Extensões cindidas por ideais nilpotentes

Heily Wagner

Dissertação apresentada AO Instituto de Matemática e Estatística da Universidade de São Paulo para obtenção do título de Mestre em Ciências

Área de Concentração: Matemática Orientador: Prof. Dr. Flávio Ulhoa Coelho

Durante o desenvolvimento deste trabalho o autor recebeu auxílio financeiro do CNPq

São Paulo, junho de 2008

Extensões cindidas por ideais nilpotentes

Este exemplar corresponde à redação final da dissertação devidamente corrigida e defendida por Heily Wagner e aprovada pela Comissão Julgadora.

Banca Examinadora:

- Prof. Dr. Flávio Ulhoa Coelho (orientador) IME-USP.
- Prof. Dr. Edson Ribeiro Alvares UFPR.
- Prof. Dr. Clézio Aparecido Braga UNIOESTE-PR.

Resumo

Consideremos A e B duas álgebras de Artin tais que B é uma extensão cindida de A pelo ideal Q, onde Q é um ideal nilpotente de B. Estudamos algumas propriedades homológicas das categorias $\operatorname{\mathsf{mod}} A$ e $\operatorname{\mathsf{mod}} B$, tais como dimensão projetiva e injetiva. A partir disso mostramos que se B pertence a uma das seguintes classes: hereditária, laura, fracamente shod, shod, quase inclinada, colada à esquerda, colada à direita ou disfarçada; então A pertence a mesma classe. Além disso, restringindo nosso estudo para álgebras de dimensão finita sobre um corpo algebricamente fechado, comparamos as respectivas aljavas ordinárias, bem como suas apresentações. Finalmente, após caracterizarmos o ideal Q, exibimos alguns exemplos de extensões no contexto de álgebras de caminhos com relações, que mostram que A pode ser de uma das classes citadas sem que B o seja.

Palavras-chave: extensões cindidas, representações de álgebras, dimensões homológicas.

Abstract

Let A and B be two Artin algebras such that B is a split-by-nilpotent extension of A by Q, were Q is a nilpotent ideal of B. We study some homological properties of the categories $\mathsf{mod}\ A$ and $\mathsf{mod}\ B$ such that the projetive and the injetive dimensions of their objects. Using this we show that if B belongs to one of this classes: hereditary, laura, weakly shod, shod, quasi-tilted, left glued, right glued or concealed; then A belongs to same class. Moreover restricting our study to finite dimensional algebras over algebraically closed fields, we compare the ordinary quivers and presentations of the corresponding algebras. Finally, after giving a characterization of ideal Q as above, we exhibit some exemples of split extensions in the context of path algebras bounded by relations, which shows that A can be one of the above cited algebras without B so.

Keywords: split extensions, algebras representation, homological dimensions.

Sumário

In	Introdução						
1	Pre	Preliminares					
	1.1	Categorias e Funtores	5				
	1.2	Álgebras e Módulos	9				
	1.3	Produto tensorial de módulos	18				
	1.4	Álgebra de Caminhos	21				
2	ensão cindida por nilpotente	27					
	2.1	Propriedades iniciais	27				
	2.2	Categorias $\operatorname{mod} A \in \operatorname{mod} B$	29				
	2.3	Projetivos, injetivos e conexidade	34				
3	Alja	Aljavas das extensões					
4 Propriedades homológicas herdadas							
	4.1	Introdução	51				
	4.2	Propriedades homológicas em $\operatorname{mod} A$ e em $\operatorname{mod} B$	59				
		4.2.1 Álgebra hereditária e álgebra shod.	67				

vi	$SUM\'ARIO$
----	-------------

5	Par	te direita e parte esquerda	69
	5.1	Parte direita e parte esquerda da categoria de módulos	69
	5.2	Álgebras determinadas por \mathcal{L} e \mathcal{R}	72
		5.2.1 Álgebra laura	72
		5.2.2 Álgebras coladas à direita e à esquerda	73
		5.2.3 Álgebra fracamente shod	74
		5.2.4 Álgebra shod	75
		5.2.5 Álgebra quase inclinada	75
		5.2.6 Álgebra disfarçada	76
	5.3	Exemplos	77
A	Alja	ava de Auslander-Reiten	85
Referências Bibliográficas			
Ín	dice	Remissivo	91

Introdução

A álgebra B é dita uma extensão da álgebra A se existir um epimorfismo de álgebras $\pi: B \to A$. Também podemos dizer que o par (B, π) é uma extensão de A.

Este conceito aparece na literatura, por exemplo, em On the cohomology groups of an associative algebra (1945 - Annals of Mathematics 46, 58-67) de G. Hochschild, onde encontramos a chamada extensão singular, que é quando ($\operatorname{Nuc} \pi$)² = 0 e a chamada extensão "segregate", que é quando $B \cong A \oplus \operatorname{Nuc} \pi$. Neste trabalho, Hochschild trata (sem dar nome) de extensões "segregate "cujo núcleo ($\operatorname{Nuc} \pi$) é um ideal nilpotente.

No livro Homological algebra (1956 - Princeton University Press) de H. Cartan e S. Eilenberg, uma extensão de álgebra $\pi: B \to A$ é dita inessencial quando π tiver inverso à direita, isto é, se existir um morfismo de álgebras $\sigma: A \to B$ tal que $\pi\sigma = id_A$. Atualmente dizemos que o epimorfismo cinde, ou ainda, que a extensão é cindida. Além disso podemos escrever $B \cong A \oplus \operatorname{Nuc} \pi$ (soma de A-módulos).

Nos trabalhos da última década, em especial [6], [7], [9] e [10] encontramos o termo que aqui será estudado: extensão cindida por ideal nilpotente.

Vamos estudar nesse trabalho características comuns entre duas álgebras de Artin A e B quando B for uma extensão cindida de A por um ideal nilpotente, isto é, quando existir um epimorfismo cindido de álgebras $\pi: B \to A$, cujo núcleo é um ideal nilpotente de B (ver [6,7,9,10]). Quando isso acontece podemos considerar A como uma subálgebra de B. Mais ainda, todo módulo sobre A é um módulo sobre B e vice-versa. Para fazer uma conexão entre as categorias dos módulos de tipo finito sobre A e sobre B, utilizamos os funtores de mudança de anéis

$$-\otimes_A B, \operatorname{\mathsf{Hom}}\nolimits_A(B_A,-):\operatorname{\mathsf{mod}}\nolimits A \ \to \ \operatorname{\mathsf{mod}}\nolimits B \ \operatorname{e}\nolimits \ -\otimes_B A, \operatorname{\mathsf{Hom}}\nolimits_B(A_B,-):\operatorname{\mathsf{mod}}\nolimits B \ \to \ \operatorname{\mathsf{mod}}\nolimits A$$

2 SUMÁRIO

(ver [12]). Com eles relacionamos os módulos indecomponíveis em $\operatorname{\mathsf{mod}} A$ e em $\operatorname{\mathsf{mod}} B$, em especial os projetivos e os injetivos. Na verdade, todo B-módulo projetivo é isomorfo a um módulo da forma $P \otimes_A B$, onde P_A é uma A-módulo projetivo; e todo B-módulo injetivo é isomorfo a um módulo da forma $\operatorname{\mathsf{Hom}}_A(B,I)$, onde I é um A-módulo injetivo.

A partir disso relacionamos resoluções e apresentações projetivas (e injetivas) de um "mesmo" módulo visto como A-módulo e como B-módulo e, portanto, conseguimos algumas propriedades homológicas da categoria ind A a partir de propriedades ind B (aqui ind C é a subcategoria plena de $\operatorname{\mathsf{mod}} C$ cujos objetos são representantes das classes de isomorfismo dos C-módulos indecomponíveis). Um resultado, envolvendo as dimensões projetivas (dp) e injetivas (di), é o seguinte:

```
Para todo A-módulo M indecomponível,

· se dp M_B \le 1 então dp M_A \le 1;

· se di M_B \le 1 então di M_A \le 1.
```

Tal resultado merece destaque pois nos garante duas propriedades de B que são herdadas por A: ser hereditária e ser shod.

Uma pergunta natural é se esse tipo de resultado também é válido para outras classes de álgebras. Estudamos então os conceitos de parte direita (\mathcal{R}) e parte esquerda (\mathcal{L}) da categoria de módulos [16] que podem ser definidas, para uma álgebra de Artin C, por

```
\mathcal{L} := \{X \in \operatorname{ind} C \mid \operatorname{se} Y \text{ \'e predecessor de } X, \text{ então dp } Y \leq 1\} e \mathcal{R} := \{X \in \operatorname{ind} C \mid \operatorname{se} X \text{ \'e sucessor de } Y, \text{ então di } Y \leq 1\}.
```

Essas subcategorias de ind C nos permitem caracterizar algumas classes de álgebras que são frequentemente estudadas em teoria de representações [5]. Algumas dessas classes estão no seguinte

Teorema A de [10]. Sejam A e B álgebras de Artin, tais que B é uma extensão cindida por nilpotente de A. Então,

- se B é laura então A também é laura;
- se B colada à esquerda então A também é colada à esquerda;
- se B colada à direita então A também é colada à direita;

SUMÁRIO 3

- se B é fracamente shod então A também é fracamente shod;
- se B é shod então A também é shod;
- \bullet se B é quase inclinada então A também é quase inclinada.

Mostramos também um resultado análogo para álgebras disfarçadas, porém como estas álgebras são de tipo de representação infinito, precisamos supor que A é de tipo infinito.

As recíprocas desses resultados não são válidas. Para construírmos alguns contra-exemplos restringimos nosso estudo para álgebras de dimensão finita sobre um corpo algebricamente fechado, mas ainda considerando B uma extensão cindida de A por um ideal nilpotente Q. Mostramos que a aljava ordinária de A é uma subaljava da aljava ordinária de B, um resultado que já era esperado uma vez que A pode ser vista como subálgebra de B. Há também uma forte ligação entre as apresentações dessas álgebras, o que nos permitiu caracterizar o ideal Q [6]. Utilizamos tal caracterização para construir exemplos de extensões cindidas por nilpotente. Por fim, para justificar que uma álgebra pertence ou não a uma das classes de álgebras estudadas, fizemos uso da aljava de Auslander-Reiten [8,11] que permite uma "visualização" da categoria dos módulos indecomponíveis e das subcategorias \mathcal{L} e \mathcal{R} .

Organização do Trabalho

No primeiro capítulo fazemos um apanhado de definições e resultados gerais envolvendo categorias e funtores, módulos sobre álgebras, produto tensorial e álgebras de caminhos (ver [1, 8, 11–13]), que são utilizados no decorrer do trabalho.

Para os demais capítulos foram estudadas as extensões cindidas por nilpotente, principalmente em [6,7,9,10].

No Capítulo 2 definimos extensão cindida por um ideal nilpotente para álgebras de Artin. Estudamos as categorias $\operatorname{\mathsf{mod}} A$ e $\operatorname{\mathsf{mod}} B$ através dos funtores de mudanças de anéis, em especial, os módulos projetivos e injetivos. Mostramos ainda que se A é uma álgebra conexa então B também o é. Os resultados foram retirados em sua maioria de [7,9,10].

Já no Capítulo 3 restringimos o estudo para álgebras de dimensão finita sobre um corpo algebricamente fechado e passamos a estudar as caracterizações, feitas em [6], das aljavas ordinárias e apresntações das álgebras A e B, bem como do ideal nilpotente Q.

O Capítulo 4 é dedicado ao estudo das propriedades homológicas das categorias mod A e mod B.

4 SUMÁRIO

Para isso, incluímos uma seção introdutória contendo definições e algumas propriedades de coberturas projetivas, envolventes injetivas, dimensões projetivas e injetivas, etc. A segunda seção compara as propriedades homológicas dos A-módulos e dos B-módulos. Ao final mostramos que se B é uma álgebra hereditária (ou shod) então A também é hereditária (ou shod). Tais resultados são em sua maioria de [7,10].

No Capítulo 5 extendemos esse último resultado para outras classes de álgebras. Iniciamos com um estudo das partes direita e esquerda das categorias $\operatorname{\mathsf{mod}} A$ e $\operatorname{\mathsf{mod}} B$. As álgebras laura, colada à direita (à esquerda), fracamente shod, shod, quase inclinada e disfarçada podem ser determinadas utilizando esses conceitos, como em [5]. Provamos que se B pertence a uma dessas classes então A também pertence a mesma classe [10]. Finalmente, na última seção damos alguns exemplos de extensões cindidas, utilizando as técnicas do Capítulo 3, que mostram que A pode ser de uma dessas classes de álgebras sem que B o seja.

Incluímos um apêndice com algumas características da aljava de Auslander-Reiten que são usadas nos exemplos do Capítulo 5.

Capítulo 1

Preliminares

Começamos nosso trabalho incluindo as definições e os resultados básicos de álgebras artinianas que serão utilizados nos próximos capítulos. Muitos dos resultados terão suas demonstrações omitidas, as quais podem ser encontradas, por exemplo, em [1], [8], [11] e [13]. Na seção de álgebras de caminhos restringimos nosso estudo às álgebras de dimensão finita sobre corpos algebricamente fechados.

Em muitas partes do trabalho utilizamos propriedades de categorias e funtores, por isso incluímos inicialmente uma seção com algumas definições e resultados que serão utilizados. Estes podem ser encontrados por exemplo em [1], [8] e [12].

1.1 Categorias e Funtores

Uma categoria C é definida por:

- uma classe de objetos de C, denotada por Ob C;
- para cada par (X, Y) de objetos de $\mathfrak C$ associamos um conjunto chamado de **conjunto de morfismos** de X para Y, denotado por $\mathsf{Hom}_{\mathfrak C}(X,Y)$, e tal que se $(X,Y) \neq (X',Y')$ então $\mathsf{Hom}_{\mathfrak C}(X,Y) \cap \mathsf{Hom}_{\mathfrak C}(X',Y') = \emptyset$;
- para cada tripla (X, Y, Z) de objetos de \mathfrak{C} , há uma operação de **composição de morfismos**, denotada por \circ : $\mathsf{Hom}_{\mathfrak{C}}(Y,Z) \times \mathsf{Hom}_{\mathfrak{C}}(X,Y) \to \mathsf{Hom}_{\mathfrak{C}}(X,Z)$ tal que
 - $-\ h\circ (g\circ f)=(h\circ g)\circ f \text{ para todo } f\in \mathsf{Hom}_{\mathfrak{C}}(X,Y),\, g\in \mathsf{Hom}_{\mathfrak{C}}(Y,Z),\, h\in \mathsf{Hom}_{\mathfrak{C}}(Z,W);$
 - para todo objeto X de $\mathfrak C$ existe um morfismo id_X em $\mathsf{Hom}_{\mathfrak C}(X,X)$, chamado de morfismo

identidade de X, tal que $f \circ id_X = f$ e $id_X \circ g = g$, para todo morfismo $f \in \mathsf{Hom}_{\mathfrak{C}}(X,Y)$ e $g \in \mathsf{Hom}_{\mathfrak{C}}(Z,X)$.

Escreveremos, por abuso de notação, $X \in \text{Ob } \mathfrak{C}$, ou ainda $X \in \mathfrak{C}$ para dizer que X é um objeto da categoria \mathfrak{C} e $f: X \to Y$ (ou $X \xrightarrow{f} Y$) denota que $f \in \text{Hom}_{\mathfrak{C}}(X,Y)$. Além disso, em alguns casos também escreveremos fg no lugar de $f \circ g$.

Dado um morfismo $f: X \to Y$, uma **secção** de f é um morfismo $g: Y \to X$ tal que $fg = id_Y$ e uma **retração** de f é um morfismo $h: Y \to X$ tal que $hf = id_X$. Diremos que o morfismo $f: X \to Y$ é um **isomorfismo** se existir $h: Y \to X$ que é uma secção e uma retração de f, ou seja, $hf = id_X$ e $fh = id_Y$. Nesse último caso, dizemos que os objetos X e Y são isomorfos $(X \cong Y)$.

Dados os objetos $X_1, ..., X_n$ de \mathfrak{C} , a **soma direta** é um objeto de \mathfrak{C} , denotado por $X_1 \oplus ... \oplus X_n$, junto com um conjunto de morfismos $u_i : X_i \to X_1 \oplus ... \oplus X_n$, com i = 1, ..., n, tais que para cada objeto $Z \in \text{Ob } \mathfrak{C}$ e cada conjunto de morfismos $f_i : X_i \to Z$, i = 1, ..., n em \mathfrak{C} , existe um único morfismo $f : X_1 \oplus ... \oplus X_n \to Z$ tal que para cada i vale $f_i = f \circ u_i$. Também escrevemos $\bigoplus_{i=1}^n X_i = X_1 \oplus ... \oplus X_n$. Cada morfismo u_i é chamado de i-ésima **inclusão**.

Uma categoria C é dita aditiva se:

- para quaisquer objetos $X_1,...,X_n$ de $\mathfrak C$ existe a soma direta $X_1\oplus...\oplus X_n$ em $\mathfrak C$;
- o conjunto $\mathsf{Hom}_{\mathfrak{C}}(X,Y)$ tem estrutura de grupo abeliano, para cada $X,Y\in\mathfrak{C};$
- existe um objeto **zero**, $0 \in \text{Ob } \mathfrak{C}$, tal que o morfismo identidade id_0 é o elemento nulo do grupo abeliano $\text{Hom}_{\mathfrak{C}}(0,0)$;
- para f, g, h morfismos em \mathfrak{C} , vale $(f+g) \circ h = f \circ h + g \circ h$ e $f \circ (g+h) = f \circ g + f \circ h$ (desde que estas operações estejam definidas).

Para uma categoria aditiva \mathfrak{C} , a **categoria dual** ou **oposta**, denotada por \mathfrak{C}^{op} é definida como a categoria cujos objetos são os mesmos de \mathfrak{C} , $\mathsf{Hom}_{\mathfrak{C}^{op}}(X,Y) = \mathsf{Hom}_{\mathfrak{C}}(Y,X)$ para $X,Y \in \mathsf{Ob} \ \mathfrak{C}$ e a composição de $f \in \mathsf{Hom}_{\mathfrak{C}^{op}}(X,Y)$ com $g \in \mathsf{Hom}_{\mathfrak{C}^{op}}(Y,Z)$ é $fg \in \mathsf{Hom}_{\mathfrak{C}}(Z,X) = \mathsf{Hom}_{\mathfrak{C}^{op}}(X,Z)$.

Exemplo 1.1 (Notação matricial) $Seja \bigoplus_{i=1}^n X_i$ junto com $\{u_i\}_i$ a soma direta dos objetos X_i

de uma categoria aditiva \mathfrak{C} . Existem morfismos $p_j: \bigoplus_{i=1}^n X_i \to X_j$ (j-ésima projeção) tais que $p_j \circ u_j = id_{X_j}, \ p_j \circ u_i = 0 \ se \ i \neq j \ e \bigoplus_{i=1}^n (u_i \circ p_i) = id_{\bigoplus X_i}.$

Dados os morfismos $f_i: X_i \to Y$ e $g_j: Y \to Z_j$ em \mathfrak{C} , denotamos por $f = \begin{bmatrix} f_1 & \cdots & f_n \end{bmatrix}: X_1 \oplus \ldots \oplus X_n \to Y$ o morfismo tal que $f \circ u_i = f_i$ para cada $i = 1, \ldots, n$ e $g = \begin{bmatrix} g_1 \\ \vdots \\ g_m \end{bmatrix}: Y \to Z_1 \oplus \ldots \oplus Z_m$ o morfismo tal que $p_i \circ g = g_i$ para cada $i = 1, \ldots, m$.

 $Se \ X = X_1 \oplus \ldots \oplus X_n \ e \ Z = Z_1 \oplus \ldots \oplus Z_m \ ent \ \tilde{a}o \ um \ morfismo \ h : X \to Z \ em \ \mathfrak{C} \ \acute{e} \ denotado \ pela$ $matriz \ h : [h_{ij}] = \begin{bmatrix} h_{11} & h_{12} & \cdots & h_{1n} \\ h_{21} & h_{22} & \cdots & h_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ h_{m1} & h_{m2} & \cdots & h_{mn} \end{bmatrix} onde \ h_{ij} = p_i \circ h \circ u_j : X_j \to Z_i.$

Dizemos que uma categoria $\mathfrak D$ é uma subcategoria de $\mathfrak C$ se:

- a classe Ob \mathfrak{D} é uma subclasse de Ob \mathfrak{C} ;
- se $X,Y \in \text{Ob } \mathfrak{D}$, então $\text{Hom}_{\mathfrak{D}}(X,Y) \subseteq \text{Hom}_{\mathfrak{C}}(X,Y)$;
- a composição de \mathfrak{D} é a mesma de \mathfrak{C} ;
- para cada objeto X de \mathfrak{D} , o morfismo identidade em $\mathsf{Hom}_{\mathfrak{D}}(X,X)$ coincide com o morfismo identidade em $\mathsf{Hom}_{\mathfrak{C}}(X,X)$.

Uma subcategoria $\mathfrak D$ de $\mathfrak C$ é dita **plena** se $\mathsf{Hom}_{\mathfrak D}(X,Y) = \mathsf{Hom}_{\mathfrak C}(X,Y)$ para todos os objetos X e Y em $\mathfrak D$.

Funtores

Sejam \mathfrak{C} e \mathfrak{D} categorias, define-se um **funtor covariante** $F:\mathfrak{C}\to\mathfrak{D}$ associando para cada objeto X de \mathfrak{C} um objeto FX (ou F(X)) de \mathfrak{D} e para cada morfismo $f:X\to Y$ em \mathfrak{C} , um morfismo $Ff:FX\to FY$ (ou F(f)) em \mathfrak{D} tal que:

- F(gf) = (Fg)(Ff), para todos $f \in g$ morfismos em \mathfrak{C} ;
- $Fid_X = id_{FX}$, para todo objeto X de \mathfrak{C} .

Define-se um funtor contravariante $F: \mathfrak{C} \to \mathfrak{D}$ associando para cada objeto X de \mathfrak{C} um objeto FX de \mathfrak{D} e para cada morfismo $f: X \to Y$ em \mathfrak{C} , um morfismo $Ff: FY \to FX$ em \mathfrak{D} tal que:

- F(gf) = (Ff)(Fg), para todos $f \in g$ morfismos em \mathfrak{C} ;
- $Fid_X = id_{FX}$, para todo objeto X de \mathfrak{C} .

Sejam \mathfrak{C} e \mathfrak{D} categorias aditivas. Um funtor $F:\mathfrak{C}\to\mathfrak{D}$ é dito **aditivo** se dados X e Y em \mathfrak{C} , temos $F(X\oplus Y)\cong F(X)\oplus F(Y)$ em \mathfrak{D} e se $f,g\in\mathsf{Hom}_{\mathfrak{C}}(X,Y)$ então F(f+g)=F(f)+F(g).

Sejam F, G funtores covariantes da categoria $\mathfrak C$ na categoria $\mathfrak D$. Um **morfismo funtorial** ou **transformação natural** $\Phi: F \to G$ é uma família $\{\Phi_X\}_{X \in Ob \mathfrak C}$ de morfismos $\Phi_X: FX \to GX$ de $\mathfrak D$ tal que, se $f: X \to Y$ é um morfismo de $\mathfrak C$, então $\Phi_Y \circ Ff = Gf \circ \Phi_X$, ou seja, o seguinte diagrama é comutativo:

$$FX \xrightarrow{\Phi_X} GX$$

$$Ff \downarrow \circlearrowleft \qquad \downarrow Gf$$

$$FY \xrightarrow{\Phi_Y} GY$$

Sejam F, G são funtores contravariantes da categoria \mathfrak{C} na categoria \mathfrak{D} . Um morfismo funtorial ou transformação natural $\Phi: F \to G$ é uma família $\{\Phi_X\}_{X \in Ob \mathfrak{C}}$ de morfismos $\Phi_X: FX \to GX$ de \mathfrak{D} tal que, se $f: X \to Y$ é um morfismo de \mathfrak{C} , então $\Phi_X \circ Ff = Gf \circ \Phi_Y$, ou seja, o seguinte diagrama é comutativo:

$$FX \xrightarrow{\Phi_X} GX$$

$$Ff \downarrow \circlearrowleft \qquad \uparrow Gf$$

$$FY \xrightarrow{\Phi_Y} GY$$

A composição de morfismos funtoriais definida por $(\Phi\Psi)_X = \Phi_X \Psi_X$ é ainda um morfismo funtorial. Para cada funtor F tem-se um morfismo funtorial identidade $id_F : F \to F$ dado por $(id_F)_X = id_{FX}$. Um morfismo funtorial $\Phi : F \to G$ é dito **isomorfismo funtorial** se cada Φ_X for um isomorfismo em \mathfrak{D} . Nesse caso existe um morfismo funtorial $\Psi : G \to F$ tal que $\Phi\Psi = id_G$ e

 $\Psi\Phi = id_F$. Utilizaremos $F \approx G$ para dizer que existe um isomorfismo funtorial entre $F \in G$. A composição de isomorfismos funtoriais é também um isomorfismo funtorial.

Sejam $\mathfrak C$ e $\mathfrak D$ categorias, $F:\mathfrak C \to \mathfrak D$ e $G:\mathfrak D \to \mathfrak C$ funtores. Dizemos que F é **adjunto à esquerda de** G ou G é **adjunto à direita de** F ou ainda que o par (F,G) é **adjunto** se para todos os objetos $X \in \mathfrak C$ e $M \in \mathfrak D$ existe uma bijeção $\Phi_{(X,M)}: \mathsf{Hom}_{\mathfrak C}(X,GM) \longrightarrow \mathsf{Hom}_{\mathfrak D}(FX,M)$ que é funtorial em cada variável.

Um funtor (covariante) $F: \mathfrak{C} \to \mathfrak{D}$ é dito uma **equivalência** entre as categorias \mathfrak{C} e \mathfrak{D} se existir um funtor $G: \mathfrak{D} \to \mathfrak{C}$ tal que $FG \approx id_{\mathfrak{D}}$ e $GF \approx id_{\mathfrak{C}}$. Nesse caso, dizemos que G é um **quase-inverso** de F e que as categorias \mathfrak{C} e \mathfrak{D} são **equivalentes** ($\mathfrak{C} \approx \mathfrak{D}$). Um funtor contravariante $F: \mathfrak{C} \to \mathfrak{D}$ é dito uma **equivalência** entre as categorias \mathfrak{C} e \mathfrak{D} se o funtor covariante induzido $F: \mathfrak{C}^{op} \to \mathfrak{D}$ for uma equivalência de categorias. Nesse caso, F é chamado de **dualidade**.

Um funtor covariante $F: \mathfrak{C} \to \mathfrak{D}$ induz, para cada par (X, Y) de objetos de \mathfrak{C} , uma aplicação $F: \mathsf{Hom}_{\mathfrak{C}}(X,Y) \to \mathsf{Hom}_{\mathfrak{D}}(FX,FY)$ dada por $f \mapsto Ff$. Se esta aplicação é injetora, dizemos que o funtor F é **fiel**. Se for sobrejetora, dizemos que o funtor F é **pleno**. O funtor F é dito **denso** se para cada objeto M de \mathfrak{D} existir um objeto X de \mathfrak{C} tal que M e FX são isomorfos em \mathfrak{D} .

Proposição 1.1 Sejam \mathfrak{C} e \mathfrak{D} categorias. Um funtor $F:\mathfrak{C}\to\mathfrak{D}$ é uma equivalência de categorias se, e somente se, F é fiel, pleno e denso.

1.2 Álgebras e Módulos

Seja R um anel comutativo com unidade. Uma R-álgebra A é um anel com unidade que ao mesmo tempo é um módulo sobre R e tal que para todo $x \in R$ e para todo $a, b \in A$ vale:

$$(ab)x = a(bx) = (ax)b.$$

A toda R-álgebra A corresponde uma outra R-álgebra, chamada de **álgebra oposta** A^{op} que tem a mesma estrutura de R-módulo de A, mas a multiplicação * é definida por a*a':=a'a para todos $a, a' \in A$.

Uma R-álgebra A é dita uma **álgebra de Artin** se R é um anel artiniano e A é um R-módulo de tipo finito (isto é, finitamente gerado).

Daqui para frente, caso não se faça menção ao contrário, as álgebras serão consideradas R-álgebras

de Artin.

Exemplo 1.2 (Álgebra de Matrizes) Seja k um corpo. O conjunto $M_n(k)$, das matrizes $n \times n$ com coeficientes em k, munido das operações usuais de matrizes, é uma k-álgebra de Artin de dimensão n^2 .

Um R-submódulo B da R-álgebra A é uma R-subálgebra de A se $1_A \in B$ e $bb' \in B$, $\forall b, b' \in B$.

Um R-submódulo \mathcal{I} de uma R-álgebra A é um **ideal à direita de** A se $\alpha a \in \mathcal{I}$, para todo $\alpha \in \mathcal{I}$ e para todo $a \in A$. Se $a\alpha \in \mathcal{I}$, $\forall \alpha \in \mathcal{I}$, $\forall a \in A$ então \mathcal{I} é um **ideal à esquerda de** A. Se \mathcal{I} é um **ideal à direita** e um ideal à esquerda, então \mathcal{I} é um **ideal bilateral de** A ou simplesmente um **ideal de** A.

Exemplo 1.3 Consideremos \mathcal{I} um ideal de uma R-álgebra A. Seja $\frac{A}{\mathcal{I}}$ o conjunto das classes módulo \mathcal{I} da forma $a+\mathcal{I}=\{a+\alpha: \alpha\in\mathcal{I}\}$, para todo $a\in A$. Então, $\frac{A}{\mathcal{I}}$ tem uma estrutura de R-módulo dada por $(a+\mathcal{I})+(b+\mathcal{I}):=(a+b)+\mathcal{I}$ e $(a+\mathcal{I})x:=ax+\mathcal{I}$, para todo $a,b\in A$ e para todo $x\in R$ e tem uma estrutura de anel dada por $(a+\mathcal{I})$ $(b+\mathcal{I}):=ab+\mathcal{I}$, para todo $a,b\in A$. Além disso, essas duas estruturas são compatíveis, ou seja, para todos $a,b\in A$ e para todo $x\in R$: $((a+\mathcal{I})(b+\mathcal{I}))x=(a+\mathcal{I})((b+\mathcal{I})x)=((a+\mathcal{I})x)(b+\mathcal{I})$. Portanto, $\frac{A}{\mathcal{I}}$ é uma R-álgebra, a qual chamamos de álgebra quociente de A por \mathcal{I} .

Seja \mathcal{I} um ideal à direita da R-álgebra A. Um subconjunto $S \subseteq \mathcal{I}$ é dito um **gerador** do ideal \mathcal{I} se cada elemento ω de \mathcal{I} possa ser escrito como $\omega = \sum_{i=1}^{n} \omega_i a_i$ onde $\omega_i = \prod_{j=1}^{t} s_j$ e cada $s_j \in S$. Se S for finito, \mathcal{I} é dito finitamente gerado.

Diremos que um ideal \mathcal{I} de uma R-álgebra A é **nilpotente** se existir um inteiro positivo n tal que $\mathcal{I}^n = 0$, onde $\mathcal{I}^n := \{ \sum_{i=1}^n \alpha_{1_i} \alpha_{2_i} ... \alpha_{n_i} \mid \alpha_{j_i} \in \mathcal{I} \}.$

Exemplo 1.4 Seja k um corpo. O conjunto $A = \begin{pmatrix} k & 0 \\ k & k \end{pmatrix} := \left\{ \begin{pmatrix} x & 0 \\ y & z \end{pmatrix} \mid x, y, z \in k \right\}$ é uma k-subálgebra da álgebra de matrizes $M_2(k)$.

 $O\ conjunto\ \mathcal{I} = \left(\begin{array}{c} 0 & 0 \\ k & 0 \end{array}\right) \ \acute{e}\ um\ ideal\ (bilateral)\ de\ A\ nilpotente\ e\ \acute{e}\ gerado\ por\ S = \left\{\left(\begin{array}{cc} 0 & 0 \\ 1_k & 0 \end{array}\right)\right\},$ onde $1_k\ \acute{e}\ a\ unidade\ do\ corpo\ k$.

11

Um ideal \mathcal{I} de uma R-álgebra A é dito **maximal** se não existir um ideal $\bar{\mathcal{I}} \neq \mathcal{I}$, $\bar{\mathcal{I}} \neq A$ tal que $\mathcal{I} \subset \bar{\mathcal{I}} \subset A$.

Proposição 1.2 Sejam A uma R-álgebra de Artin e I um ideal de A. São equivalentes:

- 1. I é o maior ideal nilpotente.
- 2. I é a interseção de todos os ideais maximais.

Um ideal com as propriedades da proposição acima é chamado de **radical** (de Jacobson) de A e é denotado por rad A.

Morfismos de álgebras

Sejam A e B duas R-álgebras. Um **morfismo** ou **homomorfismo** de R-álgebras de A em B é uma aplicação $\phi: A \to B$ que é R-linear e é um homomorfismo de anéis, isto é, para todos $a_1, a_2 \in A$ e $x, y \in R$:

- $\phi(a_1x + a_2y) = \phi(a_1)x + \phi(a_2)y;$
- $\phi(a_1a_2) = \phi(a_1)\phi(a_2);$
- $\phi(1_A) = 1_B$;

Se ϕ é injetora então ϕ é dita um **monomorfismo de álgebras**. Se ϕ é sobrejetora então ϕ é dita um **epimorfismo de álgebras**. E, se ϕ é bijetora, então ϕ é dita um **isomorfismo de álgebras**. Neste último caso, dizemos que as álgebras A e B são **isomorfas** e denotamos por $A \cong B$.

Exemplo 1.5 Se A é uma R-subálgebra de B, então a aplicação $\iota:A\to B$, definida por $\iota(a)=a$, é um monomorfismo de álgebras, chamado de inclusão canônica.

Se \mathcal{I} é um ideal bilateral de A então, a aplicação $\pi:A\to \frac{A}{\mathcal{I}}$, definida por $\pi(a)=a+\mathcal{I}$ é um epimorfismo de álgebras e é chamado de **projeção canônica**.

Um monomorfismo é dito **monomorfismo cindido** quando possuir uma retração e um epimorfismo é dito **epimorfismo cindido** quando possuir uma secção.

Seja $\phi:A\to B$ um morfismo de álgebras. Então:

- 1. A imagem de ϕ (Im $\phi := \{\phi(a) \mid a \in A\}$) é uma subálgebra de B;
- 2. $\phi(0) = 0$;
- 3. $\phi(-a) = -\phi(a)$;
- 4. O núcleo de ϕ (Nuc $\phi := \{a \in A \mid \phi(a) = 0\}$) é um ideal bilateral de A;
- 5. ϕ é injetora se, e somente se, Nuc $\phi = 0$;
- 6. $\phi(\operatorname{\mathsf{rad}} A) \subseteq \operatorname{\mathsf{rad}} B$.

Proposição 1.3 (Teorema do isomorfismo para álgebras) $Se \ \phi : A \rightarrow B \ \acute{e} \ um \ epimorfismo de álgebras, então$

 $\frac{A}{\operatorname{Nuc}\phi}\cong B$

Módulos

Nessa seção as álgebras serão R-álgebras de Artin, onde R é uma anel comutativo com unidade.

Seja A uma R-álgebra. Um A-módulo à direita M é simplesmente um módulo à direita sobre o anel A. Neste caso, M é dotado de uma estrutura natural de R-módulo à direita, dada por $mx := m(1_A x)$, para todo $m \in M$ e para todo $x \in R$. Como R é comutativo, M também tem estrutura de R-módulo à esquerda. Além disso, se $x \in R$, $m \in M$ e $a \in A$ vale

$$(xm)a = x(ma) = m(xa).$$

Analogamente, define-se A-módulos à esquerda.

Usaremos a seguinte notação: M_A denota um A-módulo à direita e $_AM$ denota um A-módulo à esquerda. Em muitos casos, omitiremos enunciados envolvendo módulos à esquerda, pois estes são inteiramente análogos ao caso dos módulos à direita.

Exemplo 1.6 Sejam M_A um A-módulo e $\mathcal I$ um ideal de A, então o conjunto

$$M\mathcal{I} := \{ \sum_{j} m_j \alpha_j \mid m_j \in M, \alpha_j \in \mathcal{I} \}$$

13

 \acute{e} um A-submódulo de M_A .

Se M for anulado pelo ideal \mathcal{I} , isto é, se $M\mathcal{I}=0$, então M possui uma estrutura natural de $\frac{A}{\mathcal{I}}$ -módulo, dada por $m \cdot (a+\mathcal{I}) := ma$, para $m \in M$ e $a \in A$.

Se M é um A-módulo à direita então o **radical** de M, denotado por rad M_A , é o A-submódulo $M(\operatorname{rad} A)$. O radical do A-módulo A_A é rad $A_A = \operatorname{Arad} A = \operatorname{rad} A$. Vale ainda que rad $(M \oplus N)_A = \operatorname{rad} M_A \oplus \operatorname{rad} N_A$; e se N_A é um submódulo de M_A com $N \subseteq \operatorname{rad} M$, então rad $\frac{M}{N} = \frac{\operatorname{rad} M}{N}$.

Proposição 1.4 (Lema de Nakayama) Sejam M_A um A-módulo de tipo finito e N_A um submódulo de M_A . Então $N \subseteq \operatorname{rad} M$ se, e somente se, N + L = M implica que L = M, para todo submódulo $L_A \subseteq M_A$.

Sejam A e B duas R-álgebras. Um conjunto M que tem estrutura de A-módulo à esquerda e estrutura de B-módulo à direita é um (A-B)-bimódulo se estas estruturas forem compatíveis, isto é, se a(mb) = (am)b para todo $a \in A$, $m \in M$ e $b \in B$.

Denotaremos um (A-B)-bimódulo M por ${}_{A}M_{B}$.

Morfismos de módulos

Sejam M e N dois A-módulos à direita. Um **morfismo de** A-**módulos** ou **homomorfismo de** A-**módulos** é uma aplicação $f: M \to N$ tal que $f(m_1a + m_2b) = f(m_1)a + f(m_2)b$ para todos $m_1, m_2 \in M$ e $a, b \in A$. Um morfismo de A-módulos é, claramente, R-linear.

Se M e N são (A-B)-bimódulos, uma aplicação que é um morfismo de A-módulos à direita e de B-módulos à esquerda é dita um **morfismo de** (A-B)-bimódulos.

Se $f: M \to N$ é um morfismo de A-módulos, dizemos que f é um **monomorfismo** se f é injetora e que f é um **epimorfismo** se f é sobrejetora. Se f é bijetora, então dizemos que é um **isomorfismo** de módulos, neste caso dizemos que M e N são **isomorfos** e denotamos por $M \cong N$.

Para um morfismo de módulos à direita (ou à esquerda) $f:M\to N$ valem propriedades análogas as enunciadas para um morfismo de álgebras:

- 1. A imagem de f e o núcleo de f são submódulos de N e M respectivamente;
- 2. f(0) = 0;

- 3. f(-m) = -f(m);
- 4. f é um monomorfismo se, e somente se, Nuc f = 0;
- 5. f é um epimorfismo se, e somente se, Conuc $f := \frac{M}{\operatorname{Im} f} = 0$;
- 6. $f(\operatorname{rad} M_A) \subseteq \operatorname{rad} N_A \text{ (ou } f(\operatorname{rad} AM) \subseteq \operatorname{rad} AN).$

Denotamos por $\mathsf{Hom}_A(M,N)$ o conjunto dos morfismos (de A-módulos) de M em N. Tal conjunto tem estrutura de R-módulo com as seguintes operações: se $f,g \in \mathsf{Hom}_A(M,N)$ e $x \in R$ definimos (f+g)(m) := f(m) + g(m) e (fx)(m) := xf(m), para todo $m \in M$.

Denotaremos por $\operatorname{\mathsf{Mod}} A$ ($A\operatorname{\mathsf{-Mod}}$) a categoria aditiva cujos objetos são os $A\operatorname{\mathsf{-módulos}}$ à direita (à esquerda) e os morfismos são os morfismos de $A\operatorname{\mathsf{-módulos}}$. Denotaremos também por $\operatorname{\mathsf{mod}} A$ ($A\operatorname{\mathsf{-mod}}$) a subcategoria plena de $\operatorname{\mathsf{Mod}} A$ ($A\operatorname{\mathsf{-Mod}}$) cujos objetos são os $A\operatorname{\mathsf{-módulos}}$ de tipo finito.

Seja M_A um A-módulo. Definimos um funtor covariante $\operatorname{\mathsf{Hom}}_A(M,-):\operatorname{\mathsf{Mod}} A\to\operatorname{\mathsf{Mod}} R$ que a cada A-módulo N_A associa o R-módulo $\operatorname{\mathsf{Hom}}_A(M,N)$ e a cada morfismo de A-módulos $f:L_A\to N_A$ associa o morfismo R-linear $\operatorname{\mathsf{Hom}}_A(M,f):\operatorname{\mathsf{Hom}}_A(M,L)\to\operatorname{\mathsf{Hom}}_A(M,N),$ onde $\operatorname{\mathsf{Hom}}_A(M,f)(g):=fg.$ Analogamente, definimos o funtor contravariante $\operatorname{\mathsf{Hom}}_A(-,M):\operatorname{\mathsf{Mod}} A\to\operatorname{\mathsf{Mod}} R$ que a cada módulo N_A associa o R-módulo $\operatorname{\mathsf{Hom}}_A(M,N)$ e a cada morfismo de A-módulos $f:L_A\to N_A$ associa o morfismo R-linear $\operatorname{\mathsf{Hom}}_A(f,M):\operatorname{\mathsf{Hom}}_A(N,M)\to\operatorname{\mathsf{Hom}}_A(L,M),$ onde $\operatorname{\mathsf{Hom}}_A(f,M)(g):=gf.$

Dadas as R-álgebras A e B vale:

- 1. para ${}_AM_B \in N_B$, $\mathsf{Hom}_B(M,N)$ é um A-módulo à direita com (fa)(m) := f(am);
- 2. para ${}_{A}M_{B}$ e ${}_{A}N$, $\mathsf{Hom}_{A}(M,N)$ é um B-módulo à esquerda com (bf)(m) := f(mb);
- 3. para $AM \in AN_B$, $Hom_A(M, N)$ é um B-módulo à direita com (fb)(m) := f(m)b;
- 4. para M_B e ${}_AN_B$, $\mathsf{Hom}_B(M,N)$ é um A-módulo à esquerda com (af)(m) := af(m).

Podemos então definir outros funtores, como por exemplo: $\mathsf{Hom}_A(-,_A N_B) : \mathsf{Mod}\ A^{op} \to \mathsf{Mod}\ B$ e $\mathsf{Hom}_B(-,_A N_B) : \mathsf{Mod}\ B \to \mathsf{Mod}\ A^{op}$. Todos esses funtores são aditivos.

Exemplo 1.7 Dado um A-módulo $M_A \in \mathsf{Mod}\ A$ temos que $\mathsf{Hom}_A({}_AA_A, M_A) \cong M_A$. Mais ainda, esse isomorfismo é funtorial, ou seja, $\mathsf{Hom}_A({}_AA_A, -) \approx id_{\mathsf{Mod}\ A}$.

15

Se M_A e N_A são de tipo finito, então $\mathsf{Hom}_A(M_A,N_A)$ é também de tipo finito. Podemos então considerar os funtores "restrições" como $\mathsf{Hom}_A(-,_A N_B)$: $\mathsf{mod}\ A^{op} \to \mathsf{mod}\ B$ por exemplo.

Exemplo 1.8 (Funtor dual) O funtor contravariante $D := \operatorname{Hom}_R(-,R) : \operatorname{mod} A \to \operatorname{mod} A^{op}$ é uma dualidade cujo funtor quase-inverso é $D := \operatorname{Hom}_R(-,R) : \operatorname{mod} A^{op} \to \operatorname{mod} A$, ou seja, $D^2 := D \circ D \approx id_{\operatorname{mod} A}$ e portanto $\operatorname{mod} A \approx \operatorname{mod} A^{op}$.

Para cada A-módulo M, o A^{op} -módulo DM é chamado de **dual de** M. Dados os A-módulos M e N, vale ainda que $\mathsf{Hom}_A(M,N) \cong \mathsf{Hom}_{A^{op}}(DN,DM)$.

Sequência exata de módulos

Uma sequência de A-módulos e de morfismos de A-módulos

$$\cdots \longrightarrow M_{i+1} \xrightarrow{f_{i+1}} M_i \xrightarrow{f_i} M_{i-1} \xrightarrow{f_{i-1}} \cdots$$

é dita **exata em** M_i se Im $f_{i+1} = \text{Nuc } f_i$. Tal sequência é dita **exata** se for exata em todo M_i .

Observemos que dado um morfismo de A-módulos $f:M\to N$, temos que f é um monomorfismo se, e somente se, a sequência $0\to M\xrightarrow{f} N$ for exata; e f é um epimorfismo se, e somente se, a sequência $M\xrightarrow{f} N\to 0$ for exata.

Uma sequência exata de A-módulos da forma $0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ é chamada de **sequência exata curta**. Dizemos que uma sequência exata curta **cinde** se f tiver uma secção, ou equivalentemente, se g tiver uma retração. Nesse caso, $M \cong L \oplus N$.

O funtor dual é um funtor exato, ou seja, se $0 \to L \to M \to N \to 0$ é uma sequência exata curta, então a sequência induzida $0 \to DN \to DM \to DL \to 0$ também é exata.

Proposição 1.5 Seja A uma R-álgebra.

- a) A sequência $0 \to L_A \xrightarrow{f} M_A \xrightarrow{g} N_A$ é exata se, e somente se, pra todo X_A , a sequência de R-módulos $0 \longrightarrow \operatorname{Hom}_A(X,L) \xrightarrow{\operatorname{Hom}_A(X,f)} \operatorname{Hom}_A(X,M) \xrightarrow{\operatorname{Hom}_A(X,g)} \operatorname{Hom}_A(X,N)$ é exata.
- b) A sequência $L_A \xrightarrow{f} M_A \xrightarrow{g} N_A \to 0$ é exata se, e somente se, pra todo X_A , a sequência de R-módulos $0 \longrightarrow \operatorname{Hom}_A(N,X) \xrightarrow{\operatorname{Hom}_A(g,X)} \operatorname{Hom}_A(M,X) \xrightarrow{\operatorname{Hom}_A(f,X)} \operatorname{Hom}_A(L,X)$ é exata.

- c) A sequência $0 \to L_A \xrightarrow{f} M_A \xrightarrow{g} N_A \to 0$ é exata e cinde se, e somente se, para todo X_A , a sequência de R-módulos $0 \longrightarrow \operatorname{Hom}_A(X,L) \longrightarrow \operatorname{Hom}_A(X,M) \longrightarrow \operatorname{Hom}_A(X,N) \longrightarrow 0$ é exata.
- d) A sequência $0 \to L_A \xrightarrow{f} M_A \xrightarrow{g} N_A \to 0$ é exata e cinde se, e somente se, para todo X_A , a sequência de R-módulos $0 \longrightarrow \operatorname{Hom}_A(N,X) \longrightarrow \operatorname{Hom}_A(M,X) \longrightarrow \operatorname{Hom}_A(L,X) \longrightarrow 0$ é exata.

Módulos indecomponíveis, simples, projetivos e injetivos

Seja A uma R-álgebra de Artin. Lembraremos nessa seção propriedades de algumas classes de módulos que são importantes no estudo da categoria de módulos de tipo finito. Consideraremos somente A-módulos à direita e de tipo finito.

Um A-módulo M_A não nulo é dito **indecomponível** se $M=M_1\oplus M_2$ implicar que $M_1=0$ ou $M_2=0$.

Indicaremos por ind A a subcategoria plena de $\operatorname{\mathsf{mod}} A$ que consiste de um conjunto completo de representantes das classes de isomorfismos dos A-módulos indecomponíveis de tipo finito. Muitas vezes, por abuso de notação, escreveremos $M \in \operatorname{\mathsf{ind}} A$ para indicar que M é um A-módulo indecomponível.

Proposição 1.6 (Teorema de Krull-Schmidt) Seja A uma R-álgebra de Artin, então todo A-módulo de tipo finito se decompõe como soma direta finita de A-módulos indecomponíveis de tipo finito. Mais ainda, tal decomposição é única a menos de isomorfismo e ordem dos "fatores".

Um A-módulo S_A não nulo é dito **simples** se os seus únicos submódulos são os triviais, ou seja, S_A e 0.

Definição 1.1 Um A-módulo P_A é dito **projetivo** se possuir as seguintes propriedades equivalentes:

1. para todo epimorfismo $f:M_A \rightarrow N_A$ e todo morfismo $g:P_A \rightarrow N_A$ existe um morfismo

1.2. ÁLGEBRAS E MÓDULOS

17

 $\bar{g}:P_A \rightarrow M_A \ tal \ que \ f\bar{g}=g, \ ou \ seja, \ o \ seguinte \ diagrama \ comuta:$

$$P$$

$$\downarrow g$$

$$\downarrow g$$

$$M \xrightarrow{g} N \longrightarrow 0$$

- 2. P_A é um somando direto do A-módulo $A^{(\Lambda)} = \bigoplus_{\lambda \in \Lambda} A_{\lambda}$ onde $A_{\lambda} = A$ para todo $\lambda \in \Lambda$.
- 3. toda sequência exata curta da forma $0 \longrightarrow M \xrightarrow{f} N \xrightarrow{g} P \longrightarrow 0$ cinde.
- 4. o funtor $\operatorname{\mathsf{Hom}}_A(P,-):\operatorname{\mathsf{Mod}} A\to\operatorname{\mathsf{Mod}} R$ é exato, ou seja, dada uma sequência exata curta $0\longrightarrow L\stackrel{f}{\longrightarrow} M\stackrel{g}{\longrightarrow} N\longrightarrow 0$ em $\operatorname{\mathsf{Mod}} A,$ então a sequência induzida em $\operatorname{\mathsf{Mod}} R,$ $0\longrightarrow\operatorname{\mathsf{Hom}}_A(P,L)\longrightarrow\operatorname{\mathsf{Hom}}_A(P,M)\longrightarrow\operatorname{\mathsf{Hom}}_A(P,N)\longrightarrow 0$ também é exata.

Os indecomponíveis que aparecem na decomposição do A-módulo A_A formam uma lista completa dos A-módulos projetivos indecomponíveis. Os outros projetivos são somas destes.

Definição 1.2 Um A-módulo I_A é dito **injetivo** se possuir as seguintes propriedades equivalentes:

1. para todo monomorfismo $f: M_A \to N_A$ e todo morfismo $g: M_A \to I_A$ existe um morfismo $\bar{g}: N_A \to I_A$ tal que $\bar{g}f = g$, ou seja, o seguinte diagrama comuta:

- 2. toda sequência exata curta da forma $0 \longrightarrow I \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ cinde.
- 3. o funtor $\operatorname{\mathsf{Hom}}_A(-,I):\operatorname{\mathsf{Mod}} A\to\operatorname{\mathsf{Mod}} R$ é exato, ou seja, dada uma sequência exata curta $0\longrightarrow L\stackrel{f}{\longrightarrow} M\stackrel{g}{\longrightarrow} N\longrightarrow 0$ em $\operatorname{\mathsf{Mod}} A,$ então a sequência induzida em $\operatorname{\mathsf{Mod}} R,$ $0\longrightarrow\operatorname{\mathsf{Hom}}_A(N,I)\longrightarrow\operatorname{\mathsf{Hom}}_A(M,I)\longrightarrow\operatorname{\mathsf{Hom}}_A(L,I)\longrightarrow 0$ também é exata.

Se P_A é um A-módulo projetivo então o dual DP é um A^{op} -módulo injetivo e reciprocamente, se I_A é um A-módulo injetivo então DI é um A^{op} -módulo projetivo.

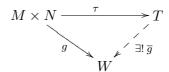
1.3 Produto tensorial de módulos

Para essa seção continuaremos considerando R um anel comutativo com unidade e R-álgebras de Artin.

Sejam M_A e ${}_AN$ A-módulos e W um R-módulo. Uma função $g: M \times N \to W$ é dita A-bilinear se para todos $m, m' \in M, n, n' \in N, x, x' \in R$ e $a \in A$,

- i) g(mx + m'x', n) = g(m, n)x + g(m', n)x';
- ii) g(m, nx + n'x') = g(m, n)x + g(m, n')x';
- iii) g(ma, n) = g(m, an).

Um **produto tensorial** de M e N é um par (T, τ) , onde T é um R-módulo e $\tau: M \times N \to T$ é uma aplicação A-bilinear, que tem a seguinte propriedade: para cada par (W, g), onde W é um R-módulo e $g: M \times N \to W$ é A-bilinear, existe uma única aplicação R-linear $\overline{g}: T \to W$ tal que $\overline{g}\tau = g$, ou seja, que o seguinte diagrama é comutativo:



Dados os A-módulos M_A e ${}_AN$ existe, e é unico (a menos de isomorfismo), o produto tensorial de M e N. Denotamos T por $M \otimes_A N$, τ é chamada de função tensorial e $\tau(m,n) = m \otimes n$ são ditos tensores. Temos que $\tau(M \times N)$ gera $M \otimes_A N$, e então podemos escrever para cada $t \in M \otimes_A N$, $t = \sum_{i=1}^n (m_i \otimes n_i)$. Portanto, se M e N são de tipo finito, então $M \otimes_A N$ também é de tipo finito.

Consideremos as R-álgebras A, B e C, e os bimódulos ${}_BM_A$ e ${}_AN_C$. Neste caso, o produto tensorial $M\otimes_A N$ (que é um R-módulo) tem uma estrutura natural de (B-C)-bimódulo dada por $b(m\otimes n)c:=bm\otimes nc$.

Sejam $f:M_A\to M_A'$ e $g:N_A\to N_A'$ morfismos. A aplicação $f\times g:M\times N\to M'\times N$

definida por $(f \times g)(m,n) := (f(m),g(n))$ composta com a função tensorial de $M' \otimes_A N'$ é uma aplicação A-bilinear de $M \times N$ em $M' \otimes_A N'$. Logo induz uma aplicação R-linear denotada por $f \otimes g : M \otimes_A N \to M' \otimes_A N'$ que satisfaz $(f \otimes g)(m \otimes n) = f(m) \otimes g(n)$. Denotaremos por $f \otimes M$ a aplicação $f \otimes id_M$, onde id_M é a aplicação identidade de M.

Fixado uma A-módulo M_A , fica definido um funtor covariante $M \otimes_A - : \operatorname{\mathsf{Mod}} A^{op} \to \operatorname{\mathsf{Mod}} R$ que associa a cada A-módulo ${}_AL$ o R-módulo $M \otimes_A L$ e a cada morfismo de A-módulos $f:_AL \to_A N$ associa a aplicação R-linear $M \otimes_A f: M \otimes_A L \to M \otimes_A N$. Da mesma forma podemos definir o funtor covariante $-\otimes_A M: \operatorname{\mathsf{Mod}} A \to \operatorname{\mathsf{Mod}} R$, para um A-módulo à esquerda ${}_AM$.

Se A e B são R-álgebras e ${}_AM_B$ é um (A-B)-bimódulo então também temos os seguintes funtores covariantes:

Também podemos considerar as "restrições" desses funtores para módulos de tipo finito, por exemplo $-\otimes_A M_B : \operatorname{\mathsf{mod}} A \to \operatorname{\mathsf{mod}} B$.

Esses funtores são aditivos e exatos à direita, isto é, dada uma sequência exata $L \xrightarrow{f} M \xrightarrow{g} N \to 0 \text{ então a sequência } X \otimes_A L \xrightarrow{X \otimes_A f} X \otimes_A M \xrightarrow{X \otimes_A g} X \otimes_A N \longrightarrow 0$ também é exata. Quando X for um A-módulo projetivo então esse funtor é exato. O mesmo vale para o funtor da forma $- \otimes_A X$.

O próximo exemplo tem aqui um esboço de sua demonstração apenas para ilustrar como são construídos os isomorfismos que envolvem produtos tensoriais.

Exemplo 1.9 Seja M_A um A-módulo. Então, $M \otimes_A A \cong M_A$

Prova. Definimos $f: M \times A \to M$ por f(m,a) := ma. É fácil verificar que f é uma aplicação A-bilinear, então pela definição do produto tensorial, existe $\overline{f}: M \otimes_A A \to M$ R-linear tal que $\overline{f}(m \otimes a) = ma$. Definimos também $g: M \to M \otimes_A A$ por $g(m) := m \otimes 1_A$. Temos que g é R-linear e que $\overline{f}g = id_M$ e $g\overline{f} = id_{M \otimes_A N}$. Portanto, $M \otimes_A A \cong M_A$ como R-módulos. Porém, observamos que \overline{f} e g são também morfismos de A-módulos, logo $M \otimes_A A \cong M_A$ também como A-módulos.

Mais ainda, o isomorfismo acima é funtorial, ou seja, $-\otimes_A A \approx id_{\mathsf{Mod}\,A}$. Além desse valem também os seguintes isomorfismos funtoriais:

- 1. Se ${}_AM$ é um módulo então $A \otimes_A M \cong_A M$
- 2. Se L_A , AM_B e N_B são três módulos, então $L \otimes_A (M \otimes_B N) \cong (L \otimes_A M) \otimes_B N$
- 3. Seja $\{M_{\lambda}\}_{{\lambda}\in\Lambda}$ uma família de A-módulos à direita e $\{N_{\gamma}\}_{{\gamma}\in\Gamma}$ uma família de A-módulos à esquerda. Então, $\left(\bigoplus_{{\lambda}\in\Lambda}M_{\lambda}\right)\otimes_A\left(\bigoplus_{{\gamma}\in\Gamma}N_{\gamma}\right)\cong\bigoplus_{({\lambda},{\gamma})\in\Lambda\times\Gamma}(M_{\lambda}\otimes_AN_{\gamma})$

Uma consequência de 3 e do Exemplo 1.9 é que se L_A e $_AM$ são A-módulos e Λ um conjunto qualquer, então $L\otimes_A A^{(\Lambda)}\cong L_A^{(\Lambda)}$ e $A^{(\Lambda)}\otimes_A M\cong_A M^{(\Lambda)}$.

Proposição 1.7 (Teorema da adjunção) Sejam $A \ e \ B \ R$ -álgebras $e \ _AM_B \ um \ (A-B)$ -bimódulo. Os funtores $-\otimes_A M_B : \operatorname{\mathsf{Mod}} A \to \operatorname{\mathsf{Mod}} B \ e \ \operatorname{\mathsf{Hom}}_B(M,-) : \operatorname{\mathsf{Mod}} B \to \operatorname{\mathsf{Mod}} A \ são \ adjuntos.$ Ou seja, dados os módulos $L_A \ e \ N_B \ existe$ o seguinte isomorfismo funtorial (em cada variável):

$$\operatorname{Hom}_A(L,\operatorname{Hom}_B(M,N)) \approx \operatorname{Hom}_B(L \otimes_A M,N)$$

O isomorfismo acima é de R-módulos. Porém, se considerarmos C e D duas R-álgebras de modo que $_{C}L_{A}$ e $_{D}N_{B}$ sejam bimódulos, então o isomorfismo acima é de (D-C)-bimódulos.

Vale também que se ${}_BM_A$ é um bimódulo, então os funtores $M\otimes_A-:\operatorname{\mathsf{Mod}}\nolimits A^{op}\to\operatorname{\mathsf{Mod}}\nolimits B^{op}$ e $\operatorname{\mathsf{Hom}}\nolimits_B(M,-):\operatorname{\mathsf{Mod}}\nolimits B^{op}\to\operatorname{\mathsf{Mod}}\nolimits A^{op}$ são adjuntos.

Proposição 1.8 Seja A uma R-álgebra e \mathcal{I} um ideal bilateral de A.

Para todo A-módulo L_A existe um isomorfismo funtorial $L \otimes_A \frac{A}{\mathcal{I}} \approx \frac{L}{L\mathcal{I}}$ dado por

$$l \otimes (a + \mathcal{I}) \mapsto la + L\mathcal{I}.$$

Proposição 1.9 Sejam A e B duas R-álgebras, P_A um A-módulo projetivo de tipo finito, $_BM_A$ um bimódulo e N_B um B-módulo. Existe um isomorfismo funtorial

$$N \otimes_B \operatorname{\mathsf{Hom}}_A(P,M) \approx \operatorname{\mathsf{Hom}}_A(P,N \otimes_B M)$$

21

dado por
$$n \otimes f \mapsto \phi \ com \ \phi(p) = n \otimes f(p)$$
.

1.4 Álgebra de Caminhos

Álgebra básica e conexa

Um elemento e de uma R-álgebra é dito **idempotente** se $e^2 := ee = e$. Um idempotente e é dito **central** se dado $a \in A$ tem-se ea = ae. Dois idempotentes e e \bar{e} são ditos **ortogonais** se $e\bar{e} = \bar{e}e = 0$. Um idempotente e é dito **primitivo** se dados os idempotentes ortogonais \hat{e} e \check{e} com $e = \hat{e} + \check{e}$ então $\hat{e} = 0$ ou $\check{e} = 0$.

Uma R-álgebra A, não nula, é dita **conexa** (ou **indecomponível**) se $A = A_1 \oplus A_2$, com A_1 e A_2 R-álgebras implicar que $A_1 = 0$ ou $A_2 = 0$; ou equivalentemente, se os únicos idempotentes centrais são 0 e 1_A .

Proposição 1.10 Uma R-álgebra A é conexa se, e somente se, dados dois A-módulos projetivos indecomponíveis P e \bar{P} , existem A-módulos projetivos indecomponíveis $P = P_0, P_1, \cdots, P_n = \bar{P}$ tais que $\text{Hom}_A(P_i, P_{i+1}) \neq 0$ ou $\text{Hom}_A(P_{i+1}, P_i) \neq 0$, $\forall i = 1, \cdots, n$.

Sejam A uma R-álgebra de Artin e $A_A = P_1^{n_1} \oplus \cdots \oplus P_r^{n_r}$ a decomposição de A em projetivos indecomponíveis de $\operatorname{\mathsf{mod}} A$, com $P_i \neq P_j$ sempre que $i \neq j$. Dizemos que A é uma álgebra **básica** se $n_i = 1, \, \forall i = 1, ... r$.

Proposição 1.11 Seja A uma R-álgebra de Artin. Todo A-módulo projetivo indecomponível de tipo finito é isomorfo a um A-módulo da forma eA, onde e é um idempotente.

Proposição 1.12 Seja A uma R-álgebra de Artin, básica e conexa. Então existem idempotentes ortogonais e primitivos $\{e_1,...,e_n\}$ tais que $1_A = \sum_{i=1}^n e_i$. Em particular, $A_A = e_1 A \oplus \cdots \oplus e_n A$. Tal conjunto é chamado de sistema completo de idempotentes ortogonais e primitivos de A.

Álgebra de caminhos

Ao longo dessa seção vamos considerar k um corpo algebricamente fechado.

Uma aljava Δ é uma quádrupla $(\Delta_0, \Delta_1, s, e)$ onde Δ_0 e Δ_1 são conjuntos e $s, e : \Delta_1 \to \Delta_0$ são funções. Os elementos de Δ_0 são chamados de **vértices** de Δ e os elementos de Δ_1 são chamados de **flechas** de Δ . Dada uma flecha $\alpha \in \Delta_1$, chamamos $s(\alpha)$ de **vértice inicial** de α e $e(\alpha)$ de **vértice final** de α . Uma aljava Δ é dita **finita** quando os conjuntos Δ_0 e Δ_1 são finitos.

Uma **subaljava** de Δ é uma aljava $(\tilde{\Delta}_0, \tilde{\Delta}_1, \tilde{s}, \tilde{e})$ de forma que $\tilde{\Delta}_0 \subseteq \Delta_0, \tilde{\Delta}_1 \subseteq \Delta_1, \tilde{s} = s|_{\tilde{\Delta}_1}$ e $\tilde{e} = e|_{\tilde{\Delta}_1}$. Uma subaljava é dita **plena** se a flecha $a \xrightarrow{\alpha} b$ estiver em $\tilde{\Delta}_1$ sempre que $a, b \in \tilde{\Delta}_0$.

Um caminho ω em Δ de comprimento n > 0 é uma sequência de flechas $\omega = \alpha_1 \cdots \alpha_n$, tal que $e(\alpha_i) = s(\alpha_{i+1})$ para $1 \le i < n$. Por convenção, um caminho de comprimento zero (ou caminho trivial) é um caminho sem flechas associado a um vértice $a \in \Delta_0$, que denotamos por e_a . Para um caminho não trivial $\omega = \alpha_1 \cdots \alpha_n$ definimos o vértice inicial de ω por $s(\omega) := s(\alpha_1)$ e o vértice final de ω por $e(\omega) := e(\alpha_n)$. Para um caminho trivial e_a definimos $s(e_a) = e(e_a) = a$. Um caminho ω de comprimento $n \ge 1$ é dito um ciclo orientado quando $s(\omega) = e(\omega)$.

Um **passeio** de comprimento $n \ge 1$ de $a \in \Delta_0$ para $b \in \Delta_0$ é uma sequência de flechas $\gamma = \alpha_1 \cdots \alpha_n$ com $a \in \{s(\alpha_1), e(\alpha_1)\}, b \in \{s(\alpha_n), e(\alpha_n)\} \in \{s(\alpha_i), e(\alpha_i)\} \cap \{s(\alpha_{i+1}), e(\alpha_{i+1})\} \ne \emptyset$ para $1 \le i < n$.

Dado um vértice $a \in \Delta_0$, a subaljava plena Δ_a de Δ formada pelos vértices $b \in \Delta_0$ tais que existe um passeio de a para b é chamada de **componente conexa de** Δ **contendo** a. Quando $\Delta = \Delta_a$ para algum a dizemos que a aljava Δ é **conexa**.

Consideremos agora Δ uma aljava finita. Seja $k\Delta$ o k-espaço vetorial cuja base é o conjunto de todos os caminhos de Δ . Definimos em $k\Delta$ o seguinte produto: dados γ e σ caminhos de Δ , então

• se
$$e(\gamma) \neq s(\sigma), \ \gamma \cdot \sigma = 0$$
;

• se
$$e(\gamma) = s(\sigma)$$
, $\gamma \cdot \sigma = \begin{cases} \sigma, & \text{se } \gamma = e_a \text{ para algum } a \in \Delta_0 \\ \gamma, & \text{se } \sigma = e_a \text{ para algum } a \in \Delta_0 \\ \alpha_1 \cdots \alpha_n \beta_1 \cdots \beta_t, & \text{se } \gamma = \alpha_1 \cdots \alpha_n \text{ e } \sigma = \beta_1 \cdots \beta_t \end{cases}$

1.4. ÁLGEBRA DE CAMINHOS

Estendendo esse produto, por linearidade, aos elementos de $k\Delta$ temos que $k\Delta$ é uma k-álgebra, a qual chamamos de **álgebra de caminhos de** Δ .

23

Exemplo 1.11 $Seja \Delta \ a \ aljava \ 1$ 3.

A base de $k\Delta$ como k-espaço vetorial é $\{e_1, e_2, e_3, e_4, \alpha, \beta, \gamma, \delta, \alpha\beta, \gamma\delta\}$ e portanto a dimensão de $k\Delta$ é $\dim_k k\Delta = 10$. Quanto a multiplicação teremos, por exemplo, $\alpha \cdot \beta = \alpha\beta$, $\alpha \cdot \delta = 0$, $e_2 \cdot \delta = \delta$, etc.

Denotaremos por J_{Δ} o ideal de $k\Delta$ gerado pelas flechas de Δ .

Proposição 1.13 Sejam Δ uma aljava finita com $\Delta_0 = \{1,...,n\}$, $k\Delta$ sua álgebra de caminhos e e_i o caminho trivial associado ao vértice $i \in \Delta_0$. Então:

- 1. $k\Delta$ é uma álgebra associativa.
- 2. o conjunto $\{e_i\}_{i\in\Delta_0}$ é um sistema completo de idempotentes ortogonais primitivos de $k\Delta$. Em particular, $k\Delta$ tem identidade $1 = e_1 + \cdots + e_n$.
- 3. $k\Delta$ é uma álgebra básica e $k\Delta = e_1(k\Delta) \oplus \cdots \oplus e_n(k\Delta)$ é a decomposição de $k\Delta$ em módulos indecomponíveis.
- 4. $k\Delta$ tem dimensão finita se, e somente se, Δ não possui ciclos orientados.
- 5. $k\Delta$ é uma álgebra conexa se, e somente se, Δ é uma aljava conexa.
- 6. $J_{\Delta} = \operatorname{rad} k\Delta$ se, e somente se, Δ não possui ciclos orientados.
- 7. o número de flechas de i para j é igual ao número $\dim_k \left(e_i \left(\frac{J_{\Delta}}{J_{\Delta}^2} \right) e_j \right)$.

Um ideal \mathcal{I} de $k\Delta$ é dito **admissível** se existir $n \geq 2$ tal que $J_{\Delta}^n \subseteq \mathcal{I} \subseteq J_{\Delta}^2$.

Uma relação ρ em Δ é uma combinação linear de caminhos de comprimento pelo menos dois, todos com os mesmos vértices iniciais e finais.

Um ideal admissível \mathcal{I} sempre possui um conjunto finito de geradores formado por relações. Por isso chamamos o par (Δ, \mathcal{I}) de **aljava com relações**.

Proposição 1.14 Sejam Δ uma aljava finita, \mathcal{I} um ideal admissível de $k\Delta$ e $\frac{k\Delta}{\mathcal{I}}$ a álgebra quociente. Então:

- 1. $\frac{k\Delta}{T}$ tem dimensão finita sobre k.
- 2. o conjunto $\{e_i + \mathcal{I}\}_{i \in \Delta_0}$ é um sistema completo de idempotentes ortogonais primitivos de $\frac{k\Delta}{\mathcal{I}}$.
- 3. $\frac{k\Delta}{T}$ é uma álgebra básica.
- 4. $\frac{k\Delta}{T}$ é uma álgebra conexa se, e somente se, Δ é uma aljava conexa.
- 5. rad $\frac{k\Delta}{\mathcal{I}} = \frac{J_{\Delta}}{\mathcal{I}}$.

Teorema 1.15 Seja A uma k-álgebra básica e de dimensão finita sobre k. Existe uma aljava Δ_A e um epimorfismo $\eta_A: k\Delta_A \to A$ tal que $\mathcal{I}_A:= \operatorname{Nuc} \eta_A$ é um ideal admissível de $k\Delta_A$. Em particular, $A\cong \frac{k\Delta_A}{\mathcal{I}_A}$.

O epimorfismo do teorema acima é chamado de uma **apresentação** de A e a aljava Δ_A é chamada de **aljava ordinária** de A.

Módulos e representações de aljavas

Sejam k um corpo algebricamente fechado e Δ uma aljava finita. Uma **representação de** Δ é dada por $V=((V_i)_{i\in\Delta_0},(T_\alpha)_{\alpha\in\Delta_1})$, onde para cada $i\in\Delta_0$, V_i é um k-espaço vetorial de dimensão finita e para cada $\alpha\in\Delta_1$, T_α é uma transformação linear de $V_{s(\alpha)}$ em $V_{e(\alpha)}$.

Exemplo 1.12 Seja Δ a aljava $1 \rightleftharpoons \frac{\alpha}{\beta} 2$. Então $k^2 \rightleftharpoons \frac{T_{\alpha}}{T_{\beta}} k$ é uma representação de Δ , onde $V_1 = k^2$, $V_2 = k$, $T_{\alpha} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ e $T_{\beta} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Seja $\omega = \alpha_1 \alpha_2 \dots \alpha_n$ um caminho não trivial de Δ . Definimos a transformação linear $T(\omega): V_{s(\omega)} \to V_{e(\omega)}$ dada pela composta $T_{\alpha_1} T_{\alpha_2} \cdots T_{\alpha_n}$. Estendemos esta definição para uma

1.4. ÁLGEBRA DE CAMINHOS

combinação linear de caminhos $\omega = \sum_{i=1}^{t} \lambda_i \omega_i$, onde $s(\omega_i) = s(\omega_j)$ e $e(\omega_i) = e(\omega_j)$, $\forall i, j \in \{1, \dots, n\}$,

25

fazendo
$$T(\omega) = \sum_{i=1}^{t} \lambda_i T(\omega_i).$$

Uma **representação de** (Δ, \mathcal{I}) é uma representação de Δ de forma que para cada relação ω de \mathcal{I} tem-se $T(\omega)=0$.

Dadas duas representações $V=((V_i)_{i\in\Delta_0},(T_\alpha)_{\alpha\in\Delta_1})$ e $W=((W_i)_{i\in\Delta_0},(S_\alpha)_{\alpha\in\Delta_1})$, um **morfismo** $\Phi:V\to W$ é uma família $\{\phi_i\}_{i\in\Delta_0}$ de transformações lineares tal que, para cada flecha $i\stackrel{\alpha}{\to} j$ o seguinte diagrama é comutativo

$$V_{i} \xrightarrow{\phi_{i}} W_{i}$$

$$T_{\alpha} \downarrow \qquad \circlearrowleft \qquad \bigvee_{S_{\alpha}} S_{\alpha}$$

$$V_{j} \xrightarrow{\phi_{j}} W_{j}$$

ou seja, $\phi_j T_\alpha = S_\alpha \phi_i$. A composta de dois morfismos é definida coordenada a coordenada. Definimos então a categoria mod (Δ, \mathcal{I}) cujos objetos são as representações de (Δ, \mathcal{I}) e os morfismos são os descritos acima.

Teorema 1.16 Seja $A = \frac{k\Delta}{\mathcal{I}}$ onde Δ é uma aljava finita e \mathcal{I} um ideal admissível de $k\Delta$. Então as categorias $\text{mod } (\Delta, \mathcal{I})$ e mod A são equivalentes.

Pelo teorema acima podemos identificar os A-módulos com representações de (Δ, \mathcal{I}) . Em especial, as representações que correspondem aos A-módulos simples, projetivos indecomponíveis e injetivos indecomponíveis podem ser calculados a partir da aljava ordinária (Δ) e das relações (\mathcal{I}) . Para detalhes dessas descrições ver, por exemplo, [8] ou [13].

Exemplo 1.13 Sejam Δ a aljava $\frac{\alpha}{1} \int_{\gamma}^{2} \int_{\delta}^{\beta} e \mathcal{I}$ o ideal gerado por $\beta\alpha - \delta\gamma$. A seguinte repre-

 $senta \ \tilde{cao} \ de \ (\Delta, \mathcal{I}) \ dada \ por \ \circ \bigvee_{0}^{0} \bigvee_{k}^{0} \circ corresponde \ a \ um \ A-m\'{o}dulo \ simples, \ que \ denotamos \ por$

 S_3 . Em muitos casos, representaremos esse módulo escrevendo apenas $\circ \bigcap_{1}^{0} \circ$, onde o "1" indica a dimensão do espaço vetorial na "posição 3".

Capítulo 2

Extensão cindida por nilpotente

Neste capítulo define-se o que é uma extensão cindida por nilpotente de uma dada álgebra e algumas propriedades decorrentes desta definição. Para isso consideramos, nessa primeira parte, Rum anel artiniano comutativo e R-álgebras de Artin. Além disso, os módulos são módulos à direita (caso não se faça menção ao contrário).

2.1Propriedades iniciais

Definição 2.1 Sejam A e B duas R-álgebras e Q um ideal nilpotente de B. Dizemos que B é uma extensão cindida de A pelo nilpotente Q (ou mais brevemente extensão cindida por nilpotente de A) se existir um epimorfismo cindido de álgebras $\pi: B \to A$ tal que Nuc $\pi = Q$.

Vejamos um primeiro exemplo:

Exemplo 2.1 Consideremos $R = \mathbb{R}$ o corpo dos números reais e as \mathbb{R} -álgebras $B = \begin{pmatrix} \mathbb{R} & 0 \\ \mathbb{R} & \mathbb{R} \end{pmatrix}$ e

$$A=\left(egin{array}{cc} \mathbb{R} & 0 \\ 0 & \mathbb{R} \end{array}
ight). \ O \ conjunto \ Q=\left(egin{array}{cc} 0 & 0 \\ \mathbb{R} & 0 \end{array}
ight) \ \'e \ um \ ideal \ nilpotente \ de \ B.$$

 $Definimos \ \pi \ : \ B \ \longrightarrow \ A \ \ por \ \left(\begin{array}{cc} x & 0 \\ y & z \end{array} \right) \ \longmapsto \ \left(\begin{array}{cc} x & 0 \\ 0 & z \end{array} \right) \ \ que \ \ \acute{e} \ \ claramente \ \ um \ \ epimorfismo \ \ com$ Nuc $\pi = Q$. O morfismo $\sigma: A \to B$ dado por $\begin{pmatrix} x & 0 \\ 0 & z \end{pmatrix} \mapsto \begin{pmatrix} x & 0 \\ 0 & z \end{pmatrix}$ é inversa à direita de π . Portanto, B é uma extensão cindida de A pelo ideal nilpotente Q.

A partir da Definição 2.1, já podemos fazer as seguintes observações:

Observação 2.1 Consideremos B uma extensão cindida de A pelo ideal nilpotente Q e $\pi: B \to A$ o epimorfismo cindido cujo núcleo é Q.

- 1. Como π é um epimorfismo, pelo Teorema 1.3 (do isomorfismo para álgebras), temos $A \cong \frac{B}{O}$.
- 2. Como π é um epimorfismo cindido, então existe $\sigma: A \to B$ tal que $\pi\sigma = id_A$, onde id_A é o morfismo identidade da álgebra A.
- 3. Como $\sigma: A \to B$ é monomorfismo de álgebras (pois $\pi \sigma = id_A$), podemos considerar A uma R-subálgebra de B (pois $A \cong Im \sigma$ que é uma subálgebra de B).
- 4. Se M é um A-módulo, podemos dar uma estrutura de B-módulo a M definida por

$$m \cdot b := m\pi(b), \ \forall m \in M \ e \ \forall b \in B.$$

 $Da\ mesma\ forma,\ se\ M\ \acute{e}\ um\ B\text{-}m\acute{o}dulo,\ podemos\ dar\ uma\ estrutura\ de\ A\text{-}m\acute{o}dulo\ a\ M\ definida\ por$

$$m * a := m\sigma(a), \forall m \in M \ e \ \forall a \in A,$$

onde σ é o morfismo do item 2.

Vale o mesmo para módulos à esquerda. Temos, em particular, que B é um A-módulo e A um B-módulo. Mais ainda, temos as seguintes estruturas de bimódulos: ${}_{B}A_{B}$, ${}_{B}A_{A}$, ${}_{A}A_{B}$, ${}_{A}B_{A}$, etc.

5. A sequência exata de (A-A)-bimódulos abaixo cinde.

$$0 \longrightarrow Q \longrightarrow B \xrightarrow{\pi} A \longrightarrow 0$$

Como A é projetivo (como um (A-A)-bimódulo), basta observar que π é um homomorfismo de (A-A)-bimódulos:

sejam a e a' em A e b em B, temos que

$$\pi(a*b*a') = \pi(\sigma(a)b\sigma(a')) = \pi\sigma(a)\pi(b)\pi\sigma(a') = a\pi(b)a',$$

pois π é homomorfismo de álgebras e $\pi\sigma = id_A$.

- 6. Decorre da última observação que o A-módulo B pode ser escrito como $B=A\oplus Q$ (soma direta de A-módulos).
- 7. Como Q é nilpotente, então Q está contido no radical rad B e, portanto, rad $A = \frac{\operatorname{rad} B}{Q}$.

Do item 6 da observação acima temos que $B=A\oplus Q$ como R-módulos. Nesse caso o produto da álgebra pode ser escrito por:

Dados $a_1 + q_1, a_2 + q_2 \in A \oplus Q$, temos

$$(a_1 + q_1)(a_2 + q_2) = a_1a_2 + (a_1q_2 + q_1a_2 + q_1q_2).$$

Usaremos, no entanto, a seguinte notação:

$$(a_1, q_1)(a_2, q_2) = (a_1a_2, a_1q_2 + q_1a_2 + q_1q_2).$$

Observemos ainda que a unidade da álgebra é $(1_A, 0) \in A \oplus Q$.

Usamos essas observações na primeira proposição:

Proposição 2.1 Seja B uma extensão cindida de A pelo nilpotente Q e seja $e \in A$ um idempotente. Então, eBe é uma extensão cindida de eAe por eQe.

Prova. Das observações acima temos $B=A\oplus Q$ como R-módulo, e daí podemos escrever também $eBe=eAe\oplus eQe.$ Definimos $\pi:eAe\oplus eQe\to eAe$ por $\pi(eae,eqe)=eae$, isto é, a projeção de R-módulos. Então, π é R-linear, sobrejetora e para $a,\hat{a}\in A$ e $q,\hat{q}\in Q$ ainda vale:

$$\pi((eae, eqe)(e\hat{a}e, e\hat{q}e)) = \pi(e(ae\hat{a})e, e(ae\hat{q}+qe\hat{a}+qe\hat{q})e) = e(ae\hat{a})e = (eae)(e\hat{a}e) = \pi(eae, eqe)\pi(e\hat{a}e, e\hat{q}e)$$

e

$$\pi(e,0) = \pi(e1_A e, e0e) = e1_A e = e,$$

o que mostra que π é um epimorfismo de álgebras.

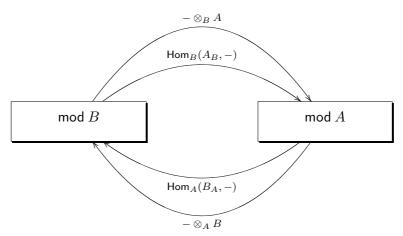
Para mostrar que cinde, seja $\sigma: eAe \to eAe \oplus eQe$ dada por $\sigma(eae) = (eae, 0)$. Temos então, para cada $a \in A, \pi\sigma(eae) = \pi(eae, 0) = eae$. Além disso, claramente Nuc $\pi = eQe$ que é nilpotente pois $eQe \subseteq Q$ é nilpotente.

2.2 Categorias $mod A \in mod B$

Nosso objetivo é identificar propriedades comuns entre as R-álgebras A e B, quando B é uma extensão cindida por nilpotente de A. Para isso, vamos comparar os módulos de tipo finito (finitamente gerados) sobre A e sobre B.

Funtores de mudança de anéis

Para comparar os módulos de mod A com os módulos em mod B usaremos os funtores:



Temos os seguintes isomorfismos funtoriais:

Lema 2.2 Se B é uma extensão cindida por nilpotente de A então:

- (a) $\otimes_A B_B \otimes_B A_A \approx id_{\mathsf{mod}} A$
- (b) $\operatorname{\mathsf{Hom}}_B(A_B,\operatorname{\mathsf{Hom}}_A(B_A,-)) \approx id_{\operatorname{\mathsf{mod}}} A$

Prova. Consideremos $\pi: B \to A$ um epimorfismo cindido tal que $\mathsf{Nuc}\,\pi$ é um ideal nilpotente de B, $\sigma: A \to B$ tal que $\pi\sigma = id_A$ e os produtos * e · como no item 4 da Observação 2.1.

- (a) Seja M_A um A-módulo. Definimos as funções R-lineares $\Phi_M: M \otimes_A B \otimes_B A_A \to M_A$ por $\Phi_M(m \otimes b \otimes a) := m\pi(b)a$ e $\tilde{\Phi}_M: M_A \to M \otimes_A B \otimes_B A_A$ por $\tilde{\Phi}_M(m) := m \otimes 1_B \otimes 1_A$.
 - 1. Φ_M e $\tilde{\Phi}_M$ são A-lineares: Sejam $a, a' \in A, b \in B$ e $m \in M$, então
 - $-\Phi_M((m\otimes b\otimes a)a')=\Phi_M(m\otimes b\otimes aa')=m\pi(b)(aa')=(m\pi(b)a)\,a'=\Phi_M(m\otimes b\otimes a)a'.$
 - $-\tilde{\Phi}_{M}(ma) = ma \otimes 1_{B} \otimes 1_{A} = m \otimes a * 1_{B} \otimes 1_{A} = m \otimes \sigma(a) \otimes 1_{A} = m \otimes 1_{B} \otimes \sigma(a) \cdot 1_{A} = m \otimes 1_{B} \otimes \pi(\sigma(a)) 1_{A} = m \otimes 1_{B} \otimes a = (m \otimes 1_{B} \otimes 1_{A}) a = \tilde{\Phi}_{M}(m)a.$

2.2. CATEGORIAS MOD $A \in MOD B$

31

- 2. $\Phi_M \tilde{\Phi}_M = id_M$ e $\tilde{\Phi}_M \Phi_M = id_{M_A \otimes_A B_B \otimes_B A_A}$: Sejam $m \in M, a \in A$ e $b \in B$, então
 - $-\Phi_{M}\tilde{\Phi}_{M}(m) = \Phi_{M}(m \otimes 1_{B} \otimes 1_{A}) = m\pi(1_{B})1_{A} = m1_{A}1_{A} = m = id_{M}(m).$
 - $-\tilde{\Phi}_{M}\Phi_{M}(m\otimes b\otimes a) = \tilde{\Phi}_{M}(m\pi(b)a) = m\pi(b)a\otimes 1_{B}\otimes 1_{A} = m\otimes (\pi(b)a)*1_{B}\otimes 1_{A} = m\otimes \sigma\pi(b)\sigma(a)\otimes 1_{A} = m\otimes 1_{B}\otimes (\sigma\pi(b)\sigma(a))\cdot 1_{A} = m\otimes 1_{B}\otimes \pi(\sigma\pi(b)\sigma(a)) = m\otimes 1_{B}\otimes \pi(b)a = m\otimes 1_{B}\otimes b\cdot a = m\otimes b\otimes a = id_{M_{A}\otimes_{A}B_{B}\otimes_{B}A_{A}}(m\otimes b\otimes a).$
- 3. $\{\Phi_M\}_{M\in\mathsf{mod}\,A}$ é um morfismo funtorial: Sejam M_A e N_A dois A-módulos e $f:M_A\to N_A$ um morfismo de A-módulos, mostraremos que o diagrama abaixo é comutativo:

$$M \otimes_A B \otimes_B A_A \xrightarrow{\Phi_M} M_A$$

$$f \otimes B \otimes A \downarrow \qquad \circlearrowleft \qquad \downarrow f$$

$$N \otimes_A B \otimes_B A_A \xrightarrow{\Phi_N} N_A$$

Para todo $m \in M, b \in B$ e $a \in A$ temos que

$$\Phi_N \circ f \otimes B \otimes A(m \otimes b \otimes a) = \Phi_N(f(m) \otimes b \otimes a) = f(m)\pi(b)a = f(m\pi(b)a) = f \circ \Phi_M(m \otimes b \otimes a).$$

- (b) Para o segundo isomorfismo, definimos as funções $\Psi_M : \mathsf{Hom}_B(A_B, \mathsf{Hom}_A(B_A, M_A)) \longrightarrow M_A$ por $\Psi_M(\phi) := \phi(1_A)(1_B)$ e $\tilde{\Psi}_M : M_A \longrightarrow \mathsf{Hom}_B(A_B, \mathsf{Hom}_A(B_A, M_A))$ por $\tilde{\Psi}_M(m)(a)(b) := ma\pi(b)$.
 - 1. Ψ_M é A-linear:

Sejam $\phi, \psi \in \text{Hom}_B(A_B, \text{Hom}_A(B_A, M_A))$ e $a \in A$, então

- $-\Psi_M(\phi + \psi) = [(\phi + \psi)(1_A)](1_B) = [\phi(1_A) + \psi(1_A)](1_B) = \phi(1_A)(1_B) + \psi(1_A)(1_B) = \Psi_M(\phi) + \Psi_M(\psi)$
- $-\Psi_{M}(\phi a) = ((\phi a)(1_{A}))(1_{B}) = \phi(a1_{A})(1_{B}) = [\phi(\pi \sigma(a))](1_{B}) = \phi(1_{A} \cdot \sigma(a))(1_{B}) = [\phi(1_{A})\sigma(a)](1_{B}) = \phi(1_{A})(1_{B}\sigma(a)) = \phi(1_{A})(1_{B} * a) = [\phi(1_{A})(1_{B})]a = \Psi_{M}(\phi)a$
- 2. $\tilde{\Psi}_M$ é A-linear:

Sejam $m, m' \in M_A$, $a, a' \in A$ e $b \in B$, então

- $-\tilde{\Psi}_{M}(m+m')(a)(b) = (m+m')a\pi(b) = ma\pi(b) + m'a\pi(b) = \tilde{\Psi}_{M}(m)(a)(b) + \tilde{\Psi}_{M}(m')(a)(b) = [\tilde{\Psi}_{M}(m)(a) + \tilde{\Psi}_{M}(m')(a)](b) = [\tilde{\Psi}_{M}(m) + \tilde{\Psi}_{M}(m')](a)(b)$
- $\ \tilde{\Psi}_{M}(ma')(a)(b) = (ma')a\pi(b) = m(a'a)\pi(b) = \tilde{\Psi}_{M}(m)(a'a)(b) = (\tilde{\Psi}_{M}(m)a')(a)(b)$

- 3. $\Psi_{M}\tilde{\Psi}_{M} = id_{M} \in \tilde{\Psi}_{M}\Psi_{M} = id_{\mathsf{Hom}_{B}(A_{B},\mathsf{Hom}_{A}(B_{A},M_{A}))}$: Sejam $m \in M, \ a \in A, \ b \in B \in \phi \in \mathsf{Hom}_{B}(A_{B},\mathsf{Hom}_{A}(B_{A},M_{A})), \ \text{então}$ $- \Psi_{M}\tilde{\Psi}_{M}(m) = \tilde{\Psi}_{M}(m)(1_{A})(1_{B}) = m1_{A}\pi(1_{B}) = m1_{A}1_{A} = m$ $- \tilde{\Psi}_{M}\Big(\Psi_{M}(\phi)\Big)(a)(b) = \Big(\Psi_{M}(\phi)\Big)a\pi(b) = \Psi_{M}(\phi a\pi(b)) = (\phi a\pi(b))(1_{A})(1_{B}) = \phi(a\pi(b))(1_{B}) = \phi(a \cdot b)(1_{B}) = (\phi(a)b)(1_{B}) = \phi(a)(b)$
- 4. $\{\Psi_M\}_{M\in\mathsf{mod}\ A}$ é um morfismo funtorial: Sejam M_A e N_A dois A-módulos e $f:M_A\to N_A$ um morfismo de A-módulos, mostraremos que o diagrama abaixo é comutativo:

$$\begin{array}{c|c} \operatorname{Hom}_B(A_B,\operatorname{Hom}_A(B_A,M_A)) \xrightarrow{\Psi_M} M_A \\ \\ \operatorname{Hom}_B(A_B,\operatorname{Hom}_A(B_A,f)) \Big| &\circlearrowleft & \Big| f \\ \operatorname{Hom}_B(A_B,\operatorname{Hom}_A(B_A,N_A)) \xrightarrow{\Psi_N} N_A \end{array}$$

De fato, para todo $\phi \in \operatorname{Hom}_B(A_B, \operatorname{Hom}_A(B_A, M_A))$ temos que $\Psi_N \circ \operatorname{Hom}_B(A_B, \operatorname{Hom}_A(B_A, f))(\phi) = \Psi_N(\operatorname{Hom}_A(B_A, f) \circ \phi) = [(\operatorname{Hom}_A(B_A, f) \circ \phi)(1_A)](1_B) = [\operatorname{Hom}_A(B_A, f)(\phi(1_A))](1_B) = (f \circ \phi(1_A))(1_B) = f(\phi(1_A)(1_B)) = f \circ \Psi_M(\phi)$

Observe que não vale $-\otimes_B A \otimes_A B_B \approx id_{\mathsf{mod}\,B}$ e nem $\mathsf{Hom}_A(B_A, \mathsf{Hom}_B(A_B, -)) \approx id_{\mathsf{mod}\,B}$. Se fosse esse o caso, teríamos uma equivalência entre as categorias $\mathsf{mod}\,A$ e $\mathsf{mod}\,B$. Mostraremos que os funtores $-\otimes_B A$ não são fiéis, portanto, pela Proposição 1.1 não são equivalências de categorias:

Exemplo 2.2 O funtor $-\otimes_B A : \text{mod } B \to \text{mod } A \text{ n\~ao \'e fiel.}$

Prova. Sejam A e B duas R-álgebras tais que B é uma extensão cindida de A por um ideal nilpotente (não nulo) Q. Consideremos a aplicação $-\otimes_B A: \mathsf{Hom}_B(Q,B) \longrightarrow \mathsf{Hom}_A(Q\otimes_B A, B\otimes_B A)$. Como $q\otimes a=q1_B\otimes a=1_B\otimes q\cdot a=1_B\otimes \pi(q)a=0$ para todo $q\in Q$ e para todo $a\in A$, temos $\mathsf{Hom}_A(Q\otimes_B A, B\otimes_B A)=\{0\}$. Mas o homomorfismo (B-linear) inclusão, $\iota:Q_B\longrightarrow B_B$, é não nulo, portanto essa aplicação não é injetora.

Exemplo 2.3 O funtor $\text{Hom}_B(A_B, -) : \text{mod } B \to \text{mod } A \text{ n\~ao \'e fiel.}$

Prova. Sejam A e B duas R-álgebras tais que B é uma extensão cindida de A por um ideal nilpotente (não nulo) Q. Consideremos a aplicação

 $\operatorname{\mathsf{Hom}}_B(A_B,-): \operatorname{\mathsf{Hom}}_B(DQ,DQ) \longrightarrow \operatorname{\mathsf{Hom}}_A(\operatorname{\mathsf{Hom}}_B(A,DQ),\operatorname{\mathsf{Hom}}_B(A,DQ))$ onde D é o funtor dual definido no Exemplo 1.8. O morfismo identidade $id:DQ \to DQ$ é não nulo. Mostraremos que $\operatorname{\mathsf{Hom}}_A(\operatorname{\mathsf{Hom}}_B(A,DQ),\operatorname{\mathsf{Hom}}_B(A,DQ))=0$, o que implicará que $\operatorname{\mathsf{Hom}}_B(A_B,-)$ não é fiel. Pela definição de funtor dual e pelo Teorema da adjunção (1.7), vale a seguinte sequência de isomorfismos:

$$\operatorname{Hom}_B(A,DQ)=\operatorname{Hom}_B(A,\operatorname{Hom}_R(Q,R))\cong\operatorname{Hom}_R(A\otimes_BQ,R)=D(A\otimes_BQ).$$

Pelo mesmo raciocínio do exemplo anterior, $A \otimes_B Q = 0$ e portanto $\mathsf{Hom}_B(A, DQ) = 0$.

Veremos agora uma outra forma de olhar o funtor $-\otimes_B A : \mathsf{mod}\ B \to \mathsf{mod}\ A$.

Dado um B-módulo M, observe que $\frac{M}{MQ}$ é anulado por Q, logo tem uma estrutura natural de $\frac{B}{Q}$ módulo, dada por (m+MQ)(b+Q) := mb+MQ, e consequentemente de A-módulo $((m+MQ) \cdot a := (m+MQ)(\sigma(a)+Q) = m\sigma(a)+MQ)$.

Definimos o funtor $F: \operatorname{\mathsf{mod}} B \to \operatorname{\mathsf{mod}} A$ associando a cada B-módulo M, o A-módulo $FM:=\frac{M}{MQ}$, e para cada morfismo de B-módulos $f: M_B \to N_B$, o morfismo de A-módulos $Ff: \frac{M}{MQ} \to \frac{N}{NQ}$ dado por $m + MQ \mapsto f(m) + NQ$.

Lembremos que um funtor $G: \text{mod } B \to \text{mod } A$ é dito R-linear se para cada par de módulos (X_B, Y_B) a aplicação

$$\begin{array}{ccc} \operatorname{Hom}_B(X,Y) & \to & \operatorname{Hom}_A(GX,GY) \\ f & \mapsto & Ff \end{array}$$

é R-linear. O funtor F aqui definido é R-linear pois para $f, g \in \mathsf{Hom}_B(M, N), x \in R$ e $m \in M$, vale F(fx+g)(m+MQ) = (fx+g)(m)+NQ = (fx)(m)+NQ = (f(xm)+NQ)+(g(m)+NQ) = ((Ff)x+Fg)(m+MQ).

Além disso, F preserva somas diretas, pois

$$F\left(\bigoplus M_i\right) = \frac{\bigoplus M_i}{\left(\bigoplus M_i\right)Q} \cong \frac{\bigoplus M_i}{\bigoplus M_iQ} \cong \bigoplus \frac{M_i}{M_iQ} = \bigoplus FM_i$$

Proposição 2.3 O funtor F é funtorialmente isomorfo $a - \otimes_B A : \text{mod } B \to \text{mod } A$.

Para a demonstração vamos utilizar o Teorema de Watts, que enunciaremos a seguir:

Lema 2.4 (Teorema de Watts) Sejam $A \in B$ R-álgebras $e : Mod B \to Mod A$ um funtor R-linear. As condições abaixo são equivalentes:

- (i) G é exato à direita e preserva somas diretas.
- (ii) Existe um isomorfismo funtorial $G \approx \otimes_B M$, onde M é o A-módulo G(B).
- (iii) G admite um adjunto à direita.

Prova. (da Proposição 2.3) Como o funtor F é R-linear e preserva somas diretas, basta demontrar que ele é exato à direita, pois pela equivalência (i) \Leftrightarrow (ii) do teorema de Watts teremos $F \approx - \otimes_B \frac{B}{BQ}$ e consequentemente $F \approx - \otimes_B A$, uma vez que $F(B_B) = \frac{B}{BQ} = \frac{B}{Q} \cong A$.

Seja $L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$ uma sequência exata à direita em mod B. Mostraremos que a sequência $\xrightarrow{L} \xrightarrow{Ff} \xrightarrow{M} \xrightarrow{Fg} \xrightarrow{N} \xrightarrow{NQ} \longrightarrow 0$ é exata em mod A.

A aplicação $Fg: \frac{M}{MQ} \to \frac{N}{NQ}$ é sobrejetora pois dado $n+NQ \in \frac{N}{NQ}$, como g é sobrejetora existe $m \in M$ tal que g(m) = n, daí Fg(m+MQ) = g(m) + NQ = n + NQ.

Mostremos também que $\operatorname{Im} Ff = \operatorname{Nuc} Fg$:

Se $l \in L$, então (Fg)(Ff)(l+LQ) = Fg(f(l)+MQ) = g(f(l)) + NQ = 0 pois gf = 0. Portanto, Im $Ff \subseteq \operatorname{Nuc} Fg$. Por outro lado, seja $m \in M$ tal que Fg(m+MQ) = 0, isto é, g(m) + NQ = 0. Então, $g(m) = \sum n_i q_i \in NQ$. Para cada n_i , seja $m_i \in M$ de forma que $g(m_i) = n_i$ (g é sobrejetora). Daí $g(m) = \sum n_i q_i = \sum g(m_i)q_i = \sum g(m_iq_i) = g(\sum m_iq_i)$ pois g é homomorfismo de B-módulos e $q_i \in Q \subseteq B$. Então,

 $m - \sum m_i q_i \in \text{Nuc } g = \text{Im } f$ e portanto, existe $l \in L$ tal que $m - \sum m_i q_i = f(l)$, ou seja, $m - f(l) = \sum m_i q_i \in MQ$. Finalmente, Ff(l + MQ) = f(l) + MQ = m + MQ, o que mostra que $\text{Im } Ff \supseteq \text{Nuc } Fg$.

2.3 Projetivos, injetivos e conexidade

Dadas duas R-álgebras A e B, onde B é extensão cindida por nilpotente de A, queremos obter informações de B que sejam herdadas por A e vice-versa. A primeira que iremos analisar é a conexidade dessas álgebras, para isso começaremos estudando a relação entre os módulos projetivos das categorias $\mathsf{mod}\ A$ e $\mathsf{mod}\ B$.

35

Projetivos e Injetivos

Vamos comparar os módulos projetivos e injetivos em $\operatorname{\mathsf{mod}} A$ com os projetivos e injetivos em $\operatorname{\mathsf{mod}} B$. Veremos que a cada projetivo (injetivo) em $\operatorname{\mathsf{mod}} A$ corresponde um projetivo (injetivo) em $\operatorname{\mathsf{mod}} B$ e vice-versa.

Lema 2.5 Seja M_B um B-módulo finitamente gerado. Então, M=0 se, e somente se, $\frac{M}{MQ}=0$.

Prova. Obviamente $\frac{M}{MQ} = 0$ quando M = 0. Suponhamos $\frac{M}{MQ} = 0$, ou seja, M = MQ. Como B é uma álgebra de Artin temos que rad $M_B = M$ rad B, e como Q é nilpotente temos $Q \subseteq \text{rad } B$. Portanto, $M = MQ \subseteq M$ rad $B = \text{rad } M_B$. Pelo Lema de Nakayama (1.4), se $L \subseteq \text{rad } M$ é submódulo de M e M + L = M então L = M. Tomando L = 0, resulta que M = 0.

Proposição 2.6 Seja B uma extensão cindida de A pelo ideal nilpotente Q, então:

- (a) $X_B \in \text{mod } B \text{ \'e } um \text{ B-m\'odulo projetivo e indecomponivel se, e somente se, existe $P_A \in \text{mod } A$ projetivo e indecomponivel tal que $X \cong P \otimes_A B$.}$
- (b) $Y_B \in \text{mod } B \notin um \ B$ -módulo injetivo e indecomponível se, e somente se, existe $I_A \in \text{mod } A$ injetivo e indecomponível tal que $Y \cong \text{Hom}_A(B, I)$.

Prova.

(a) \Leftarrow Seja P_A projetivo e indecomponível, mostraremos que $P \otimes_A B_B$ é projetivo e indecomponível.

Como P_A é projetivo então existem P_A' e um conjunto J tais que $P \oplus P' = A_A^{(J)}$. Daí $(P \otimes_A B) \oplus (P' \otimes_A B) = A_A^{(J)} \otimes_A B_B = (A \otimes_A B_B)^{(J)} = B_B^{(J)}$, isto é $P \otimes_A B$ é somando do B-módulo livre $B_B^{(J)}$ e portanto é projetivo.

Suponhamos agora que $P \otimes_A B_B = M_B \oplus N_B$. Aplicando o funtor $- \otimes_B A$ temos $P_A \cong P \otimes_A B \otimes_B A = (M_B \oplus N_B) \otimes_B A = (M \otimes_B A) \oplus (N \otimes_B A)$. Pela Proposição 2.3 chegamos a $P_A \cong \frac{M}{MQ} \oplus \frac{N}{NQ}$. Como P_A é indecomponível temos $\frac{M}{MQ} = 0$ ou $\frac{N}{NQ} = 0$ e pelo Lema 2.5 segue que M = 0 ou N = 0. Portanto, $P \otimes_A B_B$ é indecomponível.

 \Rightarrow Seja X_B projetivo e indecomponível. Então, $B_B = \bigoplus_i M_i$, onde M_i são B-módulos projetivos e indecomponíveis dois a dois não isomorfos e $X_B = M_i$ para algum i. Da mesma forma $A_A = \bigoplus_j P_j$ com P_j projetivos indecomponíveis, dois a dois não isomorfos.

Mas,
$$B_B \cong A \otimes_A B_B \cong \left(\bigoplus_j P_j\right) \otimes_A B_B \cong \bigoplus_j (P_j \otimes_A B_B)$$
. Logo, $B_B = \bigoplus_i M_i \cong \bigoplus_j P_j \otimes_A B_B$. Como cada $P_j \otimes_A B_B$ é projetivo e indecomponível, concluímos que $X_B \cong P_j \otimes_A B_B$ para algum j .

(b) \Leftarrow Seja I_A um A-módulo injetivo e indecomponível, mostraremos que $\mathsf{Hom}_A(B,I)$ é um Bmódulo injetivo e indecomponível. Lembremos que se I_A é injetivo então o dual DI é
um A^{op} -módulo projetivo e se I_A é indecomponível então DI é indecomponível. Como DI é um A^{op} -módulo projetivo e indecomponível, com argumento similar ao do item (a),
teremos que o B^{op} -módulo $B \otimes_A DI$ é projetivo e indecomponível. Daí, o dual deste último $D(B \otimes_A DI)$ é B-injetivo. Finalmente, pelo Teorema da adjunção (1.7), a sequência
de isomorfismos abaixo nos leva a concluir que $\mathsf{Hom}_A(B,I)$ é um B-módulo injetivo e
indecomponível:

$$D(B \otimes_A DI) = \operatorname{\mathsf{Hom}}_R(B \otimes_A DI, R) \cong \operatorname{\mathsf{Hom}}_A(B, \operatorname{\mathsf{Hom}}_R(DI, R)) \cong \operatorname{\mathsf{Hom}}_A(B, I).$$

 \Rightarrow Seja Y_B um B-módulo injetivo e indecomponível. Como DY é um B^{op} -módulo projetivo e indecomponível, por um argumento similar ao do item (a), existe um A^{op} -módulo projetivo e indecomponível P tal que $DY \cong B \otimes_A P$. Tomando $I_A = DP$, temos que I_A é injetivo e indecomponível e pelo Teorema da adjunção (1.7) vale a sequência de isomorfismos

$$Y_B \cong DDY_B \cong D(B \otimes_A P) = \operatorname{Hom}_R(B \otimes_A P, R)$$

 $\cong \operatorname{Hom}_A(B, \operatorname{Hom}_R(P, R)) = \operatorname{Hom}_A(B, DP) = \operatorname{Hom}_A(B, I).$

Se X é um B-módulo projetivo em $\operatorname{\mathsf{mod}} B$, então podemos escrever $X = \bigoplus_{i=1}^n X_i$, onde cada X_i é um B-módulo projetivo indecomponível. Pela Proposição 2.6, para cada i=1,...,n existe um

A-módulo projetivo e indecomponível P_i tal que $X_i \cong P_i \otimes_A B$. Fazendo $P = \bigoplus_{i=1}^n P_i$, temos que P é um A-módulo projetivo e $X \cong P \otimes_A B$. Um raciocínio análogo vale para módulos injetivos.

Conexidade das álgebras

Com essas informações, em particular sobre módulos projetivos, já podemos enunciar um resultado sobre a conexidade das álgebras envolvidas.

Proposição 2.7 Seja B uma extensão cindida por nilpotente de A. Se A é uma álgebra conexa, então B também é uma álgebra conexa.

Prova. Sejam X e \hat{X} dois B-módulos projetivos e indecomponíveis. Pela Proposição 2.6 existem A-módulos P_A e \hat{P}_A tais que $X \cong P \otimes_A B$ e $\hat{X} \cong \hat{P} \otimes_A B$. Como A é uma álgebra conexa existem A-módulos projetivos e indecomponíveis $P = P_0, P_1, ..., P_n = \hat{P}$ tais que, para cada i,

$$\text{Hom}_A(P_i, P_{i+1}) \neq 0 \text{ ou } \text{Hom}_A(P_{i+1}, P_i) \neq 0.$$

Daí, $X_0 = P \otimes_A B$, $X_1 = P_1 \otimes_A B$, ..., $X_n = P_n \otimes_A B = \hat{P} \otimes_A B$ são B-módulos projetivos e indecomponíveis e ainda temos que $\operatorname{Hom}_B(X_i, X_{i+1}) \neq 0$ ou $\operatorname{Hom}_B(X_{i+1}, X_i) \neq 0$ para cada i, pois se $f: P_i \to P_j$ é não nulo então $f \otimes_A B: X_i \to X_{i+1}$ é também não nulo; caso contrário como $\operatorname{Im}(f \otimes_A B) = \operatorname{Im} f \otimes_A B$, aplicando o funtor $- \otimes_B A$ teríamos $\operatorname{Im} f \cong \operatorname{Im} f \otimes_A B \otimes_B A = 0$. Portanto, B é uma álgebra conexa.

Observação 2.2 A recíproca não vale, como mostra o exemplo a sequir.

Exemplo 2.4 Sejam A e B as \mathbb{R} -álgebras do Exemplo 2.1. Já sabemos que B é uma extensão cindida por nilpotente de A. Neste caso B é uma álgebra conexa, $mas\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ é um idempotente central de A diferente de $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ e $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, ou seja, A não é conexa.

Capítulo 3

Aljavas das extensões

Consideremos agora k um corpo algebricamente fechado e k-álgebras dadas por aljavas com relações. Se B é uma extensão cindida de A pelo nilpotente Q, qual será a relação entre suas respectivas aljavas? Após um exemplo (que também mostra que a reciproca da Proposição 2.7 não vale) responderemos tal questão, mostraremos uma relação entre as apresentações das álgebras e finalmente caracterizaremos, neste contexto, o ideal nilpotente Q. Para isso consideraremos álgebras básicas e com dimensão finita sobre k.

Exemplo 3.1 Sejam Δ a aljava 1 γ 3, $e \mathcal{I}$ o ideal (admissível) de $k\Delta$ gerado pela relação

 $\alpha\beta - \gamma\delta$. Consideremos $B = \frac{k\Delta}{\mathcal{I}}$ e $Q = \langle \alpha + \mathcal{I}, \delta + \mathcal{I} \rangle$. Como Δ é conexa, então B é uma álgebra conexa.

Seja a k-álgebra $A = \frac{B}{Q}$. Temos a seguinte sequência de isomorfismos:

$$A = \frac{B}{Q} = \frac{k\Delta/\mathcal{I}}{\langle \alpha + \mathcal{I}, \delta + \mathcal{I} \rangle} \cong \frac{k\Delta}{\langle \alpha, \delta \rangle} \cong k\hat{\Delta}, \text{ onde } \hat{\Delta} \text{ \'e a aljava 1}$$

Nesse caso, B é uma extensão cindida de A pelo ideal nilpotente Q, mas A não é conexa, uma vez que $\hat{\Delta}$ não é conexa.

Antes de relacionarmos as aljavas de A e de B, relembraremos a construção de uma apresentação de uma k-álgebra.

Observação 3.1 (Apresentação de uma k-álgebra) Sejam C uma k-álgebra básica e de dimensão finita sobre k e $\{e_1, ..., e_n\}$ um conjunto completo de idempotentes ortogonais e primitivos de C. Construímos a aljava ordinária de C, denotada por Δ_C , da seguinte forma:

O conjunto $(\Delta_C)_0 = \{1, ..., n\}$, ou seja, os vértices estão em correspondência biunívoca com o conjunto de idempotentes $\{e_1, ..., e_n\}$. Dados dois vértices a e b, o número de flechas $a \xrightarrow{\alpha} b$ é $\dim_k \left(e_a\left(\frac{\operatorname{rad} C}{\operatorname{rad}^2 C}\right)e_b\right)$. Mostra-se, em [8] por exemplo, que tal construção independe do conjunto completo de idempotentes ortogonais e primitivos de C escolhido.

Consideremos a álgebra de caminhos $k\Delta_C$ e denotemos por ϵ_a o caminho trivial associado ao vértice a. Definimos uma apresentação $\eta_C: k\Delta_C \to C$ da seguinte forma:

Escolhemos uma k-base $\{x_{\alpha} + \operatorname{rad}^2 C \mid a \xrightarrow{\alpha} b\}$ do espaço vetorial $e_a\left(\frac{\operatorname{rad} C}{\operatorname{rad}^2 C}\right)e_b$. Definimos então, para cada i=1,...,n, $\eta_C(\epsilon_i)=e_i$; para cada $\alpha\in(\Delta_C)_1$, $\eta_C(\alpha)=x_{\alpha}$ e $\eta_C(\alpha_1\alpha_2...\alpha_t)=x_{\alpha_1}x_{\alpha_2}\cdots x_{\alpha_t}$. Estendemos por linearidade aos demais elementos de $k\Delta$. Mostra-se (em [8] por exemplo) que esse morfismo k-linear é também um morfismo de álgebras, é sobrejetor e $\mathcal{I}_C:=\operatorname{Nuc} \eta_C$ é um ideal admissível de $k\Delta_C$.

Suponhamos que B seja uma extensão cindida de A pelo ideal nilpotente Q. Veremos que a aljava de A é uma subaljava de Δ_B .

Proposição 3.1 Seja B uma extensão cindida de A pelo ideal nilpotente Q. Então

- $(\Delta_B)_0 = (\Delta_A)_0$.
- Dados os vértices a e b, o conjunto de flechas em Δ_B é o mesmo que em Δ_A mais $\dim_k \left(e_a \frac{Q}{Q \operatorname{rad} A + (\operatorname{rad} A)Q + Q^2} e_b \right)$ flechas.

Prova. Seja $\{e_1, ..., e_n\}$ um conjunto completo de idempotentes ortogonais e primitivos de B. Como $e_i^t = e_i \neq 0$ para qualquer t, então, como Q é nilpotente, $e_i \notin Q$, ou seja, cada $e_i + Q$ é não nulo. Daí o conjunto $\{e_1 + Q, ..., e_n + Q\}$ é um conjunto completo de idempotentes ortogonais e primitivos de $\frac{B}{Q}$, pois

- $(e_i + Q)^2 = e_i^2 + Q = e_i + Q;$
- . para $i \neq j$ vale que $(e_i + Q)(e_j + Q) = e_i e_j + Q = 0$, pois $e_i e_j = 0$;
- . Suponhamos que $e_i + Q = (e + Q) + (\hat{e} + Q)$ com e + Q e $\hat{e} + Q$ idempotentes ortogonais. Pelo Teorema do levantamento de idempotentes (ver por exemplo [1], VIII.1.5) podemos supor que e e \hat{e} são idempotentes de B. Então, $(e + \operatorname{rad} B)$ e $(\hat{e} + \operatorname{rad} B)$ são idempotentes ortogonais: de $e^2 + Q = e + Q$ segue que $e^2 e \in Q \subseteq \operatorname{rad} B$ e portanto $(e + \operatorname{rad} B)^2 = e^2 + \operatorname{rad} B = e + \operatorname{rad} B$; e de $(e + Q)(\hat{e} + Q) = 0$ segue que $e\hat{e} \in Q \subseteq \operatorname{rad} B$ e portanto $(e + \operatorname{rad} B)(\hat{e} + \operatorname{rad} B) = 0$. Além disso, como $e_i + Q = e + \hat{e} + Q$, então $e_i (e + \hat{e}) \in Q \subseteq \operatorname{rad} B$ e portanto $e_i + \operatorname{rad} B = (e + \operatorname{rad} B) + (\hat{e} + \operatorname{rad} B)$. Segue então que $e \in \operatorname{rad} B$ ou $\hat{e} \in \operatorname{rad} B$, pois $e_i + \operatorname{rad} B$ é primitivo (ver por exemplo [1], VIII.1.6). Como rad B é nilpotente, então e = 0 ou $\hat{e} = 0$. Logo, $e_i + Q$ é primitivo.

$$1_A = 1_B + Q = \sum_{i=1}^n e_i + Q = \sum_{i=1}^n (e_i + Q).$$

Portanto, $(\Delta_B)_0 = (\Delta_A)_0$.

Para a segunda parte, sejam a e b vértices, então o número de flechas de a para b em $(\Delta_B)_1$ é $\dim_k \left(e_a \frac{\operatorname{rad} B}{\operatorname{rad}^2 B} e_b\right)$.

Como k-espaço vetorial temos que a sequência exata abaixo cinde

$$0 \longrightarrow Q \stackrel{\longleftarrow}{\longrightarrow} \operatorname{rad} B \stackrel{\pi'}{\underset{\sigma'}{\longleftarrow}} \operatorname{rad} A \longrightarrow 0 ,$$

onde π' e σ' são as respectivas restrições de $\pi: B \to A$ e $\sigma: A \to B$ aos radicais.

Então rad $B \cong \operatorname{rad} A \oplus Q$ e portanto,

$$\operatorname{rad}{}^2B\cong (\operatorname{rad}{A}\oplus Q)(\operatorname{rad}{A}\oplus Q)=\operatorname{rad}{}^2A\oplus \Big(Q(\operatorname{rad}{A})+(\operatorname{rad}{A})Q+Q^2\Big).$$

Daí, como rad $^2A\subseteq \operatorname{rad} A$ e $Q(\operatorname{rad} A)+(\operatorname{rad} A)Q+Q^2\subseteq Q$ temos que

$$\frac{\operatorname{rad} B}{\operatorname{rad} {}^2B} \cong \frac{\operatorname{rad} A \oplus Q}{\operatorname{rad} {}^2A \oplus \left(Q(\operatorname{rad} A) + (\operatorname{rad} A)Q + Q^2\right)} \cong \frac{\operatorname{rad} A}{\operatorname{rad} {}^2A} \oplus \frac{Q}{Q(\operatorname{rad} A) + (\operatorname{rad} A)Q + Q^2}.$$

Finalmente,
$$\dim_k \left(e_a \frac{\operatorname{rad} B}{\operatorname{rad}^2 B} e_b \right) = \dim_k \left(e_a \frac{\operatorname{rad} A}{\operatorname{rad}^2 A} e_b \right) + \dim_k \left(e_a \frac{Q}{Q(\operatorname{rad} A) + (\operatorname{rad} A)Q + Q^2} e_b \right)$$
. Como $\dim_k \left(e_a \frac{\operatorname{rad} A}{\operatorname{rad}^2 A} e_b \right)$ é o número de flechas de a para b em $(\Delta_A)_1$ segue o resultado.

Ideal Q

Antes de enunciarmos a caracterização do ideal Q precisamos da seguinte definição:

Definição 3.1 Sejam Δ uma aljava, $k\Delta$ a álgebra de caminhos de Δ e \mathcal{I} um ideal de $k\Delta$. Dizemos que um conjunto $S \subseteq k\Delta$ de geradores de \mathcal{I} é **minimal** se, para cada ρ em S, temos:

- (a) Se ρ é um caminho em Δ , então para todo subcaminho próprio $\hat{\rho}$ de ρ temos $\hat{\rho} \notin \mathcal{I}$.
- (b) Se $\rho = \sum_{j=1}^{m} \lambda_{j} \omega_{j}$ com $m \geq 2$, $\lambda_{j} \in k$ não nulos e $\omega_{j} \in \Delta$ caminhos de comprimento positivo todos com o mesmo início e o mesmo fim, então para cada subconjunto próprio $J \subset \{1, ..., m\}$ não vazio, temos $\sum_{j \in J} \lambda_{j} \omega_{j} \notin \mathcal{I}$.

De forma análoga define-se conjunto minimal de geradores para um ideal de $\frac{k\Delta}{\mathcal{I}}$, onde \mathcal{I} é um ideal admissível de $k\Delta$.

Lema 3.2 Seja \mathcal{I} um ideal finitamente gerado de uma k-álgebra $k\Delta$, onde Δ é uma aljava. Então existe um conjunto de geradores minimal para \mathcal{I} .

Prova. A partir de um conjunto qualquer $\{\rho_1, \rho_2, ..., \rho_s\}$ de geradores de \mathcal{I} , podemos obter um novo conjunto $G = \{\epsilon_a \rho_i \epsilon_b : a, b \in \Delta_0 \text{ e } 1 \leq i \leq s\}$ de combinações lineares de caminhos com mesmo início e mesmo fim em Δ e que ainda é gerador de Q. Aqui ϵ_a é o caminho trivial do vértice $a \in \Delta_0$. Basta observar que cada elemento do primeiro conjunto de geradores pode ser escrito como $\rho_j = \sum_{a,b \in \Delta_0} \epsilon_a \rho_j \epsilon_b$.

Seja $\sigma = \sum_{j=1}^m \lambda_j \omega_j \in G$ com $m \geq 2$, e suponhamos que σ não satisfaz a condição (b) da Definição

3.1. Então existe um subconjunto não vazio próprio $J \subset \{1,...,m\}$ tal que $\hat{\sigma} \in \mathcal{I}$, onde $\hat{\sigma} = \sum_{j \in J} \lambda_j \omega_j$.

Podemos trocar σ por $\hat{\sigma}$ e $\sigma - \hat{\sigma}$ no conjunto de geradores de \mathcal{I} . Repetindo o processo um número finito

de vezes chegamos a um novo conjunto $G' = \{\sigma_1, ..., \sigma_n\}$ de geradores de \mathcal{I} , onde cada combinação com pelo menos 2 caminhos satisfaz a condição (b).

Suponhamos agora que $\sigma \in G'$ é um caminho que não satisfaz a condição (a) da Definição 3.1. Nesse caso, existe um subcaminho $\hat{\sigma}$, próprio, de σ tal que $\hat{\sigma} \in \mathcal{I}$. Mas então existem ω_1 e ω_2 caminhos tais que $\sigma = \omega_1 \hat{\sigma} \omega_2$. Troquemos σ por $\hat{\sigma}$ em G'.

Após um número finito de passos chegamos a um conjunto minimal $S = \{\rho_1, ..., \rho_t\}$ de geradores de \mathcal{I} .

Sejam ω um caminho e α uma flecha. Denotaremos por $\alpha|\omega$ se existirem subcaminhos $\hat{\omega}$ e $\check{\omega}$ de ω , tais que $\omega = \hat{\omega}\alpha\check{\omega}$.

Mostraremos agora que existe uma apresentação η_B para álgebra B tal que o conjunto das flechas que estão em $(\Delta_B)_1 \setminus (\Delta_A)_1$ gera o ideal Q.

Proposição 3.3 Sejam B uma extensão cindida de A pelo ideal nilpotente Q e $\eta_A: k\Delta \to A$ uma apresentação de A. Então, existem uma apresentação $\eta_B: k\Delta_B \to B$ e morfismos de álgebras $0 \to k\Delta_A \xrightarrow{\hat{\sigma}} k\Delta_B, k\Delta_B \xrightarrow{\hat{\pi}} k\Delta_A \to 0$ tais que $\hat{\pi}\hat{\sigma} = id_{k\Delta_A}$ e o seguinte diagrama é comutativo

$$k\Delta_{B} \xrightarrow{\hat{\pi}} k\Delta_{A}$$

$$\uparrow_{\eta_{B}} \downarrow \qquad \uparrow_{\eta_{A}}$$

$$\downarrow_{\eta_{A}} \qquad \uparrow_{\eta_{A}}$$

$$\downarrow_{\eta_{A}} \qquad \uparrow_{\eta_{A}}$$

$$\downarrow_{\eta_{A}} \qquad \uparrow_{\eta_{A}}$$

onde π é o epimorfismo cindido e σ é tal que $\pi\sigma=id_A$.

Prova. Sejam $\pi: B \to A$, $\sigma: A \to B$ morfismos tais que $\pi \sigma = id_A$ e $Q = \operatorname{Nuc} \pi$. Podemos identificar A como uma subálgebra de B e σ como a inclusão. Pela Proposicao 3.1 podemos considerar Δ_A como uma subaljava de Δ_B . A inclusão $\Delta_A \hookrightarrow \Delta_B$ induz um monomorfismo de álgebras $\hat{\sigma}: k\Delta_A \to k\Delta_B$ dado por $\hat{\sigma}(\epsilon_i) = \epsilon_i$ para cada $i \in (\Delta_A)_0$ e $\hat{\sigma}(\alpha) = \alpha$ para cada $\alpha \in (\Delta_A)_1$.

Pela Observação 3.1, o conjunto $X_{ij} := \{ \eta_A(\alpha) + \operatorname{rad}^2 A \mid i \xrightarrow{\alpha} j \in (\Delta_A)_1 \}$ é uma k-base para $e_i \left(\frac{\operatorname{rad} A}{\operatorname{rad}^2 A} \right) e_j$.

Seja $S := (\Delta_B)_1 \setminus (\Delta_A)_1$. Pela Proposição 3.1 o número de flechas de i para j em S é

$$\dim_k \left(e_i \frac{Q}{Q \operatorname{\mathsf{rad}} A + (\operatorname{\mathsf{rad}} A)Q + Q^2} e_j \right).$$

Para cada flecha $i \xrightarrow{\beta} j$ em S escolhemos $q_{\beta} \in Q$ de modo que o conjunto $Y_{ij} := \{q_{\beta} + \left(\operatorname{Qrad} A + (\operatorname{rad} A)Q + Q^{2}\right) | i \xrightarrow{\beta} j \in S\} \text{ seja uma } k\text{-base para } e_{i} \frac{Q}{\operatorname{Qrad} A + (\operatorname{rad} A)Q + Q^{2}} e_{j}.$

Temos então que $X_{ij} \cup Y_{ij}$ é uma base para $e_i \left(\frac{\operatorname{rad} B}{\operatorname{rad}^2 B}\right) e_j$. Definimos uma apresentação para B fazendo $\eta_B(\epsilon_i) = e_i$ para cada $i \in (\Delta_B)_0$, $\eta_B(\alpha) = \eta_A(\alpha)$ para cada $\alpha \in (\Delta_A)_1$ e $\eta_B(\beta) = q_\beta$ para cada $\beta \in S$.

Dessa forma temos que $\eta_B \hat{\sigma} = \sigma \eta_A$ pois $\eta_B \hat{\sigma}(\epsilon_i) = \eta_B(\epsilon_i) = e_i = \sigma \eta_A(\epsilon_i)$ e para $\alpha \in (\Delta_A)_1$ temos $\eta \hat{\sigma}(\alpha) = \eta_B(\alpha) = \eta_A(\alpha) = \sigma \eta_A(\alpha)$.

Definimos também $\hat{\pi}: k\Delta_B \to k\Delta_A$ por $\hat{\pi}(\epsilon_i) = \epsilon_i$ para cada $i \in (\Delta_B)_0$, $\hat{\pi}(\alpha) = \alpha$ para cada $\alpha \in (\Delta_A)_1$ e $\hat{\pi}(\beta) = 0$ para cada $\beta \in S$. Temos, claramente, que $\hat{\pi}\hat{\sigma} = id_{k\Delta_A}$. Além disso, $\eta_A\hat{\pi} = \pi\eta_B$ pois

- . para cada $i \in (\Delta_B)_0$, $\pi \eta_B(\epsilon_i) = \pi(e_i) = \pi \sigma(e_i) = e_i$ e $\eta_A \hat{\pi}(\epsilon_i) = \eta_A(\epsilon_i) = e_i$;
- . para cada $\alpha \in (\Delta_A)_1$, $\pi \eta_B(\alpha) = \pi \eta_A(\alpha) = \pi \sigma \eta_A(\alpha) = \eta_A(\alpha)$ e $\eta_A \hat{\pi}(\alpha) = \eta_A(\alpha)$;
- . para cada $\beta \in S$, $\pi \eta_B(\beta) = \pi(q_\beta) = 0$ e $\eta_A \hat{\pi}(\beta) = \eta_A(0) = 0$.

Corolário 3.4 Nos termos da Proposição 3.3, sejam $\mathcal{I}_A := \text{Nuc } \eta_A \ e \ \mathcal{I}_B := \text{Nuc } \eta_B$. $Ent \tilde{ao} \ \hat{\sigma}(\mathcal{I}_A) \subseteq \mathcal{I}_B$.

Prova. Seja ω em $k\Delta_A$ tal que $\eta_A(\omega) = 0$. Então, como $\hat{\sigma}(\omega) = \omega$ e pela comutatividade do diagrama da proposição anterior, $\eta_B(\omega) = \eta_B(\hat{\sigma}(\omega)) = \sigma \eta_A(\omega) = \sigma(0) = 0$, ou seja, $\hat{\sigma}(\omega) = \omega \in \mathcal{I}_B$.

Corolário 3.5 Seja B uma extensão cindida de A pelo ideal nilpotente Q. Então, existe uma apresentação de B e um subconjunto S de flechas de $(\Delta_B)_1$, tais que o ideal Q é gerado pelas classes das flechas de S.

Prova. Consideremos a apresentação de B e os morfismos $\hat{\pi}$ e $\hat{\sigma}$ como na demonstração da Proposição 3.3. Por construção, o núcleo de $\hat{\pi}$ é gerado por S. Mostraremos que $\eta_B(\operatorname{Nuc}\hat{\pi}) = Q$. Se $\beta \in S$ então $\pi \eta_B(\beta) = \pi(q_\beta) = 0$, ou seja, $\eta_B(\operatorname{Nuc}\hat{\pi}) \subseteq Q$. Para a outra inclusão, seja $q \in Q$ e $\omega \in k\Delta_B$ com $q = \eta_B(\omega)$.

Como $\hat{\pi}\hat{\sigma}=id_{k\Delta_A}$ então a sequência de k-espaços vetoriais $0\to \operatorname{Nuc}\hat{\pi}\to k\Delta_B\stackrel{\hat{\pi}}{\to}k\Delta_A\to 0$ cinde e portanto podemos escrever $\omega=\hat{\omega}+\check{\omega}$ com $\hat{\omega}\in\operatorname{Nuc}\hat{\pi}$ e $\check{\omega}\in k\Delta_A$. Mostraremos que $\eta_B(\hat{\omega})=q$. Para isso, basta mostrar que $\check{\omega}\in\mathcal{I}_B$. Temos que $\eta_A\hat{\pi}(\omega)=\pi\eta_B(\omega)=\pi(q)=0$, ou seja, $\check{\omega}=\hat{\pi}(\omega)\in\mathcal{I}_A$. Pelo Corolário 3.4, $\check{\omega}=\hat{\sigma}(\check{\omega})\in\mathcal{I}_B$.

A pergunta natural é quando que um ideal gerado por classes de flechas define uma extensão cindida por nilpotente. Vejamos o exemplo a seguir.

Exemplo 3.2 Consideremos a mesma aljava Δ e o mesmo ideal \mathcal{I} do exemplo 3.1, porém agora consideremos $Q' = \langle \alpha + \mathcal{I} \rangle$. Nesse caso Q' é um ideal gerado pela classe de uma flecha de Δ , mas $B = \frac{k\Delta}{\mathcal{I}}$ não é uma extensão cindida por nilpotente de $A = \frac{B}{Q'}$. Se fosse esse o caso, teríamos A uma k-subálgebra de B, o que não acontece, pois em A temos que $\gamma\delta$ é nulo (pois $\gamma\delta + \mathcal{I} = \alpha\beta + \mathcal{I} \in Q'$) e em B é não nulo. Notemos que o conjunto $S = \{\alpha\}$ não tem a propriedade do corolário que segue, isto é, $\alpha | \alpha\beta$, mas não existe $\mu \in S$ com $\mu | \gamma\delta$.

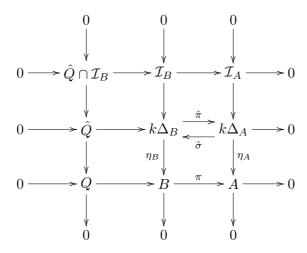
Corolário 3.6 Nos termos da Proposição 3.3, seja X um conjunto minimal de geradores para \mathcal{I}_B . Então o conjunto S tem a seguinte propriedade:

"sempre que para
$$\rho=\sum_{i=1}^m \lambda_i\omega_i\in X$$
 existirem $i\in\{1,...,m\}$ e $\alpha_i\in S$ com $\alpha_i|\omega_i$, então para cada $j\in\{1,...,m\}$ existirá $\alpha_j\in S$ tal que $\alpha_j|\omega_j$ "

Prova. Seja $\rho = \sum_{i=1}^{m} \lambda_{i}\omega_{i} \in X$ tal que para algum i existe $\alpha_{i} \in S$ com $\alpha_{i}|\omega_{i}$. Podemos escrever $\rho = \sum_{i \in I} \lambda_{i}\omega_{i} + \sum_{j \in J} \lambda_{j}\omega_{j}$ com $I, J \subseteq \{1, ..., m\}$ de forma que, para cada $i \in I$ existe $\alpha_{i} \in S$ com $\alpha_{i}|\omega_{i}$, e para cada $j \in J$ não existe $\alpha \in S$ com $\alpha|\omega_{j}$. Mostraremos que $J = \emptyset$. Suponhamos o contrário, então $\hat{\pi}(\rho) = \sum_{j \in J} \lambda_{j}\omega_{j} \in \mathcal{I}_{A}$, pois $\eta_{A}\hat{\pi}(\rho) = \pi\eta_{B}(\rho) = \pi(0) = 0$. Pelo Corolário 3.4, $\sum_{i \in J} \lambda_{j}\omega_{j} = \hat{\sigma}(\sum_{i \in J} \lambda_{j}\omega_{i}) \in \mathcal{I}_{B}$. Contradição com a minimalidade de X. Logo, $J = \emptyset$.

Mostraremos que a propriedade desse corolário é suficiente para garantir que um ideal gerado por flechas defina uma extensão cindida por nilpotente.

Proposição 3.7 Sejam B uma k-álgebra, $\eta_B: k\Delta_B \to B$ uma apresentação de B e Q um ideal de B, gerado pela classe das flechas de um conjunto S. Então existem uma apresentação de $A = \frac{B}{Q}$, $\eta_A: k\Delta_A \to A$ e morfismos de álgebras $0 \to k\Delta_A \xrightarrow{\hat{\sigma}} k\Delta_B$, $k\Delta_B \xrightarrow{\hat{\pi}} k\Delta_A \to 0$ tais que $\hat{\pi}\hat{\sigma} = id_{k\Delta_A}$ e o seguinte diagrama de linhas e colunas exatas é comutativo



onde π é o epimorfismo canônico.

Prova. Pela demonstração da primeira parte da Proposição 3.1 já temos que $(\Delta_A)_0 = (\Delta_B)_0$. Consideremos o conjunto $\Delta_1 = (\Delta_B)_1 \setminus S$. Chamando $\Delta_0 = (\Delta_A)_0$, mostraremos que $\Delta_A = \Delta$.

Como Δ é uma subaljava de Δ_B existe um morfismo de álgebras $\hat{\sigma}: k\Delta \to k\Delta_B$ dada por $\hat{\sigma}(\epsilon_i) = \epsilon_i$, para cada $i \in \Delta_0$ e $\hat{\sigma}(\alpha) = \alpha$ para cada $\alpha \in \Delta_1$. Claramente, $\hat{\sigma}$ é um monomorfismo.

Definimos agora $\hat{\pi}: k\Delta_B \to k\Delta$ por

$$\hat{\pi}(\epsilon_i) = \epsilon_i, \forall i \in (\Delta_B)_0$$

$$\hat{\pi}(\alpha) = \alpha, \forall \alpha \notin S$$

$$\hat{\pi}(\alpha) = 0, \forall \alpha \in S;$$

e estendendo por linearidade aos demais elementos de $k\Delta_B$ teremos que esse morfismo k-linear é também um epimorfismo de álgebras, que $\hat{\pi}\hat{\sigma}=1_{k\Delta}$ e que o núcleo é gerado por S. Denotemos por $\hat{Q}=\operatorname{Nuc}\hat{\pi}$.

Definimos agora um morfismo $\eta_A: k\Delta \to A$ da seguinte forma: dado $\rho \in k\Delta$, existe $\omega \in k\Delta_B$ tal que $\rho = \hat{\pi}(\omega)$. Notemos que $\eta_B(\hat{Q}) = Q$, daí se $\hat{\pi}(\omega) = \hat{\pi}(\tilde{\omega})$ então $\omega - \tilde{\omega} \in \hat{Q}$ e portanto $\eta_B(\omega - \tilde{\omega}) \in Q$, isto é, $\pi\eta_B(\omega) = \pi\eta_B(\tilde{\omega})$. Podemos então definir $\eta_A(\rho) := \pi\eta_B(\omega)$.

Então η_A é um epimorfismo pois π e η_B o são e claramente vale $\pi\eta_B = \eta_A\hat{\pi}$. Para mostrar que η_A é uma apresentação de A falta verificar que $\mathcal{I}_A := \operatorname{Nuc} \eta_A$ é um ideal admissível de $k\Delta$. Daí pela unicidade da aljava ordinária teremos que $\Delta_A = \Delta$.

Devemos mostrar que existe $n \geq 2$ tal que $J^n \subseteq \mathcal{I}_A \subseteq J^2$, onde J denota o ideal de $k\Delta$ gerado pelas flechas de Δ . Denotemos também por J_{Δ_B} o ideal de $k\Delta_B$ gerado pelas flechas de Δ_B .

 $\mathcal{I}_A \subseteq J^2$: Suponhamos que $\mathcal{I}_A \not\subseteq J^2$, e seja $\rho \in \mathcal{I}_A \setminus J^2$. Podemos escrever $\rho = \sum_{i=1}^t \lambda_i \alpha_i + \gamma$, com $\alpha_1, ..., \alpha_t \in \Delta_1, \ \lambda_1, ..., \lambda_t \in k \text{ e } \gamma \in J^2$. Então $\pi \eta_B(\rho) = \eta_A \hat{\pi}(\rho) = \eta_A \hat{\pi}(\hat{\sigma}(\rho)) = \eta_A(\rho) = 0$, pois $\pi \eta_B = \eta_A \hat{\pi}, \ \rho = \hat{\sigma}(\rho) \in k \Delta_B, \ \hat{\pi} \hat{\sigma} = 1_{k\Delta} \text{ e } \rho \in \mathcal{I}_A$. Ou seja, $\rho + \mathcal{I}_B = \eta_B(\rho) \in Q$. Como Q é gerado por classes de flechas de S, existem $\beta_1, ..., \beta_s \in S$ e $\delta_1, ..., \delta_s \in k$ tais que $\rho + \mathcal{I}_B = \sum_{i=1}^s \delta_i \beta_i + \mathcal{I}_B$. Portanto, $\sum_{i=1}^t \lambda_i \alpha_i + \gamma + \mathcal{I}_B = \sum_{i=1}^s \delta_i \beta_i + \mathcal{I}_B \Rightarrow$

 $\sum_{i=1}^{t} \lambda_{i}\alpha_{i} + \gamma + \mathcal{I}_{B} = \sum_{i=1}^{s} \delta_{i}\beta_{i} + \mathcal{I}_{B} \Rightarrow$ $\Rightarrow \sum_{i=1}^{t} \lambda_{i}\alpha_{i} + \gamma - \sum_{i=1}^{s} \delta_{i}\beta_{i} \in \mathcal{I}_{B} \subseteq J_{\Delta_{B}}^{2} \text{ (pois } \mathcal{I}_{B} \text{ \'e admissível)} \Rightarrow \sum_{i=1}^{t} \lambda_{i}\alpha_{i} - \sum_{i=1}^{s} \delta_{i}\beta_{i} \in J_{\Delta_{B}}^{2}$ $\Rightarrow \sum_{i=1}^{t} \lambda_{i}\alpha_{i} - \sum_{i=1}^{s} \delta_{i}\beta_{i} = 0 \text{ (pois } \alpha_{i} \text{ e } \beta_{i} \text{ são flechas)} \Rightarrow \sum_{i=1}^{t} \lambda_{i}\alpha_{i} = \sum_{i=1}^{s} \delta_{i}\beta_{i}.$ Contradição, pois cada $\alpha_{i} \in S$ e cada $\beta_{j} \in \Delta_{1} = (\Delta_{B})_{1} \setminus S$. Logo, $\mathcal{I}_{A} \subseteq J^{2}$.

 $J^n \subseteq \mathcal{I}_A$: Como \mathcal{I}_B é um ideal admissível de $k\Delta_B$, existe n tal que $J^n_{\Delta_B} \subseteq \mathcal{I}_B$. Daí como Δ é subaljava de Δ_B vale que $J^n \subseteq J^n_{\Delta_B} \subseteq \mathcal{I}_B$, ou seja, $\eta_B(\rho) = 0$ para todo $\rho \in J^n$. Finalmente, para todo $\rho \in J^n$, temos $\eta_A(\rho) = \eta_A(\hat{\pi}\hat{\sigma}(\rho)) = \pi\eta_B(\hat{\sigma}(\rho)) = \pi\eta_B(\rho) = 0$. Logo, $J^n \subseteq \mathcal{I}_A$.

Temos então o seguinte diagrama comutativo e de linhas exatas,

$$0 \longrightarrow \hat{Q} \xrightarrow{\hat{\iota}} k\Delta_B \xrightarrow{\hat{\pi}} k\Delta_A \longrightarrow 0$$

$$\uparrow^{\eta_B}|_{\hat{Q}} \downarrow \qquad \uparrow^{\eta_B} \downarrow \qquad \downarrow^{\eta_A} \downarrow$$

$$0 \longrightarrow Q \xrightarrow{\iota} B \xrightarrow{\pi} A \longrightarrow 0$$

onde ι e $\hat{\iota}$ são as respectivas inclusões de Q em B e de \hat{Q} em $k\Delta_B$.

Pelo Lema da serpente ([1] por exemplo) chegamos ao diagrama que queremos.

Teorema 3.8 Sejam $\eta_B: k\Delta_B \to B$ uma apresentação de B, X um conjunto minimal de geradores de $\mathcal{I}_B = \operatorname{Nuc} \eta_B, Q$ um ideal gerado por classes de flechas de um conjunto $S, e \pi: B \to A = \frac{B}{Q}$ a projeção canônica. Se S tem a seguinte propriedade:

"sempre que para
$$\rho=\sum_{i=1}^m \lambda_i\omega_i\in X$$
 existirem $i\in\{1,...,m\}$ e $\alpha_i\in S$ com $\alpha_i|\omega_i$, então para cada $j\in\{1,...,m\}$ existirá $\alpha_j\in S$ tal que $\alpha_j|\omega_j$ "

então π é um epimorfismo cindido, ou seja, B é uma extensão cindida de A pelo nilpotente Q.

Prova. O ideal Q é nilpotente, isto é, $Q \subseteq \mathsf{rad}\,B$ pois é gerado por classes de flechas.

Construíremos um morfismo de ágebras $\sigma:A\to B$ tal que $\pi\sigma=id_A$. Pela Proposição 3.7, existem uma apresentação de $A,\ \eta_A:k\Delta_A\to A$ e morfismos de álgebras $0\to k\Delta_A\stackrel{\hat{\sigma}}{\to} k\Delta_B,$ $k\Delta_B\stackrel{\hat{\pi}}{\to} k\Delta_A\to 0$ tais que $\hat{\pi}\hat{\sigma}=id_{k\Delta_A}$ e $\pi\eta_B=\eta_A\hat{\pi}$.

Dado $a \in A$ existe $\omega \in k\Delta_A$ com $a = \eta_A(\omega)$. Definimos $\sigma(a) := \eta_B \hat{\sigma}(\omega)$. Para que σ esteja definida é suficiente mostrar que $\hat{\sigma}(\mathcal{I}_A) \subseteq \mathcal{I}_B$, onde $\mathcal{I}_A = \text{Nuc } \eta_A$, pois daí se $\eta_A(\omega) = \eta_A(\tilde{\omega})$, então $\omega - \tilde{\omega} \in \mathcal{I}_A$, o que implica que $\hat{\sigma}(\omega - \tilde{\omega}) \in \mathcal{I}_B$, ou seja, $\eta_B \hat{\sigma}(\omega) = \eta_B \hat{\sigma}(\tilde{\omega})$.

Antes de mostrar tal inclusão vejamos que σ definida dessa forma é um morfismo de álgebras e é uma inversa à direita de π : é um morfismo de álgebras pois η_A , η_B e $\hat{\sigma}$ o são. Agora dado $a = \eta_A(\omega) \in A$, então $\pi\sigma(a) = \pi\eta_B\hat{\sigma}(\omega) = \eta_A\hat{\pi}\hat{\sigma}(\omega) = \eta_A(\omega) = a$. Portanto, neste caso, π é um epimorfismo cindido, ou seja, B é uma extensão cindida de A pelo nilpotente Q.

Voltemos à inclusão $\hat{\sigma}(\mathcal{I}_A) \subseteq \mathcal{I}_B$:

Seja $\rho = \sum_{i=1}^{m} \lambda_i \omega_i \in X$. Lembremos da demonstração da Proposição 3.7 que $\hat{\pi}(\alpha) = \alpha$ se $\alpha \notin S$ e $\hat{\pi}(\alpha) = 0$ se $\alpha \in S$. Se para algum i, $\hat{\pi}(\omega_i) = 0$ então existe uma flecha $\alpha_i \in S$ com $\alpha_i | \omega_i$. Daí, pela hipótese, para cada j existe $\alpha_j \in S$ com $\alpha_j | \omega_j$, o que implica, nesse caso, que $\hat{\pi}(\rho) = 0$. Agora se $\hat{\pi}(\rho) \neq 0$ então $\hat{\pi}(\omega_i) \neq 0$ para algum i, ou seja, não existe $\alpha \in S$ com $\alpha | \omega_i$ e consequentemente, não existe $\alpha \in S$ com $\alpha | \omega_j$ para todo j, o que implica que $\hat{\pi}(\omega_i) = \omega_i$, para todo i e portanto $\hat{\pi}(\rho) = \rho$. Ou seja, para todo $\rho \in X$ temos que $\hat{\pi}(\rho) = 0$ ou $\hat{\pi}(\rho) = \rho$.

Denotemos por Y um conjunto minimal de geradores de \mathcal{I}_A . Mostraremos que $\hat{\sigma}(Y) \subseteq \mathcal{I}_B$.

Seja $\gamma \in Y$. Como $\hat{\pi}_{|_{\mathcal{I}_B}} : \mathcal{I}_B \to \mathcal{I}_A$ é um epimorfismo (pelo diagrama da Proposição 3.7) existe $\rho \in \mathcal{I}_B$ com $\hat{\pi}(\rho) = \gamma$. Então $\rho = \sum_{i=1}^m \lambda_i \rho_i$, onde $\lambda_i \in k$ e cada $\rho_i = \rho_{i_1} ... \rho_{i_t}$, com $\rho_{i_j} \in X$. Além disso,

cada
$$\hat{\pi}(\rho_{i_j}) = \rho_{i_j}$$
 ou $\hat{\pi}(\rho_{i_j}) = 0$ e $\gamma = \hat{\pi}(\rho) = \hat{\pi}\left(\sum_{i=1}^m \lambda_i \rho_i\right) = \sum_{i=1}^m \lambda_i \hat{\pi}(\rho_i)$ com $\hat{\pi}(\rho_i) = \hat{\pi}(\rho_{i_1})...\hat{\pi}(\rho_{i_t})$.

Como γ é não nulo existe i tal que $\hat{\pi}(\rho_i) \neq 0$. Pela minimalidade de Y esse i é único, pois cada $\hat{\pi}(\rho_j) \in \mathcal{I}_A$. Daí $\gamma = \lambda_i \hat{\pi}(\rho_i) = \lambda_i \hat{\pi}(\rho_{i_1})...\hat{\pi}(\rho_{i_t})$. Novamente pela minimalidade de Y (e como cada $\hat{\pi}(\rho_{i_j}) \in \mathcal{I}_A$), temos que t = 1 e assim $\gamma = \lambda_i \hat{\pi}(\rho_{i_1}) = \lambda_i \rho_{i_1} \in \mathcal{I}_B$. Finalmente, pela definição de $\hat{\sigma}$, $\hat{\sigma}(\gamma) = \gamma \in \mathcal{I}_B$.

Exemplo 3.3 Agora podemos justificar o Exemplo 3.1. Notemos que Q é gerado pelas classes das flechas de $S = \{\alpha, \delta\}$. Além disso, $\alpha | \alpha \beta$ e $\delta | \gamma \delta$. Portanto, o epimorfismo canônico $\pi : B \to \frac{B}{Q}$ cinde. Ou seja, B é uma extensão cindida de $A = \frac{B}{Q}$ pelo ideal Q.

Capítulo 4

Propriedades homológicas herdadas

Sejam as R-álgebras de Artin A e B tais que B uma extensão cindida de A pelo ideal nilpotente Q. Queremos comparar caracteristicas das álgebras A e B envolvendo propriedades homológicas das categorias $\mathsf{mod}\ A$ e $\mathsf{mod}\ B$. Ao final desse capítulo chegamos a um resultado importante que nos garantirá que se B é uma álgebra hereditária (ou shod) então A também é hereditária (ou shod).

4.1 Introdução

Iniciaremos relembrando algumas definições e algumas proposições que serão usadas ao longo do capítulo. Nesta seção, consideraremos R um anel comutativo com unidade e C uma R-álgebra de Artin qualquer. Os módulos serão considerados à direita, caso não se faça menção ao contrário.

Definição 4.1 Um epimorfismo de C-módulos $f: M \to N$ é dito supérfluo se, para todo morfismo $h: L \to M$, a composição $fh: L \to N$ ser um epimorfismo implicar que h também é um epimorfismo.

Um monomorfismo $f: M \to N$ é dito essencial se, para todo morfismo $h: N \to L$, a composição $hf: M \to L$ ser um monomorfismo implicar que h também é um monomorfismo.

Lema 4.1

- A composição de epimorfismos supérfluos é ainda supérfluo.
- A composição de monomorfismos essenciais é ainda essencial.

Prova. Faremos a demonstração para epimorfismos supérfluos. O outro caso é análogo.

Sejam $f: M \to N$ e $g: N \to L$ dois epimorfismos supérfluos. Temos que $gf: M \to L$ é um epimorfismo, falta mostrar que é supérfluo. Seja então, $h: W \to M$ um morfismo de forma que $(gf)h: W \to L$ seja um epimorfismo. Como g é supérfluo, temos que fh é um epimorfismo e como f é supérfluo, segue que h é um epimorfismo.

Definição 4.2 Um submódulo N de um C-módulo M é dito supérfluo em M se, para todo submódulo L de M, a igualdade N + L = M implicar que L = M.

Lema 4.2 Um epimorfismo de C-módulos $f: M \to N$ é supérfluo se, e somente se, Nuc f for um submódulo supérfluo em M.

Prova.

- (\Rightarrow) Sejam L um submódulo de M tal que $\operatorname{Nuc} f + L = M$ e $\iota : L \hookrightarrow M$ a inclusão de L em M. Dado $n \in N$ existe $m \in M$ tal que f(m) = n, pois f é um epimorfismo. Além disso, podemos escrever $m = x + l \operatorname{com} x \in \operatorname{Nuc} f$ e $l \in L$. Finalmente, n = f(m) = f(x + l) = f(x) + f(l) = f(l) = fh(l), isto é, a composição $f\iota$ é um epimorfismo. Como f é supérfluo, temos que ι é um epimorfismo e portanto um isomorfismo. Logo, L = M.
- (\Leftarrow) Seja $g:L\to M$ tal que $fg:L\to N$ seja um epimorfismo. Mostraremos que $M=\operatorname{\sf Nuc} f+\operatorname{Im} g$ e daí como $\operatorname{\sf Nuc} f$ é supérfluo em M resulta que $\operatorname{Im} g=M$, ou seja, que g é um epimorfismo. Obviamente $\operatorname{\sf Nuc} f+\operatorname{Im} g\subseteq M$. Por outro lado, dado $m\in M$, como fg é um epimorfismo, existe $l\in L$ tal que fg(l)=f(m). Então $m-g(l)\in\operatorname{\sf Nuc} f$ e $m=(m-g(l))+g(l)\in\operatorname{\sf Nuc} f+\operatorname{Im} g$.

Agora podemos reescrever o lema de Nakayama (Proposição 1.4) da seguinte forma:

Lema 4.3 (Lema de Nakayama)

Seja M um C-módulo de tipo finito. Um submódulo N de M é supérfluo se, e somente se, $N\subseteq \operatorname{rad} M$.

Corolário 4.4 Se M é de tipo finito, então um epimorfismo $f: M \to N$ é supérfluo se, e somente se, Nuc $f \subseteq \operatorname{rad} M$.

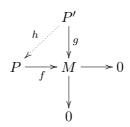
 $4.1. \ INTRODUÇÃO$

Definição 4.3 Uma cobertura projetiva de um C-módulo M é um par (P, f), onde P é um C-módulo projetivo $e f : P \longrightarrow M$ é um epimorfismo supérfluo. Dualmente, uma envolvente injetiva de um C-módulo M é um par (I, g), onde I é um C-módulo injetivo $e g : M \to I$ é um monomorfismo essencial.

Mostra-se, em [1] por exemplo, que um módulo de tipo finito sobre uma álgebra de Artin sempre admite uma cobertura projetiva, com P também de tipo finito e uma envolvente injetiva, com I também de tipo finito. Mostraremos agora que tal cobertura é unica a menos de isomorfismo. O resultado também vale para a envolvente injetiva, mas a demonstração será omitida.

Lema 4.5 Seja (P, f) é uma cobertura projetiva de M. Para cada epimorfismo $g: P' \longrightarrow M$, com P' projetivo, existe um epimorfismo $h: P' \longrightarrow P$ tal que fh = g.

Prova. Como P' é projetivo e $f: P \longrightarrow M$ é um epimorfismo (já que é cobertura projetiva de M), existe $h: P' \longrightarrow P$ tal que fh = g, isto é, que faz o seguinte diagrama comutar:



Resta verificar que h é um epimorfismo e isso decorre do fato de fh ser um epimorfismo e de f ser supérfluo.

Proposição 4.6 Sejam M um C-módulo de tipo finito, (P, f) e (\bar{P}, \bar{f}) coberturas projetivas de M. Então existe um isomorfismo $h: \bar{P} \to P$ tal que $fh = \bar{f}$.

Prova. Como (P,f) é uma cobertura projetiva, pelo Lema 4.5, existe um epimorfismo $h:\bar{P}\longrightarrow P$ tal que $fh=\bar{f}.$ Daí, a sequência exata curta $0\to \operatorname{Nuc} h\to \bar{P}\xrightarrow{h} P\to 0$ cinde e portanto $\bar{P}\cong\operatorname{Nuc} h\oplus P.$ Utilizando novamente o Lema 4.5, trocando P por \bar{P} concluímos que \bar{P} também é um somando de direto de P. Portanto, $P\cong\bar{P}$ e $\operatorname{Nuc} h=0$, isto é, h é um isomorfismo como queríamos.

Muitas vezes, por abuso de linguagem, diremos apenas que P é uma cobertura projetiva de M, ou ainda, que f é uma cobertura projetiva de M. O mesmo para envolvente injetiva.

Definição 4.4

- Uma apresentação projetiva de um C-módulo M é uma sequência exata $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ onde P_1 e P_0 são C-módulos projetivos. Tal apresentação é dita minimal se $f_0: P_0 \to M$ e $f_1: P_1 \to \operatorname{Nuc} f_0$ forem coberturas projetivas.
- Uma apresentação injetiva de um C-módulo M é uma sequência exata $0 \to M \xrightarrow{g_0} I_0 \xrightarrow{g_1} I_1$, onde I_0 e I_1 são C-módulos injetivos. Tal apresentação é dita minimal se $g_0: M \to I_0$ e $g_1: Im g_0 \to I_1$ forem envolventes injetivas.

Definição 4.5

• Uma resolução projetiva de um C-módulo M é uma sequência exata

$$\cdots \to P_n \xrightarrow{f_n} P_{n-1} \longrightarrow \cdots \to P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$$

onde cada P_i é um C-módulos projetivo.

Tal resolução é dita minimal se $f_0: P_0 \to M$ e $f_i: P_i \to Nuc f_{i-1}$, i = 1, 2, ..., forem coberturas projetivas.

Tal resolução é dita com **comprimento** n se $P_n \neq 0$ e $P_i = 0$, $\forall i > n$.

• Uma resolução injetiva de um C-módulo M é uma sequência exata

$$0 \to M \xrightarrow{g_0} I_0 \xrightarrow{g_1} I_1 \to \cdots \to I_{n-1} \xrightarrow{g_n} I_n \to \cdots$$

onde cada I_i é um C-módulo injetivo.

Tal resolução é dita minimal se $g_0: M \to I_0$ e $g_i: Im g_{i-1} \to I_i, i = 1, 2, ...,$ forem envolventes injetivas.

Tal resolução é dita com **comprimento** n se $I_n \neq 0$ e $I_i = 0$, $\forall i > n$.

4.1. INTRODUÇÃO 55

Definição 4.6

• Dizemos que a dimensão projetiva de um C-módulo M é um inteiro n, se esse for o menor inteiro tal que existe uma resolução projetiva de M com comprimento n. Denotaremos por $dp M_C = n$ (ou dp M = n).

• Dizemos que a dimensão injetiva de um C-módulo M é um inteiro n, se esse for o menor inteiro tal que existe uma resolução injetiva de M com comprimento n. Denotaremos por di $M_C = n$ (ou di M = n).

Definição 4.7 A dimensão global de uma álgebra de Artin C, denotado por dim. gl. C é

$$\sup\{\operatorname{dp} M_C \mid M_C \notin um \ C\text{-}m\acute{o}dulo\}.$$

Mostra-se (ver [1] por exemplo), que se M é de tipo finito (sobre uma álgebra de Artin), então

- i) $dp M_C = n$ se, e somente se, a resolução projetiva minimal de M tem comprimento n. Analogamente para $di M_C = n$;
- ii) dim. gl. $C = \sup\{dp \ M_C \mid M_C \text{ \'e um } C\text{-m\'odulo de tipo finito}\} = \sup\{dp \ S_C \mid S_C \text{ \'e um } C\text{-m\'odulo simples}\} = \sup\{dp \ M_C \mid M_C \text{ \'e um } C\text{-m\'odulo indecompon\'evel}\}.$

Transposto

Precisaremos agora introduzir alguns funtores de $\operatorname{\mathsf{mod}} C$ em $\operatorname{\mathsf{mod}} C^{op}$. Relembremos, primeiramente, o funtor dual definido no Exemplo 1.8.

Dada uma apresentação projetiva $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ de um C-módulo M, aplicando o funtor dual, chegamos a

$$0 \longrightarrow DM \xrightarrow{Df_0} DP_0 \xrightarrow{Df_1} DP_1,$$

que é uma apresentação injetiva do C^{op} -módulo DM. Mais ainda, se a primeira for minimal a segunda também será. Dualmente, se partirmos de uma apresentação injetiva (minimal) em $\operatorname{mod} C$, aplicando o funtor dual, chegaremos a uma apresentação projetiva (minimal) em $\operatorname{mod} C^{op}$.

Para uma álgebra de Artin C, chamamos de C-dual ao funtor

$$(-)^t := \operatorname{\mathsf{Hom}}_C(-,C) : \operatorname{\mathsf{mod}} C \to \operatorname{\mathsf{mod}} C^{op}.$$

Seja $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ uma apresentação projetiva minimal em mod C. Aplicando o funtor C-dual, temos a seguinte sequência exata $0 \to M^t \xrightarrow{f_0^t} P_0^t \xrightarrow{f_1^t} P_1^t \longrightarrow \mathsf{Conuc}\ f_1^t \to 0$. Denotaremos $\mathsf{Conuc}\ f_1^t$ por $\mathsf{Tr}^C M$ (ou simplesmente $\mathsf{Tr} M$) e chamaremos de **transposto de** M. Desta forma, fica definido um funtor $\mathsf{Tr}: \mathsf{mod}\ C \to \mathsf{mod}\ C^{op}$ que é chamado funtor $\mathsf{transposi}$ ção. Vejamos algumas propriedades desse funtor:

Lema 4.7 ([11], IV)

- (a) $\operatorname{Tr}(\bigoplus M_i) \cong \bigoplus (\operatorname{Tr} M_i)$, onde $M_i \in \operatorname{mod} C$.
- (b) $M \in \text{mod } C \text{ \'e projetivo se, e somente se, } \operatorname{Tr} M = 0.$
- (c) $M \in \text{ind } C$ se, e somente se, $\text{Tr } M \in \text{ind } C^{op}$.
- (d) Se $M \in \operatorname{ind} C$ é não projetivo, então $P_0^t \xrightarrow{f_1^t} P_1^t \to \operatorname{Tr} M \to 0$ é uma apresentação projetiva minimal em $\operatorname{mod} C^{op}$.

Também define-se os funtores transladado de Auslander-Reiten (A-R) por $\tau := D\mathsf{Tr}$ e transladado (de A-R) inverso por $\tau^{-1} := \mathsf{Tr}\,D$.

A composição de D com o C-dual é o funtor de Nakayama $\nu:=D(-)^t$ e $\nu^{-1}:=\mathsf{Hom}_C(DC,-)$ é a quase-inversa.

4.1. INTRODUÇÃO

57

Lema 4.8

(a) Seja $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ uma apresentação projetiva minimal de $M \in \text{mod } C$. Então existe a sequência exata

$$0 \to \tau M \longrightarrow \nu P_1 \xrightarrow{\nu f_1} \nu P_0 \xrightarrow{\nu f_0} \nu M \to 0.$$

(b) Seja $0 \to N \xrightarrow{g_0} I_0 \xrightarrow{g_1} I_1$ uma apresentação injetiva minimal de $M \in \text{mod } C$. Então existe a sequência exata

$$0 \to \nu^{-1} N \xrightarrow{\nu^{-1} g_0} \nu^{-1} I_0 \xrightarrow{\nu^{-1} g_1} \nu^{-1} I_1 \longrightarrow \tau^{-1} N \to 0.$$

Prova.

(a) Aplicando o funtor C-dual à apresentação projetiva minimal $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ temos, em mod C^{op} ,

$$0 \to M^t \xrightarrow{f_0^t} P_0^t \xrightarrow{f_1^t} P_1^t \to \operatorname{Tr} M \to 0.$$

Agora aplicando o funtor dual, que é exato:

$$0 \to D \operatorname{Tr} M \longrightarrow DP_1^t \xrightarrow{Df_1^t} DP_0^t \xrightarrow{Df_0^t} DM^t \to 0 \text{ em mod } C,$$

ou seja,
$$0 \to \tau M \longrightarrow \nu P_1 \xrightarrow{\nu f_1} \nu P_0 \xrightarrow{\nu f_0} \nu M \to 0.$$

(b) Aplicando o funtor dual na apresentação injetiva minimal $0 \to N \xrightarrow{g_0} I_0 \xrightarrow{g_1} I_1$ temos, em mod C^{op} , a seguinte apresentação projetiva minimal:

$$DI_1 \xrightarrow{Dg_1} DI_0 \xrightarrow{Dg_0} DN \to 0.$$

Agora aplicando o funtor C^{op} -dual, temos

$$0 \to (DN)^t \stackrel{(Dg_0)^t}{\longrightarrow} (DI_0)^t \stackrel{(Dg_1)^t}{\longrightarrow} (DI_1)^t \longrightarrow \operatorname{Tr}^{C^{op}} DN \to 0.$$

Observemos que do Exemplo 1.8 segue os isomorfismos funtoriais para um C-módulo X:

$$(DX)^t = \operatorname{Hom}_{C^{op}}(DX,C) \approx \operatorname{Hom}_C(DC,DDX) \approx \operatorname{Hom}_C(DC,X) = \nu^{-1}X.$$

Então:
$$0 \to \nu^{-1} N \xrightarrow{\nu^{-1} g_0} \nu^{-1} I_0 \xrightarrow{\nu^{-1} g_1} \nu^{-1} I_1 \longrightarrow \tau^{-1} N \to 0.$$

Proposição 4.9 Seja C uma álgebra de Artin $e M \in \text{mod } C$. Então,

- (a) $\operatorname{dp} M_C \leq 1$ se, e somente se, $\operatorname{Hom}_C(DC, \tau M) = 0$.
- (b) di $M_C \le 1$ se, e somente se, $\operatorname{Hom}_C(\tau^{-1}M, C) = 0$.

Prova.

(a) Seja $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ uma apresentação projetiva minimal de M. Pelo Lema 4.8, existe a sequência exata

$$0 \to \tau M \longrightarrow \nu P_1 \xrightarrow{\nu f_1} \nu P_0 \xrightarrow{\nu f_0} \nu M \to 0.$$

Aplicando o funtor $\nu^{-1} = \mathsf{Hom}_C(DC, -)$ temos o seguinte diagrama comutativo com linhas exatas:

Logo, $\operatorname{\mathsf{Hom}}_C(DC,\tau M)=\nu^{-1}\tau M\cong\operatorname{\mathsf{Nuc}} f_1$ e $\operatorname{\mathsf{Nuc}} f_1=0$ se, e somente se $\operatorname{\mathsf{dp}} M\le 1$.

(b) Seja $0 \to N \xrightarrow{g_0} I_0 \xrightarrow{g_1} I_1$ uma apresentação injetiva minimal de N. Pelo Lema 4.8 existe a sequência exata

$$0 \to \nu^{-1} N \xrightarrow{\nu^{-1} g_0} \nu^{-1} I_0 \xrightarrow{\nu^{-1} g_1} \nu^{-1} I_1 \longrightarrow \tau^{-1} N \to 0.$$

Aplicando o funtor ν temos o diagrama comutativo de linhas exatas:

$$0 \longrightarrow \nu\nu^{-1}M \longrightarrow \nu\nu^{-1}\nu I_0 \longrightarrow \nu\nu^{-1}I_1 \longrightarrow \nu\tau^{-1}M \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow \cong$$

$$0 \longrightarrow M \xrightarrow{g_0} I_0 \xrightarrow{g_1} I_1 \longrightarrow \mathsf{Conuc}\,g_1 \longrightarrow 0$$

Logo, $\mathsf{Conuc}\,g_1 \cong \nu \tau^{-1}M = D\mathsf{Hom}_C(\tau^{-1}M,C)$. Então, $\mathsf{di}M \leq 1$ se, e somente se, $\mathsf{Conuc}\,g_1 = 0$, ou seja, $\mathsf{Hom}_C(\tau^{-1}M,C) = 0$.

_

4.2 Propriedades homológicas em mod A e em mod B

A partir de agora, consideremos B uma extensão cindida de A pelo ideal nilpotente Q. Nosso objetivo é comparar as dimensões homólogicas dos módulos em ind A e em ind B. Para isso começaremos comparando as respectivas coberturas e apresentações projetivas.

Proposição 4.10 Seja B um extensão cindida de A pelo nilpotente Q, então a projeção canônica de B-módulos $p_M: M \longrightarrow \frac{M}{MQ}$ é um epimorfismo supérfluo.

Prova. Como Nuc $p_M = MQ$ e M_B é de tipo finito, basta verificar que $MQ \subseteq \operatorname{rad} M_B$. Como Q é nilpotente, já temos $Q \subseteq \operatorname{rad} B$, daí $MQ \subseteq M\operatorname{rad} B = \operatorname{rad} M_B$.

Observação 4.1 Seja M é um A-módulo. Olhando M como B-módulo temos que MQ=0 pois $Q=\operatorname{Nuc}\pi$ (onde $\pi:B\to A$ é o epimorfismo cindido) e então $m\cdot q=m\pi(q)=0$. Portanto, nesse caso, o epimorfismo canônico $p_{_M}:M\longrightarrow \frac{M}{MQ}\cong M$ é na verdade a aplicação identidade de M_B .

Se considerarmos o B-módulo $M \otimes_A B$ teremos, pela Proposição 2.3 e pelo Lema 2.2, que $\frac{M \otimes_A B}{(M \otimes_A B)Q} \cong M \otimes_A B \otimes_B A \cong M$. Neste caso, o epimorfismo canônico $M \otimes_A B \to \frac{M \otimes_A B}{(M \otimes_A B)Q}$ pode ser visto como $p_{M \otimes_A B} : M \otimes_A B \longrightarrow M$, dado por $m \otimes b \mapsto m \cdot b$.

Lembrando que $B \cong A \oplus Q$ como A-módulos, essa última aplicação, olhada como um morfismo de A-módulos, pode ainda ser expressa por $m \otimes (a,q) \mapsto ma$, uma vez que $m \cdot (a,q) = m\pi(a,q) = ma$.

Lema 4.11 Seja $f: P \longrightarrow M$ uma cobertura projetiva em modA. Então $f \otimes B: P \otimes_A B_B \to M \otimes_A B_B$ é uma cobertura projetiva em modB.

Prova. Já sabemos que $P \otimes_A B$ é B-projetivo, mostraremos que $f \otimes B$ é um epimorfismo supérfluo. De $\operatorname{Im}(f \otimes B) = (\operatorname{Im} f) \otimes_A B \cong M \otimes_A B$ segue que $f \otimes B$ é um epimorfismo.

Consideremos P e M como B-módulos (temos que f é também B-linear), $p_{M \otimes_A B} : M \otimes_A B \to M$ e $p_{P \otimes_A B} : P \otimes_A B \to P$ os epimorfismos canônicos como na Observação 4.1.

Teremos o seguinte diagrama comutativo de B-módulos

$$P \otimes_A B \xrightarrow{f \otimes B} M \otimes_A B$$

$$p_{P \otimes_A B} \downarrow \qquad \circlearrowleft \qquad \downarrow p_{M \otimes_A B}$$

$$P \xrightarrow{f} M$$

 $\text{pois } f \not \in B\text{-linear e ent\~ao} \ p_{M \otimes_A B}(f \otimes B)(p \otimes b) = p_{M \otimes_A B}(f(p) \otimes b) = f(p) \cdot b = f(p \cdot b) = f(p \cdot b$

Seja agora $h: X \longrightarrow P \otimes_A B$ tal que $(f \otimes B) \circ h$ é um epimorfismo. Nesse caso, pela comutatividade do diagrama, $f \circ p_{P \otimes_A B} \circ h (= p_{M \otimes_A B} \circ (f \otimes B) \circ h)$ é um epimorfismo. Como $f \in p_{P \otimes_A B}$ são supérfluos, então $f \circ p_{P \otimes_A B}$ também é supérfluo e portanto h é um epimorfismo como queríamos.

Corolário 4.12 Seja $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ uma apresentação projetiva em mod A. Então $P_1 \otimes_A B \xrightarrow{f_1 \otimes B} P_0 \otimes_A B \xrightarrow{f_0 \otimes B} M \otimes_A B \to 0$ é uma apresentação projetiva em mod B. Mais ainda, se a primeira é minimal, então a segunda também é minimal.

Prova. A primeira parte decorre do fato de que $P \otimes_A B$ é projetivo em mod B sempre que P é projetivo em mod A e do funtor $- \otimes_A B$ ser exato à direita.

Vejamos agora quanto à minimalidade das apresentações. Suponhamos que a primeira é minimal. Pelo Lema 4.11 temos que $P_0 \otimes_A B \xrightarrow{f_0 \otimes B} M \otimes_A B \to 0$ é uma cobertura projetiva em mod B.

Da mesma forma segue de $P_1 \xrightarrow{f_1} \operatorname{Im} f_1 \to 0$ ser uma cobertura projetiva em $\operatorname{\mathsf{mod}} A$, que $P_1 \otimes_A B \xrightarrow{f_1 \otimes B} \operatorname{Im} f_1 \otimes_A B \to 0$ é uma cobertura projetiva em $\operatorname{\mathsf{mod}} B$.

O resultado segue de Im $f_1 \otimes_A B = \text{Im} (f_1 \otimes_A B) = \text{Nuc} (f_0 \otimes B)$.

Prova. Segue da Proposição 4.10 que $p_{M \otimes_A B}$ é um B-epimorfismo supérfluo e do Lema 4.11 que $f \otimes B$ é um B-epimorfismo supérfluo. A composição também é um B-epimorfismo supérfluo. E $P \otimes_A B$ é B-projetivo porque P é A-projetivo.

Corolário 4.14 Seja $M_A \in \text{mod } A$, então $dp M_B = 0 \Rightarrow dp M_A = 0$.

Prova. Seja $f:P \to M_A$ uma cobertura projetiva em mod A. Pela proposição anterior $p_{M \otimes_A B}(f \otimes B):P \otimes_A B \to M$ é uma cobertura projetiva em mod B. Como dp $M_B=0$ então tal cobertura é um isomorfismo. Temos que $\operatorname{Nuc} f \otimes_A B \subseteq \operatorname{Nuc} p_{M \otimes_A B}(f \otimes B)$ e portanto $\operatorname{Nuc} f \otimes_A B = 0$. Aplicando o funtor $-\otimes_B A$ chegamos a $\operatorname{Nuc} f = 0$ e portanto f é um isomorfismo, isto é, dp $M_A=0$.

Proposição 4.15 Seja $M \in \text{mod } A$. Se $\text{dp } M_B \leq 1$ então $\text{dp } (M \otimes_A B)_B \leq 1$.

Prova. Seja $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ uma apresentação projetiva minimal em mod A. Pelo Corolário 4.12, $P_1 \otimes_A B \xrightarrow{f_1 \otimes B} P_0 \otimes_A B \xrightarrow{f_0 \otimes B} M \otimes_A B \to 0$ é uma apresentação projetiva minimal em mod B. Mostraremos que essa apresentação é na verdade uma resolução projetiva minimal, de onde seguirá que $dp (M \otimes_A B)_B \leq 1$.

Seja $0 \to \widetilde{P}_1 \xrightarrow{\widetilde{f}_1} \widetilde{P}_0 \xrightarrow{\widetilde{f}_0} M_B \to 0$ uma resolução projetiva minimal em mod B (dp $M_B \le 1$). Pela proposição anterior, temos que $P_0 \otimes_A B$ é cobertura projetiva de M_B , logo $\widetilde{P}_0 \cong P_0 \otimes_A B$.

Consideremos $\mathsf{p} := p_{M \otimes B}$ o epimorfismo canônico da Observação 4.1. Observe que $\mathrm{Im}\,(f_1 \otimes B) = \mathsf{Nuc}\,(f_0 \otimes B) \subseteq \mathsf{Nuc}\,(\mathsf{p}(f_0 \otimes B))$ e como $\widetilde{P}_1 \to \mathsf{Nuc}\,(\mathsf{p}(f_0 \otimes B)) \to 0$ é cobertura projetiva, então existe um morfismo $P_1 \otimes_A B \to \widetilde{P}_1$ que faz o seguinte diagrama de linhas exatas comutar:

$$P_{1} \otimes_{A} B \xrightarrow{f_{1} \otimes B} P_{0} \otimes_{A} B \xrightarrow{f_{0} \otimes B} M \otimes_{A} B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow p$$

$$0 \longrightarrow \widetilde{P}_{1} \longrightarrow P_{0} \otimes_{A} B \xrightarrow{\mathsf{p}(f_{0} \otimes B)} M \longrightarrow 0$$

Determinação de \widetilde{P}_1 :

Consideremos a sequência exata inferior, do diagrama acima, olhada como uma sequência de Amódulos. Observemos que, nesse caso, $P_0 \otimes_A B \cong P_0 \otimes_A (A \oplus Q) \cong (P_0 \otimes_A A) \oplus (P_0 \otimes_A Q) \cong$ $P_0 \oplus (P_0 \otimes_A Q)$ e da mesma forma $M \otimes_A B \cong M \oplus (M \otimes_A Q)$.

Dado $(m, \hat{m} \otimes q) \in M \oplus (M \otimes_A Q)$ temos

$$(m, \hat{m} \otimes q) = (m, m \otimes 0) + (\hat{m}.0, \hat{m} \otimes q) \xrightarrow{\tilde{}} m \otimes (1_A, 0) + \hat{m} \otimes (0, q) \xrightarrow{p} m1_A + \hat{m}0 = m$$

e portanto, como aplicação A-linear, podemos escrever ${\sf p}=[\begin{array}{cc} 1 & 0 \end{array}].$

Analogamente, dado $(p, \hat{p} \otimes q) \in P_0 \oplus (P_0 \otimes_A Q)$, temos

$$(p, \hat{p} \otimes q) \xrightarrow{\tilde{}} p \otimes (1_A, 0) + \hat{p} \otimes (0, q) \xrightarrow{f_0 \otimes B} f_0(p) \otimes (1_A, 0) + f_0(\hat{p}) \otimes (0, q) \xrightarrow{\tilde{}}$$
$$(f_0(p), f_0(p) \otimes 0) + (f_0(\hat{p})0, f_0(\hat{p}) \otimes q) = (f_0(p), 0) + (0, f_0(\hat{p}) \otimes q) = (f_0(p), f_0(\hat{p}) \otimes q)$$

e portanto, como aplicação A-linear, $f_0 \otimes B = \begin{bmatrix} f_0 & 0 \\ 0 & f_0 \otimes Q \end{bmatrix}$.

$$\operatorname{Logo},\,\mathsf{p}(f_0\otimes B)=[\begin{array}{cc}1&0\end{array}]\left[\begin{array}{cc}f_0&0\\0&f_0\otimes Q\end{array}\right]=[\begin{array}{cc}f_0&0\end{array}]\ \mathrm{e}\ \mathrm{ent}\widetilde{\mathrm{ao}}\ \widetilde{P}_1\cong\operatorname{\mathsf{Nuc}}\left[\begin{array}{cc}f_0&0\end{array}\right].$$

Mas, se $p \in P_0$ e $t \in P_0 \otimes_A Q$, então $(p,t) \in \mathsf{Nuc} [f_0 \ 0] \iff f_0(p) = 0$ e assim,

$$\widetilde{P}_1 \cong \operatorname{Nuc} f_0 \oplus (P_0 \otimes_A Q).$$

Como P_1 é cobertura projetiva de Nuc f_0 em mod A então $P_1 \otimes_A B$ é cobertura projetiva de Nuc f_0 em mod B. Seja P a cobertura projetiva de $P_0 \otimes_A Q$ em mod A, então $P \otimes_A B$ é cobertura de $P_0 \otimes_A Q$ em mod B. Denotemos por $g: P \otimes_A B \longrightarrow P_0 \otimes_A Q$ tal cobertura.

Como P_0 é projetivo, então $P_0 \otimes_A -$ é exato e aplicando tal funtor em ${}_AQ_B \hookrightarrow_A B_B$ temos a inclusão de B-módulos $P_0 \otimes_A Q \stackrel{\iota}{\hookrightarrow} P_0 \otimes_A B$. Chamemos de \widetilde{f} a composição de g com a inclusão ι .

Consideremos agora o seguinte diagrama comutativo com linhas exatas:

$$P_{1} \otimes_{A} B \xrightarrow{f_{1} \otimes B} P_{0} \otimes_{A} B \xrightarrow{f_{0} \otimes B} M \otimes_{A} B \longrightarrow 0$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \downarrow \qquad \qquad \downarrow p$$

$$(P_{1} \oplus P) \otimes_{A} B \xrightarrow{F_{1} \otimes B} P_{0} \otimes_{A} B \xrightarrow{p(f_{0} \otimes B)} M \longrightarrow 0$$

Mostraremos que existe um somando P' de P tal que o diagrama de linhas exatas a seguir é comutativo e a linha inferior é uma resolução projetiva minimal para M_B :

$$P_{1} \otimes_{A} B \xrightarrow{f_{1} \otimes B} P_{0} \otimes_{A} B \xrightarrow{f_{0} \otimes B} M \otimes_{A} B \longrightarrow 0$$

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \downarrow \qquad \qquad \qquad \downarrow p$$

$$0 \longrightarrow (P_{1} \oplus P') \otimes_{A} B \xrightarrow{f_{1} \otimes B} P_{0} \otimes_{A} B \xrightarrow{p(f_{0} \otimes B)} M \longrightarrow 0$$

onde \widetilde{f}' é a restrição de \widetilde{f} a $P' \otimes_A B$.

Do epimorfismo B-linear $P_1 \otimes_A B \oplus P \otimes_A B \longrightarrow \widetilde{P}_1 \to 0$ segue que \widetilde{P}_1 é somando de $(P_1 \oplus P) \otimes_A B$. Seja então P'' somando de $P_1 \oplus P$ tal que $\widetilde{P}_1 = P'' \otimes_A B$, ou seja,

$$0 \longrightarrow P'' \otimes_A B \longrightarrow P_0 \otimes_A B \xrightarrow{\mathsf{p}(f_0 \otimes B)} M \longrightarrow 0$$

é uma resolução projetiva minimal de M_B . Aplicando o funtor $-\otimes_B A$ temos

$$0 \longrightarrow \operatorname{Tor}_{1}^{B}(M, A) \longrightarrow P'' \xrightarrow{f''} P_{0} \xrightarrow{f_{0}} M \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

pois $\operatorname{Tor}_1^B(P_0 \otimes_A B, A) = 0$ uma vez que $P_0 \otimes_A B$ é projetivo, e $M \otimes_B A \cong M \otimes_B \frac{B}{Q} \cong \frac{M}{MQ} \cong M_A$ uma vez que M é anulado por Q.

De $f_1: P_1 \longrightarrow \mathsf{Nuc}\ f_0$ ser cobertura projetiva e $f'': P'' \longrightarrow \mathsf{Nuc}\ f_0$ ser um epimorfismo temos, pelo Lema 4.5, um epimorfismo $P'' \longrightarrow P_1 \to 0$ e portanto $P'' = P_1 \oplus P'$ para algum P' submódulo de P, como queríamos.

Neste caso, $f_1 \otimes B = [f_1 \otimes B \ \widetilde{f}']\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ é composição de monomorfismos e portanto um monomorfismo. Finalmente,

$$0 \longrightarrow P_1 \otimes_A B \xrightarrow{f_1 \otimes B} P_0 \otimes_A B \xrightarrow{f_0 \otimes B} M \otimes_A B \longrightarrow 0$$

é uma resolução projetiva minimal para $(M \otimes_A B)_B$, isto é, dp $(M \otimes_A B)_B \leq 1$.

Mostraremos agora que se um A-módulo indecomponível é tal que $dp M_B \le 1$, então $dp M_A \le 1$. Um resultado análogo vale também para a dimensão injetiva. Para isso precisamos de alguns lemas:

Lema 4.16 Seja M um módulo em ind A. Então

- (a) $\tau_B(M \otimes_A B) \cong \operatorname{Hom}_A({}_BB_A, \tau_A M)$
- (b) $\tau_B^{-1} \operatorname{Hom}_A({}_B B_A, M) \cong (\tau_A^{-1} M) \otimes_A B_B$

Prova. Lembremos inicialmente que quando P_A é projetivo, então valem os seguintes isomorfismos funtoriais:

$$B \otimes_A \operatorname{Hom}_A(P,A) \approx \operatorname{Hom}_A(P,B \otimes_A A) \approx \operatorname{Hom}_A(P,B_A)$$

 $\approx \operatorname{Hom}_A(P,\operatorname{Hom}_B(B,B)) \approx \operatorname{Hom}_B(P \otimes_A B,B).$

(a) Seja $P_1 \xrightarrow{f_1} P_0 \xrightarrow{f_0} M \to 0$ uma apresentação projetiva minimal de M_A . Pelo Corolário 4.12,

$$P_1 \otimes_A B \xrightarrow{f_1 \otimes B} P_0 \otimes_A B \xrightarrow{f_0 \otimes B} M \otimes_A B \to 0$$

é uma apresentação projetiva minimal em $\operatorname{\mathsf{mod}} B.$ Aplicando o funtor B-dual, pelo Lema 4.7 temos que

$$(P_0 \otimes_A B)^t \longrightarrow (P_1 \otimes_A B)^t \longrightarrow \operatorname{Tr}^B(M \otimes_A B) \to 0$$

é uma apresentação projetiva minimal em $\operatorname{\mathsf{mod}} B^{op}$.

Por outro lado, aplicando o funtor A-dual na apresentação projetiva minimal de M_A , temos que $P_0^t \longrightarrow P_1^t \longrightarrow \operatorname{Tr}^A M \to 0$ é uma apresentação projetiva minimal em $\operatorname{\mathsf{mod}} A^{op}$ e portanto

$$B \otimes_A P_0^t \longrightarrow B \otimes_A P_1^t \longrightarrow B \otimes_A \operatorname{Tr}^A M \to 0$$

também é uma apresentação projetiva minimal em $\operatorname{\mathsf{mod}} B^{op}$.

Pelos isomorfismos iniciais, temos que $B \otimes_A P_0^t = B \otimes_A Hom_A(P_0, A) \cong Hom_B(P_0 \otimes_A B, B) = (P_0 \otimes_A B)^t$ e $B \otimes_A P_1^t \cong (P_1 \otimes_A B)^t$ e assim chegamos ao seguinte diagrama comutativo com linhas exatas:

$$(P_0 \otimes_A B)^t \longrightarrow (P_1 \otimes_A B)^t \longrightarrow \operatorname{Tr}^B(M \otimes_A B) \longrightarrow 0$$

$$\downarrow^f \qquad \qquad \downarrow^g \qquad \qquad \downarrow^h$$

$$B \otimes_A P_0^t \longrightarrow B \otimes_A P_1^t \longrightarrow B \otimes_A \operatorname{Tr}^A M \longrightarrow 0$$

onde f e g são isomorfismos e h é o morfismo induzido, o que implica que h também é isomorfismo.

Finalmente,

$$\tau_B(M \otimes_A B) = D\operatorname{Tr}^B(M \otimes_A B) \cong D(B \otimes_A \operatorname{Tr}^A M) = Hom_R(B \otimes_A \operatorname{Tr}^A M, R) \cong$$

$$Hom_A(B_A, Hom_R(\operatorname{Tr}^A M, R)) = Hom_A(B, D\operatorname{Tr}^A M) = Hom_A(B, \tau_A M).$$

(b) Se M é injetivo então $\mathsf{Hom}_A({}_BB_A, M)$ também é injetivo e portanto

$$\tau_A^{-1}M = 0 = \tau_B^{-1} \text{Hom}_A({}_B B_A, M).$$

Agora se M é não injetivo, então $M_A \cong \tau_A \tau_A^{-1} M$ e assim utilizando o item (a) para $\tau_A^{-1} M$ temos

$$\tau_B^{-1}\mathsf{Hom}_A({}_BB_A,M)\cong\tau_B^{-1}\mathsf{Hom}_A({}_BB_A,\tau_A(\tau_A^{-1}M))\cong\tau_B^{-1}\tau_B((\tau_A^{-1}M)\otimes_AB_B)\cong(\tau_A^{-1}M)\otimes_AB_B.$$

Lema 4.17 Seja M um módulo em ind A. Então

- (a) $\operatorname{dp} M \otimes_A B_B \leq 1$ se, e somente se, $\operatorname{dp} M_A \leq 1$ e $\operatorname{Hom}_A(D_A Q, \tau_A M) = 0$.
- (b) di $\operatorname{Hom}_A({}_BB_A, M)_B \leq 1$ se, e somente se, di $M_A \leq 1$ e $\operatorname{Hom}_A(\tau_A^{-1}M, {}_AQ) = 0$.

Prova.

(a) Pela Proposição 4.9, dp $(M \otimes_A B_B) \leq 1$ se, e somente se, $\mathsf{Hom}_B(DB, \tau_B(M \otimes_A B)) = 0$. Observemos que $DB \otimes_B B_A \cong (DB)_A \cong D_A B \cong D_A(A \oplus Q) \cong D_A A \oplus D_A Q$. Daí, utilizando o lema anterior e o Teorema da Adjunção (1.7) chegamos aos seguintes isomorfismos:

$$\operatorname{\mathsf{Hom}}_B(DB, au_B(M \otimes_A B) \cong \operatorname{\mathsf{Hom}}_B(DB, \operatorname{\mathsf{Hom}}_A({}_BB_A, au_A M)) \cong \operatorname{\mathsf{Hom}}_A(DB \otimes_B B_A, au_A M) \cong \operatorname{\mathsf{Hom}}_B(DB, au_B \otimes_B B_A, au_A M) \cong \operatorname{\mathsf{Hom}}_B(DB, au_A M) \cong \operatorname{\mathsf{Hom}}_B(DB, au_A M) \cong \operatorname{\mathsf{Hom}}_B(DB, au_A M)$$

$$\operatorname{\mathsf{Hom}}_A(D_AA \oplus D_AQ, au_AM) \cong \operatorname{\mathsf{Hom}}_A(D_AA, au_AM) \oplus \operatorname{\mathsf{Hom}}_A(D_AQ, au_AM).$$

Portanto dp $(M \otimes_A B_B) \leq 1 \Leftrightarrow \mathsf{Hom}_A(D_A A, \tau_A M) = 0$ e $\mathsf{Hom}_A(D_A Q, \tau_A M) = 0$, ou seja,

$$dp (M \otimes_A B_B) \le 1 \Leftrightarrow dp M_A \le 1 e Hom_A(D_A Q, \tau_A M) = 0.$$

(b) Pela Proposição 4.9, di $\mathsf{Hom}_A({}_BB_A, M)_B \leq 1 \iff \mathsf{Hom}_B(\tau_B^{-1}\mathsf{Hom}_A({}_BB_A, M), B) = 0.$ Temos, nesse caso, os seguintes isomorfismos

$$\operatorname{Hom}_B(\tau_B^{-1}\operatorname{Hom}_A({}_AB_B,M),B)\cong\operatorname{Hom}_B((\tau_A^{-1}M)\otimes_AB_B,B)\cong\operatorname{Hom}_A(\tau_A^{-1}M,B\otimes_BB$$

 $\operatorname{\mathsf{Hom}}_A(\tau_A^{-1}M,_AB) \cong \operatorname{\mathsf{Hom}}_A(\tau_A^{-1}M,_AA \oplus_A Q) \cong \operatorname{\mathsf{Hom}}_A(\tau_A^{-1}M,_AA) \oplus \operatorname{\mathsf{Hom}}_A(\tau_A^{-1}M,_AQ)$ e portanto di $\operatorname{\mathsf{Hom}}_A(_BB_A,M)_B \leq 1 \Leftrightarrow \operatorname{\mathsf{Hom}}_A(\tau_A^{-1}M,_AA) = 0 \text{ e } \operatorname{\mathsf{Hom}}_A(\tau_A^{-1}M,_AQ) = 0,$ ou seja,

$$\operatorname{di}\operatorname{Hom}_A({}_BB_A,M)_B\leq 1\Leftrightarrow \operatorname{di}M_A\leq 1 \text{ e }\operatorname{Hom}_A(\tau_A^{-1}M,{}_AQ)=0.$$

Lema 4.18 Sejam A uma R-álgebra e M um A-módulo em mod A. Então, $DM_B \cong DM_A$ em mod B^{op} .

Prova. Lembremos que MQ = 0 e portanto $M_A \cong M \otimes_B A_A \cong M \otimes_B (B/Q)_A$. Definiremos um isomorfismo $\Phi: DM_B \to D(M \otimes_B (B/Q)_A)$:

Seja $f: M_B \to R$, R-linear. Definimos $g: M \times (B/Q) \to R$ por g(m, b + Q) := f(mb) que é bilinear, logo existe uma R-linear $g': M \otimes (B/Q) \to R$ tal que $g'(m \otimes (b+Q)) = f(mb)$. Definimos $\Phi(f) := g'$, ou seja, $\Phi(f)(m \otimes (b+Q)) = f(mb)$. É facil ver que Φ é R-linear, vejamos que é também R-linear: dado R-linear dado R

$$\Phi(bf)(m \otimes (b' + Q) = (bf)(mb') = f((mb')b) = f(m(b'b)) \text{ e} (b\Phi(f))(m \otimes (b' + Q)) = \Phi(f)((m \otimes (b' + Q))b) = \Phi(f)(m \otimes (b'b + Q)) = f(m(b'b)).$$

Definiremos agora $\Psi: D(M \otimes_B (B/Q)_A) \to DM_B$. Seja $g: M \otimes_B (B/Q)_A \to R$, R-linear. Definimos $\Psi(g)(m) := g(m \otimes (1_B + Q))$. Não é dificil ver que Ψ é B-linear. Mostraremos que é a inversa de Φ . Seja g em $D(M \otimes_B (B/Q)_A)$, então, $\forall m \in M$ e $\forall r \in B$ temos

$$\Phi(\Psi(g))(m\otimes(b+Q))=\Psi(g)(mb)=g(mb\otimes(1_B+Q))=g(m\otimes(b+Q))$$

e se $f \in DM_B$, então, $\forall m \in M$

$$\Psi(\Phi(f))(m) = \Phi(f)(m \otimes (1_B + Q)) = f(m1_B) = f(m).$$

Proposição 4.19 Seja M um módulo em ind A,

- (a) se $dp M_B \leq 1$ então $dp M_A \leq 1$.
- (b) se di $M_B \leq 1$ então di $M_A \leq 1$.

Prova.

(a) Como dp $M_B \leq 1$, pela Proposição 4.15 temos que dp $(M \otimes_A B_B) \leq 1$ e pelo lema anterior segue que dp $M_A \leq 1$.

(b) Do isomorfismo do lema anterior, segue que $dpDM_B = dpDM_A$ como B-módulos. Pela hipótese, $di\ M_B \le 1$ e então $dp\ DM_B \le 1$. Portanto, $dp\ DM_A \le 1$ como B-módulo. Pela parte (a), $dp\ DM_A \le 1$ como A-módulo, isto é, $di\ M_A \le 1$.

Para um A-módulo indecomponível, se $dpM_B = 0$ então $dpM_A = 0$ (Corolário 4.14) e se $dpM_B \le 1$ então $dpM_A \le 1$ (Proposicao 4.19). Vejamos agora o que acontece quando $dpM_B = 1$.

Exemplo 4.1 Sejam k um corpo algebricamente fechado, B a álgebra dada pela aljava $\begin{pmatrix} \alpha \\ \gamma \\ \gamma \\ \delta \end{pmatrix}$ com a relação $\beta\alpha - \delta\gamma = 0$ e Q o ideal de B gerado pelas classes de β e γ . Então, pelo Teorema 3.8, a álgebra B é uma extensão cindida por nilpotente de $A = \frac{B}{Q}$. Temos também que A é dada pela aljava $\begin{pmatrix} \alpha \\ \gamma \\ \delta \end{pmatrix}$. O A-módulo simples S_3 associado ao vértice β é A-projetivo mas não é β -projetivo e dp $(S_3)_B = 1$, pois $0 \to P_1^B \to P_3^B \to S_3 \to 0$ é uma resolução projetiva minimal em mod β .

4.2.1 Álgebra hereditária e álgebra shod.

Agora, a partir desse último resultado, podemos fazer afirmações a respeito das álgebras envolvidas. Vamos, então, lembrar as definições de álgebra hereditária e de álgebra shod.

Definição 4.8 Uma álgebra de Artin C é dita hereditária se dim. gl. $C \leq 1$.

Definição 4.9 Uma álgebra de Artin C é dita **shod** se para cada módulo indecomponível M tem-se dp $M_C \le 1$ ou di $M_C \le 1$.

A partir das definições acima fica claro que toda álgebra hereditária é shod.

Teorema 4.20 Seja B uma extensão cindida por nilpotente de A. Se B é uma álgebra hereditária então A também é uma álgebra hereditária.

Prova. Seja M um A-módulo em ind A. Como B é hereditária, então $dp M_B \le 1$ e pela Proposição 4.19 temos $dp M_A \le 1$. Logo, $\sup\{dp M \mid M \in \text{ind } A\} \le 1$, isto é, dim. gl. $A \le 1$.

Teorema 4.21 Seja B uma extensão cindida por nilpotente de A. Se B é uma álgebra shod então A também é uma álgebra shod.

Prova. Seja M um A-módulo indecomponível em $\operatorname{\mathsf{mod}} A$. Como B é shod então $\operatorname{\mathsf{dp}} M_B \leq 1$ ou $\operatorname{\mathsf{di}} M_B \leq 1$ e pela Proposição 4.19 temos $\operatorname{\mathsf{dp}} M_A \leq 1$ ou $\operatorname{\mathsf{di}} M_A \leq 1$. Logo, A é shod.

A pergunta natural é o que podemos falar sobre a recíproca desses teoremas. Como mostram os exemplos a seguir, não são verdadeiras em geral.

Exemplo 4.2 Sejam A e B as k-álgebras do Exemplo 4.1. Então

$$0 \rightarrow P_1 \rightarrow P_2 \oplus P_3 \rightarrow P_4 \rightarrow S_4 \rightarrow 0$$

é uma resolução projetiva minimal para o B-módulo simples S_4 e, portanto, $\operatorname{dp} S_4 = 2 > 1$, ou seja, B não é hereditária. No entanto, em A temos que $\operatorname{dp} S_1 = \operatorname{dp} S_3 = 0$ e $\operatorname{dp} S_2 = \operatorname{dp} S_4 = 1$, isto é, dim. gl. A = 1.

Exemplo 4.3 Seja k um corpo algebricamente fechado. Consideremos B a k-álgebra dada pela aljava $\frac{\alpha}{1} \stackrel{2}{\longleftarrow} \frac{\beta}{3}$, limitada pela relação $\beta\alpha = 0$ e M o B-módulo indecomponível $\frac{\alpha}{k} \stackrel{0}{\longleftarrow} \frac{\alpha}{1} \stackrel{0}{\longleftarrow} \frac{\alpha}{k}$. Então, $0 \rightarrow P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow M \rightarrow 0$ é uma resolução projetiva minimal para M e $0 \rightarrow M \rightarrow I_1 \rightarrow I_2 \rightarrow I_3 \rightarrow 0$ é uma resolução injetiva minimal para M, ou seja, dp M = 2 e di M = 2. Portanto, B não é shod.

Sejam Q o ideal de B gerado por β e $A=\frac{B}{Q}$. Então, B é uma extensão cindida de A pelo ideal nilpotente Q. A álgebra A é dada por $2 \xrightarrow{\alpha} 1 \xrightarrow{\gamma} 1$ que é hereditária e portanto shod.

Capítulo 5

Parte direita e parte esquerda

No final do capítulo anterior vimos, quando B é uma extensão cindida por nilpotente de A, que A é uma álgebra hereditária (ou shod) sempre que B for hereditária (ou shod). [Teorema 4.20 e Teorema 4.21]

Veremos nesse capítulo que isso também é verdade para outras classes de álgebras. As classes que aqui serão apresentadas podem ser caracterizadas pelas partes direita \mathcal{R} e esquerda \mathcal{L} de sua respectiva categoria de módulos.

Começamos, portanto, definindo as categorias \mathcal{L}_A , \mathcal{L}_B , \mathcal{R}_A e \mathcal{R}_B e relacionando-as.

5.1 Parte direita e parte esquerda da categoria de módulos

Aqui todas as álgebras são R-álgebras de Artin. As álgebra A e B são tais que B é uma extensão cindida de A pelo ideal nilpotente Q e C denotará uma álgebra qualquer.

Definição 5.1 Dados dois C-módulos indecomponíveis M e N, um caminho de M para N de comprimento $t \geq 0$ em ind C é uma sequência

$$M = M_0 \xrightarrow{f_1} M_1 \longrightarrow \cdots \longrightarrow M_{t-1} \xrightarrow{f_t} M_t = N$$

onde cada $M_i \in \text{ind } C$ e cada f_i é um morfismo não nulo.

Notação: $M \leadsto N$

Nesse caso dizemos que M é um predecessor de N e que N é um sucessor de M.

Notemos que um C-módulo M é sempre sucessor e predecessor dele mesmo, basta considerar um caminho de comprimento t=0.

Definição 5.2

A parte esquerda de mod C, denotada por \mathcal{L}_C , é a subcategoria plena de ind C cujos objetos são os módulos para os quais a dimensão projetiva de seus predecessores é menor ou igual a 1. Também escreveremos $\mathcal{L}_C = \{X \in \text{ind } C \mid se \ Y \leadsto X \ então \ dp \ Y \leq 1\}.$

A parte direita de mod C, denotada por \mathcal{R}_C , é a subcategoria plena de ind C cujos objetos são os módulos para os quais a dimensão injetiva de seus sucessores é menor ou igual a 1. Também escreveremos $\mathcal{R}_C = \{X \in \text{ind } C \mid \text{se } X \leadsto Y \text{ então di } Y \leq 1\}.$

Não é difícil ver que, com as definições acima, a subcategoria \mathcal{L}_C é fechada para predecessores e a subcategoria \mathcal{R}_C é fechada para sucessores.

Consideremos agora o caso em que B é uma extensão cindida por nilpotente de A e comparemos as partes direita e esquerda de mod A e mod B.

Lema 5.1 Sejam B uma extensão cindida de A pelo ideal nilpotente Q e M_A um A-módulo indecomponível.

- 1. Se $M \otimes_A B \in \mathcal{L}_B$ então $M \in \mathcal{L}_A$.
- 2. Se $\operatorname{Hom}_A(B, M) \in \mathcal{R}_B$ então $M \in \mathcal{R}_A$.
- 3. Se $M \otimes_A B \in \mathcal{R}_B$ então $M \in \mathcal{R}_A$.
- 4. Se $\operatorname{Hom}_A(B,M) \in \mathcal{L}_B$ então $M \in \mathcal{L}_A$.

Prova. Observemos inicialmente que se $L \in \operatorname{ind} A$ então, pelo Lema 2.6, $L \otimes_A B \in \operatorname{ind} B$ e $\operatorname{\mathsf{Hom}}_A(B,L) \in \operatorname{\mathsf{ind}} B.$ Além disso, se $f:L \to \hat{L}$ é não nulo segue que $f \otimes B:L \otimes_A B \to \hat{L} \otimes_A B$ e $_A(B,f):=\operatorname{\mathsf{Hom}}_A(B,f):\operatorname{\mathsf{Hom}}_A(B,L) \to \operatorname{\mathsf{Hom}}_A(B,\hat{L})$ são não nulos, pois $f \otimes B \otimes A \cong f \cong \operatorname{\mathsf{Hom}}_B(A,\operatorname{\mathsf{Hom}}_A(B,f)).$

1. Seja $L \in \operatorname{ind} A$ um predecessor de M e consideremos $L = L_0 \xrightarrow{f_1} L_1 \to \cdots \to L_{n-1} \xrightarrow{f_n} L_n = M$ um caminho de L para M em ind A. Aplicando o funtor $- \otimes_A B$, temos que

$$L \otimes_A B = L_0 \otimes_A B \xrightarrow{f_1 \otimes_B} L_1 \otimes_A B \longrightarrow \cdots \longrightarrow L_{n-1} \otimes_A B \xrightarrow{f_n \otimes_B} L_n \otimes_A B = M \otimes_A B$$

é um caminho de $L \otimes_A B$ para $M \otimes_A B$ em ind B. Como $M \otimes_A B \in \mathcal{L}_B$ então dp $L \otimes_A B \leq 1$ e pelo Lema 4.17 segue que dp $L_A \leq 1$ e portanto $M \in \mathcal{L}_A$.

2. Seja $L \in \operatorname{ind} A$ um sucessor de M e consideremos $M = L_0 \xrightarrow{f_1} L_1 \to \cdots \to L_{n-1} \xrightarrow{f_n} L_n = L$ um caminho de M para L em ind A. Aplicando o funtor $\operatorname{\mathsf{Hom}}_A(B,-)$, temos que

$$\operatorname{\mathsf{Hom}}_A(B,M) \overset{{}_A(B,\,f_1)}{\longrightarrow} \operatorname{\mathsf{Hom}}_A(B,L_1) \overset{}{\longrightarrow} \cdots \overset{}{\longrightarrow} \operatorname{\mathsf{Hom}}_A(B,L_{n-1}) \overset{{}_A(B,\,f_n)}{\longrightarrow} \operatorname{\mathsf{Hom}}_A(B,L)$$

é um caminho de $\mathsf{Hom}_A(B,M)$ para $\mathsf{Hom}_A(B,L)$ em ind B. Como $\mathsf{Hom}_A(B,M) \in \mathcal{R}_B$ então di $\mathsf{Hom}_A(B,L) \leq 1$ e pelo Lema 4.17 segue que di $L_A \leq 1$ e portanto $M \in \mathcal{R}_A$.

3. Utilizando o Teorema da Adjunção (1.7), o isomorfismo do Exemplo 1.9 e lembrando que $B_A \cong A_A \oplus Q_A$, temos os seguintes isomorfismos de R-módulos:

$$\begin{array}{lll} \operatorname{Hom}_B(M \otimes_A B, \operatorname{Hom}_A(_BB, M)) & \cong & \operatorname{Hom}_A(M \otimes_A B \otimes_B B_A, M) \\ & \cong & \operatorname{Hom}_A(M \otimes_A B, M) \\ & \cong & \operatorname{Hom}_A\Big(M \otimes_A (A_A \oplus Q_A), M\Big) \\ & \cong & \operatorname{Hom}_A\Big((M \otimes_A A_A) \oplus (M \otimes_A Q_A), M\Big) \\ & \cong & \operatorname{Hom}_A\Big(M_A \oplus (M \otimes_A Q), M\Big) \\ & \cong & \operatorname{Hom}_A(M, M) \oplus \operatorname{Hom}_A(M \otimes_A Q, M) \end{array}$$

Como $\mathsf{Hom}_A(M,M)$ é não nulo, então existe um B-homomorfismo não nulo de $M \otimes_A B$ para $\mathsf{Hom}_A(B,M)$, ou seja $\mathsf{Hom}_A(B,M)$ é um sucessor de $M \otimes_A B$. Como $M \otimes_A B \in \mathcal{R}_B$ e \mathcal{R}_B é fechado para sucessores então $\mathsf{Hom}_A(B,M) \in \mathcal{R}_B$. Pelo item 2, temos que $M \in \mathcal{R}_A$.

4. Pelo isomorfismo apresentado em 3 temos que $M \otimes_A B$ é um predecessor de $\mathsf{Hom}_A(B,M)$. Como $\mathsf{Hom}_A(B,M) \in \mathcal{L}_B$ e \mathcal{L}_B é fechado para predecessores então $M \otimes_A B \in \mathcal{L}_B$. Pelo item 1 temos $M \in \mathcal{L}_A$.

5.2 Álgebras determinadas por \mathcal{L} e \mathcal{R}

As classes de álgebra aqui tratadas serão: laura, colada à direita, colada à esquerda, fracamente shod e quase inclinada. As definições apresentadas não são necessariamente as originais, mas obviamente são equivalentes.

Precisamos primeiramente da definição de subcategorias finita e cofinita:

Definição 5.3 Uma subcategoria \mathcal{D} de ind C é dita finita em ind C se contém apenas um número finito de C-módulos. E é dita cofinita em ind C se a subcategoria ind $C \setminus \mathcal{D}$ é finita em ind C.

Definição 5.4 Uma álgebra de Artin C é dita de tipo de representação finito se a categoria ind C for finita. Caso contrário dizemos que C é de tipo de representação infinito.

Como trataremos da finitude de subcategorias de ind A e ind B usaremos o seguinte lema:

Lema 5.2 Seja M_A uma A-módulo. Então, $M_A \cong N_A$ se, e somente se, $M \otimes_A B \cong N \otimes_A B$.

Prova. Seja $f: M_A \to N_A$ um isomorfismo. Então $f \otimes B: M \otimes_A B \to N \otimes_A B$ também será um isomorfismo cuja inversa é $f^{-1} \otimes B: N \otimes_A B \to M \otimes_A B$, pois $(f \otimes B)(f^{-1} \otimes B) = ff^{-1} \otimes B = id_N \otimes B = id_{N \otimes_A B}$ e $(f^{-1} \otimes B)(f \otimes B) = f^{-1}f \otimes B = id_M \otimes B = id_{M \otimes_A B}$.

Reciprocamente, se $g: M \otimes_A B \to N \otimes_A B$ então $g \otimes A: M \otimes_A B \otimes_B A \to N \otimes_A B \otimes_B A$ também será um isomorfismo e portanto $M_A \cong M \otimes_A B \otimes_B A \cong N \otimes_A B \otimes_B A \cong N_A$.

Corolário 5.3 Se B é de tipo de representação finito, então A também é de tipo de representação finito.

Prova. Suponhamos que ind A é infinita, pelo lema anterior o conjunto $\{M \otimes_A B \mid M \in \text{ind } A\} \subseteq \text{ind } B$ é infinito. Contradição, pois ind B é finita.

5.2.1 Álgebra laura.

Essa classe de álgebras foi introduzida em [3] e contém as demais classes já citadas: colada (à direita e à esquerda), fracamente shod, shod, quase inclinada e hereditária. (Ver também [5])

Definição 5.5 Uma álgebra de Artin C é dita uma álgebra laura se a união $\mathcal{L}_C \cup \mathcal{R}_C$ for cofinita em ind C.

Teorema 5.4 Seja B uma extensão cindida por nilpotente de A. Se B é uma álgebra laura então A também é laura.

Prova. Seja $M \in \operatorname{ind} A$ tal que $M \notin \mathcal{L}_A \cup \mathcal{R}_A$. Se $M \otimes_A B \in \mathcal{L}_B$ então pelo item 1 do Lema 5.1 teríamos $M \in \mathcal{L}_A$. Da mesma forma, pelo item 3 do mesmo lema, temos que $M \otimes_A B \notin \mathcal{R}_B$ e portanto $M \otimes_A B \in \operatorname{ind} B$ mas $M \otimes_A B \notin \mathcal{L}_B \cup \mathcal{R}_B$.

Como B é laura, então $\mathcal{L}_B \cup \mathcal{R}_B$ é cofinita em ind B e consequentemente $\mathcal{L}_A \cup \mathcal{R}_A$ é cofinita em ind A. Caso contrário, pelo Lema 5.2 teríamos que ind $B \setminus (\mathcal{L}_B \cup \mathcal{R}_B)$ seria infinita. Portanto, A é laura.

5.2.2 Álgebras coladas à direita e à esquerda.

As álgebras coladas foram introduzidas em [2].

Definição 5.6 ([2], 3.2) Seja C uma álgebra de Artin.

- (a) $C \notin dita \ \mathbf{colada} \ \mathbf{\grave{a}} \ \mathbf{esquerda} \ se \ \{M \in \mathsf{ind} \ C \mid \mathsf{di} \ M \leq 1\} \notin \mathit{cofinita} \ em \ \mathsf{ind} \ C.$
- (b) $C \notin dita \ \mathbf{colada} \ \mathbf{\grave{a}} \ \mathbf{direita} \ se \ \{M \in \mathsf{ind} \ C \mid \mathsf{dp} \ M \leq 1\} \notin \mathit{cofinita} \ em \ \mathsf{ind} \ C.$

Em [3] mostra-se a seguinte equivalência:

Lema 5.5 ([3], 2.2) Seja C uma álgebra de Artin.

- (a) C é colada à esquerda se, e somente se, \mathcal{R}_C é cofinita em ind C.
- (b) C é colada à direita se, e somente se, \mathcal{L}_C é cofinita em ind C.

Teorema 5.6 Seja B uma extensão cindida por nilpotente de A.

- (a) Se B é uma álgebra colada à direita então A também é colada à direita.
- (b) Se B é uma álgebra colada à esquerda então A também é colada à esquerda.

Prova.

- (a) Suponhamos que B seja colada à direita. Seja $M \in \text{ind } A$ tal que $M \notin \mathcal{R}_A$. Pelo item 3 do Lema 5.1 temos que $M \otimes_A B \notin \mathcal{R}_B$. Pelo lema anterior \mathcal{R}_B é cofinita em ind B, daí segue do Lema 5.2 que \mathcal{R}_A é cofinita em ind A. Portanto, A é colada à direita.
- (b) Analogamente, se $M \in \operatorname{ind} A$ é tal que $M \notin \mathcal{L}_A$, pelo item 1 do Lema 5.1 $M \otimes_A B \notin \mathcal{L}_B$. Daí se B é colada à esquerda temos que \mathcal{L}_B é cofinita em ind B e o Lema 5.2 implica que \mathcal{L}_A é cofinita em ind A, isto é, A é colada à esquerda.

5.2.3 Álgebra fracamente shod.

Está é uma subclasse da classe de álgebras laura e como o nome sugere contém a classe das álgebras shod.

Definição 5.7 ([15], 2.3) Uma álgebra de Artin C é chamada fracamente shod se existe um inteiro positivo n tal que todo caminho em ind C de um injetivo para um projetivo tem comprimento no máximo n.

Mostra-se em [4] que basta olhar os caminhos de módulos em ind $C \setminus \mathcal{L}_C$ para módulos em ind $C \setminus \mathcal{R}_C$:

Lema 5.7 ([4], 1.1) Uma álgebra de Artin C é fracamente shod se existe um inteiro positivo n tal que todo caminho em ind C de um módulo que não está em \mathcal{L}_C para um módulo que não está em \mathcal{R}_C tem comprimento no máximo n.

Teorema 5.8 Seja B uma extensão cindida por nilpotente de A. Se B é uma álgebra fracamente shod então A também é fracamente shod.

Prova. Sejam $M,N\in \operatorname{ind} A$ com $M\notin \mathcal{L}_A$ e $N\notin \mathcal{R}_A$ tais que M é predecessor de N. Consideremos $M=L_0\stackrel{f_1}{\to} L_1\to\cdots\to L_{n-1}\stackrel{f_n}{\to} L_n=N$ um caminho de M para N em ind A. Aplicando o funtor $-\otimes_A B$, temos que

$$M \otimes_A B = L_0 \otimes_A B \xrightarrow{f_1 \otimes_B} L_1 \otimes_A B \longrightarrow \cdots \longrightarrow L_{n-1} \otimes_A B \xrightarrow{f_n \otimes_B} L_n \otimes_A B = N \otimes_A B$$

é um caminho de $M \otimes_A B$ para $N \otimes_A B$ de comprimento n em ind B. Pelo Lema 5.1, $M \otimes_A B \notin \mathcal{L}_B$ e $N \otimes_A B \notin \mathcal{R}_B$. Como B é fracamente shod, pelo lema anterior, existe n_0 tal que $n \leq n_0$. Portanto, A é fracamente shod.

5.2.4 Álgebra shod

O resultado para álgebras shod já foi enunciado em 4.21. Incluímos aqui uma definição equivalente à dada anteriormente, envolvendo as partes direita e esquerda da categoria de módulos, que será utilizada nos exemplos. Há também uma nova versão para a demonstração do Teorema 4.21.

Essa classe de álgebras foi introduzida em [14] onde também encontramos a equivalência:

Proposição 5.9 ([14], 2.1) Seja C uma álgebra de Artin. $Então\ C$ é uma álgebra shod se, e somente se, ind $C = \mathcal{L}_C \cup \mathcal{R}_C$.

Prova 2. [para o Teorema 4.21] Suponhamos que B é shod e seja $M_A \in \operatorname{ind} A$. Como $M \otimes_A B \in \operatorname{ind} B$ então, pela proposição anterior, $M \otimes_A B \in \mathcal{L}_B$ ou \mathcal{R}_B . Pelos itens 1 e 3 do Lema 5.1 teremos que $M \in \mathcal{L}_A$ ou $M \in \mathcal{R}_A$, ou seja ind $A \subseteq \mathcal{L}_A \cup \mathcal{R}_A$. Como a outra inclusão é óbvia, segue que A é shod.

5.2.5 Álgebra quase inclinada.

Pela definição abaixo, é fácil ver que a classe das álgebras inclinadas é uma subclasse das álgebras shod.

Definição 5.8 ([16], II) Uma álgebra de Artin C é dita quase inclinada se for shod e dim. gl. $C \leq 2$.

Mostra-se em [16] que vale:

Lema 5.10 ([16], II 1.14) Seja C uma álgebra de Artin. Então C é quase inclinada se, e somente se, \mathcal{L}_C contém todos os módulos projetivos de ind C.

Teorema 5.11 Seja B uma extensão cindida por nilpotente de A. Se B é uma álgebra quase inclinada então A também é quase inclinada.

Prova. Seja $P \in \text{ind } A$ um módulo projetivo, mostraremos que $P \in \mathcal{L}_A$. Pelo Lema 2.6 temos que $P \otimes_A B$ é projetivo e indecomponível e, como B é quase inclinada, então $P \otimes_A B \in \mathcal{L}_B$. Pelo item 1 do Lema 5.1 segue que $P \in \mathcal{L}_A$.

5.2.6 Álgebra disfarçada.

Esta é uma classe de álgebras de tipo de representação infinito, que pertence às demais classes já citadas nesse capítulo. Sua definição pode ser encontrada, por exemplo em [8]. Sua caracterização pode ser feita da seguinte forma:

Lema 5.12 ([2], 3.4) Seja C uma álgebra de Artin de tipo de representação infinito. Então, C é uma álgebra disfarçada se, e somente se, C é colada à esquerda e C é colada à direita.

Gostaríamos de enunciar um resultado para essa classe, análogo aos aqui apresentados. Porém, se uma álgebra B, de tipo de representação infinito, é extensão cindida de uma álgebra A por um ideal nilpotente, não podemos garantir que A também seja de tipo infinito.

Exemplo 5.1 Sejam k um corpo algebricamente fechado, Δ_B a aljava $1 \rightleftharpoons \frac{\alpha}{\beta} 2$ e Δ_A a aljava $1 \rightleftharpoons \frac{\alpha}{\beta} 2$. Então, $k\Delta_B$ é uma extensão cindida de $k\Delta_A$ pelo ideal gerado pela flecha β . A álgebra β é de tipo de representação infinito, mas $k\Delta_A$ é de tipo finito.

Acrescentaremos, portanto, a hipótese de que A seja de tipo de representação infinito, pois o Corolário 5.3 garante que B também será de tipo infinito.

Teorema 5.13 Sejam A uma álgebra de tipo de representação infinito e B uma extensão cindida por nilpotente de A. Se B é uma álgebra disfarçada, então A também é uma álgebra disfarçada.

Prova. Como B é disfarçada, pelo Lema 5.12, B é colada à esquerda e à direita. Pelo Teorema 5.6, segue que A também é colada à esquerda e à direita e como A é de tipo infinito, segue que A é também disfarçada.

5.3. EXEMPLOS 77

5.3 Exemplos

Veremos que as recíprocas dos teoremas acima não são verdadeiras. Os exemplos serão dados no contexto de álgebras dadas por aljavas com relações. Por isso, consideremos um corpo k algebricamente fechado.

Para decidir se a álgebra que estivermos estudando é de uma determinada classe olharemos a chamada **Aljava de Auslander-Reiten** da álgebra. O estudo de tal aljava é suficiente para obter as informações da categoria dos módulos indecomponíveis que precisamos. Esse fato não será detalhado neste trabalho, apenas faremos algumas considerações sobre a aljava de Auslander-Reiten de uma álgebra no Apêndice **A**.

Para decidir se uma álgebra é extensão cindida de outra usaremos a técnica do Teorema 3.8.

1º Exemplo.

Seja
$$B$$
 a k -álgebra dada pela aljava $1 \underbrace{\sum_{\delta_2}^{\delta_1} \gamma_1}_{\delta_2} \underbrace{\sum_{\delta_3}^{\delta_1} \beta_1}_{\delta_2} \epsilon$ com as relações $\alpha_i \beta_j = 0$, $\gamma_i \delta_j = 0$ para

todo i, j, e $\beta_1 \gamma_1 = 0$, ou seja, $B = \frac{k\Delta}{\mathcal{I}}$, onde Δ é a aljava acima e \mathcal{I} é o ideal gerado por $\alpha_i \beta_j$, $\gamma_i \delta_j$ e $\beta_1 \gamma_1$.

Segue um esquema da aljava de Auslander-Reiten para B, onde destacamos \mathcal{L}_B e \mathcal{R}_B :

$$P_1 \stackrel{P_2}{\longleftarrow} \dots \stackrel{\text{components}}{\longleftarrow} \dots \stackrel{I_1|}{\longleftarrow} P_3 \stackrel{|P_3|}{\longleftarrow} \dots \stackrel{S_4|}{\longleftarrow} \dots \stackrel{I_3|}{\longleftarrow} P_6 \stackrel{\text{components}}{\longleftarrow} \dots \stackrel{N'}{\longleftarrow} \stackrel{I_6}{\longleftarrow} \stackrel{I_6}{\longleftarrow} \stackrel{\text{components}}{\longleftarrow} \dots \stackrel{N'}{\longleftarrow} \stackrel{I_5}{\longleftarrow} \stackrel{I_6}{\longleftarrow} \stackrel{\text{components}}{\longleftarrow} \dots \stackrel{N'}{\longleftarrow} \stackrel{I_5}{\longleftarrow} \stackrel{I_6}{\longleftarrow} \stackrel{\text{components}}{\longleftarrow} \dots \stackrel{I_7}{\longleftarrow} \stackrel{I_8}{\longleftarrow} \stackrel{\text{components}}{\longleftarrow} \dots \stackrel{I_8}{\longleftarrow} \stackrel{I_8}{\longleftarrow} \stackrel{\text{components}}{\longleftarrow} \dots \stackrel{I_8}{\longleftarrow} \stackrel{\text{components}}{\longleftarrow} \stackrel{\text{components}}{\longleftarrow} \dots \stackrel{N'}{\longleftarrow} \stackrel{\text{components}}{\longleftarrow} \stackrel{\text{compo$$

onde S_i , P_i e I_i são os módulos indecomponíveis simples, projetivo e injetivo referentes ao vértice i, respectivamente. Além disso, $N=83\frac{0}{0}00$, $N'=00\frac{0}{0}23$, $M_1=01\frac{1}{1}00$, $M_2=00\frac{1}{1}10$, $M_3=01\frac{2}{1}10$ e $M_4=01\frac{0}{1}10$.

Vejamos a que classes de álgebras B pertence:

• B é laura, pois (ind B) \ $(\mathcal{L}_B \cup \mathcal{R}_B) = \{S_3, M_1, P_5.S_4, M_3, M_4, M_2, I_2\}$ é finita.

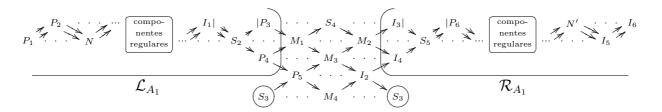
- B não é colada à esquerda, pois ind $B \setminus \mathcal{R}_B$ não é finita.
- B não é colada à direita, pois ind $B \setminus \mathcal{L}_B$ não é finita.
- B não é shod, pois $S_3 \notin \mathcal{L}_B \cup \mathcal{R}_B$ por exemplo.
- B não é quase inclinada pois não é shod.
- B não é fracamente shod, pois não existe um inteiro que limite os caminhos de I_2 para P_5 da forma:

$$I_2 \rightarrow S_3 \rightarrow P_5 \rightarrow M_3 \rightarrow I_2 \rightarrow S_3 \rightarrow P_5 \rightarrow M_3 \rightarrow I_2 \rightarrow \dots \rightarrow P_5.$$

Vejamos agora alguns exemplos de k-álgebras A_i tais que B seja uma extensão cindida por um ideal nilpotente Q_i :

 A_1 :

Consideremos Q_1 o ideal de B gerado por δ_3 e $A_1 = B/Q_1$. Então, B é uma extensão cindida de A_1 pelo nilpotente Q_1 . Temos que A_1 é a álgebra dada pela aljava $1 = \begin{cases} \delta_1 \\ \delta_2 \end{cases} = \begin{cases} \gamma_1 \\ \delta_2 \end{cases} = \begin{cases} \alpha_1 \\ \beta_2 \end{cases} = (\alpha_1 \\ \beta_2 \end{cases} =$



Temos então que:

- A_1 é laura, pois (ind A_1) \ $(\mathcal{L}_{A_1} \cup \mathcal{R}_{A_1}) = \{S_3, M_1, P_5, S_4, M_3, M_4, M_2, I_2\}$ é finita.
- A_1 não é colada à esquerda, pois ind $A_1 \setminus \mathcal{R}_{A_1}$ não é finita.
- A_1 não é colada à direita, pois ind $A_1 \setminus \mathcal{L}_{A_1}$ não é finita.

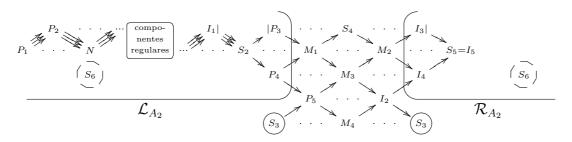
5.3. EXEMPLOS

- A_1 não é shod, pois $S_3 \notin \mathcal{L}_{A_1} \cup \mathcal{R}_{A_1}$ por exemplo.
- A_1 não é quase inclinada, pois não é shod.
- A_1 não é fracamente shod, pois não existe um inteiro que limite os caminhos de I_2 para P_5 da forma:

$$I_2 \rightarrow S_3 \rightarrow P_5 \rightarrow M_3 \rightarrow I_2 \rightarrow S_3 \rightarrow P_5 \rightarrow M_4 \rightarrow I_2 \rightarrow \dots \rightarrow P_5.$$

 A_2 :

Consideremos Q_2 o ideal de B gerado por α_1 e por α_2 . Então B é uma extensão cindida de $A_2 = B/Q_2$ pelo nilpotente Q_2 . Além disso, A_2 é dada pela aljava $\begin{pmatrix} \delta_1 & \gamma_1 & \delta_2 \\ \delta_2 & \gamma_2 & \delta_3 \end{pmatrix} \begin{pmatrix} \delta_1 & \gamma_1 & \delta_2 \\ \delta_2 & \gamma_2 & \delta_3 \end{pmatrix} \begin{pmatrix} \delta_1 & \gamma_1 & \delta_2 \\ \delta_2 & \gamma_2 & \delta_3 \end{pmatrix} \begin{pmatrix} \delta_1 & \delta_2 & \delta_3 \\ \delta_3 & \delta_2 & \delta_3 \end{pmatrix}$ relações herdadas de B. Um esquema para a aljava de Auslander-Reiten dessa álgebra é:



Então,

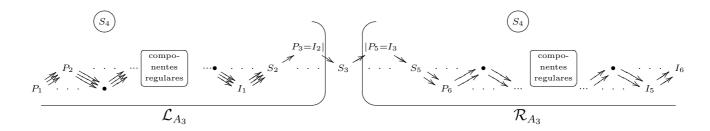
- A_2 é laura, pois (ind A_2) \ $(\mathcal{L}_{A_2} \cup \mathcal{R}_{A_2}) = \{S_3, M_1, P_5.S_4, M_3, M_4, M_2, I_2\}$ é finita.
- A_2 não é colada à esquerda, pois ind $A_2 \setminus \mathcal{R}_{A_2}$ não é finita.
- A_2 é colada à direita, pois ind $A_2 \setminus \mathcal{L}_{A_2} = \{S_3, M_1, P_5.S_4, M_3, M_4, M_2, I_2, I_3, I_4, S_5\}$ é finita.
- A_2 não é shod, pois $S_3 \notin \mathcal{L}_{A_2} \cup \mathcal{R}_{A_2}$ por exemplo.
- A_2 não é quase inclinada pois não é shod.
- $\bullet~A_2$ não é fracamente shod, pois não existe um inteiro que limite os caminhos de I_2 para P_5 da

forma:

$$I_2 \rightarrow S_3 \rightarrow P_5 \rightarrow M_3 \rightarrow I_2 \rightarrow S_3 \rightarrow P_5 \rightarrow M_3 \rightarrow I_2 \rightarrow \dots \rightarrow P_5.$$

 A_3 :

Consideremos Q_3 o ideal de B gerado por β_2 e por γ_2 . Temos que B uma extensão cindida de $A_3 = B/Q_3$ pelo nilpotente Q_3 . Além disso, A_3 é dada pela aljava $\begin{pmatrix} \delta_1 & \gamma_1 & 3 & \beta_1 \\ \delta_2 & 2 & 4 & 5 & \frac{\alpha_1}{\alpha_2} & 6 \end{pmatrix}$ com as relações herdadas de B. Um esquema para a aljava de Auslander-Reiten dessa álgebra é:



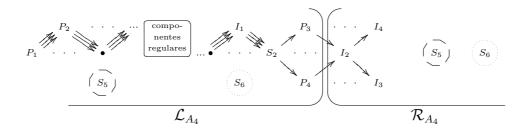
Então,

- A_3 é laura, pois (ind A_2) \ $(\mathcal{L}_{A_2} \cup \mathcal{R}_{A_2}) = \{S_3\}$ é finita.
- A_3 não é colada à esquerda, pois ind $A_3 \setminus \mathcal{R}_{A_3}$ não é finita.
- A_3 não é colada à direita, pois ind $A_3 \setminus \mathcal{L}_{A_3}$ não é finita.
- A_3 não é shod, pois pois $S_3 \notin \mathcal{L}_{A_3} \cup \mathcal{R}_{A_3}$.
- A_3 não é quase inclinada, pois não é shod.
- A_3 é fracamente shod, pois se $M \notin \mathcal{L}_{A_3}$ e $N \notin \mathcal{R}_{A_3}$ com $M \leadsto N$, então $M = N = S_3$.

5.3. EXEMPLOS 81

 A_4 :

Consideremos Q_4 o ideal de B gerado por α_1 , α_2 , β_1 e β_2 . Temos que B uma extensão cindida de $A_4 = B/Q_4$ pelo nilpotente Q_4 . Além disso, A_4 é dada pela aljava $\begin{bmatrix} \delta_1 & \gamma_1 & \delta_2 \\ \delta_2 & \gamma_2 & \delta_3 & \gamma_2 \end{bmatrix}$ for com as relações herdadas de B. Um esquema para a aljava de Auslander-Reiten dessa álgebra é:



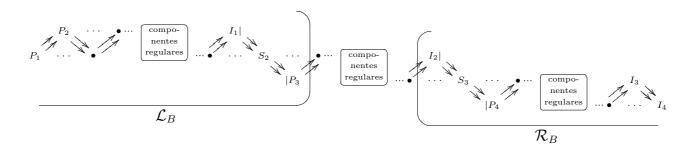
Então,

- A_4 é laura, pois (ind A_4) \ $(\mathcal{L}_{A_4} \cup \mathcal{R}_{A_4}) = \emptyset$
- A_4 não é colada à esquerda, pois ind $A_4 \setminus \mathcal{R}_{A_4}$ não é finita.
- A_4 é colada à direita, pois (ind A_4) \ $\mathcal{L}_{A_4} = \{I_2, I_3, I_4\}$ é finita.
- A_4 é shod, pois ind $A_4 = \mathcal{L}_{A_4} \cup \mathcal{R}_{A_4}$.
- A_4 é fracamente shod pois é shod.
- A_4 é quase inclinada, pois $P_1,P_2,P_3,P_4,P_5=S_5,P_6=S_6\in\mathcal{L}_{A_4}.$

2º Exemplo.

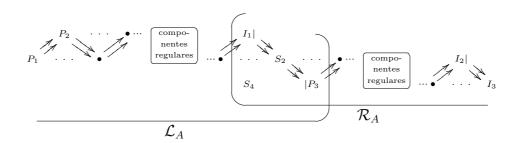
Veremos agora que a recíproca do Teorema 5.4 não é verdadeira.

Seja $B = \frac{k\Delta}{\mathcal{I}}$ onde Δ é a aljava $1 \underset{\beta_1}{\overset{\alpha_1}{\rightleftharpoons}} 2 \underset{\beta_2}{\overset{\alpha_2}{\rightleftharpoons}} 3 \underset{\beta_3}{\overset{\alpha_3}{\rightleftharpoons}} 4$ e \mathcal{I} é o ideal gerado por $\alpha_i \alpha_{i-1}$, $\beta_i \beta_{i-1}$, $\alpha_i \beta_{i-1}$ e $\beta_i \alpha_{i-1}$ para i = 2, 3. Um esquema para a aljava de Auslander-Reiten de B é



Nesse caso, $\mathcal{L}_B \cup \mathcal{R}_B$ não é cofinita em ind B, portanto B não é uma álgebra laura.

Consideremos agora o ideal Q de B gerado pelas classes das flechas α_3 e β_3 . Então, B é uma extensão cindida de $A=\frac{B}{Q}$ pelo ideal Q. A álgebra A é dada pela aljava $1 \underset{\beta_1}{\overset{\alpha_1}{\rightleftharpoons}} 2 \underset{\beta_2}{\overset{\alpha_2}{\rightleftharpoons}} 3$ 4 com as relações herdadas de B. Um esquema para a aljava de Auslander-Reiten de A é



A álgebra A é laura, pois ind $A \setminus (\mathcal{L}_A \cup \mathcal{R}_A) = \emptyset$.

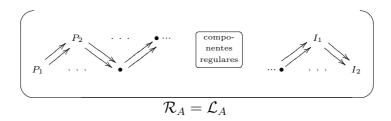
5.3. EXEMPLOS 83

3° Exemplo.

Veremos agora que a recíproca do Teorema 5.13 não é verdadeira.

Seja $B = \frac{k\Delta}{\mathcal{I}}$ onde Δ é a aljava $1 \stackrel{\alpha_1}{\underset{\beta_1}{\rightleftharpoons}} 2 \stackrel{\alpha_2}{\underset{\beta_2}{\rightleftharpoons}} 3$ e \mathcal{I} é o ideal gerado por $\alpha_2\alpha_1$, $\beta_2\beta_1$, $\alpha_2\beta_1$ e $\beta_2\alpha_1$. A aljava de Auslander-Reiten de B é a mesma da álgebra A do exemplo anterior, exceto pelo S_4 que nesse caso não existe. Portanto, B não é uma álgebra disfarçada, pois não é colada à esquerda por exemplo.

Consideremos o ideal Q de B gerado pelas flechas α_2 e β_2 . Então, B é uma extensão cindida de $A=\frac{B}{Q}$ pelo ideal Q. A álgebra A é dada pela aljava $1\stackrel{\alpha_1}{\underset{\beta_1}{\rightleftharpoons}}2$ 3 e portanto um esquema da aljava de Auslander-Reiten para A é



Então A é disfarçada, uma vez que ind $A \setminus \mathcal{R}_A = \emptyset = \text{ind } A \setminus \mathcal{L}_A$.

Apêndice A

Aljava de Auslander-Reiten

Sejam k um corpo algebricamente fechado e C uma k-álgebra de dimensão finita. A essa álgebra associamos uma aljava, cujos vértices correspondem aos objetos da categoria ind C e as flechas correspondem aos chamados morfismos irredutíveis. Por isso, começaremos definindo esses morfismos.

A construção da aljava de Auslander-Reiten não será discutida. Serão salientadas apenas algumas características dessa aljava.

As demonstrações e mais detalhes sobre esse assunto podem ser encontradas em, por exemplo, [8], [11] e [13].

Definição A.1 Sejam M e N dois C-módulos em mod C. Um morfismo $f \in \text{Hom}_C(M,N)$ é dito irredutível se:

- (i) f não é monomorfismo que cinde e nem epimorfismo que cinde;
- (ii) se f = gh então, ou g é um epimorfismo que cinde, ou f é um monomorfismo que cinde.

Exemplo A.1 Se P é um C-módulo projetivo indecomponível não simples, então a inclusão $\iota : \operatorname{rad} P \hookrightarrow P$ é um morfismo irredutível.

Sejam M e N dois C-módulos em ind C. Denotamos por rad C(M,N) o k-espaço vetorial dos morfismos de M para N que não são isomorfismos. Um morfismo $f:M\to N$ é irredutível se, e somente se, $f\in \operatorname{rad}_C(M,N)\backslash\operatorname{rad}_C^2(M,N)$. O k-espaço vetorial $\operatorname{Irr}(M,N)=\frac{\operatorname{rad}_C(M,N)}{\operatorname{rad}_C^2(M,N)}$ é chamado de **espaço dos morfismos irredutíveis**.

Definição A.2 Seja C uma k-álgebra de dimensão finita. A aljava de Auslander-Reiten de C, denotada por Γ_C é a aljava definida por:

- (i) os vértices estão em correspondência biunívoca com as classes de isomorfismos dos C-módulos indecomponíveis;
- (ii) o número de flechas de [M] para [N] é igual a $\dim_k \operatorname{Irr} (M, N)$.

Decorre, diretamente da definição, que se C é de tipo de representação infinito então Γ_C tem infinitos vértices. Nesse caso, Γ_C pode ter infinitas componentes conexas.

Sequências de Auslander-Reiten

Uma sequência exata curta de C-módulos que não cinde, $0 \to N \to E \to M \to 0$, é uma sequência de Auslander-Reiten (A-R) se:

- (i) $M \in N$ são indecomponíveis;
- (ii) dados $X \in \mathsf{mod}\ C$ e $h: X \to M$ um morfismo que não seja um epimorfismo que cinde, existe $\bar{h}: X \to E$ tal que $g\bar{h} = h$.

Podemos trocar (ii) pela condição equivalente:

(iii) dados $X \in \mathsf{mod}\, C$ e $h: N \to X$ um morfismo que não seja um monomorfismo que cinde, existe $\bar{h}: E \to X$ tal que $\bar{h}f = h$.

Proposição A.1 (Existência e unicidade) Sejam C uma R-álgebra de Artin e M um C-módulo indecomponível.

1. Se M não for projetivo, então existe e é única a sequência de A-R terminando em M:

$$0 \to N \to E \to M \to 0.$$

Além disso, $N \cong \tau M$, onde $\tau = D \operatorname{Tr}$ como definido no Capítulo 4.

2. Se M não for injetivo, então existe e é única a sequência de A-R começando em N:

$$0 \to N \to E \to M \to 0.$$

 $Al\acute{e}m~disso,~M\cong \tau^{-1}N,~onde~\tau^{-1}={\rm Tr}~D~como~definido~no~Cap\'itulo~4.$

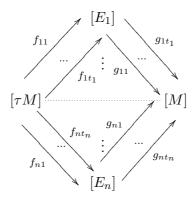
Podemos escrever uma sequência de A-R da seguinte forma

$$0 \to N \xrightarrow{f} \bigoplus_{i=1}^{n} E_{i}^{t_{i}} \xrightarrow{g} M \to 0$$

com cada E_i indecomponível, $f = \begin{bmatrix} f_1 \\ \vdots \\ f_n \end{bmatrix}$ onde $f_i = \begin{bmatrix} f_{i1} \\ \vdots \\ f_{it_i} \end{bmatrix} : N \to E_i^{t_i}$ e $g = \begin{bmatrix} g_1 & \cdots & g_n \end{bmatrix}$ onde $g_i : \begin{bmatrix} g_{i1} & \cdots & g_{it_i} \end{bmatrix} : E_i^{t_i} \to M$. Nesse caso, cada f_{ij} e cada g_{ij} é um morfismo irredutível.

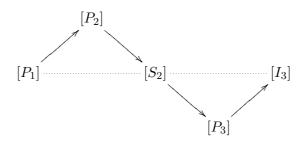
Se M é um C-módulo indecomponível e não projetivo, então o número de flechas que saem de $[\tau M]$ é igual ao número de flechas que chegam em [M]. Por outro lado, se M é um C-módulo indecomponível e não injetivo então o número de flechas que saem de [M] é igual ao número de flechas que chegam em $[\tau^{-1}M]$.

Na aljava de A-R tal sequência corresponderia a um diagrama da forma:



Exemplo A.2 Seja k um corpo algebricamente fechado, Δ a aljava $1 \stackrel{\alpha}{\leftarrow} 2 \stackrel{\beta}{\leftarrow} 3$, \mathcal{I} o ideal de $k\Delta$

gerado por $\beta\alpha$. A aljava de A-R de $\frac{k\Delta}{\mathcal{I}}$ tem a seguinte forma:



Em geral, escreveremos apenas M para representar [M]. Por convenção as flechas sempre estão da esquerda para direita.

Vejamos qual é a relação de um morfismo qualquer entre C-módulos indecomponíveis e os morfismos irredutíveis.

Denotemos por rad $^{\infty}(M,N):=\bigcap_{n\in\mathbb{N}}\operatorname{rad}^n(M,N).$ Uma componente conexa $\hat{\Gamma}$ de Γ_C é dita standard generalizada se rad $^{\infty}(M,N)=0$ para todos $M,N\in\hat{\Gamma}.$

Uma propriedade importante da aljava de A-R é que se M e N são C-módulos indecomponíveis tais que M "aparece" à direita de N na aljava, então $\mathsf{Hom}_C(M,N)=0$. Por isso para encontrar os predecessores (em ind C) de um C-módulo indecomponível, basta olhar os C-módulos que ficam à sua esquerda na aljava.

Proposição A.2 Seja $\hat{\Gamma}$ uma componente standard generalizada de Γ_C e $M, N \in \hat{\Gamma}$. Se $f \in \text{Hom}_C(M, N)$ é não nulo e não isomorfismo então f é soma de compostas de morfismos irredutíveis.

Em particular, para uma álgebra de tipo de representação finito vale:

Corolário A.3 Seja C uma álgebra de tipo de representação finito e M e N dois C-módulos indecomponíveis. Então, se $f \in \operatorname{Hom}_C(M,N)$ é não nulo e não isomorfismo então f é soma de compostas de morfismos irredutíveis.

Referências Bibliográficas

- [1] I. Assem, Algèbres et modules, Presses de l'Université d'Ottawa, Canada, 1997.
- [2] I. Assem and F. U. Coelho, *Glueings of tilted algebras*, Journal of Pure and Applied Algebra **96** (1994), 225–243.
- [3] _____, Two-sided gluings of tilted algebras, Journal of Algebra 269 (2003), 456–479.
- [4] _____, Endomorphism algebras of projective modules over laura algebras, Journal of Algebra and Its Applications 3 (2004), no. 1, 49–60.
- [5] I. Assem, F. U. Coelho, M. A. Lanzilotta, D. Smith, and S. Trepode, Algebras determined by their left and right parts, Algebraic Structures and Their Representations, Cont. Math. 376 (2005), 13–47.
- [6] I. Assem, F. U. Coelho, and S. Trepode, *The bound quiver of a split extension*, aceito para publicação no Journal of Algebra and its Applications.
- [7] I. Assem and N. Marmaridis, *Tilting modules over split-by-nilpotent extensions*, Comm. Algebra **26** (1998), 1547–1555.
- [8] I. Assem, D. Simson, and A. Skowronski, *Elements of the representation theory of associative algebras*, vol. 1.
- [9] I. Assem and D. Zacharia, Full embeddings of almost split sequences over split-by-nilpotent extensions, Colloquium Mathematicum 81 (1999), 21–31.
- [10] _____, On split-by-nilpotent extensions, Colloquium Mathematicum 98 (2003), 259–275.
- [11] M. Auslander, I. Reiten, and S. O. Smal ϕ , Representation theory of artin algebras, Cambridge Stud. Adv. Math. 36, Cambridge University Press, Cambridge, 1995.
- [12] H. Cartan and S. Eilenberg, Homological algebra, Princeton University Press, New Jersey, 1956.
- [13] F. U. Coelho, *Uma introdução à teoria de representações de álgebras (minicurso)*, Atas da XII Escola de Álgebra, Diamantina (1992), 60p.

- [14] F. U. Coelho and M. A. Lanzilotta, Algebras with small homological dimension, Manuscripta Math 100 (1999), 1–11.
- [15] ______, Weakly shod algebras, Journal of Algebra **265** (2003), 379–403.
- [16] D. Happel, I. Reiten, and S. O. Smal ϕ , Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. **575** (1996).

Índice Remissivo

álgebra	parte esquerda, 70
colada	predecessor, 69
à direita, 73	. ~ ~
à esquerda, 73	retração, 6
de caminhos, 21	secção, 6
disfarçada, 76	subcategoria
fracamente shod, 74	cofinita, 72
hereditária, 67	finita, 72
laura, 73	sucessor, 69
oposta, 9	buccisor, 00
quase inclinada, 75	teorema
shod, 67, 75	da adjunção, 20
aljava de Auslander-Reiten, 86 apresentação de uma álgebra, 24, 40 conjunto minimal de geradores, 42	
epimorfismo cindido, 11 extensão cindida por nilpotente, 27	
funtor C -dual, 55	
de mudança de anéis, 30	
de Nakayama, 56	
dual, 15	
transladado de Auslander-Reiten, 56	
transladado de Auslander-Reiten inverso, 56 transposição, 56	
monomorfismo cindido, 11	
parte direita, 70	