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Orientador: Prof. Dr. Hugo Luiz Mariano

Durante o desenvolvimento deste trabalho o autor recebeu aux́ılio financeiro da CAPES

São Paulo, junho de 2016



A categorial foundation for a representation theory of
logics

Esta versão da tese contém as correções e alterações sugeridas

pela Comissão Julgadora durante a defesa da versão original do trabalho,
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Resumo

DARLLAN C.P. Uma fundamentação categorial para uma teoria de representação

de lógicas. 2016. 129 f. Tese (Doutorado) - Instituto de Matemática e Estat́ıstica, Univer-

sidade de São Paulo, São Paulo, 2016.

Neste trabalho estabelecemos uma base teórica para a construção de uma teoria de rep-

resentação de lógicas proposicionais. Iniciamos identificando uma relação precisa entre a

categoria das lógicas (Blok-Pigozzi) algebrizáveis e a categoria de suas classes de álgebras

associadas. Assim obtemos codificações funtoriais para as equipolências e morfismos den-

sos entre lógicas. Na tentativa de generalizar os resultados obtidos sobre a codificação dos

morfismos entre lógicas algebrizáveis, introduzimos a noção de funtor filtro e sua lógica asso-

ciada. Classificamos alguns tipos especiais de lógicas e um estudo da propriedade metalógica

de interpolação de Craig via amalgamação em matrizes para lógicas não-protoalgebrizáveis,

e estabelecemos a relação entre a categoria dos funtores filtros e a categoria de lógicas. Em

seguida, empregamos noções da teoria das instituições para definir instituições para as lógicas

proposicionais abstratas, para uma lógica algebrizável e para uma lógica Lindenbaum alge-

brizável. Sobre a instituição das lógicas algebrizáveis (lógicas Lindenbaum algebrizáveis),

estabelecemos uma versão abstrata do Teorema de Glivenko e que é exatamente o tradi-

cional teorema de Glivenko quando aplicado entre a lógica clássica e intuicionista. Por

fim, influenciado pela teoria de representação para anéis, apresentamos os primeiros passos

da teoria de representação de lógicas. Introduzimos as definições de diagramas modelos à

esquerda para uma lógica, Morita equivalência e Morita equivalência estável para lógicas.

Mostramos que quaisquer representações para lógica clássica são estavelmente Morita equiv-

alentes, entretanto a lógica clássica e intuicionista não são estavelmente Morita equivalentes.

Palavras-chave: Lógicas algébricas abstratas, Lógicas algebrizáveis, Teoria das categorias.
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Abstract

PINTO D.C. A categorial foundation for a representation theory of logics. 2016.

129 pp. PhD thesis- Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, São

Paulo, 2016.

In this work we provide a framework in order to build a representation theory of proposi-

tional logics. We begin identifying a precise relation between the category of (Blok-Pigozzi)

algebraizable logic and the category of their classes of associated algebras. Then, we have a

functorial codification for the equipollence and dense morphisms between logics. Attempt-

ing generalize the results found before about codification of morphisms among algebraizable

logics, we introduce the notion of filter functor and its associated logic. We classify some

special kinds of logics and a study of a meta-logical Craig interpolation property via matri-

ces amalgamation for non-protoalgebraizable logics, and we establish a relation between the

category of filter functors and the category of logics. In the sequel, we employ notions of

institution theory to define the institutions for the abstract propositional logics, for an al-

gebraizable logic and Lindenbaum algebraizable logic. On the institutions for algebraizable

logics (Lindenbaum algebraizable logics), we introduce the abstract Glivenko’s theorem and

this notion is exactly the traditional Glivenko’s theorem when applied between the classical

logic and intuitionistic logic. At last, influenced by the representation theory of rings, we

present the first steps on the representation theory of logics. We introduce the definition of

left diagram model for a logic, Morita equivalence of logics and stably-Morita equivalence for

logics. We have showed that any presentation for classical logic are stably-Morita equivalent,

but the classical logic and intuitionistic logic are not stably-Morita equivalent.

Keywords: Abstract algebraic logic, Algebraizable logic, Category theory.
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Introduction

The aim of this thesis is establishing a concise foundation in order to build a “good”

representation theory for propositional logics and then use that to unify properties among

logics, solve many different open problems in abstract logic and universal logic, study trans-

lations of meta-logical properties between logics and classify the many kinds of logics. The

idea to begin the construction of a representation theory of logic has been the well-known

and useful representation theory of rings in algebra. We intend get results in logic through of

the similar way of the results in algebra have emerged. The fundamental tools that we used

here to get results to develop the representation theory of logic are the theory of Abstract

logics and Category Theory. Influenced by the methods of combining logics, it has emerged

the study of the category of abstract logics, or simply the category of logics. From that

the researchers started to use the wide knowledge about abstract algebraic logic and the

category theory to solve problems about logics.

The theory of Abstract Algebraic Logics (AAL) nowadays can be seen as a theory that

studies the connections between logic and algebra. Those connections allow one to use the

powerful tools of universal algebra to study meta-logical properties. AAL was born with the

work of Boole, Pierce, De Morgan, Schröder, etc. on classical logic. Through of Hilbert’s

idea of metamathematics, the study of logics has been focused around the formal notions of

assertion, i.e., logical validity and theoremhood, and logical inference. Thus, we have two

approach to the subject, one centered on the notion of logical equivalence and the other

centered on the notions of assertion and inference. On those two distinct approaches about

logic began the attempts to connect them. Lindenbaum and Tarski were the first ones

to describe a precise connection between those distinct approaches. On the Lindenbaum’s

idea of viewing the set of formulas as an algebra with operators induced by the logical

connectives, Tarski gave the precise connection between classical propositional calculus and

Boolean algebras. The logical equivalence is an equivalence relation on the formulas algebra,

and the associated quotient algebra turns out to be a free Boolean algebra. This method

to connect logic and algebra is the so-called Lindenbaum − Tarski method. This method

consists of interpret the logical equivalence of formulas ϕ and ψ in classical propositional

logic as theoremhood of a suitable formula (ϕ↔ ψ) in the assertional system.

Others logics like intuitionistic logic or multiple-valued logic, can also be approached

1
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on the two point of view, the equivalent and the assertional. For instance, using the

Lindenbaum − Tarski method, it is possible connect the Intuitionistic propositional cal-

culus and the Heyting algebra. The developing of the theory of algebraic logic was made

trying generalize the Lindenbaum−Tarski method. This theory consists of the investigation

whether or not a logic can be connected with a class of algebras by means Lindenbaum −
Tarki method. Generalizing those ideas, Blok and Pigozzi [BP89] introduced the notion

of algebraizable logic. Superficially speaking, an algebraizable logic consists of a set of for-

mulas in two variables such that interpret the logical equivalence between two formulas as

theoremhood of this set of formulas. On this idea it is possible, for instance, to build the

connection between classical propositional logic with signature containing just the implica-

tion as binary connective {−→}, and the class of Boolean algebras using a set of formulas

given by {ϕ −→ ψ, ψ −→ ϕ}. Due to Blok and Pigozzi’s works, it has emerged the theory

of Abstract algebraic logic (AAL). The theory of AAL is a powerful tool to investigate meta-

logical properties, for instance, using the connection of an algebraizable logic with its class

of algebras, it is possible to interpret some meta-logical properties through a well-known

property on a “good” class of algebras. The converse is also possible to do, i.e., one can

analysis if certain property on a class of algebras holds just verifying if the associated logic

for the class of algebras satisfies a correspondent meta-logical property.

Another way to study meta-logical properties or intrinsic properties of a logic is looking

at through its “alternative” or “complementary” logics. For instance of “alternative” logics

of classical logic we have the intuitionistic logic, many-valued logic, paraconsistent logic.

For “complementary” logics for classical logic we can consider modal logics such as temporal

logic, epistemic logic, erotetic logic, doxastic logic, and so on. On this alternative to study

a logic has born the methods of combining logics. The study of combining a logic appear

in dual aspect: as a processes of decomposition or analysis of logics (e.g.,the “Possible

Translation Semantics” of W. Carnielli, [Car90]) or as processes of composition or synthesis

of logics (e.g., the “Fibrings” of D. Gabbay, [Gab96]). The methods of combining logics

have been the main motivation to consider a category of logics. Below we will explain, with

more details, how combining logics has motivated the categories of logics.

The consideration of category of logics give us a possibility to interpret a logical sys-

tem (objects), have a notion of translations (morphisms), identify equivalences between

logics (isomorphisms) and combine logics (limits and co-limits) using the well-known tools

of category theory. The major concern in the study of categories of logics (CLE-UNICAMP-

Brazil, IST-Lisboa-Portugal) is to describe condition for preservation, under the combination

method, of meta-logical properties ([CCC+03], [ZSS01]). The initial steps on categories of

logics are given in the sequence of papers [AFLM05], [AFLM06] and [AFLM07]. They

present a category of logic such that the morphisms send n-ary connective to n-ary connec-

tive. More flexible notions of morphisms between logics are considered in [FC04], [BCC04],
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[BSCC06], [CG07]. The morphisms in this category send n-ary connective to a n-ary for-

mula. Thus, we must consider a different way for composition of morphism, implying some

categorial “defects”. A “refinement” of those ideas is provided in [MM14]. Every category

above has the same objects: the propositional finitary logics, i.e., a pair given by a signa-

ture and Tarskian consequence relation on its formula algebra; the morphisms considered

are (some kind of) “logical translations”, i.e. some functions that preserves consequence

relations.

Overview of the thesis. In this thesis we begin giving a background of basic notion

to develop the subsequent chapters. We start introducing the methods of combining logics

and giving some examples. In this section, we give an explanation to choice of representing

a logical system by a signature and a Tarskian consequence relation. After reading this

first section, we believe that one can so understand why the theory of combination of logics

has been the main motivation to study of categories of logics. In the sequel we introduce

the different kinds of categories of signatures and then the categories of logics and some

of their subcategories, namely the category of signatures and logics with strict and flexible

morphisms, the category of congruential (selfextensional) logics and the quotient of these

categories. We introduce the notion of algebraizable logic with examples and some important

results we use in this work. Finally, we present the category of algebraizable logics, that

one can see as a special subcategory of the former categories, the category of Lindenbaum

algebraizable logics and the relationship among these categories.

The chapter 2 is dedicated to explain the relation between signatures and structure.

Roughly speaking we present an anti-isomorphism between the category of signature with

flexible morphisms and the category of structure which the morphisms are functors that

“commute over Set”, i.e., commute with the forgetful functors U : Σ − Str → Set. Look-

ing at the category of algebraizable logics, we have that the anti-isomorphism, established

before, “restricts” to an anti-isomorphism between the category of algebraizable logics and

a category such that the objects are pairs (Σ− Str, a) where QV (a) ⊆ Σ− Str. The main

results in this chapter are the codification of isomorphisms in the quotient category of al-

gebraizable logics Qc
f by means functors of structures such that restrict to isomorphisms of

quasivarieties, and a codification of dense morphisms in the category from an arbitrary logic

to an algebraizable logic by means functors such that are full, faithful, injective on objects

and satisfy an additional property named “heredity”.

Trying to construct a codification of morphisms of arbitrary logics in the same way

provided in the chapter 2, we introduce in the chapter 3 the notion of a filter pair (G, i)

and its associated logic. On this notion we have a classification of some special kinds of

logics, namely the protoalgebraic logics, equivalential logics, truth-equational logics and

algebraizable logics, just analysing the relation between the Leibniz operator and a specific

filter pair. In the sequel we provide, by means filter functor, an analysis of meta-logical
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properties, more specifically, we have proved a relation between the amalgamation property

in matrices and Craig entailment interpolation property in non-protoalgebaic logics. The

last part of this chapter we introduce the category of filter functors and a “codification”

of morphisms of logics, i.e., we have an adjunction between the category of logic and the

category of filter functors.

In the chapter 4 we employ the notions of Institutions and π-Institutions. We have

proved an adjunction between the category of institutions and the category of π-institutions.

This adjunction is not completely new because there is a proof in [FS88] of the relation

between the objects of those categories, but was not found a proof of the relation between

their morphisms. We introduce an institution for the abstract propositional logics and an

institution for each (Lindembaum) algebraizable logic, providing a new approach to the

identity problem of logics ([B0́5]). As an application of the results provided before, we have

a generalization of Glivenko’s theorem in algebraizable logics (Lindenbaum algebaizable

logics). It is presented the notion of Glivenko’s context in the institutions for algebraizable

logics (Lindenbaum algebraizable logics) and then the main result in this chapter is the

theorem 4.3.6 (4.3.12) stating that for a Glivenko’s context there is an institution morphism

associated. As a consequence of this theorem we have that given a Glivenko’s context,

there is a abstract Glivenko’s theorem associated for algebraizable logics 4.3.7 (Lindenbaum

algebraizable logics 4.3.13). The abstract Glivenko’s theorem between the propositional

classical logic and the propositional intuicionistic logic is exactly the classical Glivenko’s

theorem or a variation of it 4.3.8.

The chapter 5 is dedicated to introduce the first notions in order to define a precise

representation theory of logics. We start presenting a notion of left diagram model for an

arbitrary logic. Weakening the notion of isomorphisms between left diagram modules of

logics, we propose a notion of Morita equivalence of logics and weakening even more we have

the notion of left-stably-Morita equivalence. A result here that give us evidence that the

definition of left-stably-Morita equivalence is working is the theorem 5.3.10 stating that the

representations of classical logics are left-stably-Morita equivalence, but the classical logic

and the intuitionistic logic are not left-stably-Morita equivalent (5.3.11).

A Conclusion chapter, with indications of future research, end our thesis.



Chapter 1

Preliminaries

We start this thesis presenting the main motivation to study the category of logics,

namely the many methods of combining logics ([CC]). They appear in dual aspects: as

processes of decomposition or analysis of logics (e.g., the “Possible Translation Semantics”

of W. Carnielli, [Car90]) or as processes of composition or synthesis of logics (e.g., the “Fib-

rings” of D. Gabbay, [Gab96]). The combining of logics is still a young topic in contemporary

logic. Besides the pure philosophical interest of define mixed logic systems in which distinct

operators obey logical relations of different nature (syntactical and/or semantical), there

also exist many pragmatical and methodological reasons to consider combined logics. We

introduce these two ways to combine logics and we present some example of combining logics

as Algebraic fibring and Possible − translation semantics. Being the last one the main

motivation to begin the study of representation of logic.

The initial steps on “global” approach to categories of logics are given in the sequence

of papers [AFLM05], [AFLM06] and [AFLM07]: they present very simple but too strict no-

tions of logical morphisms, having “good” categorial properties ([AR94]) but unsatisfactory

treatment of the “identity problem” of logics ([B0́5]). More flexible notions of morphisms

between logics are considered in [FC04], [BCC04], [BSCC06], [CG07]: this alternative notion

allows better approach to the identity problem, however, has many categorial “defects”. A

“refinement” of those ideas is provided in [MM14]: are considered categories of logics sat-

isfying simultaneously certain natural conditions: (i) represent the major part of logical

systems; (ii) have good categorial properties; (iii) allow a natural notion of algebraizable

logical system ([BP89], [Cze01]); (iv) allow satisfactory treatment of the “identity problem”

of logics. Here we present these diferentes kids of categories of logics. Firstly we introduce

the categories of signature with strict and flexile morphisms. On the categories of signature

we have the categories of logics such that the morphisms are exactly strict and flexible.

Generalizing the ideas that describe a precise connection between Boolean algebra and

classic propositional logic presented by Lindenbaum−Tarski, Blok and Pigozzi introduced

in [BP89] the concept of algebraizable logic, for the first time, as a mathematical definition

5
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based on the notions of algebraizing pair and equivalent algebraic semantics. We present

the precise definition given by Blok and Pigozzi, and some important results that we will

use in the following sections of this thesis. Here, another relevant category of logics has,

as objects, the algebraizable logics; the morphisms between them are the translations that

preserve algebraizing pairs.

1.1 Combining Logics

The combining of logics is still a young topic in contemporary logic [CC]. Besides the

pure philosophical interest on defining mixed logic systems in which distinct operators obey

logics of different nature, as for instance combining epistemic and deontic logics, there also

exist many pragmatical and methodological reasons for considering combined logics. In fact,

the use of formal logic as a tool in Computer Science frequently requires the integration of

several logic systems into a homogeneous environment.

The idea of looking at logic as an entirety avoiding fragmentation is not new. Philoso-

phers and logicians from Ramón Lull (1235-1316), in Air Magna to Gottfried W. Leibniz

(1646-1716), with calculus ratiocinator, have thought of building schemes where different

logics could interact and cooperate.

Currents researches in logics have a strong trend to look for pluralism and compartmen-

talization. On one hand, we have alternative logics to the classical logic, such as multi-valued

logics, intuitionistic logic, paraconsistent logic. On the other hand, we also have logics com-

plementary to classical, such as modal logics, and, in particular, temporal logic, epistemic

logic, doxastic logic, erotetic logic, deontic logic, and so on. Because of this, the study of

combining of logics appear in dual aspects: as a processes of decomposition or analysis of

logics or as processes of composition or synthesis of logics. In both cases, we seek to de-

termine conditions which preserve the meta-logic properties as: Soundness, Completeness,

Craig’s Interpolation, Decidability, and so on.

1.1.1 Synthesis and analysis of logics

The methods for combining logics appear in dual aspects: Analysis and Synthesis of

logics. Roughly speaking , one can decompose a given logic into factors of lower complexity,

in order to facilitate the study the former one through of the simpler factors. This method

is the decomposition or analysis logic.
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a

l

??

//

��

a′

a′′

The other method is to compose a new logical system over existing ones. In this process

we intend to study properties of various logics into one.This method is called of composition

or synthesis of logic.

a

��
a′ // l

a′′

@@

The combined logic should be minimal in some sense. In the case of synthesis of logics,

it is expected that the logic assumes the role of infimum in a certain sense, i.e., if a logic

l is obtained from two other a and a′ then: 1) l extends a and a′ and 2) l is the smaller

extension of a and a′.

On the other hand in process of analysis of logics, a logic under analysis l assumes the

role of supremum of a and a′

Before we give examples of combining of logics, an important question about the presen-

tation of logics arises. Is it possible to combine logics defined in different ways? e.g., how

could one combine a logic L1, defined by natural deduction, with a logic L2, defined by a

Hilbert’s axiomatic system? How should the resulting logic L be represented: as a natural

deduction, as an axiomatic system or as a mixed proof system?

Consider now a logic L1 described by semantical means (Valuations or Kripke models),

whereas the logic L2 is presented through a syntactical proof system, such as a sequent

calculus or Hilbert-style axiomatization. which presentation fits better for the resulting

(combined) logic: semantical or syntactical?

One way of solve this problem of combine logics of different presentations is consider

something in common in most of logics: their consequence relations. Given two logics L1

and L2 represented by different forms, it is always possible to extract their consequence

relations in order to combines them.

Definition 1.1.1. A signature is a sequence of pairwise disjoint sets Σ = (Σn)n∈N. In what

follows, X = {x0, x1, ..., xn, ...} will denote a fixed enumerable set (written in a fixed order).
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Denote F (Σ) (or by Fm) (respectively F (Σ)[n] (or Fm[n])), the set of Σ-formulas over X

(respec. the set of Σ−formulas ψ such that var(ψ) = {x0, ..., xn−1}).

Definition 1.1.2. A Tarskian consequence relation is a relation `⊆ ℘(F (Σ))×F (Σ), on a

signature Σ = (Σn)n∈N, such that, for every set of formulas Γ,∆ and every formula ϕ, ψ of

F (Σ), it satisfies the following conditions:

◦ Reflexivity :If ϕ ∈ Γ, Γ ` ϕ

◦ Cut :If Γ ` ϕ and for every ψ ∈ Γ, ∆ ` ψ, then ∆ ` ϕ

◦ Monotonicity :If Γ ⊆ ∆ and Γ ` ϕ, then ∆ ` ϕ

–The finitary-structural-Tarskian consequence relation is a Tarskian consequence rela-

tion such that the following conditions hold:

◦ Finitarity :If Γ ` ϕ, then there is a finite subset ∆ of Γ such that ∆ ` ϕ.

◦ Structurality :If Γ ` ϕ and σ : X → F (Σ) is a substitution, then σ[Γ] ` σ(ϕ)

In this thesis we consider a Tarskian relation as a finitary-structural-Tarskian relation.

The notion of logic consider in this work is given in the next:

Definition 1.1.3. A Tarskian logic of type Σ, or a Σ − logic, or simply a logic of type Σ,

is a pair (Σ,`) where Σ is a signature and ` is a Tarskian consequence relation.

The set of all consequence relations on a signature Σ, denoted by ConsΣ, is endowed with

the partial order: `0≤`1 iff for each Γ ⊆ F (Σ), {ϕ ∈ F (Σ); Γ `0 ϕ} = Γ
0 ⊆ Γ

1
= {ϕ ∈

F (Σ); Γ `1 ϕ}.

Remark 1.1.4. For each signature Σ, the poset (ConsΣ,≤) is a complete lattice. It is in

fact an algebraic lattice where the compact elements are the “finitely generated logics”, i.e.,

the logics over Σ given by a finite set of axioms and a finite set of (finitary) inference rules.

1.1.2 Examples of combining of logics

Category theory stands for a useful and important mathematical tool when we are inter-

ested on the relationship among objects. A possible approach to the process of combining

of logics is given by a categorial treatment. The examples of combining of logics below use

the category theory [Mac71].

Algebraic Fibring:

Let L to be a category of logics and L1, L2 ∈ L, then the Fibring between L1 and L2 is

the co-product (L1

∐
L2).
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co− product product

L L

zz $$��
L1

88

// L1

∐
L2

OO

L2
oo

ff

L1 L1 × L2
oo // L2

In this process, due to universal property of co-product, we have that the logic (L1

∐
L2),

in a way plays the role of supremum. This process of combining of logics is example of

composition or synthesis of logics.

The Algebraic Fibring was introduced by A. Sernadas, C. Sernadas and C. Caleiro in

[SSC99] in order to overcome limitations on the fibring process proposed originally by D.

Gabbay in [Gab96].

Another example of combining of logics is:

Possible-Translations Semantics:

A translation between two logics L = (Σ,`) and L′ = (Σ′,`′) is a function f : F (Σ) →
F (Σ′) such that preserve derivability, i.e., if Γ ` ϕ then f [Γ] `′ f(ϕ). A pair P =

({Li}i∈I , {fi}i∈I) where fi : F (Σ)→ F (Σi) is called possible-translation frame to L = (Σ,`).

P is a possible-translation semantics to L if for all Γ ∪ {ϕ} ⊆ F (Σ),

Γ ` ϕ iff for all i ∈ I, fi[Γ] ` fi(ϕ)

Thus possible to check up the derivability of the logic L through translations in logics

Li.

On the categorial point of view, we have that L is “faithfully encoded” in the “product”

of objects (Li)i∈I .

This is an example of combining of logics in sense of composition or synthesis of logics.

The possible-translations semantic was introduced by W. Carnielli in [Car90]. Actually,

several paraconsistent logics which are not characterizable by finite matrices can be charac-

terized by suitable combinations of many-valued logics [JBS].

Some other types of combining of logics (see [CC]) are.

• Product (introduced by K. Segerberg(1973) and independently by V. Sehtman(1978)),

Fusion (introduced by R. Thomason (1984)), Fibring (introduced by D. Gabbay (1996))

They all combining only modal logics.

• Temporalization, Parametrization

• Institutions (introduced by J. Goguen e R. Burstall, the institutions was introduced

with use of categorical language making a type of abstract models theory applied in
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computer science).1

In the late 90s, the logic group of IST Lisboa-Portugal and the group theoretical and

applied logic of CLE-UNICAMP considered systematically the categorical perspective of

phenomenon of (some types of) combining of logics. On one hand the analytic process that

occurs in possible-translation semantics produces a conservative translation between the

logic in study and the product (or weak product) of simpler logics. On the other hand, the

“unrestricted” fibring, i.e., without connective sharing of the logical constituents is described

for dual categorical construction of product, coproduct and the notion of “restricted” fibring,

i.e. with connective sharing of the logical constituents, is described for dual categorical

construction of fibred product (or pullback) and amalgamated sum (or pushout) ([SSC99],

[CCRS05]).

pullback pushout

L′

�� ��

��

L′

L

zz $$

L

OO

L1
// L2 L3
oo L1

::

CC

L2
oo // L3

dd

[[

The categorical approach to the notion of fibring is relevant because, besides such ap-

proach requires that object of study and the relationship among them are totally accurate,

the characterization of fibring as a universal construction (as coproduct or amalgamated

sum) in a given choice of category of logics allows the definition through the same universal

properties of the fibring notion of logics in other categories that capture other aspects of the

logic systems. Thus, there were proposed new categories of logics that present treatment

of two problems that occurred in certain fibring in the first categories of logics, collapsing

problem and anti-collapsing problem:

(i) The collapsing problem in fibring occurs when the logic obtained by fibring presents

more relations in the combined language than expected, according to the description of

fibring made by D. Gabbay. The “solution” to this problem would be defining other cat-

egories of logic systems which still represent the original component logics, but such that

the combined logics, obtained through the correspondent concept of fibring in these new

categories, are accordingly weaker, in some sense, then the logic obtained through fibring

in the original category. Two examples in this sense are the modular fibring: with syntactic

character, obtained through restriction or control in the interactions among the components

1In the chapter 4 we present its precise definition.
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logics ([SRC02]); and the criptofibring: with semantic character, obtained through relax-

ation of the relations between the model combined and the constituent models ([CR04]).

(ii) The anti-collapsing problem occurs when the logic obtained through fibring presents

less relations in the combined language than expected, e.g., the absence of some natural

meta-properties. The “solution” to this problem would be defining other categories of logic

systems which still represent the original component logics, but such that the combined

logics, obtained through correspondent concept of fibring in these new categories, are ac-

cordingly stronger, in some sense, than the logic obtained through fibring in the original

category. A solution proposal, of syntactic character, is the notion of meta-fibring ([Con05]):

in this case, the morphisms between logics are signature morphisms which induce, in the set

of formulas, meta-translations of the source logic on the target logic.

1.2 Categories of logics

The appearance of several processes of combining of logics was the main motivation

to the systematic study of categories of logics. The category theory is concerned to the

relations among different mathematical objects. This is exactly the proposal in that we will

apply this theory in logic. Here, the objects in those categories of logics are signature and

consequence operator pairs, the morphisms are translations between logics. In the study of

categories of logics, some problems relating the logic properties and categories arise. In view

of this, different definitions of categories of logics appear, more precisely, different definitions

of morphisms between logic systems.

1.2.1 Categories of signatures and logics with strict morphism

Initially we define the category of signature with “strict” morphism Ss according to

[AFLM05], [AFLM06] and [AFLM07].

Definition 1.2.1. The objects of the category Ss are signature. If Σ,Σ′ are signature then

a morphism f : Σ → Σ′ is a sequence of functions f = (fn)n∈N, where fn : Σn → Σ′n. For

each morphism f : Σ→ Σ there is only one function f̂ : F (Σ)→ F (Σ′), called the extension

of f , such that:

◦ f̂(x) = x if x ∈ X (X is a fixed enumerable set)

◦ f̂(c) = f0(c) if c ∈ Σ0

◦ f̂(cn(ψ0, ..., ψn−1)) = fn(cn)(f̂(ψ0), ..., f̂(ψn−1)) if cn ∈ Σn, n > 0

Then, by indution, f̂(ϕ(ψ0, ..., ψn−1)) = f̂(ϕ)(f̂(ψ0), ..., f̂(ψn−1))
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The categories Ss and SetN are equivalent, thus we have that Ss has good categorial

properties, namely Ss is a finitely locally presentable category and the finitely presentable

(fp) signatures are the “finite support” signatures.

Remark 1.2.2. (i) (Sub): For any substitution function σ : X → F (Σ), there is only

one extension σ̃ : F (Σ)→ F (Σ) such that σ̃ is an homomorphism σ̃(x) = σ(x), for all

x ∈ X and

σ̃(cn(ψ0, ..., ψn−1) = cn(σ̃(ψ0), ..., σ̃(ψn−1))

for all cn ∈ Σn, n ∈ N. The identity substitution induces the identity homomorphism on

the formula algebra; the composition substitution of the substitutions σ, σ′ : X → F (Σ)

is the substitution σ′′ : X → F (Σ), σ′′ = σ ? σ′ := σ̃ ◦ σ′ and σ̃′′ = (σ ? σ′)∼ = σ̃ ◦ σ̃′.

Let f : Σ → Σ be a Ss-morphism. Then for any substitution σ : X → F (Σ) there is

another substitution σ′ such that σ̃′ ◦ f̂ = f̂ ◦ σ̃.

(ii) Let f : Σ→ Σ′ and θ ∈ F (Σ). If var(θ) ⊆ {xi0 , ..., xin−1}, then

f̂(θ(~x)[~x|~ψ]) = f̂(θ(~x))[~x|f̂(~ψ)].

Moreover var(f̂(θ)) = var(θ) and then f̂ restricts to maps f̂n : F (Σ)[n]→ F (Σ′)[n]

Now we give the definition of category of logics with “strict” morphism Ls.

Definition 1.2.3. The objects of Ls are l = (Σ,`), where Σ is a signature and ` is a

tarskian consequence operator. A Ls-morphism, f : l → l′ is a (strict) signature morphism

f ∈ Ss(Σ,Σ′) such that f̂ : F (Σ)→ F (Σ′) is a (`,`′)-translation: Γ ` ψ ⇒ f̂(Γ) `′ f̂(ψ)

Ls is a ω-locally presentable category and the fp logics are given by a finite set of “axioms”

and “inference rules” over a fp signature.

Between the categories Ls and Ss, there exists a forgetful functor such that forget the

consequence relation.

The categories above mentioned have good categorial properties, but unsatisfactory treat-

ment for the logic problems, e.g., the “identity problem” of logics [B0́5]. Two presentations of

classic propositional logic with signatures {¬,→} and {¬,∨} do not admit strict morphism

between them (because any such morphism must takes → to ∨ and they do not preserve `)

while it was expected that these presentations should be isomorphic.

1.2.2 Categories of signatures and logics with flexible morphism

At this moment, it is given a definition of category of logics essentially described in

[JKE96] [FC04], [BCC04], [BSCC06] and [CG07]. This definition gives a more appropriated

treatment for the “identity problem” of logics.
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Similarly to the previous case, firstly we define the category of signature with “flexible”

morphism Sf . Before defining this category, it is introduced the following notation:

If Σ = (Σn)n∈N is a signature, then T (Σ) := (F (Σ)[n])n∈N is a signature too.

A flexible morphism f : Σ→ Σ′ is a sequence of functions f ]n : Σn → F (Σ′)[n], n ∈ ω.

For each signature Σ and n ∈ N, consider the particular flexible morphism:

(jΣ)n : Σn → F (Σ)[n]

cn 7→ cn(x0, ..., xn−1)

For each flexible morphism f : Σ → Σ′, there is only one function f̌ : F (Σ) → F (Σ′),

called the extension of f , such that:

(i) f̌(x) = x, if x ∈ X;

(ii) f̌(cn(ψ0, ..., ψn−1)) = f(cn)(x0, ..., xn−1)[x0|f̌(ψ0), ..., xn−1|f̌(ψn−1)], if cn ∈ Σn, n ∈ N.

We have the inverse bijections (just notations): h ∈ Sf (Σ,Σ′)↔ h] ∈ Ss(Σ, T (Σ′)); f ∈
Ss(Σ, T (Σ′))↔ f [ ∈ Sf (Σ,Σ′).

Definition 1.2.4. The category Sf is the category of signature and flexible morphism as

above. The composition in Sf is given by (f ′ • f ′′)] := (f̌(�) ◦ f ]). The identity idΣ in Sf is

given by (idΣ)] := ((jΣ)n)n∈N

As well as the category Ss, we have that the category Sf satisfies the properties in 1.2.2

Definition 1.2.5. The category Lf is the category of propositional logics and flexible trans-

lations as morphisms. This is a category “built above” the category Lf , that is, there is an

obvious forgetful functor Uf : Lf → Sf .

If l = (Σ,`), l′ = (Σ′,`′) are logics then a flexible translation morphism f : l → l′ in

Lf is a flexible signature morphism f : Σ → Σ′ in Sf such that “preserves the consequence

relation”, that is, for all Γ ∪ {ψ} ⊆ F (Σ), if Γ ` ψ then f̌ [Γ] `′ f̌(ψ). Composition and

identities are similar to Sf .

Remark 1.2.6. Due to “flexibility”, this category allows a better approach to the identity

problem of logics. Consider the flexible morphisms t : (→,¬) −→ (∨′,¬′) such that t(→
) = ¬′x0 ∨′ x1 (formula in two variables), t(¬) = ¬′x0 and t′ : (∨′,¬′) −→ (→,¬) such that

t′(∨′) = ¬x0 → x1, t′(¬′) = ¬x0. This pair of morphisms induce an equipollence between

these presentations of classic logics [CG07].

However this category does not has good categorical properties, because of the lack of

many kinds of limits and colimits (which are useful for combining logics).
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Remark 1.2.7. It follows easily from the facts above that the forgetful functor Uf : Lf →
Sf : ((Σ,`) → ((Σ′,`′)) 7→ (Σ → Σ′) has left and right adjoint functors: the left adjoint

⊥f : Sf → Lf and the right adjoint >f : Sf → Lf take a signature Σ to, respectively,

⊥f (Σ) = (Σ,`min) (the first element of ConsΣ) and >f (Σ) = (Σ,`max) (the last element of

ConsΣ). Moreover, Uf◦ ⊥f= IdSf
= Uf ◦ >f and Uf preserves all limits and colimits that

exists in Lf .

Remark 1.2.8. It is known that Lf has weak products, coproducts and some pushouts, and

in the Remark above we see that Uf preserves limits and colimits. As Uf also “lift” limits

and colimits - the constructions in Lf are analogous to in Ls (in [AFLM07]) , just replace

f̂ by f̌ - then given a small category I, Lf is I-complete (respectively, I-cocomplete) if and

only if Sf is I-complete (respectively, I-cocomplete). As the category Sf has colimits for any

(small) diagram entails that Lf has colimits for any (small) diagram “in Ls”, in particular,

it has all unconstrained fibrings (= coproducts) and the constrained fibrings (= pushouts)

“based in Ls”.

1.2.3 Other categories of logics

Due to the drawbacks in the categories of logics mentioned above, other categories of

logics that help the overcome these “defects” are presented.

• On the category Lf we take the quotient categoryQLf : f, g ∈ Lf (l, l′), f ∼ g iff f̌(ϕ) a′`
ǧ(ϕ). Thus two logics l, l′ are equipollent if only if l and l′ are QLf−isomorphic [CG07]

• Still on the category Lf we have the “congruential”2 logics Lcf . This category is a

subcategory of Lf where the logics are congruential, i.e., logics that satisfies:

ϕ0 a` ψ0, ..., ϕn−1 a` ψn−1 ⇒ cn(ϕ0, ..., ϕn−1) a` cn(ψ0, ..., ψn−1).

The inclusion functor Lcf ↪→ Lf has a left adjoint given by congruential closure oper-

ator.

• In [MM14] we found the category QLcf (or simply Qcf ). This category of logics satisfies

simultaneously certain natural conditions:

(i) it represents the major part of logical systems;

(ii) it has a good categorial approach (e.g., they are complete, cocomplete and acces-

sible categories);

(iii) it allows a natural notion of algebraizable logical system ([BP89],[Cze01]);

(iv) it allows satisfactory treatment of the “identity problem” of logics.

2In many references the authors are calling this logic as selfextensional logic and they say that a logic

is congruential when it is a fullyselfextensional logic.



ALGEBRAIZABLE LOGICS 15

In [MM14] it is shown that the categories Ss and Sf are well related, more precisely, there

is a pair of adjoint functors between them, namely (+)S : Ss → Sf and (−)S : Sf → Ss.
Moreover there is a monad or triple T = (TS, µS, ηS) on Ss canonically associated with this

adjunction such that T preserves filtered colimits, reflects isomorphisms and, mainly, that

Kleisli(T ) = Sf [Mac71], which derives some additional informations about the category

Sf : e.g., it has all coproducts.

This adjunction between Ss and Sf through forgetful functors Us and Uf gives a pair of

adjoint functors (+)L : Ls → Lf , (−)L : Lf → Ls. i.e.:

• Uf ◦ (+)L = (+)S ◦ Us

• Us ◦ (−)L = (−)S ◦ Uf

• UsηL = ηSUf

• UfεL = εSUf

The signature monad T S = (TS, µS, ηS) associated to the signature adjunction (ηS, εS)

(i.e.,µS = (−)SεS(+)S) “lifts” to a logic monad T L = (TL, µL, ηL) associated to the signature

adjunction (ηL, εL) (i.e.,µL = (−)LεL(+)L) and is such that Kleisli(T L) = Lf . Moreover,

the functors (+)L and (−)L are precisely the canonical functors associated to the adjunction

of the Kleisli category of a monad.

1.3 Algebraizable logics

The idea behind algebraizing a logic has emerged from the need to connect two indepen-

dent approaches to logic. On one hand, there was the logic equivalence and on the other

hand there was the assertion and inference. The attempts of connecting them beginning

with the ideas of Hilbert.

Tarski described a precise connection between Boolean algebra and classical propositional

logic, following the Lindenbaum idea of looking at the set of formulas as an algebra with the

induced operators by logic connectives. This is so-called Lindenbaum-Tarski method.

Application of Lindenbaum-Tarski method to intuitionistic logic provides a connection

between intuitionistic propositional calculus and Heyting algebras.

Traditionally algebraic logic has focused on the algebraic investigation of particular

classes of algebras of logic, whether they could be connected to some known assertional

system by means of the Lindenbaum-Tarski method or not. However, when such a connec-

tion could be established, there was interest on investigating the relationship among various

meta-logical properties of the logical system and the algebraic properties of the associated

class of algebras.
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Now we describe the Lindenbaum-Tarski method.

Let l = (Σ,`) be a presentation of classical logic, e.g., Σ = (¬,→). T ⊆ F (Σ) is a theory

of l iff T ` ψ ⇒ ψ ∈ T for all ψ ∈ F (Σ).

We define the following relation on F (Σ):

ϕ ≡T ψ iff ϕ→ ψ ∈ T and ψ → ϕ ∈ T.

≡T is a congruence relation of the algebra of formulas. The quotient algebra F (Σ)/ ≡T is

know as the Lindenbaum-Tarski algebra determined by T . F (Σ)/ ≡T is a Boolean algebra.

About the ideas of Lindenbaum − Tarski, Blok and Pigozzi in 1989 [BP89] gave the

concept of algebraizable logics for the first time as a general mathematical definition instead

of a particular construction. The idea behind the definition is the following: a logic is

algebraizable if there exists a class of related algebras with the logic of the same way that

class of Boolean algebras is related with the classical propositional logic.

Definition 1.3.1. Let Σ be a signature. We will denote by Σ−Str the category with objects

given by all the structures (or algebras) on the signature Σ and morphisms Σ-homomorphisms

between them. A fundamental example of Σ-structure is F (Σ), the absolutely free Σ-algebra

on the set of variables X.

Definition 1.3.2. Given a class of algebras K over the signature Σ, the equational con-

sequence associated with K is the relation |=K between a set of equations Γ and a single

equation ϕ ≡ ψ over Σ defined by:

Γ |=K ϕ ≡ ψ iff for every A ∈ K and every Σ− homomorphism h : F (Σ)→ A,

if h(η) = h(ν) for all η ≡ ν ∈ Γ, then h(ϕ) = h(ψ).

Definition 1.3.3. Let l = (Σ,`) be a logic and K be a class of Σ−algebra. K is a equivalent

algebraic semantics for l if ` can be faithfully interpreted in |=K in the following sense:

(1) there is a finite set τ(p) = {(δi(p), εi(p)), i = 1, ..., n} of equations in a single variable

p such that for all Γ ∪ {ϕ} ⊆ F (Σ) and for j < n has been:

Γ ` ϕ⇔ {τ(γ) : γ ∈ Γ} |=K τ(ϕ) where τ(ϕ) = {(δi(p)[p/ϕ], εi(p)[p/ϕ]), i = 1, ..., n}.

(2) there is a finite system ∆j(p, q), j = 1, ...,m of two variables formulas (formed by de-

rived binary connectives) such that for all equation ϕ ≡ ψ,

ϕ ≡ ψ =|K|= τ(ϕ∆ψ)

where ϕ∆ψ = ∆(ϕ, ψ), ∆(ϕ, ψ) = {∆j(ϕ, ψ), j = 1, ...,m} and τ(ϕ∆ψ) = {δi(∆j(ϕ, ψ)) ≡
εi(∆j(ϕ, ψ)); i = 1, ..., n and j = 1, ...,m}.

In this case we shall say that a logic l is algebraizable. The set 〈τ(p),∆(p, q)〉 (or just

〈τ,∆〉) is called an “algebraizing pair”, with τ = (δ, ε) as the ”defining equations” and ∆ as

the “equivalence formulas”.
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Proposition 1.3.4. Let K an equivalent algebraic semantic for the algebrizable logic a =

(Σ,`) with algebraizing pair 〈τ,∆〉, then:

1. For all set of equations Γ and for all equation ϕ ≡ ψ, we have that

Γ |=K ϕ ≡ ψ ⇔ {ξ∆η : ξ ≡ η ∈ Γ} ` ϕ∆ψ

2. For each ψ ∈ F (Σ) we have that

ψ a ` ∆(τ(ψ)).

Conversely, if there is a logic a = (Σ,`) and formulas 〈∆(p, q), τ(p)〉 that satisfy the condi-

tions 1. and 2., then K is an equivalent algebraic semantics for a.

Remark 1.3.5. By a direct application of the definition above, if l = (Σ,`) is an algebraiz-

able logic and φ, ψ ∈ F (Σ), then φ, φ∆ψ ` ψ (detachment property).

As examples of algebraizable logics we have, in addition to CPC (Classic Propositional

Calculus) and IPC (Intuitionistic Propositional Calculus), some modal logics, the Post and

Lukasiewicz multi-valued logics, and many of several versions of quantum logic.

In case of CPC (IPC), a possible algebraizing pair 〈∆(p, q), τ(p)〉 = 〈∆(p, q), (ε(p), δ(p))〉
is:

1. ∆(p, q) = {p↔ q}

2. ε(p) = p

3. δ(p) = >

and K is the class of Boolean algebras (respectively the class of Heyting algebras).

Another class of algebras that is an3 equivalent algebraic semantic for an algebrizable

logic, but present in many branches of mathematics, is the class of all groups ([BP]). To the

(equational) theory of groups over the signature Σ = {·,−1 , e}, it is associated the following

propositional logic lGr, the “logic of groups” over the same signature Σ, that is

Axioms of lGr

G1 ((p · q) · r) · (p · (q · r))−1

G2 (p · e) · p−1

G3 (e · p) · p−1

3See Proposition 1.3.6.
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G4 p · p−1

G5 p−1 · p

Rules

R1 p · q−1 ` q · p−1

R2 p · q−1 ` p−1 · q−1−1

R3 {p · q−1, q · r−1} ` p · r−1

R4 {p · q−1, r · s−1} ` (p · r) · (q · s)−1

R5 p ` p · e−1

R6 p · e−1 ` p

The logic of groups theory has as algebrizing pair 〈∆(p, q), τ(p) = 〈ε(p), δ(p)〉〉:

1. ∆(p, q) = p · q−1

2. δ(p) = p

3. ε(p) = e

K, in this case, is the class of groups. Worth pointing out that the logic of groups, in

some sense, does not admit Deduction Theorem.

Recall that a quasivariety is a class of algebras K such that it is axiomatizable by quasi-

identities, i.e., formulas of the form

(p1 ≡ q1 ∧ ... ∧ pn ≡ qn)→ p ≡ q for n ≥ 1

when n = 0 the quasi-identity is

> → p ≡ q.

Now we will recall a result about “uniqueness” of algebraizing pair and the quasivariety

semantics of an algebraizable logic. For any class K of Σ-algebras let us denote (K)Q the

Σ-quasivariety generated by K.

Proposition 1.3.6 (2.15-[BP89]). Let a be an algebraizable logic.

(a) Let 〈(δi(p), εi(p)),∆i(p, q)〉, an algebraizing pair for a, and Ki an equivalent algebraic

semantic associated with a, for each i ∈ {0, 1}. Then (K0)Q, (K1)Q are equivalent algebraic

semantics for a. Moreover, some uniqueness conditions hold:

• on quasivariety semantics: (K0)Q = (K1)Q;
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• on equivalence formulas: ∆0(p, q) a` ∆1(p, q);

• on defining equations: (δ0(p) ≡ ε0(p)) =|K |= (δ1(p) ≡ ε1(p)) (where K := (K0)Q =

(K1)Q).

(b) Let 〈(δi(p), εi(p)),∆i(p, q)〉. Suppose that the following conditions holds:

• (δ0(p), ε0(p)),∆0(p, q)〉 is an algebraizing pair for a;

• ∆0(p, q) a` ∆1(p, q);

• (δ0(p) ≡ ε0(p)) =|(K0)Q |= (δ1(p) ≡ ε1(p)).

Then 〈(δ1(p), ε1(p)),∆1(p, q)〉is an algebraizing pair for a and (K1)Q = (K0)Q.

If a = (Σ,`) is an algebraizable logic then, by the Proposition above, we can (and we

will) denote by QV (a) the unique quasivariety on the signature Σ that is an equivalent

algebraic semantics for a.

Proposition 1.3.7 (2.17 [BP89]). Let a be an algebraizable logic a and 〈(δ, ε),∆〉 be an

algebraizing pair for a. Then the quasivariety QV (a) is axiomatized by the set given by the

3 kinds of quasi-equations below:

• δ(x0∆x0) ≡ ε(x0∆x0);

• δ(x0∆x1) ≡ ε(x0∆x1) → x0 ≡ x1;

• (
∧
i<n δ(ψi) ≡ ε(ψi)) → δ(φ) ≡ ε(φ), for each {φ, ψ0, · · · , ψn−1} ⊆ F (Σ) such that

{ψ0, · · · , ψn−1} ` φ, for n ≥ 0.

The proposition below give us a syntactic characterization algebraizable logics.

Proposition 1.3.8 (4.7-[BP89]). Let a = (Σ,`) be a logic and ∆ ⊆fin F (Σ)[2], (δ ≡ ε) ⊆fin
(F (Σ)[1]× F (Σ)[1]) such that the conditions below are satisfied

(a) ` ϕ∆ϕ, for all ϕ ∈ F (Σ);

(b) ϕ∆ψ ` ψ∆ϕ, for all ϕ, ψ ∈ F (Σ);

(c) ϕ∆ψ, ψ∆ϑ ` ϕ∆ϑ, for all ϕ, ψ, ϑ ∈ F (Σ);

(d) ϕ0∆ψ0, ..., ϕn−1∆ψn−1 ` cn(ϕ0, ..., ϕn−1)∆cn(ψ0, ..., ψn−1), for all cn ∈ Σn and all

ϕ0, ψ0, ..., ϕn−1, ψn−1 ∈ F (Σ);

(e) ϑ a` ∆(τ(ϑ)), for all ϑ ∈ F (Σ).

Then a is an algebraizable logic with ∆ as equivalence formulas and τ as defining equations.

Conversely if a = (Σ,`) is a algebrizable logics with algebraizing pair 〈∆(p, q), τ(p)〉, then

the conditions (a) to (e) are satisfied for these formulas.

Remark 1.3.9. It follows from the characterization above that, if `0,`1 are consequence

operators over the same signature Σ, if l0 = (Σ,`0) is an algebraizable logic with algebraizing

pair 〈∆(p, q), τ(p)〉 and `0≤`1 (for any Γ∪ {ϕ},if Γ `0 ϕ then Γ `1 ϕ), then l1 = (Σ,`1) is

an algebraizable logic and 〈∆(p, q), τ(p)〉 is an algebraizing pair.
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Definition 1.3.10. Let Σ be a signature, A be a Σ-algebra and F ⊆ A.

(a) Let θ be a congruence in A. θ is said to be compatible with F if, for all a, b ∈ A, if

a ∈ F and 〈a, b〉 ∈ θ then b ∈ F .

(b) We will denote by ΩA(F ) the largest congruence of A compatible with F . We say that

the function ΩA with domain the set of all subsets of A is called the Leibiniz operator on A.

Definition 1.3.11. Let l = (Σ,`) be a logic and A ∈ Σ− Str. A subset F of A is a l-filter

if for every Γ∪ {ϕ} ⊆ F (Σ) such that Γ ` ϕ and every valuation v : F (Σ)→ A, if v[Γ] ⊆ F

then v(ϕ) ∈ F . The pair 〈M,F 〉 is then said to be a matrix model of l or just l-matrix. The

set of all l-matrix is denoted by Matrl.

An l-matrix 〈A,F 〉 is reduced (or is a reduced matrix) if its Leibniz congruence is the

identity. Thus, in a reduced a matrix 〈A,F 〉 the interval [IdA,Ω
A(F )] is a unitary set. Given

an l-matrix M = 〈A,F 〉, the quotient matrix

M/Ω(M) = 〈A/ΩA(F ), F/ΩA(F )〉

is called the reduction M. We denote it by M∗.

The class of all reduced l-matrix is denoted by Matr∗l . We denote by Alg∗l the class of

all algebras A such that there is F ⊆ A witch 〈A,F 〉 ∈Matr∗l .

Fact 1.3.12. (a) [1.5-[BP89]] Let a = (Σ,`) be an algebraizable logic, A ∈ Σ − Str and

F ⊆ A be a l−filter. Then ΩAF = {〈a, b〉 : ϕA(a, c0, ..., ck−1) ∈ F ⇔ ϕA(b, c0, ..., ck−1) ∈ F,
for all ϕ ∈ FmL and ci ∈ A}

(b) [5.2-[BP89]] Let a = (Σ,`) be an algebraizable logic over the language Σ, and let

∆(x0, x1) be a system of equivalence formulas. Then

ΩAF = {〈a, b〉 : a∆Ab ∈ F}

for every A ∈ Σ− Str and every l−filter F of A.

Theorem 1.3.13. (The Isomorphism Theorem, first version [BP89]).

Let l be a logic and K a quasivariety. The following are equivalent.

1. l is algebraizable with equivalent semantics K

2. For every algebra A the Leibiniz operator ΩA is an isomorphism between Fil(A) and

CoK(A).

Theorem 1.3.14. (The Isomorphism Theorem, 2nd version [Fon16]).

Let l be a logic and K be a quasivariety. The following conditions are equivalent:

1. l is algebraizable with equivalent algebraic semantics the class K.
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2. For every algebra A there is an isomorphism ΦA between the lattices Fil(A) and

CoK(A) that commutes with endomorphisms, i.e., for every F ∈ Fil(A) and every

h ∈ End(A), ΦAh−1(F ) = h−1ΦAF .

3. There is an isomorphim Φ between the lattices T h(l) and CoK(Fm) that commutes with

substitutions, i.e., for every T ∈ T h(l) and every σ ∈ End(Fm), Φσ−1T = σ−1ΦT

Definition 1.3.15. 1. Let L be a lattice. A element a ∈ L is compact if for every directed

subset {di} of L we have a ≤
∨
i di ⇔ ∃i(a ≤ di). L is said algebraic if it is complete

lattice such that every element is join of compact elements. We denote the category of

algebraic lattice by AL.

2. Let l = (Σ,`) be a logic and K ⊆ Σ − Str, here Fil : Σ − Str → AL is the functor

such that given a algebra A ∈ Σ − Str, Fil(A) is the lattice of filters and given f ∈
MorΣ−Str(A,B), Fil(f) = f−1. The application CoK : Σ − Str → AL is the functor

such that for every A ∈ Σ−Str CoK(A) is the lattice of relative congruence and given

f ∈ HomΣ−Str(A,B), CoK(f) = f−1(f−1 × f−1).

Below we present a categorial version of the Isomorphism theorem. We put here the

proof of this corollary because there is no a direct proof in the literatures.

Corollary 1.3.16. (The Isomorphism Theorem, 3rd version)

Let l be a logic and K be a generalized quasivariety. The following conditions are equiv-

alent:

1. l is an algebraizable logic with algebraic semantics the class K.

2. There is a natural isomorphism between the functors Fil and CoK.

Proof:
′′1 ⇒ 2′′ That l is an algebebraizable logic. By theorem 1.3.13 we have that for every

A ∈ Σ − Str, the Leibiniz operator ΩA : Fil(A) → CoK(A) is a isomorphism. Let Ω =

(ΩA)A∈Σ−Str. We prove that Ω is a natural transformation. In other to do that, it is enough

to prove that given f ∈ HomΣ−Str(A,B), the following diagram commutes

Fil(A) ΩA
// CoK(A)

Fil(B)

f−1

OO

ΩB
// CoK(B)

f−1

OO

Let F ∈ Fil(B). Firstly we prove that f−1(ΩB(F )) is compatible with f−1(F ). Let

(a, b) ∈ f−1(ΩB(F )) and suppose that a ∈ f−1(F ). Then (f(a), f(b)) ∈ ΩB(F ) and f(a) ∈
F . Therefore f(b) ∈ F , thus b ∈ f−1(F ).
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Now let (a, b) ∈ ΩA(f−1(F )), then by algebraizability of l, we have ∆A(a, b) ∈ f−1(F ).

Thus ∆B(f(a), f(b)) = f(∆A(a, b)) ⊆ F . Therefore (f(a), f(b)) ∈ ΩB(F ) and finally (a, b) ∈
f−1(ΩB(F )). Then ΩA(f−1(F )) = f−1(ΩB(F )). That proves the naturality of Ω.

′′2 ⇒ 1′′ Suppose that there is a natural isomorphism Φ : Fil → CoK . In particular we

have that for every A ∈ Σ − Str, ΦA : Fil(A) → CoK(A) is a isomorphism and commutes

with endomorphisms. By theorem 1.3.14 we have that l is an algebraizable logic.

1.3.1 The category of algebrizable logics

With the definition of categories of logics given above, it is possible to define categories

of algebraizable logics. Other categories of algebraizable logics can be found in [JKE96],

[FC04].

• As is the category of algebraizable logics with morphisms in Ls which preserve alge-

braizing pairs. In the sequence of works, [AFLM06], [AFLM07] it is proved that the

category As is a relatively complete ω-accessible category [AR94].

• Af is the category of algebraizable logics with morphisms in Lf which preserve alge-

braizing pairs. Af is a subcategory of Lf , Af ↪→ Lf .

• Related to the category Af , we have the following subcategories: Acf , QAf and QAcf .

• The “Lindenbaum algebraizable” logics are the algebraizable logics l such that given

formulas ϕ, ψ ∈ F (Σ), ϕ a` ψ ⇔ ` ϕ∆ψ. The Lindenbaum algebraizable logics

gives a subcategory of the category of algebraizable logics (j : Lind(Af ) ↪→ Af ). The

inclusion functor Lind(Af ) ↪→ Af has a left adjoint functor L : Af → Lind(Af ) and

Lind(Af ) is relevant in the representation theory of logics that we will present later.

Definition 1.3.17. (a) Let l′ = (Σ′,`′) ∈ Lf , a = (α,`) ∈ Af and f : l′ → a be a Lf -

morphism. Suppose a ∈ Af , then f is called ∆−dense when, given n ∈ N and ϕ ∈ F (α)[n],

there is a ϕ′ ∈ F (Σ)[n] such that ` f̌(ϕ′)∆ϕ, for some equivalence set of formulas ∆ of a.

Obviously, if a ∈ Lind(Af ), then a morphism f ∈ Lf (l′, a) is ∆-dense iff it is dense.

(b) Let l = (Σ,`) ∈ Lf , a′ = (α′,`′) ∈ Af . Define the binary relation ≈a′ in the set

Lf (l, a′) by, g0, g1 ∈ Lf (l, a′),

g0 ≈a′ g1 iff ∀φ ∈ F (Σ)(X) `′ ǧ0(φ)∆′ǧ1(φ),

where ∆′ is any equivalence set of formulas for a′. It follows from Fact 1.3.8 that this is an

equivalence relation.

When a = (α′,`′) ∈ Af , we have an equivalence relation a ≈a′ in the set Af (a, a′).

Moreover by the definition of morphisms in Af , the family {a ≈a′ : a, a′ ∈ Af} defines a
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congruence relation4 on the category Af (see [Mac71], Chapter II, Section 8). Denote Af
the quotient category. It is clear that Lind(Af ) = Q(Lind(Af )).

By Fact 1.3.8, clearly Lind(Af ) ⊆ Acf . In the sequel, we establish the equality between

these categories . In particular, we obtain that the left adjoint functor L : Af → Lind(Af )
of the inclusion Lind(Af ) ↪→ Af is simply given by l ∈ Af 7→ l(c) ∈ Acf (see Remark 1.3.9).

The following proposition give us a characterization for Lindenbaum algebraizable logics.

Proposition 1.3.18. Let l be a logic. Then l is Lindenbaum algebraizable iff it is an

algebraizable and selfextensional logic.

Proof:

“⇒” Suppose l ∈ Lind(Af ) By Fact 1.3.8, it follows that for every equivalence set of

formulas ∆ associated to l, the relation defined by ` ∆(ϕ, ψ) is a congruence relation.

Therefore that the relation a ` is a congruence, thus l ∈ Acf .
“⇐” Suppose l ∈ Acf and let ϕ, ψ ∈ F (Σ). We only have to prove ϕ a ` ψ entails ` ϕ∆ψ

(see Remark 1.3.5).

Consider T := {γ ∈ F (Σ) : ` γ} the set of all theorems of l. Let ϕ, ψ ∈ F (Σ) be such

that ϕ a ` ψ. Then ϕ ∈ T iff ψ ∈ T . Thus a ` is a Σ-congruence compatible with T . By

definition of ΩA 1.3.11, a `⊆ ΩT , thus 〈ϕ, ψ〉 ∈ ΩT .

It is straightforward that T is a filter in F (Σ). By the Fact 1.3.12.(b) above, ΩT =

{〈σ, σ′〉 : σ∆σ′ ∈ T}. Therefore ϕ∆ψ ∈ T , which means ` ϕ∆ψ. Therefore l ∈ Lind(Af ).

The following diagram represents the functors (and its adjoints) between the categories

mentioned above:

Af incl //

L

��

Lf
q //

c

��

Qf

c̄

��
Lind(Af ) incl

//

j

OO

Lcf qc
//

i

OO

Qcf

ī

OO

1.3.2 Some generalizations of algebraizable logics

We introduce now some special kids of logics that are generalizations for algebraizable

logics. In the chapter 3 we present sufficient conditions to get those logics via filter functor

theory.

4If f ∈ Af (b, a), f ′ ∈ Af (a′, b′), then (f ′ ◦ g0 ◦ f)b≈b′ (f ′ ◦ g1 ◦ f).
4We thank prof. Ramon Jansana for suggesting this result.
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Definition 1.3.19. Let l = (Σ,`) a logic:

• l is Protoalgebraic logic if for any theory T ∈ Th(l),

if〈ϕ, ψ〉 ∈ Ω(T ) then T, ϕ ` ψ and T, ψ ` ϕ.

• l is weakly algebraizable logic if it is protoalgebric and Ω is injective.

• l is Equivalential logic if there is a set of congruence formulas, i.e., a set of formulas

∆(q, p) in at most variables q and p such that for any A ∈ Σ−Str, any filter F ∈ Fil(A)

and any a, b ∈ A,

〈a, b〉 ∈ ΩA(F ) iff ∆A(a, b) ⊆ F.

• A class of matrices M has its filters equationally definable by a set of equations τ(p)

if for every matrix 〈A,F 〉 ∈M , for every a ∈ A,

a ∈ F iff δA(a) = εA(a), for every δ ≈ ε ∈ τ(p).

l is Truth-equational logic if the class of reduced matrix Matr∗(l) has its filters equa-

tionally definable.

Now we remind some characterizations of the logics defined above.

Theorem 1.3.20. Let l be a logic:

• l is protoalgebraizable iff Ω is monotone on set of theories Th(l).

• l is equivalential logic iff (ΩA)A∈Σ−Str commutes with homomorphism and Ω is mono-

tone.

• l is truth-equational logic iff there exists a set of equations τ(p) such that for every

algebra A and every F ∈ Fil(A),

F = {a ∈ A; τA(a) ⊆ ΩA(F )}

The following diagrams represent the relations among those logics and the algebraizable

logics, i.e., the first one represents the inclusions among those classes of logics. The second

one represents how to “build” them by “intersection”.
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Algebraizable

**uu
Equivalential

))

weakly algebrizable

tt **
Protoalgebraizable Truth− equational

Protoalgebraizable

**

Truth− equational

tt
Equivalential

))

weakly algebraizable

tt
Alebegraizable
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Chapter 2

Functorial encoding of algebraizable

logics morphisms

In this chapter we start to provide tools to build the representation theory of logics. We

establish some (categorial) relations between logics and their categories of structures, more

precisely, given a morphism of algebraizable logics, there is an induced functor between

the category of all structures over the underlying signatures such that it restricts to the

quasivarieties that are their equivalent algebraic semantics. About this relation: (i) we

provide an anti-isomorphism between the class of morphisms of signatures and some functors

between the categories of associated structures; (ii) we prove that this anti-isomorphism

restricts to an anti-isomorphism between morphisms of (Lindenbaum) algebraizable logics

and some functors on its categories structures that restrict to its quasivarieties.

We verify some “translation” to properties about morphisms of logics through proper-

ties of functors between quasivarieties. In the following chapters we use this codification to

obtain important results about studying of meta-logical properties, relations among others

categories and to define (stably) Morita equivalence of logics. This chapter helps us under-

stand better the local “behavior” of logics. We hope use the representation theory of logics

that we start to develop in the chapter 5, to study the global “behavior” of logics.

In the three sections below, we present: (i) results on certain adjoint pairs of functors

between quasivarieties; (ii) some results about functors between quasivarieties associated to

morphisms of (Lindenbaum) algebraizable logics; (iii) a complete (functorial) codification of

morphisms of signatures and morphisms of algebraizable logics.

In the sequel: (i) a quasivariety K on the signature Σ will be viewed as a full subcategory

of the category of all structures on that given signature; (ii) for an algebraizable logic

a = (α,`), we will denote by QV (a) the unique quasivariety semantics associated to a (see

Fact 1.3.6).

27
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2.1 Quasivarieties and signature functors

Here we analyze (adjoint pairs of) functors between quasivarieties associated to com-

bination of two fronts: (i) inclusion functors: K ↪→ Σ − Str; (ii) “signature” functors i.e.

each a Sf -morphism, h : Σ −→ Σ′, induces a functor h? : Σ′ − Str −→ Σ − Str. Natural

transformations associated to the above mentioned adjunctions also play a significant role

here and in the next subsections.

Recall that, by a classical result in universal algebra due to Mal’cev, a subclass K ⊆
Σ − Str is a quasivariety iff it is closed under isomorphisms, substructures, products and

ultraproducts (or directed colimits).

The following Lemma was prove by Mal’cev, but we provide an alternative proof for it.

Lemma 2.1.1. Let K be a quasivariety on the signature α. The inclusion functor has a left

adjoint (L, I) : K � α − Str: given by M 7→ M/θM where θM is the least Σ-congruence

in M such that M/θM ∈ K. Moreover, the unity of the adjunction (L, I) has components

(qM)M∈Σ−Str, where qM : M �M/θM is the quotient homomorphism.

Proof: Consider ΓM = {θ ⊆ |M | × |M |; is congruence relation and M/θ ∈ K}. Γ is not

empty, because θ = |M |×|M | is a congruence relation and M/θ = {?} ∈ K. Let θM =
⋂

ΓM .

We will show first that θ ∈ ΓM : as θM is a Σ-congruence in M , it remains to check that

M/θM ∈ K.

Consider the “diagonal” Σ-homomorphism:

δM : M →
∏
θ∈ΓM

M/θ; m 7→ ([m]θ)θ∈ΓM
.

We will show that Ker(δM) = θM :

(m,n) ∈ Ker(δM) ⇔ ([m]θ)θ∈ΓM
= ([n]θ)θ∈ΓM

⇔ [m]θ = [n]θ, ∀ θ ∈ ΓM ⇔ mθn ∀ θ ∈
ΓM ⇔ mθMn.

Thus, by the “theorem of homomorphism” on Σ−Str, there is a unique Σ-monomorphism

δ̄M : M/θM �
∏

θ∈ΓM
M/θ such the diagram below commutes

M
δM //

qM

��

∏
θ∈ΓM

M/θ

M/θM

δ̄M

88

As K is closed under products, we have that
∏

θ∈ΓM
M/θ ∈ K. We also have that K is

closed under substructures and isomorphisms, then M/θM is K.

Denote L(M) := M/θM . We will show that qM : M � I(L(M)) satisfies the universal

property relatively to Σ-homomorphisms f : M −→ I(N), with N ∈ K.

Thus we obtain a injective Σ-homomorphism f̄ : M/Ker(f) � I(N). As K is closed

by substructures and isomorphisms, so we have that M/Ker(f) ∈ K. Hence Ker(f) ∈ ΓM
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and θM ⊆ Ker(f). Then, again by the theorem of homomorphism, there is a unique

homomorphism f̃ : M/θM −→ N such that the following diagram commutes

M
qM//

f $$

I(L(M))

I(f̃)
��

I(N)

It follows from an well-known result on adjoint functors, see for instance [Mac71], The-

orem 2 in page 81, that there is a unique way to obtain a functor L : Σ − Str → K
such that (qM)M∈Σ−Str become the unity of an adjunction (L, I) : K � α − Str. Given

g ∈ Σ−Str(M,P ), then qP ◦ g ∈ Σ−Str(M, I(P )) and, as (g× g)−1[θP ] = Ker(qP ◦ g), we

have that L(g) = q̃P ◦ g : M/θM −→ P/θP : [m]θM 7→ [g(m)]θP .

Remark 2.1.2. Let Σ be a signature and K ⊆ Σ− Str be a quasivariety.

(a) The forgetful functor (Σ − Str
U→ Set) has the “absolutely free algebra” functor

(Set
F→ Σ− Str), Y 7→ F (Y ), as left adjoint. The unity of this adjunction has components

the inclusion maps σY : Y � U(F (Y )), for each set Y .

(b)The (forgetful) functor (K I→ Σ−Str U→ Set) has the (free) functor (Set
F→ Σ−Str L→

K), Y 7→ F (Y )/θF (Y ), as left adjoint. Moreover, if σY : Y → U ◦ F (Y ) is the Y -component

of the unity of the adjunction (F,U), then (Y
tY→ UILF (Y )) := (Y

σY→ UF (Y )
U(qF (Y ))→

UILF (Y )) is the Y -component of the adjunction (L ◦ F,U ◦ I).

Proposition 2.1.3. Let a = (Σ,`) be an algebraizable and consider the binary relation on

F (X),

φ ∼∆ ψ iff ` φ∆ψ,

where ∆ is an equivalence formula for a. Then:

(a) ∼∆ is a Σ-congruence on F (X).

(b) F (X)/∆ := F (X)/ ∼∆∈ QV (a).

(c) ∼∆= θF (X) (see Lemma 2.1.1), thus F (X)/∆ = L(F (X)) is the free QV (a)-object over

the set X = {x0, . . . , xn, . . .}.
In particular, when a is a Lindenbaum algebraizable logic, F (X)/∆ = F (X)/(a `) is the

free QV (a)-object over the set X.

Proof:

(a) By items (a)-(d) in Fact 1.3.8 is clear that ∼∆ is a Σ-congruence on F (X).

(b) By (a) above, thus F (X)/∆ := F (X)/ ∼∆ is a Σ-structure. Thus, to obtain

F (X)/∆ ∈ QV (a), it is enough to show that F (Σ)/∆ satisfies the conditions of Fact 1.3.7.
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• Let ϕ := x0∆x0, then ` ϕ. As a is algebraizable logics, ϕ a` δ(ϕ)∆ε(ϕ). So

` δ(ϕ)∆ε(ϕ). Therefore [δ(ϕ)]∆ = [ε(ϕ)]∆. Hence F (X)/∆ |= δ(ϕ) ≡ ε(ϕ).

• Suppose F (X)/∆ |= δ(x0∆x1) ≡ ε(x0∆x1). Then

[δ(x0∆x1)]∆ = [ε(x0∆x1)]∆

therefore ` δ(x0∆x1)∆ε(x0∆x1) → x0 ≡ x1. As a is an algebraizable logic, (x0∆x1) a `
δ(x0∆x1)∆ε(x0∆x1)→ x0 ≡ x1, we obtain ` x0∆x1, i.e. [x0]∆ = [x1]∆. Hence F (X)/∆ |=
(x0 ≡ x1) and F (X)/∆ |= δ(x0∆x1) ≡ ε(x0∆x1) → x0 ≡ x1.

• Given ψ0, ..., ψn−1, ϕ ∈ F (X) such that {ψ0, ..., ψn−1} ` ϕ and suppose F (X)/∆ |=
δ(ψ0) ≡ ε(ψ0) ∧ ... ∧ δ(ψn−1) ≡ ε(ψn−1). Then [δ(ψ0)]∆ = [ε(ψ0)]∆, ..., [δ(ψn−1)]∆ =

[ε(ψn−1)]∆. Therefore

` δ(ψ0)∆ε(ψ0), ...,` δ(ψn−1)∆ε(ψn−1).

As a is algebraizable logic, ψi a ` ψi, ∀i < n, thus ` ψ0, ...,` ψn−1 and, by cut, we obtain

` ϕ. Again, as a is algebraizable, we obtain ` δ(ϕ)∆ε(ϕ). Hence F (X)/∆ |= δ(ϕ) ≡ ε(ϕ)

and F (X)/∆ |= (
∧
i<n δ(ψi) ≡ ε(ψi)) → δ(ϕ) ≡ ε(ϕ).

(c) Let M ∈ QV (a). The universal property of σX : X −→ U(F (X)) induces a bijection

Σ− Str(F (X), I(M)) ∼= Set(X,U(I(M)): for each function v : X −→ U(I(M)) there is an

unique Σ-homomorphism V : F (X) −→ I(M) such that V ◦ σX = v. Establish the equality

∼∆= θF (X) is equivalent to prove that ∼∆⊆ Ker(V ), for each function v : X −→ U(I(M)).

Suppose φ ∼∆ ψ, then ` φ∆ψ. As a is an algebraizable logic we obtain, by Fact 1.3.4

|=QV (a) φ ≡ ψ, i.e. for each M ∈ QV (a) and each Σ-homomorphism H : F (X) −→ I(M),

H(φ) = H(ψ). Thus ∼∆⊆ Ker(V ) for each function v : X −→ U(I(M)).

Remark 2.1.4. By reasoning analogous to the proof above we can establish that, for every

Y ⊆ X, the binary relation on F (Y ) given by (∼∆) �:= (∼∆) ∩ (F (Y ) × F (Y )) coincides

with θF (Y ), thus F (Y )/∆ �:= F (Y )/ ∼∆� is the free QV (a)-object over the set Y .

2.1.5. Signature functors: Given a morphism in Sf , Σ
h→ Σ′, we associate a functor

Σ− Str h?← Σ′ − Str in the following way

• For each M ′ ∈ Σ′ − Str denote h?(M ′) = (M ′)h the Σ-structure such that

– |(M ′)h| = |M ′| (structures with same underlying set);

– Let k ≥ 0 and ck ∈ Σk, then h(ck) ∈ F (Σ′)[k] is a first-order k-ary term over Σ′ and its

interpretation in the Σ′-structure M ′ is a certain k-ary operation on |M ′|, M ′h(ck) : |M ′|k →
|M ′|; define (ck)

(M ′)h := h(ck)
M ′ (it is a k-ary operation on |M ′h|).

If φ ∈ F (Σ) has exactly n variables, then it can be viewed as n-ary first-order Σ-term

and its interpretation over (M ′)h is defined (by recursion on complexity); analogously the

n-ary first-order Σ′-term ȟ(φ) can be interpreted on M ′. We can prove, by induction on the
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complexity of φ, that the n-operations on the same set |(M ′)h| = |M ′|, (φ)(M ′h), (ȟ(φ))
(M ′)

,

coincide.

• Let g ∈ Σ−Str(M ′, N ′), we define h?(M ′, g, N ′) = (M ′h, g, N ′h) ∈ Σ−Str(M ′h, N ′h):

clearly, the function g determines a Σ-homomorphism from M ′h to N ′h).

It is clear that h? preserves identities and composition, thus it is a (covariant) functor.

By construction, the functor h? : Σ′−Str → Σ−Str “commutes over Set”, i.e., U ◦h? =

U ′. It is straitforward that h? preserves, strictly, the following constructions: substructures,

products, directed inductive limits, reduced products, congruences and quotients.

Proposition 2.1.6. Consider a signature morphism h ∈ Sf (Σ,Σ′) and quasivarieties I :

K ↪→ Σ−Str, I ′ : K′ ↪→ Σ′−Str. Suppose that the induced functor h? : Σ′−Str −→ Σ−Str
restricts to a h?�: K′ → K, i.e. there is a (unique) functor h?� such that I ◦ h?�= h? ◦ I ′, then

(a) h?�: K′ → K has a left adjoint G : K → K′.
(b) Suppose that h?�: K′ → K satisfies the following conditions:

(b1) h?� is faithful;

(b2) h?� is full;

(b3) h?� is injective on objects;

(b4) h?� is hereditary, i.e., given M ∈ K, N ′ ∈ K′ such that there is an injective Σ-

homomorphism j : M � h?� (N ′), then there is M ′ ∈ K′ such that h?� (M ′) = M .

Then the left adjoint G can be defined on objects M ∈ K as “a quotient” G(M) ∈ K′, with

h? � (G(M)) = M/ρM , where ρM is the least Σ-congruence in M such that M/ρM = h?(M ′),

for some M ′ ∈ K′ (that is automatically unique by (l3)); moreover the M-component of the

unity of the adjunction is the quotient map pM : M �M/ρM .

Proof: (a) We will give here an indirect proof of the existence of the left adjoint G: we will

prove that the hypothesis on “Freyd Left Adjoint Theorem” (see [Mac71], Theorem 2, page

117) are satisfied by h?�: K′ → K.

• As K ⊆ Σ − Str and K′ ⊆ Σ′ − Str are closed under isomorphisms, substructures

and products, K and K′ are complete categories, i.e. they have all small limits. Moreover,

as h? : Σ′ − Str → Σ− Str (strictly) preserves: isomorphisms, substructures and products,

then the same holds for h?�: K′ → K. Thus h?�: K′ → K preserves all small limits.

• We show that the “solution set condition” holds for h?�. Let M ∈ K and consider

κ := card(|M |) and consider the class CM := {N ′ ∈ K′ : such that N ′ has a K′-generator

subset of size ≤ κ}. It is clear that there is a set SM ⊆ CM of representatives of CM modulo

isomorphism. We will show that
⋃
S′∈SM

K(M,h?� (S ′)) is a set that satisfies the solution

set condition for M ′.

Let P ′ ∈ K′ and f : M → h?� (P ′) be a K-morphisms. Let N ′ ⊆ P ′ be the Σ′-substructure

of P ′ that is generated by image(f). Then N ′ ∈ CM and we can take S ′ ∈ SM such that

S ′ ∼=K′ N
′. Consider a fixed K′-isomorphism t : S ′ → N ′ and let i : N ′ ↪→ P ′ be the
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inclusion. Then we have shown that the homomorphism f : M → h?� (P ′) factors through

some member g of the set
⋃
S′∈SM

K(M,h?� (S ′)) (i.e. f = h?(i ◦ t) ◦ g).

(b) Let M ∈ K, we will prove that the ”quotient map” pM : M → h? � (G(M)),

h?� (G(M)) = M/ρM , satisfies the universal property. Consider ΩM := {θ ⊆ M ×M : θ

is a Σ-congruence in M and there is a (unique) P ′θ ∈ K′ such that M/θ = h? � (P ′θ)}.
We show first that ΩM has minimum by verifying that ρM :=

⋂
ΩM ∈ ΩM . Indeed we

have a injective Σ-homomorphism j : M/ρM �
∏

θ∈ΩM
M/θ, [m]ρM 7→ ([m]θ)θ∈ΩM

. By

definition of ΩM ,
∏

θ∈ΩM
M/θ =

∏
θ∈ΩM

h?� (P ′θ). As h?� preserves products we have the

injective Σ-homomorphism j : M/θM � h? � (
∏

θ∈ΩM
P ′θ). By conditions (b4) and (b3),

M/ρM = h?� (M ′) for a unique M ′ ∈ K. Thus ρM =
⋂

ΩM ∈ ΩM .

Let N ′ ∈ K′ and f : M → h?� (N ′) be a Σ-homomorphism: we will show that there is a

unique Σ′-homomorphism f ′ : M ′ → N ′ such that:

(M
f−→ h?� (N ′)) = (M

pM
� h?� (M ′)

h?�(f ′)−→ h?� (N ′))

Then f factors through the quotient homomorphism qf : M � M/Ker(f) by the in-

jective Σ-homomorphism f̄ : M/Ker(f) � h?� (N ′). Then, by conditions (b4) and (b3),

M/ker(f) = h?� (P ′) for a unique P ′ ∈ K. As Ker(f) ∈ ΩM , we have ρM ⊆ Ker(f) and, by

the theorem of homomorphism, there is a unique Σ-homomorphism f̄ : M/ρM → h?� (N ′)

such that f̄ ◦ pM = f . As M/ρM = h?� (M ′) for a unique M ′ ∈ K, the conditions (b1) and

(b2) ensures that there is a unique Σ′-homomorphism f ′ : M ′ → N ′ such that h?� (f ′) = f̄ .

Then f ′ is the unique Σ′-homomorphism such that f = h?� (f ′) ◦ pM .

Proposition 2.1.7. Consider a signature morphism h ∈ Sf (Σ,Σ′) and quasivarieties I :

K ↪→ Σ−Str, I ′ : K′ ↪→ Σ′−Str. Suppose that the induced functor h? : Σ′−Str → Σ−Str
restricts to a (unique) functor h?�: K′ → K, i.e. I ◦ h?�= h? ◦ I ′. Denote G and Ḡ the

(unique up to natural isomorphism) left adjoint functors of, respectively , h? and h? � (they

exists by Proposition 2.1.6 above). Then:

(a) (G ◦ F ) ∼= F ′ and (Ḡ ◦ L) ∼= (L′ ◦G).

(b) There is a natural epimorphism h̃ : L ◦ h? � h?� ◦L, that restricts to L ◦ h? ◦ I ′ = h?�

◦L′ ◦ I ′.



QUASIVARIETIES AND SIGNATURE FUNCTORS 33
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Proof:

(a) The uniqueness up to isomorphism of left adjoints entails that U ◦h? has a left adjoint

isomorphic to G ◦ F . As U ◦ h? = U ′ and F ′ is a left adjoint of U ′, again the uniqueness of

left adjoints up to isomorphism ensures that (G ◦ F ) ∼= F ′. Analogously, from the equality

I ◦ h?�= h? ◦ I ′, we obtain the natural isomorphism (Ḡ ◦ L) ∼= (L′ ◦G).

(b) Let M ′ ∈ Σ′−Str and consider the canonical arrow in Σ′−Str q′M ′ : M ′ �M ′/θ′M ′ =

I ′(L′(M ′)). Applying h?, we obtain the (surjective) Σ-homomorphism h?(q′M ′) : h?(M ′) �

h?(M ′/θ′M ′) and the induced Σ-isomorphism

h?(q′M ′) : h?(M ′)/ker(h?(q′M ′)
∼=−→ h?(M ′/θ′M ′).

As the functor h? commutes over Set and (strictly) preserves substructures and prod-

ucts, then h?(θ′M ′) is a Σ congruence over h?(M ′) and h?(M ′/θ′M ′) = h?(M ′)/h?(θ′M ′); thus

ker(h?(q′M ′)) = h?(θ′M ′) and

h?(qM ′) = Id : h?(M ′)/h?(θ′M ′) −→ h?(M ′/θ′M ′).

In particular, h?(M ′)/h?(θ′M ′) = h?(M ′/θ′M ′) ∈ K and θh?(M ′) ⊆ h?(θ′M ′). Therefore, there is

a canonical surjective Σ-homomorphism

h̃M ′ : h?(M ′)/θh?(M ′) � h?(M ′)/h?(θ′M ′) = h?(M ′/θ′M ′) :

this defines a K-morphism h̃M ′ : L(h?(M ′))� h? � (L′(M ′)).

When M ′ ∈ K′, then h?(M ′) ∈ K, θ′M ′ = ∆|M ′| and θh?(M ′) = ∆|h?(M ′)| = h?(∆|M ′|) =

h?(θ′M ′). Thus, in this case, h̃M ′ = Id : L(h?(M ′)) −→ h? � (L′(M ′)).

If f ′ : M ′ −→ N ′ is a Σ′-homomorphism, then h?(f ′) : h?(M ′) −→ h?(N ′) is a Σ-

homomorphism. To show that the diagram below commutes
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M ′

f ′

��

L ◦ h?(M ′)

L◦h?(f ′)

��

h̃M′ // h?� ◦ L′(M ′)

h?� ◦L
′(f ′)

��
N ′ L ◦ h?(N ′)

h̃N′

// h?� ◦ L′(N ′)

it is enough to realize that

h?� (L
′(f ′)) ◦ h̃M ′ ◦ qh?(M ′) = h̃N ′ ◦ L(h?(f ′)) ◦ qh?(M ′),

where qh?(M ′) : h?(M ′)� h?(M ′)/θh?(M ′) is the canonical surjective Σ- homomorphism,

but this follows immediately from a diagram chase. Thus h̃ := (h̃(M ′)M ′∈Σ′−Str) is a natural

transformation.

2.2 Algebraizable logics and functors

In this part of the work, we verify that the general results on the functors between qua-

sivarieties presented in the previous subsection can be applied to functors induced by logical

morphisms between algebraizable logics. Are established the first connections between prop-

erties of the logical morphisms and the properties of its induced functors.

Proposition 2.2.1. Let a = (α,`) and a′ = (α′,`′) be algebraizable logics and let h ∈
Af (a, a′). Then the induced functor h? : α′−Str → α−Str restricts to h?�: QV (a′)→ QV (a)

(i.e. I ◦ h?�= h? ◦ I ′).

Proof: As QV (a) ⊆ α− Str and QV (a′) ⊆ α′ − Str are full subcategories, it is enough to

show that: for each M ′ ∈ QV (a′) we have h?(M ′) ∈ QV (a).

It follows from the description of a set of quasi-identities that determines the unique

equivalent quasivariety semantics associated to algebraizable logic in Fact 1.3.7 it follows

that, if (∆, (δ, ε)) is an algebraizable pair for a = (α,`), then the set of quasi-identities

Sa = S0
a ∪ S1

a ∪ S2
a axiomatizes QV (a), where:

S0
a = {δ(x0∆x0) ≡ ε(x0∆x0)};
S1
a = {δ(x0∆x1) ≡ ε(x0∆x1)) → x0 ≡ x1};
S2
a = {(δ(ψ0) ≡ ε(ψ0) ∧ ... ∧ δ(ψn−1) ≡ ε(ψn−1)) → δ(ϕ) ≡ ε(ϕ) : {ψ0, ..., ψn−1} ` ϕ}.

Denote h the extension of h to first-order formulas, instead ȟ that is the extension of

h for propositional α- formulas (= first-order terms). For instance, h((δ(ψ0) ≡ ε(ψ0) ∧
. . . ∧ δ(ψn−1) ≡ ε(ψn−1)) → δ(ϕ) ≡ ε(ϕ)) = (ȟδ(ȟψ0) ≡ ȟε(ȟψ0) ∧ . . . ∧ ȟδ(ȟψn−1) ≡
ȟε(ȟψn−1)) → ȟδ(ȟϕ) ≡ ȟε(ȟϕ).

As h ∈ Af (a, a′) then:

• ((ȟ(δ), ȟ(ε)), ȟ(∆)) is an algebraizable pair for a′.
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• If {ψ0, ..., ψn−1} ` ϕ, then {ȟψ0, ..., ȟψn−1} `′ ȟϕ.

From these, it follows that: h[S0
a] = S0

a′ , h[S1
a] = S1

a′ and h[S2
a] ⊆ S2

a′ . Thus, for each quasi-

equation Ω ∈ S0
a ∪ S1

a ∪ S2
a, we have M ′ �α′ h(Ω). On the other hand, for each first-order

formula Θ holds the following equivalence:

M ′ �α′ h(Θ) ⇔ h?(M ′) �α Θ.

Thus h?(M ′) ∈ QV (a), as we wish.

Proposition 2.2.2. Let l = (Σ,`) ∈ Lf and a, a′ ∈ Af . Keeping the notation in the

definition 1.3.17, we have:

(a) Let g0, g1 : l→ a′ be Lf -morphisms. Then

g0 ≈a′ g1 ⇔ g?0�= g?1�: QV (a′)→ Σ− Str.

(b) Let g0, g1 : a→ a′ be Af -morphisms. Then

[g0]≈ = [g1]≈ ∈ Af ⇔ g?0�= g?1�: QV (a′)→ QV (a).

Proof: Item (b) follows from item (a), since a quasivariety on signature α determines a full

subcategory of α− Str.
(a)”⇒ ”

Let M ′ ∈ QV (a′) and cn ∈ Σn. As g0 ≈a′ g1, we have that

`a′ ǧ0(cn)(x0, ..., xn−1)∆ǧ1(cn)(x0, ..., xn−1).

Thus, by Fact 1.3.4, |=QV (a′) ǧ0(cn)(x0, ..., xn−1) ≡ ǧ1(cn)(x0, ..., xn−1). Therefore:

cM
′g0

n = (g0(cn))M
′
= (g1(cn))M

′
= cM

′g1

n

Thus g?0�(M
′) = g?1�(M

′) and, as g?0�, g
?
1� commute over Set, they coincide also on the

arrow level. Therefore g?0� = g?1�.

”⇐ ”

Suppose that g?0� = g?1�. Let ϕ ∈ F (Σ), hence ϕM
′g0

= ϕM
′g1

for all M ′ ∈ QV (a′).

So |=QV (a′) ǧ0(ϕ) ≡ ǧ1(ϕ). Due to a′ to be algebraizable, by Fact 1.3.4, `a′ ǧ0(ϕ)∆ǧ1(ϕ).

Therefore g0 ≈a′ g1.

Corollary 2.2.3. Let l = (Σ,`) ∈ Lf and a, a′ ∈ Acf .

(a) Let g0, g1 : l→ a′ be Lf -morphisms. Then

[g0]a` = [g1]a` ∈ Qf ⇔ g?0�= g?1�: QV (a′)→ Σ− Str.

(b) Let g0, g1 : a→ a′ be Acf -morphisms. Then

[g0]a` = [g1]a` ∈ QAcf ⇔ g?0�= g?1�: QV (a′)→ QV (a).
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Proposition 2.2.4. Let a and a′ be algebraizable logics and a
h′

�
h

a′ be a pair of Af -

morphisms. Then a
[h′]≈

�
[h]≈

a′ is a pair of inverse Af -isomorphisms iff QV (a)
h′?�
�
h?�

QV (a′)

is an isomorphism of categories.

Proof: The induced Af -morphisms a
[h′]≈

�
[h]≈

a′ is a pair of inverse Af -isomorphisms iff

[ida]≈ = [h′]≈ ◦ [h]≈ = [h′ • h]≈ and

[ida′ ]≈ = [h]≈ ◦ [h′]≈ = [h • h′]≈

iff (by Corollary 2.2.2.(b))

id?a�= (h′ • h)?�= (h? ◦ h′?)�= h?� ◦h′?� and id?a′�= (h • h′)?�= (h′? ◦ h?)�= h′?� ◦h?�

iff

the pair of functors QV (a)
h′?�
�
h?�
QV (a′) is a pair of inverse isomorphism of categories.

Restricting the above result to the setting of Lindenbaum algebarizable logics, we obtain

the

Corollary 2.2.5. Let a and a′ be Lindenbaum algebraizable logics and a
h′

�
h
a′ be a pair of Acf -

morphisms. Then a
[h′]a`
�

[h]a`

a′ is a pair of inverse Q(Acf )-isomorphisms1 iff QV (a)
h′?�
�
h?�
QV (a′)

is an isomorphism of categories.

Proposition 2.2.6. Let l = (Σ,`) ∈ Lf and a, a′ ∈ Af .

(a) Let h : l→ a′ be a Lf -morphism. Consider the conditions:

(a1) h is a ∆-dense Lf -morphism.

(a2) The functor h?�: QV (a′)→ Σ−Str is full, faithful, injective on objects and satisfies

the heredity condition (see 2.1.6.(b4)).

(b) Let h : a→ a′ be a Af -morphism. Consider the conditions:

(b1) h is a ∆-dense Af -morphism.

(b2) The functor h?�: QV (a′)→ QV (a) is full, faithful, injective on objects and satisfies

the heredity condition.

Then (a1) ⇒ (a2) and (b1) ⇒ (b2)

Proof: The implication [(b1) ⇒ (b2)] follows from [(a1) ⇒ (a2)] and Proposition 2.2.1,

since the inclusion functor I : QV (a) ↪→ α− Str is clearly full, faithful, injective on objects

and satisfies the heredity condition.

We will prove [(a1) ⇒ (a2)]

1Remember that Q(Ac
f ) = Q(Lind(Af )) = Lind(Af ).
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Full: Let M ′, N ′ ∈ QV (a′) and f : h?� (M
′) → h?� (N

′) be a Σ-homomorphism. As

h?� commutes over Set, we have U(f) : |M ′| → |N ′| is a function. We will prove that

f : M ′ → N ′ is a α′-homomorphism.

By the hypothesis (h is ∆-dense), for each c′n ∈ α′n there is ϕn ∈ F (Σ)[n] such that

`′ ȟ(ϕn(x0, ..., xn−1))∆′c′n(x0, ..., xn−1). Thus, as a′ is an algebraizable logic, then

|=QV (a) ȟ(ϕn(x0, ..., xn−1)) ≡ c′n(x0, ..., xn−1).

Let v : X → |M ′| be a function. Consider m0 = v(x0), ...,mn−1 = v(xn−1). So

ȟ(ϕn(x0, ..., xn−1)))M
′
[−→x /−→m] = (c′n(x0, ..., xn−1))M

′
[−→x /−→m].

f((c′n(x0, ..., xn−1))M
′
[−→x /−→m]) = f(ȟ(ϕn(x0, ..., xn−1)))M

′
[−→x /−→m])

= f((ϕn(x0, ..., xn−1))M
′h

[−→x /−→m])

= (ϕn(x0, ..., xn−1))N
′h

[−→x /f(−→m)]

= (c′n(x0, ..., xn−1))N
′
[−→x /f(−→m)]

Therefore f is a QV (a)-morphism.

Faithful: Let f1, f2 ∈ QV (a′)(M ′, N ′). As h?� (M
′, f, N ′) = (M ′h, f, N ′h), if h?� (f1) =

h?� (f2) ∈ Σ− Str(M ′h, N ′h) then f1 = f2.

Injective on objects: Let M ′, N ′ ∈ QV (a′) such that h?� (M
′) = h?� (N

′), so |M ′| = |N ′|.
Given c′n ∈ αn there is ϕn(x0, ..., xn−1) ∈ F (Σ)[n] such that

`′ ȟ(ϕn(x0, ..., xn−1))∆′c′n(x0, ..., xn−1) ⇒

|=QV (a) ȟ(ϕn(x0, ..., xn−1)) ≡ c′n(x0, ..., xn−1)

Hence, given m0, ...,mn−1 ∈ |M ′|

c′M
′

n (m0, ...,mn−1) = ȟ(ϕn)M
′
(m0, ...,mn−1)

= ϕM
′h

n (m0, ...,mn−1)

= ϕN
′h

n (m0, ...,mn−1)

= ȟ(ϕn)N
′
(m0, ...,mn−1)

= c′N
′

n (m0, ...,mn−1)

Therefore M ′ = N ′

Heredity:

Let M ∈ Σ − Str, N ′ ∈ QV (a′) be such that there is an injective Σ-homomorphism

j : M � h?� (N ′). We must show that there is M ′ ∈ QV (a′) such that h?� (M ′) = M .

Remark that:

(i) as h? � is injective on objects, then M ′ is unique;

(ii) as h? � is full and faithful, then j : M ′� N ′ is an injective α′-homomorphism.

Thus, as N ′ ∈ QV (a′), it is enough construct an α′-structure M ′ such that h?(M ′) = M ,

because then M ′ ∈ QV (a′) automatically.
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As h is ∆-dense, given c′n ∈ αn select a formula 〈c′n〉(x0, ..., xn−1) ∈ F (Σ)[n] such that

`′ ȟ(〈c′n〉(x0, ..., xn−1))∆′c′n(x0, ..., xn−1) ⇒

|=QV (a′) ȟ(〈c′n〉(x0, ..., xn−1)) ≡ c′n(x0, ..., xn−1)

Define |M ′| := |M |. Let m0, ...,mn−1 ∈ |M ′|, define c′M
′

n (m0, ...,mn−1) :=

〈c′n〉M(m0, ...,mn−1). Then:

j(c′M
′

n (m0, ...,mn−1)) = j(〈c′n〉M(m0, ...,mn−1)) =

= 〈c′n〉N
′h

(j(m0), ..., j(mn−1)) = (ȟ(〈c′n〉))N
′
(j(m0), ..., j(mn−1)) =

= c′N
′

n (j(m0), ..., j(mn−1)).

Thus j : M ′� N ′ is an injective α′-homomorphism. In particular, M ′ ∈ QV (a′).

Now let ck ∈ Σk and a0, · · · , ak−1 ∈ |M ′|. Then

j(cM
′h

k (a0, · · · , ak−1)) = j((ȟ(ck))
M ′(a0, · · · , ak−1)) =

= (ȟ(ck))
N ′(j(a0), · · · , j(ak−1)) = cN

′h

k (j(a0), · · · , j(ak−1)) =

= j(cMk (a0, · · · , ak−1)).

As j is injective, then cM
′h

k (a0, · · · , ak−1) = cMk (a0, · · · , ak−1). Hence h?� (M ′) = M .

As density and ∆-density of morphisms coincide on Lindenbaum algebraizable logics, we

immediately obtain the

Corollary 2.2.7. Let l = (Σ,`) ∈ Lf and a, a′ ∈ Acf .

(a) Let h : l→ a′ be a Lf -morphism. Consider the conditions:

(a1) h is a dense Lf -morphism.

(a2) The functor h?�: QV (a′)→ Σ−Str is full, faithful, injective on objects and satisfies

the heredity condition .

(b) Let h : a→ a′ be a Acf -morphism. Consider the conditions:

(b1) h is a dense Acf -morphism.

(b2) The functor h?�: QV (a′)→ QV (a) is full, faithful, injective on objects and satisfies

the heredity condition.

Then (a1) ⇒ (a2) and (b1) ⇒ (b2)

In the next subsection we will be able to prove that the implications presented in Propo-

sition 2.2.6 and Corollary 2.2.7 are, in fact, equivalences.

Proposition 2.2.8. Let a
h→ a′ ∈ Acf , then:

(a) h?� : QV (a′)→ QV (a) has a left adjoint G : QV (a)→ QV (a′).
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(b) In case that h is a dense morphism, then the left adjoint G can be defined on objects

M ∈ QV (a) as ”a quotient” G(M) ∈ QV (a′), with h? � (G(M)) = M/ρM , where ρM is the

least Σ-congruence in M such that M/ρM = h?(M ′), for some (and unique) M ′ ∈ K′ (that

is automatically unique by (l3)); moreover the M-component of the unity of the adjunction,

M → h?(G(M)), is the quotient map pM : M �M/ρM .

Proof: Item (a) follows from Propositions 2.2.1 and 2.1.6.(a). Item (b) is a direct conse-

quence of Proposition 2.1.6.(b) and Corollary 2.2.7.(b).

Remark 2.2.9. Let a = IPC and a′ = CPC both Lindenbaum algebraizable logics with the

same signature. We have the inclusion morphism h : IPC → CPC. So h?� : BA → HA

has left a adjoint functor G : HA → BA. Observe that h?� is the inclusion functor. Hence

given H ∈ HA, G(H) = H/FH , where FH is the filter in H generated by the subset {a ↔
¬¬a : a ∈ H}. Its possible to proof that G(H) ∼= H¬¬, where H¬¬ denote the poset of regular

elements of H, that is, those elements x ∈ H such that ¬¬x = x.

This fact motivate us to investigate the relation of Gödel translation with the left adjoint

functor G.

As an application of some of the general results in the present work, we derive in [MP]

a generalized “Glinvenko’s Theorem” related to an Acf -morphism h : a→ a′, whenever holds

a simple condition of the unity of the adjunction (G, h?� ) : QV (a′)� QV (a).

2.3 Functorial encoding of logical morphisms

Here we apply the previous results to determine a faithful representation of algebraizable

logic morphisms as certain functors. We start presenting a functorial encoding of signature

morphisms.

Lemma 2.3.1. Let Σ,Σ′ ∈ Obj(Sf ). Consider H : Σ′ − Str → Σ − Str a functor that

”commutes over Set” (i.e. U ◦H = U ′) and, for each set Y , let ηH(Y ) : F (Y )→ H(F ′(Y ))

be the unique Σ-morphism such that (Y
σY→ UF (Y )

U(ηY )→ UHF ′(Y )) = (Y
σ′Y→ U ′F ′(Y )) (by

the universal property of σY ). Then:

(a) (ηH(Y ))Y ∈Set is a natural transformation ηH : F → H ◦ F ′.
(b) For each set Y and each ψ ∈ F (Y ), V ar(ηH(Y )(ψ)) ⊆ V ar(ψ).

When ∀ψ ∈ F (Y ), V ar(ηH(Y )(ψ)) = V ar(ψ), we will say that ηH(Y ) ”preserves vari-

ables”.

(c) For each n ∈ N, let Xn := {x0, · · · , xn−1} ⊆ X, if ηH(Xn) preserves variables, then the

mapping cn ∈ Σn 7→ ηH(Xn)(cn(x0, · · · , xn−1)) ∈ F ′(Xn) determines a unique Sf -morphism

mH : Σ→ Σ′ such that m̌H = ηH(X).

Proof:
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(a) Let a function f : Y → Z. Consider the diagram:

Y
σY //

σ′Y

&&

f

��

UF (Y )
U(ηH(Y ))//

UF (f)

��

UHF ′(Y )

UHF ′(f)
��

Z σZ
//

σ′Z

88
UF (Z)

U(ηH(Z))
// UHF ′(Z)

The left square commutes because σ is the unit of adjunction between U and F and the

external diagram commutes because σ′ is the unit of adjunction between U ′ = U ◦ H and

F ′. We also have that U(ηH(Y )) ◦ σY = σ′Y ; the same is valid when we change Y for Z.

Thus, a diagram chase entails ensures that

UHF ′(f) ◦ U(ηH(Y )) ◦ σY = U(ηH(Z)) ◦ UF (f) ◦ σY .

As U is a functor, the universal property of σY give us

U(HF ′(f) ◦ ηH(Y )) = U(ηZ ◦ F (f)).

As U is faithful, we obatin

HF ′(f) ◦ ηH(Y ) = ηZ ◦ F (f).

Thus ηH : F ⇒ H ◦ F ′ is a natural transformation.

(b) Let Y a set and ψ ∈ F (Y ). Consider Z = V ar(ψ). and denote i : Z ↪→ Y the

inclusion function. As ηH is a natural transformation, we have the follow commutative

diagram:

F (Y )
ηH(Y )// HF ′(Y )

F (Z)

F (i)=incl

OO

ηH(Z)
// HF ′(Z)

HF ′(i)=incl

OO

As ψ ∈ F (Z), we have ηH(Z)(ψ) = ηH(Y )(ψ). Therefore V ar(ηH(Y )(ψ)) ⊆ Z =

V ar(ψ).

(c) Follows directly from the definition of flexible morphism of signatures.

Note that any functor H : Σ′ − Str → Σ− Str that ”commutes over Set” (U ◦H = U ′)

is automatically faithful, since U ′ is a faithfull functor. Another simple but useful result is

given by the following
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Fact 2.3.2. Keeping the notation above, are equivalent:

(a) ηH(Y ) preserves variables, for each set Y .

(b) ηH(Y ) preserves variables, for each set Y ⊆ X.

(c) ηH(Xn) preserves variables, for each n ∈ N.

Proof: We only have to show that (c)⇒ (a).

Let Y be an arbitrary set and let ψ ∈ F (Y ). Let {y0, · · · , yn−1} ⊆ Y be a (bijective)

enumeration of V ar(ψ) and consider the injection xi
f7→ yi, i < n, from Xn into Y . As F (f)

is injective, denote ψ̃ ∈ F (Xn) the unique member such that F (f)(ψ̃) = ψ ∈ F (Y ). By

hypothesis V ar(ψ̃) = Xn = V ar(ηH(Xn)(ψ̃)). As F (f) and H(F ′(f)) are injective and ηH

is a natural transformation, then a diagram chase entails

V ar(ηH(Y )(ψ)) = V ar(ψ).

When ηH satisfies the equivalent conditions above, we say that ηH “preserves variables”.

As we will see in the sequence, this is a fundamental concept in this work, leading us to the

following

Definition 2.3.3. Let Σ,Σ′ ∈ Obj(Sf ) and H : Σ′ − Str → Σ − Str be functor. We will

say that H is a ”signature” functor if it satisfies the conditions below:

(s1) H commutes over Set (i.e. U ◦H = U ′);

(s2) ηH preserves variables.

Proposition 2.3.4. (a) Let Σ − Str
id→ Σ − Str. Then ηidΣ−Str = idF and idΣ−Str is a

signature functor; moreover midΣ−Str
= idΣ ∈ Sf (Σ,Σ).

(b) Let (Σ − Str H← Σ′ − Str H′← Σ′′ − Str) be functors that commutes over Set. Then

ηH◦H′ = H(ηH′)◦ηH . If H and H ′ are signature functors, then H ◦H ′ is a signature functor

and, moreover, in this case, mH◦H′ = mH′ •mH ∈ Sf (Σ,Σ′′).

Proof: (a) It is clear that idΣ−Str commutes over Set. For each set Y , notice that the func-

tion idF (Y ) : F (Y )→ idΣ−Str(F (Y )) satisfies σY ◦U(idF (Y )) = σY where σY : Y → UF (Y ) is

the unit of the adjunction F a U . Then, the universal property of σY entails ηidΣ−Str
(Y ) =

idF (Y ). Thus, in particular, ηidΣ−Str
preserves variables, i.e., idΣ−Str is a signature functor.

Moreover, m̌idΣ−Str
= ηidΣ−Str

(X) = idF (X) : F (X)→ F (X), thus midΣ−Str
= idΣ ∈ Sf (Σ,Σ).

(b) As H ′ and H commute over Set, we have that H ′ ◦H also commutes over Set. We

have that the following commutative diagrams:

Y
σY //

σ′Y ##

UF (Y )

U(ηH(Y ))

��

Y
σ′Y //

σ′′Y ##

U ′F ′(Y )

U ′(η′H(Y ))

��
U ′F ′(Y ) U ′′F ′′(Y )
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As U ◦H = U ′, we obtain

U(ηH◦H′) ◦ σY = σ′′Y =

= UH(ηH′(Y )) ◦ U(ηH(Y )) ◦ σY = U(H(ηH′(Y )) ◦ ηH(Y )) ◦ σY .

By the universal property of σY , for each set Y , we obtain ηH◦H′ = H(ηH′) ◦ ηH .

For each n ∈ N, ηH◦H′(Xn) = H(ηH′(Xn)) ◦ ηH(Xn). Now suppose that H and H ′

are signature functors. As ηH(Xn) and ηH′(Xn) preserve variables and H commutes over

Set, then ηH◦H′(Xn) preserves variables. Thus H ◦ H ′ is a signature functor. Moreover,

in this case, m̌H◦H′ = ηH◦H′(X) = H(ηH′(X)) ◦ ηH(X) = H(m̌H′) ◦ m̌H : this means that

mH◦H′ = mH′ •mH .

In the sequence, we will see that, among the functors H : Σ′ − Str → Σ − Str that

commutes over Set, there are two kinds of functors that also preserves variables: the iso-

morphisms Σ′ − Str → Σ− Str and the functors h?, induced by Sf -morphisms h : Σ→ Σ′.

Proposition 2.3.5. Let H : Σ′− Str → Σ− Str be an isomorphism of categories such that

U ◦H = U ′. Then H is a signature functor.

Proof: AsH : Σ′−Str → Σ−Str is an isomorphism of categories such that U◦H = U ′, then

H−1 : Σ−Str → Σ′−Str is an isomorphism of categories and obviously U ′ ◦H−1 = U . Let

Y be a set and consider ψ ∈ F (Y ). By the Lemma 2.3.1.(b), V ar(ηH(Y )(ψ)) ⊆ V ar(ψ)).

On the other hand, by the Proposition 2.3.4 idF (Y ) = ηH◦H−1(Y ) = H(ηH−1(Y )) ◦ ηH(Y ),

thus V ar(ψ) = V ar(H(ηH−1(Y ))(ηH(Y )(ψ))) ⊆ V ar(ηH(Y )(ψ)), since we can apply Lemma

2.3.1.(b) to H−1 and H commutes over Set .

Proposition 2.3.6. Let h ∈ Sf (Σ,Σ′), then for all Y ⊆ X, ηh?(Y ) = ȟ�Y : F (Y )→ F ′(Y )h.

In particular, ηh? preserves variables and h? is a signature functor according the Definition

2.3.3.

Proof: Firstly observe that the function ȟ : U(F (X))→ U ′(F ′(X)) (see subsection 2.2) is

such that V ar(ȟ(φ)) = V ar(φ), for each φ ∈ U(F (X)). Thus, for each Y ⊆ X, it restricts

to ȟ�Y : U(F (Y ))→ U ′(F ′(Y )) and for each ϕ ∈ U(F (Y )), V ar(ȟ�Y (ϕ)) = V ar(ϕ).

Now, remark that ȟ�Y determines a Σ-homomorphism.

ȟ�Y : F (Y ) → h?(F ′(Y ))

ϕ 7→ ȟ(ϕ)

Clearly, the diagram below commutes:

Y
σY //

σ′Y $$

UF (Y )

U(ȟ�Y )
��

Uh?F ′(Y )
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Due to the universal property of σY , we have ηh?(Y ) = ȟ�Y , for each Y ⊆ X. Thus,

by Fact 2.3.2, ηh? preserves variables and, as h? commutes over Set, then h? is a signature

functor according the Definition 2.3.3.

The family of functors h?, induced by Sf -morphisms h, have a nice categorial behavior:

Proposition 2.3.7. (a) Let Σ
idΣ→ Σ be the identity Sf -morphism on the signature Σ. Then

id?Σ = idΣ−Str ∈ Cat(Σ− Str,Σ− Str).

(b) Let (Σ
h→ Σ′

h′→ Σ′′) be Sf -morphisms. Then (h′ • h)? = h? ◦ h′? ∈ Cat(Σ′′− Str,Σ−
Str).

Proof: Since the functors induced by signature morphisms are faithful and commute over

Set, we only have to verify the equalities of functors in (a) and (b) at level of the objects.

It is clear that, for each M ∈ Obj(Σ − Str), M = idΣ−Str(M) = id?Σ(M), establishing

item (a).

To prove item (b), note first that, for each M ′′ ∈ Obj(Σ′′ − Str),

U((h′ • h)?(M ′′)) = U ′′(M ′′) = U ′(h′?(M ′′)) =

= (U ◦ h?)(h′?(M ′′)) = U((h? ◦ h′?)(M ′′)),

Thus, the Σ-structures (h′ • h)?(M ′′) and (h? ◦ h′?)(M ′′) shares the same underlying set. It

remains verify that, for each n ∈ N and each cn ∈ Σn,

(I) : (cn)(h′•h)?(M ′′) = (cn)(h?◦h′?)(M ′′).

Developing the left hand side of (I) we obtain

(L) : (cn)(h′•h)?(M ′′) = ((h′ • h)(cn))M
′′

= ((h′ • h)(cn))M
′′

=

= ((ȟ′ ◦ h)(cn))M
′′

= ((ȟ′(h(cn)))M
′′

= (h(cn))M
′′h′

.

Developing the right hand side of (I) we obtain

(R) : (cn)(h?◦h′?)(M ′′) = (cn)(h?(h′?(M ′′)) =

= (cn)(h?((M ′′)h
′
) = (h(cn))M

′′h′

.

Summing up, we obtain (h′ • h)?(M ′′) = (h? ◦ h′?)(M ′′). Thus (h′ • h)? = (h? ◦ h′?).
At this point, is natural consider the following

Definition 2.3.8. Let S†f denote the (non-full) subcategory of the category of all the (large)

categories2 given by the categories Σ − Str, for each signature Σ, and with the signature

functors as morphisms between them.

2I.e., the category whose objects are large categories and the arrows are functors between categories.
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Theorem 2.3.9. The categories Sf and S†f are anti-isomorphic. More precisely:

(a) The mapping Σ ∈ Obj(Sf ) 7→ Σ− Str ∈ Obj(S†f ) is bijective;

(b) Given Σ,Σ′ ∈ Sf , the mappings h ∈ Sf (Σ,Σ′) 7→ h? ∈ S†f (Σ′ − Str,Σ − Str) and

H ∈ S†f (Σ′ − Str,Σ− Str) 7→ mH ∈ Sf (Σ,Σ′) are (well defined) inverse bijections.

(c) id?Σ = idΣ−Str and (h′ • h)? = h? ◦ h′?;

midΣ−Str
= idΣ and mH◦H′ = mH′ •mH .

Proof: The equalities in item (c) were established in Propositions 2.3.4 and 2.3.7.

(a) The mapping Σ ∈ Obj(Sf ) 7→ Σ− Str ∈ Obj(S†f ) is surjective, by definitions of S†f .
Note that Σ 6= Σ′ ⇒ Σ−Str 6= Σ′−Str (in fact, Σ 6= Σ′ ⇒ Obj(Σ−Str)∩Obj(Σ′−Str) =

∅).
(b) The mappingsH 7→ mH and h 7→ h? are well defined by, respectively, Lemma 2.3.1.(c)

and Proposition 2.3.6. Moreover, these results ensures that m̌h? = ηh?(X) = ȟ. Therefore

mh? = h. It remains only to prove that, for each signature functor H : Σ′ − Str → Σ− Str,
(mH)? = H.

It is enough to prove that H(M ′) = (mH)?(M ′) for each Σ′-structure M ′, because, as

U ◦H = U ′ = U ◦ (mH)?, then for each Σ′-homomorphism (M ′ g→ N ′) we will have

H(M ′ g→ N ′) = (mH)?(M ′ g→ N ′).

Claim H and (mH)? coincide on free Σ′-structures:

Indeed, consider a set Y and the diagram below:

Y
σY //

σ′Y ##

UFY

UηH(Y )=Uηm?
H

(Y )

��
U ′F ′Y

As U ◦H = U ′ = U ◦ (mH)? and due to the universal property of σY , them

(FY
ηH(Y )→ HF ′Y ) = (FY

ηm?
H

(Y )

→ m?
HF

′Y )

as morphisms of Σ− Str, hence

(+) H(F ′Y ) = m?
H(F ′Y ).

Now we will prove the general case: H(M ′) = (mH)?(M ′), for each M ′ ∈ Σ′ − Str.

Note that UH(M ′) = U ′(M ′) = U(mH)?(M ′), thus the Σ-structures H(M ′) and (mH)?(M ′)

shares the same underlying set. We must show the the interpretation of all Σ-symbols in

H(M ′) and (mH)?(M ′) coincide.

Let ε′ : F ′U ′ ⇒ IdΣ′−Str be the natural transformation that is the co-unit of the adjunc-

tion between F ′ and U ′. It is clear that, for each M ′ ∈ Σ− Str, ε′M ′ : F ′U ′(M ′)� M ′ is a
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surjective Σ′-homomorphism, thus the Isomorphism Theorem gives the following commuta-

tive diagram:

F ′U ′M ′ ε′
M′ // //

qM′ %% %%

M ′

F ′U ′M ′

ker(εM′ )

∼= q̄M′

OO

In particular, the Σ′-structure M ′, on the underlying set U ′(M ′), is completely deter-

mined by the surjective Σ′-homomorphims ε′M ′ : F ′U ′(M ′)�M ′.

Applying H and m?
H to ε′M ′ : F ′U ′(M ′)�M ′ we obtain the surjective Σ-homomorphisms

HF ′U ′(M ′)
H(ε′

M′ ) // //

H(qM′ ) '' ''

H(M ′) m?
HF

′U ′(M ′)
m?

H(ε′
M′ ) // //

m?
H(qM′ ) (( ((

m?
H(M ′)

H( F
′U ′M ′

ker(εM′ )
)

∼= H(q̄M′ )

OO

m?
H( F

′U ′M ′

ker(εM′ )
)

∼= m?
H(q̄M′ )

OO

By (+) above, we have H(F ′(U ′(M ′))) = m?
H(F ′(U ′(M ′))), as Σ-structures. Now, as

U ◦H = U ′ = U ◦m?
H , we have

(UHF ′U ′(M ′)
UH(ε′

M′ )

� UH(M ′)) = (U ′F ′U ′(M ′)
U ′(ε′

M′ )

� U ′(M ′)) =

= (Um?
HF

′U ′(M ′)
Um?

H(ε′
M′ )

� Um?
H(M ′)).

Thus the Σ-structures H(M ′) and m?
H(M ′) on the same underlying set coincide, since

they are determined by the same surjective Σ-homomorphism.

We will denote the inverse (contravariant) functors in the Theorem above by:

ES : Sf // S†f E†S : S†f // Sf

Σ

h
��

Σ− Str Σ− Str Σ

mH

��
Σ′ Σ′ − Str

h?

OO

Σ′ − Str
H

OO

Σ′

The characterization Theorem 2.3.9 provides some interesting

Corollary 2.3.10. Let H : Σ′ − Str → Σ− Str be a signature functor. Then:

(a) H preserves, strictly, the following constructions: substructures, products, directed

inductive limits, reduced products, congruences and quotients.

(b) H has a left adjoint G : Σ−Str → Σ′−Str with unity of the adjunction λ : idΣ−str ⇒
H ◦G. Moreover G and λ can be chosen such that G◦F = F ′ and λF (Y ) = ηH(Y ) : F (Y )→
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H(F ′(Y )), for each set Y and, in particular, from Proposition 2.3.6, for each Y ⊆ X,

ηH(Y ) = (m̌H)�Y : F (Y )→ F ′(Y )mH .

Proof: (a) This follows from 2.1.5 and characterization Theorem above.

(b) By characterization Theorem above and Proposition 2.1.6.(a), the functor H has a

left adjoint G and, by Proposition 2.1.7.(a) G ◦F ∼= F ′. Now we will analyze the additional

conditions. As adjoint functors are determined up to natural isomorphism by the choice of

universal arrows, it is enough to show that, for each set Y , the Σ-homomorphism ηH(Y ) :

F (Y ) → H(F ′(Y )) is such that for each M ′ ∈ Obj(Σ′ − Str) and each Σ-homomorphism

f : F (Y ) → H(M ′), there is an unique Σ′-homomorphism f ′ : F ′(Y ) → M ′ such that

H(f ′) ◦ ηH(Y ) = f . I.e., we must show that, for each M ′ ∈ Obj(Σ′ − Str), the mapping

f ′ ∈ Σ′−Str(F ′(Y ),M ′)
t7→ H(f ′)◦ηH(Y ) ∈ Σ−Str(F (Y ), H(M ′)) is a bijection. Consider

the bijections given by the pairs of adjoint functors (F,U) and (F ′, U ′):

f ∈ Σ− Str(F (Y ), H(M ′))
j7→ U(f) ◦ σY ∈ Set(Y, U(H(M ′)))

f ′ ∈ Σ′ − Str(F ′(Y ),M ′)
j′7→ U ′(f ′) ◦ σ′Y ∈ Set(Y, U ′(M ′))

As Set(Y, U ′(M ′)) = Set(Y, U(H(M ′))) and U(ηH(Y )) ◦ σY = σ′Y we conclude that

j ◦ t = j′, i.e., the diagram below commutes

Set(Y, U ′(M ′)) = // Set(Y, U(H(M ′))

Σ′ − Str(F ′(Y ),M ′)

∼= j′

OO

t
// Σ− str(F (Y ), H(M ′))

j ∼=

OO

Thus, as j and j′ are bijections, then t is a bijection. This entails the additional results.

Now, having a detailed functorial encoding of (flexible) signature morphisms, we can

proceed to a functorial description of logical morphisms between algebraizable logics.

Lemma 2.3.11. Let I : K ↪→ Σ− Str and I ′ : K′ ↪→ Σ′ − Str full inclusions, where K and

K′ are quasivarieties. Let H : Σ′−Str → Σ−Str be a signature functor such that it restricts

(uniquely) to a functor H�: K′ → K (thus I ◦H�= H ◦ I ′). Keeping the notation in Remark

2.1.2, for each set Y , let (by the universal property of tY ) η̄H(Y ) : LF (Y )→ H� (L′F ′(Y ))

be the unique K-morphism such that (Y
tY→ UILF (Y )

UI(η̄Y )→ UIH� L′F ′(Y )) =

(Y
t′Y→ U ′I ′L′F ′(Y )). Then:

(a) (η̄H(Y ))Y ∈Set is a natural transformation η̄H : L ◦ F → H� ◦L′ ◦ F ′.
(b) Both the diagrams below commute
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Y
σY //

tY

''

idY
��

UF (Y )
U(qF (Y )) //

U(ηH(Y ))
��

UILF (Y )

UI(η̄H(Y ))
��

Y
σ′Y

//

t′Y

77
UHF ′(Y )

UH(q′
F ′(Y )

)
// UIH� L′F ′(Y )

F (Y )

ηH(Y )

��

qF (Y ) // ILF (Y )

I(η̄H(Y ))

��
HF ′(Y )

H(q′
F ′(Y )

)
// IH� L′F ′(Y )

(c) H and H� have left adjoints, respectively G : Σ−Str → Σ′−Str and Ḡ : K → K′, the

respective unities of the adjunctions λ : idΣ−str ⇒ H ◦ G and λ̄ : idK ⇒ H � ◦Ḡ. Moreover

G, Ḡ and λ, λ̄ can be chosen such that:

• G ◦ F = F ′ and Ḡ ◦ L ◦ F = L′ ◦ F ′ = L′ ◦G ◦ F ;

• λF (Y ) = ηH(Y ) : F (Y )→ H(F ′(Y )) and λ̄LF (Y ) = η̄H(Y ) : LF (Y )→
H� (L′F ′(Y )), for each set Y .

Proof: Item (a) follows in an analogous fashion to the proof of Lemma 2.3.1.(a): by ana-

lyzing the commutativity of the diagram below from the universal property of tY , for each

function f : Y → Z.

Y
tY//

t′Y

''

f

��

UILF (Y )
UI(η̄H(Y ))//

UILF (f)
��

UIH � L′F ′(Y )

UIH�L′F ′(f)
��

Z
tZ
//

t′Z

77
UILF (Z)

UI(η̄H(Z))
// UIH � L′F ′(Z)

Item (b) follows in an analogous fashion to the proof of Lemma 2.3.1.(a): the top diagram

commutes, by analyzing the commutativity of the diagram below from the universal property

of σY ; the bottom diagram commutes since the functor U is faithful and the inner right square

in the top diagram commutes.
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Item (c) follows in an analogous fashion to the proof of Corollary 2.3.10.(b): first, by

applying Proposition 2.1.7, and then, by a diagram chase to shows that, for each M ′ ∈ K′,
the mapping f ′ ∈ K′(L′F ′(Y ),M ′) 7→ H � (f ′) ◦ η̄H(Y ) ∈ K(LF (Y ), H � (M ′)) is a bijection.

Proposition 2.3.12. Let l = (Σ,`) ∈ Lf and a, a′ ∈ Af .

(a) Let h : l→ a′ be a Lf -morphism. Then are equivalent:

(a1) h is a ∆-dense Lf -morphism.

(a2) The functor h?�: QV (a′)→ Σ−Str is full, faithful, injective on objects and satisfies

the heredity condition (see 2.1.6.(b4)).

(b) Let h : a→ a′ be a Af -morphism. Then are equivalent:

(b1) h is a ∆-dense Af -morphism.

(b2) The functor h?�: QV (a′)→ QV (a) is full, faithful, injective on objects and satisfies

the heredity condition.

Proof: The implications (a1)⇒ (a2) and (b1)⇒ (b2) were established in Proposition 2.2.6.

(a1) ⇒ (a2): by Theorem 2.3.9, Lemma 2.3.11.(b), Remark 2.1.4 and Corollary 2.3.10.(b),

the following diagram commutes, for each Y ⊆ X.

F (Y )

ȟ�Y

��

idF (Y ) // // F (Y )

I(η̄h? (Y ))

��
h?(F ′(Y ))

h?(q′
F ′(Y )

)
// // I ′(h? � (F ′(Y )/∆′ �))

By hypothesis (a1), Lemma 2.3.11.(c) and Proposition 2.1.6.(b), the Σ′- homomorphism

η̄H(Y ) : F (Y ) → I ′(F ′(Y )/∆′ �) is surjective. Thus a diagram chase shows that for each

φ′ ∈ F ′(Y ′) there is φ ∈ F (Y ) such that `′ ȟ(φ)∆′φ′. Therefore, the Lf -morphism h : l→ a

is ∆-dense.

(b1) ⇒ (b2): is proved in an analogous way, by a chase on the commutative diagram

below

F (Y )

ȟ�Y

��

qF (Y ) // // I(F (Y )/∆�)

I(η̄h? (Y ))

����
h?(F ′(Y ))

h?(q′
F ′(Y )

)
// // I ′(h? � (F ′(Y )/∆′ �))

As density and ∆-density of morphisms coincide on Lindenbaum algebraizable logics, we

immediately obtain the
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Corollary 2.3.13. Let l = (Σ,`) ∈ Lf and a, a′ ∈ Acf .

(a) Let h : l→ a′ be a Lf -morphism. Then are equivalent:

(a1) h is a dense Lf -morphism.

(a2) The functor h?�: QV (a′)→ Σ−Str is full, faithful, injective on objects and satisfies

the heredity condition .

(b) Let h : a→ a′ be a Acf -morphism. Then are equivalent:

(b1) h is a dense Acf -morphism.

(b2) The functor h?�: QV (a′)→ QV (a) is full, faithful, injective on objects and satisfies

the heredity condition.

Having in mind the Definitions 2.3.3 and 2.3.8, it is natural to consider the following

Definition 2.3.14. (a) Let a = (Σ,`), a′ = (Σ′,`′) be algebraizable logics. A functor

H : Σ′ − Str → Σ − Str will be called a ”BP-functor”, H is a signature functor also

satisfying (l1), (l2), (l3):

(l1) H has a (unique) restriction to the associated quasivarieties H�: QV (a′)→ QV (a);

There are algebraizing pairs (∆, (δ, ε)) and (∆′, (δ′, ε′)) of, respectively, a and a′ such that:

(l2) m̌H(∆) a′` ∆′;

(l3) m̌H(δ) ≡ m̌H(ε) = |QV (a′)|= δ′ ≡ ε′.

It is straightforward that:

• idΣ−Str : Σ− Str → Σ− Str is a BP-functor;

• If (Σ− Str H← Σ′ − Str H′← Σ′′ − Str) are BP-functors, then H ◦H ′ : Σ′′ − Str → Σ− str
is a BP-functor.3

(b) Denote A†f the category with:

• Objects: are pairs (Σ− Str, a) where a = (Σ,`) is an algebraizable logic;

• Arrows: are BP-functors (Σ′ − Str, a′) H→ (Σ− Str, a);

• identities and composition: as (BP-)functors.

(c) Denote Lind(Af )† the full subcategory of A†f with objects, the pairs (Σ−Str, a) where

a = (Σ,`) is a Lindenbaum algebraizable logic.

Below we present the results that encompass most part of the present work

Theorem 2.3.15. The pair of inverse anti-isomorphisms of categories Sf
ES

�
E†S

S†f in Theorem

2.3.9 ”restricts”, via the forgetful functors Af → Sf and A†f → S
†
f , to a pair of inverse anti-

isomorphisms of categories Af
EA

�
E†A

A†f .

3Note that, for each M ′′ ∈ QV (a′′), (M ′′)mH′ = H ′(M ′′) ∈ QV (a′) and (M ′′)mH′ �Σ′ m̌H(δ) ≡ m̌H(ε)↔
δ′ ≡ ε′ iff M ′′ �Σ′′ m̌H′(m̌H(δ)) ≡ m̌H′(m̌H(ε))↔ m̌H′(δ′) ≡ m̌H′(ε′).
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EA : Af // A†f E†A : A†f // Af

a = (Σ,`)

h
��

(Σ− Str, a) (Σ− Str, a) a

mH

��
a′ = (Σ′,`′) (Σ′ − Str, a′)

h?

OO

(Σ′ − Str, a′)

H

OO

a′

Af

Forget

��

EA

// A†f

Forget

��

E†Aoo

Sf ES

// S†f
E†Soo

Moreover, if h ∈ Af (a, a′) and H ∈ A†f ((Σ′−Str, a′), (Σ−Str, a)) are in correspondence,

then the pair of inverse anti-isomorphisms (EA, E
†
A) is such that:

(a) It establishes a correspondence between the equivalence class {h′ ∈ Af (a, a′) : [h]≈ =

[h′]≈ ∈ Af (a, a′)} and the equivalence class {H ′ ∈ A†f ((Σ′ − Str, a′), (Σ − Str, a)) : H ′ �=

H �}.
(b) [h]≈ is a Af -isomorphism ⇔ H� is an isomorphism between quasivarieties.

(c) h is a ∆-dense morphism ⇔ H� is full, faitful, injective on object and heredity.

Proof: After the pair of (”restricted”) inverse anti-isomorphisms (EA, E
†
A) were established,

then: item (a) follows from Proposition 2.2.2.(b); item (b) follows from Proposition 2.2.4;

item (c) follows from Proposition 2.3.12.(b).

It follows from directly from Theorem 2.3.9 and the definitions of the object part of the

functors (EA, E
†
A) that they establishes an well defined pair of inverse bijections between the

classes of objects Obj(Af ) and Obj(A†f ).

If we establish that the (arrow) mappings below are well defined:

h ∈ Af (a, a′)
EA7→ h? ∈ A†f ((Σ′ − Str, a′), (Σ− Str, a));

H ∈ A†f ((Σ′ − Str, a′), (Σ− Str, a))
E†A7→ mH ∈ Af (a, a′),

then it will follow from Theorem 2.3.9 that the pair of inverse anti-isomorphisms Sf
ES

�
E†S

S†f

in Theorem 2.3.9 ”restricts” to a pair of inverse anti-isomorphisms Af
EA

�
E†A

A†f .

Let h ∈ Af (a, a′). By Proposition 2.3.6, h? : Σ′ − str → Σ − Str is a signature functor

and, by Proposition 2.2.1, it restricts (uniquely) to a functor h?�: QV (a′) → QV (a): thus
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condition (l1) is fulfilled. By Theorem 2.3.9, mh? = h; as h preserves algebraizable pairs,

then Fact 1.3.6.(a) ensures that the conditions (l2) and (l3) are satisfied. Therefore EA is

an well defined functor.

Let H ∈ A†f ((Σ′ − Str, a′), (Σ − Str, a)). Lemma 2.3.1.(c) entails that mH : Σ → Σ′

is a Sf -morphism. Conditions (l2) and (l3) and Fact 1.3.6.(b) ensures that mH preserves

algebraizing pairs. It remains to show that mH is a Lf -morphism, i.e. given Γ∪{ϕ} ⊆ F (X),

we must have

Γ ` ϕ ⇒ m̌H [Γ] `′ m̌H(ϕ)

But, as a and a′ are algebraizable logics, it is enough to prove that

{ε(ψ) ≡ δ(ψ); ψ ∈ Γ} |=QV (a) ε(ϕ) ≡ δ(ϕ) ⇒

{ε′(m̌H(ψ)) ≡ δ′(m̌H(ψ)); ψ ∈ Γ} |=QV (a′) ε
′(m̌H(ϕ)) ≡ δ′(m̌H(ϕ)).

Let M ′ ∈ QV (a′) and suppose that M ′ |=Σ′ ε
′(m̌H(ψ)) ≡ δ′(m̌H(ψ)) for each ψ ∈ Γ. As

mH satisfies condition (l3), then holds, for each ψ ∈ Γ,

M ′ |=Σ′ m̌H(ε)(m̌H(ψ)) ≡ m̌H(δ)(m̌H(ψ))

I.e.:

M ′ |=Σ′ m̌H(ε(ψ)) ≡ m̌H(δ(ψ))

By Theorem 2.3.9, H = (mH)?, thus we get

H(M ′) |=Σ ε(ψ) ≡ δ(ψ)

From the hypothesis, H(M ′) ∈ QV (a), and as {ε(ψ) ≡ δ(ψ); ψ ∈ Γ} |=QV (a) ε(ϕ) ≡
δ(ϕ), we obtain

H(M ′) |=Σ ε(ϕ) ≡ δ(ϕ)

Therefore, as above,

M ′ |=Σ′ m̌H(ε(ϕ)) ≡ m̌H(δ(ϕ))

and

M ′ |=Σ′ ε
′(m̌H(ϕ)) ≡ δ′(m̌H(ϕ)).

As M ′ ∈ QV (a′) was taken arbitrarily, then {ε′(m̌H(ψ)) ≡ δ′(m̌H(ψ)); ψ ∈ Γ} |=QV (a′)

ε′(m̌H(ϕ)) ≡ δ′(m̌H(ϕ)).
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Summing up, mH is a logical morphism that preserves algebraizable pairs. Therefore E†A

is an well defined functor. This finishes the proof.

Restricting the result above to the setting of Lindenbaum algebraizable logics, we obtain

the

Corollary 2.3.16. The pair of inverse anti-isomorphisms of categories Af
EA

�
E†A

A†f in Theo-

rem 2.3.15 ”restricts”, via the (full) inclusion functors Lind(Af ) ↪→ Af and Lind(Af )† ↪→

A†f , to a pair of inverse anti-isomorphisms of categories Lind(Af )
EL

�
E†L

Lind(Af )†.

Lind(Af )

Incl

��

EL

// Lind(Af )†

Incl

��

E†Loo

Af EA

// A†f
E†Aoo

Moreover, if h ∈ Lind(Af )(a, a′) and H ∈ Lind(Af )†((Σ′ − Str, a′), (Σ− Str, a)) are in

correspondence, then the pair of inverse anti-isomorphisms (EL, E
†
L) is such that:

(a) It establishes a correspondence between the equivalence class

{h′ ∈ Lind(Af )(a, a′) : [h]a ` = [h′]a ` ∈ QLind(Af )(a, a′)}

and the equivalence class

{H ′ ∈ Lind(Af )†((Σ′ − Str, a′), (Σ− Str, a)) : H ′ �= H �}.

(b) [h]a ` is a QLind(Af )-isomorphism ⇔ H� is an isomorphism between quasiva-

rieties.

(c) h is a dense morphism ⇔ H� is full, faitful, injective on object and heredity.

Proof: It is clear that (EA, E
†
A) establishes a bijective correspondence between the sub-

classes Obj(Lind(Af )) and Obj(Lind(Af )†). As Lind(Af ) ↪→ Af and Lind(Af )† ↪→ A†f are

full subcategories, then (EA, E
†
A) restricts to a pair of inverse anti-isomorphisms Lind(Af )

EL

�
E†L

Lind(Af )†.
On the additional results: item (a) follows from Corollary 2.2.3.(b); item (b) follows from

Corollary 2.2.5; item (c) follows from Corollary 2.3.13.(b).



Chapter 3

Filter functors in logic and application

We have seen that for any algebraizable logic a there is a quasivariety QV (a) associated.

This quasivariety QV (a) keeps the semantic information of a. Unfortunately, for an arbitrary

Tarskian logic there is no a class of algebra endowed of its semantic information. To an

arbitrary Tarskian logic l = (Σ,`), the set of filters Fil(M) for an arbitrary algebra M of

Σ-Str, in a certain way, has the semantic information of the logic l. That was the main

motivation to start studying the notion of filter pairs and its associated logics.

It is well-known that every Tarskian logic gives rise to an algebraic lattice contained

in the powerset ℘(FmΣ(X)), namely the lattice of theories. This lattice is closed under

arbitrary intersections and filtered unions.

Conversely an algebraic lattice L ⊆ ℘(FmΣ(X)) that is closed under arbitrary intersec-

tions and unions of increasing chains gives rise to a finitary closure operator (assigning to

a subset A ⊆ FmΣ(X) the intersection of all members of L containing A). This closure

operator need not be structural — this is an extra requirement.

We observe that the structurality of the logic just defined is equivalent to the naturality

(in the sense of category theory) of the inclusion of the algebraic lattice into the power set of

formulas with respect to endomorphisms of the formula algebra: Structurality means that

the preimage under a substitution of a theory is a theory again or, equivalently, that the

following diagram commutes:

FmΣ(X)

σ

��

L �
� i // ℘(FmΣ(X))

FmΣ(X) L

σ−1|
L

OO

� � i // ℘(FmΣ(X))

σ−1

OO

Further, it is equivalent to demand this naturality for all Σ-algebras and homomorphisms

instead of just the formula algebra.

We thus arrive at the definition of filter pair, Def. 3.1.1: A filter pair for the signature

Σ is a contravariant functor G from Σ-algebras to algebraic lattices together with a natural

transformation i : G→ ℘(−) from G to the functor taking an algebra to the power set of its

53
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underlying set, which preserves arbitrary infima and directed suprema.

The logic associated to a filter pair (G, i) is simply the logic associated (in the above

fashion) to the algebraic lattice given by the image i(G(FmΣ(X))) ⊆ ℘(FmΣ(X)).

In particular it is clear that different filter pairs can give rise to the same logic, indeed this

will happen precisely if the images of i for the formula algebra are the same. A filter pair can

thus be seen as a presentation of a logic, and there can of course be different presentations

of the same logic. We could have removed a bit of this ambiguity by requiring that i be

an inclusion, but it is one of the insights of this chapter that it is beneficial not to do this.

Indeed this will give us greater flexibility for the choice of the functor G, and injectivity of

i can become a meaningful extra feature. Thus, for example, if G is the functor associating

to a Σ-structure the lattice of relative congruences to some quasivariety K, then by Prop.

3.1.9 the injectivity of i means that the associated logic is algebraizable.

In this section we show how to recognize classes of logics through their presentations by

filter functors and how these presentations permit to use algebraic methods even outside the

realm of protoalgebraic logics.

A second aim of this chapter is to continue the work of the last chapter: Remembering,

we establish a correspondence of certain functors between categories of Σ-structures and

translations between algebraizable logics. Here we introduce a notion of morphism of filter

functors and it is shown that it encodes translations between their associated logics. This

encoding will play a role in the long-term project of studying arbitrary logics through their

translations into algebraizable logics and their associated categories of matrices.

3.1 Filter Functors

In the following sections we present: firstly the definition of filter pair and a study of the

functors Co and CoK where K is a class of algebras. In the sequel we dedicated to study

of the Craig entailment interpolation property end its correspondence with amalgamation

property in filters. We introduce the category of Filters Fi and the relationship between

this category and the category of logic.

Now we start studying some general aspects present on the functor filter for a given logic

and then we collect these ideas in order to begin the correspondence between logics and its

“algebraic” counterpart.

Observe that given M ∈ Σ − str, the inclusion iM : Fil(M) → (P(M);⊆) preserves

order and satisfies the following condition. Given A ⊆ M , there is a F ∈ Fil(M) such that

A ⊆ F (just take F := M).

Moreover, given a morphism h : M → N we have the following diagram commuting:
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M

h

��

Fil(M)
iM // (P(M);⊆)

N Fil(N)

Fil(h)

OO

iN
// (P(N);⊆)

h−1

OO

Definition 3.1.1. Now let Σ be a structure. A filter pair (G, iG) consists of a contravariant

functor G : Σ − str → AL and iG = (iGM)M∈Σ−Str such that for any M ∈ Σ − str there is

a function preserving order iGM : G(M) → (P(M);⊆) (inside of the category of poset) with

the following properties:

1. For any M ∈ Σ− str, iGM(>) = M and iGM preserves inf and directed sup.

2. Given a morphism h : M → N the following diagram commutes:

M

h

��

G(M)
iGM // (P(M);⊆)

N G(N)

G(h)

OO

iGN

// (P(N);⊆)

h−1

OO

Remark 3.1.2. 1. Condition 2 says that iG is a natural transformation from G to the

functor ℘ : Σ − strop → AL sending a Σ-structure to the power set of its underlying

set and a homomorphism of Σ-structures to its associated inverse image function.

2. Notice that given a Tarskian logic l = (Σ,`), we have a filter pair (Fil, i
Fil) where Fil

is a functor (see 1.3.15) and iFil is the inclusion as above.

Proposition 3.1.3. Let (G, iG) be a filter pair, then there is a logic lG = (Σ,`G) as follows:

Given Γ ∪ {ϕ} ⊆ F (X).

Γ `G ϕ iff for any a ∈ G(F (X)), if Γ ⊆ iF (X)(a) then ϕ ∈ iF (X)(a).

Proof:

It is easy to see that `G satisfies reflexivity, cut and monotonicity.

The structurality is a consequence of condition 2 (naturality). Indeed, let σ ∈ hom(F (X), F (X))

and Γ ∪ {ϕ} ⊆ F (X) such that Γ `G ϕ. Consider a ∈ G(F (X)) such that σ[Γ] ⊆ iGF (X)(a).

This implies Γ ⊆ σ−1(iGF (X)(a)). By naturality we have σ−1(iGF (X)(a)) = iGF (X)(G(σ)(a)).

Therefore ϕ ∈ iGF (X)(G(σ)(a)) = σ−1(iGF (X)(a)) and finally σ(ϕ) ∈ iGF (X)(a).

Now we are going to prove the finitarity. Let Γ ∪ {ϕ} ⊆ F (X). Consider the set

S = {Γ′ ⊆ F (X); Γ′ ⊆fin Γ}. Notice that S is a directed set. Suppose that for any

Γ′ ∈ S, Γ′ 0G ϕ, hence there is a ∈ G(F (X)) such that Γ′ ⊆ iF (X)(a) and ϕ 6∈ iF (X)(a).

Denote by aΓ′ = ∧{a ∈ G(F (X)); Γ′ ⊆ iF (X)(a)} . iF (X) preserves inf, thus Γ′ ⊆ iF (X)(aΓ′)

and ϕ 6∈ iF (X)(aΓ′). We obtain that the set s = {aΓ′ ; Γ′ ∈ S} is a directed set.



56 FILTER FUNCTORS IN LOGIC AND APPLICATION

By the assumption iF (X) preserves directed sup, hence

Γ = ∪S ⊆
⋃

Γ′∈S

iF (X)(aΓ′) = iF (X)(∨s).

On the other hand ϕ 6∈
⋃

Γ′∈S′ iF (X)(aΓ′) = iF (X)(∨s). Therefore Γ 0G ϕ.

Remark 3.1.4. 1. One can define a logic lG as follows: Γ `G ϕ iff for any algebra M , for

any a ∈ G(M) and any valuation v : F (X)→ M , if v[Γ] ⊆ iM(a) then v(ϕ) ∈ iM(a).

It is easy to see that both logics are the same lG = lG.

2. Notice that for any M ∈ Σ− str and a ∈ G(M), 〈M ; iM(a)〉 is a matrix of lG. Indeed,

just apply the naturality of i. This shows us that for every M ∈ Σ−Str, iGM [G(M)] ⊆
FilG(M), then we can consider the natural transformation iG : G⇒ FilG. We denote

MatrG = {〈M, iGM(a)〉; a ∈ G(M) and M ∈ Σ − Str}. Thus MatrG ⊆ MatrlG, we

have that

`MatrG=`G=`G=`MatrlG
.

Notice that for every set X we can define a logic over a filter pair. Here, given a function

f : X → Y , we will denote by the same f : FΣ(X) → FΣ(Y ). We also denote iGZ = iGFΣ(Z)

just to simplify.

Proposition 3.1.5. Let X, Y sets and (G, iG) a filter pair on Σ.

1. For any function f : X → Y and Γ ∪ {ϕ} ⊆ FΣ(X):

Γ `X ϕ ⇒ f [Γ] `Y f(ϕ).

2. For any injective function f : X � Y and Γ ∪ {ϕ} ⊆ FΣ(X):

Γ `X ϕ ⇔ f [Γ] `Y f(ϕ).

3. Γ `X ϕ iff there is a finite sets X ′ ⊆f X and Γ′ ⊆f Γ such that var(Γ′ ∪ {ϕ}) ⊆ X ′

and Γ′ `X′ ϕ.

Proof: 1. Let a ∈ G(FΣ(Y )) such that f [Γ] ⊆ iGY (a). Then Γ ⊆ f−1(iGY (a)) = iGX(G(f)(a)).

Since Γ `X ϕ, we have that ϕ ∈ iGX(G(f)(a)). Therefore f(ϕ) ∈ iGY (a). As a was arbitrary

we have f [Γ] `Y f(ϕ).

2. Let f : X → Y injective. By 1 we have that Γ `X ϕ ⇒ f [Γ] `Y f(ϕ). Remains to

prove the converse. Let a ∈ G(FΣ(X)) such that Γ ⊆ iGX(a). Since f is injective there is

g : Y → X such that g◦f = IdX . Hence g◦f [Γ] = Γ. Then f [Γ] ⊆ g−1(iGX(a)) = iGY (G(g)(a)).
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Since f [Γ] `Y f(ϕ), then f(ϕ) ∈ iGY (G(g)(a)) = g−1(iGX(a)). Therefore ϕ = g(f(ϕ)) ∈ iGX(a).

3. “ ⇒ ” Since `Z is finitary, there is a finite set Γ′ ⊆f Γ such that Γ′ `Z ϕ. Consider

Z ′ = var(Γ′) ∪ var(ϕ). Let a ∈ G(FΣ(Z ′)). Suppose Γ′ ⊆ iGZ′(a). We have the inclusion

function j : Z ′ ↪→ Z such that j[Γ′] = Γ. Due to 2 we have Γ′ `Z′ ϕ.

“ ⇐ ” Let a ∈ G(FΣ(Z)) such that Γ ⊆ iGZ(a). By assumption we have that there are

Γ′ ⊆f Γ and Z ′ ⊆f Z such that var(Γ′ ∪ {ϕ}) ⊆ Z ′ and Γ′ `Z′ ϕ. Consider the inclusion

function j : Z ′ ↪→ Z. Notice that j[Γ′] = Γ′. By item 2 we have that Γ′ `Z ϕ, thus

Γ `Z ϕ.

Proposition 3.1.6. Let (G, iG) a filter pair on Σ. For any set Z, if F ∈ FilG(FΣ(Z)) then

there is a ∈ G(FΣ(Z)) such that iGZ(a) = F .

Proof: Consider the set S = {a ∈ G(FΣ(Z)); F ⊆ iGZ(a)}. Denote aF = ∧S. Notice that

F ⊆ iGZ(aF ). Suppose that there is ϕ ∈ iGZ(aF ) such that ϕ 6∈ F. We consider two cases:

|Z| ≤ |X| and |X| ≤ |Z| where X is the set which lG is defined.

(|Z| ≤ |X|): In this case there is a injective function f : Z → X. By 3.1.5 we have

F `Z ϕ iff f [F ] ` f(ϕ). Suppose that f [F ] ` f(ϕ). Then, since F ∈ FilG(FΣ(Z)), we

have that for any evaluation v : X → FΣ(Z) if v(f [F ]) ⊆ F then v(f(ϕ)) ∈ F . Consider

g : X → Z such that g ◦ f = IdZ , then g can be seen as a evaluation with g ◦ f [F ] = F

and g ◦ f(ϕ) = ϕ. Then ϕ ∈ F which is a contradiction. Therefore f [F ] 6` f(ϕ). Thus

there is a ∈ G(FΣ(X)) such that f [F ] ⊆ iGX(a) = iGZ(G(f)(a)). Hence G(f)(a) ∈ S. Thus

aF ≤ G(f)(a), since iGZ preserves inf, iGZ(aF ) ⊆ iGZ(G(f)(a)). Hence ϕ ∈ iGZ(G(f)(a)), and

this implies a contradiction. Then F = iGF (aF ).

(|X| ≤ |Z|): Observe that for any finite set F ′ ⊆f F one can define a injective function

fF ′ : X � Z such that there is a set X ′ ⊆ X which fF ′ [X
′] = var(F ′) ∪ var(ϕ). Moreover

fF ′�X′ is a bijection.

Suppose that F `Z ϕ. Then there is a finite set F ′ ⊆f F such that F ′ `Z ϕ. Consider

fF ′ as above. So there is a retraction g : Z → X such that g�fF ′ [X′]
is the inverse of fF ′�X′ .

Due to 3.1.5 we have F ′ `Z ϕ ⇔ fF ′ ◦ g[F ′] `Z fF ′ ◦ g[ϕ] ⇔ g[F ′] ` g(ϕ). Thus,

since F ∈ FilG(F (Z)), for any evaluation v : X → F (Z) we have that if v(g[F ′]) ⊆ F

then v(g(ϕ)) ∈ F . Note that fF ′ can be seen as evaluation and fF ′(g[F ′]) = F ′ ⊆ F .

Then ϕ = fF ′(g(ϕ)) ∈ F . This implies a contradiction. Hence F 6`Z ϕ. Therefore there

is a ∈ G(FΣ(Z)) such that F ⊆ iGZ(a) and ϕ 6∈ iGZ(a). Thus a ∈ S. So aF ≤ a and then

iGZ(aF ) ⊆ iGZ(a). Hence ϕ ∈ iGZ(a) which is a contradiction. Finally F = iGZ(aF ).
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3.1.1 Filter pairs over Co and CoK, and a classification of those

filter logics

In this section we present a analysis of two special filter pairs, more precisely, the filter

pairs over the functors Co : Σ− Str → AL and CoK : Σ− Str → AL where K ⊆ Σ− Str
is a class of algebras.

Suppose that there is a natural transformation iCo : Co⇒ (P( ),⊆) such that (Co, iCo)

is a filter pair. We consider its associated logic lCo. Hence A ∈ Σ − Str, Im(iCoA ) ⊆ FilCo
.

We have iCoA : Co(A)→ FilCo
.

We are going give now a study of variants of algebraizable logics (introduced in 1.3.19)

via this specific filter functors.

Proposition 3.1.7. If ΩA(iCoA (θ)) = θ, i.e., ΩA is a retraction to iCoA , then lCo is a protoal-

gebraic logic.

Proof:

Due to 3.1.6 we have that for any T ∈ Th(lCo), there is θ ∈ Co(Fm) such that iCoFm(θ) =

T . Let T, T ′ ∈ Th(lCo) such that T ⊆ T ′, then iCoFm(θ∩θ′) = iCoFm(θ)∩iCoFm(θ′) = T ∩T ′ = T =

iCoFm(θ). Observe that iCoA is injective. Indeed, let θ, θ′ ∈ Co(A) such that iCoA (θ) = iCoA (θ′).

Applying ΩA we have θ = ΩA(iCoA (θ)) = ΩA(iCoA (θ′)) = θ′. Since iCoA is injective we have that

θ ∩ θ′ = θ, thus θ ⊆ θ′. Therefore Ω(T ) = Ω(iCoFm(θ)) = θ ⊆ θ′ = Ω(iCoFm(θ′)) = Ω(T ′). So Ω

is monotonic. By theorem 1.3.20 we have that lCo is protoalgebraic logic.

Proposition 3.1.8. Let K ⊆ Σ − Str be a class of algebras and let iK : CoK ⇒ (P( ),⊆)

such that 〈CoK , iK〉 is a filter pair. We denote by lK the logic associated with 〈CoK , iK〉. If

ΩA is a retraction to iKA for any A ∈ Σ− Str and (ΩA)A∈Σ−Str is a natural transformation,

then:

1. lK is an equivalential locic and K ⊆ Alg∗lK

2. If K is closed under isomorphism then K = Alg∗lK

Proof:

1) We have seen in 3.1.7 that Ω is monotone. Since (ΩA)A∈Σ−Str is a natural trans-

formation we have by 1.3.20 that lK is an equivalential logic. Consider iKA (IdA). Then

ΩA(iKA (IdA)) = IdA, hence A/Ω(iKA (IdA)) = A, thus 〈A, iKA (IdA)〉 ∈ Matr∗(lK). Therefore

A ∈ Alg∗(lCo)

2) Let A ∈ Alg∗lK Let X be a set of the cardinality of A. Then consider a surjective

morphism f : F (X) � A. Since A ∈ Alg∗lK there is F ∈ FilK (A) such that 〈A,F 〉 ∈
Matr∗lK . Let T = f−1(F ). By 3.1.6, we have that there is θ ∈ CoK(F (X)) such that
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iKF (X)(θ) = T , thus

θ = ΩF (X)(iKF (X)(θ))

= ΩF (X)(T )

= ΩF (X)(f−1(F ))

= f−1(ΩA(F ))

= f−1(IdA)

= ker(f)

Therefore A ∼= F (X)/ker(f) = F (X)/θ ∈ K. Since K is closed under isomorphisms,

A ∈ K.

Proposition 3.1.9. Let Σ be a signature and K ⊆ Σ − str a quasivariety. If there exist

some injective natural transformation iK : Cok ⇒ (P( ),⊆) such that (CoK , i
K) is a filter

pair, then the logic lK associated with it is an algebraizable logic.

Proof:

It is known that iKFm[CoK(Fm)] = Th(lK), As iKFm is injective, we have that iKFm is

bijective. Then iKFm is an isomorphism. Now let σ ∈ hom(Fm,Fm). As iK is a natural

transformation we have the following diagram commuting:

Fm

σ

��

CoK(Fm)
iKFm // (P(Fm);⊆)

Fm CoK(Fm)

CoK(σ)

OO

iKFm

// (P(Fm);⊆)

σ−1

OO

Notice that σ−1(T ) ∈ Th(lK) for any T ∈ Th(lk). Therefore iKFm is a isomorphism such

that commutes with substitution. By isomorphism theorem 1.3.14, lK is an algebraizable

logic.

Lemma 3.1.10. Let Σ be a signature, K ⊆ Σ− str a quasivariety and τ a set of equations

in at most one variable. The map iK = (iKM)M∈Σ−Str where:

iKM : CoK(M) → (P(M),⊆)

θ 7→ {m ∈M ; τM(m) ⊆ θ}

is a natural transformation and for any M ∈ Σ − Str, iKM preserves inf and sup directed,

i.e., (CoK , i
K) is a filter pair.

Proof:

Let f ∈ hom(M,N).

Denote here f(τM(m)) = {〈f(εM(m)), f(δM(m))〉; 〈ε, δ〉 ∈ τ}.
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M

f

��

CoK(M)
iKM // (P(M);⊆)

N CoK(N)

CoK(f)

OO

iKN

// (P(N);⊆)

f−1

OO

Given θ ∈ CoK(N) then

f−1(iKN (θ)) = f−1({n ∈ N ; τN(n) ⊆ θ})
= {m ∈M ; τN(f(m)) ⊆ θ}
= {m ∈M ; f(τM(m)) ⊆ θ}
= {m ∈M ; τM(m) ⊆ CoK(f)(θ)}
= iKM(f−1(θ))

Let θ, θ′ ∈ CoK(M).

iKM(θ ∩ θ′) = {m ∈M ; τM(m) ⊆ θ ∩ θ′}
= {m ∈M ; τM(m) ∈ θ and τM(m) ⊆ θ′}
= {m ∈M ; τM(m) ⊆ θ} ∩ {m ∈M ; τM(m) ⊆ θ′}

Then iKM preserves inf.

Now let U = {θi; i ∈ I} be an up-directed set.

iKM(
∨
U) = {m ∈M ; τM(m) ⊆

∨
U}

= {m ∈M ; τM(m) ⊆
⋃
i∈I θi}

=
⋃
i∈I{m ∈M ; τM(m) ⊆ θi}

Corollary 3.1.11. Let Σ be a signature, K ⊆ Σ − str a quasivariety and τ a set of equa-

tions. If iK, defined as above, is injective then the logic lK of the filter pair (CoK , i
K) is an

algebraizable logic.

Remark 3.1.12. This corollary give us an alternative proof to theorem 5.2 [BR]. The

condition of injectivity assumed here is exactly the condition put there to get algebraizability.

Corollary 3.1.13. If iKA (ΩA(F )) = F , i.e., ΩA is a section to iKA , then lK is a truth-

equational logic.

Proof:

As iKA (ΩA(F )) = F then F = {a ∈ A; τA(a) ⊆ ΩA(F )}. By Theorem 1.3.20 we have

that lK is a truth-equational logic.

Lemma 3.1.14. Let K be a pointed quasivariety and consider the set of equations τ =

{〈x, 0〉}. Then ΩA is a section to iKA for any A ∈ Σ− Str.

Proof:

Notice that in the logic lK we have that `K 0, x, ϕ(x, z̄) `K ϕ(0, z̄) and x, ϕ(0, z̄) `K
ϕ(x, z̄) for any ϕ(x, z̄) ∈ Fm. Indeed, let θ ∈ CoK(Fm), then 〈0, 0〉 ∈ θ, thus 0 ∈ iKFm(θ)
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and then `K 0. Now let θ ∈ CoK(Fm) and suppose that x, ϕ(x, z̄) ∈ iKFm(θ), then 〈x, 0〉 ∈ θ
and 〈ϕ(x, z̄), 0〉 ∈ θ. Since θ is a congruence, we have that 〈ϕ(x, z̄), ϕ(0, z̄)〉 ∈ θ. Therefore

〈ϕ(0, z̄), 0〉 ∈ θ, so ϕ(0, z̄) ∈ iKFm(θ). Hence x, ϕ(x, z̄) `K ϕ(0, z̄). The same proof can be

used to prove that x, ϕ(0, z̄) `K ϕ(x, z̄).

Now we are able to prove that for any A ∈ Σ− Str and F ∈ FilK (A), F = iKA (ΩA(F )).

Let a ∈ F and ϕ(x, z̄) ∈ Fm. Let c̄ ∈ A and suppose that ϕA(a, c̄) ∈ F . Since x, ϕ(x, z̄) `K
ϕ(0, z̄), we have that ϕA(0, c̄) ∈ F . Analogously we have that if ϕA(0, c̄) ∈ F , ϕA(a, c̄) ∈ F .

Hence 〈a, 0〉 ∈ ΩA(F ). By definition of iKA we have a ∈ iKA (ΩA(F )). Thus F ⊆ iKA (ΩA(F )).

Let a ∈ iKA (ΩA(F )), then 〈a, 0〉 ∈ ΩA(F ). Since `K 0, then 0 ∈ F , therefore a ∈ F . Hence

iKA (ΩA(F )) ⊆ F .

Due to Corollary 3.1.13 lK is a truth-equational logic.

Corollary 3.1.15. Let K ⊆ Σ− Str a pointed quasivariety. Consider τ = {〈x, 0〉} and the

logic lK obtained as in the Lemma 3.1.10). Then

• lK is truth-equational.

• If ΩA is a section for iKA for any A ∈ Σ− Str, then lK is algebraizable.

Example 3.1.16. Let Σ be the signature of group theory, i.e. Σ = (Σn)n∈ω where Σ0 =

{e}, Σ1 = { −1}, Σ2 = {·} and Σn = ∅ for any n > 2. Consider τ = {〈x, e〉}. Let K be

the variety of group theory. By 3.1.10 we have that (CoK , i
K), as above, is a filter pair and

then there is a logic lK associated. It is easy to see that iKM is injective for all M ∈ Σ− Str.
Thus by 3.1.11 lK is an algebraizable logic. From that we have that ΩM is a retraction of

iKM for any M ∈ Σ− Str. Since K is closed by isomorphism we have by 3.1.8 K = Alg∗lK,

then the variety of group theory is an equivalent algebraic semantic for lK. lK = lGr defined

in 1.3.

Now we will give a characterization for selfextensional logics.

Definition 3.1.17. Let 〈G, iG〉 be a filter pair. We say that lG = (Σ,`) is compatible with

〈G, iG〉 if for every ϕ, ψ ∈ Fm such that ϕ a` ψ, and every a ∈ G(Fm) and ρ(p, ~z) ∈ Fm

ρ(ϕ,~σ) ∈ iGFm(a) iff ρ(ψ,~σ) ∈ iGFm(a), for ~σ ⊆ Fm

Proposition 3.1.18. Let 〈G, iG〉 be a filter pair. Then lG is a selfextensional logic if, and

only if, it is compatible with 〈G, iG〉

Proof:

“ ⇐ ” Suppose that ϕ0 a` ψ0, ..., ϕn−1 a` ψn−1. Let cn ∈ Σn and a ∈ G(Fm). By

compatibility,

cn(ϕ0, ..., ϕn−1) ∈ iGFm(a) iff cn(ϕ0, ..., ψn−1) ∈ iGFm(a)

iff cn(ψ0, ..., ψn−2, ψn−1) ∈ iGFm(a)
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Hence cn(ϕ0, ..., ϕn−1) a` cn(ψ0, ..., ψn−1). Therefore a` is congruence relation.

“ ⇒ ” suppose ϕ a` ψ. Let ρ(p, ~z) ∈ Fm. We know that for every variable x, x a` x.

Then by congruentiality, given a ∈ G(Fm), ρ(ϕ, x̄) ∈ iGFm(a) iff ρ(ψ, x̄) ∈ iGFm(a). Hence lG

is compatible with 〈G, iG〉.

Corollary 3.1.19. Let K ⊆ Σ− str be a quasivariety. If 〈CoK , iK〉 is a filter pair, then lK

is compatible with 〈CoK , iK〉 iff lK is a Lindenbaum algebraizable logic.

Proof:

Since 〈CoK , iK〉 is a filter pair and due to 3.1.9, lK is an algebraizable logic. By 3.1.18,

lK is congruential. As any congruential logic is Lindenbaum, thus lK is Lindenbaum alge-

braizable logic.

Every Lindenbaum algebraizable logic is selfextensional logic, then by 3.1.18 lK is com-

patible with respect to 〈CoK , iK〉.

3.2 Craig entailment interpolation property and filter

functors

In this section we present a correspondence between Craig entailment interpolation prop-

erty on a logic given by a filter pair on CoK and the matrix amalgamation property in the

class of matrix of this logic.

Definition 3.2.1. Let l be a logic of type Σ.

• Given M,N ∈ Σ, F ∈ Fil(M) and F ′ ∈ Fil(N), a function f : 〈M,F 〉 → 〈N,F ′〉 is a

matrix-embedding if f : M → N is a embedding such that f [F ] ⊆ F ′ and f [M \ F ] ⊆
N \ F ′.

• l has the Craig entailment interpolation property if for every set of formulas Γ and

every formula ϕ, if Γ ` ϕ then there is a set of formulas Γ′ with the variables in

var(Γ) ∩ var(ϕ) such that Γ ` Γ′ and Γ′ ` ϕ.

• l has the theory amalgamation property if for every two no disjoint sets of variables X

and Y , and every l−filter T of the formulas algebra F (X) there is an l−filter R of the

formula algebra F (X∪Y ) such that R∩F (X) = T and R∩F (Y ) = Fil[T∩F (X∩Y )] =⋂
{T ′ ∈ Th(F (Y )); T ∩ F (X ∩ Y ) ⊆ T ′}

Definition 3.2.2. Let K ⊆ Σ − Str be a class of algebras, CoK : Σ − Str → AL and a

natural transformation iK : CoK ⇒ (P( ),⊆) such that (CoK , i
K) is a filter pair.
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• The logic lK is filter-weak-equivalential if given Y ⊆ X and θ ∈ CoK(F (Y )), if 〈ϕ, ψ〉 ∈
θ then ϕ ∈ iKF (Y )(θ) iff ψ ∈ iKF (Y )(θ).

• We shall say that K has the iK-matrix-amalgamation property if given A1, A2, A3 ∈ K
and FAi

∈ FilK (Ai) for all 1 ≤ i ≤ 3 and a matrix-embedding ij : 〈A3, F3〉 → 〈Aj, Fj〉
where j ∈ {1, 2}, there exists a matrix 〈A4, F4〉 with A4 ∈ K and embeddings ej :

〈Aj, Fj〉 → 〈A4, F4〉 such that e1 ◦ i1 = e2 ◦ i2.

Remark 3.2.3. under the conditions above, if ΩA(iKA (θ)) = θ for any A ∈ Σ − Str and

θ ∈ CoK(θ), we have that ΩA is surjective. In this case lK is a filter-weak-equivalential logic.

Indeed, let Y ⊆ X, ϕ, ψ ∈ F (Y ) and θ ∈ CoK(F (Y )) such that 〈ϕ, ψ〉 ∈ θ. Suppose that

ϕ ∈ iKF (Y )(θ). Since ΩF (Y ) is surjective, there is T ∈ FilK (F (Y )) such that ΩF (Y )(T ) = θ,

namely, T = iKF (Y )(θ). By proposition 3.1.7 we have that lK is protoalgebraic logic, then

〈ϕ, ψ〉 ∈ ΩF (Y )(T ), hence T, ϕ `Y ψ and T, ψ `Y ϕ. Since ϕ ∈ iKF (Y )(θ) = T , we have that

ψ ∈ iKF (Y )(θ). Analogously we can prove that if ψ ∈ iKF (Y )(θ) then ϕ ∈ iKF (Y )(θ). In this way

we have that lK is filter-weak-equivalential logic.

Lemma 3.2.4. ([CP99]) If a logic l has the theory amalgamation property, then it has the

Craig entailment interpolation property.

Theorem 3.2.5. Let Σ be a signature, K ⊆ Σ − Str a class of algebras and (CoK , i
K) a

filter pair. If lK is a filter-weak-equivalential logic and K has the iK-matrix-amalgamation

property restricted to reduced filters, then lK has the Craig entailment property.

Proof:

In order to prove that lK has the Craig entailment interpolation property, we will prove

first that lK has the theory amalgamation property. Let X, Y be non disjoint sets and

T ∈ Filk(F (X)). Denote by Z = X ∩ Y and W = X ∪ Y . Consider T ′ = FiYlK (T ∩ F (Z)).

So T ′ ∩ F (Z) = T ∩ F (Z)(= T ′′). Indeed, it is clear that T ∩ F (Z) ⊆ T ′ ∩ F (Z). Suppose

that there is ϕ ∈ T ′ ∩ F (Z) such that ϕ 6∈ T ∩ F (Z), hence T ∩ F (Z) 6`lK ϕ. Notice that

Z ⊆ Y , due to lemma 3.1.5 we have T ∩ F (Z) 6`Y ϕ, then ϕ 6∈ FiYlK (T ∩ F (Z)) = T ′, a

contradiction.

By proposition 3.1.6 consider now θT ∈ CoK(F (X)), θT ′ ∈ CoK(F (Y )) and θT ′′ ∈
CoK(F (Z)) such that T = iKF (X)(θT ), T ′ = iKF (Y )(θT ′) and T ′′ = iKF (Z)(θT ′′). Let A1 =

F (X)/θT , A2 = F (Y )/θT ′ and A3 = F (Z)/θT ′′ . Define ij : A3 → Aj by ij([ϕ]θT ′′ ) = [ϕ]θT

for j ∈ {1, 2}. It is easy to see that ij is embedding for j ∈ {1, 2}. If [ϕ]θT ′′ ∈ T ′′/θ′′,

then there is ψ ∈ T ′′ such that 〈ϕ, ψ〉 ∈ θT ′′ . Since lK is filter-weak-equivalential, we

have that ϕ ∈ T ′′ = T ∩ F (Z). Hence [ϕ]θT ′′ ∈ T ′′/θT ′′ implies [ϕ]θT ∈ T/θT . Now let

[ϕ]θT ′′ ∈ A3 \ (T ′′/θT ′′). Suppose that [ϕ]θT ∈ T/θT , therefore ϕ ∈ T . Since ϕ ∈ F (Z), so

ϕ ∈ T ∩ F (Z), and then ϕ ∈ T ′′. Thus [ϕ]θT ′′ ∈ T
′′/θT ′′ . Implying a contradiction. Hence
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[ϕ]θT ∈ A1 \ (T/θT ). Due to that we have that i1 is a matrix-embedding. Analogously one

can prove that i2 is a matrix-embedding as well.

By iK-matrix-amalgamation property restricted to reduced filters, there is A4 ∈ K and

F4 ∈ FilK (A4) such that 〈A4, F4〉 ∈ Matr∗lK with e1 : 〈A1, T/θT 〉 → 〈A4, F4〉 and e2 :

〈A2, T
′/θT ′〉 → 〈A4, F4〉 such that e1 ◦ i1 = e2 ◦ i2.

Define f : W → A4 such that f(x) = e1([x]θT ) if x ∈ X and f(x) = e2([x]θT ′ ) if x ∈ Y \Z.

Notice that for every z ∈ Z, e1([z]θT ) = e1(i1([z]θT ′′ )) = e2(i2([z]θT ′′ )) = e2([z]θT ′ ). Therefore

e1([z]θT ) = f(z) = e2([z]θT ′ ). Hence we can consider f : F (W )→ A4 and then if ϕ ∈ F (X),

f(ϕ) = e1([ϕ]θT ) and if ϕ ∈ F (Y ), f(ϕ) = e2([ϕ]θT ′ ).

Let R = f−1(F4), then

ϕ ∈ R ∩ F (X) iff f(ϕ) ∈ F4

iff e1([ϕ]θT ) ∈ F4

iff [ϕ]θT ∈ T/θT (iK −matrix− amalg.)
iff ϕ ∈ T (filter − weak − equiv.)

Hence R ∩ F (X) = T . Analogously we have that R ∩ F (Y ) = T ′. Due to Lemma 3.2.4,

lK has Craig entailment interpolation property.

Lemma 3.2.6. Let K ⊆ Σ − Str be a quasivariety. Suppose that there is iK : CoK →
〈P( );⊆〉 such that 〈CoK , iK〉 is a filter pair and lK a truth-equational logic. K has the

iK-matrix-amalgamation property then K has the amalgamation property.

Proof:

Let A3

fi
↪→ Ai embeddings for i=1,2. Since lK is a truth-equational logic, there is a set

of equation τ such that defines the filters in Matr∗l. Then consider the filters defined by

Fi = {a ∈ Ai; Ai |= τ(a)} for any i=1,2,3. We prove that fi : 〈A3, F3〉 → 〈Ai, Fi〉 is

a matrix-embedding for any i=1,2. Indeed, let a ∈ F3, for any 〈δ, ε〉 ∈ τ , we have that

δAi(fi(a)) = fi(δ
A3(a)) and εAi(fi(a)) = fi(ε

A3(a)). Since a ∈ F3, we have δA3(a) = εA3(a),

hence δAi(fi(a)) = εAi(fi(a)), proving fi[F3] ⊆ Fi. Now suppose that fi(a) ∈ Fi. Then

δAi(fi(a)) = εAi(fi(a)) for all 〈δ, ε〉 ∈ τ . Thus fi(δ
A3(a)) = fi(ε

A3(a)). Since fi is an

embedding, we have that δA3(a) = εA3(a), therefore a ∈ {b ∈ A3; A3 |= τ(b)} = F3. Thus

fi[A3 \ F3] ⊆ Ai \ Fi.

By lK−matrix-amalgamation, we have that there is a matrix 〈A4, F4〉 together matrix-

embeddings 〈Ai, Fi〉
gi
↪→ 〈A4, F4〉, for i=1,2, such that the following diagram commutes:
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〈A1, F1〉
g1

%%
〈A3, F3〉

f1

99

f2 %%

〈A4, F4〉

〈A2, F2〉
g2

99

In particular we have the following diagram commuting:

A1

g1

  
A3

f1

>>

f2   

A4

A2

g2

>>

Definition 3.2.7. A logic l has a Deduction-Detachment Theorem (DDT) if there is a set

of formulas ∆(p, q) such that for every set of formulas Γ and every formulas α and β

Γ, α ` β iff Γ ` ∆(α, β).

The set ∆ is called deduction-detachment set for l or shortly DD-set.

Lemma 3.2.8. ([CP99]) If l has the Craig entailment interpolation property then for any

set of variables X, every set Γ ⊆ Fm(X) and every ϕ ∈ Fm(X), if ϕ ∈ FiFm(X)
l (Γ) then

there is a set Γ′ ⊆ Γ such that var(Γ′) ⊆ var(Γ) ∩ var(ϕ) and ϕ ∈ FiFm(X)
l (Γ′).

Theorem 3.2.9. Let l be a equivalential logic with DDT. If l has Craig entailment property

then Alg*l has the l-matrix-amalgamation restrict to reduced filters.

Proof:

Let Ai ∈ Alg∗l and Fi ∈ Fil(Ai) reduced filter for i = 1, 2, 3. Suppose without lost of

generality that A3 is a subalgebra of A1 and A2 and Fj ∩ A3 = F3 for j = 1, 2. Consider

X, Y set of variables such that X is of the cardinality of A1, Y is of the cardinality of A2

and X ∩ Y is of the cardinality of A3. Denote by Z = X ∩ Y and W = X ∪ Y . Consider

the homomorphisms h : F (X)� A1 and g : F (Y )� A2, such that

• h � X is a bijection between X and A1.

• g � Y is a bijection between Y and A2.

• h � Z = g � Z.
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• g � Z is a bijection between Z and A3.

Let Γ1 = h−1[F1] and Γ2 = g−1[F2]. Consider T the l-filter of F (W ) generated by Γ1∪Γ2.

Claim 1: T ∩ F (X) = Γ1. The inclusion Γ1 ⊆ T ∩ F (X) is clear. Let ϕ ∈ T ∩ F (X),

then ϕ ∈ T = Fi
F (W )
l (Γ1 ∪ Γ2). l is finitary, then there are ϕ1, ..., ϕn ∈ Γ1 such that

ϕ ∈ FiF (W )
l (Γ2, ϕ1, ..., ϕn). By DDT there is a set of formulas ∆∗(p1, ..., pn, q) such that

∆∗ = ∆∗(ϕ1, ..., ϕn, ϕ) ⊆ Fi
F (W )
l (Γ2).

By Craig entailment interpolation property, using the Lemma 3.2.8, for each ψ ∈ ∆∗,
there is a set Γψ such that var(Γψ) ⊆ var(Γ2) ∩ var(ψ), Γψ ⊆ Fi

F (W )
l (Γ2) and ψ ∈

Fi
F (W )
l (Γψ). Hence

⋃
ψ∈∆∗ Γψ ⊆ Fi

F (W )
l (Γ2) and ψ ∈ FiF (W )

l (Γψ).

Notice that var(Γ) ⊆ Y and for any ψ ∈ ∆∗, var(ψ) ⊆ X then var(
⋃
ψ∈∆∗ Γψ) ⊆ Z.

Using detachment we have that ϕ ∈ FiF (W )
l (

⋃
ψ∈∆∗ Γψ, ϕ1, ..., ϕn).

Notice that the variables in the formulas ϕ1, ..., ϕn and in the formulas
⋃
ψ∈∆∗ Γψ are all

in X. We prove that ϕ ∈ Γ1. In order to do that, we prove that
⋃
ψ∈∆∗ Γψ ⊆ Γ1. Extending

the homomorphism g : F (Y ) � A2 to morphism g′ : F (W ) � A2, we have g′ � F (Y ) = g.

Γ2 ⊆ g−1[F2]. So
⋃
ψ∈∆∗ Γψ ⊆ Fi

F (W )
l (Γ2) ⊆ g′−1[F2]. Since

⋃
ψ∈∆∗ Γψ ⊆ F (Z) ⊆ F (Y ), we

have g[
⋃
ψ∈∆∗ Γψ] ⊆ g[g′−1[F2]] ⊆ F2. Therefore h[

⋃
ψ∈∆∗ Γψ] = g[

⋃
ψ∈∆∗ Γψ] ⊆ F2 ∩ A3 =

F1∩A3 ⊆ F1. Thus
⋃
ψ∈∆∗ Γψ ⊆ Γ1, then ϕ ∈ FiF (W )

l (Γ1). By Lemma 3.1.5 ϕ ∈ FiF (X)
l (Γ1).

Then ϕ ∈ Γ1.

Claim 2: T ∩ F (Y ) = Γ2. The same proof of Claim 1.

Notice that ΩX(Γ1) = ker(h). Indeed,

〈ϕ, ψ〉 ∈ ΩX(Γ1) ⇔ 〈ϕ, ψ〉 ∈ ΩX(h−1(F1))

⇔ 〈ϕ, ψ〉 ∈ h−1(ΩA(F1))(l is equiv. logic)

⇔ 〈h(ϕ), h(ψ)〉 ∈ ΩA(F1)(F1 is reduced filter)

⇔ h(ϕ) = h(ψ)

Analogously we have ΩY (Γ2) = ker(g). Then F (X)/ΩX(Γ1) ∼= A1, F (Y )/ΩY (Γ2) ∼= A2

and F (Z)/ΩZ(Γ1 ∩ F (Z)) ∼= A3. Observe that these isomorphisms send Γi/Ω(Γi) to Fi for

i = 1, 2, 3 and Γ3 = Γ1 ∩ F (Z). Consider D = F (W )/ΩW (T ) and FD = T/ΩW (T ). With

that we have 〈D,FD〉 ∈Matr∗(l) and D ∈ Alg∗l.

Define e1 : F (X)/ΩX(Γ1) → D where e1([ϕ]ΩW (Γ1)) = [ϕ]ΩW (T ). In the same way to

e2 : F (Y )/ΩY (Γ2) → D. Observe that ΩX(Γ1) = ΩW (T ) ∩ F (X)2. Indeed, we can see

T ∩ F (X) = j−1[T ] and ΩY (T ) ∩ F (X)2 = j−1(ΩW (T )) where j : F (X) ↪→ F (W ) is the

inclusion morphism. Since l is equivalential logic we have
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ΩX(Γ1) = ΩX(T ∩ F (X))

= ΩX(j−1(T ))

= j−1(ΩW (T ))

= ΩW (T ) ∩ F (X)2

With this equality we have that e1 is well defined and injective. Analogously to e2.

It is easy to see that the following diagram commutes

F (X)/Ω(Γ1) ∼= A1

''
A3
∼= F (Z)/Ω(Γ1 ∩ F (Z))

44

**

D

F (Y )/Ω(Γ2) ∼= A2

77

It clear the ei[Γi/Ω(Γ1)] ⊆ T/Ω(T ). Let ϕ ∈ F (X) such that [ϕ]Ω(T ) ∈ T/Ω(T ), then ϕ ∈
T due to Leibniz operator. Thus by Claim 1 ϕ ∈ T ∩ F (X) = Γ1, then [ϕ]Ω(Γ1) ∈ Γ/Ω(Γ1).

Analogously for e2. Therefore ei is a matrix-embedding for i = 1, 2.

Corollary 3.2.10. Let K ⊆ Σ − Str closed by isomorphism. Suppose that there is iK :

CoK ⇒ (P( ),⊆) such that (CoK , i
K) is a filter pair, (ΩA)A∈Σ−Str is natural transformation

such that is a retraction for iK. If lK has DDT then K has iK-matrix-amalgamation property

restrict to reduced filters if, and only if lK has Craig entailment interpolation property.

Proof:

” ⇒ ” : Due to 3.2.3 we have that lK is filter-weak-equivalential logic, then applying

Theorem 3.2.5 it is done.

”⇐ ” : By Proposition 3.1.8 we have lK is equivalential logic and K = Alg∗lK . So it is

just apply 3.2.9.

Corollary 3.2.11. Let K ⊆ Σ−Str be a quasivariety and τ be a set of equations in at most

one variable. By 3.1.10 we have that we can define a filter par (CoK , i
K) and consequently

a logic lK. Suppose that ΩA is a section to iKA for any A ∈ Σ − Str. If K has iK-matrix-

amalgamation property then K has amalgamation property.

Proof:

Using 3.1.13 we have that lK is truth-equational logic. Then apply 3.2.6

3.3 The category of filters Fi

In this section we present the definition of the category of filter functors and establish

the correspondence between it and the category of logics with flexible morphisms.
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The category Fi is composed by:

• Objects: Filters pairs (G, iG).

•Morphisms: Pairs (H, jH) such that H : Σ′−str → Σ−str is a structure functor, i.e.,

it commutes over set and the natural transformation ηH : F ⇒ H ◦ F ′ preserves variables,

where F, F ′ are free functors from the category Set to structures and jH : G′ ⇒ G ◦H is a

natural transformation such that given M ′ ∈ Σ′ − str, iGH(M ′) ◦ jHM ′ = iG
′

M ′ where (G, iG) and

(G′, iG
′
) are filters pairs.

Σ′ − str H //

P
--

GL′

��

Σ− str

P
rr

GL




AL

-Composition: Given (H, jH), (H ′, jH
′
) ∈ ObFi.

(H, jH) • (H ′, jH
′
) = (H ◦H ′, jH • jH′)

where (jH • jH′)M ′′ := jHH′(M ′′) ◦ jH
′

M ′′ . Observe that

iGH◦H′(M ′′) ◦ ((jH • jH′)M ′′) = iG
′′

M ′′ .

Indeed
iGH◦H′(M ′′) ◦ ((jH • jH′)M ′′) = iGH◦H′(M ′′) ◦ (jHH′(M ′′) ◦ jH

′

M ′′)

= (iGH◦H′(M ′′) ◦ jHH′(M ′′)) ◦ jH
′

M ′′

= iG
′

H′(M ′′) ◦ jH
′

M ′′

= iG
′′

M ′′ .

In the former sections we have seen a correspondence between the objects of Lf and Fi.
Now we show the correspondence between morphisms of Lf and of Fi.

In chapter 2 we have that given a functor H : Σ′ − Str → Σ − Str such that it is a

structure functor, then there is a signature morphism mH : Σ′ → Σ, such that mH(cn) =

ηH(X)(cn(x0, ..., xn−1)). We can consider the functor

N : Fi → Lf
(G′, iG

′
) lG′

↓ 7→ ↑ mH

(G, iG) lG

We must prove that mH is a translation.

Let Γ ∪ {ϕ} ⊆ F (X) such that Γ `G ϕ. Let a ∈ G′(F ′(X)). Suppose that m̌H(Γ) ⊆
iG
′

F ′(X)(a) = iGH(F (X))(j
H
F ′(X)(a)). We can see m̌H as an evaluation. Since the pair

〈H(F ′(X)), iGH(F ′(X))(j
H
F ′(X)(a))〉
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is a matrix model of lG, we have m̌H(ϕ) ∈ iGH(F ′(X))(j
H
F ′(X)(a)) = iG

′

F (X)(a). As a has been

taken arbitrary, we conclude that m̌H [Γ] `G′ m̌H(ϕ).

Now consider the functor (see 1.2.2)

N ′ : Lf → Fi
l (Fil, i

l)

h ↓ 7→ h? ↑
l′ (Fil′ , i

l′)

Observe that given l ∈ Lf , N ◦ N ′(l) = N ((Fil, i
l)) = lFil = l. Let h ∈ homLf

(l, l′),

then N ◦ N ′(h) = N ((h?, j?)), where j? : Fil′ ⇒ Fil ◦ h? given by the inclusion, i.e., let

M ∈ Σ′ − str and F ∈ Fil′(M), j?(F ) = F . Indeed j? is well defined, let Γ ∪ {ϕ} ⊆ Fm

such that Γ `l ϕ and v : X → h?(M) where F (X) = Fm such that v̄[Γ] ⊆ F .

X

σ′X

$$
σX //

v ""

Fm ȟ //

v̄
��

h?Fm′

v̄′yy
h?M ′

Consider σX and σ′X the respective unit of adjunction between the free functor and

forgetful functor over Σ − str and Σ − str. Consider v̄′ : F ′m → M the unique morphism,

given by the universal property such that v̄′ ◦ σ′X = v. As h?(F ′m) has the same universe

of F ′m, we can see v̄′ : h?(F ′m) → h?(M) as a morphism, i.e., v̄′ = h?(v̄′). It holds that

σ′X = ȟ ◦ σX . Therefore, v̄′ ◦ ȟ ◦ σx = v. Notice that v̄ is the unique morphism such that

v̄ ◦ σX = v. Hence v̄′ ◦ ȟ = v̄. Therefore, v̄′ ◦ ȟ(Γ) ⊆ F . As F ∈ Fil′(M) and Γ̌ `l′ ȟ(ϕ),

then v̄′ ◦ ȟ(ϕ) ⊆ F , hence v̄(ϕ) ∈ F . Since v has been taken arbitrary, F ∈ Fil(h?M).

Applying N ((h?, j?)) = mh? = h. Then N ◦N ′ = IdLf
.

On the other hand N ′ ◦ N ((G, iG)) 6= (G, iG),

On the class of filter pairs one can define the following relation:

(G, iG) ∼ (G′, iG
′
) iff G,G′ : Σ− str → AL and iGFm = iG

′

Fm

The relation ∼ is a equivalence relation.

This relation means that if two filter pairs are in correspondence, then they define the

same logic.

So we have that N ′ ◦ N ((G, iG)) and (G, iG) are in the same class with respect to ∼.

The fuctors N and N ′ give us, in a similar way as in chapter 2, a “codification” for

morphisms in Lf .
Moreover, these functors establish a adjunction N ′ a N . Indeed, let (G, iG) be a filter

pair. We have seen that N ′ ◦ N ((G, iG)) = N ′(lG) = (FilG , i). Given l a logic and (H, j) :
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(G, iG) → N ′(l), we have that mH : l → lG is a morphism in Lf such that the following

diagram commutes:

(G, iG)

(H,j) %%

(Id,iG)// (FilG , i)

(m∗H=H,i)

��
(Fil, i)

So we have N ′ a N . Moreover we can so see Lf as a reflexive subcategory of Fi and

then, by Proposition 5.3.1 in [Bor94] we have that there exist the category of fractions such

that is equivalente to N ′ where Σ (a class of morphisms such that the category of fractions

exists) is all morphism f ∈ Lf such that N ′(f) is a isomorphism.



Chapter 4

Institutions for propositional logics

and an abstract approach to

Glinvenko’s theorem

The notion of Institution was introduced for the first time by Goguen and Burstall in

[GB92]. This concept formalizes the informal notion of logical system into a mathematical

object. The main (model-theoretical) characteristic is that an institution contains a satis-

faction relation between models and sentences that are coherent under change of notation:

That motivated us to consider an institution of a logic, i.e., an institution for a proposi-

tional logic l represents all logic l′ such that is equipollent with l ([CG07]). A variation of

the formalism of institutions, the notion of π-Institution, were defined by Fiadeiro and Ser-

nadas in [FS88] providing an alternative (proof-theoretical) approach to deductive system.

In [FS88] and [Vou02] was showed a way to relate institutions with π-institutions. On the

best of our knowledge, there is no literature on categorial connections between the category

of institutions and the category of π-institutions. Here, we provide a categorial relationship

using the well-known relation between objects of those categories, more precisely, in section

1 we determine a pair of adjoint functors between those categories.

Connecting those abstract logical settings with the notions presented in the previous

chapters of the present thesis, we introduce, in the subsequent sections, institutions for

abstract logics, algebraizable logics and Lindenbaum algebraizable logics. Concerning the

latter, we present the definition of a Glivenko’s context between two algebraizable logics.

Recalling the classical Glivenko’s theorem, proved by Valery Glivenko in 1929 that says one

can translate the classical logic into intuitionistic logic by means double-negation of classical

formulas, we prove in 4.3.6 (4.3.12) that for each Glivenko’s context relating two algebraiz-

able logics (respectively, Lindenbaum algebraizable logics), can be associated a institutions

morphism between the corresponding logical institutions . Moreover, in 4.3.7 (4.3.13) we

have that a Glivenko’s context between institutions of algebraizable logics (Lindenbaum

71
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algebraizable logics) provides an abstract Glivenko’s theorem between those logics, general-

izing the results presented in [Tor08]. In particular, considering the institutions of classical

logic and of intuitionistic logic 4.3.8, we build a Glivenko’s context and thus an abstract

Glivenko’s theorem such that is exactly the traditional Glivenko’s theorem.

4.1 Categorial relationship between Institution and Π-

Institution

In this part of the work we establish an adjunction between the category of Institutions

Inst and the category of π-Institution π− Inst. We are going to present now the correspon-

dence between the objects in those categories, but this relation is not original. One can find

it in [Vou02], [FS88]. The new result here is the relationship between their morphisms.

We start giving the definition of institution and π-institution with their respective notions

of morphisms (and comorphisms), and consequently their categories.

Definition 4.1.1. An Institution I = (Sig, Sen,Mod, |=) consists of

Sig
Mod

{{

Sen

!!
(Cat)op |= Set

1. a category Sig, whose the objects are called signature,

2. a functor Sen : Sig → Set, for each signature a set whose elements are called sentence

over the signature

3. a functor Mod : (Sig)op → Cat, for each signature a category whose the objects are

called model,

4. a relation |=Σ⊆ |Mod(Σ)|×Sen(Σ) for each Σ ∈ |Sig|, called Σ-satisfaction, such that

for each morphism h : Σ→ Σ′, the compatibility condition

M ′ |=Σ′ Sen(h)(φ) if and only if Mod(h)(M ′) |=Σ φ

holds for each M ′ ∈ |Mod(Σ′)| and φ ∈ Sen(Σ)

Example 4.1.2. For each pair of cardinals ℵ0 ≤ κ, λ ≤ ∞, the category of languages

L = (C,F,R)1 and language morphisms, endowed with the usual notion of Lκ,λ-sentences

(= Lκ,λ-formulas with no free variable), with the usual association of category of structures

and with the usual (tarskian) notion of satisfaction, gives rise to an institution I(κ, λ).

1Where C is a set of symbols of constants, F is a set of symbols of (finitary) function symbols and R is

a set of symbols of (finitary) relation symbols.
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Definition 4.1.3. Let I and I ′ be institutions.

(a) An Institution morphism h = (Φ, α, β) : I → I ′ consists of

Sig

↖

ss

Sen

��

(Mod)op

��
↙
++Φ ��

Set Sig′
Sen′
oo

Mod′op
// Catop

1. a functor Φ : Sig → Sig′

2. a natural transformation α : Sen′ ◦ Φ⇒ Sen

3. a natural transformation β : Mod⇒Mod′ ◦ Φop

such that the following compatibility condition holds:

m |=Σ αΣ(ϕ′) iff βΣ(m) |=′Φ(Σ) ϕ
′

For any Σ ∈ Sig, any Σ-model m and any Φ(Σ)-sentence ϕ′.

(b) A triple f = 〈φ, α, β〉 : I → I ′ is a comorphism between the given institutions if the

following conditions hold:

• φ : Sig → Sig′ is a functor.

• α : Sen⇒ Sen′ ◦ φ and β : Mod′ ◦ φop ⇒ Mod are natural transformations such that

satisfy:

m′ |=′φ(Σ) αΣ(ϕ) iff βΣ(m′) |=Σ ϕ

For any Σ ∈ Sig, m′ ∈Mod′(φ(Σ)) and ϕ ∈ Sen(Σ).

Example 4.1.4. Given two pairs of cardinals (κi, λi), with ℵ0 ≤ κi, λi ≤ ∞, i = 0, 1, such

that κ0, κ1 and λ0 ≤ λ1, then it is induced a morphism and a comorphism of institutions

(Φ, α, β) : I(κ0, λ0) → I(κ1, λ1), given by the same data: Sig0 = Lang = Sig1, Mod0 =

Mod1 : (Lang)op → Cat, Φ = IdLang : Sig0 → Sig1, β := Id : Modi ⇒ Mod1−i, α :=

inclusion : Sen0 ⇒ Sen1.

Given f : I → I ′ and f ′ : I → I ′′ comorphisms of institutions, then f ′ • f := 〈φ′ ◦
φ, α′ • α, β′ • β〉 defines a comorphism f ′ • f : I → I ′′, where (α′ • α)Σ = α′φ(Σ) ◦ αΣ and

(β′ • β)Σ = βΣ ◦ β′φ(Σ). Let IdI := 〈IdSig, Id, Id〉 : I → I. It is straitforward to check that

these data determines a category2. We will denote by Inst this category of institutions

2As usual in category theory, the set theoretical size issues on such global constructions of categories can

be addressed by the use of, at least, two Grothendieck’s universes.
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where the arrows are comorphisms of institutions. Of course, it can also be formed a

category whose objects are institutions and the arrows are morphisms of institutions, but

that will be less important here.

Definition 4.1.5. A π-Institution J = 〈Sig, Sen, {CΣ}Σ∈|Sig|〉 is a triple with its first two

components exactly the same as the first two components of an institution and, for every Σ ∈
|Sig|, a closure operator CΣ : P(Sen(Σ)) → P(Sen(Σ)), such that the following coherence

conditions holds, for every f : Σ1 → Σ2 ∈Mor(Sig):

Sen(f)(CΣ1(Γ)) ⊆ CΣ2(Sen(f)(Γ)), for all Γ ⊆ Sen(Σ1).

Definition 4.1.6. Let J and J ′ be π-institutions, g = 〈φ, α〉 : J → J ′ is a comorphism

between π-institution when the following conditions hold:

• φ : Sig → Sig′ is a functor

• α : Sen ⇒ Sen′ ◦ φ is a natural transformation such that satisfies the compatibility

condition:

ϕ ∈ CΣ(Γ)⇒ αΣ(ϕ) ∈ Cφ(Σ)(αΣ(Γ)) for all Γ ∪ {ϕ} ⊆ Sig(Σ)

Let g : J → J ′ and g′ : J ′ → J ′′ be morphisms of π-institutions. g′ • g is defined as the

two first components of composition of comorphisms of institutions. The identity morphism

is given as the two first components of the comorphism identity of institution. We will

denote by π-Inst the category of π-institutions and with arrows its comorphisms.

Example 4.1.7. (a) The each of categories of propositional Lf and Ls is associated an

π-institution Jf (respectively, Js) in the following way:

• Sigf := Lf ;

• Senf : Sigf → Set, given by (f : (Σ,`)→ (Σ′,`)) 7→ (f̌ : FΣ(X)→ FΣ′(X));

• For each l = (Σ,`) ∈ |Sigf |, Cl : P (FΣ(X)) → P (FΣ(X)) is given by Cl(Γ) := {φ ∈
FΣ(X) : Γ `l φ}, for each Γ ⊆ FΣ(X).

(b) The ”inclusion” functor (+)L : Ls → Lf , mentioned in the section 2 of Chapter

1, induces a comorphism (and also a morphism!) of the associated π-institutions (+) :=

((+)L, α
+) : Js → Jf , where, for each l = (Σ,`) ∈ Sigs = Ls, α+(l) = IdFΣ(X) : FΣ(X) →

FΣ(X).3

3A lateral question in this chapter, that is interesting by its own, is understand the role of the adjoint

functor (−)L : Lf → Ls in the π-institutional level Jf , Js.
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In order to establish the adjunction between Inst and π−Inst we introduce the following:

Let I = 〈Sig, Sen,Mod, |=〉 be an institution. Given Σ ∈ |Sig|, consider

Γ? = {m ∈Mod(Σ); m |=Σ ϕ for all ϕ ∈ Γ} and

M? = {ϕ ∈ Sen(Σ); m |=Σ ϕ for all m ∈M}

for any Γ ⊆ Sen(Σ) and M ⊆ Mod(Σ). Clearly, these mappings establishes a Galois

connection. Thus CI
Σ(Γ) := Γ??, defines a closure operator for any Σ ∈ |Sig| ([Vou02]).

The following lemma describes the behavior of these Galois connections through institu-

tions comorphisms.

Lemma 4.1.8. Let f = 〈φ, α, β〉 : I → I ′ an arrow in Inst. Then given Γ ⊆ Sen(Σ) and

M ⊆ |Mod(φ(Σ))|, the following conditions holds:

1) βΣ[(αΣ[Γ])?] ⊆ Γ?

2) αΣ[(βΣ[M ])?] ⊆M?

Proof: 1) Let m ∈ βΣ[(αΣ[Γ])?]. So there is m′ ∈ αΣ[Γ]? such that βΣ(m′) = m. As

m′ ∈ αΣ[Γ]?, hence m′ |=′φ(Σ) αΣ[Γ] ⇔ βΣ(m′) |=Σ Γ ⇔ m |=Σ Γ. Then m ∈ Γ?.

2) Let ϕ ∈ αΣ[(βΣ[M ])?]. So there is ψ ∈ βΣ[M ]?such that αΣ(ψ) = ϕ. Since ψ ∈
(βΣ[M ])?, hence βΣ[m] |=Σ ψ ⇔ m |=φ(Σ) αΣ(ψ) ⇔ m |=φ(Σ) ϕ for any m ∈M . Therefore

ϕ ∈M?.

Define the following application:

F : Inst −→ π − Inst

I 7−→ F (I) = 〈Sig, Sen, {CI
Σ}Σ∈|Sig|〉

In order to establish that F is well defined, it is enough to prove the compatibility

condition for {CI
Σ}Σ∈|Sig|, i.e., given f : Σ1 → Σ2 and Γ ⊆ Sen(Σ1), then Sen(f)(CI

Σ1
(Γ)) ⊆

CI
Σ2

(Sen(f)(Γ)). Let ϕ2 ∈ Sen(f)(CI
Σ1

(Γ)), then there is ϕ1 ∈ Γ∗∗ such that Sen(f)(ϕ1) =

ϕ2. Let m ∈ (Sen(f)(Γ))∗. So m |=Σ2 Sen(f)(Γ). By compatibility condition in institutions

we have that Mod(f)(m) |=Σ1 Γ, thus Mod(f)(m) ∈ Γ∗. Since ϕ1 ∈ Γ∗∗ we have that

Mod(f)(m) |=Σ1 ϕ1, hence m |=Σ2 Sen(f)(ϕ1) = ϕ2. Therefore ϕ2 ∈ (Sen(f)(Γ))∗∗ =

CI
Σ2

(Sen(f)(Γ)).

Now let f = 〈φ, α, β〉 : I → I ′ be a comorphism of institutions. Then consider F (f) =

〈φ, α〉. Notice that F (f) is a comorphism between F (I) and F (I ′). Indeed, in order to prove

that, it is enough to prove that F (f) satisfies the compatibility condition. Let Γ ∪ {ϕ} ⊆
Sen(Σ) for some Σ ∈ |Sig|. Suppose that αΣ(ϕ) 6∈ CI

φ(Σ)(αΣ[Γ]). Hence αΣ(ϕ) 6∈ αΣ[Γ]??.

Therefore αΣ[Γ]? 6|=′φ(Σ) αΣ(α). Thus there is m ∈ αΣ[Γ]? such that m 6|=′φ(Σ) αΣ(ϕ). Hence

βΣ(m) 6|=Σ ϕ. Due to 4.1.8 1) we have that βΣ(m) ∈ Γ??. Therefore ϕ 6∈ Γ?? = CI
Σ(Γ).
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Now let f : I → I ′ and f ′ : I ′ → I ′′ comorphism of institutions. F (f ′ • f) = 〈φ′ ◦ φ, α′ •
α〉 = F (f ′) • F (f) and F (IdI) = IdF (I). Then F is a functor.

Consider now the application:

G : π − Inst −→ Inst

J 7−→ G(J) = 〈Sig, Sen,ModJ , |=J〉
Where:

• The two first components of the π−institution are preserved.

• ModJ : Sig → Catop.
ModJ(Σ) := {CΣ(Γ); Γ ⊆ Sen(Σ)} ⊆ P (Sen(Σ)) is viewed as a poset category and, given

f : Σ→ Σ′, ModJ(f) = Sen(f)−1.

ModJ(f) is well defined. Indeed: Let Γ ⊆ Sen(Σ′) and ϕ ∈ CΣ(Sen(f)−1(CΣ′(Γ))).

Sen(f)(ϕ) ∈ Sen(f)[CΣ(Sen(f)−1(CΣ′ [Γ]))] ⊆ CΣ[Sen(f)(Sen(f)−1(CΣ[Γ]))]

⊆ CΣ′(CΣ′ [Γ]) = CΣ′ [Γ]

Therefore ϕ ∈ Sen(f)−1(CΣ[Γ]). It is easy to see that ModJ is a contravariant functor.

• Define |=J⊆ |Mod(Σ)| × Sen(Σ) as a relation such that given m ∈ Mod(Σ) and

ϕ ∈ Sen(Σ), m |=J
Σ ϕ if and only if ϕ ∈ m. Let f : Σ→ Σ′, ϕ ∈ Sen(Σ) and m′ ∈ |Mod(Σ′)|.

ModJ(f)(m′) |=J
Σ ϕ ⇔ Sen(f)−1(m′) |=J

Σ ϕ

⇔ ϕ ∈ Sen(f)−1(m′)

⇔ Sen(f)(ϕ) ∈ m′

⇔ m′ |=J
Σ′ Sen(f)(ϕ)

Therefore the compatibility condition is satisfied and then we have that G(J) is a insti-

tution.

Now let h = 〈φ, α〉 : J → J ′ be a comorphism of π-institution. Define for any Σ ∈ |Sig|
βΣ : ModJ

′ ◦ φ(Σ) → ModJ(Σ) where βΣ(m) = α−1
Σ (m). We prove that βΣ is well defined,

i.e., α−1
Σ (m) ∈ ModJ(Σ). Let ϕ ∈ CΣ(α−1

Σ (m)). h is a morphism of π-institution, then

αΣ(ϕ) ∈ Cφ(Σ)(αΣ(α−1
Σ (m))) ⊆ Cφ(Σ)(m) = m. Therefore ϕ ∈ α−1

Σ (m).

Now we are going to prove that β is a natural transformation. Let f : Σ1 → Σ2. Since

α is a natural transformation, observe that the following diagram commutes:

P (Sen(Σ1)) P (Sen′(φ(Σ1)))
α−1

Σ1oo

P (Sen(Σ2))

Sen(f)−1

OO

P (Sen′(φ(Σ2)))

Sen′(φ(f))−1

OO

α−1
Σ2

oo

Using this commutative diagram we are able to prove that the following diagram com-

mutes:
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ModJ
′ ◦ φ(Σ1)

βΣ1 //ModJ(Σ1)

ModJ
′ ◦ φ(Σ2)

ModJ
′
(φ(f))

OO

βΣ2

//ModJ(Σ2)

ModJ (f)

OO

Let m ∈ModJ
′ ◦ φ(Σ2).

ModJ(f) ◦ βΣ2(m) = ModJ(f)(α−1
Σ2

(m))

= Sen(f)−1(α−1
Σ2

(m))

= α−1
Σ1

(Sen(φ(f))−1(m))

= βΣ1(Sen(φ(f))−1(m))

= βΣ1 ◦ModJ
′
(φ(f))(m)

G(h) = 〈φ, α, β〉 is a comorphism of institution. Indeed, it is enough to prove the compati-

bility condition. Let m ∈ModJ
′
(φ(Σ)) and ϕ ∈ Sen(Σ).

m |=J ′

φ(Σ) ϕαΣ(ϕ) ⇔ αΣ(ϕ) ∈ m
⇔ ϕ ∈ α−1

Σ (m)

⇔ ϕ ∈ βΣ(m)

⇔ βΣ(m) |=J
Σ (m)ϕ

It is easy to see that G is a functor.

Theorem 4.1.9. The above defined functors F : Inst→ π− Inst and G : π− Inst→ Inst,

establish an adjunction G a F between the categories Inst and π − Inst.

Proof:

Define the application ηJ = 〈IdSig, IdSen〉 : J → F (G(J)) for each π-Institution J =

〈Sig, Sen, {CΣ}Σ∈|Sig|〉. This application is well define. Indeed, we prove that CΣ = C
G(I)
Σ for

any Σ ∈ |Sig|. By definition of the functor G, notice that given Σ ∈ |Sig| and Γ ⊆ Sen(Σ),

CΣ(Γ) ∈ Γ? = {m ∈ Mod(Σ); m |=J
Σ Γ}. Moreover CΣ(Γ) ⊆ m for every m ∈ Γ?. Then for

any ϕ ∈ Sen(Σ)

ϕ ∈ CΣ(Γ) ⇔ ϕ ∈ m for all m ∈ Γ?

⇔ m |=J
Σ ϕ for all m ∈ Γ?

⇔ ϕ ∈ Γ?? = {ψ ∈ Sen(Σ); Γ? |=J
Σ ψ}

⇔ ϕ ∈ CG(J)
Σ (Γ).

It is clear that (ηJ)J∈|π−Inst| is a natural transformation. Remains to prove that ηJ

satisfies the universal property for any J ∈ |π − Inst|.
Let h = 〈φ, α〉 : J → F (I) where J = 〈Sig, Sen, {CΣ}Σ∈|Sig|〉 is a π−institution,

I = 〈Sig′, Sen′,Mod′, |=′〉 an institution and h a morphism of π−institution. Define h̄ =

〈φ, α, β〉 : G(J)→ I where the first two components are the same of h and given Σ ∈ |Sig|,
βΣ : Mod′◦φ(Σ)→ModJ(Σ) such that βΣ(m) = α−1

Σ [m?]. βΣ is well defined. Indeed, notice

that m? = m??? for any m ∈ Mod′(φ(Σ)). Since CI
Σ(Γ) = Γ??, therefore m? = CI

Σ(m?). We

have shown that as h is a morphism of π−institution, α−1
Σ (m?) = α−1

Σ (CI
Σ(m?)) ∈ModJ .
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Now we prove that (βΣ)Σ∈|Sig| is a natural transformation. Let f : Σ1 → Σ2. Then given

m ∈Mod′ ◦ φ(Σ2)

Mod′ ◦ φ(Σ1)
βΣ1 //ModJ(Σ1)

Mod′ ◦ φ(Σ2)
βΣ2

//

Mod′(φ(f))

OO

ModJ(Σ2)

ModJ (f)

OO

ModJ(f)(βΣ2(m)) = Sen(f)−1(α−1
Σ2

(m?))

= α−1
Σ1

(Sen(φ(f)−1)(m?))

=† α−1
Σ1

((Mod(φ(f))(m?))?)

= βΣ1(Mod(φ(f))(m)).

The justification of the equality (†) is:

ϕ ∈ Sen(φ(f))−1(m?) ⇔ Sen(φ(f))(ϕ) ∈ m?

⇔ m |=φ(Σ2) Sen(φ(f))(ϕ)

⇔ Mod(φ(f))(m) |= Σ2ϕ

⇔ ϕ ∈ (Mod(φ(f))(m))?

Hence β is a natural transformation. Therefore h̄ is a comorphism between G(I) and I.

Observe that F (h̄) = 〈φ, α〉 = h. Then we have the following diagram commuting:

J
ηJ//

h ##

F (G(J))

F (h̄)
��

F (I)

Moreover, clearly h̄ is the unique arrow such that the diagram above commutes. Hence

G a F .

4.2 Institutions for abstract propositional logics

The “proof-theoretical” Example 4.1.7.(a), that provides a π-institution for a category of

propositional logics, lead us to search an analogous “model-theoretical” version of it that is

different from the canonical one (i.e., that obtained by applying the functor G : π− Inst→
Inst): In the first subsection of this section, we provide (another) institution for a category

of propositional logics. That is naturally interesting because the theory of institutions was

firstly used by computer scientist for first order logic.

However, the main motivation for the use of institution theory in this work is because it

relates the sentences and models of a logic independently of its presentations, retaining only

its “essence”. More precisely, in the second subsection, we are going to define institutions

for each (equivalence class of) algebraizable logic and Lindenbaum algebraizable logic: this
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will enable us to apply notions and results from institutions to study meta-logic properties

of a (equivalence class of) well-behaved logic, as we will exemplify in the next section.

4.2.1 An institution for the abstract propositional logics

From to the category of logics Lf , we define:

• Sig := Lf , the category of propositional logics l = (Σ,`) and flexible morphisms.

• Sen : Sig → Set where Sen(l) = P(F (Σ)) × F (Σ) and given f ∈ MorSig(l1, l2) then

Sen(f) : Sen(l1) → Sen(l2) is such that Sen(f)(〈Γ, ϕ〉) = 〈f̌ [Γ], f̌(ϕ)〉. It is easy to see

that Sen is a functor.

• Mod : Sig → Catop where Mod(l) = Matrl and given f ∈ MorSig(l1, l2), Mod(f) :

Matrl2 →Matrl1 such that Mod(f)(〈M,F 〉) = 〈f ?(M), F 〉. Mod(f) is well defined, indeed:

It is enough to prove that given 〈M,F 〉 ∈ Matrl2 , then F is a l1-filter in f ?(M). Let

Γ ∪ {ϕ} ⊆ F (Σ1) such that Γ `1 ϕ. Let v : F (Σ1) → f ?(M) and suppose that v[Γ] ⊆ F .

We define v̄ : F (Σ2) → M where v̄(x) = v(x) for all variable x and v̄(cn(ψ0, ..., ψn−1)) =

cMn (v̄(ψ0), ..., v̄(ψn−1)) for all formula ϕ = cn(ψ0, ..., ψn−1) where cn is a n-ary connective. As

we saw in the Chapter 2, the function f̌ : F (Σ1) → f ?(F (Σ2)) is a morphism in Σ1 − Str.
Therefore the following diagram commutes

F (Σ1) v //

f̌
��

f ?(M)

f ?(F (Σ2))

v̄

88

This follows directly from Proposition 2.3.6, since f̌ = ηf?(X) : F (Σ1)(X)→ f ?(F (Σ2)(X))

is the unity of the adjunction between Σ1−Str and Σ2−Str, described in Chapter 2. Anyway,

we provide here a more explicit proof: For any variable x we have that v̄ ◦ f̌(x) = v(x). Now

suppose that for a formula cn(ψ0, ..., ψn−1) we have v̄ ◦ f̌(ψi) = v(ψi) with i ∈ {0, ..., n− 1}
then

v̄ ◦ f̌(cn(ψ0, ..., ψn−1)) = v̄(f(cn)(f̌(ψ0), ..., f̌(ψn−1)))

= f(cn)M(v̄ ◦ f̌(ψ0), ..., v̄ ◦ f̌(ψn−1))

= c
f?(M)
n (ψ0), ..., v̄ ◦ f̌(ψn−1))

= c
f?(M)
n (v(ψ0), ..., v(ψn−1))

= v(cn(ψ0, ..., ψn−1))

Since v[Γ] ⊆ F we have v̄ ◦ f̌ [Γ] ⊆ F . f is a morphism between logics, so f̌ [Γ] `2 f̌(ϕ).

Since 〈M,F 〉 ∈Matr2 therefore v̄ ◦ f̌(ϕ) ∈ F . Hence F is a filter of l1.

• Given l ∈ Sig We define a relation |=⊆ |Mod(l)| ×Matrl as:
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Given 〈M,F 〉 ∈Mod(l) and 〈Γ, ϕ〉 ∈ Sen(l),

〈M,F 〉 |=l 〈Γ, ϕ〉 iff for all v : F (Σl)→M, if v[Γ] ⊆ F, then v(ϕ) ∈ F.

Now we prove that |= satisfies the compatibility condition. Let f : l → l′ be a morphism

in Sig, 〈M ′, F ′〉 ∈Mod(l′) and 〈Γ, ϕ〉 ∈ Sen(l).

The universal property of f̌ defines a bijection:

v′ ∈ Σ′ − Str(F (Σ′)(X),M ′)! v ∈ Σ− Str(F (Σ)(X), f ?(M ′))

such that the diagram of functions below commutes

f ?(F (Σ′)) v′ // f ?(M ′)

F (Σ)

f̌

OO

v

88

Thus

〈f ?(M ′), F ′〉 |=l 〈Γ, ϕ〉 iff for all v : F (Σ)→ f ?(M ′), if v[Γ] ⊆ F ′, then v(ϕ) ∈ F ′

iff for all v′ : F (Σ′)→M ′, if v′[f̌ [Γ]] ⊆ F ′, then v′(f̌(ϕ)) ∈ F ′

iff 〈M ′, F ′〉 |=l′ 〈f̌ [Γ], f̌(ϕ)

Definition 4.2.1. We denote by If = 〈Sig, Sen,Mod, |=〉 the above defined institution of

abstract propositional logics associated with Lf .

4.2.2 (Lindenbaum) algebraizable logics as institutions

In this section we define institutions for each (equivalence class of) algebraizable logic

and Lindenbaum algebraizable logic: this will enable us to apply notions and results from

institutions to study meta-logic properties of a (equivalence class of) well-behaved logic, as

we will exemplify in the next section.

The institution of an algebraizable logic

Let a = (Σ,`) any algebraizable logic and ∆ any of its a set of equivalence formulas.

Given ϕ ∈ F (Σ), consider ϕ/∆ the class of formulas ψ of a such that ` ϕ∆ψ (this does not

depend on the particular choice of ∆). If Γ ⊆ F (Σ), still denote Γ/∆ := {ϕ/∆; ϕ ∈ Γ}.
Recall that Af denotes the quotient category of Af by the congruence relation given by

f, f ′ : a1 → a2, f ≡ f ′ iff for each ϕ1 ∈ F (Σ1), `2 f̌(ϕ1)∆2f̌
′(ϕ1), where ∆2 is any

equivalence formulas for a2 (see Chapter 1, section 3).

Now fix a an algebraizable logic. Consider:
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• Siga is the category whose objects are the algebraizable logics isomorphic to a in Af
and the morphisms in Siga are the isomorphisms in Af (i.e., the equivalence class ofAf -
morphisms f : a1 → a2 is such that there exists a Af -morphism g : a2 → a1 such that

`1 ǧ ◦ f̌(ϕ1)∆2ϕ1 and `2 f̌ ◦ ǧ(ψ2)∆2ψ2, for each ϕ1 ∈ F (Σ1), ψ2 ∈ F (Σ2) ).

• Sena : Siga → Set such that Sena(a1) = Pfin(F (Σ1)/∆1) × F (Σ1)/∆1 and given

[h] : a1 → a2, sena([h])(〈Γ/∆1, ϕ/∆1〉) = 〈ȟ[Γ]/∆2, ȟ(ϕ)/∆2〉. This is well defined because,

if h ≡ h′, then for any ϕ, ϕ′ ∈ F (Σ1), if ϕ/∆ = ϕ′/∆ then `1 ϕ∆1ϕ
′ and since h, h′ are

represent the same morphism in Af we have that `2 ȟ(ϕ)∆2ȟ′(ϕ
′).

• Moda : Siga → Catop is such that Moda(a
′) := Matr∗a′ and given [f ] : a1 → a2 we de-

fine Moda([f ]) : Matr∗a2
→ Matr∗a1

where Moda([f ])(〈M,F 〉) := 〈f ?M,F 〉, by Proposition

2.2.2, this does not depend on the particular representation of [f ]. We must prove that Mod

is well defined, i.e. that 〈f ?M,F 〉 is a reduced matrix. We saw in the previous subsection

that F is a a1-filter for f ?M thus, firstly, we prove that Ωf?M(F ) is a congruence in M .

Let (ai, bi) ∈ Ωf?M(F ) such that 0 ≤ i ≤ n − 1 and cn a n-ary connective in a2; denote

cn(~x) := cn(x0, · · · , xn−1). As [f ] is a morphism in Siga, then there exists g : a2 → a1 ∈ Af
such that `2 f̌ ◦ ǧ(cn(~x))∆2cn(~x). Since a2 is algebraizable logic, we have that |=QV (a2) f̌ ◦
g(cn) ≈ cn(~x). As 〈M,F 〉 ∈Matr∗a2

, then M ∈ QV (a2). Hence g(cn)f
?M = f̌(g(cn))M = cMn .

We know that Ωf?M(F ) is a congruence in f ?M , thus (cMn (a0, ..., an−1), cMn (b0, ..., bn−1)) =

(g(cn)f
?M(a0, ..., an−1), g(cn)f

?M(b0, ..., bn−1)) ∈ Ωf?M(F ). Therefore Ωf?M(F ) is a congru-

ence on M . Moreover, it is compatible with F . Hence Ωf?M(F ) ⊆ ΩM(F ) = Id|M |×|M |.

Then Ωf?M(F ) = Id|f?M |×|f?M |, so 〈f ?M,F 〉 is a reduced matrix.

• To |= we use here a similar definition as in the subsection above, namely given 〈M,F 〉 ∈
Matr∗a1 and 〈Γ/∆, ϕ/∆〉 ∈ Sena(a1) then 〈M,F 〉 |= 〈Γ/∆, ϕ/∆〉 iff for any valuation

v : F (Σ1)(X) → M , if v[Γ] ⊆ F then v(ϕ) ∈ F . As M ∈ Qv(a1), this is well-defined,

i.e., if ` θ∆θ′ then v(θ) = v(θ′), since v factors uniquely through the quotient morphism

F (Σ1)(X)� F (Σ1)(X)/∆. The proof of the compatibility follows from the same way as in

the subsection above.

Definition 4.2.2. We denote by InsALa = 〈Siga, Sena,Moda, |=〉 the above defined insti-

tution. This will be called the algebraizable institution of a.

The institution of a Lindenbaum algebraizable logics

Before define the Institution of Lindenbaum algebraizable logics, we define a notion of

satisfiability of class of formulas:

Definition 4.2.3. Let a be algebraizable logic. Given M ∈ QV (a), M |=QV (a) [ϕ] ≈ [ψ] iff
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for every valuation v : F (Σa)(X)→M ,

v(ϕ′) = v(ψ′) such that ϕ′ a` ϕ and ψ′ a` ψ

Remark 4.2.4. If a ∈ Lind(Af ) then, since F (Σa)(X)/ a` = F (Σa)(X)/∆ is the free

QV (a)-structure on X (see Remark 2.1.4), then |=QV (a) [ϕ] ≈ [ψ] ⇔ |=QV (a) ϕ ≈ ψ.

Given a ∈ Lind(Af ). Consider the following maps:

• Sig′a is the category whose the objects are a1 = (Σ1,`1) ∈ Lind(Af ), that are isomor-

phic to a in the quotient category QLind(Af ) = Q(Acf ) and the morphisms are only the

isomorphisms in QLind(Af ).
• Mod′a : Sig′opa → Cat such that Mod′a(a1) = QV (a1) for all a1 ∈ |Sig′a| and Mod′a(a1

[h]→
a2) = (QV (a2)

h?�→ QV (a1)) (see Corollary 2.2.3).

• We define now the functor Sen′a : Sig′a → Set.
Let a1 ∈ |Sig′a|. The idea here is to describe a convenient set of tuples that represents

quasi-equations in Σ1 (i.e., Eq0 ∧ ... ∧ Eqn−1 → Eq).

For each s = ([ϕ0], · · · , [ϕn−1], [ψ]), a non-empty finite sequence in F (Σ1)/ a` (the

free QV (a1)-structure on the set X) and each (τ,∆), an algebraizable pair of a1, where

τ = {(εj, δj); j = 1, ...,m for some m ∈ ω}, let

q(s, (∆, τ)) := (([ε(ϕ0)], [δ(ϕ0)]), · · · , ([ε(ϕn−1)], [δ(ϕn−1)]), ([ε(ψ)], [δ(ψ)]))

where the notation ([ε(θ)], [δ(θ)]) abbreviates the pair of finite sequence of equivalence class

of formulas: ([εj(θ), [δj(θ)])j with j = 1, · · · ,m.. Note that, as a1 is a congruential alge-

braizable logic, then:

(*) If [θ] = [θ′] (i.e., θ a` θ′), then δ(θ) a` δ(θ′) and ε(θ) a` ε(θ′). Thus we have an well

defined mapping ϕ/∆
t7→ (ε(ϕ)/∆, δ(ϕ)/∆) and q(s, (∆, τ)) is well-defined;

(**) conversely, as ϕ a` ∆(ε(ϕ), δ(ϕ)), then we have and well defined map (ε(ϕ)/∆, δ(ϕ)/∆)
r7→

ϕ/∆ and r ◦ t = id.

Define qs := {q(s, (τ,∆)) : (τ,∆) is an algebraizable pair of a1} and then take Sen′a(a1) :=

{qs : s is a non-empty finite sequence in F (Σ1)/∆1}. Note that, by the above remark, the

mapping s
t7→ qs determine a bijection between the set of non-empty finite sequences in

F (Σ1)/∆ and Sen′a(a1)

Let [f ] : a1 → a2 be an isomorphism in QLind(Af ), in particular f̌/ a`: F (Σ1)/ a1`→
F (Σ2)/ a2` is a bijection. Let s = ([ϕ0], · · · , [ϕn−1], [ψ]) be a non-empty finite sequence in

F (Σ1)/ a1` and ((ε, δ),∆) be an algebraizable pair of a1. Then f∗s := ([f̌(ϕ0)], · · · , [f̌(ϕn−1)], [f̌(ψ)])

is a non-empty finite sequence in F (Σ2)/ a2` and the mapping

q(s, ((ε, δ),∆)) 7→ q(f ∗ s, ((f̌(ε), f̌(δ)), f̌(∆)))

determines a bijection: f+ : qs
∼=→ qf∗s.
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Then Sen′a([f ]) : Sena(a1)→ Sen′a(a2) is given by Sen′a([f ])(qs) := qf∗s (this map is well

defined). It is straitforward check that Sen′a : Sig′a → Set is a functor.

Just to simplify notation, from now on we will denote the any element of the set qs by

(([α0], [β0]), · · · , ([αn−1], [βn−1]), ([α], [β])) = (([ε(ϕ0)], [δ(ϕ0)]), ..., ([ε(ϕn−1)]), ([ε(ψ)], [δ(ψ)])).

• Given a′ ∈ Siga, M ′ ∈ QV (a′) and q′ ∈ Sena(a′), we say that M ′ |=a q′ when, for any

(and thus for all!) element (([α′0], [β′0]), · · · , ([α′n−1], [β′n−1]), ([α′], [β′])) of q′, if

M ′ |=QV (a′) [α′i] ≈ [β′i] ∀ i = 0, ..., n− 1

then

M ′ |=QV (a) [α′] ≈ [β′]

Let [f ] : a1 → a2 ∈ Sig′a, M2 ∈ QV (a2) and q ∈ Sen′a(a1). Then, as [f ] : a1 → a2 which

is a isomorphism in QLind(Af ), then it is easy to see that

M2 |=a Sen(f)(q) ⇔ Mod(f)(M2) |=a q

Definition 4.2.5. Then we have that InsLALa = 〈Sig′a, Sen′a,Mod′a, |=′〉 is a institution

called the Lindenbaum institution of a.

Remark 4.2.6. As can be easily checked, each Lindenbaum algebraizable logic a, determines

the following comorphism of institutions: ha = (Φa, αa, βa) : InsLALa → InsALa, where:

• Φa : Sig′a → Siga consists of inclusion of categories: Φa(a1
[h1]→ a2) = a1

[h1]→ a2 ;

• βa : Moda ◦ (Φa)op ⇒Mod′a, given by, for each a1 ∈ |Sig′a|, βa(a1) : Matr∗a → QV (a1)

is the forgetful functor;

• αa : Sen′a ⇒ Sena ◦ Φa, given by, for each a1 ∈ |Sig′a|, for each q ∈ Sen′a(a1), let

s = ([ϕ0], · · · , [ϕn−1], [ψ]) be the unique non-empty finite sequence in F (Σ1)/ a` such that

q = qs, then αa(a1)(q) := ({[ϕ0], · · · , [ϕn−1]}, [ψ]) ∈ Pfin(F (Σ1)/∆)×F (Σ1)/∆ = Sena(a1).

• It holds the compatiblitity condition: for each a1 ∈ |Sig′a|, each (M,F ) ∈ |Moda(Φ
a(a1)| =

Matr∗(a1) and each qs ∈ Sen′a(a1)

(M,F ) |=Ia αa(qs) iff M |=I′a qs

And this follows from:

(+) For each v : X →M and ϕ ∈ F (Σ1):

v(ϕ) ∈ F iff v(ε(ϕ)) = v(δ(ϕ))4

Remark 4.2.7. One can ask “why do use different notion of institution of a Lindenbaum

algebraizable logic instead of the restrict the notion of institution of algebraizable logic to the

4Indeed, as ϕ a` ∆(ε(ϕ), δ(ϕ)), then v(ϕ) ∈ F iff v(∆(ε(ϕ), δ(ϕ))) ∈ F iff (v(ε(ϕ)), v(δ(ϕ))) ∈
ΩM (F ) = id.
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class of Lindenbaum algebraizable logic?” The answer to this question is that those institu-

tions seem not be isomorphic, but there are notions of abstract Glivenko’s theorem for both

of them. This means that we have two different approaches to abstract Glivenko’s theorem

as follow in the next section. We believe that those two different approaches for the abstract

Glivenko’s theorem can be applied for special classes of logics, for instance we can use the

idea behind of the institution for an algebraizable logic as 4.2.2 to provide an institution for

an equivalential logic. On the other hand, we can use the idea behind of the institution for a

Lindenbaum algebraizable logic as 4.2.2 to provide an institution for a truth-equational logic.

4.3 The abstract Glivenko’s theorem

The Glivenko’s theorem allows one translate the classical logic into the intuitionistic

logic by means double negation. More precisely, if Σ be a commom signature for expressing

presentations of classical propositional logic (CPC) and intuitionistic propositional logic

(IPC) – for instance, Σ = {¬,→,∧,∨}– and Γ∪{ϕ} ⊆ F (Σ), then Γ `CPC ϕ iff ¬¬Γ `IPC
¬¬ϕ. Here we generalize the Glivenko’s theorem between arbitrary algebraizable logics

(Lindenbaum algebraizable logics) using the ideas and notions of the Institution Theory

applied to the former defined institutions for algebraizable logics (Lindenbaum algebraizable

logics).

Remark 4.3.1. (a) Recalling the Remark 2.2.9:

Let a = IPC and a′ = CPC both Lindenbaum algebraizable logics with the same signa-

ture. We have the “inclusion” morphism h : IPC → CPC. Denote BA and HA, the

quasivarieties of Boolean algebras and of Heyting algebras on that commom signature. So

h?� = incl : BA → HA has left a adjoint functor G : HA → BA. Observe that h?� is

the inclusion functor. Hence given H ∈ HA, G(H) = H/FH , where FH is the filter in

H generated by the subset {a ↔ ¬¬a : a ∈ H}, and the quotient HA-homomorphism

qH : H � incl(G(H)) is the H-component of the unity of this adjunction. It is possible

to proof that G(H) ∼= H¬¬, where H¬¬ denote the (boolean algebra) of regular elements

of H, that is, those elements x ∈ H such that ¬¬x = x. Moreover, the surjective HA-

homomorphism x ∈ H 7→ ¬¬x ∈ H¬¬ has HA-section H¬¬ 7→ ¬¬y ∈ H.

(b) Let h : a → a′ ∈ Af . Then h? and h? � have respective left adjoints Lh and L̄h.

Consider ∂ : Id ⇒ h? ◦ Lh and ∂̄ : Id ⇒ h? � ◦L̄h the units of the adjunctions between

h?, Lh and h? �, L̄h respectively. Given X ∈ Set the following diagram commute: (Here

∂X = ∂FX = ȟ. The same for ∂̄)
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FX
∂X //

��

F ′X

��
FX/∆

∂̄X

// F ′X/∆′

Due to Proposition 2.3.6, ∂X = ȟ. Moreover, observe that ∂̄X and [ȟ] : FX/∆ →
h?� (F ′X/∆′) both satisfies the universal property, so there exist an isomorphism between

L̄h(FX/∆) and F ′X/∆. With this we can consider ∂̄X : FX/∆→ h?� (F ′X/∆′)

Now we are ready to propose the following

Definition 4.3.2. A Glivenko’s context is a pair G = (h : a→ a′, ρ̄) where h ∈ Af (a, a′)
and ρ̄ : h?� ◦Lh ⇒ Id is a natural transformation that is a section of the unit ∂̄ : Id⇒ h?�

◦Lh).

Remark 4.3.3. Let G = (h : a→ a′, ρ̄) is a Glivenko’s context then:

(a) [ȟ = ∂̄X : FX/∆→ h?� (F ′X/∆′) is a surjective homomorphism thus h is a ∆-dense

morphism (see also Propositions and 2.1.6 2.3.12). For each Y ⊆ X, can be chosen (non

naturally) a “lifting” ρY : F ′Y → FY , for each of the natural sections ρ̄Y : F ′Y/∆Y →
F ′Y/∆Y :

FY

��

F ′Y
ρYoo

��
FY/∆ F ′Y/∆′

ρ̄Y
oo

∂̄X [θ] = [ȟ(θ)], for all θ ∈ FX.

(b) On the other hand, the condition of being a ∆-dense on a Af -morphism h is not

sufficient to ensure that h is part of a Glivenko’s context: Consider a the “logic of abelian

groups” and a′ the “logic of groups” (see Chapter 1, section 3): both are algebraizable logics;

then QV (a) = Ab,QV (a′) = Gr and, for each group G, the unity of this adjunction at G

is the quotient homomorphism qG : G� incl(G/[G,G]); taking G = F (x, y), the free group

in 2 generators, then G/[G,G] ∼= Z ⊕ Z is the free abelian group in 2 generators and is

straitforward qG : G � incl(G/[G,G]) does not have a section! It will be interesting deter-

mine additional condition on a ∆-dense morphism, that ensures it be a part of a Glivenko’s

context.

(c) Observe that for any M ′ ∈ QV (a′) there is M ∈ QV (a) such that Lh(M) ∼= M ′:

indeed, as h : a → a′ is a ∆-dense morphism, thus combination of the results 2.2.6 (or

2.2.7) and 2.1.6, ensures that h?�: QV (a′)→ QV (a) is a full and faithfull functor with a left

adjoint and a well known result on adjunctions, entails that the co-unity of the adjunction

κ must be an isomorphism, thus κM ′ : Lh(h
?(M ′))

∼=→M ′, for each M ′ ∈ QV (a′).
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Remark 4.3.4. If G = (h : a → a′, ρ̄) is a Glivenko’s context then, taking Y =

{x0} ⊆ X, then EY (x0) ∈ F (Y ) is a Σ′-formula in at most one variable x0 such that

[x0] = [ȟ(ρY (x0))] ∈ F ′(Y )/∆′ and thus [ρY (x0)] = [ρY (ȟ(ρY (x0)))] ∈ F (Y )/∆.

(Note that the formula ¬¬(x) appears as a “fixed formulas” in CPC and as an “idem-

potent formula” in IPC.) Conversely, give a “fixed formula” seems to be also a sufficient

condition for exists a Glivenko’s context, i.e. give a Σa-formula in at most variable x0,

θ(x0), such that `′a x0∆′(ȟ(θ(x0)). Further investigation is needed to establish (and explore)

a precise relation between fixed/idempotent formulas and Glivenko’s contexts.

4.3.5. Let G = (h : a→ a′, ρ̄) be a Glivenko’s context and suppose that a1 is an algebraizable

logic and [e1] : a→ a1 is an isomorphism in the quotient category Af . Let [h1] : a1 → a′ be

the unique Af such that the diagram below commutes

a
[h] //

[e1]

��

a′

[id′a]
��

a1
[h1]
// a′

Then h1 : a1 → a is a ∆-dense morphism in Af .

From the choice of left adjoints of functors between quasivarieties induced by ∆-dense

morphisms (see Chapter 2), we have the strict equalities Lh1 ◦ Le1 = Lh1◦e1 = Lh and then

also the diagram below commutes (Le1 is the inverse isomorphism of e?1)

QV (a)
Lh // QV (a′)

QV (a1)
Lh1

//

e?1

OO

QV (a′)

idQV (a′)

OO

Thus, the (natural) section, ρ̄, of the unity of the adjunction Lh a h induces uniquely a

(natural) section, ρ̄a1, of the unity of the adjunction Lh1 a h1.

In more details: if M1 ∈ QV (a1) and ∂a1
M1

: M1 � h?1(Lh1(M1)) is the (canonical) unity

of Lh1 a h1 (remember that h1 is ∆-dense, since h is ∆-dense and [e1] is an isomorphism),

then

e?1(∂a1
M1

) : e?1(M1)� e?1(h?1(Lh1(M1))) =

∂ae?1(M1) : e?1(M1)� h?(Lh(e
?
1(M1)))

Thus take ρ̄a1
M1

:= Le1(ρ̄e?1(M1))

4.3.1 The abstract Glivenko’s theorem in InsAL

On the category InsAL we are going to present the abstract Glivenko’s theorem through

morphisms in this category.
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Theorem 4.3.6. Let a, a′ be algebraizable logics, then each G = (h : a→ a′, ρ) Glivenko’s

context induces a institutions morphism InsALa → InsALa′. More precisely, fixing a

choice of isomorphisms ε : Obj(Siga)→Mor(Siga), a1 7→ ε(a1) = [e1] : a
∼=→ a1, we define a

institution morphism N(G,εa) : InsALa → InsALa′
5

Proof:

By simplicity, we will write (G, ε) for (G, εa). We will define

N(G,ε) = 〈Φ(G,ε), α(G,ε), β(G,ε)〉

(this will depend only on the choice of isomorphisms in the domain institution InsALa):

• Φ(G,ε) : Siga → Siga′
The object part of Φ(G,ε) is easy do define: for a1 ∈ |Siga|, set Φ(G,ε)(a1) := a′.

It follows from adaptations of results in [AFLM07] and [MM14] that Af is a finitely

accessible category that has all colimits (except initial object) and is relatively complete

(i.e, has limits for all diagrams that admits a cone). In particular Af has pushouts, and for

each Af -isomorphism [f ] : a→ a, we consider the following pushout

a
[h] //

[f ]

��

a′

[f ′1]
��

a
[h1]
// a′1

As a pushout of an iso is an iso and a pushout of an epi is an epi (recall that h is a

∆-dense morphisms, i.e., [h] is an epi), we may suppose that the vertex of the pushout is a′,

[fh] : a′ → a′ is an isomorphism and the diagram below commutes6

a
[h] //

[f ]

��

a′

[fh]
��

a
[h]
// a′

Note that, as [h] is an epi, then [fh] is uniquely determined.

Now let a1, a2 ∈ Siga and [g] : a1 → a2 be an arrow in Siga (i.e., [g] is a Af -isomorphism).

Then, as ei : a → ai is an isomorphism, i = 1, 2, then there is a unique isomorphism

[gε] : a→ a′ such that left diagram below commutes.

a1

[g]

��

a
[e1]oo [h] //

[gε]

��

a′

[ghε ]
��

a2 a
[e2]
oo

[h]
// a′

5Such induced morphisms are “isomorphic”, for different choices of isomorphisms ε0, ε1.
6In this case, this is a necessary and sufficient condition to be a pushout.
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Then define Φ(G,ε)([g] : a1 → a2) := [ghε ] : a′ → a′. As [gε] and [ghε ] are uniquely

determined by g, it follows that Φ(G,ε) preserves identities and composition of arrows in Siga,
thus being a functor.

• α(G,ε) : Sena′ ◦ Φ(G,ε) ⇒ Sena where, for a we have that α(G,ε)(a) : Sena′ ◦ Φ(G,ε)(a) =

Sena′(a
′) → Sena(a) such that α(G,ε)(a)(〈Γ′/∆′, ϕ′/∆′〉) = 〈ρX [Γ′]/∆, ρX [ϕ′]/∆〉. Now for

a1 ∈ Siga, let [e1] : a → a1 the isomorphism corresponding by the choice ε at a1 then, by

4.3.5, α(G,ε)(a1) : Sena′ ◦ Φ(G,ε)(a1) → Sena(a1) such that for 〈Γ′/∆′, ϕ′/∆′〉 ∈ Sena′(a
′),

α(G,ε)(a1)(〈Γ′/∆′, ϕ′/∆′〉) = 〈ρa1
X [Γ′]/∆1, ρ

a1
X (ϕ′)/∆1〉 = 〈ě1 ◦ ρX [Γ′]/∆1, ě1 ◦ ρX(ϕ′)/∆1〉. If

[g] : a1 → a2 is an isomorphism in Siga, then for each θ′ ∈ F ′X, `2 ǧ(ρa1
X (θ′))∆2ρ

a2
X (ǧhε (θ′)),

thus α(G,ε) is a natural transformation.

• β(G,ε) : Moda ⇒Moda′ ◦(Φ(G,ε))op where for a we have β(G,ε)(a) : Moda(a) = Matr∗a →
Moda′(Φ

(G,ε)(a)) = Matr∗a′ such that βh(a)(〈M,FM〉) = 〈Lh(M), FLh(M)〉, where FLh(M) :=

∂̄M [FM ] (note that Lh(M) ∈ QV (a))7. Now for a1 ∈ Siga, β(G,ε)(a1) : Moda(a1) = Matr∗a1
→

Moda′(Φ
(G,ε)(a1)) = Matr∗a′ such that β(G,ε)(a1)(〈M,FM〉) = 〈Lh(e?1(M ′)), FLh(e?1(M ′))〉. Sim-

ilarly of above we have the well definition of β(G,ε). The naturality is proved using the

functorial encoding of equipollence that we have proved in Chapter 2.

• The proof the compatibility condition will be splited in two parts:

(I) The first part consist of the compatibility on the logic a:

Claim. Given 〈M,FM〉 ∈Moda(a) = Matr∗a and 〈Γ′/∆′, ϕ′/∆′〉 ∈ Sena′ then

βh(a)(〈M,FM〉) |=′ 〈Γ′/∆′, ϕ′/∆′〉 iff 〈M,FM〉 |= αh(a)(〈Γ′/∆′, ϕ′/∆′〉)

In other notation

〈Lh(M), FLh(M)〉 |=′ 〈Γ′/∆′, ϕ′/∆′〉 iff 〈M,FM〉 |= 〈ρX [Γ′]/∆, ρX(ϕ′)/∆〉

Proof of the Claim.

“ ⇒ ”: Let v : X → M be an evaluation such that v[ρX [Γ′]] ⊆ F . We can consider

w̄ = h∗ ◦ Lh(v̄) : (F ′(X)/∆′)h → h∗(Lh(M)) and then the following diagram commutes:

X

~~
v

��

$$
w





FX
∆

∂̄X //

v̄

��

(F
′X

∆′
)h

w̄

��

ρ̄X
oo

M
∂̄M //

h?� LhM
ρ̄M

oo

7That 〈Lh(M), FLh(M)〉 ∈ Matr∗a′ , follows from an argument analogous to the proof of compatibility

condition.
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Since v ◦ ρX [Γ′] ⊆ FM we have that Γ′ ⊆ ρ−1
X ◦ v−1[FM ]. Consider (∆′, τ ′) a algebraizable

pair for a′. Then we have that for all ψ ∈ Γ′ and (ε′j, δ′j) ∈ τ ′, (ε′j(ψ), δ′j(ψ)) ∈ ΩF ′(X)h(ρ−1
X ◦

v−1(FM)) = ρ−1
X ◦ v−1(ΩM(FM)). Therefore (v ◦ρX(ε′j(ψ)), v ◦ρX(δ′j(ψ))) ∈ ΩM(FM). Since

〈M,FM〉 is a reduced matrix, we have for all ψ ∈ Γ′

v ◦ ρX(ε′j(ψ)) = v ◦ ρX(δ′j(ψ))

v̄ ◦ ρ̄X(ε′j(ψ)/∆′) = v̄ ◦ ρ̄X(δ′j(ψ)/∆′)

ρ̄M ◦ w̄(ε′j(ψ)/∆′) = ρ̄M ◦ w̄(δ′j(ψ)/∆′)

∂̄M ◦ ρ̄M ◦ w̄(ε′j(ψ)/∆′) = ∂̄M ◦ ρ̄M ◦ w̄(δ′j(ψ)/∆′)

w̄(ε′j(ψ)/∆′) = w̄(δ′j(ψ)/∆′)

w(ε′j(ψ)) = w(δ′j(ψ))

Then (w(ε′j(ψ)), w(δ′j(ψ))) ∈ ΩLhM(FLhM). Thus w(ψ) ∈ FLhM for all ψ ∈ Γ′, by

assumption w(ϕ′) ∈ FLhM . So (w(ε′j(ϕ′)), w(δ′j(ϕ′))) ∈ ΩLhM(FLhM). Therefore

w(ε′j(ϕ′)) = w(δ′j(ϕ′))

w̄(ε′j(ϕ′)/∆′) = w̄(δ′j(ϕ′)/∆′)

ρ̄M ◦ w̄(ε′j(ϕ′)/∆′) = ρ̄M ◦ w̄(δ′j(ϕ′)/∆′)

v̄ ◦ ρ̄X(ε′j(ϕ′)/∆′) = v̄ ◦ ρ̄X(δ′j(ϕ′)/∆′)

v ◦ ρX(ε′j(ϕ′)) = v ◦ ρX(δ′j(ϕ′))

Then (v ◦ ρX(ε′j(ϕ′)), v ◦ ρX(δ′j(ϕ′))) ∈ ΩM(FM). Therefore v ◦ ρX(ϕ′) ∈ FM .

“ ⇐ ”: Let w : X → LhM a valuation such that w[Γ′] ⊆ FLhM . Consider w̄ :

F ′(X)/∆′ → Lh(M) given by w such that the following diagram commutes:

X //

w
""

F ′(X)
q //

w

��

F ′(X)/∆

w̄
xx

M

Let v̄ = ρ̄M ◦ w̄ ◦ ∂̄X , then ∂̄M ◦ v̄ = ∂̄M ◦ ρ̄ ◦ w̄∂̄X = w̄ ◦ ∂̄X .

Since w[Γ′] ⊆ FLhM , we have that (w(ε′(ψ)), w(δ′(ψ))) ∈ ΩLhM(FLhM) for all ψ ∈ Γ and

(ε′, δ′) ∈ τ ′. Since 〈LhM,FLhM〉 is a reduced matrix, we have that

w(ε′(ψ)) = w(δ′(ψ))

w̄(ε′(ψ)) = w̄(δ′(ψ))

ρ̄M ◦ w̄(ε′(ψ)) = ρ̄M ◦ w̄(δ′(ψ))

v̄ ◦ ρ̄X(ε′(ψ)) = v̄ ◦ ρ̄X(δ′(ψ))

From ρ̄X there is ρX such that the square in the bellow diagram commutes, and then the

diagram commutes:
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F ′(X)
ρX //

��

F (X) v //

��

M

F ′(X)/∆′
ρ̄X
// F (X)/∆

v̄

::

With that we have v◦ρX(ε(ψ)) = v◦ρX(δ(ψ)), so (v◦ρX(ε(ψ)), v◦ρX(δ(ψ))) ∈ ΩM(FM)

for all ψ ∈ Γ′. By algebraizability we have v ◦ ρX(ψ) ∈ FM for all ψ ∈ FM . By assumption

v ◦ ρX(ϕ) ∈ FM . Thus (v ◦ ρX(ε(ϕ)), v ◦ ρX(δ(ϕ))) ∈ ΩM(FM). Since 〈M,FM〉 is a reduced

matrix, we have that

v ◦ ρX(ε′(ϕ)) = v ◦ ρX(δ′(ϕ))

v̄ ◦ ρ̄X(ε′(ϕ)/∆′) = v̄ ◦ ρ̄X(δ′(ϕ)/∆′)

ρ̄M ◦ w̄(ε′(ϕ)/∆′) = ρ̄M ◦ w̄(δ′(ϕ)/∆′)

∂̄M ◦ ρ̄M ◦ w̄(ε′(ϕ)/∆′) = ∂̄M ◦ ρ̄M ◦ w̄(δ′(ϕ)/∆′)

w̄(ε′(ϕ)/∆′) = w̄(δ′(ϕ)/∆′)

w(ε′(ϕ)) = w(δ′(ϕ))

With that we have (w(ε′(ϕ)), w(δ′(ϕ))) ∈ ΩLhM(FLhM). Therefore w(ϕ) ∈ FLhM .

(II) One can use similar argument to prove the second part, i.e., given a1 ∈ Sig(a),

〈M1, FM1〉 ∈Moda(a1) = Matr∗a1
and 〈Γ′/∆′, ϕ′/∆′〉 ∈ Sena′(a′) then:

〈Lh(e∗1(M1)), FLh(e∗1(M1))〉 |=′ 〈Γ′/∆′, ϕ′/∆′〉 iff 〈M1, FM1〉 |=1 〈ě1ρX [Γ′]/∆1, f̌ρX(ϕ′)/∆1〉

As a consequence of this theorem we have the abstract Glivenko’s theorem between

algebraizable logics.

Corollary 4.3.7. For each Glivenko’s context G = (h : a→ a′, ρ), is associated an abstract

Glivenko’s theorem between a and a′ i.e; given Γ′ ∪ {ϕ′} ⊆ F ′(X) then

ρX [Γ′] ` ρX(ϕ′) ⇔ Γ′ `′ ϕ′

Proof:

We know that for any algebraizable logic a, `a=`Matr∗a . For any reduced matrix in a′

〈M ′, FM ′〉 we have that M ′ ∈ QV (a′) and then there is M ∈ QV (a) such that LhM ∼= M ′

(see Remark 4.3.3.(c)) , moreover 〈LhM,FLhM〉 ∼= 〈M ′, FM ′〉. With that it is enough to

prove that

ρX [Γ′] `Matr∗a ρX(ϕ′) ⇔ Γ′ `Matr∗
a′
ϕ′

And that is equivalent to prove that for any 〈M,FM〉 ∈Matr∗a,
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〈M,FM〉 |= 〈ρX [Γ′], ρX(ϕ′)〉 iff 〈LhM,FLhM〉 |=′ 〈Γ′, ϕ′〉

Or even,

〈M,FM〉 |= 〈ρX [Γ′]/∆, ρX(ϕ′)/∆〉 iff 〈LhM,FLhM〉 |=′ 〈Γ′/∆′, ϕ′/∆′〉

But this last one follows from the previous theorem.

Now we present that the abstract Glivenko’s theorem restricts to the classical Glivenko’s

theorem.

Example 4.3.8. Let Σ = (Σn)n∈ω such that Σ0 = ∅, Σ1 = {¬}, Σ2 = {−→} and Σn = ∅ for

all n > 2. Let the map h : IPC → CPC such that IPC and CPC both are defined with the

signature Σ, h(¬) = ¬ and h(−→) =−→, i.e., h is the inclusion map from the intuitionistic

propositional logic to the classical propositional logic. IPC and CPC are (Lindenbaum)

algebraizable logics and h is a morphism in Af . Notice that h∗ is the identity functor and its

restriction h∗�: Bool ↪→ Heyt has a left adjoint given by Lh : Heyt→ Bool such that for any

A ∈ Heyt, Lh(A) = A¬¬ where is the boolean algebra of regular element, i.e., a ∈ A such

that ¬¬a = a. The unit of this adjunction is ∂A : A → A¬¬ such that ∂A(a) = ¬¬a for all

A ∈ Σ−Str. It is easy to see that this map define a natural transformation, moreover it has a

natural transformation such that is a section given by ρA : A¬¬ → A where ρA(a) = ¬¬a = a.

Then we have that (h : IPC → CPC, ρ) is a Glivenko’s context.

We know that ψ aCPC` ¬¬ψ and then we have that ψ/∆ = ¬¬ψ/∆ where ∆ = {x →
y, y → x}. Using the abstract Glivenko’s theorem we have that given Γ∪{ϕ} set of formulas,

then to prove that ¬¬Γ `IPC ¬¬ϕ ⇔ Γ `CPC ϕ is enough to prove that for all matrix

〈M,FM〉 ∈Matr∗ICP ,

〈M¬¬, FM¬¬〉 |=CPC 〈Γ/∆, ϕ/∆〉 iff 〈M,FM〉 |=IPC 〈¬¬Γ/∆,¬¬ϕ/∆〉

That is exactly the same to prove that

〈LhM,FLhM〉 |=CPC 〈Γ/∆, ϕ/∆〉 iff 〈M,FM〉 |=CPC 〈ρX [Γ]/∆, ρX(ϕ)/∆〉.

This last follows from the previous corollary.

Remark 4.3.9. We believe that the notion of abstract Glivenko’s theorem provided here,

partially generalizes the approach that has been developed in [Tor08] In that paper, the author

consider abstract Glivenko’s theorem in the algebraizable logic setting (and also in some

variants) but just relating logics defined over the same signature by means of an essentially

idempotent formula with a free variable.
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4.3.2 The abstract Glivenko’s theorem in InsLAL

We also have that a Glivenko’s context induces an abstract Glivenko’s theorem for

InsLAL and we present now.

In this subsection we consider fixed: a, a′ Lindenbaum algebraizable logics, G = (h : a→
a′, ρ) a Glivenko’s context and a choice of isomorphisms

εa : Obj(Sig′a)→
⋃

a1∈Obj(Sig′a)

HomSiga(a, a1)

given by a1 7→ ([e1] : a→ a1)

4.3.10. For each s = ([ϕ0], · · · , [ϕn−1], [ψ]), a non-empty finite sequence in F (Σ)/ a` (the

free QV (a)-structure on the set X) and each (τ,∆), an algebraizable pair of a, where τ =

{(εj, δj); j = 1, ...,m for some m ∈ ω}, let

q(s, (∆, τ)) := (([ε(ϕ0)], [δ(ϕ0)]), · · · , ([ε(ϕn−1)], [δ(ϕn−1)]), ([ε(ψ)], [δ(ψ)]))

where the notation ([ε(θ)], [δ(θ)]) abbreviates the pair of finite sequence of equivalence class

of formulas: ([εj(θ), [δj(θ)])j with j = 1, · · · ,m.. Note that, as a is a congruential alge-

braizable logic, then:

(*) If [θ] = [θ′] (i.e., θ a` θ′), then δ(θ) a` δ(θ′) and ε(θ) a` ε(θ′).Thus we have an well

defined mapping ϕ/∆
t7→ (ε(ϕ)/∆, δ(ϕ)/∆) and q(s, (∆, τ)) is well-defined;

(**) conversely, as ϕ a` ∆(ε(ϕ), δ(ϕ)), then we have and well defined map (ε(ϕ)/∆, δ(ϕ)/∆)
r7→

ϕ/∆ and r ◦ t = id.

Recall that qs := {q(s, (τ,∆)) : (τ,∆) is an algebraizable pair of a1} and Sen′a(a) := {qs :

s is a non-empty finite sequence in F (Σ)}. Note that, by the above remark, the mapping

s
t7→ qs determine a bijection between the set of non-empty finite sequences in F (Σ)/∆ and

Sen′a(a)

Then, in particular ȟ/ a`: F (Σ)/ a`→ F (Σ′)/ a′` has a section ρ̄X : F (Σ′)/ a′`→
F (Σ)/ a`. Let s′ = ([ϕ′0], · · · , [ϕ′n−1], [ψ′]) be a non-empty finite sequence in F (Σ′)/ a′` and

((ε′, δ′),∆′) be an algebraizable pair of a′. Then ρ∗s
′ := ([ρX(ϕ′0)], · · · , [ρX(ϕ′n−1)], [ρX(ψ′)])

is a non-empty finite sequence in F (Σ)/ a` and the mapping q′s′ ∈ Sen′a′(a
′) 7→ qρ∗s′ ∈

Sen′a(a) is a section of the map on non-empty finite sequences induced by ȟ/ a`: F (Σ)/ a`→
F (Σ′)/ a′`.

Now, we start providing the following

Proposition 4.3.11. Let Lh : QV (a)→ QV (a′) be the left adjoint of h?�: QV (a′)→ QV (a)

as defined in Chapter 2 (see Proposition 2.1.6), then for each M ∈ QV (a) and q′ ∈ Sent′a(a′),

the following compatibility relation holds:

M |=a ρ̄q′ ⇔ LhM |=a′ q′
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Proof:

“ ⇒ ” Let q′ ∈ Sen′(a′). Suppose that given M ∈ QV (a), M |=a ρ̄q′. Given w : X →
Lh(M) (|LhM | = |h?LhM |, we can consider w : X → h?Lh(M)) such that

w̄[ε′(ϕ′i)] = w̄[δ′(ϕ′i)], i = 0, ..., n− 1

Look to diagram below:

X

~~
v

��

$$
w





FX
∆

∂̄X //

v̄

��

(F
′X

∆′
)h

w̄

��

ρ̄X
oo

M
∂̄M //

h?� LhM
ρ̄M

oo

Consider v̄ = ρ̄M w̄∂̄X (there is v : X →M such that to be corresponding with v̄). Hence

v̄ρ̄X = ρ̄M w̄∂̄X ρ̄X = ρ̄M w̄

ρ̄M w̄[ε′(ϕ′i)] = ρ̄M w̄[δ′(ϕ′i)] (i = 0, ..., n− 1)

v̄ρ̄X [ε′(ϕ′i)] = v̄ρ̄X [δ′(ϕ′i)] (i = 0, ..., n− 1)

v̄ρ̄X [ε′(ϕ′)] = v̄ρ̄X [δ′(ϕ′)] Hypo.

∂̄M v̄ρ̄X [ε′(ϕ′)] = ∂̄M v̄ρ̄X [δ′(ϕ′)]

∂̄M ρ̄M w̄[ε′(ϕ′)] = ∂̄M ρ̄M w̄[δ′(ϕ′)]

w̄[ε′(ϕ′)] = w̄[δ′(ϕ′)]

w was taken arbitrary, so LhM |=a′ q

“⇐ ” Suppose that LhM |=a′ q′. Let v : X →M such that v̄ρ̄X [ε′(ϕ′i)] = v̄ρ̄X [δ′(ϕ′i)] ∀ i =

0, ..., n− 1.

Consider w̄ = h?� Lh(v̄)(exist w : X → h?� LhM extends to w̄). So ρ̄M w̄ = v̄ρ̄X and

w̄∂̄X = ∂̄M v̄. Therefore

ρ̄M w̄[ε′(ϕ′i)] = ρ̄M w̄[δ′(ϕ′i)] i = 0, ..., n− 1

∂̄M ρ̄M w̄[ε′(ϕ′i)] = ∂̄M ρ̄M w̄[δ′(ϕ′i)] i = 0, ..., n− 1

w̄[ε′(ϕ′i)] = w̄[δ′(ϕ′i)] i = 0, ..., n− 1

w̄[ε′(ϕ′)] = w̄[δ′(ϕ′)] Hypo.

Hence v̄ρ̄X [ε′(ϕ′)] = ρ̄M w̄[ε′(ϕ′)] = ρ̄M w̄[δ′(ϕ′)] = v̄ρ̄X [δ′(ϕ′)].

Then M |=a ρ̄Xq
′

We also have that a Glivenko’s context induces an abstract Glivenko’s theorem for

InsLAL and we present now and Proposition 4.3.11 above is part of it.

Theorem 4.3.12. Let a, a′ be Lindenbaum algebraizable logics, then each G = (h : a →
a′, ρ) Glivenko’s context induces a institutions morphism InsLALa → InsLALa′. More
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precisely, fixing a choice of isomorphisms ε : Obj(Sig′a) → Mor(Sig′a), a1 7→ ε(a1) = [e1] :

a
∼=→ a1, we define a institution morphism M(G,εa) : InsLALa → InsLALa′

8

Proof:

By simplicity, we will write (G, ε) for (G, εa). We will define

M(G,ε) = 〈Φ′(G,ε), α′(G,ε), β′(G,ε)〉

(this will depend only on the choice of isomorphisms in the domain institution InsLALa):

Φ′(G,ε) : Sig′a → Sig′a′ : it is defined in the same way as Φ(G,ε) : Siga → Siga′was defined

in 4.3.1.

Now the definition of α′(G,ε).

Firstly for a we have α′(G,ε)(a) : Sena′ ◦Φ′(G,ε)(a) = Sena′(a
′)→ Sena(a) is the mapping

q′s′ ∈ Sen′a′(a′) 7→ qρ∗s′ ∈ Sen′a(a), as defined in 4.3.10.

For an arbitrary a1 ∈ Sig′a we define α′(G,ε)(a1) : Sena′(a
′) → Sena(a1) by for q′ ∈

Sena(a
′),

α′(G,ε)(a′)(q′) = ρ̄a1
X (q′)

such that for each component of ρ̄a1
X q
′ is ([ě1ρX(ε′(ϕk))], [ě1ρX(δ′(ϕk))]) for k = 1, ..., n−1

and the last component is ([ě1ρX(ε′(ϕ))], [ě1ρX(δ′(ϕ))]). This defines a natural transforma-

tion. Indeed, first observe that the diagram below commutes:

F (Σ′)/∆′
ρ̄X //

[ǧgε ]
��

F (Σ)/∆
[ě1] //

[ǧε]
��

F (Σ1)/∆1

[ǧ]

��
F (Σ′)/∆′

ρ̄X
// F (Σ)/∆

[ě2]
// F (Σ2)/∆2

then we have the following diagram commuting:

Sena′(Φ
′(a1))

[ǧhε ]
��

α′(G,ε)(a1) // Sena(a1)

[ǧ]

��
Sena′(Φ

′(a2))
α′(G,ε)(a2)

// Sena(a2)

Let now to define β′(G,ε). For a we define β′(G,ε) : Mod′a ⇒Mod′a′ ◦ (Φ′(G,ε))op is define as:

β′(G,ε)(a) = Lh : QV (a) = Mod′a(a)→Mod′a′(Φ
′(G,ε)(a)) = QV (a′)

The corresponding definition works for an arbitrary a1 ∈ Siga because since a and a1 are

Qc
f -isomorphic, we have by 2.2.4 that QV (a) and QV (a1) are isomorphic. I.e., β′(G,ε)(a1) =

Lh1 : QV (a1) = Mod′a(a1) → Mod′a′(Φ
′(G,ε)(a1)) = QV (a′), where (a

[h]→ a′) = (a
[e1]→

a1
[h1]→ a′). This defines a natural transformation. Indeed, notice that the following diagram

commutes:

8Such induced morphisms are “isomorphic”, for different choices of isomorphisms ε0, ε1.
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QV (a1) QV (a′)
h?1�oo

QV (a2)

g?�

OO

QV (a′)
h?2�
oo

(ghε )?�

OO

And then we have the following diagram commuting:

QV (a1)
βa1 // QV (a′)

QV (a2)
βa2

//

g?�

OO

QV (a′)

(ghε )?�

OO

On the compatibility condition. First for the logic a we must guarantee that M |=a

ρ̄q′ ⇔ LhM |=a′ q′: this is the content of Proposition 4.3.11.

For an arbitrary logic a1 ∈ Sig′a we must to prove that for any M1 ∈ QV (a1) and

qs′ ∈ Sen(a′):

β′(G,ε)(a1)(M1) |=a′ qs′ ⇔ M1 |=a1 α′(G, ε)(a1)(qs′)

in other notation

Lh1(M1) |=a′ qs′ ⇔ M1 |=a1 ρ̄a1
X (qs′).

In fact, since [Φ(e1)] is an isomorphism, we have that Φ(e1)?� is an isomorphism. There-

fore:

Lh1(M1) |=a′ qs′ ⇔ Φ(e1)?Lh1(M1) |= q(Φ(e1)+)−1(s1)

⇔ Lh(e
?
1(M1)) |= q(Φ(e1)+)−1(s1)

⇔ e?1(M1) |= α′(G,ε)(a)(q(Φ(e1)+)−1(s1))

⇔ M1 |=a1 e+
1 α
′(G,ε)(a)(q(Φ(e1)+)−1(s1))

⇔ M1 |=a1 αa1(qs′).

Corollary 4.3.13. For each Glivenko’s context G = (h : a→ a′, ρ̄), is associated an abstract

Glivenko’s theorem between a and a′ i.e; given Γ′ ∪ {ϕ′} ⊆ F ′(X) then

ρX [Γ′] ` ρX(ϕ′) ⇔ Γ′ `′ ϕ′

Proof:

Firstly, remark that it is enough consider Γ finite. Because a and a′ are algebraizable

logics, and h preserves algebraizing pairs, it is enough to show that

{ε(ρX(ψ′)) ≈ δ(ρX(ψ′)), ψ′ ∈ Γ′} |=QV (a) ε(ρX(ϕ′)) ≈ δ(ρX(ϕ′))

m
{ε′(ψ′) ≈ δ′(ψ′), ψ′ ∈ Γ′} |=QV (a′) ε′(ϕ′) ≈ δ′(ϕ′)
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Consider Γ = {ψ0, ..., ψn−1}, s′ = (ψ′0/∆
′, ..., ψ′n−1/∆

′, ϕ′/∆′). Then:

(i) q′ = q′s′ is determined by any of its elements

(([ε′(ψ′0)], [δ′(ψ′0)]), ..., ([ε′(ψ′n−1)], [δ′(ψ′n−1)])([ε′(ϕ′)], [δ′(ϕ)]));

(ii) α(a)(q′) = qρ∗s′ is determined by any of its elements

(([ε(ρX(ψ′0))], [δ(ρX(ψ′0))]), ..., ([ε(ρX(ψ′n−1))], [δ(ρX(ψ′n−1))])([ε(ρX(ϕ′))], [δ(ρX(ϕ))]))

Thus we have to show:

(∀M ∈ QV (a),M |=a ρ̄Xq
′) ⇔ (∀M ′ ∈ QV (a′)M ′ |=a′ q′)

By Remark 4.3.3.(c) given M ′ ∈ QV (a′) there is M ∈ QV (a) such that Lh(M) ∼= M ′.

With this, it is enough to show that for every M ∈ QV (a),

M |=a ρ̄Xq
′ ⇔ LhM |=a′ q′

And this last equivalence is established the Proposition 4.3.11 above.

Remark 4.3.14. Since the CPC and IPC are Lindenbaum algebraizable logic, one can see

that the example 4.3.8 follows a consequence of the abstract Glivenko’s theorem fo InsLAL

as well as the abstract Glivenko’s theorem for InsAL.

Remark 4.3.15. A simple analysis of the derivations of “logical” forms of Glivenko’s Theo-

rem (Corolaries 4.3.7 and 4.3.13) from the corresponding “instituitional” form of Glivenko’s

Theorem (Theorems 4.3.6 and 4.3.12), i.e. the existence of certain (induced) morphisms of

institutions make clear that the latter form is stronger than the former one. We can inter-

pret this as another evidence9 of the (virtually unexplored) relevance of institution theory in

propositional logic.

4.4 Category of algebraizable logics with Glivenko’s

morphisms

In this section we present that the definition of Glivenko’s context given in 4.3.2 offer

more information about the relationship of logics, it give us a category of algebraizable

logics such that the morphisms are Glivenko’s contexts, i.e., the objects are the same of in

Af and given a and a′ algebraizable logics, a Glivenko’s morphism is a Glivenko’s context

(h : a→ a′, ρ). Denote by GAf this category.

9Beside the nice approach of the identity problem for (algebraizable) propositional logics: “a logic is an

institution, thus manifested through many signatures”.
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Theorem 4.4.1. GAf is a category

Proof:

In this category the composition is the usual, i.e., given G = (h : a → a′, ρ) and

G′ = (h′ : a′ → a′′, ρ′), we have thatG′◦G = (h′◦h : a→ a′′, ρ′•ρ) where (ρ′•ρ)M = ρM◦ρ′LhM

(this is natural in M ∈ QV (a)). In order to prove that the composition is well defined,

we must to prove that ρ′ ◦ ρ a section for the unit of the adjunction Lh′◦h a (h′ ◦ h)∗.

The composition of adjunctions is a adjunction and ∂′ ◦ ∂ is its the unit. Remember that

Lh′◦h = Lh′ ◦ Lh (an strict equality, with the choice of adjoints given in Chapter 2, as

quotients) and (h′◦h)∗ = h∗◦h′∗. Then we have thatM
(∂′◦∂)M−→ h∗h′∗Lh′LhM = M

h∗(∂′LhM )◦∂M
−→

h∗h′∗Lh′LhM = M
∂′LhM◦∂M−→ h∗h′∗Lh′LhM . Then we have

(∂′ ◦ ∂)M ◦ (ρ′ • ρ)M = (∂′LhM
◦ ∂M) ◦ (ρM ◦ ρ′LhM

)

= ∂′LhM
◦ (∂M ◦ ρM) ◦ ρ′LhM

= ∂′LhM
◦ ρ′LhM

= IdLhM .

Thus (ρ′ • ρ)M is a section for (∂′ ◦∂)M for all M ∈ Σ−Str. Clearly there is the identity

Glivenko’s context for an algebraizable logic a given by (Ida : a → a, ρ = (IdM)M∈Σ−Str).

To prove the associativity let G = (h : a → a′, ρ), G′ = (h′ : a′ → a′′, ρ′) and G′′ = (h′′ :

a′′ → a′′′, ρ′′) be Glivenko’s morphisms (Glivenko’s context). Since Af is a category we have

that h′′ ◦ (h′ ◦ h) = (h′′ ◦ h′) ◦ h. Remains to prove that ρ′′ • (ρ′ • ρ) = (ρ′′ • ρ′) • ρ. Let

M ∈ Σ− Str, then

(ρ′′ • (ρ′ • ρ))M = (ρ′ • ρ)M ◦ ρ′′Lh′◦hM

= (ρM ◦ ρ′LhM
) ◦ ρ′′Lh′◦hM

= (ρM ◦ ρ′LhM
) ◦ ρ′′Lh′◦LhM

= ρM ◦ (ρ′LhM
◦ ρ′′Lh′Lh

M)

= ρM ◦ (ρ′′ • ρ′)LhM

= ((ρ′′ • ρ′) • ρ)M

Therefore GAf is a category

The theorems 4.3.6 and 4.3.12 say that for any Glivenko’s context there is a institution

morphism associated, more precisely, given a Glivenko’s context (h : a → a′, ρ) and a

choice of isomorphisms εa : Obj(Siga) →
⋃
a1∈Obj(Siga) HomSiga(a, a1), we have a institution

morphism 〈ΦG,ε, αG,ε, βG,ε〉. Notice that there are more than one possible choice for the

family (εa)a∈|Af |
, but the application below still define a functor.
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Gε : GAf → Inst

a InsALa

(h, ρ) ↓ 7→ ↓ 〈Φ(G,ε), α(G,ε), β(G,ε)〉
a′ InsALa′

Another natural functor that arise is U : GAf → Af such that U((h : a→ a′, ρ)) = (h :

a→ a′) for any Glivenko’s context (h : a→ a′, ρ).

Naturally, we can defined in analogous way a (full) subcategory GAcf ⊆ GAf , with

objects being the Lindenbaum algebraizable logics and, for each choice of isomorphisms

(εa)a∈|Sig′a|, we get a functor:

Gcε : GAcf → Inst

a InsLALa

(h, ρ) ↓ 7→ ↓ 〈Φ′(G,ε), α′(G,ε), β′(G,ε)〉
a′ InsLALa′

Once established those relations we have the following diagram that represents the rela-

tion among the categories studied in this thesis.

π − Inst 55 Inst
tt

Fi

��

GAcf

66

��

// GAf

OO

��
Acf // // Af // // Lf

GG

On the other hand,we saw that the categories Ls and Lf determines institutions and

π-institutions. Having in mind the adjunctions Ls � Lf � F i, we believe that is possible

establish a (extended) direct relation from Fi to Inst and Π − Inst. This is part of the

future works on the thesis.



Chapter 5

First steps on the Representation

Theory of Logic

In the representation theory of rings, the category of rings is functorially encoded into

the category of categories: a ring R is encoded by the category of (left/right) linear rep-

resentation of R (respectiv. R − Mod , Mod − R) or some convenient essentially small

subcategories given by finitely generated modules (respect. R − Mod, Mod − R). It is

proposed, based on the results in chapter 2, an encoding of a general propositional logic by a

diagram of categories and functors given by the quasivarieties canonically associated to the

algebraizable logics (in the sense of [BP89]) connected with the given propositional logic.

In this setting, we start the study of left “Morita equivalence” of logics and variants.

We introduce the concepts of left-stably-Morita-equivalent logics and show that the presen-

tations of classical logics are stably-Morita-equivalent, but classical logics and intuitionistic

logics are not stably-Morita-equivalent: they are only stably-Morita-adjointly related. We

start the development mainly of left representation theory of logics –related to analysis pro-

cess of combination of logics– because, differently from representation theory of rings, the

right representation theory of logics –related to synthesis process of combination of logics–

is technically more involved than the “left” case (it requires tools from the theory of 2-

categories). Fragments of this approach to representation theory of propositional logics can

be found in [AFLM05].

We will denote the forgetful functors: U : Af → Lf , U c : Acf → Lcf , Ū : Af → QLf and

Ū c : QAcf → QLcf .

5.1 General Logics and Categories

We start this chapter presenting some important results about the categories l ↓ Ū and

l ↓ Ū c. The following theorem give us an way to build a co-product in the category l ↓ Ū c.

Proposition 5.1.1. Let l ∈ Lf , a ∈ Af and f : l→ a be a ∆-dense morphism in Lf . Then:

99
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(i) There exists a logic a′ over the signature of l such that there is a conservative translation

to a, it is algebraizable and l ≤ a′. In particular, [f ] : a′
∼=→ a in the quotient category

Af .

(ii) f ?[QV (a)] ⊆ Σ−Str is a quasivariety and it is an equivalent algebraic semantic to a′.

Proof:

(i) Consider l = (Σ,`) and a = (α,`a). We define `′⊆ P(F (Σ)) × F (Σ) by definition

2.9 of [AFLM07], that is, Γ `′ ϕ iff f̌(Γ) `a f̌(ϕ). `′ is a Tarskian consequence, indeed, the

reflexivity, cut, monotonicity and finitarity are easy to prove. We will prove the structurality.

Suppose Γ `′ ϕ. Let s : X → F (Σ). Define s′ = f̌ ◦ s (s′ : X → F (α)). Consider

s : F (Σ)→ F (Σ) the extension of s and s′ : F (α)→ F (α) the extension of s′. The following

diagram commute:

F (Σ) s //

f̌
��

F (Σ)

f̌
��

F (α)
s′
// F (α)

Indeed, just apply induction on complexity. Let x ∈ X, f̌ ◦ s(x) = s′(x) = s′ ◦ f̌(x)

(f̌ carries variable to variable). Now let ϕ = cn(ψ0, ..., ψn−1) and suppose that f̌ ◦ s(ψi) =

s′ ◦ f̌(ψi) such that i = 0, ..., n− 1.

f̌ ◦ s(ϕ) = f̌ ◦ s(cn(ψ0, ..., ψn−1))

= f̌(cn(s(ψ0)), ..., s(ψn−1))

= f(cn)(f̌(s(ψ0)), ..., f̌(s(ψn−1)))

= f(cn)(s′ ◦ f̌(ψ0), ..., s′ ◦ f̌(ψn−1))

= s′(f(cn)(f̌(ψ0), ..., f̌(ψn−1)))

= s′ ◦ f̌(cn(ψ0, ..., ψn−1))

= s′ ◦ f̌(ϕ).

By definition Γ `′ ϕ iff f̌(Γ) `a f̌(ϕ). s′ is a substitution and `a is structural, so

s′(f̌ [Γ]) `a s′(f̌(ϕ)) ⇔ f̌ ◦ s[Γ] `a f̌ ◦ s(ϕ) ⇔ s[Γ] `′ s(ϕ). Therefore `′ is a Tarskian

consequence relation. consider a′ = (Σ,`′). By definition of `′ we have that f can be seen

as an application from a′ to a and it is a ∆-dense conservative translate.

Now we prove that a′ is algebraizable logic. Fix (∆, τ) any algebraizing pair of a. For

each σi ∈ ∆, i ≤ m, choose, by ∆-density of f , σ′i ∈ F (Σ)[2] such that `a f̌(σ′i)∆σi. Define

∆′ = {σ′i ∈ F (Σ)[2] : i ≤ m}.

Then ∆′ is a finite set of Σ-formulas in the variables x0, x1. Similarly, for each 〈t1j , t2j〉 ∈ τ ,

j ≤ n, choose t′lj ∈ F (Σ)[1] such that `a f̌(t′lj)∆t
l
j, l = 1, 2. Define

τ ′ = {〈t′1j , t′
2
j〉 : j ≤ n}.
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Then τ ′ is a finite set of pairs Σ-formulas in the variable x0.

We are going to show that (∆′, τ) is an algebraizable pair to a′. For this we use the

Theorem 1.3.8.

(a) Let ϕ ∈ F (Σ). ∆ is a equivalence set of formulas to a, then `a ∆(x, x), i.e., for

each i ≤ m, `a σi(x, x). By definition of ∆′, for each σ′i ∈ ∆′ there is σi ∈ ∆ such

that `a f̌(σ′i)∆σi. Therefore, as ∆ satisfies the transitivity property, `a f̌(σ′i(x, x)), i.e

`a f̌(∆′(x, x)), thus `a′ ∆′(x, x). and then, as `a′ is structural, then `a′ ∆′(ψ, ψ), for each

ψ ∈ F (Σ).

The proofs of conditions (b), (c) and (d) are analogous to the item (a). For the item

(d), we use the ∆-density to choose, for each cn ∈ αn, a formula ψn ∈ F (Σ)[n] such that

`a f̌(ψn)∆cn(x0, · · · , xn−1).

(e) Since `a′ is structural, it is enough to prove that x aa′` ∆′(τ ′(x)). Let 〈t′1, t′2〉 ∈
τ ′, then `a ∆(f̌(t′1), t1) and `a ∆(f̌(t′2), t2) for some 〈t1, t2〉 ∈ τ . Thus f̌(t′1) aa` t1

and f̌(t′2) aa` t2. As ∆ satisfies the transitivity and symmetric properties we have that

∆(f̌(t′1), f̌(t′2)) aa` ∆(t1, t2). Therefore x aa` ∆(f̌(t′1), f̌(t′2)). By definition of ∆′ we have

that x aa` f̌(∆′)(f̌(t′1), f̌(t′2)) = f̌(∆′(t′1, t
′
2)). Hence x aa′` ∆′(t′1(x), t′2(x)). 〈t′1, t′2〉 was

taken arbitrary, then x aa′` ∆′(τ ′(x))

Finally, let Γ ∪ {ϕ} ⊆ F (Σ). Suppose that Γ ` ϕ, so f̌ [Γ] `a f̌(ϕ) and then Γ `′ ϕ.

Therefore `≤`′. Moreover, as f : a′ → a is a ∆-dense morphism that is a conservative

translation and that also preserves algebraizing pair, then [f ] : a′ → a is an Af -isomorphism.

(ii) As [f ] : a′ → a is an Af -isomorphism, then f ? : QV (a)
∼=→ QV (a′) (see proposition

2.2.4), thus QV (a′) = f ?[QV (a)].

We provide also a direct proof. By Proposition 2.1.6 we have that f ?[QV (a)] is closed

under substructure. As f ?� preserves product, so f ?[QV (a)] is closed under product. Let

M ∈ Σ − Str such that I : M ∼= f ?(A) where A ∈ QV (a). It is easy to see that this

isomorphism establishes a isomorphism between A and A′ where |A′| = |M | and given

c′n ∈ αn, c′A
′

n (m0, ....,mn−1) = I−1(c′An (I(m0), ...., I(mn−1))). Therefore f ?[QV (a)] is closed

under isomorphism. Remains to show that it is closed under ultraproducts.

Let I ∈ Set. Given U ultrafilter in I, θU is a congruence on
∏

i∈I Ai ∈ f ?[QV (a)]. We

know that f ? preserves strict products, then there is A′i ∈ QV (a) for each i ∈ I such that∏
i∈I f

?(A′i) =
∏

i∈I Ai. Remember that the definition of θU is 〈a, b〉 ∈ θU iff {i ∈ I; a(i) =

b(i)} ∈ U . So θU is a congruence in
∏

i∈I A
′
i. Then we have the morphisms q′ :

∏
i∈I f

?(A′i)→
f ?(

∏
i∈I Ai/U) and q :

∏
i∈I f

?(A′i) →
∏

i∈I f
?(A′i)/U . Observe that ker(q′) = {〈a, b〉 ∈∏

i∈I f
?(A′i); a/θU = b/θU} = θU . By isomorphism theorem f ?(

∏
i∈I A

′
i/U) ∼=

∏
i∈I f

?(A′i)/U .

We proved that f ?[QV (a)] is closed under isomorphism, hence
∏

i∈I f
?(A′i)/U ∈ f ?[QV (a)].

Therefore f ?[QV (a)] is closed under ultraproduct. With this f ?[QV (a)] is a quasivariety.
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Remains to show that f ?[QV (a)] is an equivalent algebraic semantic to l. It is enough

to prove that f ?[QV (a)] is axiomatize for

S0
a′ = {δ′(ψ′0) ≈ ε′(ψ′0) ∧ ... ∧ δ′(ψ′n−1) ≈ ε′(ψ′n−1)→ δ′(ϕ′) ≈ ε′(ϕ′);

{ψ′0, ..., ψ′n−1} `a′ ϕ′}
S1
a′ = {δ′(x0∆′x1) ≈ ε′(x0∆′x1)→ x0 ≈ x1}
S2
a′ = {δ′(x0∆′x0) ≈ ε′(x0∆′x0)}

Consider {ψ′0, ..., ψ′n−1} `a′ ϕ′. So {f̌(ψ′0), ..., f̌(ψ′n−1)} `a f̌(ϕ). Let M ′ ∈ f ?[QV (a)].

Suppose that M ′ |= δ′(ψ′i) ≈ ε′(ψ′i) for all i = 0, ..., n − 1. Let v : X → M ′. Since

M ′ = f ?(M) and |f ?(M)| = |M | then there are the extensions v̄ : F (Σ) → f ?(M) and

v̄′ : F (α) → M such that v̄′ ◦ f̌ = v̄ and v̄(δ′(ψ′i)) = v̄(ε′(ψ′i)) for all i = 0, ..., n− 1. Hence

v̄′ ◦ f̌(δ′(ψ′i)) = v̄′ ◦ f̌(ε(ψ′i)) for all i = 0, ..., n − 1. Therefore v̄′ ◦ f̌(δ′(ϕ′)) = v̄′ ◦ f̌(ε′(ϕ′))

and then v̄(δ′(ϕ′)) = v̄(ε′(ϕ′)). v was taken arbitrary, so M ′ |= δ′(ϕ′) ≈ ε′(ϕ′). With this

f ?[QV (a)] satisfies S0
a′ . Analogously we have that f ?[QV (a)] satisfies the conditions S1

a′ and

S2
a′ .

Now we recall the

Definition 5.1.2. A Hilbert-style calculus H of type Σ is a set H of g-sequents of type Σ

with the following property: for any substitution σ and any g-sequent 〈Γ, ϕ〉 of the calculus,

the sequent 〈σ[Γ], σ(ϕ)〉 is also a g-sequent of the calculus; that is, it is a set of g-sequents

closed under substitution instances. The g-sequents with an empty set of premises are called

the axioms or axiom rules of H and the g-sequents with a non-empty set of premises are

called the rules of inference of H.

A finitary Hilbert-style calculus is a calculus all of whose g-sequents have a finite set of

premises.

Given a finitary Hilbert-style calculus H and a set of formulas Γ, a deduction in H from

Γ is a well-ordered sequence 〈ϕ0, ..., ϕm〉 such that for any q < m, ϕq is (the conclusion of)

an axiom of H or an element of Γ or is obtained by previous formulas by an inference rule

of H, that is, there is a g-sequent 〈∆, ϕ〉 ∈ H such that ∆ ⊆ {ϕ0, ..., ϕq} and ϕq = ϕ.

Given a finitary Hilbert-style calculus H we say that a formula ϕ is deducible in H from

a set of formulas Γ, if there is a deduction in H from Γ well-ordered and whose last element

is ϕ.

The following result is well known:

Fact 5.1.3. ([JJLo58]) Every Tarskian logic is axiomatizable by a finitary Hilbert-style cal-

culus.

Now we are ready to present
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Theorem 5.1.4. Let l = (Σ,`) be a logic, a1 = (α1,`a1) and a2 = (α2,`a2) be Lin-

denbaum algebraizable logics (equivalently congruential algebraizable logics). If there are

f1 ∈ homLf
(l, a1) and f2 ∈ homLf

(l, a2) then there is an Lindenbaum algebraizable logic

a3 = (α3,`a3) and inclusion morphisms of signature i1 : α1 ↪→ α3 and i2 : α2 ↪→ α3 such that

i1◦f1 aa3` i2◦f2. Moreover, a3 is the co-product in the category l ↓ U where Ū : QAcf → QLf

Proof:

Firstly consider α3 = α1∪̇α2. Define `3 the relation given by the following inference

rules:

• Γ `i ϕ such that Γ ∪ {ϕ} ⊆ Fmi and i ∈ {1, 2};
• f̌1(ϕ) a` f̌2(ϕ) for all ϕ ∈ Fml.

• ∆1 a` ∆2 for some sets of equivalent formulas ∆i for ai such that i = 1, 2 (or equiva-

lently ∆1 ` θ2 for all θ2 ∈ ∆2, and ∆2 ` θ1 for all θ2 ∈ ∆2).

With this rules is easy to see that the logic a′3 = (α3,`3) is an algebraizable logic. Just

apply the Theorem 1.3.8 for every algebraizable pair (∆, τ) for any logic ai, i ∈ {1, 2}.
Consider a3 the least Lindenbaum algebraizable logic such that extend a′3.

Observe that we have the inclusions ji : ai → a3 for i ∈ {1, 2} and ǰ1 ◦ f̌1(ϕ) a` ǰ2 ◦ f̌2(ϕ)

for every ϕ ∈ Fml.

Now consider for each i ∈ {1, 2}, gi : ai → a in Lind(Af ) such that ǧ1 ◦ f̌1 aa` ǧ2 ◦ f̌2.

Define k : a3 → a which for any cn ∈ α3, k(cn) = gi(cn) if cn ∈ αi. Notice that with that

definition we have that k ◦ ji = gi for i ∈ {1, 2}. Now we are going to prove that k is a

translation.

Let Γ `3 ϕ. As `3 is finitary we have that there is {ψ0, ..., ψn} ⊆ Γ such that ψ0, ..., ψn `3

ϕ. By Theorem 5.1.4 there is a Hilbert-style calculus H that axiomatize a3. So there is a

deduction in H from Γ 〈δ0, ..., δm〉 to ϕ such that δm = ϕ and for any q < m, δq is a axiom

of H or a element of Γ or there is a g-sequent 〈Λ, ψ〉 such that Λ ⊆ {δ0, ..., δq} and δq = ψ.

Now we prove that 〈ǩ(δ0), ..., ǩ(δm)〉 is a deduction from ǩ[Γ] to ǩ(ϕ). Since δm = ϕ, we

have that ǩ(δm) = ǩ(ϕ).

If δq = ψi for every i ∈ {0, ..., n} then just consider ǩ(δq) = ǩ(ψi) and then ǩ(δq) ∈ ǩ[Γ].

If δq is a theorem in a3, then δq = θ(σ̄) where θ ∈ Fmi for some i ∈ {1, 2} and σ̄ =

{σ0, ..., σd} ⊆ Fm3. Thus `i θ(x̄), then `a ǧ(θ(x̄)). Considering the substitution such that

x̄ 7→ ǩ(σ̄). Therefore `a ǧi(θ(x̄))[x̄/ǩ(σ̄)]. So `a ǩ(θ((̄σ))), hence `a ǩ(δ0). Or as the logic

a3 is a Lindenbaum algebraizable logic we can consider the theorems `3 f̌1(ϕ)∆f̌2(ϕ), for

some ∆ an equivalence formula to ai, instead of the rules f̌1(ϕ) a3` f̌2(ϕ). In this case

we have that if δq = f̌1(ϕ)∆f̌2(ϕ) then ǩ(δq) = ǧ1(f̌1(ϕ))ǧi(∆)ǧ2(f̌2(ϕ)). As gi preserves

algebraizable pair for any i ∈ {1, 2} and ǧ1 ◦ f̌1 aa` ǧ2 ◦ f̌2 then `a ǩ(δq).

Suppose that there is Λ ⊆ {δ0, ..., δq} such that 〈Λ, δq〉 is a inference rule. Then we have

that
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• there are θ0(x̄), ..., θn(x̄) ∈ Fmi and a substitution σ such that {θj(x̄)[x̄/σ̄]; j =

0, ..., n − 1} = Λ, θn(x̄)[x̄/σ̄] = δq and Λ(x̄) := {θj(x̄); j = 0, ..., n − 1} `i θn(x̄). Then

ǧi[Λ(x̄)] `a ǧi(θn(x̄)). Considering a substitution x̄ 7→ ǩ(σ̄) we have that

ǩ[Λ] = ǩ[Λ(x̄)][x̄/ǩ(σ̄)] `a ǩ(θn(x̄))[x̄/ǩ(σ̄)] = δ̌q

then ǩ(δq) is obtained by ǩ[Λ].

Or

• there are a set Λ(x̄) = ∆i and θ(x̄) ∈ ∆j with i 6= j and i, j ∈ {1, 2}, and a substitution

σ such that Λ(x̄)[x̄/σ̄] = Λ and θ(x̄)[x̄/σ̄] = δq. Since gp preserves algebraizable pair for

p = 1, 2 we have that ǧ1[∆1] aa` ǧ2[∆2], thus ǧ1[Λ(x̄)] `a ǧ2(θ(x̄)). Therefore ǩ[Λ] =

ǧ1[Λ(x̄)][x̄/ǩ(σ̄)] `a ǧ2(θ(x̄))[x̄/ǩ(σ̄)] = ǩ(δq).

With that we have that the g-sequent 〈ǩ(δ0), ..., ǩ(δm)〉 is a deduction from ǩ[Γ] to ǩ(ϕ)

and them ǩ[Γ] `a ǩ(ϕ).

It is easy to see that k is the unique morphism such that ǩ ◦ ǰi aa` ǧi for i ∈ {1, 2}.

We finish this short section with a direct application of the following

Fact 5.1.5. ([AR94]) The category F1 ↓ F2 is accessible for arbitrary accessible functors

Fi : Ki → L (i = 1, 2).

Since QLcf and QAcf are (finitely) accessible categories, and the functor Ū c : QAcf → QLcf
is a accessible functor (see [MM14]) and due to the result above we have that:

Corollary 5.1.6. (i) For any congruential logic k, category k ↓ Ū c is accessible.

(ii) For any logic l, let k = l(c) the its congruential closure. Then, since (l ↓ Ū c) ∼= (l(c) ↓ Ū c),

the category l ↓ Ū c is accessible.

Moreover, from an adaption of Proposition 3.11 in [AFLM07] and an well-known result

on limits in comma categories, it follows that (l ↓ Ū c) has products of all “bounded families”,

in particular, it has finite products.

Our intention is use “good” categorical properties of comma categories as l ↓ Ū c to apply

in the study of meta-logical properties.

5.2 Diagram model of a logic

We begin providing notions in order to define the (left and right) diagram models of

a logic. Notice that the definition of (left and right) diagram models use the encoding

established in the chapter 2.

From now on, we will use frequently the notion of “concrete”’ category,

i.e. a pair (C, U), where C is a category and U : C → Set is a faithful
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functor. We denote by concretCAT , the category whose objects are concrete

categories (on a smaller Grothendieck universe) and whose arrows are the

concrete functor (= functors that “commute over Set”).

To each logic l = (Σ,`) is associated two pairs (left and right) of data:

(I) two comma categories (over Af ):
•( l→ U), the “left algebrizable spectrum of l”;

• (U → l), the “right algebrizable spectrum of l”.

One can see that the left spectrum is naturally associated with that “analysis processes”

of combing logics. On the other hand the right spectrum is naturally associated with the

“synthesis processes” of combing logics.

(l→ U)

a0 a1

f0 f1

l

h -

A
A
A
AAK

�
�
�
���

(U → l)

a0 a1

f0 f1

l

h -
A
A
A
AAU

�
�
�
���

(II) two diagrams (left and right “representation diagram”):

• l-Mod! (l→ U, I);

• Mod-l! (U → l, L).

l −Mod : (l→ U)op −→ (Σ− str ← CAT )

(a0, f0) 7→ (Σ− str
f?0 I0← QV (a0))

(a0, f0)
h→ (a1, f1) 7→ ((QV (a1), f ?1 I1)

h?�→ (QV (a0), f ?0 I0))

α0−str

QV a0 QV a1

I0

h?�

α1−str l −Mod

I1

h?

? ?

�

�

f?0 f?1

Σ−str

A
A
A
AAU

�
�
�
���R 	

Mod− l : (U → l) −→ (2− CAT ← Σ− str)

(a0, f0) 7→ (QV (a0)
L0f?0← Σ− str)

(a0, f0)
h→ (a1, f1) 7→ ((QV (a0), L0f

?
0 )

(h?�,h̃)→ (QV (a1), L1f
?
1 ))
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α0−str

QV a0 QV a1

L0

h?�

α1−str Mod− l

L1

h?

6 6

�

�

f?0 f?1

Σ−str
A
A
A
AAK

�
�
�
���

� I

↗̃
h

L0f
?
0

h̃f?1→ h?� L1f
?
1 where L0h

? h̃→ h?� L1

Since: (L0h
?g?

h̃g?→ h? � L1g
? h

?�g̃→ h?� g?� L2) = L0(gh)?
g̃h→ (gh)?� L2

then: (L0f
?
0

h̃f?1→ h?� L1f
?
1

h?�(g̃f?2 )
→ h?� g?� L2f

?
2 ) = L0(gh)?

g̃hf?2→ (gh)?� L2f
?
2

All functors and commutativity in both diagrams above is justified by Proposition 2.1.7

in Chapter 2, as well as the diagram below.

To each morphism between logics t : l→ l′ we have two pairs (left and right) of data:

(I) a left/right “spectral” functors, given by composition/precomposition with t:

(l→ U)
−◦t← (l→ U);

(U → l)
t◦−→ (U → l′).

(II) a left/right “representation diagram” morphism , given by precomposition/composition

with t?:

(l-Mod)
t?◦−← (l′-Mod);

(Mod-l)
−◦t?→ (Mod-l′).

From now on, we will concern only on develop a “left” representation

theory for propositional logics.

(l-Mod)
t?◦−← (l′-Mod)

QV a0 QV a1

f?0 I0
f?1 I1

Σ′−str

Σ−str

h?�

t?

�

A
A
A
AAU

�
�
�
���

?

B
B
B
B
B
B
B
BBN

�
�
�
�
�
�
�
��

The category of left diagram models: LM

Generalizing the information given above we define the category of left diagram model

for a logic by:
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objects: a left diagram model for a logic l, i.e. the functor

left(l) : (l→ U)op
l−Mod−→ (Σ− str ← concretCAT )Set ↪→ (CAT ← CAT )

I.e., (Σ−str ←Set concretCAT )Set is a subcategory of the comma category, with objects

and arrows being functors that “commute over Set”.

arrows: a pair (B, τ) : left(l′) → left(l), where B : (l′ → U) → (l → U) is a “change

of bases” functor, and τ : left(l′)⇒left(l) ◦ B is a natural transformation. Notice that

given (a′, f ′) ∈ (l → U), τa′,f ′ : left(l′)(a′, f ′) → left(l)(B(a′, f ′)) where left(l′)(a′, f ′) ∈
(Σ′ − Str ← concretCAT )Set and left(l)(B(a′, f ′)) ∈ (Σ− Str ← concretCAT )Set.

Then we have that τa′,f ′ has two components, namely a functor that commutes over Set,

Proj1(τ(a′,f ′)) : QV (cod(f ′)) → QV (cod(B(f ′))), and a functor Proj2(τ(a′,f ′)) : Σ′ − Str →
Σ−Str, that commutes over Set, such that the following diagram commutes (and commutes

over Set):

QV cod(f ′)

f ′?

QV cod(B(f ′))

B(f ′)?τ(a′,f ′)
⇒

? ?

-

Σ′−str Σ−str-

And satisfies the following compatibility condition:

For each (a′0, f
′
0), (a′1, f

′
1) ∈ (l′ → U):

Proj2(τ(a′0,f
′
0)) = Proj2(τ(a′1,f

′
1)) : Σ′ − str → Σ− str

QV cod(f ′1)

f ′1
?

QV cod(B(f ′1))

B(f ′1)?τ(a′1,f
′
1)

⇒

? ?

-

Σ′−str

QV cod(f ′0)

Σ−str

f ′0
?

QV cod(B(f ′0))

B(f ′0)?
τ(a′0,f

′
0)⇒

6 6

-

-

Notice that given a logic morphism t : l→ l′ we have, by construction above, a morphism

between diagram models left(l) and left(l′).

One can define the left diagram model for logics over the functor U c. We denote the left

diagram model of a logic l over U c by leftc(l) and the category of left diagram model over

U c we denote by LMc.
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As a first test of this definition, we present the following:

Proposition 5.2.1. (a) Given a isomorphism t : l
∼=→ l′ ∈ Lf we have an isomorphism

(− ◦ t, (id, t?)) : left(l′)
∼=→ left(l) ∈ LM.

(b) Consider canl : l → l(c) the morphism in Lf such that lc is the congruential closure

of l. It induces a LMc-isomorphism1

(− ◦ canl, (id, can?l )) : left(l(c))
∼=→ left(l)

Proof:

(a): We have seen above that (− ◦ t) : (l′ −→ U)→ (l −→ U) define a functor (the left

“spectral” functor). Since t is an isomorphism, we have that −◦t−1 : (l −→ U)→ (l′ −→ U)

also is a functor, where t−1 is the inverse of t. Moreover, (− ◦ t−1) is the inverse functor of

(− ◦ t). In order to prove the isomorphism between left(l) and left(l′), remains to prove

that (id, t?) is a natural isomorphism. Notice that given f ′ : l′ → a ∈ (l′ −→ U) (a = (α,`)),

left(l′)(f ′) = f ′? ◦ I and left(l) ◦ (− ◦ t)(f ′) = (f ′ ◦ t)? ◦ I = t? ◦ f ′? ◦ I, where I : QV (a)→
α−Str. Observe that cod((−◦ t)(f ′)) = a. Then we have the following diagram commuting:

QV (a) id //

f ′?

��

QV (a)

t?◦f ′?
��

Σ′ − Str
t?
// Σ− Str

This diagram represents (id, t?)f ′ . Since t is an isomorphism we have that (id, t?) is also

an isomorphism.

Let h : a → a′ such that h ◦ f ′1 = f ′2 for f ′i : l′ → ai for i = 1, 2. (id, t?) is a natural

transformation due to the following commutative diagram:

QV (a2)

f ′2
?

QV (a2)

t? ◦ f ′?2

idQV (a2)

@
@
@
@R

�
�
�
�	

?

-

h?�h?� Σ−str

QV (a1)

t?Σ′−str

f ′1
?

QV (a1)

t? ◦ f ′?1

idQV (a1)

�
�
�
��

? @
@
@
@I

-

-

(b): In this case we have that canl : l→ l(c) induces an isomorphism of categories given by

the left “spectral” functor: (−◦ canl) : (l(c) −→ U c)→ (l −→ U c). Moreover, as canl = idΣ,

then can?l = idΣ−str : Σ− str → Σ− str. Thus (− ◦ canl, (id, can?l )) is a LMc-isomorphism

following on the similar way of item (a).

1On the other hand, note that l ∼= l(c) in Lf iff l is a congruential logic, iff l = l(c).
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5.3 Morita equivalence of logics and variants

In this section we propose a definition of left Morita equivalence of logics and left-stably-

Morita equivalence of logics. The definition of left-Morita equivalence is an weakening of

the notion of isomorphism of left diagram models.

Definition 5.3.1. (a) Let S be a subcategory of (l→ U). S is called generic if S ↪→ (l→ U)

is a initial functor2

(b) The logics l and l′ are left Morita equivalent when there are:

• generic subcategories S ↪→ (l→ U) and S ′ ↪→ (l′ → U);

• equivalence quasi-inverse functors B : S ′ → S and B′ : S → S ′;

• “natural comparations”: (T, τ) and (T ′, τ ′) such that:

∗ T : Σ′ − str → Σ − str is a functor that commutes over Set and for each (a′, f ′) ∈ S ′,

τ(a′,f ′) : QV cod(f ′)
∼=→ QV cod(B(f ′)) is a concrete isomorphism of categories such that

B(f ′)? ◦ τf ′ = T ◦ f ′?, i.e., the diagram below commutes (and commutes over Set):

Σ′−str

QV cod(f ′)

Σ−str

f ′?

T

QV cod(B(f ′))

B(f ′)?

τ(a′,f ′)

6 6

-

-

and for each (a′0, f
′
0)

g→ (a′1, f
′
1) ∈ S ′ we have the following diagram commuting (and

commuting over Set):

QV cod(f ′1)

f ′1
?

QV cod(B(f ′1))

B(f ′1)?

τ(a′1,f
′
1)

∼=
@
@
@
@R

�
�
�
�	

?

-

B(g′)?g′? Σ−str

QV cod(f ′0)

TΣ′−str

f ′0
?

QV cod(B(f ′0))

B(f ′0)?

τ(a′0,f
′
0)

∼=�
�
�
��

? @
@
@
@I

-

-

∗ analogous conditions for (T ′, τ ′) hold.

In the same vein we can define the notion of left Morita equivalence over the category

l→ U c. We call leftc Morita equivalence. Clearly, both notions are equivalence relations on

the class of logics.

As a first test of these definitions, we present the following:

Proposition 5.3.2. If left(l) ∼= left(l′) then l and l′ are left Morita equivalent. In partic-

ular:

2Thus Sop ↪→ (l→ U)op
l−Mod→ (concretCAT → Σ− str)Set is “relatively coinicial”.
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(a) If l ∼= l′, then l and l′ are left Morita equivalent.

(b) l and l(c) are leftc Morita equivalent.

Proof:

Since left(l) and left(l′) are isomorphic, we have that there are pairs (B, τ), (B′, τ ′) that

establish the isomorphism. The proof that l and l′ are left Morita equivalent follows from

considering S = (l −→ U) and S ′ = (l′ −→ U) as generic subcategories, B : S ′ → S and

B′ = B−1 : S → S ′, and τ and τ ′ = τ−1 are the “natural comparisons”.

The items (a) and (b) follow from the Theorem 5.2.1.

Proposition 5.3.3. Let a = (Σ,`) and a′ = (Σ′ `′) (respect. Lindenbaum) algebraizable

logics. If a and a′ are ∆-equipollent then they are left (respect. leftc) Morita equivalent.

Proof:

In this case just consider S := {(a ida→ a)} and S ′ := {(a′ ida′→ a′)}. S and S ′ are in

fact generic subcategories. We define B : S ′ → S as B(ida′) = ida and B′(ida) = ida′ . In

this way we have that B and B′ are inverses functors. Since a and a′ are ∆-equipollent,

then they are Af -isomrphic, i.e. there are Af -morphisms f : a → a′ and f ′ : a′ → a

such that for any ϕ′ ∈ F (Σ′), `′ f̌ ◦ f̌ ′(ϕ′)∆′ϕ′ and for any ϕ ∈ F (Σ), ` f̌ ′ ◦ f̌(ϕ)∆ϕ.

Thus f ? : Σ′ − Str → Σ − Str, f ′? : Σ − Str → Σ′ − Str, f ? �: QV (a′)
∼=→ QV (a) and

f ′?�: QV (a)
∼=→ QV (a′) (see Chapter 2) making the following diagrams commute:

Σ′−str

QV (a′)

Σ−str

id?a′�

f?

QV (a)

id?a�

f?�

6 6

-

-

Σ−str

QV (a)

Σ′−str

id?a�

f ′?

QV (a′)

id?a′�

f ′?�

6 6

-

-

Considering the pairs (f ?, f ?�) and (f ′?, f ′?�) the natural comparisons, we have proved

that a and a′ are left Morita equivalent.

Having in mind the result above, we define a new equivalence notion: of left Morita

equipollence.

Definition 5.3.4. Given l = (Σ,`) and l′ = (Σ′,`′) logics, we shall say that they are left

Morita equipollent if:
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• There are categories Q and Q′ and initial functors K : (l → U) → Q, K ′ : (l′ →
U) → Q′, such that l −Mod : (l → U)op → (concretCAT → Σ− str)Set factors through

Kop and l′ −Mod : (l′ → U)op → (concretCAT → Σ′ − str)Set factors through K ′op.

• There are quasi-inverse equivalence functors B : Q′ → Q and B′ : Q→ Q′.

• There are “natural comparisons” (T, τ) and (T ′, τ ′) as well as in the definition 5.3.1

such that obey the same properties described there.

A natural test for this definition is the following

Proposition 5.3.5. (a) If left(l) ∼= left(l′) then l and l′ are left Morita equivalent.

(b) Let l = (Σ,`) and l′ = (Σ′,`′) be logics. If l and l′ are equipollent then they are left

Morita equipollent.

Proof: The proof of item (a) works exactly as the proof of Proposition 5.3.2.

(b) Since l and l′ are equipollent we have that there are QLf -isomorphisms [h] : l → l′

and [h′] : l′ → l. Consider the categories Q = l ↓ Ū , Q′ = l′ ↓ Ū , then we have that

B = ([h] ◦−) and B′ = ([h′] ◦−) establish pair of inverses isomorphisms between Q and Q′.

Denoting the “projection functors” K : (l → U) → (l → Ū), K ′ : (l′ → U) → (l′ → Ū), by

the results in Chapter 2, l −mod factors through Kop and l′ −mod factors through K ′op.

The natural comparisons here are given by (h?, id), (h′?, id).

Now we will provide another (diagrammatic) weak notion of equivalence of logics:

Definition 5.3.6. The logics l and l′ are left-stably Morita equivalent when:

• there are concrete functors: Σ′ − str
F

�
F ′

Σ− str;

• there are concrete functors: colimf ′∈(l′→U) QV cod(f ′)
E

�
E′
colimf∈(l→U) QV cod(f);

such that:

• E and E ′ are quasi-inverse equivalence functors;

• the diagram below commutes (and commutes over Set):

Σ′−str

Σ−str colim QV (cod(f))

F F ′

can

colim QV (cod(f ′))

EE′

can′

'
? ?

6 6

�

�

The result below is parallel to Proposition 5.3.2:

Proposition 5.3.7. Let l, l′ be logics. If left(l) ∼= left(l′), then l and l′ are left-stably

Morita equivalent.
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Proof:

Since left(l) and left(l′) are isomorphic then we have that there are B : (l′ −→ U)
∼=→

(l −→ U) isomorphism and τ : left(l′)
∼=⇒ left(l) ◦ B natural isomorphism. Remember

that τ has two components, Proj1(τf ′) : QV (cod(f ′))
∼=→ QV (cod(B(f ′))) and Proj2(τf ′) :

Σ′ − Str
∼=→ Σ − Str for any f ′ ∈ (l′ −→ U) such that Proj2(τf ′1) = Proj2(τf ′2) for all

f ′1, f
′
2 ∈ (l′ −→ U) that we denote just by Proj2(τ). Since B is a isomorphism we have the

concrete isomorphism of categories:

colimf∈(l−→U)QV (cod(f)) ∼= colimf ′∈(l′−→U)QV (B(f ′)).

Therefore there are

colimf ′∈(l′→U) QV cod(f ′)
E

�
E′
colimf∈(l→U) QV cod(f)

such that we have the following diagram commuting:

Σ′−str

Σ−str colim QV (cod(f))

Proj2(τ) Proj2(τ−1)

can

colim QV (cod(f ′))

EE′

can′

'
? ?

6 6

�

�

The Proposition above can be derived from the more general result below:

Proposition 5.3.8. (a) If l and l′ are left Morita equivalent, then l and l′ are left-stably

Morita equivalent.

(b) If l and l′ are left Morita equipollent, then l and l′ are left-Stably Morita equivalent.

We will register the following test of these notion on “well-behaved logics”:

Proposition 5.3.9. Let a0 and a1 be Lindenbaum algebrazaible logics such that a0
∼= a1 ∈

|QAcf |. Then a and a′ are leftc stably Morita equivalent.

Proof:

Let a0

h′

�
h
a1 be a pair of Af -morphisms that are inverse in the quotient category. By

2.2.4 we have that QV (a0)
h′?�
�
h?�

QV (a1) is an isomorphism of categories. Since ai, i = 0, 1

are Lindenbaum algebraizable logics, the comma categories (ai → Ū c) have an initial object

idai : ai → ai, then colimQV (ai) ∼= QV (ai) and the canonical arrow can be identified with

the inclusion Ji : QV (ai) ↪→ αi − Str , then we have the following diagram commuting:
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α′−str

α−str QV (a0)

h? h′?

I0

QV (a1)

h?�h′?�

I1

∼=
? ?

6 6

�

�

Therefore a and a′ are stably-Morita-equivalent.

As a consequence of this proposition, we have a solution for the “identity problem” for

classical propositional logics.

Corollary 5.3.10. The presentations of classical logics are left stably Morita equivalent.

(¬′,∨′)−str

(¬,→)−str BA(¬,→) ∼= colim QV (cod(f))

t? t′?

incl

BA(¬′,∨′) ∼= colim QV (cod(f ′))

t?�t′?�

incl′

∼=
? ?

6 6

�

�

The next proposition give us the first step on the way to measure distinction degrees

between logic, i.e., this propositions tell us that the intuitionistic logic and classical logic are

not left stably-Morita-equivalent, but they are left stably-Morita-adjoint (on the left and on

the right).

Proposition 5.3.11. Concerning the relations between Classical logics and Intuitionist log-

ics:

(a) They are not stably-Morita-equivalent.

(b) But they are (only) stably-Morita-adjointly related on the right and on the left:

I.e. there is a commutative diagram (that commutes over Set)

(¬,∨,∧,→)−str

(¬,∨,∧,→)−str HA ∼= colim QV (cod(f))

id id

incl

BA ∼= colim QV (cod(f ′))

LJR

incl′

?

6 6

�

�

where the diagram with J commutes (and commutes over Set) and there are functors

L,R : HA→ BA such that L a J a R
Proof: (a) Recall that the category BA of Boolean algebras satisfies the the famous “Stone

representation Theorem”: for any B ∈ BA there is a set X and an BA-monomorphism into

the X-power of 2 = {0, 1}, B� 2X ; this representation result is preserved under equivalence
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of categories, however HA, the category os Heyting algebras, has no object with the same

role as 2 in BA.

(b) For instance consider c and i presentations of classical and intuitionist logics in the

signature {¬,∨,∧,→} and BA and HA the categories of Boolean algebras and Heyting

algebras in this signatures. Consider the inclusion functor J : BA ↪→ HA. Then J clearly

satisfies the diagrammatic commutative conditions an, moreover J admits left and right

adjoints:

Let L : HA → BA : H 7→ H/FH , where FH = 〈{a ↔ ¬¬a : a ∈ H}〉 is the filter

generated by the above subset of H. As we recall in chapter 4, the quotient homomorphism

qH : H � J(L(H)) has the universal property. Thus L a J . Alternatively, if Reg(H) =

{a ∈ H : ¬¬a = a} denotes the sub-boolean algebra of regular elements of H, then the map

H � J(Reg(H)), b 7→ ¬¬b is an homomorphism and satisfies the universal property (thus

Reg(H) ∼= L(H)).

On the other hand, let R(H) = {b ∈ H : b ∨ ¬b = 1}, the subalgebra of comple-

mented elements of H: it is a boolean subalgebra. Then the inclusion homomorphism

iH : J(R(H)) ↪→ H has the following co-universal property: for each boolean algebra B

and each HA-homomorphism f : J(B) → H, it has a unique factorization f̃ : B → R(H)

through iH . Thus J a R.

We finish this chapter, with a diagram that summarizes the order relation among the

notions of identities of logics. We abbreviate: Lf -isomorphism (Lf − Iso), Lf -equipollence

(Lf −Ep), Lindenbaum algebraizable equipollence (Acf −Ep), left-diagram-models isomor-

phism (Left − Iso), left Morita equivalence (MorEv), left Motita equipollence (MorEp)

and left-stably Morita equivalence (SMorEv).
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SMorEv

MorEp

MorEv

Left−IsoLf−Ep

Acf−Ep

Lf−iso
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Chapter 6

Conclusion

We have provided a basic background in order to establish a representation theory of

logic. Firstly, we gave preliminaries notions to develop this thesis and the main motivation to

study the categories of logics. A survey on that subject was published in São Paulo Journal

of Mathematical science [Pin15]. We have developed a functorial encoding for morphisms

of algebraizable logics and characterization for two special kinds of morphisms, namely the

dense morphisms and Q(Acf )-isomorphisms. This part of the thesis was submitted in Decem-

ber 2015 to Journal of the IGPL, but one can find it in ArXiv [MP15]. We have introduced

the notion of filter functors and its associated logic as a consequence of the attempting to

generalize the codification presented before. Studying a special kind of filter functor, we

have classified the protoalgebraizable logics, equivalential logics, truth-equational logics and

the algebraizable logics. We also have applied the previous results about filter functors in

order to study the meta-logical Craig entailment interpolation property via amalgamation

in matrices for non-protoalgebraizable logics. At the end of the chapter 3, we have defined

the category of filter functors and its relation with the category of logic Lf . This material

was developed in joint work with Prof. Peter Arndt, Prof. Dr. Ramon Jansana and Prof.

Dr. Hugo Mariano and it is in the final process of typing for a submission [AJMP].

In the sequel we have established the categorial connection between institutions and

π-institutions. It was introduced the institutions for abstract logics, algebraizable logics

and Lindenbaum algebraizable logics. On the institutions for algebraizable logics we have

defined the Glivenko’s context and then the abstract Glivenko’s theorem that restricts to

the traditional Glivenko’s theorem. There is an intermediate preprint about this chapter

that we intend finish and submit within few months [MP].

In the chapter 5 we have presented just first steps toward establish a representation

theory for propositional logics. It was introduced the notion of left diagram model of logics

and the notions of left (stably-)Morita equivalence. This left-side approach is related to the

processes of analysis of logics; the right-hand side is mathematically more involved and it

is related to synthesis processes of logics. As a sample of that the definition of left (staby-

117
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)Morita equivalence may be useful, we have proved that any presentation of classical logic are

stably-Morita equivalent, but the classical and intuitionistic logics are not left stably-Morita

equivalent. On the way to get a “algebraic topology” for logics, i.e., providing mathematical

objects to distinguish logics, we have proved that the classical and intuitionistic logic are

not stably-Morita equivalent, but they are stably-Morita adjoint. The first steps on this

chapter one can find in [MP14].

Future works. Regarding the subject developed in chapter 2, we believe that is possible

get characterizations for others kinds of algebraizable logic morphisms. Another attempt is

establishing a functorial encoding for morphisms in some special logics like protoalgebraiz-

able logics, equivalential logics and truth-equational logics.

In the direction of expanding the work of the chapter 3, we will try to develop the

filter functor theory for non-finitary logics, i.e., replace the definition of filter functor for

algebraic lattices to κ-algebraic lattices, addressing a question posed in [CN14]. Another

theme is studying different meta-logical properties in this framework like Beth property or

other notions of interpolation properties. Still on, classify others special kinds of logics like

weakly-algebraizable logics and implicative logics. Study more about the category of filter

functor and its connection with the category of logic in order to characterize some morphisms

of logics as well as in the chapter 2. Realize what happens when the connection between

category of filter functor and logics is restricted for protoalgebraizable logics, equivalential

logics and truth-equational logics.

We believe we can establish a categorial relation of the categories of institution and

π-institutions with different notions of morphisms we have considered in the chapter 4.

Using the ideas behind of the institutions for algebraizable logics and Lindenbaum alge-

braizable logics, we intend define the institutions for special logics, i.e., protoalgebraizable

logics, equivalential lolgics and truth-equational logics. Thus, generalize more the abstract

Glivenko’s theorem. Connecting the chapter 3 and 4 we intend understand the precise cat-

egorical relation between the category of filter functor and categories of institutions and

π-institutions.

In order to develop the representation theory of logic we just have started in the chapter

5, we intend describe necessary/sufficient conditions for Morita equivalence of logics (and

variants), analyze categories of fractions of categories of logics and define an “algebraic

topology” for logics, i.e., define a general theory of “mathematical invariants” to measure

the degree of distinction among arbitrary propositional logics and develop general methods

of calculation of invariants. One of the goals of developing a representation theory is provide

and work with new notions of “identities” between logics. Finally, we intend present the

precise definition of the right diagram model of a logic that allows one get basic results

analogous to the “left side”: This case is more involved because it needs a 2-categorial

approach.
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