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Resumo

MASCARO, B. Sistema do tipo Schrödinger-Bopp-Podolsky em R3. 2022. 82 f. Tese

(Doutorado) - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,

2022.

Neste trabalho estudamos o seguinte sistema perturbado do tipo Schrödinger-Bopp-

Podolsy em R3  −ε2∆w + V (x)w + ψw = f(w)

−ε2∆ψ + ε4∆2ψ = 4πεw2
(Pε)

e usando métodos variacionais e a teoria de Ljusternik-Schnirelmann, nós mostramos uma

cota inferior para o número de soluções para tal sistema.

Ao longo do trabalho, são apresentadas algumas noções preliminares e o desenvolvimento

do sistema, juntamente com algumas notas históricas sobre o arcabouço físico do problema.

Palavras-chave: Schrödinger-Bopp-Podolsky, Sistema de equações diferenciais parciais,

Ljusternik-Schnirelmann.
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Abstract

MASCARO, B. Schrödinger-Bopp-Podolsky system in R3. 2022. 82 f. Thesys (Doctor-

ate) - Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2022.

In this work we study the following perturbed Schrödinger-Bopp-Podolsky system in R3

 −ε2∆w + V (x)w + ψw = f(w)

−ε2∆ψ + ε4∆2ψ = 4πεw2
(Pε)

and using variational methods and the Ljusternik-Schnirelmann theory, we show a lower

bound for the number of solutions of such system.

Along the work, some preliminaries notions are presented and the development of the

system, together with brief historical notes about the physical framework of the problem.

Keywords: Schrödinger-Bopp-Podolsky, System of partial di�erential equations, Ljusternik-

Schnirelmann.
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Function spaces

L(X, Y ) = {A : X → Y : A linear and continuous map}
Inv(X, Y ) = {A ∈ L(X, Y ) : A is invertible}
Ck(X, Y ) = {A : X → Y : A is k times di�erentiable}
L2(X, Y ) = {A : X ×X → Y : A is bilinear and continuous map}
Lp(Ω) = {f : Ω → R : f is measurable and ∥f∥p <∞}
Lp
loc(Ω) = {f : Ω → C : f|K ∈ Lp(K),∀K ⊂ Ω, Kcompact}

W k(Ω) = {u ∈ L1
loc(Ω) : ∂

αu ∈ L1
loc(Ω) for all |α| ≤ k}

W k,p(Ω) = {u ∈ W k(Ω) : ∂αu ∈ Lp(Ω) for all 0 ≤ α ≤ k}
Dm,p(Ω) is the completion of C∞

c (Ω) relative to the norm

∥u∥Dm,p =
(∑

|α|=m ∥∂αu∥pLp

) 1
p

ix
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Chapter 1

Introduction

Problems concerning the bilaplacian operator have been studied by many authors in

the past years, by various methods of resolution, like variational, topological and the sub-

super solutions. In this work we use a mix of methods, like variational methods and a

topological constant named Ljusternik-Schnirelmann category of a set. Starting from the

problem presented by [12], the called Schrödinger-Bopp-Podolsky system −∆u+ ωu+ q2ϕu = |u|p−2u

−∆ϕ+ a2∆2ϕ = 4πu2

was studied in the whole R3, and a, ω > 0. The authors have proved the existence and the

nonexistence depending on the parameters q, p.

In the second chapter we present some historical notes about the characters that give our

system it`s name, and a bit of physical discussion is done without claiming to be complete.

Along with that, there is the development of the (SBP ) system.

In this work we study a variation of the Schrödinger-Bopp-Podolsky above. We replace

the parameter ω by a potential V : R3 → R, we consider q = 1, we introduce a perturbation ε

on the both equations, precisely in the laplacian and the bilaplacian operators, and �nally we

threat with a more general nonlinearity f : R → R satisfying some assumptions. Precisely,

our problem is written  −ε2∆u+ V (x)u+ ϕu = f(u)

−ε2∆ϕ+ ε4∆2ϕ = 4πεu2
(Pε)

and we prove that the number of solutions is estimated below by the Ljusternik-Schnirelmann

category of M , the set of minima of the potential V . The function f and the potential V

satisfy the following conditions

(V1) V : R3 → R is a continuous function such that

0 < min
R3

V := V0 < V∞ := lim inf
|x|→+∞

V ∈ (V0,+∞],

1



2 INTRODUCTION 1.0

with M = {x ∈ R3 : V (x) = V0} smooth and bounded,

(f1) f : R → R is a function of class C1 and f(t) = 0 for t ≤ 0,

(f2) limt→0
f(t)
t

= 0,

(f3) there exists q0 ∈ (3, 2∗ − 1) such that limt→+∞
f(t)
tq0

= 0, where 2∗ = 6,

(f4) there exists K > 4 such that 0 < KF (t) := K
∫ t

0
f(τ)dτ ≤ tf(t) for all t > 0,

(f5) the function t 7→ f(t)
t3

is strictly increasing in (0,+∞).

In fact, our main result is

Theorem 1.0.1. Under the above assumptions (V1), (f1)-(f5), there exists an ε∗ > 0 such

that for every ε ∈ (0, ε∗], problem (Pε) possesses at least catM positive solutions. Moreover,

if catM > 1, then (for a suitably small ε) there exist at least catM + 1 positive solutions.

To demonstrate this, we de�ne a functional associated to (Pε), which give us the notion

of weak solutions for the problem, namely

Iε(u, ϕ) =
1

2
∥∇u∥22 +

1

2

∫
V (εx)u2 +

1

2

∫
εϕu2 − 1

16π
∥∇ϕ∥22 −

1

16π
∥∆ϕ∥22 −

∫
F (u).

All the development is made in the third chapter, where we de�ne the Nehari manifold

associated, we set the variational setting for our problem, we prove some compactness prop-

erties for the functionals involved, and via the de�nition of the barycenter map we can �nd

a sublevel of Nehari which give us the existence of another di�erent solution for (Pε).



Chapter 2

Preliminaries

In this chapter we recall some results needed to do this work. Here we present some well-

known results on the theory of Sobolev Spaces, more generally about Functional Analysis

and some theory of solutions of Partial Di�erential Equations.

2.1 Calculus on Banach Spaces

2.1.1 The notion of di�erentiability in Banach spaces

In this section it will be showed some preliminaries tools of the calculus in in�nite di-

mension. A wide literature exists about the theme of this section, so just some theorems

and de�nitions will be listed below. If the reader wants to know more about, he can see the

references [5], [10] and the references therein.

From now on, X, Y, denotes real Banach spaces, and U an open subset of X.

De�nition 2.1.1 (Fréchet-di�erentiability). Let u ∈ U and consider a map F : U → Y . We

say that F is (Fréchet-) di�erentiable at u if there exists A ∈ L(X, Y ) such that, if we set

R(h) = F (u+ h)− F (u)− A(h),

then it results

R(h) = o(∥h∥),

3



4 PRELIMINARIES 2.1

that is

∥R(h)∥
∥h∥

→ 0 as ∥h∥ → 0.

Such A is uniquely determined and will be called the (Fréchet) di�erential of F at u, and

will be denoted by

A = dF (u).

If F is di�erentiable at all u ∈ U , we say that F is di�erentiable in U .

The Fréchet di�erential is a natural extension of the usual concept of di�erential in

Euclidean spaces, to Banach spaces. In the Euclidean spaces, both de�nitions coincide.

De�nition 2.1.2 (Fréchet-derivative). Let F : U → Y be a di�erentiable function in U .

The map

F ′ : U → L(X, Y ), F ′ : u 7→ dF (u),

is called the (Fréchet) derivative of F .

De�nition 2.1.3 (Gâteux-di�erential). Let F : U → Y be given and let x ∈ U . We say that

F is Gâteux-di�erentiable (or just G-di�erentiable) at u if there exists A ∈ L(X, Y ) such

that for all h ∈ X we have

F (u+ εh)− F (u)

ε
→ Ah as ε→ 0.

Those are the notions of di�erentiability in Banach spaces adopted here, and when there

is no possible misunderstanding, it will be referred just as di�erentiability.

High order derivatives

Like in the regular calculus over Euclidean spaces, we can de�ne high order derivatives

in in�nite dimension spaces, like Banach spaces, in a such straightforward way.

De�nition 2.1.4 (Second Fréchet di�erential). Let u∗ ∈ U . F is twice (Fréchet-) di�eren-

tiable at u∗ if F ′ is di�erentiable at u∗. The second (Fréchet) di�erential of F at u∗ is de�ned

as

d2F (u∗) = dF ′(u∗).
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If F is twice di�erentiable in U , the second (Fréchet) derivative of F is the map F ′′ :

U → L2(X, Y ),

F ′′ : u 7→ d2F (u),

and if F ′′ is continuous from U to L2(X, Y ) we say that F ∈ C2(U, Y ).

The �rst proposition of our chapter is a very useful way to evaluate d2F (u).

Proposition 2.1.5. Let F : U → Y be twice di�erentiable at u∗ ∈ U . Then for all �xed

h ∈ X the map Fh : X → Y de�ned by setting

Fh(u) = dF (u)h

is di�erentiable at u∗ and dFh(u
∗)k = F ′′(u∗)[h, k].

As the last part of our tools of calculus in Banach spaces, we can de�ne partial derivatives

similarly as for Euclidean spaces.

Let us consider two Banach spaces X, Y and let (u∗, v∗) ∈ X × Y . De�ne mappings

σv∗ : X → X × Y and τu∗ : Y → Y ×X as follow

σv∗(u) = (u, v∗);

τu∗(v) = (u∗, v).

Notice that the derivatives of σv∗ and τu∗ are respectively, the linear maps

σ := dσv∗ : h→ (h, 0);

τ := dτu∗ : k → (0, k).

De�nition 2.1.6. If the map F ◦ σv∗ is di�erentiable at u∗ we say that F is di�erentiable

with respect to u∗ at (u∗, v∗). The linear map d[F ◦ σv∗ ](u∗) is called the partial derivative of

F at (u∗, v∗) with respect to u and denoted by duF (u
∗, v∗).

Similarly we can de�ne dvF (u
∗, v∗).

As in the calculus in the Euclidean space, we have
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Proposition 2.1.7. If F is di�erentiable at (u∗, v∗) then F has partial derivatives with

respect to u and v at (u∗, v∗) and we have

duF (u
∗, v∗)(h) = dF (u∗, v∗)σ(h) = dF (u∗, v∗)(h, 0),

dvF (u
∗, v∗)(k) = dF (u∗, v∗)τ(k) = dF (u∗, v∗)(0, k).

Local inversions results are valid as in the regular calculus in the Euclidean space, given

the straight forward changes due the dimension of the spaces here.

We say that maps F ∈ C(X, Y ), where X, Y are Banach spaces, whose de�ned on an

open subset of X could be treated with minor changes only.

De�nition 2.1.8. Let A ∈ L(X, Y ) where L is the spaces of linear continuous maps. We

say that A is invertible if there exists B ∈ L(Y,X) such that

B ◦ A = IdX ,

A ◦B = IdY .

Moreover, the map B is unique and will be denoted by A−1.

Jsut for simplicity, we de�ne two sets

Inv(X, Y ) = {A ∈ L(X, Y ) : A is invertible}.

Let U ⊂ X be an open and V ⊂ Y be open sets. We say that F ∈ Hom(U, V ) if there

exists a map G : V → U such that

G(F (u)) = u ∀u ∈ U,

F (G(v)) = v ∀v ∈ V.

Then we say that F ∈ C(X, Y ) is locally invertible at u∗ ∈ X if there exists open subsets

u∗ ∈ U ⊂ X and v∗ ∈ V ⊂ Y and F (u∗) = v∗ ∈ V such that F ∈ Hom(X, Y ).
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Theorem 2.1.9 (Local Inversion Theorem). Suppose F ∈ C1(X, Y ) and F ′(u∗) ∈ Inv(X, Y ).

Then F is locally invertible at u∗ with C1 inverse. More precisely, there exist opens U of u∗

and V of v∗ = F (u∗) such that

(i) F ∈ Hom(U, V )

(ii) F−1 ∈ C1(V,X) and for all v ∈ V there results

dF−1(v) = (F ′(u))−1, u = F−1(v)

(iii) if F ∈ Ck(X, Y ), k > 1, then F−1 ∈ Ck(V,X).

As important as the Theorem above, is the Implicit Function Theorem and all the con-

sequences and wide applicability to the studies of solutions of elliptic equations and sys-

tems, so we give its statement here, splitted in two important parts. Here we consider maps

F : Λ× U → Y , where Λ and U are open subsets of Banach spaces T and X, respectively,

and Y is a Banach space too.

Lemma 2.1.10. Let (λ∗, u∗) ∈ Λ× U . Suppose that

(i) F is continuous and F has the u-partial derivative in Λ×U and Fu : Λ×U → L(X, Y )

is continuous.

(ii) Fu(λ
∗, u∗) ∈ L(X, Y ) is invertible.

Then the map Ψ : Λ× U → T × Y given by

Ψ(λ, u) = (λ, F (λ, u)),

is locally invertible at (λ∗, u∗) with continuous inverse Φ.

In addition, if F ∈ C1(Λ× U, Y ) then Φ ∈ C1.

Theorem 2.1.11 (Implicit Function Theorem). Let F ∈ Ck(Λ× U, Y ), k ≥ 1, where Y is

a Banach space and Λ and U are open subsets of the Banach spaces T and X, respectively.

Suppose that F (λ∗, u∗) = 0 and that Fu(λ
∗, u∗) ∈ Inv(X, Y ).
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Then there exist open subsets Θ of λ∗ in T and U∗ of u∗ in X and a map g ∈ Ck(Θ, X)

such that

(i) F (λ, g(λ)) = 0 for all λ ∈ Θ,

(ii) F (λ, u) = 0, (λ, u) ∈ Θ× U∗, implies u = g(λ),

(iii) g′(λ) = −[Fu(p)]
−1 ◦ Fλ(p), where p = (λ, g(λ)) and λ ∈ Θ.

2.2 Basic results about Lp spaces and integration

The Lp spaces are a crucial ingredient for the theory of Sobolev spaces, de�ned forward,

which is used often in this work.

De�nition 2.2.1 (Lp spaces). Let p ∈ R with 1 ≤ p <∞. We set

Lp(Ω) = {f : Ω → R; f is measurable and ∥f∥p <∞}

with

∥f∥Lp = ∥f∥p =
[∫

Ω

|f(x)|pdµ
] 1

p

.

It is a well known fact that ∥.∥p is a norm.

Theorem 2.2.2 (Hölder's inequality). Assume that f ∈ Lp and g ∈ Lp′ with 1 ≤ p ≤ ∞.

Then fg ∈ L1 and ∫
|fg| ≤ ∥f∥p∥g∥p′ ,

where

1

p
+

1

p′
= 1.

Remark: In particular, if f ∈ Lp∩Lq with 1 ≤ p ≤ q ≤ ∞, then f ∈ Lr for all r, p ≤ r ≤ q,

and the following interpolation inequality holds:

∥f∥r ≤ ∥f∥αp∥f∥1−α
q ,
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where

1

r
=
α

p
+

1− α

q
, 0 ≤ α ≤ 1.

Theorem 2.2.3 (Lebesgue or dominated convergence). Let (fn) be a sequence of functions

in L1 that satisfy

(a) fn(x) → f(x) a.e. on Ω,

(b) there is a function g ∈ L1 such that for all n, |fn(x)| ≤ g(x) a.e. on Ω.

Then f ∈ L1 and ∥fn − f∥1 → 0.

Theorem 2.2.4 (Fatou's lemma). Let (fn) be a sequence of function in L1 that satisfy

(a) for all n, fn ≥ 0 a.e.

(b) supn

∫
fn <∞.

For almost all x ∈ Ω we set f(x) = lim infn→∞ fn(x) ≤ ∞. Then f ∈ L1 and

∫
f ≤ lim inf

n→∞

∫
fn.

2.3 Functional Analysis

In this section we present some basic results on functional analysis, that will be useful

in the development of this work. For the proofs, we indicate the reading of [10]

The concept of convergence plays a central role on our main results.

De�nition 2.3.1 (Strong convergence). Let X be a normed space and (uk) ⊂ X be a

sequence. The sequence (uk) is said strongly convergent if there exists an u ∈ X such that

∥uk − u∥X → 0, when k → ∞. We write uk → u and u is named the strong limit of uk.

De�nition 2.3.2 (Weak convergence). Let X a normed space and X ′ it's dual. A sequence

(uk) in X is said weakly convergent for a limit u in X if for every f ∈ X ′, we have f(uk) →

f(u), when k → ∞. We write uk ⇀ u and we say that (uk) weakly converges to u.
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An important tool which plays a central role in the study of existence of solutions (weak

solution - de�ned forward) is the Lax-Milgram theorem and the Riesz Representation, stated

below

Theorem 2.3.3 (Lax-Milgram). Let α : H ×H → R be a continuous and coercive bilinear

form in H, where H is a Hilbert space. Then for every ϕ ∈ H ′, where H ′ is the topological

dual of H, exists a unique element u ∈ H such that

α(u, v) = ϕ[v] ∀v ∈ H.

Moreover, if α is symmetric, then u is characterized by

1

2
α(u, u)− ϕ[u] = min

v∈H

{
1

2
α(v, v)− ϕ[v]

}
.

Theorem 2.3.4 (Riesz representation). Let H be a Hilbert space and H ′ be the topological

dual of H. Then for every f ∈ H ′ there exists a unique uf ∈ H such that

f [v] = (uf , v)H , ∀v ∈ H.

Moreover, ∥uf∥H = ∥f∥H′ and the linear application

R : H ′ → H

R : f 7→ uf

is called Riesz isomorphism.

2.4 Sobolev Spaces

The concept of Sobolev spaces is connected directly with the notion of a weak derivative

of a distribution, and this concept plays a central role for our work, since almost all the

calculations and conclusions are made working over Sobolev spaces. Here we de�ne the most

popular Sobolev Spaces and show some basic and important results about them.
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For the completeness of the subject, we give the notion of weak derivative

De�nition 2.4.1. Let Ω be an open set of Rn, a function g ∈ L1
loc(Ω) and a multi-index

α ∈ Nn. Then a function h ∈ L1
loc(Ω) is a α-th weak derivative of g if

∫
Ω

hφdx = (−1)|α|
∫
Ω

g∂αφdx, for every φ ∈ C |α|
c (Ω).

In this case we write

h = ∂αg.

Moreover, as a basic result, the weak derivative is linear and unique.

Here we introduce the space W k, or just the space of the functions which are k-times

weak di�erentiable.

W k(Ω) = {u ∈ L1
loc(Ω) : ∂

αu ∈ L1
loc(Ω) for all |α| ≤ k}

Note that W 1(Ω) is the set of the weak di�erentiable functions. It is important to see

that Ck(Ω) ⊂ W k(Ω), and so the concept of weak di�erentiation extends the notion of the

classic derivative.

2.4.1 W k,p spaces and the Sobolev embeddings

Here we give the de�nitions of Sobolev spaces and their embeddings on other important

spaces, which is ostensibly used in this work. The proofs of the theorems enunciated here

are technical and we refer the reader to [4] and [1].

De�nition 2.4.2 (Sobolev Space). Given p ∈ [1,∞] and k ∈ N, we indicate the space of

weak derivatives

W k,p(Ω) = {u ∈ W k(Ω) : ∂αu ∈ Lp(Ω) for all 0 ≤ α ≤ k},

as the Sobolev space W k,p(Ω).
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These spaces are linear spaces and admit the norm

∥u∥k,p = ∥u∥k,p,Ω = ∥u∥Wk,p(Ω) =

∑
|α|≤k

∥∂αu∥pp

 1
p

=

(∫
Ω

(
∑

|∂αu|p)dx
) 1

p

if 1 ≤ p <∞,

∥u∥k,∞ = max
|α|≤k

∥∂αu∥∞.

We can see that W 0,p(Ω) = Lp(Ω), and W k,p(Ω) ⊂ W k(Ω) for all k, p.

A well know fact is that the linear space W k,p(Ω) is a Banach space.

De�nition 2.4.3 (The Hilbert space Hk). Let �x p = 2. Then we write

W k,2(Ω) = Hk(Ω).

The space Hk(Ω) is a Hilbert space with the respective inner product

⟨u, v⟩k =
∑
|α|≤k

⟨∂αu, ∂αv⟩L2(Ω) =
∑
|α|≤k

∫
Ω

∂αu∂αvdx.

The spaces de�ned above are

� separable, if p ∈ [1,∞);

� re�exible, if p ∈ (1,∞).

Theorem 2.4.4 (Meyers-Serrin). It is valid that C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

It is natural that given u ∈ W k,p(Ω) we would like an extension inW k,p(Rn) for the results

of embedding theorems, but this is not valid in general. Some properties of smoothness are

needed in ∂Ω. Since our problem concerns R3, we enunciate just the theorems where the

domain is Rn.

From now on, the exponent

p∗ =
Np

N − p

is called the Sobolev critical exponent. For the proofs of this part of this work we refer the

reader see [18]
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2.4.2 The case kp < N

De�nition 2.4.5. Let 1 ≤ p <∞. The Sobolev space W 1,p(RN) is the space of all functions

u ∈ L1
loc(RN) whose distributional gradient ∇u belongs to Lp(RN), i.e.

W 1,p(Rn) = {u ∈ L1
loc(Rn) : ∇u ∈ Lp(RN)}

Theorem 2.4.6 (Sobolev-Gagliardo-Nirenberg's embedding theorem). Let 1 ≤ p < N .

Then there exists a constant C = C(N, p) > 0 such that for every function u ∈ W 1,p(RN)

vanishing at in�nity, (∫
RN

|u|p∗dx
) 1

p∗

≤
(∫

RN

|∇u|pdx
) 1

p

.

In particular, W 1,p(RN) is continuously embedded in Lq(RN) for all p ≤ q ≤ p∗.

Corollary 2.4.7. Let k ∈ N and 1 ≤ p <∞ be such that k ≥ 2 and kp < N . We have

(i) W k+j,p(RN) is continuously embedded in W j,q(Rn) for all j ∈ N and for all p ≤ q ≤
Np

N−kp
.

(ii) W k,p(RN) is continuously embedded in Lq(RN) for all p ≤ q ≤ Np
N−kp

.

2.4.3 The case p = N

Theorem 2.4.8. The space W 1,N(RN)is continuously embedded in the space Lq(RN) for all

N ≤ q <∞.

Corollary 2.4.9. Let k ∈ N and 1 ≤ p <∞ be such that k ≥ 2 and kp = N . We have

(i) W k+j,p(RN) is continuously embedded in W j,q(Rn) for all j ∈ N and for all p ≤ q <∞.

(ii) W k,p(RN) is continuously embedded in Lq(RN) for all p ≤ q <∞.

2.4.4 The case p > N

Theorem 2.4.10 (Morrey). Let N < p <∞. Then the space W 1,p(RN) is continuously em-

bedded in C0,1−N
p (RN). Moreover, if u ∈ W 1,p(RN) and u is its representative in C0,1−N

p (RN),
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then

lim
|x|→∞

u(x) = 0.

2.5 Critical Point Theory

The critical point theory is an important technique to solve a lot of problems, and in

this work it's not di�erent, we use a tool of this theory, called Palais-Smale sequences, a

compactness property for sequences which is needed, for example, to use the Mountain Pass

Theorem in the in�nite dimensional case. We give here the de�nition and some consequences

of it.

2.5.1 The Palais-Smale condition

De�nition 2.5.1 (Palais-Smale sequence). Let E be a Banach space and J : E → R be a

C1-functional. We call a sequence un ∈ E a Palais-Smale sequence, or just (PS)-sequence,

if J(un) is bounded and J ′(un) → 0 (in the dual E ′).

If J(un) → c and J ′(un) → 0, for some c ∈ R, we say that un is a (PS)c - sequence.

De�nition 2.5.2 (Palais-Smale condition). Let J and E be as in De�nition 2.5.1. We

say that J satis�es the Palais-Smale condition on E if every PS-sequence has a converging

subsequence.

De�nition 2.5.3 ((PS)c - condition). For E, J and c ∈ R as in the De�nition 2.5.1. We

say that J satis�es the local Palais-Smale condition at the level c, if every (PS)c - sequence

has a converging subsequence.

The Palais-Smale condition is named a compactness condition in the following sense, let

Kc be the set of critical points of a functional J at the level c, namely

Kc = {u ∈ E : J(u) = c and J ′(u) = 0}

where E is a Banach space.

The following proposition justi�es the idea that the Palais-Smale condition is a condition

of compactness.
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Proposition 2.5.4. Suppose J : E → R satis�es (PS). Then Kc is compact for any c ∈ R.

2.5.2 Deformations and the Mountain Pass Theorem

In this section we present two essential theorems of the critical point theory, the Defor-

mation Theorem due to [13] and the classical Mountain Pass Theorem, by [6].

De�nition 2.5.5. Let E a Banach space and B ⊂ E be a subset. A deformation of B is a

continuous function η : [0, 1]×B → B such that η(0, u) = u for all u ∈ B.

De�nition 2.5.6. Let E be a Banach space and let A ⊂ B ⊂ E. We say that B is deformable

in A if exists a deformation η of B such that

η(t, u) ∈ A, ∀u ∈ A,∀t ∈ [0, 1];

η(1, u) ∈ A,∀u ∈ B.

De�nition 2.5.7. Let E be a Banach space and let J : E → R be a functional. Given c ∈ R

we de�ne

J c = {x ∈ E : J(x) ≤ c}

Theorem 2.5.8 (Deformation Theorem). Let E be a Banach space and let J : E → R be a

C1-functional satisfying (PS). Given c ∈ R and an open neighborhood U of Kc, then there

exist ε > 0 and η ∈ C([0, 1]× E,E) such that

(Df1) η(0, u) = u for all u ∈ E and all t ∈ [0, 1],

(Df2) η(t, u) = u for all u /∈ J−1[c− 2ε, c+ 2ε] and all t ∈ [0, 1],

(Df3) η(t, ·) : E → E is a homeomorphism for all t ∈ [0, 1],

(Df4) J(η(t, u)) ≤ J(u) for all u ∈ E and all t ∈ [0, 1],

(Df5) η(1, J c+ε \ U) ⊂ J c−ε,

(Df6) if Kc = ∅, then η(1, J c+ε \ U) ⊂ J c−ε,

(Df7) if J is even, then η(t, ·) is odd in u.
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The Deformation Theorem above is slightly more general for our purpose, but is su�cient

for guarantee the Mountain Pass Theorem.

Theorem 2.5.9 (Mountain Pass Theorem). Let E be a real Banach space and J ∈ C1(E,R)

satisfying (PS). Suppose J(0) = 0 and

(MPT1) There are constants ρ, α > 0 such that J |∂Bρ ≥ α, and

(MPT2) there is an e ∈ E \Bρ such that J(e) ≤ 0.

Then J possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

J(u),

where

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

2.6 The Ljusternik - Schnirelmann category

The main tool that give us the multiplicity result of critical points to our studied problem

is the Ljusternik - Schnirelmann category theorem, and this can be viewed by analyzing the

"size" of a set. For a subset A of a topological space X, the Ljusternik - Schnirelmann is

de�ned as the least integer k such that A can be covered by k closed sets that are contractible

in X. The following properties can be veri�ed when X is a Finsler manifold

(C1) CatX(A) = 0 if and only if A = ∅.

(C2) If A1 and A2 are closed in X and η : [0, 1] × A1 → A1 is a continuous deformation of

A1 with η(1, A1) ⊂ A2 then CatX(A1) ≤ CatX(A2).

(C3) For any closed set K, there exists a closed neighborhood Kδ = {x; dist(x,K) ≤ δ} of

K so that CatX(K
δ) = CatX(K).

(C4) CatX(A1 ∪ A2) ≤ CatX(A1) + CatX(A2) for all closed subsets A1, A2.
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The proof of these properties can be found in several books about the subject, we refer

to the reader [17]

Here we give two formulations of Ljusternik - Schnirelmann theorems, which will be

useful to our purpose, founded in [4] and [17].

Theorem 2.6.1. Let M = G−1(0), where G ∈ C1,1(E,R), E-Banach space, and G′(u) ̸= 0

for all u ∈M . Let J ∈ C1,1(E,R) be bounded from below on M and let J satisfy the Palais-

Smale condition.

Then J has at least Catk(M) critical points on M , where

Catk(M) = sup{CatM(A) : A ⊂M A compact}.

Another version of a Ljusternik - Schnirelmann theorem is

Theorem 2.6.2. Let ϕ be a bounded from below C1-functional satisfying the Palais-Smale

condition on a C1-Finsler manifold X. Assume that CatX(X) = N and de�ne for 1 ≤ n ≤

N , the families

Fn = {A : A compact in X and CatX(A) ≥ n}.

Let

cn = c(ϕ,Fn) = inf
A∈Fn

max
u∈A

ϕ(u)

and assume cj = cj+p for 1 ≤ j ≤ j + p ≤ N , then for every min-maxing sequence (An)n in

Fj+p we have

CatX(Kcj ∪ A∞) ≥ p+ 1.

In particular, ϕ has at least N distinct critical points.
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Chapter 3

Physical framework

In this chapter we discuss the motivations and the importance to study problems of

type Schrödinger-Bopp-Podolsky, and where they come from, some historical facts and the

development of that type of system.

The physics uses few models to illustrate some more general principles, and a standard

way to develop a model is via the de�nition of a action as the integral of a determinated

Lagrangian. As an example of this approach, suppose Ω ⊂ R is a interval and f , which we

will refer to our action, and a functional of φ ∈ Ck(Ω), k ≥ 1, is of the form

f(φ) =

∫
Ω

F

(
x, φ(x),

dφ

dx

)
dt

and that F is called Lagrangian in the classic mechanics and density in �eld theory, associ-

ated with f , and we will replace this F by our Lagrangian. Then after some calculation, we

search for the extremuns of f . Then φ will be a extremun of f if and only if

∂F

∂φ
− d

dx

∂F

∂(dφ/∂x)
= 0.

A straightforward generalization of the above equation holds if Ω ⊂ Rn and then f has an

extremun at φ only if

∂F

∂φ
−

∑
k

d

dxk
∂F

∂(∂φ/∂xk)
= 0.

This is called the Euler-Lagrange equation in the calculus of variations (in our case, it

19
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just make sense for �elds), and some generalizations are drawn from it.

And this is not di�erent in this theory. The Bopp-Podolsky theory was developed inde-

pendently by Bopp and Podolsky. It is a second order gauge theory for the electromagnetic

�eld, and the theory re�nes the Maxwell theory. The coupling with the Schrödinger equation

(as well as in Maxwell-Schrödinger theory), it is used to describe the evolution of a charged

nonrelativistic quantum mechanical particle, interacting with its own eletromagnetic �eld.

As the Mie in [21] theory and its generalizations given by Born and In�eld in [9] and [20], it

was introduced to solve the so called in�nity problem that appears in the classical Maxwell

theory. Above we give some historical notes about the development and their creators. At the

end, we develop the Schrödinger-Bopp-Podolsky system using Lagrangians and a functional

named total action to give rise to our system.

3.0.1 Erwin Schrödinger

"The task is ... not so much to see what no one has yet seen; but to think what nobody has yet

thought, about that which everybody sees."

Erwin Schrödinger

1887 - 1961

Erwin Rudolf Josef Alexander Schrödinger, born in Erdberg, on 12 August 1887, at

Vienna, Austria-Hungary.

Just in 1920 he obtained a position equivalent to an a associate professor in Stuttgart.

After a long career he retired in 1955, in Dublin.

One of the most famous contributions to physics was the formulation of the Schrödinger

equation, in 1926, which describes how the quantum state of a physical system changes with
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the time.

iℏ
∂

∂t
Ψ(x, t) =

[
− ℏ2

2m

∂2

∂x2
+ V (x, t)

]
Ψ(x, t)

One of the formulations of the Schrödinger's equation.

Another great contribution was the so-called Cat's Schrödinger experiment, where the

objective is to illustrate the necessity of the interaction of an observer with the respective

measure that he wants.

In 1933 he shares with Paul Dirac the Nobel Prize in Physics by their solutions and

contributions to the atom physics.

Erwin died in 1961 by tuberculosis.

3.0.2 Boris Yakovlevich Podolsky

"I am happy to be able to tell you that I estimate Podolsky's abilities very highly. He is an

independent investigator of unquestionable talent." - Einstein about Boris.

Boris Yakovlevich Podolsky

1896-1966

Boris Yakovlevich Podolsky was a American-Russian physicist, born in Tangarog, Russia,

in 29 June of 1896. Even in your early years, he moved to the United States, in 1913, where

he would receive his Phd in Theoretical Physics from Caltech.

Along his your carrer, Podolsky works with several famous names of the sciences, Al-

bert Einstein, Paul Dirac, Nathan Rosen and Lev Landau are some of them. Here we gave

attention to his (supposedly) most famous result, the EPR paradox (Einstein-Podolsky-
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Rosen paradox), a thought experimental where the description of physical reality provided

by quantum mechanics was incomplete.

Just as a curiosity, some histories about a possible case of espionage by Boris during the

second war exists, but we will not enter in this matter.

Boris died in 1966. He worked in the Xavier University, Cincinnati until his death.

3.0.3 Friedrich Arnold "Fritz" Bopp

Friedrich Arnold "Fritz" Bopp

1909 - 1987

Friedrich Arnold "Fritz" Bopp was born in Frankfurt, in the German Empire in 27

December, 1909. He studied physics at the Goethe University Frankfurt and the University

of Göttingen. His Diplom thesis, a similar title as the bachelor's degree was obtained, under

supervision of the famous mathematician Hermann Weyl. He completed his doctoral in 1937

at Breslau University.

Bopp has worked in many places and projects during his career. For example, he was

a sta� scientist at the Kaiser-Wilhelm Instituts für Physik (actual Max Planck Institute

for Physics), German nuclear energy project, University of Tübingen, was president of the

Deutsche Physikalische Gesellschaft, the oldest organization of physicists, and others. He

wrote several books, edited and supplemented many others.

Bopp died aged 77, in 1987, at Munich.
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3.0.4 Deduction of Schrödinger equation, an example

The strategy is standard in physics. Through a Lagrangian density, we apply the Euler-

Lagrange equations and we obtain our system.

To explain this reasoning in a simpler way, �rst we deduce the Schrödinger equation,

cited in 3.0.1.

Example 3.0.1 (Schrödinger's equation). Let the �eld φ = φ(x, t) where x is the position of

some particle and t represents the time. Here we will use some abuse of notation, where we

will consider x = (x1(t), x2(t), x3(t)) and in the Lagrangian density, we will treat the partial

derivatives as "variables".

(1) First, let the Lagrangian density

L (x, φ,∇φ) = iℏ(φ̇φ∗ − φφ̇∗)− ℏ2

2m
∇φ∗∇φ− V φ∗φ, (3.1)

here φ∗ denotes the complex conjugate of φ and for the purpose of Lagrange's equations,

φ and φ∗ will be treated as independents �elds.

(2) The Euler-Lagrange equation in the �elds theory is given by

∂L
∂φ

=
∑
k

d

dxk

 ∂L

∂
(

∂φ
∂xk

)
 . (3.2)

This equation holds for φ and φ∗.

(3) Now, our work is to calculate the both sides of (3.2) using (3.1). We will show just in

the case of φ∗ and we obtain the Schrödinger's equation for φ.

(i)

∂L
∂φ∗ = iℏφ̇− V φ∗

(ii)

∂L

∂
(

∂φ
∂xk

) = − ℏ2

2m

∂φ

∂xk
⇒ d

dxk

 ∂L

∂
(

∂φ
∂xk

)
 = − ℏ2

2m

∂2φ

∂x2k
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(4) Now comparing the two expressions above we have

iℏφ̇− V φ =
∑
k

− ℏ2

2m

∂2φ

∂x2k
,

or simply

iℏ
∂

∂t
φ(x, t) = − ℏ2

2m

∑
k

∂2φ(x, t)

∂x2k
+ V (x, t)φ(x, t),

i.e. the Schrödinger's equation for the �eld φ(x, t).

3.0.5 The Schrödinger-Bopp-Podolsky system

Here we �nally show the deduction of the Schrödinger-Bopp-Posolky system, as showed

in [12].

First consider the nonlinear Schrödinger Lagrangian density

LSc = iℏψ∗ ∂

∂t
ψ − ℏ2

2m
|∇ψ|2 + 2

p
|ψ|p,

where ψ : R × R3 → C, ℏ,m, p > 0 and let (ϕ,A) be the gauge potential of the electro-

magnetic �eld (E,H) namely ϕ : R3 → R and A : R3 → R3 satisfy

E = −∇ϕ− 1

c

∂

∂t
A, H = ∇×A.

Making use of the minimal coupling rule, we couple the �eld ψ with the electromagnetic

�eld (E,H),i.e, the study of the interaction between of ψ with the electromagnetic �eld

generated by itself, just replacing in LSc the derivatives ∂
∂t

and ∇ respectively with the

covariant ones

Dt =
∂

∂t
+
iq

ℏ
ϕ, D = ∇− iq

ℏc
A,

where q is a coupling constant. Then we have the new coupled Lagrangian Schrödinger
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LCSc = iℏψ∗Dtψ − ℏ2

2m
|Dψ|2 + 2

p
|ψ|p

= iℏψ∗
(
∂

∂t
+
iq

ℏ
ϕ

) ∣∣∣∣(∇− iq

ℏc
A

)∣∣∣∣2 + 2

p
|ψ|p.

Now, to get the total Lagrangian density, we have to add to LCSc the Lagrangian density

of the electromagnetic �eld. For this, we make use of the Bopp-Podolsky Lagrangian density,

by the Formula (3.9) in [24] we have

LBP =
1

8π

{
|E|2 − |H|2 + a2

[
(divE)2 −

∣∣∣∣∇×H− 1

c

∂

∂t
E

∣∣∣∣2
]}

=
1

8π

{
|∇ϕ+

1

c

∂

∂t
A|2 − |∇ ×A|2

+a2

[(
∆ϕ+

1

c
div

∂

∂t
A

)2

−
∣∣∣∣∇×∇×A+

1

c

∂

∂t
(∇ϕ+

1

c

∂

∂t
A)

∣∣∣∣2
]}

.

Now, the total action

S(ψ, ϕ,A) =

∫
Ldxdt

will be de�ned using L := LCSc + LBP . Now, the Euler-Lagrange equations of the action S

are given by



iℏ
(
∂

∂t
+
iq

ℏ
ϕ

)
ψ +

ℏ2

2m

(
∇− iq

ℏc
A

)2

ψ + |ψ|p−2ψ = 0

−div
(
∇ϕ+

1

c

∂

∂t
A

)
+ a2

[
∆

(
∆ϕ+

1

c
div

∂

∂t
A

)
−1

c

∂

∂t
div

(
∇×∇×A+

1

c

∂

∂t
(∇ϕ+

1

c

∂

∂t
A

)]
= 4πq|ψ|2

− ℏq
mc

ℑ
[(

∇ψ∗ +
iq

ℏc
Aψ∗

)
ψ

]
− 1

4π

{
1

c

∂

∂t
(∇ϕ+

1

c

∂

∂t
A) +∇×∇×A

}
+
a2

4π

[
1

c
∇ ∂

∂t

(
∆ϕ+

1

c
div

∂

∂t
A

)
−∇×∇×∇×∇×A− 1

c2
∂2

∂t2
∇×∇×A

−1

c
∇×∇× ∂

∂t
(∇ϕ+

1

c

∂

∂t
A)− 1

c3
∂3

∂t3
(∇ϕ+

1

c

∂

∂t
A)

]
= 0
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Widely used in physics, considering ψ as standing waves in the form ψ(t, x) = eiS(t,x)u(t, x),

with S, u : R× R3 → R, the Euler Lagrange equations would look like



− ℏ2

2m
∆u+

[
ℏ2

2m

∣∣∣∇S − q

ℏc
A

∣∣∣2 + ℏ
∂

∂t
S + qϕ

]
u = |u|p−2u

∂

∂t
u2 +

ℏ
m
div

[(
∇S − q

ℏc
A
)
u2
]
= 0

−div
(
∇ϕ+

1

c

∂

∂t
A

)
+ a2

[
∆

(
∆ϕ+

1

c
div

∂

∂t
A

)
−1

c

∂

∂t
div

(
∇×∇×A+

1

c

∂

∂t
(∇ϕ+

1

c

∂

∂t
A

)]
= 4πq|u|2

ℏq
mc

(
∇S − q

ℏc
A
)
u2 − 1

4π

{
1

c

∂

∂t
(∇ϕ+

1

c

∂

∂t
A) +∇×∇×A

}
+
a2

4π

[
1

c
∇ ∂

∂t

(
∆ϕ+

1

c
div

∂

∂t
A

)
−∇×∇×∇×∇×A− 1

c2
∂2

∂t2
∇×∇×A

−1

c
∇×∇× ∂

∂t
(∇ϕ+

1

c

∂

∂t
A)− 1

c3
∂3

∂t3
(∇ϕ+

1

c

∂

∂t
A)

]
= 0.

Now, instead of using ψ(x, t) = eiS(t,x)u(t, x), we use standing waves of type ψ(t, x) =

e
iωt
ℏ u(x), in the practice, is just change S(t, x) by ωt

ℏ and u(t, x) by u(x). Then, analyzing

the system of equations above, we can notice the following:

(i) In the �rst equation

− ℏ2

2m
∆u+

 ℏ2

2m

∣∣∣∣∣∣∣∇(
ωt

ℏ
)− q

ℏc
A︸ ︷︷ ︸

=0

∣∣∣∣∣∣∣
2

+ ℏ
∂

∂t

ωt

ℏ
+ qϕ

u = |u|p−2u

− ℏ2

2m
∆u+

 ℏ2

2m

∣∣∣∣∣∣∣∇(
ωt

ℏ
)︸ ︷︷ ︸

=0

∣∣∣∣∣∣∣
2

+ ℏ
∂

∂t

ωt

ℏ
+ qϕ

u = |u|p−2u

− ℏ2

2m
∆u+ ωu+ qϕu = |u|p−2u (3.3)

(ii) In the second equation

∂

∂t
u2︸ ︷︷ ︸
0

+
ℏ
m
div


∇ωt

ℏ︸︷︷︸
=0

− q

ℏc
A︸︷︷︸

=0

u2

 = 0
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because u(x) does not depends on t. Then the second equation is satis�ed.

(iii) In the third equation

−div

∇ϕ+
1

c

∂

∂t
A︸ ︷︷ ︸

=0

+ a2

∆
∆ϕ+

1

c
div

∂

∂t
A︸ ︷︷ ︸

=0


−1

c

∂

∂t
div

∇×∇×A︸ ︷︷ ︸
=0

+
1

c

∂

∂t
(∇ϕ+

1

c

∂

∂t
A︸ ︷︷ ︸

=0


 = 4πq|u|2

−div (∇ϕ) + a2
[
∆(∆ϕ)− 1

c

∂

∂t
div

(
1

c

∂

∂t
(∇ϕ

)]
= 4πq|u|2

−div (∇ϕ)︸ ︷︷ ︸
=−∆ϕ

+a2

∆(∆ϕ)︸ ︷︷ ︸
=∆2ϕ

− 1

c

∂

∂t
div

(
1

c

∂

∂t
(∇ϕ

)
︸ ︷︷ ︸

=0

 = 4πq|u|2,

and then

−∆ϕ+ a2∆2ϕ = 4πqu2 (3.4)

(iv) In the fourth equation we have

ℏq
mc

∇ωt

ℏ
− q

ℏc
A︸︷︷︸

=0

u2 − 1

4π

1

c

∂

∂t
(∇ϕ+

1

c

∂

∂t
A︸ ︷︷ ︸

=0

) +∇×∇×A︸ ︷︷ ︸
=0


+
a2

4π

1

c
∇ ∂

∂t

∆ϕ+
1

c
div

∂

∂t
A︸ ︷︷ ︸

=0

−∇×∇×∇×∇×A︸ ︷︷ ︸
=0

− 1

c2
∂2

∂t2
∇×∇×A︸ ︷︷ ︸

=0

−1

c
∇×∇× ∂

∂t
(∇ϕ+

1

c

∂

∂t
A︸ ︷︷ ︸

=0

)− 1

c3
∂3

∂t3
(∇ϕ+

1

c

∂

∂t
A︸ ︷︷ ︸

=0

)

 = 0

ℏq
mc

∇ωt

ℏ︸︷︷︸
=0

u2 − 1

4π

1

c

∂

∂t
(∇ϕ)︸ ︷︷ ︸
=0

+
a2

4π

1

c
∇ ∂

∂t
(∆ϕ)︸ ︷︷ ︸

=0

−1

c
∇×∇× ∂

∂t
(∇ϕ)︸ ︷︷ ︸

=0

− 1

c3
∂3

∂t3
(∇ϕ)︸ ︷︷ ︸
=0

 = 0.

And then the fourth equation is satis�ed.
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Hence, the remaining equations (3.3) and (3.4) form the system


− ℏ2

2m
∆u+ ωu+ qϕu = |u|p−2u

−∆ϕ+ a2∆2ϕ = 4πqu2
(SBP )

which is called the Schrödinger-Bopp-Podolsky system.

In our work, we replace the constants
−ℏ2

2m
and a2 by perturbations ε and their respective

powers. We will also change the number ω by a potential V : R3 → R. In addition to this,

we study the case when instead of |u|p−2u, our nonlinearity is a given function f : R → R

satisfying some assumptions.



Chapter 4

Shrödinger-Bopp-Podolsky system in R3

In this chapter, by using the ideas developed originally in [7, 8, 28] we show existence

and multiplicity of positive solutions for the following problem in R3


−ε2∆w + V (x)w + ψw = f(w)

−ε2∆ψ + ε4∆2ψ = 4πεw2

(Pε)

whenever ε > 0 is a small parameter and f and V satisfy the assumptions given below.

In the mathematical literature, such a problem was introduced recently in [12] and de-

scribes the stationary states of the Schrödinger equation in the generalized electrodynamics

developed by Bopp and Podolsky. Roughly speaking, the system appears when one searches

for stationary solutions, namely solutions of type ψ(x, t) = u(x)eit, of the Schrödinger equa-

tion of a moving charged particle which interacts with its own purely electrostatic �eld, in the

case in which the generalized electromagnetic theory of Bopp-Podolsky is considered. The

reason to prefer the Bopp-Podolsky theory to the classical and more studied Maxwell theory,

is that in the �rst case the energy associated to a charged particle is �nite. In fact in the

Bopp-Podolsky generalized electrodynamic the equation of the electrostatic �eld generated

by a charge particle (let us say at rest in the origin) is

−∆ψ +∆2ψ = δ

and the fundamental solution K(x) = 1−e−1/|x|

|x| has �nite energy, being
∫
|∇K|2 +

∫
|∆K|2 <

29
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+∞. On the other hand in the Maxwell theory the equation of the electrostatic �eld is

−∆ψ = δ

and the fundamental solution A(x) = 1
|x| satis�es

∫
|∇A|2 = +∞, giving rise to the so-called

in�nity problem. Then the equations in system (Pε) have to be interpreted as

� a Schrödinger type equation (the �rst one) in presence of a �xed external potential V

and an "internal" potential ψ, and

� an equation (the second one) which says that the potential ψ has as source the same

wave function, being |ψ| = u2, justifying the term �internal�.

For the mathematical derivation of such a system and some related results concerning

di�erent conditions, we refer the reader to the recent papers [2, 12, 16, 27] where the problem

is studied under various conditions or even in a bounded domain.

In this work we assume that V and the nonlinearity f satisfy

(V1) V : R3 → R is a continuous function such that

0 < min
R3

V := V0 < V∞ := lim inf
|x|→+∞

V ∈ (V0,+∞],

with M = {x ∈ R3 : V (x) = V0} smooth and bounded,

(f1) f : R → R is a function of class C1 and f(t) = 0 for t ≤ 0,

(f2) limt→0
f(t)
t

= 0,

(f3) there exists q0 ∈ (3, 2∗ − 1) such that limt→+∞
f(t)
tq0

= 0, where 2∗ = 6,

(f4) there exists K > 4 such that 0 < KF (t) := K
∫ t

0
f(τ)dτ ≤ tf(t) for all t > 0,

(f5) the function t 7→ f(t)
t3

is strictly increasing in (0,+∞).

The assumptions on the nonlinearity f are standards in order to work with variational

methods, use the Nehari manifold and deal with the Palais-Smale condition.
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The assumption (V1) will be fundamental in order to estimate the number of positive

solutions and also to recover some compactness.

The main result of this work is:

Theorem 4.0.1. Under the above assumptions (V1), (f1)-(f5), there exists an ε∗ > 0 such

that for every ε ∈ (0, ε∗], problem (Pε) possesses at least catM positive solutions. Moreover,

if catM > 1, then (for a suitably small ε) there exist at least catM + 1 positive solutions.

In particular among these solutions there is the ground state, namely the solution with

minimal energy; this will be evident by the proof. Here catM := catMM is the Ljusternik-

Schnirelmann category and by positive solutions we mean a pair (u, ψ) with u positive, since

ψ will be automatically positive.

We point out that the assumption on the potential V is not too restrictive since it

is satis�ed by an interesting class which appear in physical models, such as the con�ning

potentials. There is then an interesting relation between the topology of the set of minima

of V and the number of solutions.

For example, for a potential of type

V (x) =


1 if |x| ≤ 1

|x|2 otherwise

the theorem states the existence of (at least) one solution for small ε, being M the unit

ball {x ∈ R3 : |x| ≤ 1} and catM = 1. On the other hand with the following double-well

potential

V (x) =


1 if π/2 ≤ |x| ≤ 3π/2 and 5π/2 ≤ |x| ≤ 7π/2

2 + cos |x| if 0 ≤ |x| ≤ π/2 and 3π/2 ≤ |x| ≤ 5π/2

|x|2 + 1− 49π2/4 if |x| ≥ 7π/2

the theorem states that there are at least three solutions for small ε, since M is the union of

the annuli {x ∈ R3 : π/2 ≤ |x| ≤ 3π/2} and {x ∈ R3 : 5π/2 ≤ |x| ≤ 7π/2} and catM = 2.

As a matter of notations, all the integrals, unless otherwise speci�ed, are understood
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on R3 with the Lebesgue measure. We denote with ∥ · ∥p the usual Lp norm. Finally on(1)

denotes a vanishing sequence and we use the letter C to denote a positive constant whose

value does not matter and can vary from line to line.

4.1 Preliminaries

Let us start by recalling some results that will be useful for our work. For more details

see [12].

Let D be the completion of C∞
0 (R3) with respect to the norm ∥ · ∥D induced by

< ϕ,ψ >D=

∫
∇ϕ∇ψ +

∫
∆ϕ∆ψ.

The space D is an Hilbert space continuously embedded into D1,2(R3) and consequently in

L6(R3). Moreover this space is embedded also into L∞(R3).

The following lemmas are used to justify a "reduction method" in order to deal with just

one equation.

Lemma 4.1.1. The space C∞
0 (R3) is dense in

A = {ϕ ∈ D1,2(R3) : ∆ϕ ∈ L2(R3)}

normed by
√
< ϕ, ϕ >D and, therefore, D = A.

Proof. The proof here follows the same steps of [12].

Let ϕ ∈ A and de�ne ρ ∈ C∞
0 (R3,R+), such that ∥ρ∥1 = 1, and {ρn} ⊂ C∞

0 the sequence

of molli�ers given by ρn(x) = n3ρ(nx). De�ne ϕn := ρn ∗ ϕ ∈ C∞(R3). Now using the

properties of molli�ers we have

∂iϕn = ρn ∗ ∂iϕ ∈ L2(R3), 1 ≤ i ≤ 3, ∆ϕn = ρn ∗∆ϕ ∈ L2(R3)

and

∥∇ϕn −∇ϕ∥2 → 0, ∥∆ϕn −∆ϕ∥2 → 0
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we have

ϕn ∈ C∞(R3) ∩ A and∥ϕn − ϕ∥D → 0. (4.1)

Let now ξ ∈ C∞ ∩ A, ζ ∈ C∞
0 (R3; [0, 1]) with ζ(x) = 1 in B(0, 1), supp(ζ) ⊂ B(0, 2) and

de�ne

ξn := ζ
( .
n

)
ξ ∈ C∞

0 (R3).

Di�erentiating we have

∇ξn = ζ
( .
n

)
∇ξ + 1

n
ξ∇ζ

( .
n

)
,

∆ξn = ζ
( .
n

)
∆ξ +

2

n
∇ξ∇ζ

( .
n

)
+

1

n2
ξ∆ζ

( .
n

)
.

Evaluating the integral

1

n2

∫
ξ2(x)

∣∣∣∇ζ (x
n

)∣∣∣2 ≤ 1

n2

(∫
|x|≥n

ξ6
) 1

3
(∫ ∣∣∣∇ζ (x

n

)∣∣∣3) 2
3

= C

(∫
|x|≥n

ξ6
) 1

3

→ 0

we can do the same calculation to conclude

2

n
∇ξ∇ζ

( .
n

)
,
1

n2
ξ∆ζ

( .
n

)
→ 0 in L2(R3),

as n→ +∞, then

∥∇ξ −∇ξn∥22 ≤ 2∥(1− ζ
( .
n

)
)∂iξ∥22 + on(1)

∥∆ξ −∆ξn∥22 ≤ 2∥(1− ζ
( .
n

)
)∆ξ∥22 + on(1)

which shows that ∥ξn−ξ∥D → 0. This convergence joint with (4.1.3) concludes the proof. ■

For every �xed u ∈ H1(R3), the Riesz theorem implies that there exists a unique solution

ϕε,u ∈ D, for the second equation in (Pε). Such a solution is given by ϕε,u = K ∗ u2, where

K(x) = ε
1− e−|x|

|x|
.

To simplify the notation, now we refer ϕε,u := ϕu. The next two lemmas plays an important

role about properties of our solution ϕu.
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Lemma 4.1.2. For every u ∈ H1(R3) we have:

i) ∀y ∈ R3, ϕu(.+y) = ϕu(.+ y);

ii) ϕu ≥ 0;

iii) ∀s ∈ (3,+∞], ϕu ∈ Ls(R3) ∩ C0(R3);

iv) ∀s ∈ (3/2,+∞],∇ϕu = ∇K ∗ u2 ∈ Ls(R3) ∩ C0(R3);

v) ∥ϕu∥6 ≤ C∥u∥2;

vi) ϕu is the unique minimizer of the functional

E(ϕ) =
1

2
∥∇ϕ∥22 +

1

2
∥∆ϕ∥22 −

∫
ϕu2, ϕ ∈ D.

Moreover,

vii) if vn ⇀ v in H1(R3), then ϕvn ⇀ ϕv in D.

Proof. See [12]

■

Arguing like in [22], we can de�ne the map

T : u ∈ H1(R3) 7→
∫
ϕuu

2 ∈ R,

where ϕu = K ∗ u2.

Then

|T (u)| ≤ εC∥u∥4. (4.2)

The next lemma is enunciated originally in [22], and an analogous result can be proved

for our problem. The proof follow the same steps.

Lemma 4.1.3. The following proposition hold.
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i) T is of class C2 and for every u, v, w ∈ H1(R3)

T ′(u)[v] = 4

∫
R3

ϕuuv, T ′′(u)[v, w] = 4

∫
R3

ϕuvw + 8

∫
R3

ϕu,wuv,

ii) if un → u in Lr(R3), with 2 ≤ r < 2∗, then T (un) → T (u);

iii) if un ⇀ u in H1(R3) then T (un − u) = T (un)− T (u) + on(1).

Proof. See [22]

■

4.2 The variational setting

After the change of variables u(x) := w(εx), ϕ(x) := ψ(εx) our problem can be written

as 
−∆u+ V (εx)u+ ϕu = f(u),

−∆ϕ+∆2ϕ = 4πεu2.

(P ∗
ε )

Hence the critical points of the functional

Iε(u, ϕ) =
1

2
∥∇u∥22 +

1

2

∫
V (εx)u2 +

1

2

∫
εϕu2 − 1

16π
∥∇ϕ∥22 −

1

16π
∥∆ϕ∥22 −

∫
F (u)

in H1(R3) × D are easily seen to be weak solutions of (P ∗
ε ); indeed such a critical point

(u, ϕ) ∈ H1(R3)×D satis�es

0 = ∂uIε(u, ϕ)[v] =

∫
∇u∇v +

∫
V (εx)uv +

∫
εϕuv −

∫
f(u)u, v ∈ H1(R3),

0 = ∂ϕIε(u, ϕ)[ξ] =
1

2

∫
εu2ξ − 1

8π

∫
∇ϕ∇ξ − 1

8π

∫
∆ϕ∆ξ, ξ ∈ D.

The next step is the usual reduction argument in order to deal with a one variable functional.

Noting that ∂ϕIε is a C
1 function and de�ning GΦ as the graph of the map Φ : u ∈ H1(R3) 7→
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ϕu ∈ D, an application of the Implicit Function Theorem gives

GΦ = {(u, ϕ) ∈ H1(R3)×D : ∂ϕIε(u, ϕ) = 0}, Φ ∈ C1(H1(R3),D).

Then

0 = ∂ϕIε(u,Φ(u)) =
1

2

∫
ϕuu

2 − 1

8π
∥∇ϕu∥22 −

1

8π
∥∆ϕu∥22

and substituting

−1

4

∫
ϕuu

2 = − 1

16π
∥∇ϕu∥22 −

1

16π
∥∆ϕu∥22

in the expression of Iε we obtain the functional

Iε(u) := Iε(u,Φ(u)) =
1

2
∥∇u∥22 +

1

2

∫
V (εx)u2 +

1

4

∫
ϕuu

2 −
∫
F (u).

This functional is of class C1 in H1(R3) and, for all u, v ∈ H1(R3):

I ′ε(u)[v] = ∂uIε(u,Φ(u))[v] + ∂ϕIε(u,Φ(u)) ◦ Φ′(u)[v]

= ∂uIε(u,Φ(u))[v]

=

∫
∇u∇v +

∫
V (εx)uv +

∫
ϕuuv −

∫
f(u)u.

Then it is easy to see that the following statements are equivalents:

i) the pair (u, ϕ) ∈ H1(R3)×D is a critical point of Iε, i.e. (u, ϕ) is a solution of (P ∗
ε );

ii) u is a critical point of Iε and ϕ = ϕu.

Then, solving (P ∗
ε ) is equivalent to �nd critical points of Iε, i.e., to solve

−∆u+ V (εx)u+ ϕuu = f(u) in R3.

Let us de�ne the Hilbert space

Wε =

{
u ∈ H1(R3) :

∫
V (εx)u2 < +∞

}
,
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endowed with the scalar product and (squared) norm given by

(u, v)ε =

∫
∇u∇v +

∫
V (εx)uv,

and

∥u∥2ε =
∫

|∇u|2 +
∫
V (εx)u2.

We will �nd the critical points of Iε in Wε.

De�ning the Nehari manifold associated to Iε,

Nε = {u ∈ Wε \ {0} : Jε(u) = 0} ,

where

Jε(u) = I ′ε(u)[u] = ∥u∥2ε +
∫
ϕuu

2 −
∫
f(u)u,

we have the following lemma.

Lemma 4.2.1. For every u ∈ Nε, J
′
ε(u)[u] < 0 and there are positive constants hε, kε, such

that ∥u∥ε ≥ hε, Iε(u) ≥ kε. Moreover, Nε is di�eomorphic to the set

Sε = {u ∈ Wε : ∥u∥ε = 1, u > 0 a.e.}.

Proof. Let`s split the proof in two parts:

Part 1: J ′
ε(u)[u] < 0.

We notice �rst that

meas{x ∈ R3 : u(x) > 0} > 0,

in fact, for every u ≤ 0, by (f1) and Jε(u) = 0, we have

Jε(u) = 0 ⇐⇒
∫

|∇u|2 +
∫
V (εx)u2 +

∫
ϕuu

2 −
∫
f(u)u︸ ︷︷ ︸

=0

= 0

⇐⇒
∫

|∇u|2 +
∫
V (εx)u2 +

∫
ϕuu

2 = 0

and hence u = 0 almost everywhere.
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Now,

u ∈ Nε ⇐⇒ Jε(u) = 0 ⇐⇒ 4

∫
ϕuu

2 = 4

∫
f(u)u− 4∥u∥2ε (4.3)

Then,

J ′
ε(u)[u] = 2∥u∥2ε + 4

∫
ϕuu

2︸ ︷︷ ︸
(4.3)

−
∫
f ′(u)u2 −

∫
f(u)u

= 2∥u∥2ε + 4

∫
f(u)u− 4∥u∥2ε −

∫
f ′(u)u2 −

∫
f(u)u

= −2∥u∥2ε + 3

∫
f(u)u−

∫
f ′(u)u2

≤ 3

∫
f(u)u−

∫
f ′(u)u2

=

∫ [
3f(u)u− f ′(u)u2

]
(4.4)

For the completeness of the argument, the hypothesis (f5) can be interpreted as

d

dt

(
f(t)

t3

)
> 0 for t > 0,

and developing this inequality, we have

3f(t)t− f ′(t)t2 < 0 for t > 0.

So we conclude (4.4) < 0, or just

J ′
ε(u)[u] < 0.

Part 2: The majorants and the di�eomorphism.

For all ū ∈ Sε let αε(ū) the positive number that reaches the maximum of the function

λ 7→ Iε(λū) de�ned in R+. Now we show that αε(ū) is well de�ned. In fact , maxλ∈R+ Iε(λū)

is achieved, by (f2) and (f3), Iε(u) has a local minimum in 0 and by (f4), we have F (t) ≥

CtK , C > 0, K > 4, and then

lim
λ→∞

Iε(λū) = −∞.
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Then the maximum is achieved.

Now, the uniqueness of αε(ū) follows by

0 =
∂

∂λ
Iε(λū) = λ∥ū∥2ε + λ3

∫
ϕūū

2 −
∫
f(λū)ū

⇐⇒ 1

λ2
∥ū∥2ε +

∫
ϕūū

2 =
1

λ3

∫
f(λū)ū.

By (f5), 1
λ3f(λū)ū is strictly increasing and the uniqueness is guaranteed.

Clearly αε(ū)ū ∈ Nε. Consequently, Nε is the image of the function ψε : Sε → Nε de�ned

by

ψε(u) = αε(ū)ū.

By the implicit function theorem and the fact of J ′
ε(u)[u] < 0, ψε and αε are functions of

class C1. The fact of ∥u∥2ε ≥ hε is a consequence of the de�nition of αε and the fact that 0

is a local minimum for Iε.

Now considering u ∈ Nε, and by (f4), K > 4, we have

Iε(u) =
1

2
∥u∥2ε +

1

4

∫
ϕuu

2 −
∫
F (u)

≥ 1

2
∥u∥2ε +

1

4

∫
ϕuu

2 − 1

K

∫
f(u)u

=
1

2
∥u∥2ε +

1

4

∫
ϕuu

2 − 1

K
∥u∥2ε −

1

K

∫
ϕuu

2

=

(
1

2
− 1

K

)
∥u∥2ε +

(
1

4
− 1

K

)∫
ϕuu

2

≥
(
1

2
− 1

K

)
∥u∥2ε ≥ kε.

And the proof is �nished. ■

By the assumptions on f , the functional Iε has the Mountain Pass geometry shown below:

(MP1) Iε(0) = 0;

(MP2) due to (f2) and (f3), for all ξ > 0 there exists Mξ > 0 such that

F (u) ≤ ξu2 +Mξ|u|q0+1.



40 SHRÖDINGER-BOPP-PODOLSKY SYSTEM IN R3 4.2

Knowing that ϕu > 0 (for u ̸= 0)

Iε(u) ≥ 1

2
∥u∥2ε −

∫
F (u) ≥ 1

2
∥u∥2ε − ξ∥u∥22 −Mξ∥u∥q0+1

q0+1

≥ 1

2
∥u∥2ε − ξC1∥u∥2ε −MξC2∥u∥q0+1

ε ,

and then, for ∥u∥2ε = ρ small enough, we conclude that Iε has a strict local minimum

at u = 0.

(MP3) By (f4) we have F (t) ≥ CtK where C > 0 and K > 4. Fixed v ∈ C∞
0 (R3), v > 0, we

have ϕtv = t2ϕv and then

Iε(tv) =
t2

2
∥v∥2ε +

t4

4

∫
ϕvv

2 −
∫
F (tv) ≤ t2

2
∥v∥2ε +

t4

4

∫
ϕvv

2 − CtK
∫
vK .

So, with t big enough, we get Iε(tv) < 0.

Denoting by

cε = inf
γ∈Hε

sup
t∈[0,1]

Iε(γ(t)), Hε = {γ ∈ C([0, 1],Wε) : γ(0) = 0, Iε(γ(1)) < 0},

the Mountain Pass level, and with

mε = inf
u∈Nε

Iε(u)

the ground state level, we know by [29] that

cε = mε = inf
u∈Wε\{0}

sup
t≥0

Iε(tu). (4.5)

4.2.1 The problem at in�nity

Let us consider the �limit� problem (the autonomous problem) associated to (P ∗
ε ), that

is,

−∆u+ µu = f(u) in R3 (Aµ)
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where µ > 0 is a constant. The solutions are critical points of the functional

Eµ(u) =
1

2

∫
|∇u|2 + µ

2

∫
u2 −

∫
F (u),

in H1(R3). We will denote with H1
µ(R3) simply the space H1(R3) endowed with the (equiv-

alent squared) norm

∥u∥2H1
µ(R3) := ∥∇u∥22 + µ∥u∥22.

By the assumptions of the nonlinearity f , it is easy to see that the functional Eµ has the

Mountain Pass geometry (similarly to Iε), with Mountain Pass level

c∞µ := inf
γ∈Hµ

sup
t∈[0,1]

Eµ(γ(t)),

Hµ :=
{
γ ∈ C([0, 1], H1

µ(R3)) : γ(0) = 0, Eµ(γ(1)) < 0
}
.

Introducing the set

Mµ :=

{
u ∈ H1(R3) \ {0} : ∥u∥2H1

µ
=

∫
f(u)u

}
,

it is standard to see that (like in Lemma 4.2.1):

� Mµ has the structure of a di�erentiable manifold (said the Nehari manifold associated

to Eµ);

� Mµ is bounded away from zero and radially homeomorphic to the subset of positive

functions on the unit sphere (a kind of Sε, see Lemma 4.2.1);

� the Mountain Pass level c∞µ coincides with the ground state level

m∞
µ := inf

u∈Mµ

Eµ(u) > 0.

In the next sections, we will mainly deal with µ = V0 and µ = V∞, when �nite. It is easy

to see that mε ≥ m∞
V0
.



42 SHRÖDINGER-BOPP-PODOLSKY SYSTEM IN R3 4.3

4.3 Compactness properties for Iε, Eµ

and the existence of a ground state solution

Let us start by showing the boundedness of the Palais-Smale sequences for Eµ in H1
µ(R3)

and Iε in Wε. Let {un} ⊂ H1
µ(R3) be a Palais-Smale sequence for Eµ, that is, |Eµ(un)| ≤ C

and E ′
µ(un) → 0. Then, for large n,

Eµ(un)−
1

K
E ′

µ(un)[un] =
1

2
∥un∥2H1

µ
−
∫
F (un)−

1

K
∥un∥2H1

µ
+

1

K

∫
f(un)un

=

(
1

2
− 1

K

)
∥un∥2H1

µ
+

1

K

∫
[f(un)un −KF (un)]

≥
(
1

2
− 1

K

)
∥un∥2H1

µ
.

Since, on the other hand

∣∣∣∣Eµ(un)−
1

K
E ′

µ(un)[un]

∣∣∣∣ ≤ |Eµ(un)|+
1

K
|E ′

µ(un)|∥un∥H1
µ

< C +
1

K
|E ′

µ(un)|∥un∥H1
µ
,

we conclude that {un} is bounded.

Arguing similarly we conclude that any Palais-Smale sequence {un} for Iε is bounded in

Wε.

In order to prove compactness, we need some preliminaries lemmas. The next lemma is

a technical lemma, mostly known by Lions Lemma, for completenes of this work, we give

the proof of this famous result.

Lemma 4.3.1. If {un} is bounded in H1(R3) and for some R > 0 and 2 ≤ q < 2∗ = 6, if

we have

sup
x∈R3

∫
BR(x)

|un|q → 0 as n→ ∞,

then un → 0 in Lp(R3) for 2 < p < 2∗.

Proof. Let q < s < 2∗ and u ∈ H1(R3). By the interpolation inequality (Hölder) and the
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Sobolev embeddings

∥u∥Ls(BR(x)) ≤ ∥u∥1−λ
Lq(BR(x))∥u∥

λ
L2∗ (BR(x))

≤ c∥u∥1−λ
Lq(BR(x))

[∫
BR(x)

(|u|2 + |∇u|2)
]λ

2

≤ c∥u∥1−λ
Lq(BR(x))∥u∥

λ
2

H1(BR(x))

where

1

s
=

λ

2∗
+

1− λ

q
=⇒ λ =

2∗

s

(
s− q

2∗ − q

)
.

Choosing λ = 2
s
and taking the s- power in both sides we obtain

∫
BR(x)

|u|s ≤ cs∥u∥(1−λ)s
Lq(BR(x))∥u∥

2
H1(BR(x)).

Now covering R3 by balls of radius R, in such a way that each point of R3 is contained

in at most 4 balls, we �nd

∫
R3

|u|s ≤ 4cs sup
x∈R3

[∫
BR(x)

|u|q
](1−λ) s

q
∫
R3

(|u|2 + |∇u|2).

Under the assumption of the lemma, we have

∫
R3

|u|s ≤ 0 ⇒ un → 0 in Ls(R3).

Since 2 < s < 2∗, then un → 0 in Lp(R3) for 2 < p < 2∗. ■

The next results are proved as in [22].

Lemma 4.3.2. Let {un} ⊂ Wε be bounded and such that I ′ε(un) → 0. Then, we have either

a) un → 0 in Wε, or

b) there exist a sequence {yn} ⊂ R3 and constants R, c > 0 such that

lim inf
n→+∞

∫
BR(yn)

u2n ≥ c > 0.
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Proof. Let`s suppose that b) does not occur. Then we have the boundedness of {un} in

L2(R3).

We know that I ′ε(un) → 0, then we are in the assumptions of Lemma 4.3.1, hence un → 0

in Lp(R3) for p ∈ (2, 2∗).

Now using

∀ξ > 0,∃Mξ > 0 :

∫
f(u)u ≤ ξ

∫
u2 +Mξ

∫
|u|q0+1,∀u ∈ H1(R3) (4.6)

and the fact of un → 0 in Lq0+1, does not exist a sequence such that lim inf
∫
u2n > 0, then

0 ≤
∫
f(un)un ≤ on(1) −→ f(un)un → 0, n→ +∞

consequently

∥un∥2ε −
∫
f(un)un ≤ ∥un∥2ε +

∫
ϕuu

2 −
∫
f(un)un = I ′ε(un)[un] = on(1). (4.7)

Then un → 0 in Wε.

■

In the rest of this work, we assume, without loss of generality, that 0 ∈ M , that is,

V (0) = V0.

Lemma 4.3.3. Assume that V∞ < ∞ and let {vn} ⊂ Wε be a (PS)d sequence for Iε such

that vn ⇀ 0 in Wε. Then vn ↛ 0 in Wε implies d ≥ m∞
V∞ .

Proof. Observe that by the condition (V 1):

∀ξ > 0,∃R̃ = Rξ > 0 : V (εx) > V∞ − ξ, ∀x /∈ BR̃.

Let {tn} ⊂ (0,+∞) be such that {tnvn} ⊂ MV∞ . We begin showing the following

Claim: The sequence {tn} satis�es lim supn→∞ tn ≤ 1.

Let's suppose by contradiction that this claim does not hold, then there exists δ > 0 and

a subsequence {tnj
} such that

tnj
≥ 1 + δ, ∀n ∈ N. (4.8)
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Since we know that {vn} is bounded, a (PS)d sequence for Iε, and I
′
ε(vn)[vn] = on(1), that

is

∥vn∥2ε +
∫
ϕvnv

2
n =

∫
f(vn)vn + on(1).

Furthermore, {tnvn} ⊂ MV∞ , then

∥tnj
vn∥2H1

V∞
=

∫
f(tnj

vn)tnj
vn ⇐⇒

∫
|∇vn|2 +

∫
V∞v

2
n =

∫
f(tnj

vn)vn

tnj

Subtracting the equations above we have

∫
[f(tnj

vn)tnj
vn − f(vn)vn] = ∥tnj

vn∥2H1
V∞

− ∥vn∥2ε −
∫
ϕvnv

2
n + on(1)∫

[f(tnj
vn)tnj

− f(vn)]vn = t2nj

[∫
|∇vn|2 + V∞

∫
v2n

]
−
∫

|∇vn|2 −
∫
V (εx)u2 −

∫
ϕvn + on(1)∫ [

f(tnj
vn)

tnj

− f(vn)

]
vn =

∫
(V∞ − V (εx))v2n −

∫
ϕvnv

2
n + on(1) (4.9)

Since
∫
ϕvnv

2
n ≥ 0, then

∫ [
f(tnj

vn)

tnj

− f(vn)

]
vn ≤

∫
(V∞ − V (εx))v2n + on(1)

Using (4.8), the fact of vn → 0 in L2(BR̃) and {vn} be bounded in Wε, by (4.9) we conclude

∀ξ > 0 :

∫ [
f(tnj

vn)

tnj

− f(vn)

]
vn ≤ ξC + on(1). (4.10)

How vn ↛ 0 in Wε, by the Lemma 4.3.2 we can obtain {yn} ⊂ R3, R, c > 0, such that

∫
BR(yn)

v2n ≥ c > 0 (4.11)

De�ning ṽnj
:= (. + yn), we can suppose, up to a subsequence, ṽnj

⇀ ṽn in H1(R3) and

by (4.11) that there exists Ω ⊂ R3 with positive measure such that ṽ > 0 in Ω. By (f5),
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(4.11), (4.10) can be rewriten as

0 <

∫ [
f((1 + δ)ṽn)

(1 + δ)ṽn
− f(ṽn)

ṽn

]
ṽn

2 ≤ ξC + on(1).

Taking the limit in n and applying the Fatou's lemma, we have with ∀ξ > 0

0 <

∫ [
f((1 + δ)ṽ)

(1 + δ)ṽ
− f(ṽ)

ṽ

]
ṽ2 ≤ ξC + on(1),

an absurd, which proves the claim.

Case 1: lim supn→∞ tn = 1

We can suppose, up to a subsequence, that tn → 1. Then

d+ on(1) = Iε(vn).

Using that m∞
V∞ − EV∞(tnvn) < 0:

d+ on(1) = Iε(vn) ≥ m∞
V∞ + Iε(vn)− EV∞(tnvn) (4.12)

Furthermore

Iε(vn)− EV∞(tnvn) =
1

2

∫
|∇vn|2 +

1

2

∫
V (εx)v2n +

1

4

∫
ϕvnv

2
n −

∫
F (vn)

−1

2

∫
|∇tnvn|2 −

V∞
2

∫
t2nv

2
n +

∫
F (tnvn)

=
(1− t2n)

2

∫
|∇vn|2︸ ︷︷ ︸

→0

+
1

2

∫
(V (εx)− t2nV∞)v2n +

1

4

∫
ϕvnv

2
n︸ ︷︷ ︸

≥0

+

∫
[F (tnvn)− F (vn)]
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We will majorate 1
2

∫
(V (εx)− t2nV∞)v2n using V (εx) > V∞ − ξ, ∀x /∈ BR̃:

1

2

∫
R3

(V (εx)− t2nV∞)v2n =

∫
R3

V (εx)v2n − t2n

∫
R3

V∞v
2
n

≥
∫
Bc

R̃

(V∞ − ξ)v2n +

∫
BR̃

V (εx)v2n︸ ︷︷ ︸
on(1)

−t2n
∫
BR̃

V∞v
2
n − t2n

∫
Bc

R̃

V∞v
2
n

=

∫
Bc

R̃

V∞(1− t2n)v
2
n︸ ︷︷ ︸

→0

+on(1)− ξ

∫
Bc

R̃

v2n − t2n

∫
BR̃

V∞v
2
n︸ ︷︷ ︸

>−c

≥ on(1)− ξ

∫
Bc

R̃

v2n

≥ −ξC.

Then holds

Iε(vn)− EV∞(tnvn) ≥ on(1)− Cξ +

∫ (
F (tnvn)− F (vn)

)
,

by the Mean Value Theorem for integrals

∫ (
F (tnvn)− F (vn)

)
= on(1),

then (4.12) have the form

d+ on(1) ≥ m∞
V∞ − Cξ + on(1)

and how ξ is arbitrary, taking the limit in n we have

d ≥ m∞
V∞ .

Case 2: lim supn→∞ tn = t0 < 1

We can assume that tn → t0 and tn < 1.

Since the application t 7→ 1
4
f(t)t− F (t) > 0 by (f4) in (0,∞) (remembering that {tnvn} ⊂

MV∞):
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m∞
V∞ ≤ EV∞(tnvn) =

1

2

∫
|∇tnvn|2 +

V∞
2

∫
t2nv

2
n︸ ︷︷ ︸

= 1
2

∫
f(tnvn)tnvn

−
∫
F (tnvn)

=

∫ [
1

2
f(tnvn)tnvn − F (tnvn)

]
=

∫
1

4
f(tnvn)tnvn︸ ︷︷ ︸

{tnvn}⊂MV∞↓

+

∫ [
1

4
f(tnvn)tnvn − F (tnvn)

]

=
1

4
∥tnvn∥2H1

V∞
+

∫ [
1

4
f(tnvn)tnvn − F (tnvn)

]
≤ 1

4
∥tnvn∥2H1

V∞
+

∫ [
1

4
f(vn)vn − F (vn)

]
since tnvn ≤ vn (4.13)

But

∥tnvn∥2H1
V∞

=

∫
|∇tnvn|2 + V∞

∫
t2nv

2
n

(tnvn<vn)

≤
∫

|∇vn|2 +
∫
t2nV∞v

2
n (4.14)

Using (4.8)

t2nV∞ − ξ < V∞ − ξ < V (εx) for x /∈ BR̃,

then

∫
R3

t2nV∞v
2
n =

∫
BR̃

t2nV∞v
2
n +

∫
Bc

R̃

t2nV∞v
2
n

≤
∫
Bc

R̃

V∞v
2
n +

∫
Bc

R̃

V (εx)v2n + ξ

∫
Bc

R̃

v2n , using the boundedness of vn

≤ on(1) +

∫
R3

V (εx)v2n + Cξ.

Putting the inequality above with (4.14) we have

∥tnvn∥2H1
V∞

≤ ∥vn∥2ε + Cξ + on(1).
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And �nally using (4.13)

m∞
V∞ ≤ 1

4
∥vn∥2ε +

∫ [
1

4
f(vn)vn − F (vn)

]
+ Cξ + on(1)

=
1

4

∫
|∇vn|2 +

1

4

∫
V (εx)v2n +

1

4

∫
f(vn)vn −

∫
F (vn) + Cξ + on(1)

= I(vn)︸ ︷︷ ︸
→d

−1

4
I ′ε(vn)[vn]︸ ︷︷ ︸

→0

+Cξ + on(1)

= d+ Cξ + on(1)

And we conclude

m∞
V∞ ≤ d.

■

Then the Palais-Smale condition holds:

Proposition 4.3.4. The functional Iε in Wε satis�es the (PS)c condition

1. at any level c < m∞
V∞, if V∞ <∞,

2. at any level c ∈ R, if V∞ = ∞.

Proof. Let {un} ⊂ Wε such that Iε(un) → c and I ′ε(un) → 0. We already saw that {un} is

bounded in Wε. Then exists u ∈ Wε such that, up to a subsequence, un ⇀ u in Wε. Note

that I ′ε(u) = 0. By the lemma 4.1.3, item (i) we have for all w ∈ Wε

(un, w)ε → (u,w)ε, A′(un)[w] → A′(u)[w] and

∫
f(un)w →

∫
f(u)w.

De�ning vn := un − u

∫
F (vn) =

∫
F (u)−

∫
F (un) + on(1)

Arguing as in [11], Lemma 3.3 and [3] Proposition 2.1, we have

I ′ε(vn) = 0
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Furthermore

Iε(vn) = Iε(un)− Iε(u) + on(1) = c− Iε(u) + on(1) := d+ on(1).

Then, Iε(vn) → d, Iε(vn) → 0, lead us to conclude that {vn} is a (PS)d sequence for Iε.

Now

Iε(u) = Iε(u)−
1

4
I ′ε(u)[u]︸ ︷︷ ︸

it is valid since I′ε(u)=0

=
1

4
∥u∥2ε︸ ︷︷ ︸
≥0

+

∫ (
1

4
f(u)u− F (u)

)

≥ 1

4

∫
(f(u)u− 4F (u))

≥ 0.

Then Iε(u) ≥ 0 implies d ≤ c.

1. If V∞ <∞ and c < m∞
V∞ we have

d ≤ c < m∞
V∞ .

In this case Lemma 4.3.3 guarantees that vn → 0, or just

un → u in Wε,

i.e., un → u, Iε(un) → c and I ′ε(un) → 0.

Then un possesses a convergent subsequence, so it is a (PS)c sequence for Iε.

2. If V∞ = ∞, from the compact immersion Wε ↪→↪→ Lr(R3), 2 ≤ r < 2∗ up to a

subsequence we have vn → 0 in Lr(R3), then I ′ε(vn) → 0 leads us to

I ′ε(vn)[vn] = ∥vn∥2ε︸ ︷︷ ︸
→0

+

∫
ϕvnv

2
n︸ ︷︷ ︸

→0

−
∫
f(vn)vn︸ ︷︷ ︸
→0

= on(1). (4.15)
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By the Lemma 4.1.3, (ii), A(vn) → A(v) = A(0).

Now A(vn) =
∫
ϕε,vnv

2
n = on(1), and

∫
f(vn)vn ≤ ξ

∫
v2n +Mξ

∫
|vn|q0+1, (4.16)

putting (4.15) and (4.16), we conclude ∥vn∥2ε = on(1), i.e. un → u in Wε.

Consequently, {un} is a (PS)c sequence, for all c ∈ R.

■

Then we have

Proposition 4.3.5. The functional Iε restricted to Nε satis�es the (PS)c condition:

1. at any level c < m∞
V∞, if V∞ <∞,

2. at any level c ∈ R, if V∞ = ∞.

Moreover the constrained critical points of the functional Iε on Nε are critical points of Iε

in Wε, hence solution of (P ∗
ε ).

In order to prove our main result, we recall the lemma contained in [15] about the problem

(Aµ):

Lemma 4.3.6 (Ground state for the autonomous problem). Let {un} ⊂ Mµ be a sequence

satisfying Eµ(un) → m∞
µ . Then, up to subsequences the following alternative holds:

a) {un} strongly converges in H1(R3);

b) there exists a sequence {ỹn} ⊂ R3 such that un(.+ ỹn) strongly converges in H1(R3).

In particular, there exists a minimizer mµ ≥ 0 for m∞
µ .

Now we can prove the existence of a ground state solution for our problem. This is a

result like [15, Theorem 1].

Theorem 4.3.7. Suppose that V and f verify (V1) and (f1)-(f5). Then there exists a ground

state solution uε ∈ Wε of (P ∗
ε ):
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1. for every ε ∈ (0, ε̄], for some ε̄ > 0, if V∞ <∞;

2. for every ε > 0, if V∞ = ∞.

Proof. As we see Iε has the Mountain Pass geometry inWε, then exists {un} ⊂ Wε satisfying

Iε(un) → cε, I ′ε(un) → 0.

1. If V∞ < ∞, by Proposition 4.3.4 we just have to show that cε < m∞
V∞ , for all ε > 0

less than ε̄.

Let µ ∈ (V0, V∞), then

m∞
V0
< m∞

µ < m∞
V∞ (4.17)

For r > 0, let ηr be a smooth cut-o� function in R3 witch is equal 1 in Br and with

support in B2r.

Let ωr := ηrmµ and sr > 0 be such that srωr ∈ Mµ.

So, for all r > 0


Eµ(srωr) ≥ m∞

V∞ ;

ωr → mµ in H1(R3), r → ∞ ⇒ m∞
V∞ ≤ lim infr→∞Eµ(srωr) = Eµ(mµ) = m∞

µ ;

sr → 1

which contradicts the Inequality (4.17).

This means that there exists r̄ > 0 such that ω := sr̄ωr̄ = sr̄ηr̄mr̄ ∈ Mµ satisfying

Eµ(ω) < m∞
V∞ . (4.18)

Let ε > 0 and tε > 0 be the numbers such that tεω ∈ Nε, and consequently

t2ε∥ω∥2ε + t4ε

∫
ϕωω

2 = tε

∫
f(tεω)ω,

what implies
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∥ω∥2ε
t2ε

+

∫
ϕωω

2 =

∫
f(tεω)

(tεω)3
ω4

≥
∫
Br̄

f(tεω)

(tεω)3
ω4. (4.19)

Then we claim the existence of a T > 0 such that lim supε→0+ tε ≤ T . If by contradic-

tion there exists an εn → 0+ with tεn → ∞, so by (4.19) and (f5)

∥ω∥2εn
t2εn

+

∫
ϕωω

2 ≥ f(tεnω(x̄))

(tεnω(x̄))
3

∫
Br̄

ω4, (4.20)

where ω(x̄) := minBr̄ ω(x) > 0.

Passing to the limit in n, by (f4) the right hand side of (4.20) tends to ∞, while the

left side is limited, witch is an absurd.

As a consequence, there exist ε1 > 0 such that

∀ε ∈ (0, ε1] : tε ∈ (0, T ]. (4.21)

The condition (V 1) implies the existence of a ε2 > 0 such that

∀ε ∈ (0, ε2] : V (εx) ≤ V0 + µ

2
, ∀x ∈ supp ω (4.22)

Now, de�ne

ε3 :=
(µ− V0)|ω|22
CT 2∥ω∥4

where the constant C is the same of (4.2). Hence in particular

∀ε ∈ (0, ε3] :

∫
ϕωω

2 ≤ C∥ω∥4 (4.23)

and

T 2C∥ω∥4 ≤ (µ− V0)

∫
ω2 (4.24)
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De�ning ε̄ := min{ε1, ε2, ε3} and make use of (4.21) - (4.24) we have for every ε ∈ (0, ε̄]:

∫
V (εx)ω2 +

t2ε
2

∫
ϕωω

2 ≤ V0 + µ

2
|ω|22 +

1

2
T 2C∥ω∥4

≤ V0 + µ

2
|ω|22 +

µ− V0
2

|ω|22 = µ

∫
ω2

from what we have Iε(tεω) ≤ Eµ(tεω). Consequently, using (4.5) and (4.18),

cε ≤ Iε(tεω) ≤ Eµ(tεω) ≤ Eµ(ω) < m∞
V∞

and we conclude cε < m∞
V∞ , what concludes the proof of the case 1.

2. If V∞ = ∞, by proposition 4.3.4 the sequence {un} strongly converges for some uε in

H1(R3), satisfying

Iε(uε) = cε

and

I ′ε(uε) = 0

i.e. uε is the ground state solution we are searching for.

Thereby the proof is complete for both cases.

■

4.4 Proof of Theorem 4.0.1

We follow the steps as in [15], to which we refer for the proofs. Let us start with a

fundamental result.

Lemma 4.4.1. Let εn → 0+ and un ∈ Nεn be such that Iεn(un) → m∞
V∞. Then there exists a

sequence {ỹn} ⊂ R such that un(.+ ỹn) has a convergent subsequence in H1(R3). Moreover,

up to a subsequence, yn := εnỹn → y ∈M.
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Proof. We begin showing that {un} is bounded in H1
V0
(R3). Recall that ∥u∥2

H1
V0

= |∇u|22 +

V0|u|22.

By assumptions we have I ′εn(un)[un] = 0 and Iεn(un) → m∞
V∞ . Then

I ′εn(un)[un]0 ⇐⇒ ∥un∥2εn +

∫
ϕunu

2
n =

∫
f(un)un, (4.25)

and

Iεn(un) → m∞
V0

⇐⇒ 1

2
∥un∥2εn +

1

4

∫
ϕunu

2
n −

∫
F (un) = m∞

V0
+ on(1)

which combined

1

4

∫
f(un)un =

1

4
∥un∥2εn +

1

4

∫
ϕunu

2
n

1

4

∫
f(un)un −

∫
F (un) =

1

4

(
∥un∥2εn +

∫
ϕunu

2
n

)
−
∫
F (un).

Since

1

4

(
∥un∥2εn +

∫
ϕunu

2
n

)
−

∫
F (un) ≤

1

2
∥un∥2εn +

1

4

∫
ϕunu

2
n −

∫
F (un)

we have

1

4

∫
f(un)un −

∫
F (un) ≤ m∞

V0
+ on(1)

Now using (f4) we get

0 ≤
(
1

4
− 1

K

)∫
f(un)un ≤ m∞

V0
+ on(1)

and coming back to (4.25), we have for some positive constant C, independent on n

∥un∥H1
V0

≤ ∥un∥εn ≤ C. (4.26)

We prove the following

Claim 1: There exists {ỹn} ⊂ R3, and R, c > 0 such that

lim inf
n→∞

∫
BR(ỹn)

u2n ≥ c > 0.
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If it was not the case then

limn→∞supy∈R3

∫
BR(y)

u2n = 0, for every R > 0.

By Lemma 4.3.2, we have un → 0 in Lp(R3) for 2 < p < 2∗, then

∫
R3

f(un)un → 0.

Therefore, ∥un∥2ε +
∫
R3 ϕunu

2
n = on(1), and we have too

0 ≤
∫
F (un) ≤

1

K

∫
f(un)un.

then we conclude
∫
F (un) = on(1). Consequently by our �rst assumption

lim
n→∞

Iεn(un) = m∞
V0

= 0,

which is a contradiction, and the claim is proved.

By (4.26) the sequence vn := un(.+ ỹn) is also bounded in H1(R3) and

vn ⇀ v ̸= 0 in H1(R3) (4.27)

because the claim 1 give us

∫
BR

v2 = lim inf
n→∞

∫
BR

v2n = lim inf
n→∞

∫
BR(ỹn)

u2n ≥ c > 0.

De�ne now tn > 0 be such that ṽn := tnvn ∈ MV0 . The next step is to prove

EV0(ṽn) → m∞
V0
. (4.28)
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First note that

m∞
V0

≤ EV0(ṽn) =
1

2
∥ṽn∥2H1

V0

−
∫
F (ṽn)

=
t2n
2

∫
[|∇un(x+ ỹn)|2 + V0u

2
n(x+ ỹn)]dx−

∫
F (tnun(x+ ỹn))dx

=
t2n
2

∫
|∇un(z)|2dz +

t2n
2

∫
V0u

2
n(z)dz −

∫
F (tnun(z))dz

≤ t2n
2

∫
|∇un|2 +

t2n
2

∫
V (εnz)u

2
n +

t4n
4

∫
ϕunu

2
n −

∫
F (tnun)

= Iεn(tnun),

and then

m∞
V0

≤ EV0(ṽn) ≤ Iεn(tnun) ≤ Iεn(un) = m∞
V0

+ on(1),

thereby (4.28) is proved.

Now we have to prove

vn → v in H1(R3.

As in the �rst part of this demonstration, by (4.26) we proved the boundedness of {un}

in H1
V0
(R3), arguing similarly we have

{ṽn} ⊂ MV0 and EV0(ṽn) → m∞
V0

⇒ ∥ṽn∥H1
V0

≤ C,

and just like the claim 1, it holds for the sequence {ṽn}. Then ṽn ⇀ ṽ in H1
V0
(R3) and exists

δ > 0 such that

0 < δ ≤ ∥vn∥H1
V0
. (4.29)

This implies for tn > 0

0 < tnδ ≤ ∥tnvn∥H1
V0

= ∥ṽn∥H1
V0

≤ C,

showing that, up to subsequence, tn → t0 ≥ 0.
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If t0 = 0 using (4.26), we have

0 ≤ ∥ṽn∥H1
V0

= tn∥vn∥H1
V0

≤ tnC → 0,

and then ṽn → 0 in H1
V0
(R3).

This fact, together with (4.28) leads us to m∞
V0

= 0, which is an absurd. So t0 must be

greater than zero.

Then

tnvn ⇀ t0ṽ =: ṽ in H1(R3).

By (4.29) ṽ ̸= 0. Applying lemma 4.12 to {ṽn}, we get ṽn → ṽ in H1(R3) and then

vn → ṽ.

Therefore by (4.27) we deduce

vn → v

and the existence of convergent subsequence of the �rst part of the proposition is proved.

Let us proceed with the second part.

Claim 2: {yn} is bounded in R3.

First, �x yn = εnỹn with ỹn given in the previous claim. Assume the contrary, then we

split in two cases

1. if V∞ <∞, since ṽn → ṽ in H1(R3) and V0 < V∞ we have

m∞
V0

=
1

2
∥ṽ∥2H1

V0

−
∫
F (ṽ)

<
1

2
∥ṽ∥H1

V0
−

∫
F (ṽ)

≤ lim inf
n→∞

1

2

∫
|∇ṽn|2 + lim

n→∞

(
1

2

∫
V (εnx+ yn)ṽ

2
n(x)dx−

∫
F (ṽn)

)
= lim inf

n→∞

(
t2n
2

∫
|∇un|2 +

t2n
2

∫
V (εnz)u

2
n −

∫
F (tnun)

)
≤ lim inf

n→∞

(
1

2
∥tnun∥2εn −

∫
F (tnun) +

t4n
4

∫
ϕunu

2
n

)
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and then

m∞
V0
< lim inf

n→∞
Iεn(tnun) ≤ lim inf

n→∞
Iεn(un) = m∞

V0

which is an absurd. Then if V∞ <∞, {yn} is bounded in R3.

2. If V∞ = ∞ we have since un ∈ Nεn

∫
V (εnx+ yn)v

2
n(x)dx ≤

∫
|∇vn(x)|2 +

∫
V (εnx+ yn)v

2
n(x)dx+

∫
ϕvnv

2
n(x)dx

=

∫
f(vn(x))vn(x)dx,

and using the Fatou's lemma we obtain

∫
lim inf
n→∞

V (εnx+ yn)︸ ︷︷ ︸
→∞

v2n ≤ lim inf
n→∞

∫
f(vn)vn

and then

∞ = lim inf
n→∞

∫
f(vn)vn =

∫
f(v)v,

which is an absurd.

Then in both cases {yn} is bounded and the claim 2 is proved.

Consequently we can assume yn → y ∈ R3.

If y /∈M , then V0 < V (y), we just replace V∞ by V (y) in the computation of case 1 of

the previous claim and we will have a contradiction.

Hence y ∈M and the proof of the second part of the proposition is complete.

■
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4.4.1 The barycenter map

To de�ne the barycenter map, we �rst de�ne for δ > 0 (later on it will be �xed conve-

niently), a smooth nonincreasing cut-o� function η in C∞
0 (R3, [0, 1]) such that

η(s) =


1, if 0 ≤ s ≤ δ/2,

0, if s ≥ δ.

Let mV0 be a ground state solution of problem (Aµ) with µ = V0. For any y ∈ M , let us

de�ne

Ψε,y(x) := η(|εx− y|)mV0

(
εx− y

ε

)
.

Now, let tε > 0 verifying maxt≥0 Iε(tΨε,y) = Iε(tεΨε,y), by the properties of the Nehari

manifold, tεΨε,y ∈ Nε, and de�ne the map Φε : y ∈M 7→ tεΨε,y ∈ Nε.

By construction, Φε(y) has compact support for any y ∈ M and Φε(y) is continuous.

The next result will help us to de�ne a map from M to a suitable sublevel in the Nehari

manifold.

Lemma 4.4.2. The function Φε satis�es

lim
ε→0+

Iε(Φε(y)) = m∞
V0
,

uniformly in y ∈M .

Proof. Suppose by contradiction that the lemma is false. Then there exist δ > 0, {yn} ⊂M

and εn → 0+ such that

|Iεn(Φεn(yn))−m∞
V0
| ≥ δ0 (4.30)

Using the Dominated Convergence Theorem of Lebesgue, we have the following
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lim
n→∞

∥Ψεn,yn∥εn = ∥mV0∥2H1
V0

, (4.31)

lim
n→∞

∫
F (Ψεn,yn) =

∫
F (mV0)

lim
n→∞

∥Ψεn,yn∥2H1
V0

= ∥mV0∥2H1
V0

By the last convergence, we conclude that the sequence {∥Ψεn,yn∥} is bounded. From

(4.2) we have

∫
ϕΨεn,yn

Ψ2
εn,yn ≤ εnC∥Ψεn,yn∥4

and then

lim
n→∞

∫
ϕΨεn,yn

Ψ2
εn,yn = 0. (4.32)

Using the fact that tεnΨεn,yn ∈ Nεn , i. e. Iεn(tεnΨεn,yn)[tεnΨεn,yn ] = 0, it means that

∥Ψεn,yn∥2εn + t2εn

∫
ϕΨεn,yn

Ψ2
εn,yn =

∫
f(tεnΨεn,yn)

tεnΨεn,yn

Ψ2
εn,yn , (4.33)

simply dividing both sides of I ′εn(tεnΨεn,yn)[tεnΨεn,yn ] by t2εn and multiplying the right

hand side of the interior term of the integral by Ψεn,yn

Ψεn,yn
.

We now prove the following:

Claim: limn→∞ tεn = 1.

First we will show that the sequence {tεn} is bounded.

Since εn → 0+, we can assume δ
2
< δ

2(εn)
and from (4.33), using the property (f5), and

making the change of variable z := (εnx−yn)
εn

, we have

∥Ψεn,yn∥2εn
tεn

+

∫
ϕΨεn,yn

Ψ2
εn,yn =

∫
f(tεnΨεn,yn)

(tεnΨεn,yn)
3
Ψ4

εn,yn

≥ f(tεnmV0(z̄))

(tεnmV0(z̄))
3

∫
B δ

2

m4
V0
(z), (4.34)
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where mV0(z̄) := minB δ
2

mV0(z) > 0.

If {tεn} were unbounded, passing to the limit in n, by (4.31) and (4.32) we have

∥Ψεn,yn∥2εn
t2εn

→ 0 and

∫
ϕΨεn,yn

Ψ2
εn,yn → 0,

then the left hand side of (4.34) tends to 0, while the right hand side tends to ∞, which

is an absurd. So we can assume tεn → t0 ≥ 0.

Let ξ > 0, by (4.6), there exists Mξ > 0 such that

∫
f(tεnΨεn,yn)

tεnΨεn,yn

Ψ2
εn,yn ≤ ξ

∫
Ψ2

εn,yn +Mξt
q−1
εn

∫
Ψq+1

εn,yn (4.35)

Since {Ψεn,yn} is bounded in H1(R3), if t0 = 0, from (4.35) we can deduce

lim
n→∞

∫
f(tεnΨεn,yn)

tεnΨεn,yn

Ψ2
εn,yn = 0

which joint (4.32) and (4.33), we have

∥Ψεn,yn∥2εn + t2εn

∫
ϕΨεn,yn

Ψ2
εn,yn︸ ︷︷ ︸

→0

=

∫
f(tεnΨεn,yn)

tεnΨεn,yn︸ ︷︷ ︸
→0

Ψ2
εn,yn

then

∥Ψεn,yn∥2εn → 0,

contradicting (4.31). Then tεn → t0.

Now, passing the limit in n in (4.33), we have

∥m∞
H1

V0

∥ =

∫
f(t0mV0)

t0
mV0 ,

and since mV0 ∈ MV0 , it has to be t0 = 1, and the claim is proved.

Finally

Iεn(Φεn(yn)) =
t2εn
2

∫
|∇Ψεn,yn|2 +

t2εn
2

∫
V (εnx)Ψ

2
εn,yn

+
t4εn
4

∫
ϕΨεn,yn

Ψ2
εn,yn −

∫
F (tεnΨεn,yn),
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and using the claim we have

Iεn(Φεn(yn)) =
1

2

∫
|∇mV0|2 +

V0
2

∫
m2

V0
−
∫
F (mV0)

= EV0(mV0) = m∞
V0
.

which contradicts (4.30).

Then

lim
ε→0+

Iε(Φε(y)) = m∞
V0
.

■

By the previous lemma, h(ε) := |Iε(Φε(y))−m∞
V0
| = o(1) for ε→ 0+ uniformly in y, and

then Iε(Φε(y))−m∞
V0

≤ h(ε). In particular, the sublevel set in the Nehari

N
m∞

V0
+h(ε)

ε :=
{
u ∈ Nε : Iε(u) ≤ m∞

V0
+ h(ε)

}
is not empty, since for su�ciently small ε,

∀y ∈M : Φε(y) ∈ N
m∞

V0
+h(ε)

ε . (4.36)

Now, we �x the δ > 0 mentioned before such that M and

M2δ := {x ∈ R3 : d(x,M) ≤ 2δ}

are homotopically equivalent.

Take ρ = ρ(δ) > 0 such that M2δ ⊂ Bρ and de�ne χ : R3 → R3 as follows

χ(x) =

 x, if |x| ≤ ρ,

ρ x
|x| , if |x| ≥ ρ.
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Figure 4.1: Representation of Bρ and the set M .

The barycenter map βε is de�ned as

βε(u) :=

∫
χ(εx)u2(x)∫

u2
∈ R3,

for all u ∈ Wε with compact support. Some technical lemmas are stated now. For the proofs

see e.g. [15].

Lemma 4.4.3. The function βε satis�es

lim
ε→0+

βε(Φε(y)) = y

uniformly in y ∈M .

Proof. Suppose by contradiction, that the lemma is false. Then exists δ0 > 0, {yn} ⊂ M ,

and εn → 0+ such that

|βεn(Φεn(yn))− yn| ≥ δ0.

Then we have
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βεn(Φεn(yn)) = βεn(tεnΨεn,yn)

=

∫
χ(εnx)t

2
εnΨ

2
εn,yn(x)∫

t2εnΨ
2
εn,yn(x)

=

∫
χ(εnx)t

2
εnη

2(|εnx− yn|)m2
V0

(
εnx− yn

εn

)
∫
t2εnη

2(|εnx− yn|)m2
V0

(
εnx− yn

εn

)

=

∫
χ(εnz + yn)t

2
εn |η(|εnz|)mV0 (z) |2∫

t2εn|η(|εnz|)mV0 (z) |2
+ yn − yn

= yn +

∫
χ(εnz + yn)t

2
εn|η(|εnz|)mV0 (z) |2∫

t2εn|η(|εnz|)mV0 (z) |2
−

∫
ynt

2
εn|η(|εnz|)mV0 (z) |2∫

t2εn|η(|εnz|)mV0 (z) |2
,

and

βεn(Φεn(yn)) = yn +

∫
[χ(εnz + yn)− yn]|η(|εnz|)mV0 (z) |2∫

|η(|εnz|)mV0 (z) |2
.

Now

|βεn(Φεn(yn))− yn| =

∫
[χ(εnz + yn)− yn]|η(|εnz|)mV0 (z) |2∫

|η(|εnz|)mV0 (z) |2
.

Using that εn → 0+, χ(εn + yn) → yn, and η(|εnz|) → 1, we have

|βεn(Ψεn(yn))− yn| = on(1).

which is an absurd.

Then the lemma holds. ■

Lemma 4.4.4. We have

lim
ε→0+

sup

u∈N
m∞

V0
+h(ε)

ε

inf
y∈M

|βε(u)− y| = 0.
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Proof. Let {εn} such that εn → 0+. For each n ∈ N, exist un ∈ N
m∞

V0
+h(εn)

εn such that (by

(4.36))

inf
y∈Mδ

|βεn(un)− y| = sup

u∈N
m∞

V0
+h(ε)

ε

inf
y∈Mδ

|βε(u)− y|+ on(1).

Then it is su�cient to �nd a sequence {yn} ⊂Mδ such that

lim
n→∞

|βεn(un)− y| = 0. (4.37)

Remember that un ∈ Nm∞
V0

+h(εn), we have

m∞
V0

≤ cεn ≤ Iεn(un) ≤ m∞
V0

+ h(εn).

Consequently by the lemma 4.4.2 we conclude

Iεn(un) → m∞
V0
.

By Lemma 4.4.1, we can obtain a sequence {ỹn} ⊂ R3 such that vn := un(. + ỹn)

converging in H1(R3) for some v and {yn} := {εnỹn} ⊂Mδ, for n su�ciently large, then

βεn(un) = yn +

∫
[χ(εnz + yn)− yn]v

2
n(z)∫

v2n(z)
.

And then, by vn → v in H1(R3), and χ(εnz + yn) → yn, so we conclude

lim
n→∞

|βεn(un)− yn| = 0.

■

Now the proof of our main result can be �nished. In virtue of the above lemmas, there

exists ε∗ > 0 such that

∀ε ∈ (0, ε∗] : sup

u∈N
m∞

V0
+h(ε)

ε

d(βε(u),Mδ) <
δ

2
.

Let M+ := {x ∈ R3 : d(x,M) ≤ 3δ/2}. It is homotopically equivalent to M . Now, reducing
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ε∗ > 0 if necessary, we can assume that the above lemmas and (4.36) hold. So the composed

map

M
Φε−→ N

m∞
V0

+h(ε)
ε

βε−→M+

is homotopic to the inclusion map. Or just βε ◦ Φε ≃ j where j is the inclusion map.

Figure 4.2: Representation of the composition map

In the case V∞ < ∞ we eventually reduce ε∗ in such a way that also the Palais-Smale

condition is satis�ed in the interval (m∞
V0
,m∞

V0
+ h(ε)).

From the properties of the Ljusternick-Schnirelamnn category we have

cat(N
m∞

V0
+h(ε)

ε ) ≥ catM+(M), (4.38)

For the completennes of the argument, we write here the lines that justify the inequality

(4.38).

Suppose cat
N

m∞
V0

+h(ε)

ε

(N
m∞

V0
+h(ε)

ε ) = n, then exists

N
m∞

V0
+h(ε)

ε ⊂ A1 ∪ A2 ∪ · · · ∪ An,

where Ai, i = 1, . . . , n are closed and contractible in N
m∞

V0
+h(ε)

ε , there exists

Hi ∈ C([0, 1]× Ai,N
m∞

V0
+h(ε)

ε ), i = 1, . . . , n
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and wi ∈ N
m∞

V0
+h(ε)

ε , such that

Hi(0, u) = u, ∀u ∈ Ai

Hi(1, u) = wi, ∀u ∈ Ai.

Now let Ki = Φ−1
ε (Ai), where Ki is closed in M and

M ⊂ K1 ∪ · · · ∪Kn.

Then we can de�ne

hi(t, x) = βε ◦ Hi(t,Φε(x)).

Consequently we have

hi ∈ C([0, 1]×Ki,M
+)

hi(0, x) = βε ◦ Hi(0,Φε(x)) = βε ◦ Φε(x) = x, ∀x ∈ Ki

hi(1, x) = βε ◦ Hi(1,Φε(x)) = βε ◦ wi = βε(wi) = xi ∈M+ ∀x ∈ Ki,

and then catM+(M) = catM(M) and for a suitable ε we conclude (4.38).

Hence the Ljusternik-Schnirelmann theory ensures the existence of at least catM+(M) =

cat(M) critical points of Iε constrained in Nε, which are then solutions of our problem.

If catM > 1, the existence of another critical point of Iε in Nε follows from the ideas

used in [28]. The strategy is to exhibit a subset A ⊂ Nε such that

1. A is not contractible in N
m∞

V0
+h(ε)

ε ,

2. A is contractible N c̄
ε = {u ∈ Nε : Iε(u) ≤ c̄} for some c̄ > m∞

V0
+ h(ε).

This would imply, since the Palais-Smale holds, the existence of a critical level between

m∞
V0

+ h(ε) and c̄.

Take A := Φε(M) which is not contractible in N
m∞

V0
+h(ε)

ε . Let tε(u) > 0 the unique

positive number such that tε(u)u ∈ Nε.
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Choosing a function u∗ ∈ Wε such that u∗ ≥ 0, Iε(tε(u
∗)u∗) > m∞

V0
+h(ε) and considering

the compact and contractible cone

C := {tu∗ + (1− t)u : t ∈ [0, 1], u ∈ A},

we observe that, since the functions in C have to be positive on a set of nonzero measure, it

has to be 0 /∈ C.

Figure 4.3: A representation of C.

Then let tε(C) = {tε(w)w : w ∈ C} ⊂ Nε and

c̄ := max
tε(C)

Iε > m∞
V0

+ h(ε).

It follows that A ⊂ tε(C) ⊂ Nε and tε(C) is contractible in N c̄
ε .

Then there is a critical level for Iε greater than m∞
V0

+ h(ε), hence di�erent from the

previous one.
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Figure 4.4: A representaion of tε(C).
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