) ≤ N0(B,α) ≤ (3 gr(B))3n log(4/α).

Proof. The lower bound follows from the observation that a grid of size gr(B) − 1 do not

contain a copy of B and thus can not be an α-proportion of [N0]2. This gives

(gr(B)− 1)2 ≤ αN2
0 ,

and thus,

N0 ≥
1√
α

(gr(B)− 1).

For the upper bound we just have to combine all the results obtained in this section

so far. By Theorem 3.13 we have N0(B,α) ≤ gr(A) for A such that A →α/4 B. Choose

d = dn log(4/α)e. By Lemma 3.3 we have that A→α/4 B for every A ∈
⊗d

i=1B. Therefore,

by Theorem 3.15, we have that

N0(B,α) ≤ gr(A) ≤ 8d−1 gr(B)2d−1 ≤ (3 gr(B))2d ≤ (3 gr(B))3n log(4/α).

An immediate consquence of the last theorem is the following corollary.

Corollary 3.17. There exist c1, c2 > 0 such that

22c1n+ 1
2 log(1/α) ≤ N0(n, α) ≤ 22c2n log(1/α).

Proof. By Theorem 3.16 we have that

1√
α

(gr(n)− 1) ≤ N0(n, α) ≤ (3 gr(n))3n log(4/α),

and the result follows using Theorem 2.18.

Now we proceed to obtain bounds on ex(N,B). As outlined previously, our approach is

based on viewing the extremal problem as the inverse problem of the density problem.
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Proof of Theorem 1.1. Fix an integer N . We are interested in finding α0 such that

N ≥ (3 gr(B))3n log(4/α0) ≥ N0(B,α0).

So we have

α0 ≥ 4 exp
(
− logN

3n log(3 gr(B))

)
= 4N−η.

Taking α0 = 4N−η we obtain that [N ]2 →α0
B and therefore ex(N,B) ≤ α0N

2 = 4N2−η.

It is possible to give lower bounds for ex(N,B). The lower bound given in Theorem 3.16

can be translated as ex(N,B) ≥ (gr(B)−1)2. This lower bound does not use the parameter

N . Another possible lower bound is the following one. Consider a grid [N ]2. One can

see that the set consisting of the first (n/2 − 1) rows does not contain a configuration of

n points in general position. This is a consequence of the pigeonhole principle. Therefore,

because B is a configuration in general position, N0 has to satisfy the inequality αN2
0 ≥

(n/2 − 1)N0, that is, N0 ≥ n/2−1
α . Translating this to the extremal number problem, we

obtain ex(N,B) ≥ (n/2− 1)N . However, we did not use anything about the order type B.

It would be interesting to find a lower bound that uses both parameters (see Chapter 5).

3.2.4 Convex case

Although the previous approach gives a general bound, we would like to study the

case where B is a convex set. In this case it is possible to give a much better bound for

f(B,α). Just notice that every subset of a convex set is also a convex set. As we saw in

the introduction, f(B,α) = dnαe and this is attainable by a convex set. This suggests that,

in order to estimate N0(B,α), it is probably much better to take A, in Theorem 3.13, as a

convex set than as a blowup of B. The next result confirms this observation. It is important

to state that a more precise result was proved by Jarńık [21].

Theorem 3.18. If B is a convex set of size n, then gr(B) = Θ(n3/2).

Proof. Suppose B can be embedded in a grid of size N . Let B = {(xi, yi) : 1 ≤ xi, yi ≤
N, ∀ 1 ≤ i ≤ n} be the coordinates of each point in the [N ]2 grid in a way that the points

(x1, y1), . . . , (xn, yn) are in counterclockwise order. We define si = yi+1−yi
xi+1−xi as the slope of

the line between points (xi, yi) and (xi+1, yi+1). Of course, the indices are taken modulo n

and if xi = xi+1 we define

si =


∞, if yi+1 − yi > 0

0, if yi+1 − yi = 0

−∞, if yi+1 − yi < 0

.

For an index i, define θi as the measure of the angle of the slope si, i.e., θi is the angle formed

by the lines (xi, yi)(N + 1, yi) and (xi, yi)(xi+1, yi+1) in counterclockwise direction. We can
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divide the indices into 8 classes depending on where θi belongs. Let Tk = {i ∈ [n] : (k−1)π
4 <

θi ≤ kπ
4 }, for 1 ≤ k ≤ 8. Clearly [n] = T1 ∪ · · · ∪Tk is a partition, then there exists an index

i such that |Ti| ≥ n/8. Because B is convex, we get that Tk consists of consecutive elements

of [n] and thus, by symmetry, we can suppose without loss of generality that T1 = [t] with

t ≥ n/8.

The convexity of B and the definition of T1 ensure that 0 < s1 < · · · < st ≤ 1. Our

task is to estimate the minimum size of a grid containing B1 = {(xi, yi) : i ∈ [t + 1]} ⊂
B, this will give a bound on gr(B). The minimum square grid containing B1 has size

max{xt+1 − x1, yt+1 − y1}+ 1. Because yi+1−yi
xi+1−xi = si ≤ 1 we have,

yt+1 − y1 =

t∑
i=1

(yi+1 − yi) ≤
t∑
i=1

(xi+1 − xi) = xt+1 − x1,

and then max{xt+1 − x1, yt+1 − y1} + 1 = xt+1 − x1 + 1. For each i, write si = ai
bi

with

ai, bi nonnegative integers such that gcd(ai, bi) = 1. This means that yi+1 − yi = kai and

xi+1 − xi = kbi for some positive integer k, then it follows that xi+1 − xi ≥ bi and

xt+1 − x1 + 1 =

t−1∑
i=1

(xi+1 − xi) + 1 ≥ b1 + · · ·+ bt + 1.

Therefore, estimating b1 + · · ·+ bt is enough to give a lower bound on gr(B).

For a fixed integer s, the number of different fractions r
s with 0 < r

s ≤ 1 and gcd(r, s) = 1

is ϕ(s) (See Appendix A). It is not hard to see that in order to minimize the sum
∑t
i=1 bi,

we have to take the fractions { rs : gcd(r, s) = 1, 0 < r ≤ s, 1 ≤ s ≤ x} as the slopes

for an appropriate value of x. The value of x must satisfy
∑
s≤x ϕ(s) ≤ t and the sum of

the denominators of this fractions is
∑
s≤x sϕ(s). Theorem A.2 gives the right estimates to

proceed. Indeed, for sufficiently large n and x = π
√
t

2 we have

∑
s≤x

ϕ(s) =
3

π2
x2 +O(x log x) ≤ 4

π2
x2 = t.

Thus,

gr(B) > b1 + · · ·+ bt ≥
∑
s≤x

sϕ(s) =
2

π2
x3 +O(x2 log x) ≥ 1

π2
x3 =

πt
√
t

8
>
πn3/2

256

The upper bound uses the same argument. Let q be the smallest integer such that

h =
∑
s≤q ϕ(s) ≥ n− 1. We will construct a convex set of size h+ 1. For this consider the

set of fractions S = {ab : gcd(a, b) = 1, 0 < a ≤ b, 1 ≤ b ≤ q} and let s1 < · · · < sh be an

ordering of S. Denote si = ai
bi

with gcd(ai, bi) = 1. Set z1 = (1, 1) and zi+1 = zi + (bi, ai),

for every 1 ≤ i ≤ h. The set {z1, . . . , zh+1} is a convex set of size h+ 1 ≥ n inside a grid of

size 1 + b1 + · · ·+ bh.

Now we do an estimate similar to the lower bound. By Theorem A.2, for sufficiently
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large n we have

h =
3

π2
q2 +O(q log q) ≥ 2

π2
q2,

and

q ≤ π
√
h√
2
.

Finally,

gr(B) ≤ 1 +

h∑
i=1

bi = 1 +
∑
s≤q

sϕ(s) = 1 +
2

π2
q3 +O(q2 log q) ≤ 3

π2
q3 ≤ 3πh

√
h

2
√

2
≤ 3πn3/2.

Where we use that h = ϕ(q) +
∑
s≤q−1 ϕ(s) ≤ ϕ(n) + n < 2n.

Combining the last theorem with Theorem 3.13 for A as a convex bnαe-gon and the lower

bound provided by Theorem 3.16 we obtain that

c1
n3/2

√
α
≤ N0(B,α) ≤ c2

n3/2

α
√
α
,

for B convex, c1 and c2 constants and n sufficiently large. Therefore, for convex sets

N0(B,α) = Θ(n3/2). Translating this bound on N0(B,α) to a bound on ex(N,B) we

obtain that ex(N,B) ≤ cnN4/3 for some constant c. Unfortunately, this is not sharp on N .

The reason why this is true, is because good bounds on ex(N,B) in terms of N depends on

good bounds on N0(B,α) as a function of α and not as a function of n.

Theorem 3.19. If B is a convex set of n points, then ex(N,B) = Θn(N).

Proof. We claim that for every positive integer k, there exists a configuration A of k points

in general position such that gr(A) ≤ 2k. First we show that for p prime, there exists a

configuration A of p− 1 points such that gr(A) ≤ p− 1. Consider the multiplicative group

Z×p . Standard results in algebra says that Z×p is cyclic and has at least one generator g ∈ Zp.
The set A = {(gi, g2i) : 1 ≤ i ≤ p − 1} ⊂ [p − 1]2 is our natural candidate. Here we are

considering gi as gi (mod. p) if we think of g as an element of Z. For any three points

x = (gi, g2i), y = (gj , g2j) and z = (gt, g2t) it follows that

[xyz] ≡

∣∣∣∣∣∣∣
gi g2i 1

gj g2j 1

gt g2t 1

∣∣∣∣∣∣∣ ≡ (gt − gj)(gt − gi)(gj − gi) 6≡ 0 (mod. p).

This means that [xyz] 6= 0 and consequently this three points are not collinear. Thus A is in

general position and is inside a grid of size p−1. For general k, Bertrand postulate says that

there always exists a prime number between k and 2k. Then we can find a k < p ≤ 2k such

that there exists a configuration A of p−1 points in general position with gr(A) ≤ p−1 ≤ 2k.

In particular, there exists a configuration A′ of k points such that gr(A′) ≤ 2k.
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The idea for the upper bound is to give another bound on N0(B,α), one that is better

in the parameter α. We will achieve this by finding a configuration A such that A→α/4 B

and gr(A) is linear. By the Erdős–Szekeres theorem, it is reasonable to try configurations

in general position. Let A be a configuration in general position with |A| = d 22n+2

α e points.

Every α
4 -proportion X of A contains at least 22n points and by Theorem 3.4, we have that

X contains a convex set of size n. This means that A→α/4 B for every A in general position

of size d 22n+2

α e. The claim in the last paragraph says that there exists such A in general

position with gr(A) ≤ 2d 22n+2

α e. Then by Theorem 3.13 we have

N0(B,α) ≤ gr(A) ≤ 2d2
2n+2

α
e ≤ 22n+4

α

For a fixed integer N > 0, pick α0 = 22n+4

N . Then

N0(B,α0) ≤ 22n+4

α0
= N,

and [N ]2 →α0
B. Therefore ex(N,B) ≤ α0N

2 = 22n+4N . For the lower bound we use the

observation that ex(N,B) ≥ (n/2− 1)N .



Chapter 4

Probabilistic Results

In this chapter we study probabilistic results concerning order types. We are interested in

a particular random process already described in the introduction and in Subsection 2.1.1.

This process of choosing n random points in the unit square can be viewed as the most

natural way to generate an order type in the plane. Mainly because the random process

of choosing independently every orientation does not work well since there are choices of

orientations that are not realizable in the euclidean plane.

Of course, the very standard question is to determine the probability of obtaining a

certain order type by this process. For instance, in the convex case Valtr showed the following

result.

Theorem 4.1 ([34]). The set of n points chosen independently and uniformly from the unit

square is convex with probability ((2n−2
n−1

)
n!

)2

.

In Section 4.1 we will provide bounds for the general case. Although these bounds are far

from optimal, they are good enough to determine the threshold of the n-universal property.

In Section 4.2 we deal with another problem. Given a configuration B of n points, what

is the probability of B being a subest of a N -random? Turns out that this probability gets

smaller as N tends to the infinity. As we shall see, by understanding this probabilities, we

can obtain strong bounds on the probability of hereditary properties.

4.1 Threshold for the n-universal property

We start with a definition.

Definition 4.2. A configuration X is n-universal if X contains all order types of size n

Figure 4.1 exemplifies a 4-universal configuration. Indeed, the order types of size 4 are

the triangle with an interior point and the convex quadrilateral. Both are included in this

47
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Figure 4.1: 4-universal configuration

configuration. Define

R(n) = min{|A| : A is n-universal}

as the minimum size of an n-universal configuration. Determine good bounds on R(n) seems

to be a hard problem (see Chapter 5). However, the probabilistic version of this problem is

simpler. Our aim in this section is to give a proof of Theorem 1.3, which basically says how

many points we have to choose in our random process in order to obtain an n-universal set

almost surely.

In order to prove this result, we have to give bounds for the probability of obtaining a

fixed order type. One possible approach is to use Lemma 2.5 and discretize the problem

of finding a probability in the unit square, to finding the probability in the integer grid.

However, here we have a more elegant, and perhaps insightful, way of computing this prob-

ability. For any configuration X, we denote ∆max(X), ∆min(X) as the areas of the largest

and smallest triangles in X, respectively.

Definition 4.3. Given a configuration X, we define

ν(X) = inf{∆max(Y )

∆min(Y )
: Y ∼= X},

as the infimum of the ratios between the areas of the largest and smallest triangles for every

configuration Y isomorphic to X.

The parameter ν is well defined and ν(X) ≥ 1, for every configuration X. For instance,

if X is a convex quadrilateral we can show that ν(X) = 1 and if X is a triangle with an

interior point, then ν(X) = 3. Given an order type B and a random set U , both of n

points, our aim is to estimate P(U ∼= B) using this new parameter ν(B). Later we will find

a relation between ν(B) and gr(B). This will provide bounds that depend only on gr(B).

4.1.1 The probability of a given order type

We divide the proof into two parts. The following is a well-known result in probabilistic

combinatorics.
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Proposition 4.4. Let A,B,C be three random points chosen independently inside the unit

square [0, 1]2 and let s > 0 be a real number. If ∆ := ∆(ABC) is the area of triangle ABC,

then the following holds,

P(∆ ≤ s) ≤ 16πs.

Proof. Let b be the distance from A to B. For any small h, we have

P(x ≤ b ≤ x+ h) ≤ π(x+ h)2 − πx2 = π(2xh+ h2)

and taking h → 0, we obtain P(x ≤ b ≤ x + dx) = 2πxdx. Now suppose that the distance

between A and B is x. Then in order to have ∆ ≤ s, the altitude of C in relation to AB

must be at most 2s
x . This means that C lies on a strip of width 4s

x and lenght at most the

diagonal of [0, 1]2. As 0 ≤ x ≤
√

2, we have

P(∆ ≤ s) ≤
∫ √2

0

(
4s
√

2

x
)(2πx)dx = 16πs.

Proposition 4.4 can be used to give an upper bound.

Lemma 4.5. Let U be the configuration obtained by choosing n points at random inside the

unit square [0, 1]2. Then for any configuration B of n points the following holds,

P(U ∼= B) ≤ 8π

ν(B)

(
n

3

)
.

Proof. Let A be any configuration isomorphic to B inside [0, 1]2. By the definition of ν(B)

and the fact that a triangle inside the unit square has area at most 1/2, it follows

ν(B) ≤ ∆max(A)

∆min(A)
≤ 1

2∆min(A)

and we obtain that

∆min(A) ≤ 1

2ν(B)
.

This means that any configuration isomorphic to B inside [0, 1]2 has a triangle with area

at most 1
2ν(B) . Proposition 4.4 says that the probability of 3 random points having area at

most 1
2ν(B) is bounded by 8π

ν(B) . Then by the union bound,

P(U ∼= B) ≤ P(∆min(U) ≤ 1

2ν(B)
) ≤

(
n

3

)
8π

ν(B)
.

The next lemma deals with the lower bound.
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Lemma 4.6. Let U be the configuration obtained by choosing n points at random inside the

unit square [0, 1]2. Then for any configuration B of n points the following holds,

P(U ∼= B) ≥ n!π

512nν(B)2n
.

Proof. Let A be a configuration isomorphic to B such that ∆max(A)
∆min(A) ≤ 2ν(B). This configu-

ration exists because of the definition of ν(B). We claim that there exists a positive affine

transformation A′ of A inside [0, 1]2 such that ∆max(A′) ≥ 1/4. Let PA, QA be two points

of A that are at distance diam(A), that is, two points at the maximum possible distance.

Consider the positive affine transformation T that sends A to X = T (A) and PA, QA to the

points P = (0, 1/2) and Q = (1, 1/2). Because of the choice of P,Q we have that X is inside

the two lines determined by x = 0 and x = 1.

P Q

R

Figure 4.2: Stretching of X

There are two possibilities. The first one is that X is not entirely inside [0, 1]2. In this

case there exists a point R ∈ X such that the distance of R and the line PQ is greater than

1/2. However, this implies that the area of PQR is at least 1/4. By a proper translation of

X we obtain a set A′ such that ∆max(A′) ≥ 1/4. The second case is when X is inside [0, 1]2.

Then we consider an affine transformation (x, y) 7→ (x, λ(y− 1
2 )+ 1

2 ) for an appropriate λ > 0.

This affine transformation will stretch X until some point touches one of the horizontal sides

of [0, 1]2, while keeping the segment PQ fixed (Figure 4.2). Let R be the point touching

a side of [0, 1]2 and A′ be the final set. The triangle PQR has area 1/4 and therefore

∆max(A′) ≥ 1/4.

The important point about positive affine transformations is that they preserve ratio

about areas and order type (Proposition 2.12). Therefore, we have found a configuration A′

isomorphic to B such that

2ν(B) ≥ ∆max(A)

∆min(A)
=

∆max(A′)

∆min(A′)
≥ 1

4∆min(A′)
,

that gives

∆min(A′) ≥ 1

8ν(B)
.

This bound on the minimum area of A′ allows us to apply Lemma 2.10 and obtain a region
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with positive area such that all configurations are isomorphic to B. Write A′ = {a1, . . . , an}
and let A′i be the intersection of the open ball centered at ai of radius 1

8ν(B)
√

2
and [0, 1]2.

Lemma 2.10 says that every ( 1
8ν(B)

√
2
)-perturbation of A′ is isomorphic to A′. Therefore,

every transversal of A′1 ∪ · · · ∪ A′n is isomorphic to B, that is, if Y = {y1, . . . , yn} is such

that yi ∈ A′i for every i, then Y ∼= A′ ∼= B. Thus, we can bound the probability by

P(U ∼= B) ≥ P(U is a traversal of A′1 ∪ · · · ∪A′n) = n!µ(A′1) . . . µ(A′n).

Because some points of A′ can be on the border of [0, 1]2 we can only assure that µ(A′i) ≥
π
4

(
1

8ν(B)
√

2
)2 and it follows that,

P(U ∼= B) ≥ n!

(
π

512ν(B)2

)n
=

n!πn

512nν(B)2n
.

4.1.2 Relationship between ν(B) and gr(B)

The two lemmas in the previous subsection give upper and lower bounds on P (U ∼= B)

in terms of ν(B). However we still do not know much about this parameter ν(B). The next

lemma shows that this parameter is closely related to gr(B), the minimum size of a grid

containing a copy of B.

Lemma 4.7. For any configuration B the following holds,

gr(B)

10
≤ ν(B) ≤ gr(B)2.

Proof. By the definition of gr(B), there exists a copy of B inside [gr(B)]2. Let A be this

copy. Because every point of A has integral coordinates, we have ∆min(A) ≥ 1/2. On the

other hand, every triangle inside [gr(B)]2 has area at most half of the area of [gr(B)]2. Thus

ν(B) ≤ ∆max(A)

∆min(A)
≤ gr(B)2.

For the lower bound consider the configuration A′ as in Lemma 4.6 , i.e., a configuration

A′ ∼= B such that A′ ⊂ [0, 1]2, ∆min(A) ≥ 1
8ν(B) . A homothety of ratio N = d8ν(B)e

centered at the origin sends A′ to a configuration X ∼= B such that X ⊂ [0, N ]2, ∆min(X) ≥
N2

8ν(B) . Now the argument is similar to the one in the proof of Lemma 2.25. Inside the [0, N ]2

there exists a grid of size N + 1 and every point inside [0, N ]2 is at distance at most
√

2
2 to

a point of this grid. Lemma 2.10 says that every ( N
8ν(B)

√
2
)-perturbation of X is isomorphic

to B and a simple computation shows that

N

8ν(B)
√

2
=
d8ν(B)e
8ν(B)

√
2
≥
√

2

2
.

This means that there exists a configuration Y that is isomorphic to B and have integral
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coordinates. Therefore, we obtain

gr(B) ≤ N + 1 = d8ν(B)e+ 1 ≤ 8ν(B) + 2 ≤ 10ν(B),

where we use that ν(B) ≥ 1.

Combining the results so far, we obtain the following bound on P(U ∼= B).

Corollary 4.8. Let U be the configuration obtained by choosing n points at random inside

the unit square [0, 1]2. Then for any configuration B of n points the following holds,

n!πn

512n gr(B)4n
≤ P(U ∼= B) ≤

(
n

3

)
80π

gr(B)
.

This result is far from being sharp. The gap between the upper and lower bound can be

noticed in the convex case. Indeed, Theorem 3.18 gives that gr(B) ≤ 3πn3/2 in this case and

thus by Corollary 4.8 we obtain P(U ∼= B) ≤ cn3/2 for some constant c. This do not provide

any information since cn3/2 is much larger than the obvious bound P(U ∼= B) ≤ 1. However

the last corollary can be useful if gr(B) grows much above exponential. For instance, this

is the case for the configuration B constructed in Subsection 2.3.1. Lemmas 2.23 ad 2.25

show that for this configuration there exist c1, c2 > 0 constants such that

22c1n ≤ gr(B) ≤ 22c2n .

Therefore, another corollary of our work is the following.

Corollary 4.9. There exist constants c1, c2 > 0 such that the following holds. For every n

sufficiently large, there exists an order type B of n points such that

2−2c1n ≤ P(U ∼= B) ≤ 2−2c2n ,

where U is the random set obtained by choosing n points independently inside the unit square.

4.1.3 Proof of Theorem 1.3

Now we give a proof of the n-universal treshold theorem. The proof is a simple application

of the second moment method and of Corollary 4.8.

Proof of Theorem 1.3. Theorem 2.18 gives us constants b1 and b2 such that

22b1n ≤ gr(n) ≤ 22b2n ,

for every n sufficiently large. Let c1 = b1/3 and c2 = 3b2. Let U be the random set obtained

by choosing N points uniformly and independently inside the unit square. First we prove

the 0-statement, that is, we prove that if N ≤ 22c1n , then limn→∞ P(U is n-universal) = 0.
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For every n sufficiently large, let Bn be the configuration of n points of Subsection

2.3.1 such that gr(B) ≥ 22b1n . By Corollary 4.8, the probability of an n-random set being

isomorphic to Bn is

pBn = P(V ∼= Bn) ≤ 2−2b1n/2 .

Let XBn be the random variable counting the number of copies of Bn inside U . By linearity

of expectation, we have

E(XBn) =
∑

S⊂U, |S|=n

P(S ∼= Bn) =

(
N

n

)
pBn .

Markov’s inequality gives us that

P(XBn > 0) ≤ E(XBn) ≤ NnpBn ≤ 2n·2
c1n · 2−2b1n/2 ≤ 2−2c1n → 0,

as n→∞. Because a n-universal configuration must contain a copy of Bn, we obtain that

lim
n→∞

P(U is n-universal) ≤ lim
n→∞

P(XBn > 0) = 0

For the 1-statement we will use the second moment. We suppose now that N ≥ 22c2n .

Let B be an order type of n points and XB be the random variable counting the number of

copies of B in U . A union bound shows that,

P(U is not n-universal) ≤
∑
|B|=n

P(XB = 0),

where the right hand sum runs over all order types B of size n. Thus if
∑
|B|=n P(XB = 0)

is small, then with high probability U is n-universal. Fix a configuration B. A standard

variant of the Chebyshev’s inequality says that

P(XB = 0) ≤ V ar(XB)

E(XB)2
.

Luckily enough, the assumption on N being double exponential allows us to compute the

variance of XB with no effort. For a subset S ⊂ U , let XB,S denote the indicator function



4.2. PROBABILITY OF NOT CONTAINING AN ORDER TYPE 54

of S ∼= B. Indeed, a simple computation shows that

V ar(XB) =
∑

S,T⊂U
|S|=|T |=n

Cov(XB,S , XB,T ) ≤

∑
S,T⊂U
|S|=|T |=n

(E(XB,S ·XB,T )− E(XB,S)E(XB,T )) ≤

∑
S,T⊂U
|S|=|T |=n
|S∩T |6=0

P(XB,S = XB,T = 1) ≤
∑

S,T⊂U
|S|=|T |=n
|S∩T |6=0

P(S ∼= B) =

n∑
i=1

∑
S,T⊂U
|S|=|T |=n
|S∩T |=i

P(S ∼= B) ≤ pB
( n∑
i=1

N2n−i
)
≤ nN2n−1pB ,

where we use that the probability of sets S and T are isomorphic to B is less or equal than

the probability of only S is isomorphic to B. Because gr(B) ≤ 22b2n , by Corollary 4.8, we

have that

pB = P(V ∼= B) ≥ 2−22b2n

,

for n sufficiently large. Thus, for every configuration B, we have

P(XB = 0) ≤ V ar(XB)

E(XB)2
≤ nN2n−1pB((

N
n

)
pB
)2

≤ n2n+1

NpB
≤ n2n+1

22c2n · 2−22b2n
≤ n2n+1

22b2n
.

Finally, using Theorem 2.3 we obtain

P(U is not n-universal) ≤
∑
|B|=n

P(XB = 0) ≤ n2n+1

22b2n
· 24n logn+O(n) → 0,

as n→∞. Therefore limn→∞ P(U is n-universal) = 1.

4.2 Probability of not containing an order type

In this section we will prove Theorem 1.4. The proof will be divided into several steps.

First we will reduce the problem of computing the probability of not containing an order

type to a counting problem in the grid (Proposition 4.10). This will be a consequence of

Lemma 2.5. Then we will give bounds to this counting problem by using the recent results

of Balogh, Morris, Samotij, Saxton, Thomasson [2], [29] on independents set in hypergraphs.

Finally, we will apply these results to obtain bounds to the probability of satisfying a fixed

hereditary property (Corollary 4.16).
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4.2.1 Discretization of the probability

Let us remind the notation, let U be a N -random set obtained by choosing N points

uniformly and independently at random inside the unit square [0, 1]2. Similarly, define Vm

as the random set obtained by doing the same process, but now inside the [m]2 grid.

Given a configuration B and integers N,m, let

Nm,N (B) = {A ⊂ [m]2 : |A| = N, B 6⊂ A},

be the set of actual N -subsets of [m]2 without a copy of B. Also let

Cm,N (B) = {A ⊂ ([m]2)N : B 6⊂ A}

be the set of N -tuples without a copy of B. The difference between these two sets is that

the second one allows repetition and permutation of the points, while the first one A is a

set with distinct points.

Proposition 4.10. Let B be a configuration with n points and U be a N -random set inside

the unit square. Then we have,

P(B 6⊂ U) = lim
m→∞

N !|Nm,N (B)|
m2N

.

Proof. For a fixed configuration B of n < N points we define

BN = {A : |A| = N, B 6⊂ A}

as the order types A, not necessarily in general position, such that A does not contain a

copy of B. This means that if B 6⊂ U , then U ∈ BN . Therefore, by Lemma 2.5 and by the

fact that BN is finite, we have that

P(B 6⊂ U) =
∑
A∈BN

P(A ∼= U) =
∑
A∈BN

lim
m→∞

P(A ∼= Vm) = lim
m→∞

P(B 6⊂ Vm).

and we just need to calculate P(B 6⊂ Vm).

By the definition of Vm we have,

P(B 6⊂ Vm) =
|Cm,N (B)|
m2N

.

We can estimate the size of Cm,N (B) via Nm,N (B) by noticing that the N -tuples of Cm,N (B)

can be divided into two classes. The first class is of the N -tuples which all entries are

different. This class consists of all permutations of N -sets inside [m]2, that is exactly the

sets in Nm,N (B). The second part is of the N -tuple which some of the entries are equal.

We estimate this part by noticing that every N -tuple has at leas two entries with the same

element of [m]2. Therefore, it has at most
(
N
2

)
m2 choices for this pair and (m2)N−2 for the
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rest. Then,

N !|Nm,N (B)| ≤ |Cm,N (B)| ≤ N !|Nm,N (B)|+
(
N

2

)
m2N−2.

Dividing everything by m2N we obtain

N !|Nm,N (B)|
m2N

≤ P(B 6⊂ Vm) ≤
N !|Nm,N (B)|+

(
N
2

)
m2N−2

m2N
,

and the result follows by letting m goes to infinty,

P(B 6⊂ U) = lim
m→∞

P(B 6⊂ Vm) = lim
m→∞

N !|Nm,N (B)|
m2N

.

This proposition says that in order to obtain the desired probability we have to estimate

Nm,N (B), that is, the number of subsets of [m]2 of size N that do not contain a copy

of B. Let H be the n-graph with V (H) = [m]2 and E(H) = {A ⊂ [m]2 : A ∼= B}.
In this interpretation, a subset that does not contain a copy of B is a independent set

and |Nm,N (B)| is exactly the number of independent sets of size N in H. The problem

of counting the number of independent sets of a fixed size in a hypergraph can be solved

using the container method. The technical details of the method is the content of the next

subsection.

4.2.2 Hypergraph containers

Now we present the result of hypergraph containers. The technique, developed inde-

pendently by Saxton and Thomason ([29]) and Balogh, Morris and Samotij ([2]), says that

independent sets of a balanced uniform hypergraph are clustered in a small number of con-

tainers. This is of great interest when we are counting such independent sets, because we

can do that by estimating only in a small number of sets (containers). We will use the

notation in [2]. First, we start with an important definition. A family F of sets of vertices

is increasing if for every A,B ⊂ V , A ∈ F and A ⊂ B imply that B ∈ F .

Definition 4.11. Let H be an r-graph, let F be an increasing family of subsets of V (H)

and let ε ∈ (0, 1). We say that H is (F , ε)-dense if

e(H[A]) ≥ εe(H),

for every A ∈ F .

There always exists a family F ∈ P(V (H)) such that H is (F , ε)-dense. For instance,

consider the family

F = {A ⊂ V (H) : e(H[A]) ≥ εe(H)}.
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In applications of the container theorem, we are interested in increasing families F defined

as F = {A ∈ V (H) : |A| ≥ δv(H)} for some appropriate δ > 0. This is mainly because

the theorem will guarantee that our containers are in the complement F . Therefore, with

this choice of F , our containers will be sets of size at most δv(H). However, now we have

to prove that H is (F , ε)-dense. As we shall see, this is usually done with a supersaturation

theorem.

Given an r-graph H, denote by dH(A) = |{e ∈ E(H) : A ⊂ e}| the number of edges that

contain a subset A ⊂ V (H). Then we can define

∆k(H) = max{dH(A) : |A| = k}.

A balanced r-graph means that there exists some c > 0 and p ∈ (0, 1) such that

∆k(H) ≤ cpk−1 e(H)

v(H)
, ∀ 1 ≤ k ≤ r.

Let I be the set of independent sets of a balanced r-graph H and let F be a family

such that H is (F , ε)-dense. The container theorem will assign a container C ∈ F for each

independent set I ∈ I such that I ⊂ C. For technical reasons that are interesting to us, this

is done in the following way: Given a set I, there exists a small set S(I) ⊂ I, that is called

the fingerprint of I and for each fingerprint S there is a container C(S). This is done in a

way that S(I) ⊂ I ⊂ C(S(I)). Since each fingerprint is small, the number of containers can

be bounded in a good way.

Theorem 4.12 ([2]). For every r ∈ N and all positive c and ε, there exists a positive

constant K such that the following holds. Let H be an r-graph and let F ⊂ P(V (H)) be an

increasing family of sets such that |A| ≥ εv(H) for all A ∈ F . Suppose that H is (F , ε)-dense

and there exists p ∈ (0, 1) such that, for every 1 ≤ k ≤ r,

∆k(H) ≤ cpk−1 e(H)

v(H)
.

Then there exist a family S ⊂ P(V (H)) and functions f : I → S and g : S → F such that

(i) f(I) ≤ Kpv(H), for every I ∈ I.

(ii) f(I) ⊂ I ⊂ g(f(I)), for every I ∈ I.

Moreover, the constant K := K(r, c, ε) can be taken as K = K1ε
−r log(1/ε) for some

constant K1 := K1(r, c) depending only on c and r.

One important observation is that the constant K has no relation with the size of the

hypergraph H. Thus the theorem is true even for small hypergraphs satisfying the hypoth-

esis.

We want to apply Theorem 4.12 in our context. As we already explained, our n-graph H
will have V (H) = [m]2 and E(H) = {A ⊂ [m]2 : |A| = n, A ∼= B}, that is, the vertices are

the points in the grid and the edges are the n-sets isomorphic to B. Then an independent
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set is a set without a copy of B. It remains to check if H is a balanced n-graph and to

find a family F such that H is (F , ε)-dense. For the last one, we will use the following

supersaturation result. For a configuration A, let NB(A) denote the number of copies of B

inside A.

Theorem 4.13. For a configuration B of n points and δ ∈ (0, 1), there exists ε > 0 such

that for every m the following holds. If X ⊂ [m]2 with |X| ≥ δm2, then NB(X) ≥ εm2n.

Moreover, we can take ε = δn(3 gr(B))−5n2 log(8/δ).

Proof. The proof here is similar to the one of Theorem 3.16. Let d = dn log(8/δ)e and

consider a configuration A′ ∈
⊗d

i=1B as in Theorem 3.15, that is, a configuration A′ such

that gr(A′) ≤ 8d−1 gr(B)2d−1 and such that every 1
2 gr(B)

√
2
-perturbation of A′ is in

⊗d
i=1B.

For an integer k > 0, consider a homothety that dilates A′ to a copy A′′ which is

k times greater than A′. The copy A′′ can be embedded in [k8d−1 gr(B)2d−1]2. Write

A′′ = {a1, . . . , and} and for every ai, let Ai be the points of [k8d−1 gr(B)2d−1]2 that are

inside the open ball centered at ai of radius k
2 gr(B)

√
2
. Consider the set A = A1 ∪ · · · ∪And .

By the construction of A, every transversal is a configuration in
⊗d

i=1B. Suppose that

k8d−1 gr(B)2d−1 ≤ m, then A ∈ [m]2. Therefore, we can apply Lemma 3.12 in the δ-

proportion X of [m]2 and obtain a translation of A such that X contains a δ
4 -proportion of

it. Suppose without loss of generality that this translation is A.

We now prove that a δ
4 -proportion of A contains many copies of B. Since |X∩A| ≥ δ

4 |A|,
Lemma 3.7 says that there exists a set of indices I of size at least δnd

8 such that |X ∩Ai| ≥
δ
8 |Ai| for every i ∈ I. Note that by Lemma 3.3 and our choice of d, we have that Y →δ/8 B

for every Y ∈
⊗d

i=1B. Moreover, a copy of B obtained by this lemma is a transversal of

a configuration Y ′ ∈
⊗d′

i=1B with d′ ≤ d and Y ′ ⊂ Y . Consider the δ
8 -proportion of A′′

given by choosing ai ∈ A′′ with i ∈ I and let J be the set of indices of the copy of B inside

this δ
8 -proportion of A′′. We claim that any transversal of

⋃
j∈J Aj is isomorphic to B.

This is because the set {aj : j ∈ J} is a transversal of a configuration A′′′ ∈
⊗d3

i=1B with

d3 ≤ d and A′′′ ⊂ A and because any k
2 gr(B)

√
2
-perturbation of A′′ preserve the structure of

a
⊗d

i=1B.

Finally, using that J ⊂ I, we have that |X ∩ Aj | ≥ δ
8 |Aj |. By the same Pythagorean

argument made in the proof of Lemma 3.14, in the worst case, Aj is a quarter of a circle

and we have

|Aj | ≥
k2

16 gr(B)2
.

Therefore,

NB(X) ≥
∏
j∈J
|X ∩Aj | ≥

∏
j∈J

δ

8
|Aj | ≥

δnk2n

162n gr(B)2n
.
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Taking k = b m
8d−1 gr(B)2d−1 c we get,

NB(X) ≥
δnb m

8d−1 gr(B)2d−1 c2n

162n gr(B)2n
≥ δn

(3 gr(B))4nd
m2n ≥ δn

(3 gr(B))5n2 log(8/δ)
m2n.

Therefore ε ≤ δn

(3 gr(B))5n2 log(8/δ)
works.

Now we are able to prove the following version of the container theorem.

Theorem 4.14. Given a configuration B with n points and ε > 0, there exist a constant

K := K(B, ε) such that the following holds. For every integer m ≥ 2 gr(B), let I = {A ⊂
[m]2 : B 6⊂ A} be the family of subsets of [m]2 without a copy of B. Then there exist families

C and S of sets of [m]2 and functions f : I → S and g : S ⊂ C such that,

(i) f(I) ≤ K, for every I ∈ I.

(ii) f(I) ⊂ I ⊂ g(f(I)), for every I ∈ I.

(iii) |C| < δm2, for every C ∈ C.

Where δ = 8ε
1

6n2 log(3 gr(B)) and the constant K can be taken as K = K1ε
−n log(1/ε) for

some constant K1 := K1(B) depending only on B.

Proof. This is just an application of Theorem 4.12 with H as described before. Let V (H) =

[m]2 and E(H) = {A ⊂ [m]2 : A ∼= B} the copies of B inside [m]2. Let F be the family of

configurations A ⊂ [m]2 with |A| ≥ δm2, where δ = 8ε
1

6n2 log(3 gr(B)) . It is easy to see that F
is increasing. By Theorem 4.13, we have that e(H[A]) = NB(A) ≥ δn(3 gr(B))−5n2 log(8/δ) ≥
εm2n ≥ εe(H) and then H is (F , ε)-dense.

It remains to prove that H is balanced. For this, we need a lower bound on NB([m]2). As

in Lemma 3.14 , for an integer k > 0, we can construct a copy B′ of B inside the [k ·gr(B)]2

grid such that every ( k
2
√

2 gr(B)
)-perturbation is isomorphic to B. Let B′ = {b1, . . . , bn} and

for every bi ∈ B′, let Bi be the set of points in the [k · gr(B)]2 that are inside the open ball

centered at bi of radius k
2
√

2 gr(B)
. By the Lemma 2.10, we know that if Y = {y1, . . . , yn} ⊂

[m]2 with yi ∈ Bi, then Y ∼= B. Therefore,

NB([k · gr(B)]2) ≥
n∏
i=1

|Bi|.

In Lemma 3.14, we also saw that every set Bi contains a grid of size k
4 gr(B) , then |Bi| ≥

k2

16 gr(B)2 . All together, we have

NB([k · gr(B)]2) ≥ k2n

42n gr(B)2n
.

Taking k = b m
gr(B)c, we obtain

e(H) = NB([m]2) ≥
b m

gr(B)c
2n

42n gr(B)2n
≥ 1

(3 gr(B))4n
m2n.
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The last estimate shows that H is a dense n-graph, i.e., e(H) ≥ αv(H)n for some α > 0.

This suffices to prove that H is balanced. Indeed, for any 1 ≤ k ≤ n, we have

∆k(H) ≤
(
v(H)− k
n− k

)
≤ v(H)n−k ≤ m2(n−k).

Choosing p = 1
m2 and c = (3 gr(B))4n,

∆k(H) ≤ m2(n−k) = cpk−1 m2(n−1)

(3 gr(B))4n
≤ cpk−1 e(H)

v(H)
.

Thus, applying Theorem 4.12 for c = (3 gr(B))4n and ε > 0, we obtain a constant K a

family S and functions f : I → C, g : S → F such that,

(i) f(I) ≤ Kpv(H) = K, for every I ∈ I.

(ii) f(I) ⊂ I ⊂ g(f(I)), for every I ∈ I.

Take C = F . By the definition of F , we have that |C| ≤ δm2 for every C ∈ C. Finally, in

Theorem 4.12, the constant K can be taken as K = K ′ε−n log(1/ε), where K1 := K1(c, n)

is a constant that depends only on c and n. However, because c = (3 gr(B))4n, we can view

K1 := K1(B).

4.2.3 Counting theorem and proof of Theorem 1.4

With the technical machinery of the container method, we are able to count the number

of independent sets of a fixed size.

Theorem 4.15. For α ∈ (0, 1( and a configuration B with n points, there exists an integer

M := M(B,α) such that the following holds. For every sufficiently large m and N ≥M the

number of N -subsets of [m]2 that do not contain a copy of B is at most(
αm2

N

)
.

Proof. Choose ε = (α/800)6n2 log(3 gr(B)), then δ = 8ε
1

6n2 log(3 gr(B)) = α/100. Applying The-

orem 4.14, we obtain a constant K := K(B, ε), families S, F and functions f : I → S,

g : I → C satisfying items (i), (ii) and (iii). Set M = max{dKδ e, 10 log(1/δ)} and suppose

A ⊂ [m]2 with |A| = N ≥ M . If A does not contain a copy of B, then by Theorem 4.14,

there exist sets f(A) ∈ S and g(f(A)) ∈ C such that |f(A)| ≤ K, |g(f(A))| ≤ δm2 and

f(A) ⊂ A ⊂ g(f(A)). One can count all such sets A using the elements of S. In fact,

recalling that Nm,N (B) = {A ⊂ [m]2 : B 6⊂ A, |A| = N}, we have,

|Nm,N (B)| ≤
∑
S∈S

(
|g(S)|
N − |S|

)
≤
∑
s≤K

(
m2

s

)(
δm2

N − s

)
≤
∑
s≤K

(
em2

s

)s(
N

δm2 −N

)s(
δm2

N

)
,

where here we use that
(
n
k

)
≤
(
en
k

)k
and that

(
δm2

N

)
= (δm2−N+s)...(δm2−N+1)

N(N−1)...(N−s+1)

(
δm2

N−s
)
≥(

δm2−N
N

)s( δm2

N−s
)
. Noting that the function x 7→ (y/x)x is increasing on (0, y/e) and that for
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sufficiently large m we have δm2

2 > N , it follows that

|Nm,N (B)| ≤
∑
s≤K

(
2eN

δs

)s(
δm2

N

)
≤ K

(
2eN

δK

)K(
δm2

N

)
.

Using that K ≤ δN and that
(
δm2

N

)
≤ 2−N

(
αm2

N

)
we have,

|Nm,N (B)| ≤
(
δN

2N

)(
2e

δ2

)δN(
αm2

N

)
.

Because δ = α/100 < 1/100, we have that 2e
δ2 ≤ 21/2δ and then

|Nm,N (B)| ≤ δN

2N/2

(
αm2

N

)
≤
(
αm2

N

)
,

which is true for N ≥ 10 log(1/δ).

To prove Theorem 1.4 we perform the same trick used in the extremal number problem.

For a fixed N we pick an appropriate α such that M(B,α) ≤ N . Here it is important to

know the behavior of K as a function of ε.

Proof of Theorem 1.4. Set α = N−c, where c := c(B) = 1
10n3 log(3 gr(B)) . For this value of

α, let ε = (α/800)6n2 log(3 gr(B)) and δ = α/100. Also let K := K(B, ε) and M := M(B,α)

be the constants obtained by applying Theorems 4.14, 4.15 for parameters B, ε and B, α,

respectively. An easy computation using that K = K1ε
−n log(1/ε) shows that,

M(B,α) = max{d2K(B, ε)

δ
e, 100 log(1/δ)} ≤ 3K1δ

−1ε−n log(1/ε) ≤ 3K1δ
−1ε−(n+1)

≤ K2

(
16

α

)6n2(n+1) log(3 gr(B))+1

≤ K3

(
1

α

)8n3 log(3 gr(B))

= K3N
4/5 ≤ N,

for sufficiently large N and constants K1,K2,K3 depending only on B. Therefore, by

Theorem 4.15 we have that,

|Nm,N (B)| ≤
(
αm2

N

)
≤ αNm2N

N !
,

and by Proposition 4.10,

P(B 6⊂ U) = lim
m→∞

N !|Nm,N (B)|
m2N

≤ αN =

(
1

N

)cN
.

We conclude this section with an application of the last theorem. We will compute the

probability of an N -random set U being in a certain hereditary property. A hereditary

property of order types is a family P of order types satisfying the condition that if X ∈ P
and Y ⊂ X, then Y ∈ P, that is, a hereditary property is a decreasing family.
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Given a configuration X, define

Forb(X) = {A : X 6⊂ A},

as the family of order types that do not contain a copy of X. For a family F of order types

we define Forb(F) as the family of order types that do not contain a copy of any element of

F .

It is not difficult to see that every hereditary property P can be defined as Forb(F) for

some family F . For instance, the family CONV of convex sets is a hereditary property.

This is because any subset of a convex set is also convex. One can see, that another way

to formulate this family is by considering the family Forb(T ), where T is the triangle with

an interior point. Because any convex set does not contain interior point, we have that

CONV ⊂ Forb(T ). On the other hand, if the convex hull of a configuration in Forb(T )

contains an interior point, then a triangulation generates T . Therefore, CONV = Forb(T ).

Given a configuration B of n points and a random set U of N points inside the unit

square, the problem studied in this section can be translated in the new notation, i.e., to

estimate bounds for the probability of U ∈ Forb(B). However, because

P(U ∈ Forb(F1)) ≤ P(U ∈ Forb(F2))

if F2 ⊂ F1, in order to obtain an upper bound to the probability of P(U ∈ Forb(F)) we

just need to solve the case where F contains only one element. This observation gives the

following corollary.

Corollary 4.16. Let P be an infinite hereditary property of order types and let U be the set

obtained by choosing at random N points inside the unit square. Then, there exists constants

c1, c2 depending only on P such that,(
1

N

)c1N
≤ P(U ∈ P) ≤

(
1

N

)c2N
.

Proof. Let F be the family such that P = Forb(F). Suppose that F contains a convex

set C of m points. Then by Theorem 3.4, every configuration A with at least ES(m) + 1

points contains a copy of C. This implies that every configuration in P contains at most

ES(m) points and we have that |P| is finite, a contradiction. Therefore, F does not contain

a convex set. An immediate consequence is that every convex set is an element of P. Thus,

by Theorem 4.1,

P(U ∈ P) ≥ P(U is convex) =

((2N−2
N−1

)
N !

)2

≥
(

1

N

)c1N
,

for an appropriate constant c1 > 0.
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For the upper bound, just consider a configuration B ∈ F . Then, by Theorem 1.4,

P(U ∈ P) ≤ P(U ∈ Forb(B)) ≤
(

1

N

)c2N
,

with c2 := c2(B) a constant depending on P.



Chapter 5

Final Remarks

The combinatorial aspect of order types is a very recent field in combinatorics. Therefore,

there are many unexplored territories and open problems. In this chapter we propose some

problems related with our work.

In Section 3.1, we studed the problem of finding bounds for f(B,α) for a fixed configu-

ration B and a real number α ∈ (0, 1). Our approach is based on iterating blow-ups of B

until we obtain an α-proprotion whit the desired copy. This process only uses the fact that

order types are open, which suggests room to improvement.

Problem 5.1. Determine whether f(n, α) is polynomial or exponential on n and α.

One simple case that we do not know an efficient method to compute f(B,α) is when

B is a pentagon with a center point. It would be interesting to find other bounds for this

configuration that avoid the iterative blow-up method.

Figure 5.1: Pentagon with a center point

The following problem was proposed by Hao Huang and is based on its analogue in graph

theory.

Problem 5.2. Given an order type B of n points and a integer N > 0. Find the maximum

number of copies of B inside a configuration of N points.

In Section 3.2 we developed a method to give upper bounds for ex(N,B). This method

can give relatively sharp bounds as we can see in Theorem 3.19. However, we do not
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have a good lower bound, that is, a lower bound that in fact uses some properties of our

configuration B. It would be interesting to find better lower bounds.

Problem 5.3. Does there exists a configuration B such that ex(N,B) is not linear on N?

We also conjecture that the behavior of the convex case should be as follows.

Conjecture 5.4. If B is a convex set of n points, then ex(N,B) = Θ(n3/2N).

At last, in Chapter 4 we studied a specific random space and obtain some results on

probabilities of order types and hereditary properties. All of these were motivated by the

following question proposed by Yoshiharu Kohayakawa.

Problem 5.5. Let R(n) be the minimum integer N such that there exists a configuration

n-universal of N points. Determine bounds for R(n).

An obvious application of Theorem 2.3 gives us that R(n) ≤ 24n logn+O(n). For the lower

bound, we use the simple counting argument that the number of n-subsets of an n-universal

is at least 24n logn+O(n). Thus, (
R(n)

n

)
≥ 24n logn+O(n)

and we obtain that

R(n) ≥ n5+o(1).

Clearly, there is a huge gap between these two bounds. Theorem 1.3 indicates that is

probably not helpful to use our random process to obtain small n-universal order types.

Despite of that, it would be interesting to know more about the probabilities in this space.

We finish this chapter by conjecturing that the probability of an order type is strongly

related to its gr parameter.

Conjecture 5.6. There exist constants c1, c2 such that for every sufficiently large n the

following holds. Let B be an order type of n points and U be the set obtained by choosing n

random points inside the unit square, then

(gr(B))−c1n ≤ P(U ∼= B) ≤ (gr(B))−c2n.

Theorem 4.1 states that this is true for convex sets. We also know, by Theorem 1.4,

that this is true for configurations with polynomial grid size and without containing a small

order type. This is the case for the double circle [3].



Appendix A

Asymptotic Estimates

In this appendix we show an important estimate number theoretic estimate for our work

(Theorem A.2). The estimate relies on the following result known as Abel’s summation

formula.

Theorem A.1 ([1], Theorem 4.2). Let {an}n≥1 be a sequence of real numbers and let

f : [1,∞]→ R. For each real number x ≥ 1, let

A(x) =
∑
n≤x

an

and assume that f(x) has a continuous derivative for x ≥ 1. Then

∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt.

The next theorem involves some estimates over the sums of euler totient functions. Note

that the euler totient function ϕ is defined by ϕ(n) = |{j ∈ [n] : gcd(n, j) = 1}|, i.e., the

number of integers in [n] which coprime with n.

Theorem A.2. The estimates∑
n≤x

ϕ(n) =
3

π2
x2 +O(x log x),

∑
n≤x

nϕ(n) =
2

π2
x3 +O(x2 log x)

hold for all x.

The proof of this theorem requires a standard result in number theory related with the

Möbius function. The Möbius function µ is defined as follows. For every integer n > 1,
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write n = pα1
1 . . . pαkk as its prime factorization. Then

µ(n) =


1, if n = 1

(−1)k, if α1 = · · · = αk = 1

0, otherwise

Notice that µ(n) = 0 if and only if n has a squared factor.

Theorem A.3 ([1], Theorem 2.3). If n ≥ 1 we have

ϕ(n) =
∑
d|n

µ(d)
n

d
.

Now using Abel’s summation formula we are able to prove this theorem.

Proof of Theorem A.2. First we want to estimate
∑
n≤x

ϕ(n)
n . Theorem A.3 gives us

ϕ(n)

n
=
∑
d|n

µ(d)

d
.

Summing for all n ≤ x,

∑
n≤x

ϕ(n)

n
=
∑
n≤x

∑
d|n

µ(d)

d
=
∑
d≤x

µ(d)

d

∑
n≤x
d|n

1 =
∑
d≤x

µ(d)

d

(x
d

+O(1)
)

=

= x
∑
d≤x

µ(d)

d2
+O

(∑
d≤x

1

d

)
= x

( ∞∑
d=1

µ(d)

d2
−
∑
d>x

µ(d)

d2

)
+O

(∑
d≤x

1

d

)

= x

∞∑
d=1

µ(d)

d2
+O

(
x
(∑
d>x

1

d2

)
+
∑
d≤x

1

d

)
.

Standard estimates gives that

∑
d≤x

1

d
= O(log x),

∑
d>x

1

d2
≤
∫ ∞
x−1

1

t2
dt =

1

x− 1
,

and one can estimate
∑∞
d=1

µ(d)
d2 by

∞∑
d=1

µ(d)

d2
= 1 +

∑
p1,...,pk

(−1)k

p2
1 . . . p

2
k

=
∏
p

(
1− 1

p2

)
=
∏
p

(
1

1− 1
p2

)−1

=

∏
p

(
1 +

1

p2
+

1

p4
+ · · ·+

)−1

=

( ∞∑
n=1

1

n2

)−1

=
6

π2
,
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where we use that
∑∞
n=1

1
n2 = π2

6 . All together give

∑
n≤x

ϕ(n)

n
=

6

π2
x+O(log x).

To get the desired estimate we now apply the Abel summation formula twice. First with

an = ϕ(n)
n and f(t) = t. Noting that A(x) =

∑
n≤x

ϕ(n)
n , we obtain

∑
n≤x

ϕ(n) =
∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt

=

(
6

π2
x+O(log x)

)
x−

∫ x

1

(
6

π2
t+O(log t)

)
dt

=
6

π2
x2 +O(x log x)− 6

π2

∫ x

1

tdt+O

(∫ x

1

log tdt

)
=

6

π2
x2 +O(x log x)− 3

π2
x2 +O(x log x) =

3

π2
x2 +O(x log x).

Then we apply again with an = ϕ(n)
n and f(t) = t2,

∑
n≤x

nϕ(n) =
∑
n≤x

anf(n) = A(x)f(x)−
∫ x

1

A(t)f ′(t)dt

=

(
6

π2
x+O(log x)

)
x2 −

∫ x

1

2t

(
6

π2
t+O(log t)

)
dt

=
6

π2
x3 +O(x2 log x)− 12

π2

∫ x

1

t2dt+O

(∫ x

1

t log tdt

)
=

6

π2
x3 +O(x2 log x)− 4

π2
x3 +O(x2 log x) =

2

π2
x3 +O(x2 log x).
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[10] P. Erdős and G. Szekeres. On some extremum problems in elementary geometry. Ann.
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