• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2014.tde-07072014-153504
Documento
Autor
Nombre completo
Renata Akemi Maekawa
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2014
Director
Tribunal
Monteiro, Martha Salerno (Presidente)
Gonçalves, Daniel
Silva, Antonio Roberto da
Título en portugués
Uma descrição das aplicações de conexão em K-teoria de C*-álgebras usando cones
Palabras clave en portugués
aplicações de conexão
cone de uma aplicação
K-teoria de C*-álgebras
transformações naturais
Resumen en portugués
Dada uma aplicação f: B -> A entre duas C*-álgebras, o cone dessa aplicação, Cf, é o conjunto formado pelos pares (b,g) pertencentes à soma direta da C*-álgebra B com o cone CA tais que f(b) = g(0), sendo CA o cone de A. Neste trabalho estudamos o funtor determinado pela associação da sequência exata curta 0 -> SA -> Cf -> B -> 0 para cada *-homomorfismo f: B -> A, e demonstramos que esse funtor é exato. Caracterizamos as aplicações de conexão associadas à sequência exata 0 -> SA -> Cf -> B -> 0, mostrando que a aplicação do índice é dada por tAK1(f) e que a aplicação exponencial é dada por bAK0(f), sendo tA o isomorfismo entre K1(A) e K0(SA) e bA a aplicação de Bott. Por fim, usando que toda sequência exata curta de C*-álgebras pode ser vista na forma 0 -> Ker f -> B -> A -> 0, mostramos que as aplicações de conexão d1 e d0 associadas a cada sequência exata curta podem ser dadas por dn = Kn+1(j)-1 Kn+1(i) hn, em que j é a inclusão do núcleo de f em Cf, i é a inclusão da suspensão SA também em Cf, hn = bA e h1 = tA .
Título en inglés
A description of the connecting maps in K-theory for C*-algebras using cones
Palabras clave en inglés
connecting maps
K-theory for C*-algebras
mapping cones
natural transformations
Resumen en inglés
If f: B A is a map between the C*-algebras A and B, the mapping cone is the set of pairs (b,g) in the direct sum of B and CA such that f(b) = g(0), where CA is the cone of A. In this work, we study the functor determined by the assignment of the exact sequence 0 SA Cf B 0 to each *-homomorphism f: B -> A, and we show that this functor is exact. We characterize the connecting maps associated with the short exact sequence 0 SA Cf B 0 and we prove that its index map is tA K1(f) and that its exponential map is bA K0(f), where tA is the isomorphism between K1(A) and K0(SA), and bA is the Bott map. Finally, using that every short exact sequence of C*-algebras can be seen as 0 Ker f B (f ) A 0, we prove that the connecting maps, d1 and d0, associated with a short exact sequence are given by dn = Kn+1(j)-1 Kn+1(i) hn, where j is the inclusion of f's kernel in Cf, i is the inclusion of the suspension SA in Cf, hn = bA e h1 = tA .
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2014-07-07
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2019. Todos los derechos reservados.