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Resumo

CÁRDENAS, C. C. C. Problemas de deformação em grupoides de Lie. 2018. 120 f.
Tese (Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São
Paulo, 2018.

Nesta tese apresentamos a teoria de deformação de morfismos de grupoides Lie, sub-
grupoides de Lie e grupoides simpléticos, definimos os correspondentes complexos de defor-
mação que controlam as deformações destas estruturas, e usamos estes complexos para desen-
volver o argumento de Moser em cada um destes contextos. Também aplicamos esta teoria ao
caso de morfismos de grupos de Lie e subgrupos de Lie obtendo resultados de rigidez de tais
estruturas. Ademais, no caso de grupoides simpléticos, definimos uma função entre a coho-
mologia diferenciável e a cohomologia de deformação do grupoide, que é interpretada como o
análogo global da aplicação i : H∗π(M) −→ H∗def ((T ∗M)π) definida por Crainic and Moerdijk
(2004) que relaciona a cohomologia de Poisson da estrutura de Poisson induzida na base M
do grupoide com a cohomologia de deformação do algebroide de Lie (T ∗M)π associado à
estrutura de Poisson.
Palavras-chave: Deformações, grupoides de Lie, subgrupoides, grupoides simpléticos.
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Abstract

CÁRDENAS, C. C. C. Deformation problems in Lie groupoids. 2018. 120 f. Tese
(Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,
2018.

In this thesis we present the deformation theory of Lie groupoid morphisms, Lie sub-
groupoids and symplectic groupoids. The corresponding deformation complexes governing
such deformations are defined and used to investigate a Moser argument in each of these
contexts. We also apply this theory to the case of Lie group morphisms and Lie subgroups
obtaining rigidity results of these structures. Moreover, in the case of symplectic groupoids,
we define a map between the differentiable and deformation cohomology of the underlying
groupoid, which is regarded as the global counterpart of a map i : H∗π(M) −→ H∗def ((T ∗M)π)

defined by Crainic and Moerdijk (2004) which relates the (Poisson) cohomology of the Poisson
structure on the base M of the groupoid to the deformation cohomology of the Lie algebroid
(T ∗M)π associated to it.

Keywords: Deformations, Lie groupoids, subgroupoids, symplectic groupoids.
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Chapter 1

Introduction

The aim of this thesis is studying the relation between two areas: Lie groupoids (and
related concepts) and deformation theory. More concretely, this work concerns mainly on the
deformation theory of several compatible structures associated to Lie groupoids, including
symplectic groupoids.

In the last decades, Lie groupoids have obtained a notable relevance in physics and mathe-
matics due to the understanding they brought to many different topics, e.g., Poisson geometry,
algebraic geometry, Dirac geometry, non-commutative geometry, among others (Coste et al.
(1987), Bursztyn et al. (2004), Bailey and Gualtieri (2016), Weinstein (1996) and references
therein). Nowadays, the Lie theory in the Lie groupoids level is a very active research area
exploring either its relations with nearby topics or the algebraic/geometrical concepts build
on it. Briefly, a Lie groupoid is a (smooth) small category where all its morphisms are in-
vertible. They generalizes the notions of Lie groups (all morphisms with source and target
in the same object), Lie group bundles and manifolds (every point (object) of the manifold
with a unique morphism starting on it). As with Lie groups, there exist the notions of Lie
groupoid morphisms and Lie subgroupoid thought of/defined as (smooth) functors between
the underlying categories and (smooth) subcategories of the Lie groupoid (or immersive in-
jective morphisms of Lie groupoids). These notions are, together with symplectic groupoids,
the main structures which we will work in this thesis on.

Symplectic groupoids appear notoriously in independent works, motivated by quantization
problems, by the late 80’s in Karasev (1989); Weinstein (1987); Zakrzewski (1990). They fit as
the elements associated to a class of Poisson manifolds, called integrable Poisson structures,
and are thought of as the desingularization of Poisson manifolds. A symplectic groupoid
consists of a pair (G, ω) made of a Lie groupoid and a symplectic form defined on it, which
satisfies a certain compatibility condition with respect to the multiplication (composition of
the morphisms of the groupoid) of the groupoid.

The deformation problem of these structures offers us another way to understand their
properties. In particular, this problem is linked with some cohomology theories defined on
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2 INTRODUCTION 1.0

them which can be interpretated in terms of the infinitesimal properties of the deformations.
More generally, in a rough way, the deformation theory is the infinitesimal study of a family
of structures in a neighborhood of one of its members. In other words, it is the study of
the “derivative” (or first order approximation) of the setting determining the family of struc-
tures. It is a general “principle” in deformation theory that such a “derivative”, as illustrated
since early works on deformations on Lie algebras and complex structures (Kodaira (2006);
Nijenhuis and Richardson Jr (1966)) and remarked by many others, is controlled by an ap-
propriate cohomology theory, in the sense that this “derivative” corresponds to a cocycle in
that cohomology. With this point of view, such cocycles are thought of as vectors tangent
to the families at one of its “points” (members of the family); which leads us heuristically to
regard the corresponding cohomology group (of the appropriate degree) as the tangent space
to the set of such structures at one fixed structure. Due to this interpretation, the elements of
such a cohomology group are also called the infinitesimal deformations of the structure. One
well-known application of such infinitesimal deformations is given by the so-called Moser’s
path method. This technique allows us, based on some regularity conditions on the infinitesi-
mal deformations, and by using the flow of a time-dependent vector field, to say when we have
a family (path) of “isomorphic” structures. Pioneers examples of applications of the Moser
argument go back to the 60’s to the geometry of differential forms; in particular, Moser’s
method in symplectic geometry is the one most widely known (see e.g McDuff and Salamon
(1998)). But more recently, many other interesting applications of this method have appeared,
Crainic and Fernandes (2011); Crainic and Struchiner (2013); Marcut (2013), proving some
rigidity and linearizability conditions of important structures such as Lie groupoids and Pois-
son structures; remarking thus the key role of this method in deformation theory.

In this direction, some of the main results presented in this thesis study the infinitesimal
behaviour of the deformations of Lie groupoids attached with some additional and compatible
data. We show the space of its corresponding infinitesimal deformations and use it to apply
a “Moser’s trick”-argument in each of these contexts. The results obtained in that way, as
stated below, can be (roughly) compared with a basic principle of Calculus: a differentiable
function whose derivative vanishes in all points is constant.

Following the setting described above, and under some regularity conditions, the results
take the forms below for morphisms and Lie subgroupoids.

Theorem 1 (Morphisms)
Let φ : (H, N) −→ (G,M) be a morphism between two Lie groupoids with injective imersive

base map. Assume that N is compact and φε is a deformation of φ such that its associated
deformation cocycles are exact in a smooth manner. Then φε is a trivial deformation of φ.

Theorem 2 (Subgroupoids)
Let H ⊂ G be a compact Lie subgroupoid of the Lie groupoid G and {Hε}ε be a deformation

of H as subgroupoid of G such that its associated cocycles are exact in a smooth manner. Then
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{Hε}ε is a trivial deformation of H.

In each of the theorems above, the expression “trivial deformation” has different meanings.
It refers to types of deformations which are always canonically defined and which correspond
to trivial (constant) curves in the moduli space of the structure being considered. For instance,
in the case of morphisms, a trivial deformation of φ is one of the form φε = ϕε ◦ φ where ϕε
is a smooth one parameter family of inner automorphisms of G. In the case of subgroupoids
triviality of a deformation has a similar meaning.

For symplectic groupoids, besides equivalence under automorphisms of the groupoid which
are symplectomorphisms, we are led to consider also gauge transformations of the multiplica-
tive symplectic structure induced by pullbacks of closed 2-forms on the base (Chapter 4).

Theorem 3 (Symplectic groupoids I)
Let (G, ω) be a compact symplectic groupoid and {(Gε, ωε)}ε be a deformation of (G, ω)

such that its associated cocycles are exact. Then {(Gε, ωε)}ε is determined, up to gauge trans-
formations, by pulling back the structure on (G, ω) by a smooth family of diffeomorphisms of
G which comes from the flow of a vector field.

Or slightly modifying the deformation complex involved (and therefore the transgressions
of the cocycles) in the case of symplectic groupoids, we describe a groupoid version of the
classical Moser theorem:

Theorem 4 (Symplectic groupoids II)
Let (G, ω) be a compact symplectic groupoid and {(Gε, ωε)}ε be a deformation of (G, ω)

such that its associated cocycles are exact. Then each (Gε, ωε) is symplectomorphic to (G, ω)

by a smooth family of isomorphisms of groupoids.

Another important point developed in this thesis, and strongly related to the work de-
scribed above, is the study of the rigidity properties of the structures being deformed. That is,
the resilience of a structure to varying under (small) deformations. Important results in this
topic (within the Lie theory context) have been obtained in several works including: Nijenhuis
(1968); Nijenhuis and Richardson Jr (1967); Richardson et al. (1967); Richardson Jr et al.
(1969); Crainic et al. (2014) for Lie algebras, Lie groups, Lie subalgebras, morphisms of Lie al-
gebras and, more recently, under some compactness conditions, for Lie groupoids Crainic et al.
(2015a). As shown in chapter 3 of this thesis, several of the results in chapter 2, when put into
the context of Lie groups, give us an alternative way to look at the rigidity question of Lie
subgroups and Lie group morphisms (already worked in Coppersmith (1977) and Lee (1974),
respectively).

Theorem 5 (Rigidity of morphisms)
Let φ : H −→ G be a morphism of Lie groups and assume that H is compact. Then φ is

rigid.
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Theorem 6 (Rigidity of Lie subgroups)
Every compact Lie subgroup is rigid.

The last main result of this thesis treats about symplectic groupoids and integrable Poisson
structures. Let us denote (M,π) an integrable Poisson manifold. In Crainic and Moerdijk
(2004) the authors define a map

i : Hπ(M) −→ Hdef ((T ∗M)π)

which relates the Poisson cohomology and the deformation cohomology of the Lie algebroid
(T ∗M)π associated to that Poisson structure. Note that every deformation of π induces a
deformation of the cotangent Lie algebroid (T ∗M)π. However, not every deformation of the Lie
algebroid (T ∗M)π is by deformations of the Poisson structure. The deformations of (T ∗M)π

which comes from deformations of π give rise to cocycles in the image of i. If G is a symplectic
groupoid, we define a map

iG : H∗diff(G) −→ H∗def (G)

between the differentiable cohomology to the deformation cohomology of the underlying Lie
groupoid. This map provides a global interpretation of the map i when G is a (s-connected)
symplectic groupoid integrating π. The fact that the map i is an infinitesimal manifestation
of the map iG is reflected by the commutativity of the following diagram.

Hk
diff(G) Hk

def (G)

Hk(T ∗M) Hk
def (T ∗M).

yV E

iG

V E

i

This map iG also turns out to have a relation with deformation theory of symplectic
groupoids: inside of its image are the deformation cocycles of the underlying deformations of
Lie groupoids corresponding to deformations by symplectic groupoids.

Organization of the thesis

This thesis is separated into four parts, chapters 2, 3, 4 and 5. In each of the chapters we
include a preliminary section which contains the material used in the rest of the chapter and
thesis.

Chapter 2 discusses the deformation theory of morphisms of Lie groupoids and Lie sub-
groupoids. We explain the corresponding deformation cohomologies and the way they encoded
the deformations, then we use Moser’s argument in these contexts. Also we develop the the-
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ory of simultaneous deformations of a triple consisting of two Lie groupoids and a morphism
between them.

In chapter 3, the deformation theory of Lie groupoid morphisms and subgroupoids is
used in the context of Lie groups to obtain rigidity results of Lie group morphisms and Lie
subgroups.

In chapter 4 we start working with symplectic groupoids. We define deformations of sym-
plectic groupoids and explain how the Bott-Shulman total complex is related to this type of
deformations. A groupoid version of the classical Moser’s theorem in symplectic geometry is
discussed in this chapter.

In chapter 5, we define a map iG : H∗diff(G) −→ H∗def (G) for a symplectic groupoid G ⇒M

and we prove that, when (M,π) is the (integrable) Poisson structure induced on M , this map
iG can be viewed as the global counterpart of the map i : H∗π(M) −→ H∗def ((T ∗M)π) defined
by Crainic and Moerdijk in (Crainic and Moerdijk (2004)).
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Chapter 2

Deformation of morphisms and
subgroupoids

2.1 Groupoids, algebroids and deformation of Lie groupoids

We start by giving a brief description of the notions involved in this chapter. Let G ⇒M

be a Lie groupoid, denote by s, t, m, i and u the source, target, multiplication, inversion and
unit of G, respectively. We will write m(g, h) = gh e i(g) = g−1 when the context is clear, and
identify x ∈ M with the corresponding unity u(x) ∈ G. For g ∈ G, write g : x → y meaning
s(g) = x and t(g) = y.

If g : x→ y, there is a right translation

Rg : s−1(y)→ s−1(x), Rg(h) = hg;

and analogously a left-translation Lg : t−1(x) → t−1(y), Lg(h) = gh, between the t-fibers.
We denote their differentials, respectively, by rg and lg. With this, X ∈ X(G) is a right-
invariant vector field if ds(Xg) = 0 and Xhg = rg(Xh) for all (h, g) ∈ G(2). Observe that the
subset of right-invariant vector fields Xr(G) ⊂ X(G) has a C∞(M)-module structure given by
f ·X := (t∗f)X. Further, Xr(G) ⊂ X(G) is a Lie subalgebra.

Just as a Lie group G has an associated Lie algebra g, Lie groupoids also can be studied
infinitesimally giving rise to the notion of Lie algebroid. The Lie algebroid of G, AG , and is
determined (like g) by the Lie algebra of right-invariant vector fields on G. More precisely, AG
is the vector bundle (T sG)|M over M , where T sG := Ker(ds : TG −→ s∗TM) and M ⊂ G is
viewed as the units of G. In this way, there is a map Γ(AG) −→ Xr(G), α 7−→ ~α : g 7→ rg(αt(g));

which is easily seen to be an isomorphism of C∞(M)-modules inducing then a Lie bracket on
Γ(AG). The vector field ~α is called the right-invariant vector field associated to α. The vector
bundle AG is also equipped with a vector bundle map ρ : AG −→ TM given by the restriction

7



8 DEFORMATION OF MORPHISMS AND SUBGROUPOIDS 2.1

of dt : TG −→ TM to AG ⊂ TG. The map ρ is called the anchor map of AG .
In other words, the Lie algebroid associated to G consists of the pair (AG , ρ) together with

the Lie bracket on sections of AG , induced from that of Xr(G). With this point of view, we
can abstract such a notion of Lie algebroid and to say that a vector bundle A over M is a
Lie algebroid if there exist a vector-bundle map ρ : A −→ TM together with a Lie bracket
on the sections of A in such a way that a Leibniz rule is satisfied:

[α, fβ]Γ(A) = f [α, β] + Lρ(α)(f) · β,

for every α, β ∈ Γ(A) and f ∈ C∞(M). As the reader may expect, AG defined as above is
an example of a Lie algebroid in this more abstract context. More examples can be found in
Moerdijk and Mrcun (2003).

2.1.1 Deformation theory of Lie groupoids

The deformation theory of Lie groupoids was explained in Crainic et al. (2015a). In there,
the authors developed the main aspects of the theory; among other things, they exhibite the
corresponding cohomology attached to deformations of Lie groupoids and use it to give an
application to the rigidity problem of Lie groupoids. We recall now some key facts of this
construction.

Deformations

A smooth family of manifolds {Mε| ε ∈ I} is understood as a manifold M̃ together with
a submersion π̃ : M̃ −→ I, such that Mε is the fiber over ε. One also says that the family
{Mε| ε ∈ I} is smoothly parametrized by I. This notion is the key idea to define deformations
of Lie groupoids:

Definition 2.1.1 (Smooth family of Lie groupoids)
A smooth family of Lie groupoids parametrized by a manifold B, is given by a Lie groupoid
G̃ ⇒ M̃ and a surjective submersion π such that π ◦ s̃ = π ◦ t̃

G̃ ⇒ M̃
π→ B.

In this way, π determines the family of Lie groupoids {Gb| b ∈ B}, where Gb denotes the
restricted groupoid over Mb = π−1(b). One says that the family is proper if G̃ is proper, i.e.,
if s̃× t̃ : G̃ −→ M̃ × M̃ is a proper map.
Two familes G̃ ⇒ M̃

π→ B and G̃′ ⇒ M̃ ′
π′→ B are isomorphic if there exists an isomorphism

of groupoids (F, f) : G̃ → G̃′ compatible with the submersions π and π′ in the sense that
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π′ ◦ f = π. This isomorphism F can be thought of as a family of isomorphisms Fb : Gb −→ G′b
smoothly parametrized by B.

Definition 2.1.2 (Deformation of Lie groupoids)
Let G ⇒ M be a Lie groupoid with structural maps s, t, m, i, u. A deformation of G is a
smooth family of Lie groupoids G̃ parametrized by an open interval I containing zero,

G̃ = {Gε ⇒Mε : ε ∈ I}

such that G0 = G. We denote the structural maps of Gε by sε, tε, mε, iε, uε.

The deformation G̃ of G is called strict if (Gε,Mε) = (G,M) as manifolds, that is, we only
deform the structural maps of G. In other words, (G̃ ⇒ M̃, s̃, t̃) ∼= (G×I ⇒M×I, sε×ε, tε×ε).
In such a case, we can assume G̃ = G × I and it is said to be s-constant if sε does not depend
on ε. The deformation such that Gε = G as groupoids is called the constant deformation of G.
Two deformations G̃ = {Gε ⇒ Mε : ε ∈ I} and G̃′ = {G′ε ⇒ M ′ε : ε ∈ I ′} are locally equivalent
if there exist a family of isomorphisms of groupoids Fε : Gε −→ G′ε, smoothly parametrized by
ε in a open interval containing zero (contained in I ∩ I ′), such that F0 = IdG.

Remark 2.1.3 Consider two locally equivalent deformations G̃ and G̃′. For simplicity and
because around G0 the families G̃ and G̃′ are isomorphic, we will just say that G̃ and G̃′ are
equivalent deformations of G0 (even if I 6= I ′).

With the convention of the last remark, the deformation G̃ is called trivial if it is equivalent
to the constant deformation.

Remark 2.1.4 (Fibrations)
As pointed out in del Hoyo and Fernandes (2016), a deformation of G also can be regarded
in terms of fibrations of Lie groupoids. The data G̃ ⇒ M̃

π→ B involved in the definition of a
deformation of G takes the form

φ : (G̃ ⇒ M̃) −→ (I ⇒ I),

where φ is a fibration of Lie groupoids. In this sense, a strict deformation can be though of
as a fibration φ where the maps between the arrows and the objects are locally trivial. In fact,
two trivializations F1 : G̃ −→ G × I and F0 : M̃ −→ M × I induce a family of Lie groupoid
structures {Gε}ε∈I on the manifold G = G̃0. For instance, the deformation of the source map
is determined by (sε(g), ε) = F0 ◦ s̃ ◦ F−1

1 (g, ε).

Interesting examples of deformations of Lie groupoids are considered in (del Hoyo and Fernandes
(2016), p. 16). As a manner of illustration we sketch here some of them.
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Examples 2.1.5

1. Let G = R2. Consider the family of Lie groups G× R −→ R, (g, ε) 7→ ε given by

(x1, y1) ·ε (x2, y2) := (x1 + x2, y1 + ex1εy2).

Due to the fact that for ε 6= 0 the multiplication ·ε is non-abelian, this is a non-trivial
deformation of G.

2. Consider the family of Lie group actions of R on T2 := R2/Z2, given by:

r ·ε (x1, x2) := (x1 + r, x2 + εr).

Then, if G := R×T2 such a family of actions can be seen as a family of action groupoids
G×R −→ R. This is of course a non-trivial deformation of G since the topology of the
orbits varies with ε.

Cohomology

The fundamental fact of the deformation complex of a Lie groupoid G, (C∗def (G), δG),
is that it governs deformations of G. More precisely, to every deformation one associates a
cohomology class in H2

def (G), and this correspondence has a natural relation with equivalent
deformations of G. The deformation complex is defined as follows.

For any k ∈ N, consider G(k) = {(g1, ..., gk) : s(gi) = t(gi+1)} the manifold of k-strings of
composable arrows, and assume G(0) = M . The space of k-cochains Ckdef (G) is given by

Ckdef (G) =
{
c : G(k) → TG

∣∣∣ c(g1, ..., gk) ∈ Tg1G and c is s-projectable
}
,

where s-projectable means that ds ◦ c(g1, ..., gk) =: sc(g2, ..., gk) does not depend on g1. The
differential of c is defined by

(δc)(g1, ..., gk+1) : = −dm̄(c(g1g2, g3, ..., gk+1), c(g2, ..., gk+1))+

+

k∑
i=2

(−1)kc(g1, ...gigi+1, ..., gk+1) + (−1)k+1c(g1, ..., gk),

where m̄ : Gs ×s G −→ G, m̄(g, h) = gh−1 is the division map of G.
For k = 0, C0

def (G) := Γ(A) with differential defined by

δα = −→α +←−α ∈ C1
def (G),

where←−α is the left-invariant vector field on G associated to α defined by←−α (g) := lg(di(αs(g))).
Note that a section of A can be viewed as a map c : G(0) −→ TG, with c(1x) ∈ T1xG such
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that ds ◦ c = 0.
This data in fact defines a cohomology (δ2 = 0) and H∗def (G) denotes the deformation coho-
mology of G.

In this way, for instance, one can describe explicitly the cohomology class [ξ0] ∈ H2
def (G)

associated to an s-constant deformation of G by

ξ0(g, h) :=
d

dε

∣∣∣∣
ε=0

m̄ε(m0(g, h), h), ξ0 ∈ C2
def (G)cl,

where m0 denotes the multiplication of G = G0. The fact that ξ0 is a cocycle is implied
from applying d

dε

∣∣
ε=0

to the associativity property of every m̄ε. The element ξ0 is called the
deformation cocycle of the deformation of G. For deformations which are not necessarily s-
constant, a slightly different approach is used, yielding however a non canonical 2-cocycle,
instead of that one gets (canonically) a 2-cohomology class, which does not depend on the
equivalence class of the deformation (see Section 5.4 in Crainic et al. (2015a)).

Of remarkable importance is the transgression of the 2-cocycle ξ0; when it exists, it plays
a determining role in the rigidity problem of Lie groupoids, as we explained below.

Moser’s trick (towards rigidity):

With the help of the deformation complex one can satisfactorily solve the rigidity question
for Lie groupoids. One key step in this direction is given by the following proposition, which
has the same essence as that of the classical Moser’s theorem of symplectic geometry (see e.g.
McDuff and Salamon (1998) p. 93).

Proposition 2.1.6 Crainic et al. (2015a) Let G̃ = {Gε : ε ∈ I} be an s-constant deformation
of G. Consider the induced cocycles at each time ε, ξε ∈ C2

def (Gε), defined in analogous way
to ξ0 above. Assume that for every ε small enough, there exists Xε ∈ C1

def (Gε) such that

δε(X
ε) = ξε, (2.1)

and that the resulting time-dependent vector field on G, X := {Xε}ε, is smooth. Then, for ε1
and ε2 close to 0, the time-dependent flow ψε2,ε1X is a locally defined morphism from Gε1 to Gε2
covering the flow of {V ε := ds(Xε)}ε.
Additionally, if G is proper, ψε2,ε1X (g) is defined if and only if ψt,sV (s(g)) and ψt,sV (t(g)) are
defined.

This proposition tells us the conditions under which one finds a flow compatible with the
variations of the structural maps of G. However, by considering the structural maps of the
total groupoid G̃, it is obtained the following equivalent version of the proposition.
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Proposition 2.1.7 Crainic et al. (2015a) Consider an s-constant deformation as above. A
one-parameter family Xε of vector fields on G satisfies the cocycle equations (2.1) if and only
if the induced vector field on G̃,

X̃(g, ε) = (Xε(g), 0) +
∂

∂ε
∈ X(G × I),

is multiplicative.

In this way, one knows that the flow of X̃ (when uniformly defined) is given by automor-
phisms of G̃ (Mackenzie and Xu (1997), Prop. 3.5); and the rigidity question of Lie groupoids
is essentially solved by finding a complete vector field like X (or X̃) above (Crainic et al.
(2015a) Thm. 7.1).
Our goal now is to develop the analogous (three) steps above (deformations, cohomology and
Moser’s trick) when working with the deformation theory of Lie groupoid morphisms and Lie
subgroupoids.

2.2 Deformations

When talking about deformations of a structure it is usual to think of a smoothly parametrized
family of such structures. For Lie groupoids, as seen in the previous section, one way to for-
malize the smoothness of such a family is to look at it as the fibers of a submersion. For
morphisms, however, because Lie groupoid morphisms can be regarded simply as functions,
this notion has a simpler description. Given H and G two Lie groupoids and φ : H → G a Lie
groupoid morphism, we call the family {φε}ε∈I a deformation of φ (I an interval containing
the origin) if this is a smooth family of morphisms φε : H → G with φ0 = φ. If {ε 7→ σε} is a
smooth family of bisections of G (i.e. smooth maps σ : M −→ G such that s ◦ σ = idM and
t◦σ is a diffeomorphism ofM) with σ0 = 1G , conjugating φ with each σε yields a deformation
of φ, φε := Iσε ◦ φ (i.e., φε(h) = σε(t(φ(h)))φ(h)σε(s(φ(h)))−1). Such a deformation is called
a trivial deformation of φ. Also, we say that two deformations of φ, {φε}ε and {ψε}ε, are
equivalent if there exist a smooth family of bisections {ε 7→ σε}ε of G, with σ0 = 1G , such that
ψε = Iσε ◦ φε, for all ε.

Example 2.2.1 Let φε : R −→ S1 × S1 ⊂ C2 be the family of morphisms given by

φε(r) := (eir, eir(1+επ)).

This family can be seen as a non-trivial deformation of the non-injective morphism φ0 since
for any ε ∈ Q \ {0} the morphism φε is injective.

Remark 2.2.2 (Fibrations)
A deformation of φ0 : H −→ G can be equivalently described by a morphism Φ between the
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trivial fibrations (H × I ⇒ N × I −→ I ⇒ I) and G × I ⇒ M × I −→ I ⇒ I) covering the
identity such that restricted to the fiber over 0 is φ0. We denote by Φ̄ the induced base-map
between the groupoids H× I and G × I.

We introduce now the notion of deformation of Lie subgroupoids. In order to talk about
the smoothness of a family {Hε ⊂ G}ε of Lie subgroupoids, we think of each Hε coming from
the fiber of a submersion, as in the case of Lie groupoids. In this way, a deformation of H as
subgroupoid will be such smooth family with H ⊂ G being the Lie subgroupoid “over” zero.
More concretely, we have

Definition 2.2.3 (Deformations of Lie subgroupoids)
A strict deformation of the Lie subgroupoid H ⊂ G consists of a strict deformation of H as
Lie groupoid, H̃ = H × I and a morphism, φ : H̃ −→ G, between the Lie groupoids H̃ and
G, which is an injective immersion when restricted to the fibers H̃ε with φ|H̃0

= ι : H ↪→ G.
Analogously we define the s-constant deformations of H ⊂ G as subgroupoid. The deformation
such that H̃ = H × I is the constant deformation as Lie groupoid and φ|H̃ε = ι, for all ε, is
called the constant deformation of H as Lie subgroupoid of G.

Remark 2.2.4 (Fibrations)
Note that, equivalently, a deformation of H ⊂ G as Lie subgroupoid is an injective immersive
morphism φ̃ : H̃ −→ G × I between the fibrations over I ⇒ I, such that when restricted to the
fiber over 0 ∈ I it is the inclusion map, i.e. φ̃

∣∣∣
H̃0

= ι× {0} : H ↪→ G × {0}.

Remark 2.2.5 Similarly we can define general deformations of Lie subgroupoids (that is, non
necessarily strict deformations), it requires to take general deformations of H as Lie groupoid
(Definition 2.1.2 above).

By abuse of notation, we will denote by Hε := φ(H × {ε}) ⊂ G the image of each
fiber H̃ε inside G and we will often write {Hε} or {Hε}φ to denote a deformation of H as
Lie subgroupoid of G. With this, the constant deformation of H as a subgroupoid satisfies
Hε = H ⊂ G for all ε.

Convention: Observe now that given a Lie subgroupoid H ⊂ G, one can deform it as a
Lie groupoid and as a Lie subgroupoid; in this context {H̃ε}ε will denote the deformation as
a Lie groupoid.

Example 2.2.6 There are some simple ways to produce examples of deformations; as with
deformations of morphisms, we can take a smooth family of bisections of G and to obtain a
deformation of a subgroupoid H looking at the images Iσε(H) for every ε. Or more generally,
one can take a smooth family of automorphisms {Fε}ε of G, with F0 = IdG, and look at the
images Fε(H) ⊂ G, for every ε.
In a certain sense, which will be clear with Theorems 2.5.6 and 2.5.8, these two types of
deformations are the simplest ones.
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Strictly speaking, a Lie subgroupoid is an equivalence class of injective immersive mor-
phisms (represented by a subset of the ambient groupoid). In the context of deformations
of Lie subgroupoids this implies the situation of two deformations {(H̃, φ)} and {(H̃′, ψ)} to
have the same images inside G ((φε(H̃ε) = ψε(H̃′ε) for all ε). Geometrically, we expect these
two deformations to be “the same”. More generally, we have the following notion of equivalence
of deformations.

Definition 2.2.7 (Equivalence of deformations)
We say that two deformations {Hε} and {H′ε} of H ⊂ G are equivalent if there exists a smooth
family of bisections {σε} of G with σ0 = 1G, such that H′ε = Iσε (Hε) for every ε small enough.
A deformation is said to be trivial if it is equivalent to the constant deformation. That is, a
deformation is trivial when it is of the form Hε = Iσε (H), for some family of bisections with
ε small enough.

Remark 2.2.8 Note that, due to the injectivity of φε := φ|H̃ε in definition 2.2.3, two de-
formations {Hε}φ and {H′ε}ψ are equivalent if, and only if, there exists a unique family of
isomorphisms {Fε : Hε → H′ε} such that

ψε ◦ Fε = Iσ(ε) ◦ φε, for ε small enough.

Since every ψε is an immersion, such a family is smooth.

2.3 Deformation complexes

In this section we define the cohomology theories corresponding to each type of the de-
formations introduced above.

2.3.1 Deformation complex of morphisms

The deformation complex of a morphism was briefly discussed in Crainic et al. (2015a).
We recall now its definition. Let (H ⇒ N, s′, t′) and (G ⇒ M, s, t) be two Lie groupoids and
(φ, ϕ) : H −→ G a morphism between them.

For any k ∈ N, consider H(k) = {(h1, ..., hk) : s′(hi) = t′(hi+1)} the manifold of k-strings
of composable arrows of H and H(0) = N . The space of k-cochains Ckdef (φ) is given by

Ckdef (φ) =
{
c : H(k) → TG

∣∣∣ c(h1, ..., hk) ∈ Tφ(h1)G and c is s-projectable
}
,

where s-projectable means that the s-projection of c, ds ◦ c(h1, ..., hk) =: sc(h2, ..., hk) ∈
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Tt(φ(h2))M , does not depend on h1. The differential of c is defined by

(δφc)(h1, ..., hk+1) : = −dm̄G(c(h1h2, h3, ..., hk+1), c(h2, ..., hk+1))+

+
k∑
i=2

(−1)kc(h1, ...hihi+1, ...hk+1) + (−1)k+1c(h1, ..., hk),

where m̄G : Gs ×s G −→ G, m̄G(g, h) = gh−1 is the division map of G.
For k = 0, C0

def (φ) := Γ(ϕ∗AG) and the differential is

δφα = −→α +←−α ∈ C1
def (φ),

where −→α (h) = rφ(h)(αt(h)) and ←−α (h) = lφ(h)(di(αs(h))).

The fact that δ2
φ = 0 can be shown in a similar way to the proof that δ = 0 for the

deformation complex of Lie groupoids; so δφ in fact defines a cohomology and H∗def (φ) denotes
the deformation cohomology of φ. Observe that H∗def (IdG) = H∗def (G).

Remark 2.3.1 Note that there are natural cochain maps between the deformation complexes
(of Lie groupoids and morphisms):

Ckdef (H)
φ∗→ Ckdef (φ)

φ∗← Ckdef (G)

defined by
(φ∗c)(h1, ..., hk) := (dφ)h1(c(h1, ...hk)), c ∈ Ckdef (H); and

(φ∗α)(h1, ..., hk) := α(φ(h1), ..., φ(hk)), α ∈ Ckdef (G).

In the case k = 0 the cochain-map φ∗ is denoted by ϕ∗ (recall that ϕ is the induced map on
the units), to make sense with the definition of C0

def (φ) = Γ(ϕ∗AG). Similarly, if K ψ→ H is
another Lie groupoid morphism, one can define a cochain-map ψ∗ : C∗def (φ) −→ C∗def (φ ◦ ψ).

Remark 2.3.2 As a special case, if φ above is bijective, there is an inverse φ# of φ∗,

φ# : C∗def (φ) −→ C∗def (G), φ#(T̂ )(g1,...,gk) := T̂(φ−1(g1),...,φ−1(gk)).

Similarly, if φ∗ is the map between deformation complexes of morphisms (see remark 2.3.1),
the analogously defined map φ# : C∗def (φ ◦ ψ) −→ C∗def (φ) is an inverse of φ∗.

2.3.2 Deformation complex of Lie subgroupoids

If H ι
↪→ G is a Lie subgroupoid, the deformation complex of the Lie subgroupoid H ⊂ G,

C∗def (H ⊂ G), is defined as the quotient complex induced by the injection C∗def (H)
ι∗
↪→ C∗def (ι).
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That is, we have the exact sequence of complexes

0→ C∗def (H)
ι∗−→ C∗def (ι) −→ C∗def (H ⊂ G)→ 0, (2.2)

where the injectivity of i∗ is implied by the injectivity of dhι : ThH −→ Tι(h)G for all
h ∈ H. Denote by δ̄ the differential of C∗def (H ⊂ G) induced from the differential δ of C∗def (ι).

We show now that these cohomologies have the expected role in the deformation theory
of its respective structures.

2.4 Infinitesimal cocycles associated to deformations

In this section we explain the relation between deformations of morphisms and Lie sub-
groupoids and the corresponding deformation cohomologies. Such a connection, in the case
of morphisms, is initially given by Proposition 2.4.1.

Let φ0 : H → G be a Lie groupoid morphism. Assume that {φε}ε∈I is a deformation of
φ0. We define the associated 1-cochain, X̃0 ∈ C1

def (φ0), by

X̃0(h) :=
d

dε

∣∣∣∣
ε=0

φε(h) ∈ Tφ0(h)G. (2.3)

Proposition 2.4.1 The 1-cochain X̃0 ∈ C1
def (φ0) in 2.3, is a 1-cocycle. The corresponding

cohomology class in H1
def (φ0) depends only on the equivalence class of the deformation.

Proof. For the first part, it suffices to take derivatives at ε = 0 of the morphism condition
satisfied by each φε, φε(m̄H(gh, h)) = m̄G(φε(gh), φε(h)). In fact, we get

X̃0(g)− dm̄G(X̃0(mH(g, h)), X̃0(h)) = 0,

which says that X̃0 is a 1-cocycle.
Take now {ψε = Iσ(ε) ◦ φε} an equivalent deformation of φ0 and denote X̃ ′0 the associated

cocycle. The exactness of X̃ ′0 − X̃0 comes from taking derivatives at ε = 0 of the equivalence
condition ψε = Iσ(ε) ◦ φε. Thus, it suffices to use the chain rule and look at the expression
d
dε

∣∣
ε=0

Iσε . Therefore, the proof follows from the next lemma. ♦

Due to the previous proposition, the element X̃0 is also called the infinitesimal cocycle
associated to the deformation {φε}ε.

Lemma 2.4.2 If {φε} is a trivial deformation of (φ0, φ̄0), its infinitesimal cocycle X̃0 is
exact.

Proof. Assume φε = Iσε ◦ φ0, for σε a smooth family of bisections of G with σ0 = 1G . Then,
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d

dε

∣∣∣∣
ε=λ

(Iσε ◦ φ0)(h) =
d

dε

∣∣∣∣
ε=λ

m
(
σε(t(φ0(h)))·φ0(h), σλ(s(φ0(h)))−1

)
+

d

dε

∣∣∣∣
ε=λ

m
(
σλ(t(φ0(h)))·φ0(h), σε(s(φ0(h)))−1

)
=

d

dε

∣∣∣∣
ε=λ

Rφ0(h)σλ(s(φ0(h)))−1(σε(φ̄0(t(h))))

+
d

dε

∣∣∣∣
ε=λ

Lσλ(φ̄0(t(h)))φ0(h)(σε(φ̄0(s(h)))−1)

= rIσλ◦φ0(h)

(
d

dε

∣∣∣∣
ε=λ

(σε(φ̄0(t(h))) · σλ(φ̄0(s(h)))−1)

)
+ lIσλ◦φ0(h)

[
di

(
d

dε

∣∣∣∣
ε=λ

(σε(φ̄0(t(h))) · σλ(φ̄0(s(h)))−1)

)]
.

Define then the family of sections {αλ ∈ Γ(AG)}λ by

αλϕλ(x) :=
d

dε

∣∣∣∣
ε=λ

(
σε(x)σλ(x)−1

)
, for each λ, (2.4)

where ϕλ is the map on the unit space of G associated to the automorphism Iσλ . Thus, by
taking the family of pullback sections, ᾱε := (ϕε ◦ φ0)∗αε ∈ C0

def (Iσε ◦ φ0 = φε) we get

d

dε

∣∣∣∣
ε=λ

(Iσε ◦ φ0)(h) = δIσλ◦φ0(ᾱl)(h).

Take now λ = 0 to finish the proof. ♦

Remark 2.4.3 Note that since a deformation {φε} of φ0 can be seen as a deformation of φλ
for any λ ∈ I, the corresponding X̃λ ∈ C1

def (φλ) is also a cocycle. Thus, the previous proof
shows even more, namely, that in a trivial deformation every X̃λ is exact. However, this fact
also follows from a simple observation: if {φε} is a trivial deformation of φ0, {φε} also can be
regarded as a trivial deformation of φλ for any λ ∈ I; namely, φε = Iσε?σ−1

λ
◦ φλ, where ? is

the product in the group of bisections of G, given by (σ ? τ)(x) = σ(t(τ(x)))τ(x); for x ∈M ,
and σ and τ bisections of G. Hence, in this case, every associated cocycle X̃λ is also exact.

Similarly, we can study analogue results by considering deformations of Lie subgroupoids.
Just as in the situation described in Subsection 2.1.1 for deformations of Lie groupoids, it
turns out that s-constant deformations of Lie subgroupoids have a more direct and explicit
relation with their corresponding deformation complexes. Due to that, below we will work
with s-constant deformations, exhibiting such a direct approach for them, and the general
case of non necessarily s-constant deformations will be considered in Section 2.8.

Let {Hε}φ be an s-constant deformation of H ⊂ G. We define the associated 1-cochain,
X0 ∈ C1

def (H0 ⊂ G), by X0 := [X̄0] (the class of X̄0 in the quotient space C1
def (H ⊂ G) =
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C1
def (ι)

ι∗C1
def (H)

), where

X̄0(h) :=
d

dε

∣∣∣∣
ε=0

φε(h) ∈ Tι(h)G, (X̄0 ∈ C1
def (ι)).

The element X0 is called the infinitesimal cocycle associated to the deformation {Hε}φ of
H ⊂ G. This terminology is justified by the following

Proposition 2.4.4 The 1-cochain X0 ∈ C1
def (H ⊂ G), defined above, is a 1-cocycle. The

corresponding cohomology class in H1
def (H ⊂ G) depends only on the equivalence class of the

deformation.

Proof. For some λ fixed, consider the compatibility condition satisfied by each φε of {Hε}φε ,

φε(mε(mλ(h, k), k)) = mG(φε(mλ(h, k)), φε(k)),

where m̄ε and mε denote the division and multiplication maps on Hε, respectively. Note that
in this expression it is fundamental the fact of taking an s-constant deformation. By applying
d
dε

∣∣
ε=λ

, we get

−dmG
(
X̄λ(mλ(h, k)), X̄λ(k)

)
+ X̄λ(h) = −dφλ(ξλ(h, k))

= − [(φλ)∗ξλ] (h, k).

That is,
δφλ(X̄λ) = −(φλ)∗ξλ ∈ (φλ)∗C

1
def (H̃λ).

Thus,
δφλ(Xλ) = 0,

and hence λ = 0 gives rise to the fact that X0 is a 1-cocycle of C1
def (H0 ⊂ G).

Take now {H′ε}ψε a deformation of H ⊂ G equivalent to {Hε}φε , and denote by X ′0 its
infinitesimal cocycle. By remark 2.2.8, this amounts to have φε ◦ Fε = Iσε ◦ ψε; for some
unique smooth families of isomorphisms Fε : H̃′ε −→ H̃ε, and of bisections of G, {σε}ε, with
F0 = IdH and σ0 = 1G . The exactness of X0 −X ′0 comes from differentiatin at ε = 0 of such
an equivalence condition φε◦Fε = Iσε ◦ψε. Thus, it suffices to use the chain rule and to look at
the trivial deformation. Therefore, the proof follows from the following lemma, which shows
that a trivial deformation has an exact infinitesimal cocycle. ♦

Lemma 2.4.5 If {Hε}{φε} is a trivial deformation of H ⊂ G, its infinitesimal cocycle X0 is
exact.

Proof. By remark 2.2.8, {Hε}φ being a trivial deformation means that

φε ◦ Fε = Iσε ◦ ι,
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for families Fε : H −→ H̃ε and σε ∈ Bis(G) with F0 = IdH and σ0 = 1G . In this way, by
taking derivative with respect to ε, we see that

X̃λ(Fλ(h)) + dφλ(
d

dε

∣∣∣∣
ε=λ

Fε(h)︸ ︷︷ ︸
=:T̂λ

) =
d

dε

∣∣∣∣
ε=λ

Iσε ◦ ι(h)

= δIσλ◦ι(ᾱ
λ)(h) (Proposition 2.4.2 with φ0 = ι).

In other words, we have

X̃λ(Fλ(h)) = δIσλ◦ι(ᾱ
λ)(h) −

(
(φλ)∗T̂λ

)
(h)

; T̂λ ∈ C1
def (Fλ)

= δIσλ◦ι(ᾱ
λ)(h) − ((φλ)∗(F

∗
λTλ))(h) ; Tλ ∈ C1

def (H̃λ)

= δφλ◦Fλ(ᾱλ)(h) − (F ∗λ (φλ)∗Tλ)(h)

= (F ∗λ ◦ δφλ ◦ (Fλ)#) (ᾱλ)(h) − (F ∗λ (φλ)∗Tλ)(h) ,

where in the last equality we use that F ∗λ and (Fλ)# are cochain maps.
Thus, by applying (Fλ)#, we get

X̃λ(h) = δφλ(α̃λ)(h) − ((φλ)∗Tλ)(h) ; α̃λ := (Fλ)#(ᾱλ) ∈ C0
def (φλ).

That is, the 1-cocycle Xλ = [X̃λ] ∈ C1
def (Hλ ⊂ G) is exact: Xλ = [δφλ(α̃λ)] = δ̄φλ [α̃λ]. ♦

2.5 Moser’s trick

In this section we describe Moser’s deformation argument in the context of morphisms of
Lie groupoids and Lie subgroupoids. We begin with morphisms. First, a technical remark.

Remark 2.5.1 Note that, in the context of Lie groups, if φε : H −→ G is a family of
morphisms of Lie groups, one has C0

def (φε) = g for all ε ∈ I, so talking about the smoothness
of the family of 0-cochains {uε ∈ C0

def (φε)}ε simply amounts to talking of the smoothness
of a family of elements in g. However, the situation in the context of Lie groupoids is a
bit different. If {(φε, φ̄ε) : H −→ G}ε is a smooth family of morphism of Lie groupoids,
C0
def (φε) = ΓN (φ̄∗εAG), where N is the unit space of H; so the space of 0-degree cochains

depends on the base map of the morphism. In this sense, we will say that a family of 0-cochains
{ᾱε ∈ C0

def (φε)}ε is smooth if the section ᾱ ∈ ΓN×I(φ̄
∗AG̃) defined by ᾱ(x, ε) := (ᾱε(x), ε) is

smooth; where G̃ = G × I and (φ, φ̄) is the morphism between the groupoids H̃ ⇒ N × I and
G̃ ⇒M × I such that restricted to the fiber over ε is (φε, φ̄ε).

Theorem 2.5.2 Let (φ0, φ̄0) : (H ⇒ N) → (G ⇒ M) be a morphism of Lie groupoids.
Assume that φ̄0 is an injective imersion and N is compact. If the associated cocycle Xε = d

dεφε
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is exact in a smooth manner, then the deformation {φε} is trivial.

Remark 2.5.3 The smooth exactness condition of the 1-cocycles Xε is just another way to
say that Xε = δφε(ᾱ

ε), where ᾱε is a smooth family of 0-cochains in the sense of Remark
2.5.1.

Proof. For this proof we use the notations of Remark 2.5.1 above. On the one hand, note
that φ̄(N×I) is a closed embedded submanifold ofM×I. In fact, since N is compact φ̄0 is an
embedding, thus, after shrinking I if necessary, the map φ̄ : N × I −→M × I is an injective
imersion, and also an embedding due to the fact that each φ̄ε is an embedding. Moreover,
the compactness of N also implies that φ̄(N × I) is closed inside M × I. On the other hand,
since φ̄ is injective then the section ᾱ ∈ Γ(φ̄∗AG̃) can be regarded as a section of AG̃

∣∣
φ̄(N×I).

Therefore, the section ᾱ can be extended to a section α of all AG×I . Choose the extension in
such a way that its support is contained in an open subset U × I ⊂ M × I, where U ⊂ M

is an open subset containing φ̄0(N) with compact closure Ū . Note that this extended section
has the form α(x, ε) = αε(x), with αε ∈ Γ(AG) extending ᾱε ∈ Γ(φ̄∗εAG).

In this way, each Xε = δφε(ᾱ
ε) is the restriction of the vector field Zε := δG(αε) ∈ C1

def (G)

to φε(H) ⊂ G. In fact,

Xε(h) = δφε(ᾱ
ε)(h) = rφε(h) (ᾱε(t(h))) + lφε(h) (di(ᾱε(s(h))))

= rφε(h)

(
αε(φ̄ε(t(h)))

)
+ lφε(h)

(
di(αε(φ̄ε(s(h))))

)
= rφε(h) (αε(t ◦ φε(h))) + lφε(h) (di(αε(s ◦ φε(h))))

= δG(αε)(φε(h)).

(2.5)

Now, consider the time-dependent vector field −→α := {−→α ε} on G, and denote by ψt1,t0 its
(time-dependent) flow. Due to the compactness of Ū and the vanishing of the sections outside
U , the flow ψε,0 is defined on all M for ε samll enough. Let σε be the family of bisections of G
given by, by σε(x) := ψε,0(x) for x ∈M , and consider the associated deformation {Iσε ◦ φ0}ε
of φ0. We will show now that φε = Iσε ◦φ0, for ε small enough, which will completes the proof.

In fact, by Lemma 2.4.2, the deformation {Iσε ◦ φ0}ε has exact associated cocycles. Namely,

Yλ(h) :=
d

dε

∣∣∣∣
ε=λ

Iσε(φ0(h))

= rIσλ (φ0(h))

(
αλϕλ(t(φ0(h)))

)
+ lIσλ (φ0(h))

(
di(αλϕλ(s(φ0(h))))

)
= δIσλ◦φ0(α̂λ)(h),

(2.6)
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where α̂λ = (ϕλ ◦ φ̄0)∗αλ ∈ ΓN ((ϕλ ◦ φ̄0)∗AG) and, as before, ϕλ is the base map associated
to Iσλ . Hence, Yλ is the restriction of δG(αλ) to (Iσλ ◦ φ0)(H):

δG(αλ)(Iσλ◦φ0)(h) = rIσλ (φ0(h))

(
αλ
t(Iσλ◦φ0(h))

)
+ lIσλ (φ0(h))

(
di
(
αλ
s(Iσλ◦φ0(h))

))
.

Summarizing, by (2.5), Xλ can be viewed as a restriction of Zλ; and similarly, by (2.6), Yλ as a
restriction of Zλ. In other words, (2.5) and (2.6) tell us that {ε 7→ φε(h)} and {ε 7→ Iσε ◦ φ0(h)}
are integral curves of the time-dependent vector field, {Zε}ε, passing through φ0(h) ∈ G at
time ε = 0. Therefore, φε(h) = Iσε(φ(h)) for all ε small enough. ♦

Remark 2.5.4 In the previous proof we could have extended the section ᾱ to another α′ 6= α,
getting a family of bisections {σ′ε} 6= {σε}. With this other family we would arrive at the same
conclusion because they agree when restricted to φ̄0(N), i.e., σε(x) = σ′ε(x), for all x ∈ φ̄0(N).

In fact, their values over φ̄0(N) are determined by the elements ᾱε, as expression 2.4 shows.
Therefore, the proof does not depend on the choice of the extension α.

For Lie subgroupoids we also have a result analogous to that of Theorem above. Before
stating it we make a definition in the same spirit as remark 2.5.1.

Let {Hε}{φε} be a deformation of H ⊂ G. Note that, by definition, the subgroupoid
deformation complex in degree zero for each Hε ⊂ G is C0

def (Hε ⊂ G) = ΓN (ϕ∗εAG)
ΓN (ϕ∗εAHε )

. In this
way,

Remark 2.5.5 Assume {[α̃ε]}ε∈I is a family of 0-cochains, [α̃ε] ∈ C0
def (Hε ⊂ G). We say

that {[α̃ε]}ε∈I is a smooth family if there exist representing α̂ε ∈ [α̃ε] such that {α̂ε}ε is a
smooth family of cochains in the sense of remark 2.5.1.

Theorem 2.5.6 Let {H̃ε}ε
{φε}→ G be a s-constant deformation of H ⊂ G, with H compact. If

each associated cocycle Xε = [X̃ε] is exact and equal to δ̄φε([α̃ε]), with {[α̃ε]}ε a smooth family
of cochains, then {Hε}ε is trivial.

Proof. If Xε = [X̃ε] = δ̄φε([α̃
ε]) in a smooth way, by the remark above, we have

X̃λ(h) = δφλ(α̃λ)(h) − ((φλ)∗Tλ)(h) , for some Tλ ∈ C1
def (H̃λ), for any λ.

Moreover, smoothness of {α̃ε}ε implies smoothness of the time-dependent vector field T :=

{Tε}ε defined on H̃0 = H. Then, by applying δφλ to the expression above, we get

−(φλ)∗ξλ = −(φλ)∗(δH̃λTλ).

Or equivalently, by injectivity of (φλ)∗,

δλTλ = ξλ;
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which says that the (time-dependent) flow of T = {Tε}ε gives rise to Lie groupoid isomor-
phisms Fε : H̃0 −→ H̃ε, ε ∈ J ⊂ I (Proposition 2.1.6).

Now, define ψε := φε ◦ Fε. We will show that {(H̃0, ψε)}ε∈J is a trivial deformation of
H ⊂ G, completing the proof (the family {Fε}ε will give us the equivalence between {Hε}ψε
and {Hε}φε).

In fact, note that {ψε}ε is a deformation of the inclusion morphism ι : H −→ G, and
looking at the associated cocycles, X̃ ′λ ∈ C1

def (ψλ), we have

X̃ ′λ(h) = X̃λ(Fλ(h)) + ((φλ)∗Tλ)(Fλ(h))

= δφλ(α̃λ)(Fλ(h))

= δφλ◦Fλ(ᾱλ)(h) = δψλ(ᾱλ)(h), where ᾱλ := F ∗λ α̃
λ ∈ C0

def (ψλ).

Hence, by Theorem 2.5.2, we get ψε = Iσε ◦ ι, that is, {ψε}ε is trivial. ♦

Looking again to examples 2.2.6, note that another point of view of triviality of deforma-
tions can be considered. For instance, a family of elements in Aut(G) determines a deformation
of a given morphism φ0 : H −→ G and a Lie subgroupoid H ⊂ G. In this direction, we want
now to adapt the main results above to the context of all automorphisms of G. That is, to use
Aut(G) to define trivial deformations, instead of just the subgroup of inner automorphisms.
In this sense, a trivial deformation of φ0 will be a deformation of the form {φε = Fε ◦ φ0}ε,
where {Fε}ε is a smooth family of elements in Aut(G), with F0 = IdG ; and similarly we define
trivial deformations of Lie subgroupoids.

For the following result we use the notations of remark 2.2.2.

Proposition 2.5.7 Let (φ, φ̄) be a deformation of (φ0, φ̄0), with φ̄ injective and G compact.
If the map in cohomology φ∗ : H1

def (G × I) → H1
def (φ) is surjective, the deformation φ is

trivial with respect to Aut(G).

Proof. Since φ∗ is surjective, there exist a cocycle Ẑ ∈ C1
def (G×I)(= Xs×prI−proj(G×I)) and

a cochain ᾱ ∈ C0
def (φ) such that X̃ − φ∗(Ẑ) = δφ(ᾱ). Then, by extending ᾱ to a section of

AG×I , there exists Z̄ ∈ C1
def (G × I)cl (i.e. Z̄(g, ε) = (Zε(g), f(s(g), ε)) for some smooth family

{Zε}ε ⊂ C1
def (G)cl, and some f ∈ C∞(M × I)) which satisfies

d

dε
φε(h) = X̃ε(h) = Zε(φε(h)).

Hence, if Fε := ψε,0 are the automorphisms of G coming from the flow of the time-
dependent vector field on G, Z := {Zε}ε, we get Fε(φ0(h)) = φε(h). That is, the deformation
is trivial. ♦
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A similar result for Lie subgroupoids also holds. Consider the projection between com-
plexes π : C∗def (φ)→ C∗def (φ(H× I) ⊂ G × I).

Theorem 2.5.8 Let {Hε}{φε} = {Hε}φ be a s-constant deformation of H ⊂ G, with H and G

compact. If the map H1
def (G × I)

π◦(φ)∗→ H1
def (φ(H× I) ⊂ G × I) is surjective, the deformation

{Hε}φ is trivial with respect to Aut(G).

Proof. The proof follows an analogue idea to that of Theorem 2.5.6. Let [X̄] ∈ C1
def (φ(H×

I) ⊂ G × I) be the cocycle defined by the deformation {Hε}φ, that is, X̄(g, ε) := (X̄ε(g), ε)

where [X̄ε] ∈ C1
def (Hε ⊂ G) is the family of cocycles corresponding to the deformation. From

surjectivity of π ◦φ∗ it follows that there exists Z̄ ∈ C1
def (G×I)cl, Z̄(g, ε) = (Zε(g), f(s(g), ε))

(note that Zε ∈ C1
def (Gε)cl), such that

[(φ)∗Z̄]− [X̄] = δ̄φ([ᾱ]); ᾱ ∈ C0
def (φ),

i.e.
(φ)∗Z̄ − X̄ − (φ)∗T̄ = δφ(ᾱ); T̄ ∈ C1

def (H̃) (T̄ (h, ε) = (Tε(h), r(s(h), ε)),

which implies,
(φε)

∗Zε − X̄ε − (φε)∗Tε = δφε(ᾱ
ε), ∀ε ∈ I, (2.7)

where ᾱ(x, ε) = (ᾱε(x), ε).

Then, as in proof of Theorem 2.5.6, by extending ᾱ to a section α of AG×I , α(x, ε) =

(αε(x), ε), we get that δφε(ᾱε) can be viewed as the restriction of the field Wε := δ(αε) ∈
C1
def (G)cl.

In other words, equation (2.7) becomes

X̄ε = (φε)
∗Ẑε − (φε)∗Tε; Ẑε := Zε −Wε ∈ C1

def (G)cl. (2.8)

Applying δφε to (2.8)
−(φε)∗ξε = δφεX̄ε = −(φε)∗δεTε.

Thus, by injectivity of (φε)∗, the vector field T ∈ X(H̃), T (h, ε) = (Tε(h), 0) + ∂
∂ε

∣∣
(h,ε)

,
on H̃ is multiplicative. Take {Gε : H̃0 → H̃ε} the family of isomorphisms induced by the
flow of T , and define ψε := φε ◦ Gε. We claim that {(H̃0, ψε)}ε is a trivial deformation of
H ⊂ G, which completes the proof. In fact, note that {ψε}ε is a deformation of the inclusion
morphism. Thus, looking at the associated cocycles X̃ε ∈ C1

def (ψε), we have

X̃ε(h) :=
d

dε
ψε(h) = X̄ε(Gε(h)) + [(φε)∗Tε](Gε(h)) =

(
(φε)

∗Ẑε

)
(Gε(h))

= Ẑε(ψε(h)),



24 DEFORMATION OF MORPHISMS AND SUBGROUPOIDS 2.6

where we use (2.8) in the third equality.
Therefore, from previous proposition, ψε = Fε ◦ ι, where {Fε} are the automorphisms of G

induced by the flow of the multiplicative vector field on G, {Ẑε}ε. Thus, the family {Fε}ε gives
us the equivalence between the deformations {Hε}ψε and {Hε}φε . That is, the deformation of
H ⊂ G given by {(H̃ε, φε)}ε is trivial (w.r.t. Aut(G)). ♦

2.6 Simultaneous deformations

Following the spirit developed so far in studying deformations of morphisms and sub-
groupoids (definitions, deformation complex and Moserťs argument), we can now study the
key facts of the most general case of deformations: given the triple of objects H φ−→ G, where
φ is a morphism of groupoids, we want to deform each of the structures at the same time,
keeping the compatibility between them. That is, we want a family of triples {Hε

φε−→ Gε}ε∈I ,
where {Hε}ε∈I and {Gε}ε∈I are deformations of H and G respectively, and {φε}ε∈I is a smooth
family of morphisms. In this way, we have the natural notion of equivalence of deformations.

Definition 2.6.1 (Equivalent deformations)
Let {Hε

φε−→ Gε}ε and {H′ε
ψε−→ G′ε}ε be two deformations of the triple H φ−→ G. We say

that they are equivalent if the deformations of H and G are equivalent in such a way that
the corresponding deformations of morphisms are related by those equivalences, up to inner
automorphisms. More explicitely, an equivalence is a family of triples {Fε, Gε, σε}ε∈I where
{Fε : Hε −→ H′ε}ε and {Gε : Gε −→ G′ε}ε are smooth families of isomorphisms and {σε :

M −→ G}ε∈I is a smooth family of maps with σε a bisection of the groupoid Gε for every ε,
such that they satify

G−1
ε ◦ ψε ◦ Fε = Iσε ◦ φε

for all ε small enough.

In this sense, a deformation {Hε
φε−→ Gε}ε of H φ−→ G is said to be trivial if Iσε ◦ φ =

G−1
ε ◦ φε ◦ Fε for ε small enough, where {Fε : H −→ Hε}ε and {Gε : G −→ Gε}ε are families

of isomorphisms of groupoids and σε is a smooth family of bisections of G.

Deformation complex and Moser’s trick

Consider the diagram of cochain maps explained in Remark 2.3.1. Out of this data, we
construct the complex which controls the deformations of the triple H φ−→ G as follows. Take
the mapping-cone complex associated to the cochain map φ∗,

MC∗(φ∗) = C∗+1
def (H)⊕ C∗def (φ) (2.9)

with differential δMC(φ∗)(c, Y ) = (δHc, φ∗c− δφY ). Note now that the map φ∗ in Remark
2.3.1 induces a cochain map φ̃∗ : C∗def (G) −→ MC∗(φ∗) putting zero in the first compo-
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nent, φ̃∗ : c 7−→ (0, (−1)deg(c)c). Take now the mapping-cone associated to φ̃∗, getting the
deformation complex of the triple,

C∗+1
def (H, φ,G) := MC∗(φ̃∗) = MC∗(φ∗)⊕ C∗+1

def (G)

= C∗+1
def (H)⊕ C∗def (φ)⊕ C∗+1

def (G),

with differential δ(c,X, c̄) =
(
−δHc, δφ(X)− φ∗c+ (−1)deg(c̄)φ∗c̄, δG c̄

)
.

In this way, given a deformation {Hε
φε−→ Gε}ε of {H φ−→ G}, by computations similar

to those in Proposition 2.4.1 and Proposition 2.4.4, we get that (ξH,−X, ξG) is a 2-cocycle
in C∗def (H, φ,G), where ξH and ξG are the respective deformation cocycles for H and G, and
X = d

dε

∣∣
ε=0

φε is the usual cochain (Section 2.4) associated to a deformation of morphisms.
In fact, that (ξH,−X, ξG) is a cocycle follows by applying d

dε

∣∣
ε=0

to the compatibility of

{Hε
φε−→ Gε}ε:

d

dε

∣∣∣∣
ε=0

φε(m̄Hε(gh, h)) =
d

dε

∣∣∣∣
ε=0

m̄Gε(φε(gh), φε(h))

⇐⇒ X(g) + φ∗ξH(g, h) = ξG(φ(g), φ(h)) + dm̄G(X(gh), X(h))

⇐⇒ δφ(X) + φ∗ξH − φ∗ξG = 0.

The fact that the corresponding cohomology class of (ξH,−X, ξG) only depends on the equiv-
alence class of the deformation is also an analogous computation. Thus, we pass now to
establish the main result concerning this type of most general deformations.

Theorem 2.6.2 Let {Hε
(φε,φ̄ε)−→ Gε}ε be a deformation of (H φ−→ G), with H and G com-

pact, and φ̄ε injective for every ε. If the family of associated cocycles {(ξHε ,−Xε, ξGε) ∈
C2
def (Hε, φε,Gε)}ε is transgressed by a smooth family of cochains {(Yε, α̃ε, Zε) ∈ C1

def (Hε, φε,Gε)}ε,

then the deformation {Hε
φε−→ Gε}ε is trivial.

Proof. Exactness of the family of cocycles amounts to

ξHε = −δHεYε;

−Xε = δφε(α̃ε)− φ∗Yε − φ∗Zε;

ξGε = δGεZε.

By the first and third equation, if ϕε and ψε are the time-dependent flows starting at zero
of the vector fields {−Yε}ε and {Zε}ε respectively, then they define the equivalences with the
corresponding constant deformations of Lie groupoids. We claim that these equivalences can
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be used to prove the triviality of {Hε
φε−→ Gε}ε. In fact, by using Theorem 2.5.2, we will show

that the family of morphisms {fε := ψ−1
ε ◦ φε ◦ ϕε}ε is a trivial deformation in the sense of

the definition at the beginning of Section 2.2. Note that such a family satisfies,

d

dε
fε(h) =

(
d

dε
ψ−1
ε

)
(φε ◦ ϕε(h)) + dψ−1

ε (Xε(ϕε(h)))− d(ψ−1
ε ◦ φε) (Yε(ϕε(h)))

= −dψ−1
ε (Zε(φε ◦ ϕε(h))) + dψ−1

ε (Xε(ϕε(h)))− dψ−1
ε [dφε (Yε(ϕε(h)))]

= dψ−1
ε

[
Xε(ϕε(h))− ((φε)∗Yε)(ϕε(h)) − (φ∗εZε)(ϕε(h))

]
= −dψ−1

ε (δφε(α̃ε)(ϕε(h))) (by transgression equations above)

= −dψ−1
ε (δφε◦ϕε(ᾱε)(h)) (ᾱε = ϕ∗ε α̃ε)

= −δψ−1
ε ◦φε◦ϕε(αε)(h) (αε = −(ψ−1

ε )∗ᾱε)

= δfε(αε)(h),

where the second equality follows from the fact that ( ddεψ
−1
ε )(ψε(h)) + dψ−1

ε (Zε(ψε(h))) = 0

(apply d
dε to ψ

−1
ε ◦ ψε = Id). Therefore, by Theorem 2.5.2, ψ−1

ε ◦ φε ◦ ϕε = Iσε ◦ φ, for ε small
enough, as claimed. ♦

2.7 Particular cases and relation between (sub)complexes

In view that the complex C∗def (H, φ,G) concerns the most general type of deformations of
the three structures (H, φ,G), in this section we consider particular cases of deformations of
the triple and we look at their relation with some subcomplexes of C∗def (H, φ,G). We begin
by the simplest case.

2.7.1 H and G fixed

In this case, we get a deformation of a Lie groupoid morphism. Of course, a deformation
{φε}ε of φ can be viewed as a deformation {H φε−→ G}ε of the triple (H, φ,G). This fact is
expressed, in cohomological terms, by the injection C∗def (φ) −→ C∗def (H, φ,G)

X 7→ (0,−X, 0).

Moreover, this map takes the infinitesimal cocycle of {φε}ε to the infinitesimal cocycle of
{H φε−→ G}ε. Therefore, in this case, the relevant subcomplex controlling deformations of this
type is given by {0} ⊕ C∗def (φ)⊕ {0}.
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2.7.2 G fixed

In this case, the relevant subcomplex is C∗+1
def (H) ⊕ C∗def (φ) ⊕ {0}. In fact, it is not

hard to see that a deformation like {(Hε, φε,G)}ε is governed by the mapping-cone com-
plex MC∗((φ0)∗) (see (2.9)) (associate the cocycle (ξH,−X) ∈ C2

def (H)⊕C1
def (φ)). Thus the

(injective) chain map MC∗(φ∗) −→ C∗def (H, φ,G)

(c,X) 7→ (−1)deg(c)(c,X, 0) (2.10)

shows that the subcomplex C∗+1
def (H)⊕ C∗def (φ)⊕ {0} controls the deformations of the triple

when we fix the groupoid G.
Important examples of this type of deformations are given by deformations of Lie sub-

groupoids {Hε ⊂ G}φε . Therefore, the injection (2.10) above reflects, in cohomological terms,

the fact that a deformation of subgroupoids {Hε}{φε} induces the deformation {(Hε
φe−→ G)}ε

of the triple (H, ι,G). In terms of the complex MC∗(φ∗) above, we obtain the following
proposition whose proof is similar to that of Theorem 2.6.2.

Proposition 2.7.1 Let {H̃ε}ε
{φε}−→ G be an s-constant deformation of H ⊂ G, with H com-

pact. If the family of associated cocycles {(ξHε ,−Xε) ∈ C2
def (Hε)⊕C1

def (φe)}ε is transgressed
by an smooth family of cochains {(Tε, αε)}ε, the deformation {Hε ⊂ G}ε is trivial.

Note the analogy of the statement above with that of Theorem 2.5.6. In fact, by using the
fact that every (φε)∗ is injective, it is not hard to see that the condition of {[X̄ε] ∈ C1

def (Hε ⊂
G)}ε being transgressed by an smooth family is equivalent to the one of {(ξHε ,−X̄ε)}ε being
transgressed by an smooth family of cochains (this is not true in general for any deformation

{Hε
φe
G}ε of the triple (H, φ,G): the smoothness of the family of primitives of (ξHε ,−X̄ε) would

not be guaranteed just by assuming the smoothness of the family of primitives of [X̄ε]). In
this sense, Theorem 2.5.6 and Proposition 2.7.1 above prove the same thing, with the same
assumptions, in terms of two different complexes. We prove now that these two complexes
have the same cohomology.

Proposition 2.7.2 Let ι : H ↪→ G be the inclusion map of the subgroupoid H. The short
exact sequence (2.2) determined by the deformation complex of subgroupoids induces an iso-
morphism, F : H∗def (H ⊂ G) −→ H∗(MC(ι∗)), between the deformation cohomology of
H ⊂ G as subgroupoid and the cohomology of the mapping-cone complex of the cochain-map
ι∗ : C∗def (H) −→ C∗def (i)

Proof. In order to define F , we look at its action on cocycles. Let [c] ∈ Ckdef (H ⊂ G) be a
cocycle. By the exactness of

0→ C∗def (H)
ι∗−→ C∗def (ι) −→ C∗def (H ⊂ G)→ 0, (2.11)



28 DEFORMATION OF MORPHISMS AND SUBGROUPOIDS 2.8

in C∗def (H ⊂ G), there exists an element in Ckdef (ι) which projects to [c]; assume it is c. Thus
δφ(c) ∈ Ck+1

def (ι) projects to zero in Ck+1
def (H ⊂ G). Therefore, δφ(c) = ι∗(ξ), for an unique

element ξ ∈ Ck+1
def (H). In this way, we define F by,

F([c]) := [(ξ,−c)] ∈ Hk(MC∗(ι∗)).

The fact that (ξ,−c) ∈ Ck+1
def (H)⊕Ckdef (ι) = MCk(ι∗) is a cocycle follows from the injectivity

of ι∗. To check that F is well-defined and injective is a straightforward computation. An inverse
for F is given by I([(ξ, c)]) := [−c], which is well-defined and injective (a straightforward
computation again). ♦

Remark 2.7.3 Following the arguments of the previous proof, one has in fact a general prop-
erty for any injective chain map Φ : A −→ B between complexes: there is an isomorphism
between the cohomology groups of the cokernel complex of Φ and the ones of the mapping-cone
complex of Φ.

Thus, in view of Proposition 2.7.1 and Proposition 2.7.2, we can regard the complex
MC∗(ι∗) as another complex controlling deformations of subgroupoids.

2.8 General deformations

In this section we show how the correspondence ‘deformations-cocycles’, explained in
Section 2.4, for strict deformations of Lie subgroupoids also apply for general deformations
of Lie subgroupoids (remark 2.2.5). That is, we associate a cohomology class to a general
deformation of subgroupoids.

In view that this process is similar to that described in Crainic et al. (2015a) for general
deformations of Lie groupoids, we indicate here the main steps for the case of Lie subgroupoids.

Let

(H̃ Ñ I) (G × I M × I I)s̃

t̃

π φ s× idI
t× idI

prI (2.12)

be a general deformation of H ⊂ G as subgroupoid. Take X̃ ∈ X(H̃) a tranverse vector field
for H̃ (i.e., X̃ projects by s̃ to a vector field on Ñ which in turn projects to the vector field
∂/∂ε ∈ X(I)). Then, if we denote by prG : G × I −→ G the projection to G and by H̃0 the
fiber of H̃ over 0, the element X̄ ∈ C∗def (i) defined by

X̄ := ( (prG)∗(φ)∗X̃ )|H̃0

induces the cocycle X := [X̄] ∈ C1
def (H ⊂ G). In fact, by (Crainic et al. (2015a), Prop. 5.12),

δH̃(X̃) ∈ C2
def (H̃) restricted to H̃0 is tangent to H̃0 ⊂ H̃, therefore δφ(φ∗X̃) = φ∗(δH̃(X̃)) ∈

C2
def (φ) when restricted to H̃0 ⊂ H̃ is tangent to ι(H̃0) ⊂ G. Thus, due to the fact that
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δφ(φ∗X̃)
∣∣∣
H̃0

=

(
δι

(
((prG)∗φ∗X̃)

∣∣∣
H̃0

)
, 0

)
, we get that δι(X̄) ∈ C2

def (ι) is tangent to ι(H̃0 ⊂

G); that is, X = [X̄] is a cocycle in C1
def (H ⊂ G). The corresponding cohomology class of X

is called the associated cohomology class of the deformation (H̃, φ). That this class does not
depend on the choice of the tranverse vector field is proved in a similar way to that of (iii)

in Proposition 5.12 of Crainic et al. (2015a).
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Chapter 3

Application: Rigidity of Lie group
morphisms and Lie subgroups

This chapter aims to use the deformation theory developed in the previous work in the con-
text of the Lie groups theory. This will give us, under compactness conditions, rigidity results
for Lie group morphisms and Lie subgroups in relation with those made in Nijenhuis and Richardson Jr
(1967) and Coppersmith (1977). For that we will express several of the previous results in
the language of Lie groups, which provides a more direct analogy with the arguments of the
classical Moser’s trick in symplectic geometry. In particular, this will indicate that for the case
of Lie group morphisms and Lie subgroups, the space of cochains of the Lie group complex is
the analogue to the space of forms on M (the space cochains of the de Rham complex), and
the deformation cocycles are the analogue to the cocycles d

dεωε ∈ Ω2
dR(M) appearing in the

classical Moser’s theorem. The last section of this chapter explains the rigidity results and
compares them with some related works existing in the literature.

3.1 Lie group cohomology

In this section we briefly recall the Lie group complex associated to a representation V
of a Lie group G, and describe the representations useful for our purposes. Having in mind
the classical Moser’s theorem in symplectic geometry, in our approach, the corresponding Lie
group cohomology can be seen as the analogue to the de Rham cohomology, they will play
the same role as the de Rham cohomology groups for deformations of symplectic forms on a
manifold, as explained in McDuff and Salamon (1998). As in the previous sections, we study
deformation problems in an infinitesimal way. In this sense, to each deformation, we associate
certain cocycles which preserves the infinitesimal information, and look at its corresponding
cohomology classes. With this in mind, we now describe the relevant cohomology theory for
us: the Lie group cohomology.
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Let G be a Lie group and ρ : G → GL(V ) be a representation of G. The cochain
complex of G with coefficients in V is defined as follows: the cochains Ck(G,V ) of degree
k are given by the smooth functions of Gk with values in V , C∞(Gk, V ), with differential
δρ : Ck(G,V )→ Ck+1(G,V ) described by

δρc(g1, ...gk+1) := ρ(g1)c(g2, ..., gk+1) +
k∑
i=1

(−1)ic(g1, ...gigi+1, ...gk+1)

+ (−1)k+1c(g1, ..., gk).

For any representation ρ of G, we have δ2
ρ = 0; the resulting cohomology is denoted by

Hk
ρ (G,V ).
For this chapter, the following examples will be useful for us.

Example 3.1.1 Take V = g, the Lie algebra associated to G, along with the adjoint repre-
sentation of G, Ad : G −→ GL(g). We denote the differential by δ, and the cohomology by
H∗(G, g).

Example 3.1.2 Take V = g. If φ : H → G is a morphism, ρ = Ad ◦ φ : H → GL(g) is
a representation of H. In this case, we denote the differential by δφ and the cohomology by
H∗φ(H, g).

Example 3.1.3 Let H ⊂ G be a Lie subgroup of G, take V = g/h, where h ⊂ g is the Lie
subalgebra associated to H. We have a representation of H on g/h induced by the represen-
tation of H on g of previous example (with φ = ι : H ↪→ G). In this case, we denote the
differential by δ (again) and the cohomology by H∗(H, g/h).

Remark 3.1.4 Note that, by putting together the previous two examples, if φ : H → G is
a morphism and h is the Lie algebra of H, one also obtains a complex with differential and
cohomology that we denote by δ̄φ and Hk

φ(H, g/h̃) respectively, where h̃ is the Lie subalgebra
of φ(H).

Remark 3.1.5 Observe that, with the same notation of the previous remark, there is a natural
cochain-map between these complexes:

φ∗ : C∗(H, h)→ C∗φ(H, h̃) ⊂ C∗φ(H, g).

3.2 Deformations of morphisms and Lie subgroups

For clarity, in this section we adapt the definition of deformation of Lie groupoids, mor-
phisms and Lie subgroupoids to the context of Lie groups. We start by considering the key
facts of deformation of Lie groups.

Let G be a Lie group with multiplication m : G×G→ G.
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Definition 3.2.1 A deformation of the Lie group G, {(G,mε)}ε∈I , is a smooth family of
maps {mε : G × G → G} with m0 = m (i.e. a deformation of the map m), such that every
(G,mε) is a Lie group. We denote the Lie group (G,mε) by G̃ε. The deformation such that
mε = m0 for all ε is called the constant deformation of G.

Example 3.2.2 If {Fε : G → G} is a smooth family of bijective functions with F0 an auto-
morphism of G, one obtains a deformation {mε} by makingmε(g, h) := F−1

ε (m(Fε(g), Fε(h))).
In other words, this deformation is determined by the flow of a time-dependent vector field
(the one induced by the family {Fε}ε). This type of deformation is called a trivial deformation
of the Lie group (see definition below).

Definition 3.2.3 (Equivalence of deformations) Two deformations of G, {G̃ε} and {G̃′ε} are
called equivalent if there exists a smooth family, {Fε}, of isomorphisms Fε : G̃ε → G̃′ε such
that F0 = IdG. The deformation {G̃ε} is said to be trivial if it is equivalent to the constant
deformation. The Lie group G is called rigid if any deformation of G is trivial.

Remark 3.2.4 If {G̃ε} is a deformation of G, one can always assume that the identity of
G remains fixed by the deformation. (We can always build an equivalent deformation which
keeps the identity fixed).

There is a natural cochain map Φ which relates the deformation cohomology of G to the
group cohomology of the adjoint representation of G. Namely Φ : Ckdef (G) −→ CkAd(G, g),

Φ(c)(g1, ..., gk) = rg−1
1

(c(g1, ..., gk)).

Note that Φ is an isomorphism.
Now we pass to give an infinitesimal description of deformations of Lie groups, by following

the general principle of deformation theory: associate to every deformation a deformation
cocycle in an appropriate cohomology. In this case, such a cocycle is a rewriting of that
of deformation of Lie groupoids determined by the isomorphism Φ. Namely, given {G̃ε} a
deformation of the Lie group G, its deformation cocycle is:

ξ0(g, h) := −r−1
m0(g,h)

(
d

dε

∣∣∣∣
ε=0

mε(g, h)

)
∈ TeG ≡ g.

By its definition, ξ0 has the infinitesimal information of the deformation close to G0, and it
is one of the main ingredients to study the rigidity question for Lie groups, as shown below.
To see that ξ0 is in fact a 2-cocycle it suffices to take derivative at ε = 0 of the associativity
property of the multiplication mε. Similarly, one can consider the 2-cocycles, ξε, in time
different from ε = 0.
The rigidity question for Lie groups is based on the following proposition whose proof we
sketch in order to motivate the proofs of the rigidity results of morphisms and Lie subgroups
below.
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Proposition 3.2.5 Crainic et al. (2015a) Let {G̃ε} be a deformation of the compact Lie
group (G,m0). Consider the (smooth) family of deformation cocycles {ξε ∈ C2(G̃ε, g)}. If
there exists a smooth family, {Xε ∈ C1(G̃ε, g)}ε, of primitives of {ξε}, i.e., elements such that
δεXε = ξε, the deformation is trivial.

Proof. Given the family {Xε : G ∼= G̃ε → g}, we can construct a family of vector fields on
G, {X̄ε := rεg(Xε(g))}, where rε is the right translations on G̃ε. The family of isomorphisms
Fε : G −→ Gε arisen as the flow of the time-dependent vector field {X̄ε}ε∈I gives rise to the
equivalence of the deformations. ♦

Remark 3.2.6 Note that, in the previous proof, the cohomological condition δεXε = ξε is
which guarantees that the induced flow is by isomorphisms of Lie groups.

Therefore, by using the homotopy operator of the Lie group complex (which exists if the
Lie group is compact) is obtained the following

Corollary 3.2.7 (?, Thm. 7.1)
Every compact Lie group is rigid.

We now define deformations of Lie group morphisms and Lie subgroups. Given H, G
Lie groups and φ : H → G a Lie group morphism, we call the family of maps {φε}ε∈I a
deformation of φ if this is a smooth family of morphisms φε : H → G with φ0 = φ. Clearly,
if {ε 7→ gε} is a smooth curve in G with g0 = e ∈ G then, by conjugating φ by every gε, one
obtains a deformation of φ, φε := Igε ◦ φ. This is called a trivial deformation of φ. Also, we
will say that two deformations of φ, {φε} and {ψε}, are equivalent if there exist a smooth
curve {ε 7→ gε} in G, with g0 = e, such that ψε = Igε ◦ φε, for all ε. The morphism φ is called
rigid if any deformation of φ is trivial.

The definition for Lie subgroups is as follows. Let H ⊂ (G,m) be a Lie subgroup, then
(H, m|H) is a Lie group, where m|H : H ×H → H.

Definition 3.2.8 A deformation of H ⊂ G as Lie subgroup is a deformation of m|H as Lie
group, {H̃ε}, together with a smooth family of injective morphisms {φε : H̃ε → G} with
φ0 = ι : H ↪→ G. We will denote this deformation by {Hε}φ or by {Hε} when there is
no confusion. The deformation such that H̃ε = H and φε = ι will be called the constant
deformation of H, i.e., Hε = H for all ε.

Definition 3.2.9 (Equivalence of deformations of Lie subgroups) Given two deformations
{Hε} and {H ′ε} of H ⊂ G as Lie subgroup. We will say they are equivalent if there exist a
smooth curve gε in G, with g0 = e, such that H ′ε = Igε(Hε) for every ε ∈ I. The deformation
is said to be trivial if it is equivalent to the constant deformation. The subgroup H is called
rigid if every deformation of H is trivial.
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Remark 3.2.10 Note that, by the injectivity of φε, if two deformations {Hε}φε and {H ′ε}ψε
are equivalent there exist a unique family of isomorphisms {Fε : Hε → H ′ε}ε such that

ψε ◦ Fε = Ig(ε) ◦ φε;

and since every ψε is an immersion, this family is smooth. (Recall that injective morphism of
Lie groups is also an immersion).

We now apply the ‘general principle’ of deformation theory to deformations of morphisms
and subgroups.

3.2.1 Relation with deformation complexes and associated cocycles

Analogous to the deformation complex of a Lie group G, if φ0 : H −→ G is a morphism
of Lie groups, there exists a natural cochain-map Ψ : C∗def (φ0)

∼=−→ C∗φ0(H, g) given by
Ψ(c)(h1, ..., hk) = r−1

φ0(h1)(c(h1, ..., hk)). Then if {φε}ε∈I is a deformation of φ0, we have the
following 1-cocycle in C∗φ0(H, g) associated to the deformation

X̃0(h) := r−1
φ0(h)

d

dε

∣∣∣∣
ε=0

φε(h),

which is the image by Ψ of the deformation 1-cocycle associated to {φε}ε. The element X̃0 will
be also called the infinitesimal cocycle associated to the deformation {φε}. Hence, Proposition
2.4.1 is translated as follows.

Proposition 3.2.11 Let {φe}ε be a deformation of φ0. The corresponding cohomology class
in H1

φ0
(H, g) of the cocycle X̃0 defined above, depends only on the equivalence class of the

deformation.

For Lie subgroups the situation is similar: since the cochain-map Ψ defined above (making
φ0 = ι : H ↪→ G) restricts to Ψ|C∗def (H) : C∗def (H) −→ C∗(H, h), the map Ψ induces the

isomorphism of complexes Ψ̄ : C∗def (H ⊂ G) −→ C∗ι (H,g)
C∗(H,h) ; and this latter complex is clearly

related to C∗(H, g/h) by the isomorphism F : C
∗
ι (H,g)

C∗(H,h) −→ C∗(H, g/h),

F([c])(h1, ..., hk) = [c(h1, ..., hk)]g/h.

Therefore if {Hε}φ is a deformation of H ⊂ G, the deformation cocycle of {Hε}φ has
image (by F ◦ Ψ̄) X0 ∈ C1(H, g/h) given by X0(h) = [X̃0(h)]g/h, where

X̃0(h) := r−1
ι(h)

d

dε

∣∣∣∣
ε=0

φε(h) ∈ g, (X̃0 ∈ C1
ι (H, g)).

The cocycle X0 will be also called the infinitesimal cocycle associated to the deformation
{Hε}φ of H ⊂ G. Thus, proposition 2.4.4 turns,
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Proposition 3.2.12 Let {Hε}φ be a deformation of H ⊂ G. The corresponding cohomology
class in H1

ι (H, g/h) of the cocycle X0, above described, depends only on the equivalence class
of the deformation.

3.2.2 Rigidity

In order to prove the rigidity results for Lie group morphisms as an application of the
deformation theory of morphisms of groupoids, we write the Theorem 2.5.2 in the language
of Lie groups theory.

Proposition 3.2.13 Let {φε} be a deformation of φ0 : H → G. If every associated 1-cocycle
X̃ε is exact and equal to δφε(u

ε), with {uε}ε a smooth family of elements in g, then the
deformation {φε}ε is trivial.

Theorem 3.2.14 (Rigidity of morphisms)
Let φ : H −→ G be a morphism of Lie groups. If H is compact, φ is rigid.

Proof. Let {φε} any deformation of φ. If H is compact, each H1
φε

(H, g) vanishes. One prim-
itive of X̃ε is given by uε = −

∫
H X̃ε(h) dh ∈ g, where the integral is taken w.r.t. the Haar’s

measure of H. Thus, since X̃ε is a smooth family (X̃ε : H → g), the family of elements {uε}
of g is smooth. Now, apply the previous proposition. ♦

Remark 3.2.15 In Lee (1974) was already studied a little different notion of rigidity of mor-
phisms of Lie groups. There, the author considers the action of G on Hom(H,G) (the set of
continuous homomorphisms) given by g · φ := Ig ◦ φ and says that φ is rigid if the orbit Oφ
of φ is an open subset of Hom(H,G) with the compac-open topology. Thus, such a notion of
rigidity of φ implies that any deformation of φ is of the form Igε ◦ φ, for gε a curve in G.
However this curve gε is not necessarily smooth. Therefore, this notion of rigidity does not
necessarily imply the ours. Conversely, if φ is rigid in the sense of our notion, still that any
small curve in Hom(H,G) starting at φ is inside the orbit of φ, we can not guarantee that φ
is rigid in the sense of Lee (1974).

Theorem 3.2.16 (Rigidity of Lie subgroups)
Every compact Lie subgroup is rigid.

Proof. Let H ⊂ G be a compact Lie subgroup of G and {Hε}φ be a deformation of H ⊂ G.
Consider the family of 1-cochains associated to the deformation,

X̃ε(h) = r−1
φε(h)

(
d

dλ

∣∣∣∣
λ=ε

φλ(h)

)
∈ g, (X̃ε ∈ C1

φε(H̃ε, g)).

Note that
{
X̃ε : H → g

}
is a smooth family of functions. Now, since H is compact, proof

of vanishing of cohomology says that, for k > 0, there exist an homotopy operator hε :



3.2 DEFORMATIONS OF MORPHISMS AND LIE SUBGROUPS 37

Ckφε(Hε, g)→ Ck−1
φε

(H, g),

hε(c)(h1, ..., hk−1) :=

∫
Hε

Ad(φε(h))c(h, h1, ..., hk−1)dh;

where the integral is computed by taking the Haar’s measure defined on Hε. Then, since
{H̃ε}ε is a smooth family, the family of Haar’s measures also varies smoothly, in the sense
that

∫
Hε
f , for f ∈ C∞(H), is a smooth function w.r.t. ε. Hence, {uε} :=

{
hε(X̃ε)

}
is a

smooth family of elements in g. Thus,

X̃ε = δφε(u
ε)− T̃ε,

where T̃ε = hε(−(φε)∗ξε) ∈ (φε)∗C
1(H̃ε, h). So, define Tε ∈ C1(H̃ε, h) by T̃ε =: (φε)∗Tε. By

applying δφε , we get −ξε = δH̃εTε. Then, by proposition (3.2.5), {Tε} induces a smooth family
of isomorphisms Fε : H̃0 → H̃ε with F0 = IdH . Define the deformation of the inclusion
H ↪→ G, ψε := φε ◦ Fε. We claim that {ψε}ε is a trivial deformation. Indeed, its associated
1-cocycles, X̃ ′ε, are

X̃ ′ε(h) = X̃ε(Fε(h)) + (φε)∗Tε(Fε(h))

= δφε(u
ε)(Fε(h)) = δφε◦Fε(u

ε)(h)

= δψε(u
ε)(h).

Therefore, by proposition 3.2.13, the deformation {ψε} is trivial. This means, φε ◦Fε = Igε ◦ ι;
obtaining thus the triviality of {Hε}ε. ♦

Remark 3.2.17 In Coppersmith (1977) was already considered the question of rigidity of Lie
subgroups, the author uses some analytic and algebraic tools to prove a more general notion of
rigidity. Indeed, by assuming that the factor group H/H0 is finitely generated (here H0 is the
connected component of H at the identity), the rigidity result of Lie subgroups, as established
in the previous theorem, can be seen as a particular case of Theorem 1 in Coppersmith (1977).
Thus Theorem 3.2.16 above is implied by Theorem 1 in loc. cit., however our proof provides a
simpler and more geometric proof of (our type of) rigidity but in turn it needs an additional
condition of compactness on the statement.

Theorem 3.2.18 (Triviality of morphisms up to the action of Aut(G)) Let {φe} be a defor-
mation of φ0 and X̃ε its associated 1-cocycles. Assume that there exist Zε ∈ C1(G, g)cl such
that φ∗εZε = X̃ε (i.e. Zε|φε(H) = X̃ε). If {r(Zε)}ε is a smooth and complete (time-dependent)
vector field on G, then {φε} is trivial.
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Proof. This follows directly from the next fact,

d

dε
φε(h) = rφe(h)(X̃ε(h)) = rφe(h)(Zε(φε(h)))

= (r(Zε))(φε(h)) .

Thus {ε 7→ φε(h)} is an integral curve of {r(Zε)}ε . So, if ψε2,ε1 is the flow of {r(Zε)}, Fε := ψε,0

are automorphisms of G satisfying Fε(ι(h)) = φε(h). This is, {φε} is trivial up to the action
of Aut(G). ♦



Chapter 4

Deformation of symplectic groupoids

The aim of this chapter is to introduce the study of deformation of geometries over Lie
groupoids. In the case of symplectic structures, for instance, we can think of it as the defor-
mation (over the same manifold) of both the groupoid and symplectic structures keeping a
compatibility condition (the one reflecting the multiplicativity of the symplectic structure).
In this sense, such a notion has a intuitively simple formulation (See Definition 4.2.1). We will
work on this concept in an infinitesimal way by using the ‘principle of deformation theory’,
that is, we get a cohomology theory controlling the deformations of symplectic groupoids,
and use it to get an analogue of the classical Moser’s theorem in symplectic geometry for the
context of symplectic groupoids. For that, we first recall briefly some facts of VB-groupoids
which will help us to understand the cohomology mentioned above.

4.1 VB-groupoids

Intuitively, a VB-groupoid can be thought of as a groupoid object in the category of vector
bundles. They provide alternative ways to look at the representation theory and the deforma-
tion theory of Lie groupoids. For instance, the deformation complex of Lie groupoids (Section
2.1) can be seen as a complex naturally associated to the cotangent groupoid when regarded as
a VB-groupoid, called the VB-complex (See Crainic et al. (2015a), del Hoyo and Ortiz (2016)
and Remark 4.1.6 below). This point of view will be useful for us in following section. Thus
we expose now briefly the notion of VB-groupoid, show some examples and describe the nec-
essary tools about VB-groupoids which will be useful for us. For a more detailed description
we refer the reader to (Mackenzie (2005a), Gracia-Saz and Mehta (2010b) and Bursztyn et al.
(2016)).

Definition 4.1.1 A V B-groupoid (Γ, E,G,M) is a structure of two Lie groupoids and two

39
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vector bundles as in the diagram

Γ E

G M,

s̃

t̃

q̃ q

s

t

(4.1)

where the vertical directions are vector bundle structures and the horizontal ones are Lie
groupoids, such that the structure maps of the groupoid Γ (source, target, identity, multipli-
cation, inversion) are vector bundle morphisms over the corresponding structure maps of the
groupoid G.

Remark 4.1.2 Note that the multiplication mΓ : Γ(2) −→ Γ makes sense as a vector bundle
morphism when it is considered the induced vector bundle structure of Γ(2) over G(2) (guaran-
teed from the fact that the ‘double source map’ (q̃, s̃) : Γ −→ G s ×E is a surjective submersion
(appendix A in Li-Bland and Ševera (2011)).

In this setting amorphism of VB-groupoids (φΓ, φE , φG , φM ) : (Γ, E,G,M) −→ (Γ′, E′,G′,M ′)
is a morphism (φΓ, φE) between the Lie groupoids Γ ⇒ E and Γ′ ⇒ E′ preserving the vector
bundle structures, i.e, such that φΓ and φE are vector bundle morphisms covering the maps
φG : G −→ G′ and φM : M −→ M ′, respectively. Observe that, by restricting φΓ to the zero
section, φG turns out to be a Lie groupoid morphism.

Example 4.1.3 (Tangent VB-groupoid)
Given a Lie groupoid G ⇒ M with source, target and multiplication maps s, t and m, by

applying the tangent functor one gets the tangent groupoid TG ⇒ TM with structure maps
Ts, Tt, Tm and so on. This tangent groupoid is further a VB-groupoid over G ⇒ M (with
respect to the tangent projections).

Remark 4.1.4 Note that in the previous example one has the following short exact sequences
of vector bundles over G,

s∗(AG)
−l◦T i−→ TG (Tt)!−→ t∗(TM) (4.2)

and
t∗(AG)

r−→ TG (Ts)!−→ s∗(TM) (4.3)

where r and l are the right and left multiplication on vector tangent to the s-fibers and t-fibers
of G, respectively; and (Ts)! and (Tt)! are the maps induced by Ts and Tt with image on the
corresponding pullback bundles.
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Example 4.1.5 (Cotangent groupoid) As noticed in Coste et al. (1987), given a Lie groupoid
G its cotangent bundle inherits a groupoid structure over the dual of the Lie algebroid of G,

T ∗G ⇒ A∗G ,

with source and target maps induced, respectively, from the dual of the exact sequences (4.2)
and (4.3). Explicitly, for αg ∈ T ∗g G and a ∈ Γ(AG),

〈
s̃(αg), as(g)

〉
= −〈αg, lg ◦ Ti(a)〉

and 〈
t̃(αg), at(g)

〉
= 〈αg, rg(a)〉 .

With multiplication determined by

〈m̃(αg, βh), Tm(vg, wh)〉 = 〈αg, vg〉+ 〈βh, wh〉 ,

for (vg.wh) ∈ (TG)(2).

4.1.1 VB-groupoid cohomology

VB-groupoids have a special cohomology induced from their own groupoid structure
which, additionally, takes into account the vector bundle structure. The corresponding com-
plex is called the VB-groupoid complex and it was defined by Gracia-Saz and Mehta in
Gracia-Saz and Mehta (2010b). It turns out to be isomorphic (non-canonically) to the de-
formation complex of Lie groupoids (Remark 4.1.6), providing another interpretation of the
deformation complex of a groupoid; the definition is as follows.

Let Γ be a VB-groupoid. The differentiable complex of Γ (as Lie groupoid) has a natural
subcomplex C∗lin(Γ) given by the fiberwise linear cochains of Γ. The VB-groupoid complex
C∗V B(Γ) of Γ, is the subcomplex of C∗lin(Γ) determined by the left-projectabe elements of
C∗lin(Γ), that is, the elements satisfying the following two conditions

1. c(0g1 , γg2 , ..., γgk) = 0,

2. c(0g · γg1 , γg2 , ..., γgk) = c(γg1 , γg2 , ..., γgk).

This complex has important applications in the theory of representations (up to homotopy) of
Lie groupoids, in particular, it yields an interesting interpretation of the adjoint representation
of a Lie groupoid, this latter turns out to be closely related to the complex of the tangent
VB-groupoid (Gracia-Saz and Mehta (2010b)). But what is important for us, in this thesis,
is the following notorious fact which concerns its relation with the deformation complex of
Lie groupoids.
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Remark 4.1.6 A straightforward computation shows that the deformation complex of a Lie
groupoid G is isomorphic to the VB-groupoid complex of its cotangent VB-groupoid, C∗V B(T ∗G)

(del Hoyo and Ortiz (2016), Prop. 4.5). The isomorphism is given by C∗def (G) −→ C∗V B(T ∗G),
c 7→ c′ with

c′(ηg1 , ..., ηgk) = 〈ηg1 , c(g1, ..., gk)〉 .

4.2 Deformations

The notion of deformation of symplectic groupoids can be formulated in a natural way
based on the the concept of deformation of Lie groupoids explained in Definition 2.1.2. We
just add the condition of this latter deformation to be by symplectic groupoids.

Definition 4.2.1 (Strict deformations of symplectic groupoids)
Let (G, ω) be a symplectic groupoid, {Gε}ε = {(G, m̄ε)}ε be a strict deformation of G and
{ωε ∈ Ω2

cl(G)}ε be a deformation of ω by symplectic forms. We say that the family {(Gε, ωε)}ε is
a strict deformation of (G, ω) if {(Gε, ωε)}ε is a family of symplectic groupoids. Analogously, by
considering s-constant deformations of the Lie groupoid structure, it is defined an s-constant
deformation of symplectic groupoids. The deformation such that (m̄ε, ωε) = (m̄, ω) for all ε
will be called the constant deformation of (G, ω).

Examples of deformations can be easily constructed (at least) in two simple ways.

Examples 4.2.2 Consider (G, ω) a symplectic groupoid with (M,π) the Poisson structure
induced on the base M of G.

1. (Diffeomorphisms) Let {φε : G −→ G} be a family of diffeomorphisms with φ0 = IdG.
For every ε, induce the groupoid structure Gε := (G, m̄ε) in such a way that φε : Gε −→ G
is an isomorphism. Thus {Gε, φ∗εω}ε turns out to be a deformation of (G, ω).

2. (Gauge transformations) Let {αε ∈ Ω2
cl(M)}ε be a smooth family of closed 2-forms on

the base of G with α0 = 0 and assume that G is compact. The family {(G,Ωαε)}ε, where
Ωαε = ω+s∗αε− t∗αε, is a deformation of (G, ω), for ε small enough. Note in particular
that (G,Ωαε) is the symplectic groupoid integrating the Poisson structure παε on M (the
gauge transformation of π by αε).

The previous two examples are just particular cases of what we call trivial deformations
of (G, ω). More generally, we have the following notion of equivalence of deformations.

Definition 4.2.3 (Equivalent deformations) Given two deformations {(Gε, ωε)} and {(G′ε, ω′ε)}
of the symplectic groupoid (G, ω). We say that they are equivalent if there exists a smooth fam-
ily of isomorphisms {Fε : Gε → G′ε}, with F0 = IdG, and a smooth family of 2-forms on M ,
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{αε}ε, with α0 = 0, such that

F ∗ε ω
′
ε = ωε + δε(αε), for every ε ∈ I,

where δε(αε) = s∗ε (αε)− t∗ε (αε). The deformation is said to be trivial if it is equivalent to the
constant deformation.

4.3 Deformation complex of (symplectic) groupoids

In this section we revisit the deformation complex of Lie groupoids for the case of sym-
plectic groupoids. If (G, ω) is a symplectic groupoid we use the corresponding symplectic form
to look at the deformation complex C∗def (G) as a subcomplex of

(
Ω1(G(∗)), δ

)
, the complex

of 1-forms on the nerve of G with differential coming from the simplicial structure of the
nerve. Such a point of view will be of importance to get an infinitesimal interpretation of
deformations of symplectic groupoids (the infinitesimal cocycles).

Consider the deformation complex C∗def (G) viewed as the VB-groupoid complex C∗V B(T ∗G)

of T ∗G (Remark 4.1.6). Denote by Ĉ∗(T ∗G) such a VB-complex. In particular, Ĉ∗(T ∗G) ⊂
C∗lin(T ∗G), then by using the groupoid isomorphism ωb : TG → T ∗G (Lemma 3.6 in Bursztyn et al.
(2009)), we get a subcomplex Ĉ∗(TG) ⊂ C∗lin(TG). Indeed, due to the fact that ωb is also a
vector bundle isomorphism, such a subcomplex consists in fact of linear cochains of TG. Fur-
thermore since, for each integer k, (TG)(k) ∼= TG(k), the elements of Cklin(TG) can be viewed
as the fiberwise linear functions on TG(k), i.e., as elements of C∞lin(TG(k)) ∼= Ω1(G(k)). Also,
this identification of C∗lin(TG) with Ω∗(G) is compatible with the differentials of the complexes
involved. In fact, the differential in C∗lin(TG) is determined by the tangent prolongation of the
structure maps of the nerve of G (it is the alternate sum of the dual of the face maps of the
nerve of TG), that is, by Ts, Tt, Tpr1, Tpr2, Tm,..., while the differential of Ω1(G(∗)) comes
from the simplicial structure of the nerve of G as the alternate sum of the pullback of 1-forms
by the structure maps of the nerve of G, so these two differentials reflect the two different ways
to look at the pullback of 1-forms by a function f : M −→ N between two manifolds: as the
usual pullback of forms f∗α and as the pullback of functions (Tf)∗ : C∞lin(TN) −→ C∞lin(TM)

by Tf . With this setting, we denote by Ω̂1(G(k)) the subcomplex corresponding to Ĉk(TG)

inside Ω1(G(k)). In other words, we identify the deformation complex of G with a subcomplex
of Ω1(G(∗)):

Proposition 4.3.1 Let (G, ω) be a symplectic groupoid and consider the cochain complex
Ω1(G(∗)) of 1-forms on the nerve of G. The deformation complex C∗def (G) of G is isomorphic
to the subcomplex Ω̂1(G(∗)) of Ω1(G(∗)).

Explicitly, under this identification, the complex Ω̂1(G) is completely described by trans-
lating the conditions of the VB-groupoid complex to Ω1(G(∗)). Indeed, let α ∈ Ω1(G(k)) be a
1-form on G(k). We say that α is in Ω̂1(G(k)) if the following two conditions are satisfied.
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1. α ∈ ΓG(k)(T
∗G(k)) comes from a section α̂ of the bundle pr∗1T ∗G → G(k), where pr1 :

G(k) → G is the projection on the first coordinate. That is, there exists a necessarily
unique section α̂ such that the left triangle below commutes

T ∗G(k) pr∗1(T ∗G) T ∗G

G(k) G;

cG(k)

(T pr1)∗

cG
α̂

α

pr1

2. α is left-invariant by the action of G on G(k) acting on the first coordinate.

In terms of elements, these identifications are

Ckdef (G) Ĉklin(T ∗G) Ĉklin(TG) Ω̂1(G(k))

c c′ (ωb)∗c′ ĉ,

∼= (ωb)∗ ∼=

where c′(ηg1 , . . . , ηgk) := 〈ηg1 , c(g1, . . . , gk)〉 and, by construction,

ĉ(vg1 , . . . , vgk) = (ωb)∗c′(vg1 , . . . , vgk)

= c′(ωb(vg1), . . . , ωb(vgk))

= −
〈
ωb(c(g1, . . . , gk)), vg1

〉
= −

[
(dpr1)∗(ωb(c(g1, . . . , gk)))

]
(vg1 , . . . , vgk).

(4.4)

In other words, c ∈ Ckdef (G) corresponds with the section −ωb ◦ c : G(k) → pr∗1T
∗G of

condition (1) above. Condition (2) holds for ĉ because it amounts to c being s-projectable.
Thus, in particular, if {(Gε, ωε)}ε is an s-constant deformation of (G, ω), under the iden-

tification above, the deformation cocycle ξ0 of {Gε}ε corresponds to a 1-form ζ0 ∈ Ω1(G(2)).
Observe also that for X ∈ C1

def (G), the corresponding 1-form on G is −iXω = −ωb(X).

Remark 4.3.2 Note that, in the identification above, we only use the multiplicativity and
non-degeneracy conditions of ω. Then, in particular, such an identification also holds for
twisted symplectic groupoids.

4.4 Associated cocycle and Moser’s trick

We now show the existing relation between deformations of symplectic groupoids and
the Bott-Shulman complex, Ω∗(G(∗)

0 ), which tells us how its total cohomology controls such
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deformations. Then we state a result analogue to the classical Moser’s theorem in the context
of symplectic groupoids. For simplicity we consider only s-constant deformations of symplectic
groupoids.

Denote by H∗BS(G) the cohomology of the total complex associated to the Bott-Shulman
double complex; this is the double complex

(
Ωq(G(p)), δ, d

)
whose horizontal differentials δ :

Ωq(G(•)) −→ Ωq(G(•+1)) are determined by the simplicial structure of the nerve of G and
vertical differentials d : Ω•(G(p)) −→ Ω•+1(G(p)) given by the de Rham differential of forms.
For {(Gε, ωε)} a deformation of (G, ω), we define the associated 3-cochain, η0 ∈ Tot3(Ω•(G(•)

0 ))

by
η0 := ζ0 − ω̇0 ∈ Ω1(G(2))⊕ Ω2(G).

Due to the following proposition, we also call the element η0 the infinitesimal cocycle associ-
ated to the deformation {(Gε, ωε)}ε.

Proposition 4.4.1 The 3-cochain η0 := ζ0 − ω̇0 ∈ Tot3(Ω∗(G(∗)
0 )), defined above, is a 3-

cocycle. The corresponding cohomology class in H3
BS(G0) depends only on the equivalence

class of the deformation.

In order to prove this proposition we first need some lemmas:

Lemma 4.4.2 Denote by G[2] the domain of the division map of G, i.e., the space of pairs of
arrows with the same source. The k-form ω ∈ Ωk(G) is multiplicative if, and only if,

m̄∗ω = p∗1ω − p∗2ω; (4.5)

where pi : G[2] −→ G are the projections on G and i : G −→ G is the inversion of G.

Proof. We just need to show that equation (4.5) is equivalent to equation

m∗ω = pr∗1ω + pr∗2ω, (4.6)

where pri : G(2) −→ G are the projections from the space of composable arrows to G. For
this, we use the diffeomorphism ψ : G[2] −→ G(2), (p, q) 7−→ (p, i(q)). Indeed, by applying ψ∗

to equation (4.6) and recalling that i∗ω = −ω (Bursztyn et al. (2004), Lemma 3.1), we get
equation (4.5). ♦

Lemma 4.4.3 Let {(G,mε)}ε∈I be an s-constant deformation of G. Define for every ε ∈ I
the diffeomorphism M ε : G[2] −→ G[2], (p, q) 7−→ (mε(p, q), iε(q)) and the map ψε : G[2] −→
G(2)
ε , (p, q) 7−→ (p, iε(q)). These families of maps satisfy the following conditions:

1.

(i) mε ◦M
−1
ε = p1

= (pr1)ε ◦ ψε;
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(ii) p1 ◦M
−1
ε = mε ◦ ψε;

(iii) p2 ◦M
−1
ε = iε ◦ p2

= (pr2)ε ◦ ψε.

2. If {Vε}ε denotes the time-dependent vector field on G[2] associated to the family of dif-
feomorphisms {M ε}ε (i.e., d

dτ

∣∣
τ=ε

M τ (p, q) = Vε(M ε(p, q))), then

Vε(p, q) =

(
ξε(p, iε(q)),

d

dτ

∣∣∣∣
τ=ε

iτ (iε(q))

)
.

Proof.

1. This is straightforward once that M−1
ε (p, q) = (mε(p, iε(q)), iε(q)).

2. Note that Vε(p, q) = d
dτ

∣∣
τ=ε

(M τ ◦M
−1
ε )(p, q), thus the proof follows by applying d

dτ

∣∣
τ=ε

to (M τ ◦M
−1
ε )(p, q) = (mτ (mε(p, iε(q)), iε(q)), iτ (iε(q))) (observe that such a derivative

in the first component is exactly the groupoid deformation cocycle).

♦

Proof of proposition 4.4.1
The proof of the first part follows from differentiating the multiplicativity condition, as stated
in equation (4.5), of the family {ωε}ε. In fact, by taking derivative with respect to ε and
reordering, we get

d

dε

∣∣∣∣
ε=λ

m̄∗εωε =

(
−m̄∗λ(

d

dε

∣∣∣∣
ε=λ

ωε) + p∗1(
d

dε

∣∣∣∣
ε=λ

ωε)− p∗2(
d

dε

∣∣∣∣
ε=λ

ωε)

)
. (4.7)

Now, to deal with the expression in the left hand side, note that if {M̄ε : G[2] −→ G[2]}ε
is the family of diffeomorphisms defined in lemma 4.4.3 by M̄ε(p, q) = (m̄ε(p, q), iε(q)), then
d
dε

∣∣
ε=λ

m̄∗εωλ is equal to d
dε

∣∣
ε=λ

M̄∗ε pr
∗
1ωλ which is equivalent to d

dε

∣∣
ε=λ

M̄∗λ(M̄ε ◦ M̄−1
λ )∗pr∗1ωλ.

In this way, by making ϕε,λ := M̄ε◦M̄−1
λ (which, by construction of {Vε}ε, is its time-dependent

flow), we have

d

dε

∣∣∣∣
ε=λ

M̄∗λ(M̄ε ◦ M̄−1
λ )∗p∗1ωλ = M̄∗λ

d

dε

∣∣∣∣
ε=λ

(ϕε,λ)∗p∗1ωλ

= M̄∗λLVλ(p∗1ωλ)

That is, by item (1) of lemma 4.4.3, equation (4.7) becomes
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LVλ(p∗1ωλ) = (M̄−1
λ )∗

(
−m̄∗λ(

d

dε

∣∣∣∣
ε=λ

ωε) + p∗1(
d

dε

∣∣∣∣
ε=λ

ωε)− p∗2(
d

dε

∣∣∣∣
ε=λ

ωε)

)
= −ψ∗λ(pr1)∗λ(

d

dε

∣∣∣∣
ε=λ

ωε) + ψ∗λm
∗
λ(

d

dε

∣∣∣∣
ε=λ

ωε)− ψ∗λ(pr2)∗λ(
d

dε

∣∣∣∣
ε=λ

ωε)

= −ψ∗λδλ(
d

dε

∣∣∣∣
ε=λ

ωε).

Also, since ωλ is a closed form, by Cartan’s formula we have,

(ψ−1
λ )∗LVλ(p∗1ωλ) = d

(
(ψ−1

λ )∗(Vλ ⌟ p
∗
1ωλ)

)
= d[(ψλ)∗Vλ ⌟ (ψ−1

λ )∗p∗1ωλ]

= d[(ψλ)∗Vλ ⌟ (pr1)∗λωλ]

= −dζλ,

where the last equality follows from identification (4.4) in Section 4.3. Namely,

((ψλ)∗Vλ ⌟ (pr1)∗λωλ)(g,h) = (dpr1)∗λ|(g,h)

[
ωbλ

∣∣∣
g

(
d(pr1)λ ◦ (dψλ)(g,iλ(h))(Vλ(g, iλ(h)))

)]
= (dpr1)∗λ|(g,h)

[
ωbλ

∣∣∣
g

(ξλ(g, h))

]
= −ζλ(g, h) (by identification (4.4)).

Therefore, we conclude that

dζλ = δλ(
d

dε

∣∣∣∣
ε=λ

ωε).

This completes the first part by taking λ = 0.
Take now {(G′ε, ω′ε)} an equivalent deformation of (G, ω), and denote by η′0 its infinitesimal

cocycle. The exactness of η0−η′0 follows from taking derivatives at ε = 0 of F ∗ε ω′ε = ωε+δε(αε)

(recall that α0 = 0). That is,

F ∗0
(
diZ0ω

′
0 + ω̇′0

)
= ω̇0 + δ0(α̇0),

where {Zε}ε is the time-dependent vector field associated to the family {Fε}ε. Thus,

ω̇′0 − ω̇0 = −diZ0ω
′
0 + δ0(α̇0).

On the other hand, by considering the groupoid deformation cocycles, since every Fε :

Gε → G′ε is an isomorphism for every ε, ξ′0 − ξ0 = δdef0 (Z0). Thus, in terms of forms, this
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amounts to ζ ′0 − ζ0 = δ0(−iZ0ω) (identification (4.4)).
Therefore, the equation above becomes

η0 − η′0 = −ω̇0 + ζ0 − (−ω̇′0 + ζ ′0)

= −diZ0ω + δ0(α̇0) + δ0(iZ0ω)

= D0
BS(α̇0 + iZ0ω).

♦

Corollary 4.4.4 The 3-cocycle associated to the trivial deformation vanishes in cohomology.

Remark 4.4.5 Note that, since a deformation {(Gε, ωε)} of (G0, ω0) can be seen as a defor-
mation of (Gλ, ωλ) for any λ ∈ I, the corresponding ηλ ∈ Tot3(Ω∗(G(∗)

λ )) is also a cocycle.
Further, in the case of a trivial deformation we can say even more: every ηλ is exact. In fact,
this follows from noting that if {(Gε, ωε)} is a trivial deformation of (G0, ω0), {(Gε, ωε)} also
can be regarded as a trivial deformation of (Gλ, ωλ) for any λ ∈ I.

The following theorem shows that, under appropriate regularity and compactness condi-
tions, the converse statement of the previous remark is also true.

Theorem 4.4.6 (Triviality of deformations)
Let {(Gε, ωε)}ε be an s-constant deformation of a compact symplectic groupoid (G, ω). If the
family of cocycles ηε := ζε− ω̇ε is transgressed by a smooth family of cochains, then {(Gε, ωε)}ε
is a trivial deformation.

Proof. Since G is compact, H2
diff(Gε) = 0 for all ε, thus to say that the family {ηε}ε is

transgressed by a smooth family of 2-cochains amounts to having

ω̇τ − ζτ = Dτ
BS(χτ + α̃τ ),

with {χτ ∈ Ω1(Gτ )}τ and {α̃τ ∈ Ω2(M)}τ smooth families of forms.
Then, we get dα̃τ = 0, ω̇τ = −d(χτ ) + δτ (α̃τ ) and δs(−χτ ) = ζτ , which amounts to

δτdef (Xτ ) = ξτ , with χτ = ιXτωτ . Thus, denoting by (φε, ϕε) the flow of the time-dependent
field {Xε}ε (starting at time zero), by taking α̂τ := ϕ∗τ α̃τ , and ᾱτ such that α̂τ = d

dτ ᾱτ , we
get

ω̇τ = −d(ιXτωτ ) + δτ ((ϕ−1
τ )∗

d

ds
ᾱτ ),

which is,

d

dε
|ε=τ [φ∗εωε − δ0(ᾱε)] = 0.
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Therefore,
φ∗εωε − δ0(αε) = ω, for αε = ᾱ0 − ᾱε.

That is, the deformation {(m̄ε, ωε)} is trivial. ♦

Having in mind to get an analogue to the classical Moser’s theorem in the context of
symplectic groupoids, we now explain a variation of the concepts introduced in this chapter.

Note that, given a deformation {(Gε, ωε)}ε of (G, ω), the family of elements ηε = ζε− ω̇ε ∈
Ω1(G(2)

ε ) ⊕ Ω2(Gε) is also a cocycle in the total complex of the double complex Bp,q
ε :=

(Ωq(Gpε ))q>0, p>1. More generally, we can consider this “new” total complex and, by analogous
arguments to the ones exposed in this chapter, to develope an slight variation of the deforma-
tion theory of symplectic groupoids, which “forgets” of the base manifold of the groupoid G
and yields a more closely related statement to the classical Moser’s trick in symplectic geom-
etry. Indeed, if we assume that trivial deformations of symplectic groupoids are (only) those
deformations of the form given by the first item in example 4.2.2, and that two deformations
are equivalent if the symplectic groupoids of the deformations are symplectomorphic by a
smooth family of isomorphisms of the groupoids (that is, take αε = 0 for all ε in definition
4.2.3) then we get the following groupoid-version of the classical Moser’s trick.

Proposition 4.4.7 Let {(Gε, ωε)}ε be an s-constant deformation of a compact symplectic
groupoid (G, ω). Then, the family of cocycles ηε := ζε − ω̇ε ∈ Tot2(Bp,q

ε ) is transgressed by a
smooth family of cochains if and only if the deformation {(Gε, ωε)}ε is given by (φε)

∗ωε = ω0

for a smooth family of isomorphisms of groupoids φε : (G, m̄0) −→ (G, m̄ε).
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Chapter 5

Cohomological relation in a
symplectic groupoid

Let (M,π) be a Poisson manifold and (T ∗M)π its underlying Lie algebroid. In the context
of deformation of Lie algebroids, Crainic and Moerdijk in (Crainic and Moerdijk (2004), sec-
tion 4.4) define a map i : Hπ(M)→ Hdef ((T ∗M)π) between the Poisson cohomology and the
deformation cohomology of the algebroid (T ∗M)π, which are the cohomologies controlling
deformations of Poisson structures and Lie algebroids respectively. In this sense, the main
result of this chapter consists in the construction of a map iG which can be thought of as the
global counterpart of the map i. For that we first recall the notion of VB-algebroid and some
related concepts which will be necessary to prove the main statements of this chapter. Also,
we recall the deformation complex of Lie algebroids in order to review the map i.

5.1 VB-algebroids

Just as Lie algebroids are thought of as the infinitesimal counterpart of Lie groupoids,
VB-groupoids have an infinitesimal analogue: VB-algebroids. These objects were defined by
Mackenzie as LA-vector bundles in Mackenzie (1998) and then reinterpretated by Gracia-Saz
and Mehta in Gracia-Saz and Mehta (2010a); and similar to the role of VB-groupoids for
deformation and representation theories of Lie groupoids, VB-algebroids provide alternative
interpretations of the deformation cohomology of Lie algebroids (see Remark 5.2.1) and of
the representation theory of Lie algebroids Gracia-Saz and Mehta (2010a). Roughly speaking,
VB-algebroids are vector bundles in the category of Lie algebroids. In this way, such a concept
is supported in the more fundamental notion of double vector bundle (a vector bundle in the
category of vector bundles), which we now proceed to define.

51
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5.1.1 Double vector bundles

In the same way that a vector bundle can be viewed as a Lie groupoid (with the addition
map as the multiplication), a double vector bundle (DVB) can be regarded just as an example
of a VB-groupoid (making the Lie groupoids involved in 4.1 to come from vector bundle
structures). So, with this in mind, the following definition becomes natural.

Definition 5.1.1 A double vector bundle (D,E,A,M), or simply D, is a commutative square
of four vector bundles

D E

A M,

�qDA

qDE

qB

qA

(5.1)

(D has two vector bundle structures, on bases E and A, which are themselves vector bundles

over M), such that qDE and the addition map of D
qDE−→ E, +E : D ⊕E D −→ D, are vector

bundle morphisms over qA and the addition of A, +:A⊕M A −→ A, respectively.

Remark 5.1.2 Making the conditions in definition above more explicit, one easily sees that
D, as in diagram 5.1, is a double vector bundle if

1. qDE is a morphism of vector bundles,

2. qDA is a morphism of vector bundles, and

3. (d1 +A d3) +E (d2 +A d4) = (d1 +E d2) +A (d3 +E d4),

for quadruples d1, ..., d4 ∈ D such that qDE (d1) = qDE (d2), qDE (d3) = qDE (d4), qDA (d1) = qDA (d3)

and qDA (d2) = qDA (d4). (Item (2) follows directly from the commutativity of +E with the bundle
projections, and (3) expresses the linearity condition of the morphism +E). The equation in
(3) is also referred to as the interchange law.

In the vertical bundle structure on D with base A, D̃A, we denote by 0̃A : A −→ D, a 7−→
0̃Aa the zero-section; similarly, in the horizontal vector bundle structure on D over E, D̃E ,
we write 0̃E : E −→ D, b 7−→ 0̃Eb . And the two vector bundles A and E over M , with
zero-sections 0A and 0E , respectively, are called the side bundles of (5.1).

Definition 5.1.3 (Morphisms of DVB)
A morphism of double vector bundles (φ, φE , φA, φM ) : (D,E,A,M) −→ (D′, E′, A′,M ′)

consists of maps φ : D −→ D′, φE : E −→ E′, φA : A −→ A′, φM : M −→ M ′ such that
each of (φ, φE), (φ, φA), (φE , φM ) and (φA, φM ) are morphisms of the corresponding vector
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bundles.
If M = M ′, E = E′ and φE = idE, one says that φ preserves E. If, further, A = A′ and
φA = idA one says that φ preserves the side bundles.

Besides the two side bundles of D, there is an important third vector bundle over M
related to (D,E,A,M): the core bundle, C, which is defined as the intersection of the kernels
of qDE and qDA . Thus, to avoid future confusions, when looking at C as a vector subbundle of
D, we denote an element c ∈ C by c̄. The core-bundle fits into the following exact sequence
of vector bundles over A.

0→ q∗AC
τA−→ D̃A

(qDE )!

−→ q∗AE → 0, (5.2)

where (qDE )! is the induced projection on q∗AE and τA(a, c) = 0̃Aa +E c̄ (observe that it
makes sense because (i) 0̃Aa and c̄ ∈ D are in the same qDE -fiber over 0EqA(a) and (ii) qDA is a
morphism, thus τA(a, c) ∈ D̃A is over a ∈ A). This sequence is called the core sequence of D
over A. And analogously, there is a core sequence of D over E.

One interesting thing about these core sequences is that, for instance in (5.2), a section
of C induces a section in ΓA(D) of D̃A. In fact, c ∈ Γ(C) defines cA ∈ ΓA(D) by

cA(a) := τ(a, cqA(a)) = 0̃Aa +E c̄qA(a).

The section cA is called the core section over A corresponding to c. And analogously, with
the core sequence over E, one gets core sections over E.

Example 5.1.4 (Tangent prolongation double vector bundle)

1. Consider the vector bundle (E
q−→ M). Applying the tangent functor to the structure

maps of E (projection, addition, zero-section) yields the DVB

TE TM

E M,

�pE

Tq

pM

q

with core E. The core sections over E and TM corresponding to α ∈ Γ(E) are respec-
tively:

α↑ ∈ ΓE(TE) : α↑(e) = 0̃Ee +TMα(pE(e)) =
d

dε

∣∣∣∣
ε=0

(e+εα(pE(e))) (the vertical lift of α);

and
α̂ ∈ ΓTM (TE), α̂(vx) = 0̃TMvx +E α(x) ∈ T0Ex

E.
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Note that in this context 0̃TM = T (0E), and α(x) = α↑(0Ex ).

2. Consider F : E −→ E′ a morphism of vector bundles over f : M −→ M ′. The tangent
prolongation of F induces the morphism of vector bundles (TF, Tf, F, f) : TE −→ TE′.

Example 5.1.5 (Dual DVB) By dualizing the core exact sequence over A (5.2), we can
induce a double vector bundle

D∗A C∗

A M,

�q∗AA

q∗AC∗

qC∗

qA

(5.3)

with core E∗, where D∗A denotes the dual over A, and q∗AA : D∗A −→ C∗ comes from the dual
of τA: 〈

q∗AC∗(ηa), c
〉

= 〈ηa, τA(a, c)〉 ,

for ηa : (qDA )−1(a)
linear−→ R and c ∈ CqA(a). The addition map +C∗ : D∗A ⊕C∗ D∗A −→ D∗A is

defined in such a way that the natural pairing 〈, 〉 : D∗A ⊕ D̃A −→ R is linear with respect to
the vector bundle structure over C∗ ⊕M E, i.e.,

〈
ηa +C∗ η

′
a′ , da +E d

′
a′
〉

= 〈ηa, da〉+
〈
η′a′ , d

′
a′
〉
.

Note that ηa+C∗ η
′
a is determined by the expression above due to the fact that any element

in (D̃A)a+a′ can be written as the sum of elements d ∈ (D̃A)a and d′ ∈ (D̃A)a′. It is not hard
to see that +C∗ given in this form is well-defined. The zero above κ ∈ C∗x, denoted by 0̃∗Aκ

(0̃∗Aκ : (D̃A)0Ax
=
[
Ker(qDA )!

]
0Ax

linear−→ R), is defined by

〈
0̃∗Aκ , 0̃Ee +A c̄

〉
= 〈κ, c〉 , for e ∈ Ex, c ∈ Cx.

Analogously, one can take the dual of the core exact sequence over E, inducing a DVB
(D∗E , E, C

∗,M) with core A∗. See Mackenzie (2005a) or Mackenzie (2005b), for further de-
tails.

Remark 5.1.6 We now note that, similarly to the dual of a morphism of vector bundles over
the same base covering the identity, it is defined a dual of a morphism of DVBs which have
one same side bundle. If (φ, φE , idA, φM ) : (D,E,A,M) −→ (D′, E′, A,M) is a morphism
of DVB preserving A, by dualizing φ as a morphism of vector bundles over A, one obtains
a morphism of double vector bundles preserving A (φ∗A, φ

∗
C , idA, φM ) : (D′∗A , (C

′)∗, A,M) −→
(D∗A, C

∗, A,M) with core morphism φ∗E : (E′)∗ −→ E∗.
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5.1.2 Isomorphisms of duals of DVBs

As example 5.1.5 shows, there are two different ways to dualize a DVB; one vertical
dualization and another one horizontal. An interesting fact is that the horizontal dual of the
dual DVB (5.3), ((D∗A)∗C∗ , C

∗, E,M), turns out to be a DVB with the same side bundles
and core as (D∗E , E, C

∗,M). In fact, they are isomorphic double vector bundles. Such an
isomorphism, ZE : D∗E −→ (D∗A)∗C∗ , is the one induced by a natural pairing, | ·, · |, existing
between the vertical and horizontal duals D∗A and D∗E as vector bundles over C∗,

| ηa, θe |= 〈ηa, d〉A − 〈θe, d〉E ;

ηa ∈ D∗A, θe ∈ D∗E with q∗AC∗(ηa) = q∗EC∗ (θe) and d ∈ D any element such that the canonical
pairings in the RHS make sense.

Of course, this pairing also yields the isomorphism D∗A
ZA∼= (D∗E)∗C∗ , which induces the

identity on the core bundles E∗ and on the sides C∗, and is −idA on the sides A, (Mackenzie
(2005a), Corollary 9.2.4). This shows that taking the dual over C∗ interchanges the vertical
and horizontal duals of (D,E,A,M). Or equivalently, that alternation of vertical and hori-
zontal duals interchanges the duals (e.g. horizontal dual followed by vertical one is the (flip
of the) vertical one).

5.1.3 Reversal isomorphism

Examples 5.1.4 and 5.1.5 show us two important ways to get double vector bundles (by tan-
gent prolongation and dualizing). In fact, by considering dualization of (honest) vector bundles
also, there exists a certain compatibility between these processes: dualization commutes with
tangent prolongation (up to a canonical isomorphism). Indeed, the tangent lift of the canon-
ical pairing, 〈, 〉A, between A and A∗ over M induces the tangent pairing 〈〈, 〉〉A between TA
and T (A∗) over TM − for (va∗ , wa) ∈ TA∗ ⊕TM TA, 〈〈va∗ , wa〉〉A := d

dε

∣∣
ε=0
〈γ(ε), α(ε)〉A

where γ(ε) and α(ε) are curves on A∗ and A determining va∗ and wa, respectively, with
pA∗(γ(ε)) = pA(α(ε)) − yielding the isomorphism IA : TA∗ −→ (TA)∗TM , which is also an
isomorphism of DVBs, between the tangent prolongation of the dual of A and the (horizontal)
dual of the tangent prolongation of A. This isomorphism, IA, preserves the sides and core
bundles, and is often called the internalization map (Mackenzie (2005a), Prop. 9.3.2).

TA∗ TM

A∗ M

�pA∗

TqA∗

pM

qA∗

IA−→

(TA)∗TM TM

A∗ M.

�q∗TMA∗

q∗TMTM

pM

qA∗

(5.4)
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Consider now the tangent prolongation DVB of A −→ M . The natural pairing existing
between its (horizontal and vertical) duals induces the isomorphism

ZA : T ∗A = (TA)∗A −→ ((TA)∗TM )∗A∗ .

Composing with the dual of IA over A∗ the following isomorphism of DVBs is obtained

(IA)∗A∗ ◦ ZA : T ∗A −→ T ∗A∗

which (like ZA) induces −idA on the side bundles A and preserves the cores, T ∗M , and sides,
A∗. Therefore (to preserve the side bundles) it is defined the map

RA = ((IA)∗A∗ ◦ ZA)−1 ◦ (−A∗idT ∗A∗) : T ∗A∗ −→ T ∗A,

which is an isomorphisms of DVBs preserving the sides and inducing −idT ∗M on the cores.
The map RA is called the reversal isomorphism.

Alternatively, it is possible to describe this map in a simple way by using local coordinates.
If (xi, ζd) are (fibered) local coordinates of A∗ −→M , one writes the coordinates of T ∗A∗ as
(xi, ζd, pi, u

d), where (pi) and (ud) describe, respectively, a point in T ∗xM and in Ax (the dual
of the tangent space to the fiber of A∗ −→ M over x). And analogously, T ∗A is described
locally by the coordinates (xi, ud, pi, ζd). In this coordinates RA has the form

RA(xi, ζd, pi, u
d) = (xi, ud,−pi, ζd). (5.5)

Note that if we would define RA locally by (5.5), it is easy to see that RA glues well to
determine the reversal isomorphism globally, on T ∗A∗.

The following propositions tell us about the naturality properties that the several previous
maps satisfy. Before that, for clarity of the statements, we make a convention about the dual
of morphisms of vector bundles and DVBs.

Remark 5.1.7 Consider A and B two vector bundles over M1 and M2, respectively, and
Φ : A −→ B a morphism covering the diffeomorphism f : M1 −→ M2. In this context,
there is a natural induced isomorphism (the pointwise dual of Φ) between the duals of B and
A covering f−1 which we denote by Φ?

f−1 : B∗ −→ A∗. And analogously, we can consider
the dual of a morphism of double vector bundles which have one isomorphic side bundle.
For instance, if f : A −→ B is an isomorphism, we have the dual of the DVB morphism
Tf : TA −→ TB over the isomorphism f , denoted by (Tf)?f−1 : T ∗B −→ T ∗A.

Proposition 5.1.8 Consider A and B two vector bundles over M .

1. IA is compatible with morphisms of vector bundles: If f : A −→ B is a morphism
of vector bundles covering the identity, the internalization maps make the following
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diagram commute

T (B∗) T (A∗)

(TB)∗TM (TA)∗TM

�IB

T (f∗)

IA

(Tf)∗TM

(5.6)

2. ZA is compatible with isomorphisms of vector bundles: If f : A −→ B is an isomorphism
of vector bundles, we have the following commutative diagram

T ∗B T ∗A

((TB)∗TM )∗B∗ ((TA)∗TM )∗A∗

�ZB

(Tf)?
f−1

ZA

(
(Tf)∗TM

)?
(f∗)−1

(5.7)

Proof.

1. Follows from looking at the corresponding tangent pairings. Note that, if vb∗ ∈ Tb∗B∗,

IA(Tf∗(vb∗)) = 〈〈Tf∗(vb∗), ·〉〉A : (TA)TM
linear−→ R,

where (TA)TM refers to the vector bundle structure of TA over TM . Then, if vb∗ =
d
dε

∣∣
ε=0

γ(ε) and Xa = d
dε

∣∣
ε=0

α(ε) ∈ TaA,

IA(Tf∗(vb∗))(Xa) =
d

dε

∣∣∣∣
ε=0

〈f∗(γ(ε)), α(ε)〉A

=
d

dε

∣∣∣∣
ε=0

〈γ(ε), f(α(ε))〉B

= 〈〈vb∗ , Tf(Xa)〉〉B
= 〈〈vb∗ , ·〉〉B (Tf(Xa))

= [(Tf)∗TM (IB(vb∗))] (Xa)

2. It suffices to compare the pairings introduced in subsection 5.1.2: |·, ·|A : T ∗A ⊕TM
(TA)∗TM −→ R and |·, ·|B : T ∗B ⊕TM (TB)∗TM −→ R. In fact, commutativity of
(5.7) amounts to have

∣∣∣(Tf)?f−1(β), (Tf)∗TM (FB)
∣∣∣
A

= |β,FB|B, for (β,FB) ∈ T ∗B⊕TM
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(TB)∗TM . And this follows from noting that∣∣∣(Tf)?f−1(β), (Tf)∗TM (FB)
∣∣∣
A

=
〈

(Tf)?f−1(β), v
〉
A
− 〈(Tf)∗TM (FB), v〉TM

= 〈β, Tf(v)〉B − 〈FB, T f(v)〉TM
= |β,FB|B ,

for v ∈ TA such that the relevant pairings are well defined.

♦

The map RA also satisfies several interesting properties (e.g. it is an antisymplecto-
morphism with respect to the canonical symplectic structures on the cotangent bundles
(Mackenzie (2005a), Thm 9.5.2)), we remark some of them which will be useful for later
use in this chapter. The first one, which is direct by using the previous proposition, describes
the naturality of RA with respect to isomorphisms of vector bundles. Another property is in
Proposition 5.1.15 below.

Proposition 5.1.9 Consider A and B two vector bundles over M . If f : A −→ B is an
isomorphism covering the identity, the following diagram commutes

T ∗A∗ T ∗A

T ∗B∗ T ∗B

�((T (f∗))?
(f∗)−1

RA

RB

(Tf)?
f−1

(5.8)

Proof. The commutativity follows from previous proposition by dualizing the internalization
maps, indeed we get

T ∗A ((TA)∗TM )∗A∗ (TA∗)∗A∗

T ∗B ((TB)∗TM )∗B∗ (TB∗)∗B∗ ;

ZA (IA)∗A∗

((T (f∗))?
(f∗)−1

((T (f))?
f−1

ZB (IB)∗B∗

which implies diagram (5.8) (right vertical map is a DVB morphism, therefore commutes with
scalar multiplication by -1). ♦

5.1.4 Linear sections

Consider a DVB as in (5.1). Beside the core sections of D over A, Γc(D,A), induced from
the core exact sequence (5.2), there is another special type of sections of D̃A, called the linear
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sections of D over A, whose set is denoted by Γl(D,A).

Definition 5.1.10 A section X ∈ Γ(D,A) is called linear if it is a vector bundle morphism
from A −→M to D −→ E.

Example 5.1.11 In example 5.1.4, if X ∈ Γ(E) is a section of E, its tangent prolongation
T (X) := d(X) ∈ Γ(TE, TM) is a linear section of TE over TM . Linear sections of TE over
E are called linear vector fields of E.

An interesting fact about linear and core sections is that they span the other sections
of D over A Mackenzie (2011). This follows essentially from taking a special splitting of the
core exact sequence (5.2). Note first that if σ : (qDA )∗E −→ D̃A is a splitting of (5.2) and
β ∈ Γ(E,M) is a section of E, then σ ◦ (q∗Aβ) is a linear section of D over A if, and only
if, σ is (also) linear when viewed as a morphism of vector bundles over the base E; that is,
if and only if σ is a splitting in the setting of double vector bundles. The local existence of
such splittings is guaranteed by using the local form of DVB (over open neighborhoods inM)
showed by Grabowski and Rotkiewicz Grabowski and Rotkiewicz (2009), and a partition of
unity argument proves that such a splitting exists globally. With this in mind, if X ∈ Γ(D,A)

is any section of D over A, Y = X −A σ((qDE )!X) is a section of A which projects to zero
by (qDE )!, thus Y = τA(Ỹ ), where Ỹ ∈ ΓA(q∗AC) ∼= C∞(A)⊗C∞(M) Γ(C), implying that Y is
a sum ΣiFi · Y A

i , for Fi ∈ C∞(A) and Y A
i the core sections corresponding to some sections

Yi ∈ Γ(C). In this way, by using this fact, we can simplify some statements in terms of sections
of D over A by taking only linear and core sections, see for instance Example 5.1.13 below.

5.1.5 VB-algebroids

Definition 5.1.12 A VB-algebroid is a DVB as in (5.1), where the vector bundle D −→ E

is a Lie algebroid with anchor map ρD : D −→ TE being a vector bundle morphism over
A −→ TM and such that the Lie bracket [·, ·]D satisfies the following conditions:

1. [Γl(D,E),Γl(D,E)]D ⊂ Γl(D,E),

2. [Γl(D,E),Γc(D,E)]D ⊂ Γc(D,E),

3. [Γl(D,E),Γl(D,E)]D = 0.

As pointed out by Gracia-Saz and Mehta in Gracia-Saz and Mehta (2010a), a VB-algebroid
D −→ E induces a Lie algebroid structure on A −→M and the structure maps (projection,
zero section, sum) of the vertical bundle structures form Lie algebroid morphisms. In this
sense, a VB-algebroid can be though as a vector bundle in the category of Lie algebroids,
(Gracia-Saz and Mehta (2010a), Thm. 3.7).
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Example 5.1.13 (Tangent Lie algebroid)
Given A

π−→ M a Lie algebroid, there is a Lie algebroid structure on the tangent pro-
longation TA

Tπ−→ TM in such a way that the tangent DVB in example 5.1.4 becomes a
VB-algebroid. Denoting by X̂i ∈ Γc(TA, TM), i = 1, 2, the core section corresponding to
Xi ∈ Γ(A), the Lie bracket is defined by:

[TX1, TX2] = T [X1, X2], [TX1, X̂2] = ˆ[X1, X2], [X̂1, X̂2] = 0. (5.9)

A completely analogous argument to that given at the end of the previous subsection shows
that the linear sections of the form T (X), X ∈ Γ(A) (example 5.1.11), and the core sections
span the set of sections Γ(TA, TM), therefore the bracket in equations (5.9) is well-defined.
The anchor ρT is defined by ρT = J−1 ◦ T (ρ) where

T (TM) T (TM)

TM

J

pTM TpM

is the involution map (isomorphism) of the double tangent bundle T (TM), determined locally
by J(xi, ẋi, δxi, δẋi) = (xi, δxi, ẋi, δẋi), where for local coordinates (xi) of M , (ẋi) are the
coordinates on the fibers of TM and (δxi, δẋi) are the coordinates on the fibers of T (TM)

pTM−→
TM .

Example 5.1.14 (Cotangent Lie algebroid) It is well known that a Lie algebroid A −→ M

induces a Poisson structure on its dual A∗ −→ M which is linear with respect to the vector
bundle structure overM (Courant (1990), Thm. 2.1.4). In this way, the cotangent bundle of A,

T ∗A
R−1
A∼= T ∗A∗ −→ A∗ inherits a Lie algebroid structure which is further a VB-algebroid when

considered over A −→ M . This structure of VB-algebroid also can be described in a simple
way by using the natural notion of dual VB-algebroid explained in (Gracia-Saz and Mehta
(2010a), Thm 3.1).

The two previous examples have another interesting property: they are (isomorphic to) the
associated Lie algebroids of the tangent and cotangent groupoids (section 4.1), respectively.
In fact, the isomorphism JG : T (TG) −→ T (TG), given by the involution map, restricts to
the isomorphism of Lie algebroids

TAG
jG−→ ATG
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over TM (Mackenzie (2005a), Thm 9.7.5). For the isomorphism of the cotangent algebroid,
one considers the dual of JG . Explicitely, the isomorphism

ΘTG := J∗G ◦ ITG : T (T ∗G) −→ (T (TG))∗TM −→ T ∗(TG)

given by the composition of the internalization map and the dual of the involution induces
the isomorphism (Mackenzie (2005a), p. 463)

AT ∗G
θG−→ T ∗AG .

The map ΘTG is often called the Tulczyjew map, and has another interesting property when
related with the canonical symplectic structure ωcan on the cotangent bundle T ∗G.

Proposition 5.1.15 (Mackenzie (2005a), Thm 9.6.7) Given a manifold M , the Tulczyjew
and reversal isomorphisms, ΘTM and RTM , are related by the following commutative diagram

T (T ∗M) T ∗(TM)

T ∗(T ∗M),

ωbcan

ΘTM

RTM (5.10)

where ωcan ∈ Ω2(T ∗M) is the canonical symplectic structure on the cotangent bundle of M .

5.1.6 VB-algebroid complex

VB-algebroids also have their own cohomology C∗V B(D) induced from the algebroid coho-
mology (of D −→ E) when considered its linear structure over A. In fact, for a VB-algebroid
D −→ E, the VB-algebroid complex is defined as the subcomplex of linear cochains of C∗(D)

(the algebroid cohomology of D); i.e., C∗V B(D) := C∗lin(D) ⊂ C∗(D) in the following sense:
regard the elements of Ck(D) = Γ(E,ΛkD∗E) as the k-multilinear and alternating functions
⊕kED −→ R; the linear k-cochains of D are the elements in Ck(D) which are fiberwise linear
with respect to the vector bundle structure of ⊕ED over ⊕MA. The space C∗V B(D) defines in
fact a complex, it was shown by Cabrera and Drummond in Cabrera and Drummond (2017),
where the authors defined this complex.

5.2 Deformation cohomology of Lie algebroids

The deformation complex of Lie algebroids was defined by Crainic and Moerdijk in
(Crainic and Moerdijk, 2004) when working in the deformation theory of Lie algebroids, and
it is one more example emphasizing the general “principle” of the deformation theory. For a
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Lie algebroid A, this complex is denoted by (C∗def (A), δ). For its definition first we need the
notion of multiderivations on a vector bundle.

Let E −→M be a vector bundle. A derivation on E is a linear operatorD : Γ(E) −→ Γ(E)

such that there exists a vector field σD ∈ X(M), called the symbol of D which satisfies

D(fs) = fD(s) + σD(f)s, for s ∈ Γ(E) and f ∈ C∞(M).

A multiderivation of degree n on E is a multilinear and antisymmetric map

D : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
n+1 times

−→ Γ(E)

which is a derivation in each entry, i.e., there is a symbol map

σD : Γ(E)× · · · × Γ(E)︸ ︷︷ ︸
n times

−→ X(M)

which is C∞(M)-linear in each entry and satisfies

D(s0, s1, ..., fsn) = fD(s0, ..., sn) + σD(s0, ..., sn−1)(f)sn, for si ∈ Γ(E) and f ∈ C∞(M).

The set of multiderivations of degree n is often denoted by Dern(E). One sets Der−1(E) =

Γ(E).
In this way, the deformation complex of A is the complex in which the set of k-cochains

Ckdef (A) consists of the multiderivations of degree k − 1 on A, i.e., Ckdef (A) = Derk−1(A),
with differential given by

δ(D)(α0, ..., αk) = Σi(−1)i[αi,D(α0, ..., α̂i, ..., αk)]+

+ Σi<j(−1)i+jD([αi, αj ], α0, ..., α̂i, ..., α̂j , ..., αk).
(5.11)

We now revisit the map i introduced in Crainic and Moerdijk (2004). Such a map is defined
in terms of cochains by i : Ckπ(M)→ Ckdef (T ∗M), X 7→ DX , where DX ∈ Derk−1(T ∗M) acts
on exact forms by

DX(df1, ..., dfk) := d(X(f1, ..., fk)).

A general expression for the multiderivationDX can also be obtained (see Crainic and Moerdijk
(2004), Prop. 3), but the previous formula is enough for our purporses. In order to can
study the map i in another way, we use the notion of the tangent lift of k-multivector fields,
T : Xk(M) −→ Xklin(TM) ⊂ Xk(TM), defined as follows. Regard the k-vector fields as the
k-multilinear functions
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Xk(M) = Γ(

k∧
pM

TM) = {
k⊕
cM

T ∗M
k-multilinear−→ R}.

Thus,

Xk(TM) = Γ(

k∧
pTM

T (TM)) = {
k⊕

cTM

T ∗(TM)
k-multilinear−→ R}.

Then, if X ∈ Xk(M), its tangent lift is given by

X̃ := TX ◦ ⊕kΘ−1
TM :

k⊕
cTM

T ∗(TM) −→
k⊕

TcM

T (T ∗M) −→ R.

Note further that, in this way, X̃ is (fiberwise) linear with respect to the vector bundle
structure of

⊕k
cTM

T ∗(TM) over
⊕k

cM
T ∗M (TX is (fiberwise) linear with respect to the

bundle projection ⊕kpT ∗M and ⊕ΘTM is an isomorphism of DVBs). That is X̃ ∈ Xklin(TM),
the tangent lift of the multivector field X ∈ Xk(M) is a linear multivector on TM .

Now we remark that, by using the tangent lift of multivector fields, T , we can see the map
i as the composition

Xk(M)
T−→ Xklin(TM)

DTM−→ Derk−1(T ∗M); (5.12)

where DTM is a particular case of the map (isomorphism) DE : Xklin(E) −→ Derk−1(E∗)

defined in (Crainic and Moerdijk (2004), section 4.9) for any vector bundle E over M by
DE(X)(s1, ..., sk) := X(ls1 , ..., lsk), with si ∈ Γ(E∗) and l : Γ(E∗)

∼=−→ C∞lin(E) the correspon-
dence which views a section s ∈ Γ(E∗) as a (fiberwise) linear function on E.

In fact (by simplicity we verify for k = 2), denoting (also) by l : X2(M) −→ C∞2−lin(
⊕2

cM
T ∗M)

the function which regard the bivector fields on a manifold M as bilinear and antisymmetric
functions on

⊕2
cM
T ∗M we get

DTM (X̃)(df1, df2) = X̃(ldf1 , ldf2)

= lX̃(df̃1, df̃2) (where f̃i := Tfi ≡ ldfi is the tangent lift of fi)

= T (lX) ◦Θ−1
TM (df̃1, df̃2)

= T (lX)(T (df1), T (df2))

= T (lX(df1, df2))

= d(lX(df1, df2))

= d(X(f1, f2)) (by definition of l)

= i(X)(df1, df2).
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where in the fourth equality we use the fact that ΘTM ◦ T (df) = df̃ , see Mackenzie (2005a)
p. 394.

Remark 5.2.1 Note that, as pointed out in (Crainic and Moerdijk (2004), Prop. 7), the
map DE defined above, when E = A∗ (the dual of the Lie algebroid A), provides us with
an interpretation of the deformation complex of Lie algebroids in terms of the VB-algebroid
complex of the VB-algebroid T ∗A∗ −→ A∗ viewed over the algebroid A −→ M . In fact,
Xklin(A∗) = CkV B(T ∗A∗), and DA∗ : X•lin(A∗) −→ C•def (A) turns out to be an isomorphism
of differential graded Lie algebras, where on the left one considers the Schouten bracket of
multivector fields.

Remark 5.2.2 In the context developed in this subsection (M Poisson manifold), the Tul-
czyjew map ΘTM : T (T ∗M) −→ T ∗(TM) has an additional interesting property: it is an
isomorphism of VB-algebroids, between the tangent algebroid and the Lie algebroid associated
to the linear Poisson structure on TM (Mackenzie (2005a), Prop. 10.3.13).

5.3 iG and van-Est commutativity

Consider {(Gε, ωε)}ε an s-constant deformation of (G, ω), with (M,π) the Poisson structure
induced on the units of G. By applying the Lie functor to {(Gε, ωε)}ε one looks at two types of
deformations: one deformation of Poisson structures on M , and another one of Lie algebroids
AGε . Of course, such deformations are not independent of each other, the deformation of Lie
algebroids is isomorphic to the one induced from the deformation of Poisson structures (when
looking at the Lie algebroids underlying to such Poisson structures). More generally, every
deformation of π can be viewed as a deformation of AG as a Lie algebroid, but not conversely.
This latter fact has an analogue in terms of infinitesimal deformations given by the definition
of the map i : H∗π(M) −→ H∗def (AG = (T ∗M)π) Crainic and Moerdijk (2004). In this sense,
we now define a map iG : H∗diff(G) −→ H∗def (G) which will be the global analogue of such a
map i (for integrable Poisson structures). That is, we describe the map iG in the case of G
being a symplectic groupoid.

Recall from Remark 4.1.6 that H•def (G) ∼= H•V B(T ∗G), and moreover, by Lemma 3.1
in Cabrera and Drummond (2017), H•V B(T ∗G) ∼= H•lin(T ∗G), therefore defining a map (be-
tween cohomologies!) H•(G) −→ H•def (G) amounts to defining another map j : H•(G) −→
H•lin(T ∗G). The latter is defined in terms of cochains by

Ck(G)
T−→ Cklin(TG)

(ω#)∗−→ Cklin(T ∗G),

where ω# := (ωb)−1 : T ∗G → TG and T , the natural tangent lift of groupoid-cochains,
we define by using the canonical identification (TG)(k) ∼= TG(k); T (c) : (vg1 , ..., vgk) 7→
dc(vg1 , ..., vgk).
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Notorious of this map iG is that if G is s-connected and (M,π) is the Poisson structure
induced on the base (i.e. the infinitesimal information associated to (G, ω)), we can look at
the map i : Hπ(M) −→ Hdef (T ∗M) as the infinitesimal data corresponding to iG in the sense
that we have the following commutative diagram,

Hk(G) Hk
def (G)

Hk(T ∗M) Hk
def (T ∗M),

�V E

iG

V Edef

i

(5.13)

where V Edef is the van-Est map between the deformation cohomologies as defined in Cabrera and Drummond
(2017). That is,

Theorem 5.3.1 Let (G, ω) be a symplectic groupoid. If G is s-connected, the map iG : H∗(G)
j→

H∗lin(T ∗G) ∼= H∗def (G), as defined above, is the global counterpart of the map i. That is, iG
together with i and the respective van-Est maps (of the differentiable and deformation coho-
mology) form the commutative diagram (5.13).

The proof of this theorem is based on some lemmas. The first one refers to the tangent
lift of algebroid cochains, analogue to the tangent lift of groupoid cochains described above.

Lemma 5.3.2 Let A be a Lie algebroid over M . The tangent lift determines a cochain map

T : Ck(A) −→ Cklin(TA) ⊂ Ck(TA),

between algebroid complexes. We refer to this map as the tangent lift of algebroid cochains.

Proof of Theorem 5.3.1

The proof follows from working on each of the properties of the symplectic form ω (non-
degeneracy, multiplicativity and closedness). First note that, from non-degeneracy and mul-
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tiplicativity, the map j fits into the following diagram

Ck(G) Cklin(TG) Cklin(T ∗G)

Cklin(ATG) Cklin(AT ∗G)

Ck(A) CkTπ(TA)lin CkA∗(T
∗A)lin

(I)V E

T

(II)V E

(ω#)∗

V E

(III)j∗G∼=

(Lieω#)∗

(θ−1
G )∗

T (L(ω)#)∗

(5.14)

Indeed, diagram (I) (to be proved in subsection 5.3.1 below) is a general fact relating
the tangent lifts of cochains on Lie groupoids and Lie algebroids by the van-Est map. Dia-
gram (II) follows from the naturality of the van-Est map with respect to morphisms of Lie
groupoids (Lemma 2.10 Cabrera and Drummond (2017)). And diagram (III) amounts to re-
garding the morphism of Lie algebroids Lie(ωb) : ATG → AT ∗G in terms of the (canonically)
isomorphic Lie algebroids TAG and T ∗AG ; denote it by L(ω)b : TAG −→ T ∗AG . Further,
because this latter morphism is the infinitesimal counterpart of a morphism of Lie groupoids
induced by a 2-form on G, it also turns out to be induced by a 2-form L(ω) on A (which
makes sense to the notation L(ω)b above). In fact, one can describe explicitely such a 2-form
L(ω) by using the tangent lift, ωT ∈ Ω2(TG), of the form ω ∈ Ω2(G) getting L(ω) = ι∗Aω

T ,
where ιA is the inclusion map AG ↪→ TG; this point is developed in (Bursztyn et al. (2009),
Prop. 3.7).

So, now by putting together the reversal isomorphism T ∗A∗
RA−→ T ∗A and the map (iso-

morphism) DA∗ defined above (section 5.2), with the lower part of diagram (5.14), we get

· · · CkTπ(TA)lin CkA∗(T
∗A)lin CkA∗(T

∗A∗)lin Derk−1(A).
(L(ω)#)∗ R∗A DA∗

(5.15)
Then, by diagram (5.14) and sequence (5.15), we have the following commutative diagram
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in cohomology

Hk(G) Hk
lin(T ∗G) Hk

def (G)

Hk(A) Hk
A∗(T

∗A)lin Hk
A∗(T

∗A∗)lin Hk
def (A).

j

V E

∼=

V Elin V Edef

(L(ω)#)∗ ◦ T R∗

∼=
DA∗

∼=

(5.16)

On the other hand, by considering the fact that ω is also closed, we get both on M a
Poisson structure π and, infinitesimally, an isomorphism of Lie algebroids σ : AG → (T ∗M)π.
Therefore, by using the expression (5.12) of the map i, we have the following commutative
diagrams.

Ck(A) CkTπ(TA)lin CkA∗(T
∗A∗)lin Derk−1(A)

CkcM (T ∗M) CkTcM (T (T ∗M))lin CkcTM (T ∗(TM))lin Derk−1(T ∗M),

T

(σ−1)∗

(Θ−1
A∗ )∗

(Tσ−1)∗

DA∗

(σ−1)#

T (Θ−1
TM )∗ DTM

((Tω)∗)#

(5.17)
where ΘA∗ is the isomorphism of VB-algebroids (isomorphism of DVBs preserving the Lie
algebroid structures involved) induced from ΘTM by using the isomorphism σ : A −→ T ∗M .

That is, ΘA∗ =
(

(Tσ∗)?(σ∗)−1

)−1
◦ ΘTM ◦ Tσ : TA −→ T ∗A∗ (remark 5.1.7), which for

simplicity we just write ((Tσ∗)∗)−1 ◦ΘTM ◦ Tσ.
Then, by comparing the upper part of diagram above with the previous sequence of maps

(5.15), we have two isomorphisms of VB-algebroids: L(ω)# ◦RA and Θ−1
A∗ from T ∗A∗ to TA.

We show now that these two maps are the same, which completes the proof (just put together
diagrams (5.16) and (5.17) in cohomology). In fact,

ΘA∗ = ((Tσ∗)∗)−1 ◦ΘTM ◦ (Tσ)

= ((Tσ∗)∗)−1 ◦ (RTM ◦ ωbcan) ◦ Tσ (Prop. 5.1.15)

= RA∗ ◦ (Tσ)∗ ◦ ωbcan ◦ Tσ (Prop. 5.1.9)

= R−1
A ◦ (σ∗ωcan)b

= R−1
A ◦ L(ω)b;

where RA∗ = R−1
A is easily verified from a local point of view, and the last step follows from

the characterization of the linear 2-forms on AG coming from multiplicative 2-forms on G
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(Bursztyn et al. (2009), Prop. 4.6). ♦

Remark 5.3.3 Note that, in view of (Cabrera and Drummond (2017), Thm. 2.14), the map
V Edef considered above, is a map which, under the same k-connectedness condition on the s-
fibers of G, satisfies the same properties of the van-Est map Ṽ Edef as defined in (Crainic et al.
(2015a), Thm 10.1); and due to that one calls V Edef also a “van-Est type map” between the
deformation cohomologies. In this sense, it would be interesting to understand the underlying
relation between such “two van-Est maps”.

Remark 5.3.4 (IM-2-forms)
It is worth to say that besides considering the map σ for ω closed (and multiplicative), this
map also makes sense even if ω is only multiplicative (not necessarily closed); in that case
σ : AG −→ T ∗M is a vector-bundle map which satisfies some relations involving the Lie
bracket on sections of A and the Lie derivative, interior product and exterior differential on
sections of T ∗M . In the literature, such a map σ is called the IM-2-form associated to the
multiplicative 2-form ω. Further, an abstract definition of IM-2-forms also can be considered
[Bursztyn et al. (2004), Bursztyn et al. (2009), Bursztyn and Cabrera (2012), Crainic et al.
(2015b)]. Analogously, multiplicative k-forms on G lead to the notion of IM-k-forms (see e.g.
Bursztyn and Cabrera (2012)).

5.3.1 Proof of diagram (I)

The goal of this section is to complete the proof of theorem 5.3.1 by proving the commu-
tativity of diagram (I) in (5.14) above. Such a diagram involves the tangent Lie structures
(tangent groupoid and algebroid) and the tangent lift of cochains. In this way, the arguments
exposed here will be based on the two kinds of special sections of the tangent algebroid: core
sections and tangent lift of sections (example 5.1.13). They are the fundamental sections of
this algebroid in the sense that they span (as a C∞(M)-module) all the other sections of it,
which allows to simplify the proofs below.

Lemma 5.3.5 Consider k a positive integer. The tangent lift of Lie algebroid cochains T :

Ck(A) −→ Ck(TA) (lemma 5.3.2) satisfies the following conditions:

1. (Linear sections) Tc(Tα1, ..., Tαk)|wx = (Tc)wx (Tα1(wx), ..., Tαk(wx)) = [T (c(α1, ..., αk))] (wx),

2. (One core-section) Tc(Tα1, ..., α̂k)|wx = c(α1, ..., αk)|x,

3. (More than one core-sections) Tc(Tα1, ..., α̂k−1, α̂k)|wx = 0.

Proof.

1. The first statement is direct. For simplicity, we prove the following properties for k = 2,
the general case (k 6= 2) is totally analogous.
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2.

Tc(Tα1, α̂2)|wx = (Tc)(wx)(Tα1(wx), α̂2(wx))

= (Tc)(wx)


∈ Tα1(x)A︷ ︸︸ ︷
Tα1(wx), T0A(wx) +A (α↑2)0Ax


= (Tc)(wx)

(
Tα1(wx), T0A(wx)

)︸ ︷︷ ︸
=0

+

+ (Tc)(0Ax )

(
0̃Aα1(x), (α

↑
2)0Ax

)
(Linearity of Tc over⊕2

M A)

=
d

dλ

∣∣∣∣
λ=0

c(α1(x), λα2(x))

= c(α1, α2)|(x) (Bilinearity of c (over M)),

where in the third equality the first term vanishes by the multilinearity of Tc with
respect to the vector bundle TA −→ TM .

3. Finally, considering more than one core-section:

Tc(α̂1, α̂2)|wx = Tc(T0A(wx) +A (α↑1)0Ax
, T0A(wx) +A (α↑2)0Ax

)

= Tc(T0A(wx), T0A(wx)) + Tc((α↑1)0Ax
, (α↑2)0Ax

)

= 0 +
d

dλ

∣∣∣∣
λ=0

c(λα1(x), λα2(x))

=
d

dλ

∣∣∣∣
λ=0

λ2 · c(α1(x), α2(x))

= 0,

where in the third equality Tc(T0A(wx), T0A(wx)) = 0 by the multilinearity of Tc with
respect to the vector bundle TA −→ TM .

Note that the key fact in order to extend these proofs to the general case k 6= 2 is using the
linearity of Tc to get a sum of zero plus a more simple expression in terms of c and sections
of AG .
♦

We can now pass to prove the commutativity of (I). For that, recall the definition of the
van-Est map Crainic (2003), V E : Ck(G) −→ Ck(AG), between the differentiable cohomology
of a Lie groupoid and the algebroid cohomology of its associated Lie algebroid. Given c ∈
Ck(G), V E(c) is defined by

V E(c)(X1, ..., Xk) =
∑
σ∈Sn

sgn(σ)Rσ(X1) ◦ · · · ◦Rσ(Xk)c; for Xi ∈ Γ(AG),
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where if X ∈ Γ(AG), RX is the map RX : Ck(G) −→ Ck−1(G) given by

RXc(g1, ..., gk−1) =
d

dε

∣∣∣∣
ε=0

c(ψ
~X
ε (t(g1)), g1, ..., gk − 1)

with ψ ~X
ε being the flow of the right invariant vector field associated to X ∈ Γ(AG).

In this way note that, if c ∈ C2(G), by definition of RX we have

(RX1RX2c)(x) =
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

c
(
ψ
~X2
ε2 (φV1ε1 (x)), ψ

~X1
ε1 (x)

)
, (5.18)

where V1 ∈ X(M) is the vector field on M , ρ(X1) (the projection by the anchor).

In general, for c ∈ Ck(G) and X1,..., Xk sections of AG ,

(RX1 · · ·RXkc)(x) =
d

dε1

∣∣∣∣
0

· · · d

dεk

∣∣∣∣
0

c

(
ψ
~Xk
εk

(ψ
Vk−1
εk−1 · · ·ψV1ε1 (x)), ψ

~Xk−1
εk−1 (ψ

Vk−2
εk−2 · · ·ψV1ε1 (x)), . . . , ψ

~X1
ε1 (x)

)
.

Therefore, all the essence is captured by considering the case k = 2, which we will prove
explicitly below with all the details, and we will coment the way to apply them for the general
case (which yields an analogous proof).

In order to use formula (5.18) for sections of the tangent Lie algebroid, we study the flow
of the appropriate right-invariant vector fields on TG. We then, analogous to lemma 5.3.5,
split the proof in three cases:

1. Linear sections: (Xi = jG ◦ (Tαi), αi ∈ Γ(AG), i = 1, 2.)

In this case, the flow of ~Xi ∈ X(TG) is the tangent lift of the flow of ~αi (Mackenzie et al.
(1994), Thm 7.1), thus for instance,

ψ
~Xι
ε (Tu(wy)) = (Tψ~αiε )(Tu(wy))

= T (ψ~αiε ◦ u)(wy)

=
d

dλ

∣∣∣∣
λ=0

ψ~αiε ◦ u(γ(λ)),

for γ(λ) a curve determining wy.
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Then,

(RX1RX2(Tc))(wx) =
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

dc

(
d

dλ

∣∣∣∣
λ=0

(ψ~α2
ε2 (ψV1ε1 (γ(λ)))), ψ~α1

ε1 ((γ(λ)))

)
=

d

dλ

∣∣∣∣
λ=0

(Rα1Rα2c)(γ(λ))

= d(Rα1Rα2c)(wx).

Therefore, it follows that

V E(Tc)(X1, X2)|wx = d (V E(c)(α1, α2))|wx .

Which, by item (1) in lemma 5.3.5, is

j∗G(V E(Tc))(Tα1, Tα2)
∣∣
wx

= T (V E(c)) (Tα1, Tα2)|wx .

The same argument shows that the equality holds for general k-cochains (k > 0) if we
take only linear sections.

2. One core-section case: Let α̂ ∈ Γ(TAG) be the core-section associated to α ∈ Γ(AG),
and X := jG ◦ α̂.

In this case, the right-invariant vector field on TG associated to X is ~X = (~α)↑

(Mackenzie et al. (1994), Thm 7.1), therefore its flow is given by ψ(~α)↑
ε (vg) = vg + ε~αg.

Thus, if X1 := jG ◦ Tα1 and X2 := jG ◦ α̂2, denote by u1 = ρ(α1) ∈ X(M):

(RX1RX2(Tc))(wx) =
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc
(
ψ( ~X2)
ε2 (tTG(ψ

~X1
ε1 (wx))), ψ

~X1
ε1 (wx)

)
=

d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc(Tψu1ε1 (wx)︸ ︷︷ ︸
w′
ψ
u1
ε1

(x)

+ε2 ~α2|ψu1ε1 (x) , Tψ
~α1
ε1 (wx))

=
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc(w′
ϕ
u1
ε1

(x)
, Tψ ~α1

ε1 (wx))︸ ︷︷ ︸
0

+
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

dc
(
ε2 ~α2|ϕu1ε1 (x) , 0ψ~α1ε1 (x)

)
=

d

dε1

∣∣∣∣
ε1=0

d

dλ

∣∣∣∣
λ=0

c
(
ψ~α2
λ (ϕu1ε1 (x)), ψ~α1

ε1 (x)
)

= (Rα1Rα2c)(x) ,
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where in the third equality we use the linearity of Tc over G(2) (Tc ∈ C2
lin(TG)).

Similarly, by changing the order,

(RX2RX1(Tc))(wx) =
d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

Tc

(Tψ ~α1
ε1 )

 ϕ
u↑2
ε2 (wx)︸ ︷︷ ︸

wx+ε2(u2)x

 , ψ(~α2)↑
ε2 (wx)︸ ︷︷ ︸
wx+ε2(~α2)x


=

d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

dc
(

(Tψ ~α1
ε1 )(ε2(u2)x), ε2(~α2)x

)
+

d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

dc(Tψ ~α1
ε1 (wx), wx)

=
d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

ε2 dc

(
(Tψ ~α1

ε1 )(
d

dλ

∣∣∣∣
λ=0

ϕu2λ (x)),
d

dλ

∣∣∣∣
λ=0

ψ~α2
λ (x)

)
=

d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

ε2
d

dλ

∣∣∣∣
λ=0

c
(
ψ ~α1
ε1 (ϕu2λ (x)), ψ~α2

λ (x)
)

=
d

dε2

∣∣∣∣
ε2=0

d

dε1

∣∣∣∣
ε1=0

c
(
ψ ~α1
ε1 (ϕu2ε2 (x)), ψ~α2

ε2 (x)
)

= (Rα2Rα1c) (x),

where in the second equality we view dc as an element of C2
lin(TG). Hence, it follows

that
V E(Tc)(X1, X2)(wx) =

(
V E(c)(α1,α2)

)
(x)
.

Which, by lemma 5.3.5 above, is

j∗G(V E(Tc))(Tα1, α̂2)
∣∣
(wx)

= T (V E(c))(Tα1, α̂2)|(wx) ,

as we want.

Note that the main ideas used in the proof of this case are two. (i) in the expression,
ψ

( ~α2)↑
ε (vx) = vx+ ε ~α2|x, for the flow of the right-invariant vector field on TG associated

to the core-section α̂2 of TAG , the time parameter ε only is with ~α2|x, and (ii) by using
the linearity of Tc ∈ C2

lin(TG) and (i), we can form two vectors of (TG)(2): one vector
multiplied by ε2 and the other one without dependence on ε2. Thus, by using these
two main facts, a completely analogous argument shows that the equality holds for
general k-cochains if we have one core-section. In fact, by the skew-symmetry property
of the elements of Ck(ATG), we can assume that Xk ∈ Γ(ATG) is the core-section in the
expression V E(Tc)(X1, ..., Xk), and in this way the proof of the equality is directly like
that above for the case k = 2.

3. More than one core-section case: (Xi := jG ◦ α̂i, αi ∈ Γ(A), i = 1, 2.)
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(RX1RX2(Tc))(wx) =
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc
(
ψ( ~X2)
ε2 (tTGψ

~X1
ε1 (wx)), ψ( ~X1)

ε1 (wx)
)

=
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc
(
tTGψ

(~α1)↑
ε1 (wx) + ε2(~α2)x, wx + ε1(~α1)x

)
=

d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc (wx + ε1(ρ(α1))x + ε2(~α2)x, wx + ε1(~α1)x)

=
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc (wx + ε1(ρ(α1))x, wx + ε1(~α1)x)

+
d

dε1

∣∣∣∣
ε1=0

d

dε2

∣∣∣∣
ε2=0

Tc (ε2(~α2)x, 0x)

= 0.

That is, j∗G [V E(Tc)] (α̂1, α̂2) = 0. Then item (3) in lemma 5.3.5 completes the com-
mutativity in this case. Therefore, these three cases prove the commutativity of the
diagram (I) between tangent lift of cochains (of Lie groupoids and Lie algebroids) and
the van-Est maps.

Analogously it is shown that the equality holds for k-cochains if we have more than one
core-section: it suffices to decompose the vector in (TG)(k) as a sum of two vectors, one
depending only on ε1 and another depending only on ε2.
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