• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
https://doi.org/10.11606/T.45.2019.tde-03062019-170403
Document
Author
Full name
Luis Andres Rosso Ceron
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Pava, Jaime Angulo (President)
Goloshchapova, Nataliia
Lopes, Orlando Francisco
Natali, Fábio Matheus Amorin
Ramirez, José Felipe Linares
Title in Portuguese
Estabilidade de ondas viajantes para a equação de Schrödinger de tipo cúbico com dois pontos simétricos de interação
Keywords in Portuguese
Equação de Schrödinger não-linear
Estabilidade orbital
Funções elípticas de Jacobi
perturbação analitica
Potencial delta de Dirac
Teoria de Floquet
Abstract in Portuguese
Este trabalho consiste, fundamentalmente, em estabelecer de forma analítica a existência e estabilidade orbital de soluções standing-wave de tipo peakon, para a seguinte equação de Schrödinger com dois pontos de interação, determinados por duas deltas de Dirac centradas nos pontos x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c (x) + c (x)]u(x, t) = |u(x, t)| 2 u(x, t), (1) onde u : R×R C, Z R e c é a distribuição delta de Dirac agindo em x = c > 0, a saber, para H 1 (R), h c , i = (c). Para as soluções standing waves (ondas estacionárias) associadas à equação (1), i.e., u(x, t) = e it (x), mostramos que é possível determinar o perfil (x) da seguinte maneira: entre os pontos c e c o perfil admite, pelos menos, duas funções suaves e positivas dadas pelas funções elípticas de Jacobi conhecidas como dnoidal e cnoidal. Já para c < |x|, o perfil coincide com uma determinada translação do soliton-perfil secante hiperbólica" (é bem conhecido na literatura que o perfil secante hiperbólica está associado à equação (1), no caso em que Z = 0). De fato, mostramos que para o caso Z > 0 é possível ajustar, entre os pontos de interação c e c, um perfil periódico de tipo dnoidal ; e para o caso Z < 0 mostramos como é construído entre os pontos de interação um perfil de tipo cnoidal. Uma questão crucial que surge no problema da existência de um perfil conveniente é aquela relacionada com a localização do ponto de interação c > 0. A maneira como respondimos a esta questão foi, de fato, determinante para a obtenção do nosso resultado de estabilidade/instabilidade. Isto se deve a que permitiu o uso de técnicas conhecidas na literatura no desenvolvimento do trabalho. En concreto, a escolha da localização do ponto de interação c, faz com que a segunda derivada do perfil , seja contínua neste ponto. Baseados em argumentos da teoria de Floquet, teoria de representação de formas bi- lineares, teoria de extensão de operadores simétricos e a teoria de perturbação analítica para operadores lineares, bem como nos resultados desenvolvidos por Weinstein e Grilla- kis&Shatah&Strauss, mostramos resultados sobre a estabilidade/instabilidade orbital des- sas ondas. Mais precisamente, mostramos que aquelas com um perfil dnoidal são instáveis e aquelas um perfil cnoidal são estáveis. Além disto, estudamos o problema de Cauchy para (1) no espaço de energia H 1 (R). Para tanto, usaremos informações do espectro do operador com interações pontuais d 2 ±c,Z = 2 Z[ c + c ], dx o qual representa formalmente uma das famílias de extensões auto-adjuntas do operador iii simétrico ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}.
Title in English
Stability of travelling waves for the Schrödingers equation of cubic type with double symmetric delta-interactions wells
Keywords in English
Analytic perturbation
Diracs delta potential
Jacobian elliptic functions
Non-linear Schrödinger equations
Orbital stability
Teoria de Floquet
Abstract in English
This work consists mainly in establishing an analytical way the existence and orbital stability for the standing-wave solutions of "peakon"type of the following Schrödinger equation with two points of interaction, determined by two Diracs delta centered at the points x = ±c (NLS-), i t u(x, t) + x 2 u(x, t) + Z[ c + c ]u(x, t) = |u(x, t)| 2 u(x, t), (2) where u : R × R C, Z R and c is the Diracs delta distribution in x = c > 0, namely, for H 1 (R), h c , i = (c). For the standing-wave solutions associated to equation (2), i.e., u(x, t) = e it (x), we show that is possible to determine the profile (x) as follows: between the points c and c, the profile admits at least two smooth positive functions given by the Jacobi elliptic functions of dnoidal and cnoidal type. For c < |x|, the profile coincides with an specific shift of the soliton-profile hiperbolic secant profile (it is well-known in the literature that the hiperbolic secant profile is associated to the equation (2) for the case Z = 0). Indeed, we show for the case Z > 0 that it is possible to determine a periodic dnoidal profile between the points c and c. On the other hand, for the case Z < 0 we establish a periodic cnoidal profile between the points c and c. A crucial question arises in the problem of the existence of a suitable profile is the one related to the location of the interaction point c > 0. This question was crucial to the achievement of our stability/instability result. In fact, the choice of location of the interaction point c implies that the second derivative of the porfile is continuous at c. The stability/instability theory of these specific profiles are based on the analityc per- turbation theory and the framework developed by Weinstein and Grillakis&Shatah&Strauss. More precisely, we show that those ones with a dnoidal profile are unstable and those ones with a cnoidal profile are stable. In addition, we study the Cauchy problem in the energy space H 1 (R) for equation (2). For this purpose, it is necessary to study the spectrum of the operator d 2 ±c,Z = 2 Z[ c + c ]. dx This operator can be understood as the family of self-adjoint extension of the symmetric operator ( d 2 = dx 2 D() = {f H 1 (R) H 2 (R {±c}) : f (±c) = 0}.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-06-03
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.