• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
Documento
Autor
Nome completo
Julia Carolina Torres Lozano
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2017
Orientador
Banca examinadora
Gorodski, Claudio (Presidente)
Figueiredo Junior, Ruy Tojeiro de
Goussevskii, Nikolai Alexandrovitch
Título em inglês
Clifford and composed foliations
Palavras-chave em inglês
Clifford algebra
Clifford foliation
Clifford system
Composed foliation
FKM foliation
Singular Riemannian foliation
Resumo em inglês
Singular Riemannian foliations in spheres provide local models for an extensive kind of singular Riemannian foliations, whose theory contributes in the understanding of Riemannian manifolds. Hence the importance of studying and classifying them, a research subject that still remains open. In 2014, Marco Radeschi constructed indecomposable singular Riemannian foliations of arbitrary codimension, most of them inhomogeneous, which generalized all known examples of that type so far. The present dissertation is a detailed study of his work, along with observations about the progress made on this dynamic field since that paper was published. Besides introducing preliminary notions and examples on singular Riemannian foliations, isometric actions and Clifford theory, it is explained a construction of inhomogeneous isoparametric hypersurfaces, due to Ferus, Karcher and Münzner, that was a fundamental framework for the results of Radeschi. After that, it is described exhaustively the construction of Clifford and composed foliations in spheres, which are the examples that Radeschi created using Clifford systems. In the sequel it is established an extraordinary bijective correspondence between Clifford foliations (merely geometric objects) and Clifford systems (purely algebraic objects). This text finishes examining the relations of homogeneity properties among FKM, Clifford and composed foliations.
Título em português
Folheações de Clifford e folheações compostas
Palavras-chave em português
Álgebra de Clifford
Folheação composta
Folheação de Clifford
Folheação FKM
Folheação Riemanniana singular
Sistema de Clifford
Resumo em português
Folheações Riemannianas singulares em esferas fornecem modelos locais para folheações Riemannianas singulares mais gerais, cuja teoria contribui na compreensão de variedades Riemannianas. Daí a sua importança de estudá-los e classificá-los, uma área de pesquisa que se mantém aberta. Em 2014, Marco Radeschi construiu folheações Riemannianas singulares indecomponíveis de codimensão arbitrária, a maioria delas não homogêneas, que generalizaram todos os exemplos conhecidos desse tipo até então. A presente dissertação é um estudo detalhado desse trabalho, junto com observações sobre avanços que se têm feito neste dinâmico campo desde a publicação do artigo. Após introduzir as noções e exemplos preliminares de folheações Riemannianas singulares, ações isométricas e teoria de Clifford, é explorada uma construção de hipersuperfícies isoparamétricas não homogêneas, devida a Ferus, Karcher e Münzner (FKM), que foi peça fundamental para os resultados de Radeschi. Em seguida, descreve-se minuciosamente a construção de folheações composta e de Clifford em esferas, que são os exemplos que o autor mencionado anteriormente gerou usando sistemas de Clifford. Continuando com a análise dessas novas folheações Riemannianas singulares, estabelece-se uma extraordinária correspondência biunívoca entre folheações de Clifford (objetos meramente geométricos) e sistemas de Clifford (objetos puramente algébricos). Este texto termina examinando as relações das propriedades de homogeneidade entre folheações FKM, compostas e de Clifford.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-02-08
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
Centro de Informática de São Carlos
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2018. Todos os direitos reservados.