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cionários do Instituto de Geociências;
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“We have no idea, now, of who or what the inhabitants of our future might be. In that

sense, we have no future. Not in the sense that our grandparents had a future, or thought

they did. Fully imagined cultural futures were the luxury of another day, one in which

’now’ was of some greater duration. For us, of course, things can change so abruptly, so

violently, so profoundly, that futures like our grandparents’ have insufficient ’now’ to

stand on. We have no future because our present is too volatile. ... We have only risk

management. The spinning of the given moment’s scenarios. Pattern recognition”

William Gibson, Pattern Recognition





Resumo

OpenStereo foi desenvolvido originalmente para preencher uma lacuna entre aplicativos

de análise para geologia estrutural, como um software livre, gratuito e multi-plataforma.

Ao longo dos anos ele adquiriu um grande número de usuários, com citações regulares.

Este trabalho objetivou a reestruturação do OpenStereo como um todo, mudando-o para

uma nova estrutura de interface gráfica e constrúındo-o do zero visando desempenho, es-

tabilidade e facilidade de manutenção e extensão. Diversas novas funcionalidades foram

inclúıdas tais como projetos, conversão de notação de atitudes, ajuste de pequenos ćırculos,

extração de atitudes de modelos tridimensionais e conversão de shapefiles de linhas para

dados circulares. A pesquisa gerou dois subprodutos principais: um novo método gráfico

para ajuste de pequenos ćırculos e a biblioteca de análise de dados estruturais Auttitude.

Palavras chave: Geologia Estrutural, Dados Direcionais, Software





Abstract

OpenStereo was originally developed to fill a gap among software packages for struc-

tural geology analysis, as a free open source cross-platform software. Over the years it has

acquired a great number of users, with regular citations. This work aimed to restructure

OpenStereo as a whole, changing to a new graphical interface framework and building it

from the ground up for speed, stability, ease of maintenance and extension. Many new

functionalities were also included, such as project management, structural attitudes nota-

tion handling, small circle fitting, extractions of attitudes from three-dimensional models

and conversion of lines shapefiles to circular data. The research involved had two main

byproducts, a new graphical method for small circle data fitting and a directional data

analysis library, Auttitude.

Key words: Structural Geology, Directional Data, Software
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Chapter 1

Introduction

1.1 Structure of the dissertation

This dissertation is organized into six chapters. The current chapter introduces the

topic, outlines the goals of the work, and provides an overview and basics to the OpenStereo

software.

The second chapter describe the computer language and libraries used throughout the

research.

The third, fourth and fifth chapters make up the bulk of the developed work and present

PDFs of research articles that have been prepared to submission to international journals.

The first one is dedicated to the construction of a Python directional data analysis library,

with emphasis on Tectonics and Structural Geology related data and presents a review

about directional data. The second presents a numerical and a graphical methods for

small circle data fitting. Both papers were the foundation to rebuild OpenStereo, that is

presented in the fifth chapter.

The sixth chapter concludes the dissertation. It summarizes the key achievements and

findings.

Source code and example files can be found at https://git.io/vMjma and on the at-

tached CD.

1.2 An introduction to OpenStereo

OpenStereo (Grohmann e Campanha, 2010; Grohmann et al., 2011) is an open source,

cross-platform software for directional data projection and structural geology that was

released to fill a gap between software packages for structural geology analysis. The soft-

https://git.io/vMjma
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ware was written in Python, a high-level, cross-platform programming language and the

GUI was designed with wxPython. Numeric operations were performed with the Numpy

module and all graphic capabilities were provided by the Matplolib library.

The original version had data input with simple ASCII text files, with values of dip

direction/trend and dip/plunge separated by spaces, tabs or commas, supporting planes

in direction notation using the Right Hand Rule. Multiple files can be opened at the same

time (or the same file more than once), and different elements of each dataset (poles, great

circles etc) can be overlaid. The GUI shows the opened files in a tree structure, similar

to “layers” of many illustration software, where the vertical order of the files in the tree

reflects the drawing order of the selected elements (Fig. 1.1). At that stage, the software

performed plotting operations of poles to planes, lineations, great circles, density contours

and rose diagrams. A set of statistics was calculated for each file and its eigenvalues and

eigenvectors were used to suggest if the data is clustered about a mean value or distributed

along a girdle. Modified Flinn, Triangular and histograms plots were also available.

Figure 1.1: Image of the main window on the Stereonet tab, showing a contoured dataset.

Over the years OpenStereo have acquire a great number of users, being cited in several
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articles such as the most recent Gehrmann et al. (2016),Moreno-Sánchez et al. (2016) and

Phillips et al. (2016). Even back in its first release, the authors predicted a development

that would focus on building additional tools such as merging and rotation of datasets,

possibility to save projects and paleostress analysis.

Unfortunately, the original graphical interface toolkit used, WxPython, ceased to be

developed. Also, while the original code was made to be extensible, it had some structural

elements that would make deep changes difficult. As such, a complete rewrite was needed.

1.3 Objectives

This work pursued several objectives. The foremost and key to the others was the

rebuilding of OpenStereo. This would happen in two steps, first the building of a direc-

tional data analysis library, Auttitude, which would be responsible for data loading, pre-

processing and numerical analysis, and second OpenStereo itself, restructured as mainly

an interface for Auttitude, focusing on data objects management and user interaction.

This separation of concerns was a strong requirement for the project, to allow it to be

more extensible and easily maintainable, while also preventing at least some of the damage

where the new graphical toolkit used also cease to be maintained and developed.

A second objective was the building and adaptation of new tools to OpenStereo, such

as small circles fitting, project management, projection rotation, new methods to calculate

contours and rose diagrams, among others.
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Chapter 2

Methods

During the restructuring OpenStereo was effectively divided in three parts: a data

model and processing system, an abstraction layer and a graphical interface. The purpose

of this division was to make each part as independent as possible, allowing for almost

separate development and strongly simplifying management.

The first part, the data model and processing system, came to be a full fledged direc-

tional data analysis library, Auttitude. Though mainly built for OpenStereo, it is generic,

and may both be used on its own on a Python interactive shell or used to build other

software. It contains functions to load datasets, translate notation and classes to store

directional data, related statistics and counting grids. It was developed using the Python

standard library, Numpy (Oliphant, 2006) and xlrd (Python Software Foundation, 2016).

Both the abstraction layer and graphical interface reside in OpenStereo. The graphical

toolkit used was Qt, through the pyside library (https://wiki.qt.io/PySide). The main

window and dialogs were created in Qt Designer, and compiled to Python using the pyside-

uic routine, part of the pyside library.

The abstraction layer was then responsible for connecting the Auttitude Directional-

Data objects to the graphical interface, handling calls to the Matplotlib plotting library

(Hunter, 2007), storing plot settings, populating and parsing the properties dialogs and

building programmatically the graphical interface elements that couldn’t be created on Qt

Designer.

To accomplish these tasks it heavily relies on reflection, which is the ability of a com-

puter program to examine, introspect and modify its own structure at runtime. The items

that represent loaded data on the layer tree on OpenStereo are derived from an abstract

class called DataItem. When a DataItem derived object is created, it introspects and find

https://wiki.qt.io/PySide
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all its methods whose name starts with ”plot ”, creating a checkbox as a subitem using

the remaining of its name as the checkbox label.

When the plot method of the main window is called, either meaning that the plot

button was clicked or some other method called it directly, the abstraction layer searches

for all instantiated DataItems that are checked and asks for their plot elements. In turn,

each DataItem search itself for its subitems that are checked and calls their respective

”plot ” methods, which will return plot elements that will be dispatched to one of the

panels.

In concrete terms, this means that derived classes such as PlanarData can be consid-

erably simple, only concerning itself with providing methods that will return the needed

data and plot parameters, as color and symbol. It will then be possible to focus future

developments on numerical problems, as for example paleotension calculation for faults, as

the graphical interface will effectively build itself and connect the data to the plots.

The properties dialogs for the data types are connected in a similar but simpler way. By

following a naming convention for the widgets assembled on Qt Designer the abstraction

layer is able to find where in the DataItem object should the related property be retrieved

and stored.

Three main additional tools were included in OpenStereo, ply2atti, which is a routine

to extract attitudes from three-dimensional models (Viana et al., 2016), a shapefile to

circular data conversion tool and a Small Circles Fitting method. Ply2atti uses numpy

and NetworkX (Hagberg et al., 2008) to read and extract information from the models,

while the shapefile tool uses the pyshp library (Ian Bicking and Michael Foord, 2005) to

parse shapefiles. The Small Circles Fitting method uses Numpy for vectors and linear

algebra.
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Directional data (that is, data that may be represented as unit vectors) have

many different uses in the geological sciences, either, for example, on structural

geology, representing the attitudes of planar or linear structures or in sedimen-

tology, used for paleocurrent direction analysis. They are usually represented

graphically, but translating them into vectors has many advantages. This work

aims to create an object oriented directional data analysis library, with emphasis

on Tectonics and structural geology related data, ease of use, and as a mathe-

matical engine for OpenStereo, a directional data analysis software. Considering

that it is a Python library, it may both be used for creating new directional data

analysis software or in a interactive shell as an analysis framework. Its integra-

tion to OpenStereo allows complex data sets to be easily visualized, at the same

time giving it speed, stability and ease of maintenance.
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1. Introduction

Directional data are those that can be represented as unit vectors, typically

in two or three dimensions, representing points on a spherical surface (3D) or a

circle (2D), line orientations or rotations. They are also referred as orientation,

angular or spherical data, and can be vectors, if they have direction and sense,5

or axial, if they have only direction (Fisher et al., 1987; Jupp and Mardia, 1989).

There are multiple examples of their application within geology: on crys-

tallography, representing the relative orientation of crystal faces; on structural

geology, representing the orientation of planar and linear structures; on paleo-

magnetism, as remaining magnetization poles; and on Tectonics, both on plate10

tectonic kinematics, representing hot spot traces, and transform faults.

Their representation in Geology is usually made in projections for three-

dimensional data (Equal-Area and Equal-Angle mostly, ortographic and gnomonic

rarely), or as rose or kite diagrams for two-dimensional data. Also, distributions

and numerical statistical methods have been known for quite some time and are15

available in most software for the treatment of structural orientation data. The

representation of these data in the form of vectors allows for greater clarity and

ease of operation, facilitating their manipulation in software.

The main goal of this work was the production of an easy to use and ex-

tensible object-oriented directional data analysis library, with emphasis on geo-20

tectonics and structural geology data processing. The main use of the library

was in the remodeling of OpenStereo, as its numerical engine, but it can also

be used directly in a interactive Python shell.

2. Directional data analysis

Statistical analysis of directional data in geology can be traced to Schmidt25

(1917), while studying structures in slates, developing both the use of the rose

diagram and the normal distribution enveloped in the circle. Most of the ad-

vances in circular data processing at the time occurred in geology, with the

notable exception of von Mises (1918), who applied it in error modeling in the

23



determination of atomic weights, developing the statistical distribution that30

bears his name, and that is still the most used in this type of data (Fisher,

1993).

Three-dimensional directional data statistical analysis was started by Fisher

(1953), when defining a distribution for vectors concentrating around an aver-

age vector equivalent to the normal distribution, developed to treat paleomag-35

netism data. Known as Fisher distribution, it was latter joined by a number

of other distributions on the sphere, such as Watson (Bingham, 1964; Watson,

1965), for the concentration of axial data around a mode or in great circles,

Bingham-Mardia (Mardia and Gadsden, 1977; Bingham and Mardia, 1978), for

concentrations in small circle girdles and the generic distributions of Bingham40

for axial data (Bingham, 1964, 1974) and Kent for vector data (Kent, 1982),

that can describe a number of possible distribution shapes depending on their

parameters.

In addition to these more formal statistical distributions and their associated

parameters, a number of other ad-hoc numerical methods have been created,45

many of which are very useful for the analysis of geological data. Kamb (1959) is

an example, defining criteria for detecting uniformity deviation in count meshes,

later revisited and expanded by Robin and Jowett (1986). In addition, Wood-

cock (1977) and later Vollmer (1990) developed methods to classify the general

data form from the eigenvalues of their orientation matrix, serving as an initial50

non-parametric basis for data treatment. Circular data are generally represented

in the form of rose or kite diagrams built as circular histograms, binning the data

in sectors around the circle. However, some studies (e.g. Fisher (1993), Munro

and Blenkinsop (2012)) propose a continuous curve based on moving averages,

similar to the methods applied on spherical data with counting meshes.55

2.1. Attitude notation

In geology there is a great variety of methods for recording measured atti-

tudes, specially for planar data. This is an additional obstacle to the numerical

treatment of this type of data, as its manual conversion is generally necessary.

24



With careful parsing, though, it is possible to read and analyze most of these60

different notations.

The attitude of a typical planar layer is recorded as a horizontal orientation

and a vertical inclination, the first as a direction or a dip direction and the

second as a dip. Using dip direction notation is usually unambiguous, whereas

using direction has the problem that it may mean either of two opposite dipping65

planes. To solve that, either additional information on to which quadrant does

the layer dips to should be appended to the data, usually after the dip angle,

or a convention has to be used as to which direction to record, such as the

right-hand rule that states that the recorded direction should always be the one

that is 90 degrees counter-clockwise to the dip direction.70

These horizontal orientations can be either presented as an azimuth, ranging

from 0 to 360 (or 0 to 180, or 270 to 90, for directions), or as a quadrant,

ranging from N0E to N90E or N0W to N90W or S0E to S90E or S0W to S90W,

depending on the quadrant it is in and whether direction or dip direction is

used. Measurements are sometimes recorded in unusual ways, such as direction75

measures counted from the south, either as a particular method of the geologist

who collected the data or simply by inexperience, or approximate measures such

as NS or EW, or only N, S, E or W.

It is not possible in general to determine whether a particular measurement

was taken using direction or dip direction, but from this basic information the80

rest can be converted without great difficulties by software. The following reg-

ular expressions are the basis of this analysis:

([NSEW ]{0, 2})(\d∗)([NSEW ]{0, 2}) (1)

(\d+)([NSEW ]{0, 2}) (2)

Regular expressions (Kleene, 1951; Pilgrim, 2009) are a method to validate

and analyze texts in a robust and fast way, allowing to define which variations

are acceptable and extracting specific pieces of the analyzed text. In the above85
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cases each parenthesis indicates one of the analyzed pieces, being for Eq. 1,

([NSEW] {0, 2}) the first letter of the azimuth, which must be one of N, S, E

and W, NE, NW, SE, SW or empty; (\d∗), the azimuth itself, which must be

a number or empty; ([NSEW] {0, 2}), the second letter of the azimuth, which

must also be one between N, S, E and W, NE, NW, SE, SW, or empty; and for90

Eq. 2, (\ d +), the dip, which must be a number; and [NSEW] {0, 2}), the dip

quadrant, which must be one of N, S, E, W, NE, NW, SE, SW, or empty.

From the presence (some value) or absence (empty) of each of these parts

(except for the separator and the dip value) the truth table Tab. 1) shows

acceptable patterns for attitude data, omitted cases being considered errors.95

From this information and the fact that it is a direction or dip direction,

it becomes possible to convert these attitudes to a single format, which is then

used for the rest of the analysis. AUTTITUDE uses dip direction / dip notation

as this single format.

2.2. Vectors and algebra100

Although most operations between directional data can be done by other

non-vector methods (e.g. graphical methods such as projections or numerical

ones through flat or spherical trigonometry), it is difficult to outgrow vectors in

terms of syntax clarity and ease of programming. Vectors are sets of numbers,

one for each dimension represented, sorted as a single row or column. They are105

a special case of matrices, which have m rows by n columns (Fergusson 1994).

To represent directional data as vectors it is necessary to convert the entry

attitudes (or coordinates, or angles in general) to directional cosines, which are

numerically the cosine of the angle between the attitude and x, y and z axes

(typically North, East and upwards, for geological attitudes).110

Considering a lineation as an example, We first divide the vector resulting

from the attitude into its vertical and horizontal components (Kim, 2005). As

the plunge is the angle between the line and the horizontal plane, its vertical

component will be the sine of this angle, leaving its cosine as its horizontal

component. Since the trend is the angle between the North (X) axis and the115
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horizontal component of the vector, this will be further divided between the

cosine of the trend angle for the X axis and the sine of the plunge for the Y

axis. In short, the following formula holds:

u =




sin(trend) cos(plunge)

cos(trend) cos(plunge)

− sin(plunge)


 (3)

An equivalent formula for plane attitudes is constructed in a similar way

using the plane normal vector as its vector representation.120

The inverse conversion, from direction cosines to attitudes, is typically made

calculating the arcsin (or arccos for planes) of the vertical component and the

arctan of the ratio between y and x components (or x and y for planes), and

comparing the signs to determine the trend quadrant.

Direction cosines of circular data have a much simpler construction, as their125

x component will just be the cosine of the azimuth and the y component its

sine, and the inverse conversion is the same as for the horizontal components of

line data. For axial directional data it is recommended (Fisher, 1993) to double

the azimuth before the calculation of direction cosines and then dividing the

result by two when performing the inverse conversion, to distribute the vectors130

along the whole circle and avoid problems such as described in Section 2.3 for

axial spherical data.

2.3. Descriptive statistics

These direction cosines can then be used to obtain some descriptive statis-

tics for spherical directional data (Fisher et al., 1987). Being xi = {xi, yi, zi}135

the direction cosine of each data point, the resulting vector and its length are

calculated as,

r =
∑

xi, x̄ =
r

n
, R = |r|, R̄ =

R

n
(4)

The resulting vector r gives a general sense of the direction of points. The

average length R̄ will be closer to 1 as the more concentrated the points are

27



around the resulting vector.140

For directional data, average lengths close to zero may either mean that

the vectors have no preferred orientation or that they are clustered around two

opposing direction with a similar density of points.

As for axial data, it may also mean that the points have no preferred orien-

tation, but it could be an artifact of the vector representation. Points that are145

highly concentrated around a direction that is nearly horizontal will be repre-

sented as vectors on opposing sides of the sphere, resembling a situation similar

to the second one for directional data.

A reasonably simple correction is to compare the data points with the first

eigenvector of their dispersion matrix (Section 2.4), which will also be close to150

their mean direction but will not be affected by this phenomenon, as the calcu-

lation of the dispersion matrix is insensitive to inversion of points. From this,

it is possible to concentrate the vectors in a single hemisphere relative to this

eigenvector, avoiding some problems with the calculation of these parameters

and other treatments. This method is particularly useful for simple concentra-155

tions of points, but may not be adequate for data around small circle girdles

with large semi-apical angles.

The same statistics can be calculated for circular data, being also possible to

define the circular variance V and circular standard deviation v (Fisher, 1993)

as:160

V = 1−R, v =
√

2 log(1− V ) (5)

2.4. Eigen analysis and shape parameters

These basic parameters of dispersion around the mean are then comple-

mented by the shape parameters, extracted from the dispersion matrix T (also

called the orientation matrix), defined as follows:

T =
1

n

∑
xTi · xi (6)
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The eigenvectors (ui) and eigenvalues (λi) of this matrix represent the axes165

and respective lengths of the data best fit ellipsoid (Pearson, 1901). Considering

the eigenvalues in decreasing order and their corresponding eigenvectors, the

points distribution can be described with relation to extreme ellipsoidal shapes

(Table 2). Woodcock (1977) and Vollmer (1990) define ratios that clarify the

concept of big and small eigenvalues. For Woodcock’s method, the ratios170

x = ln(
λ1
λ2

) (7)

y = ln(
λ2
λ3

) (8)

are used to analyze the data points distribution shape through Fig. 1.

However, this graph is not of simple interpretation. Vollmer (1990), on

the other hand, proposes three equations that describe the dataset proximity

to: point distribution (Eq. 9), in which the eigenvalues would be 1, 0 and 0;

girdle (Eq. 10), with eigenvalues 0.5, 0.5 and 0; or random (Eq. 11), with175

eigenvalues 1/3, 1/3 and 1/3. He also defines a cylindricity parameter (Eq. 12),

based on the logarithmic ratio between the first and third eingenvectors. These

coordinates can then be plotted to the triangular diagram on Fig. 2, being

easier to understand.

P =
λ1 − λ2
N

(9)

G =
2(λ2 − λ3)

N
(10)

R =
3λ3
N

(11)

C = ln(
λ1
λ3

) (12)
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2.5. Counting grids180

Counting grids are comprised of roughly regularly spaced nodes on the sphere

or circle, where each node is calculated either by the fraction of points that are at

an angular distance smaller than a chosen value or by a total value that depends

on the distance to each data point. Either way, it represents an estimate of the

probability density function for the data set.185

There are several different methods of producing a regular grid for calculating

this estimate (Diggle and Fisher, 1985; Kamb, 1959). A flexible form to build

the grid is suggested by Robin and Jowett (1986), in which the only parameter is

the great circle distance of the nodes, t. This value is directly used as a regular

spacing of latitude circles. For each circle with an angle to the vertical direction190

of v, nodes are spaced longitudinally along the circle with separation according

to Eq. 13.

From the direction cosines of the grid nodes the angle to each point is then

calculated by Eq. 14, and the value for each node can either be calculated as

in Robin and Jowett (1986) through Eq. 15 or counting the number of points195

with angles within a limit. The constant K at Eq. 15 or the limit angle for

counting has the fundamental effect of smoothing the data points along the

sphere allowing to emphasize large tendencies and reduce noise. The choice of

this factor must be made experimentally, but both Robin and Jowett (1986)

and Diggle and Fisher (1985) suggest formulas to estimate optimal smoothing200

values and, based on the first, AUTTITUDE calculates these values if not given

by the user, allowing Diggle and Fisher (1985) as an optional.

For circular data it is a much simpler operation, only dividing the circle

by the appropriate angular spacing to obtain the nodes, typically 1 degree for

geological data, and applying either Eqs. 16 or 18 for each counting node, being205

h a smoothing factor. From these nodes it is possible to produce a continuous

rose or kite diagram, which presents itself as a very interesting tool for visualizing

circular data (Fisher, 1993; Munro and Blenkinsop, 2012). Wells (2000) suggests

another method for smoothing circular data, which is effectively an average of all
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possible rose diagrams considering different petal sizes and offsets from north.210

a =
2(sin(

t

2
))

sin(v)
(13)

θ = a cos(
v · u
|v||u| ) (14)

w =
∑

ek(cos θ−1) (15)

w =
0.9375

n ∗ h
∑

(1− θ2

h2
)2 (16)

w =
0.9375

n ∗ h
∑

(1− θ2

h2
)2 (17)

Mwa =
1

A

n=α+A−1
2∑

i=α−A−1
2

Fi · w|α−
A−1

2 | (18)

2.6. Rotations and Change of Axes

It is often convenient or necessary to change the coordinate axes or rotate the

data. In the first case, the new coordinate system is defined by three orthogonal

axes x′, y′ and z′ which must be of unit length to avoid deforming the spatial

distribution of the data, making the points no longer belong to the surface of215

a unit sphere. In order to project data to this system, the product expressed

on Eq. 19 is calculated. As an example, the projection of a data set using its

eigenvectors as new axes may be useful for symmetry check. Rotation, on the

other hand, is made from a unit axis v and the anti-clockwise rotation angle

around it θ from the matrix equation 20. Rotations can be used for restitution,220

for example, trying to reestablish the sedimentary transport trend of a cross
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bedding stratification that was tectonically tilted.

u′ =




x′

y′

z′


 · u =




x′xux + x′yuy + x′zuz

y′xux + y′yuy + y′zuz

z′xux + z′yuy + z′zuz


 (19)

u′ = R·u =




cos θ + v2x(1− cos θ) vxvy(1− cos θ)− vx sin θ vxvz(1− cos θ) + vy sin θ

vxvy(1− cos θ)− vz sin θ cos θ + v2y(1− cos θ) vyvz(1− cos θ)− vx sin θ

vxvz(1− cos θ) + vy sin θ vyvz(1− cos θ)− vx sin θ cos θ + v2z(1− cos θ)


·u

(20)

2.7. Projections

The most typical form of directional data representation in geology is def-

initely the projection (Fisher et al., 1987), be it of equal-angle (stereographic)225

or equal-area (Schmidt-Lambert) (Fig. 3). The first has its main use in crystal-

lography, where it is necessary to correctly represent the angles between crys-

tal faces without distortion. However, for visualization of the distribution of

attitudes only the second one lends itself adequately. While an equal-angle

projection will preserve the shapes, since circles on the sphere will remain as230

circles on the plane of projection, the density of points around the sphere will

be excessively distorted, as showed in the case of a regular grid on Fig. 4.

Considering the point v = x, y, z belonging to the sphere, its coordinates X

and Y on the equal angle projection plane are given by Eq. 21. For equal area

projection Eq. 22 is applied.235

X =
x

1− z , Y =
y

1− z (21)

X = x

√
2

1− z , Y = y

√
2

1− z (22)
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3. Development

AUTTITUDE was originally developed in Python series 2.7.x (Python Soft-

ware Foundation, 2013), latter made compatible with series 3.x. Many of the

used modules come from the Python Standard Library, such as regular expres-

sions and CSV parsing. Besides that, xlrd (Python Software Foundation, 2016)240

is used for reading data from Excel spreadsheets and Numpy (Oliphant, 2006)

provides support for vectors, matrices and linear algebra.

The use of Numpy greatly facilitates development and speeds up processing,

as its numerical routines are written in C and Fortran and highly optimized.

This alleviates many problems inherent to interpreted languages such as Python,245

allowing for fast processing of large datasets. Some of AUTTITUDE’s routines

use functions that came originally from Scipy, a scientific numerical data pro-

cessing library that is a superset of Numpy.

Fortran routines were written in Fortran 90, and compiled and linked as

Python modules using the script f2py (Peterson, 2009), that automatically250

wraps the given code and allows it to be called seamlessly from Python.

The final result was a Python library that can be used both for application

development and as a platform for directional data analysis on a interactive

environment. The source code of the developed packages and the data files used

for testing are available at Section 5.255

4. Application of AUTTITUDE

The center piece of the library is the DirectionalData class. It serves as a

container for directional data and provides a series of automatically calculated

statistical parameters for both circular and spherical data. It can be used by

providing direction cosines as data along with any other additional parameters260

available, which when needed will be used in its submodules.

The first step in producing an object of the DirectionalData class is to load

the input data. For this it is either possible to use the universal loader, that han-

dles file loading, universal translator, to convert attitude notations, and finally
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pass the data obtained to the DirectionalData class, or use the load function,265

which will call each of these components in sequence.

Universal loader is responsible for automatically loading the data, dealing

with different file formats. In this release it is able to handle CSV, Numpy and

Excel data types. From this, the universal translator translates the data from

their notation to dip direction/dip format, as explained in Section 2.1. The file270

in Ex. 1, frat.dat, shows a sample of the variety of notations that can be found.

This sequence of methods allows for greater flexibility in loading the data, using,

for example, other external functions among the steps. The load function follows

this basic sequence automatically, converting the data into direction cosines and

loading them into an object of the DirectionalData class, which is returned by275

it. It works transparently to the user, using default values or trying to extract

them from the data as shown in Ex. 1.

The last parameter called in the example, mode, which contains the counting

node with highest value, depends on a counting grid. By default, an axial count

mesh is created with average spacing between nodes of 2.5 degrees and K is280

estimated using the method in Robin and Jowett (1986). Since grid analysis

can be time-consuming, the counting grid is not created by DirectionalData

until it is needed, storing the obtained result.

The counting grid is generically an object of the SphericalGrid class, which

internally constructs the regular grid and has methods for averaging by Fisher285

Distribution (Robin and Jowett, 1986) or counting points within a threshold an-

gle. Additionally, it is possible to operate it with any function whose parameters

are a grid where it will be calculated and data to do the calculation.

Fortran versions of the couting methods and functions to automatically par-

allelize counting where also developed. They are not used by default because the290

additional time spent preparing for parallel processing or importing the Fortran

modules is longer than the speedup in processing time for the typical amount

of data in geological problems. They become more interesting for very high

resolution grids, such as an average separation of one second of arc or very large

datasets.295
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The following examples are available as jupyter notebooks on the project

github page (Section 5).

Ex. 1. >>>entry_file= universal_loader("frat.dat")

>>>entry_data = universal_translator(entry_file, dip\direction=False)

>>>frat = DirectionalData(dcos(entry_data))300

>>>b = auttitude.load(b.csv)

>>>data = load("tocher.txt")

From a DirectionalData a series of statistical parameters are available:

Ex. 2. >>>data.fisher_k

2.0994328692611806305

>>>data.eigenvalue[0]

109.57337905751763

>>>data.vollmer_C

0.79271596847405035

>>>print data310

tocher.txt

n = 200

Expected Distribution:

Girdle

Eigenvectors:315

1: 204.5 / 1.0

2: 295.4 / 42.2

3: 113.4 / 47.8

Shape parameter

K = 0.21320

Strength parameter

C = 2.07

Normalized Eigenvalues:

S1: 0.548

S2: 0.383325
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S3: 0.069

Fabric (triangular diag.):

Point = 0.165

Girdle = 0.628

Random = 0.207330

>>>spherical(data.mode)

(16.6, 3.8)

Some operations with DirectionalData objects are also possible, such as con-

catenate, which combines two DirectionalData, and the product, which calcu-

lates all intersections (intersect) between two data sets (Fig. 5, Ex. 3). The335

DirectionalData resulting from these operations inherit the additional parame-

ters from the first DirectionalData.

Ex. 3. (see Fig. 5)

>>>a = load("a.xlsx")

>>>concatenate(a, b)340

<__main__.DirectionalData at 0xa828080>

>>>d = intersect(a, b)

Finally, data can be projected onto another projection system (project) or

be rotated (rotate) by a user-defined axis and angle (Fig. 6). The resulting

DirectionalData also inherits additional parameters from the original data.345

Ex. 4. (see Fig. 6)

>>>project(data, (x_line, y_line, z_line))

<__main__.DirectionalData at 0xa828668>

>>>data = load("tocher.txt")

>>>rotated_data = rotate(data, axis, angle)350

Considering its use at interactive environments auxiliary classes where in-

cluded that use the matplotlib library (Hunter, 2007), allowing its visualization

(Ex.5).
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Ex. 5. (see Fig. 7)

>>> import matplotlib.pyplot as plt355

>>> fig, ax = plt.subplots()

>>> projection = EqualAreaProjection(ax)

>>> projection.plot\_poles(data, "bo")

>>> plt.show()360

It is also possible to obtain only the coordinates of the projected data, instead

of directly plotting, using the equal angle and equal area functions.

5. Conclusions

The creation of the AUTTITUDE library allowed the restructuring of the

OpenStereo directional data analysis software. Additionally, it can be used for365

the treatment of directional data both directly and integrated in other applica-

tions. Its integration with OpenStereo brings advantages to both software, since

the use of AUTTITUDE in a graphical interface facilitates the visualization and

handling of complex data sets while at the same time it brings to OpenStereo

speed, robustness and ease of implementation and maintenance. The tests per-370

formed had positive results.

The library uses a permissive MIT license, and is available at the project

github page. Suggestions, adaptations and contributions are very welcome, as

are reports on any issues or bugs.

Supplementary Material375

Supplementary data related to this article can be found at https://git.io/vMjmu.
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von Mises, R., 1918. Über die ganzzahligkeit der atomgewichte und verwandte420

fragen. Phys. z 19, 490–500.

Munro, M.A., Blenkinsop, T.G., 2012. MARD — a moving average rose diagram

application for the geosciences. Computers & Geosciences 49, 112–120.

Oliphant, T., 2006. Guide to NumPy. Trelgol Publishing. URL: http://www.

tramy.us/.425

Pearson, K., 1901. LIII. on lines and planes of closest fit to systems of points

in space. Philosophical Magazine Series 6 2, 559–572. URL: http://dx.doi.

org/10.1080/14786440109462720, doi:10.1080/14786440109462720.

Peterson, P., 2009. F2py: a tool for connecting fortran and python pro-

grams. International Journal of Computational Science and Engineering430

4, 296. URL: https://doi.org/10.1504%2Fijcse.2009.029165, doi:10.

1504/ijcse.2009.029165.

Pilgrim, M., 2009. Dive Into Python. Createspace.

39



Python Software Foundation, 2013. Python Programming Language, version

2.7. Available at http://www.python.org/, last access 15/Aug/2013.435

Python Software Foundation, 2016. Python Package Index : xlrd 1.0.0. Avail-

able at https://pypi.python.org/pypi/xlrd, last access 25/jan/2017.

Robin, P.Y.F., Jowett, E.C., 1986. Computerized density contour-

ing and statistical evaluation of orientation data using counting cir-

cles and continuous weighting functions. Tectonophysics 121, 207–223.440

URL: http://dx.doi.org/10.1016/0040-1951(86)90044-2, doi:10.1016/

0040-1951(86)90044-2.

Schmidt, W., 1917. Statistische methoden beim gefgestudium kristalliner

schiefer. Sitzungsberichte, Mathematisch-Naturwissenschaftliche Klasse 126,

515–538.445

Vollmer, F.W., 1990. An application of eigenvalue methods to structural domain

analysis. Geological Society of America Bulletin 102, 786–791.

Watson, G.S., 1965. Equatorial distributions on a sphere. Biometrika 52, 193.

URL: http://dx.doi.org/10.2307/2333824, doi:10.2307/2333824.

Wells, N.A., 2000. Are there better alternatives to standard450

rose diagrams? Journal of Sedimentary Research 70, 37–

46. URL: http://jsedres.geoscienceworld.org/content/

70/1/37, doi:10.1306/2DC408FC-0E47-11D7-8643000102C1865D,

arXiv:http://jsedres.geoscienceworld.org/content/70/1/37.full.pdf.

Woodcock, N., 1977. Specification of fabric shapes using an eigenvalue method.455

Geological Society of America Bulletin 88, 1231–1236.

40



Figure captions

Figure 1: Adapted Flinn diagram ((Woodcock, 1977). Extracted from Fisher et al. (1987)

.
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Figure 2: Triangular diagram for shape classification. Extracted from Vollmer (1990)

.

Figure 3: Representation of equal angle and equal area projections, showing the relationship

between the points on the sphere and the ones projected on the plane. Extracted from Fisher

et al. (1987)

.
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Figure 4: Representation of equal angle (left) and equal area (right) projections for the same

2.5 degrees regular spaced grid, rotated 60 degrees to north. Notice that the latitude circles

where the regular grid nodes are distributed remain as circles in the first case, although their

regular distribution is only observed in the equal area projection.
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Figure 5: Result of the intersection of data presented in Section 5, with entry data and their

maximum circles.

Figure 6: Examples of rotation using the axis 204/01 with 42.2 degrees. Data used for rotation

are available at Section 5.
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Figure 7: Examples of rotation using the axis 204/01 with 42.2 degrees. Data used for rotation

are available at Section 5.
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Table captions

Example [NSEW]{0, 2} \d∗ [NSEW]{0, 2} [NSEW]{0, 2} Type

N30E/50NW Y Y Y Y Direction, dip, quadrant

140/50 N Y N N Right hand rule

140/50NE N Y N N Direction, dip, quadrant

NW/50 Y N N N Right hand rule

NS/50E Y N Y Y Approximated direction, dip, quadrant

Table 1: Truth table of regular expression for determination of geological attitude notation.

Y indicates group presence and N indicates group absence.

Eigenvalues relative magnitude Distribution Other characteristics

λ1 ' λ2 ' λ3 Uniform

λ1 big, λ2, λ3 small

(I) λ2 6= λ3 Unimodal if R̄ ' 1, bimodal otherwise Concentrated at a λ1 end

(II) λ2 ' λ3 Unimodal if R̄ ' 1, bipolar otherwise Rotational symmetry around λ1

λ3 small, λ1, λ2 big

(I) λ1 6= λ2 Girdle Concentrated in a big circle on plane λ1, λ2

(II) λ1 ' λ2 Symmetric girdle Rotational symmetry around λ3

Table 2: Descriptive interpretation of spherical distribution shapes relative to eigenvalues

λ1, λ2, λ3 of T̄ and the resulting length R̄. Extracted from Mardia and Jupp (1999).
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Chapter 4

Graphical and Numerical Methods for Small Circle

Data Fitting



Graphical and Numerical Methods for Small Circle
Data Fitting

Arthur Endleina,∗, Ginaldo Ademar da Cruz Campanhaa, Camila Duelis
Vianaa

aInstitute of Geosciences, University of São Paulo, São Paulo, 05508-080, Brazil

Abstract

A small circle is a set of vectors on a sphere that have a constant angular

distance to a vector. They arise on many different situations on geological data

and yet most popular free available directional data analysis applications either

do not offer the functionality of small circle fitting or provide methods which

may struggle to estimate the best fit cone when dealing with complex distribu-

tions.This work both reviews a numerical method and proposes a new graphical

method. To test the methods, sample datasets for small circles were generated.

Python implementations of the methods used are available at Appendix B.

Keywords: Small circles, Conical Folds, Directional Data Fitting.

1. Introduction

A small circle is a set of vectors xi = {x1, x2...xn} on a sphere that have

a constant angular distance α to a vector µ. They arise on many different

situations on geological data such as planar attitudes measured on certain su-

perimposed folding systems (Ramsay, 1962), conical folds at tappering ends5

of cylindrical folding systems (Cruden and Charlesworth, 1972), paleomagnetic

data directions restoration (Pueyo et al., 2003; Mochales et al., 2016), linear

∗Corresponding author
Email addresses: arthur.correia@usp.br; endarthur@gmail.com (Arthur Endlein),

ginaldo@usp.br (Ginaldo Ademar da Cruz Campanha), camila.viana@usp.br (Camila
Duelis Viana)
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attitudes measured on folding systems that condition them to a constant angu-

lar displacement from the fold axis or segments of hotspot traces (Mardia and

Gadsden, 1977) and transform faults. As noticed by Mulchrone et al. (2013),10

the most popular free available directional data analysis applications either do

not offer the functionality of small circle fitting or provide methods which may

struggle to estimate the best fit cone when dealing with complex distributions.

So far the axes for these small circles have been adjusted either by visual inspec-

tion using π-diagrams or by iterative numerical methods (Ramsay, 1962; Mardia15

and Gadsden, 1977; Bingham and Mardia, 1978; Mulchrone et al., 2013). Un-

til present, there is no reliable graphical method for estimating best fit small

circles.

This work both uses the numerical method detailed on Bingham and Mardia

(1978) and proposes a new graphical method, that reduces the problem to an20

analog of the π or β diagrams for great circles (Ramsay, 1967).

2. Method

A small circle with axis µ and half-apical angle α can be defined either as

the intersection of a unit sphere and a cone with axis µ and half-apical angle α

or a plane with normal vector µ and distance to origin equal to sin(α).25

Being xi = {x1, x2...xn} column vectors that represents data points along a

small circle, we define the average vector x̄, orientation matrix S and covariance

matrix S̃ as

x̄ =
∑

i

xi
n

(1)

S =
1

n− 1

∑

i

xi · x′i (2)

30

S̃ =
1

n− 1

∑

i

(xi − x̄) · (xi − x̄)′ (3)
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Bingham and Mardia (1978) proposes that the eigenvector associated with

the smallest eigenvalue of S̃ as a good estimator for the small circle’s axis, and

the arcsin of the dot product between the estimated axis and the data’s average

vector x̄ as an estimator for the half-apical angle.

This follows from the fact that the eigenvector associated with the smallest35

eigenvalue is parallel to the direction of most flattening of the data, and as such

a good estimate of the normal vector of a plane (Pearson, 1901). Watson (1966)

provides a physical interpretation for the smallest and largest eigenvalues and

related eigenvectors of matrix S as the rotation axes through the origin with

respectively maximum and minimum moments of inertia, considering a system40

with particles of unit weight at the end of each vector. A similar analogy can

be made for matrix S̃, with the difference that the axes are through the center

of mass of the system, instead of the origin.

2.1. Correction for Axial Data

Given the typical representation of axial data as vectors on the lower hemi-45

sphere, the previous method may not work, as it strongly depends on the correct

estimation of the average vector x̄. For datasets that contains points that cross

the primitive (Fig. 1), the direct calculation of the average vector usually results

in a subvertical vector with low magnitude, even though the data may be highly

concentrated in a preferential direction.50

(figure 1 around here)

As a correction, it is possible to concentrate the data around either the

largest or the smallest eigenvector of matrix S, depending on the semi-apical

angle of the small circle. Considering the components of a data point as xi =

{li,mi, ni} and combining with the definition of matrix S results in55

S =
1

n− 1

∑

i

xi · x′i =
1

n− 1

∑

i




lili limi lini

mili mimi mini

nili nimi nini


 (4)

As during the calculation of Eq. 4 each cell consist on the product of two

50



components, multiplying any data points by −1 will result in the same matrix.

Hence, both matrix S and its eigenvectors and eigenvalues are insensitive to the

inversion of points. The eigenvector v1 associated with its largest eigenvalue

will point to the axis of largest axial data concentration, as the eingenvector60

v3 asssociated with its smallest eigenvalue will point as far as possible from the

data points.

By then comparing each vector xi and its inverse −xi to both these eigen-

vectors and in each case keeping whichever is closest, we may approximate an

average vector that better represents the real mean axis, allowing the calculation65

of matrix S̃.

For axial datasets that consist of a concentration along a preferred axis, v1

is generally a good choice. In the context of small circles, though, concentrating

along this eigenvector may distort the circle, if the semi-apical angle is greater

than 45 degrees. In this case it is better to concentrate along v3. As a heuristic,70

both small circle axes can be calculated, keeping whichever has the smallest

associated standard deviation of angles to the data points.

Another possible solution is through visual inspection. By rotating the

dataset so it doesn’t cross the primitive, the average vector can be calculated

accurately and the numerical method will then work in most situations.75

2.2. Graphical Method

The covariance matrix can also be defined on the difference of pairs of data

(Barnes (1991), adapted proof in Appendix A), through the equation

S̃ =
1

2n(n− 1)

∑

i

∑

j

(xi − xj) · (xi − xj)′ (5)

From this, an approximate graphical solution to the problem can be realized.

Though obtaining the difference vectors graphically would be cumbersome, a80

unit vector (d) parallel to the difference vector of two points a and b can be

easily constructed:
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1. Find the great circle that contains both poles a and b. Mark its pole

(c) and the midpoint (m) contained in the smallest angle along the great

circle between a and b (Fig. 2A).85

2. Point d is the pole to the great circle that contains c and m (Fig. 2B)

(figure 2 around here)

The pole to the great circle adjusted to these points is then an estimate of

the small circle axis, as an analog to the π diagram (Fig. 2C) of a great circle

girdle, as is the intersection of their respective great circles, comparable to the90

β diagram (Fig. 2D).

Though being a less robust estimate of the axis, given that each vector will

be given equal weight regardless of its magnitude, this is a simple method that

can produce useful results.

3. Examples95

To illustrate the method and challenges involved, we take as example points

on circles with horizontal axis due east and semi-apical angles of 30 and 60

degrees, adding noise to both samples (Fig. 3).

(figure 3 around here)

The first case, with angle of 30 degrees, Fig. 3A shows fitted axes for x̄, the100

non-corrected mean vector, with respective small circle dashed, and x̄′, the mean

vector calculated with data points concentrated around v1, with solid circle.

Fig. 3B shows the point cloud resultant from the graphical method, applied

exhaustively to all possible pairs of points. The best fit great circle girdle to

this point cloud is plotted with solid circle.105

The second case is meant to demonstrate the issue with large semi-apical

angles. In this example (Fig. 4A), given the distance from the points to the

axis, concentrating along v1 distorts the circle and gives a wrong axis (dashed

circle). The standard deviation of angles of the solution calculated using v3

(solid circle) is then compared to the former, and v3 is kept as the answer.110

(figure 4 around here)

52



In this case, the graphical method result in a more dispersed point cloud,

when applied to all possible combinations of the dataset points and their inverses

(Fig. 4B). Either through visual inspection, when applied computationally, or

careful selection of points pairs when manually, a girdle may then be fitted to115

the resulting points.

4. Conclusions

This work reviews and implement a numerical non-iterative method for small

circle data fitting, both robust and fast, that may be added to directional data

analysis software. It also proposes a graphical solution, that both allows for120

data fitting on paper but also may be implemented numerically and used as

input for visual inspection and fitting of complex datasets.

We have also explored a potential issue with large semi-apical angles, and

studied a method that in many cases corrects these problems. Further develop-

ments may include non-linear optimization methods, such as simulated anneal-125

ing, as to search for the best combination of inversion of points for the fitting,

avoiding distortions.

The numerical method has been implemented in the new version of Open-

Stereo (Grohmann and Campanha, 2010), allowing for both the automatic or

manual correction methods for datasets that cross the primitive.130
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Figure captions170

Figure 1: On the left, example of data distribution that cross the primitive. The direct

calculation of the average vector (x̄) usually results in subvertical vector with low magnitude.

Concentrating the data around the first eigenvector results in a average vector(x̄′) closer to

the data concentration. On the right, the comparison of angles between a given vector v1 and

a data point x and its inverse −x.
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Figure 2: Representation of the construction of a unit vector d parallel to the difference vector

of vectors of a and b on small circle using the graphical method: (A) Find the great circle that

contains both poles a and b, mark its pole c and the midpoint m contained in the smallest angle

along the great circle between a and b; (B) Point d is the pole to the great circle that contains

c and m; (C) The pole to the great circle adjusted to these points is then an estimate of the

small circle axis, as an analog to the π diagram of a great circle girdle, as is the intersection

of their respective great circles, comparable to the β diagram (D)
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Figure 3: For a 30 degrees semi-apical angle: (A) the numerical method shows fitted axes for

x̄ (non-corrected mean vector) with respective small circle dashed and x̄′ (mean vector with

points around v1 ) with solid circle graphical; (B) the point cloud resultant from the graphical

method applied exhaustively to all pairs of points shows its best fit great circle girdle as a

solid line circle.
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Figure 4: For a 60 degrees semi-apical angle: (A) the numerical method shows that given

the distance from the points to the axis concentrating along v1 distorts the circle and gives a

wrong axis (dashed line). The angular variance of the solution calculated using v3 (solid line)

is then compared to the former and v3 is kept as the answer; (B) the point cloud resultant

from the graphical method is more dispersed.
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Appendix A. Covariance matrix on differences

This proof is a redevelopment of Barnes (1991), adapted to vectors to pro-

duce a covariance matrix. Starting from the equation

D =
1

2n(n− 1)

∑

i

∑

j

(xi − xj) · (xi − xj)′ (A.1)

Adding and subtracting the average vector x̄ from both sides of the dot

product and distributing the dot product and sums we arrive in175

D =
1

2n(n− 1)

∑

i

∑

j

((xi − x̄)− (xj − x̄)) · ((xi − x̄)− (xj − x̄))′ (A.2)

S̃ =
1

2n(n− 1)

∑

i

∑

j

(xi − x̄) · (xi − x̄)′−

1

2n(n− 1)

∑

i

∑

j

2(xj − x̄) · (xi − x̄)′+

1

2n(n− 1)

∑

i

∑

j

(xj − x̄) · (xj − x̄)′

(A.3)

The first component of equation A.3 can be simplified to S̃
2 . As the terms

inside the parenthesis doesn’t depend on j, they can be factored out of the

summation:

1

2n(n− 1)

∑

i

∑

j

(xi − x̄) · (xi − x̄)′

1

2(n− 1)

∑

i

(xi − x̄) · (xi − x̄)′
∑

j

1

n

1

2(n− 1)

∑

i

(xi − x̄) · (xi − x̄)′ =
S̃

2

The third component can be simplified in a similar way, by factoring the

terms inside the parenthesis out of the summation over i.180

The second component may then be reduced to the zero tensor. Factoring

out of the sum over i the first term of the dot product results in a sum of

60



the differences between each vector and their mean vector, resulting in the null

vector.

1

2n(n− 1)

∑

i

∑

j

2(xj − x̄) · (xi − x̄)′

1

2n(n− 1)

∑

j

2(xj − x̄) ·
∑

i

(xi − x̄)′

1

2n(n− 1)

∑

j

2(xj − x̄) · (
∑

i

xi −
∑

i

∑

k

xk
n

)′

1

2n(n− 1)

∑

j

2(xj − x̄) · (
∑

i

xi −
∑

k

xk
∑

i

1

n
)′

1

2n(n− 1)

∑

j

2(xj − x̄) · (
∑

i

xi −
∑

k

xk)′

1

2n(n− 1)

∑

j

2(xj − x̄) · (x1 − x1 + x2 − x2 . . .+ xn − xn)′

1

2n(n− 1)

∑

j

2(xj − x̄) · 0′ = 0

Finally, combining the previous results, we arrive in185

D =
S̃

2
− 0 +

S̃

2
= S̃ (A.4)

Showing that the covariance matrix can be obtained from the differences

between vectors.

Appendix B. Sample Python code for small circle axis

import numpy as np

190

def s m a l l c i r c l e (x , n=None ) :

n = x . shape [ 0 ]

#f i n d the l a r g e s t e i g e n v e c t o r o f matrix S

S = x . dot ( x .T)/( n−1)

#i f n i s given , con cent ra t e data around the Nth e i g e n v e c t o r195
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i f n i s not None :

e ig , e i v = np . l i n a l g . e i g (S)

e i g o r d e r = np . a r g s o r t ( e ig , r e v e r s e=True ) [ : : − 1 ]

e i v = e iv [ : , e i g o r d e r ]

n e i v = e iv [ : , n ]200

#c onc entr a te the data

x = x∗np . where ( x . dot ( n e i v ) > 0 , 1 , −1)

#c a l c u l a t e the mean and S matrix

x = x . mean( a x i s =0)

S = S − x . dot ( x .T)205

#c a l c u l a t e the sma l l c i r c l e a x i s and h a l f−a p i c a l ang l e

e ig , e i v = np . l i n a l g . e i g ( S )

s e i g = np . argmin ( e i g )

s e i v = e iv [ : , s e i g ]

theta = as in (abs ( x . dot ( s e i v ) ) )210

return s e i v , theta
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Abstract

OpenStereo was first released in 2010 as an open source, cross-platform software

for directional data projection and structural geology. After a full restructuring

its 1.0 version is presented as a faster and more user-friendly program which

includes new features such as small circle fitting, conversion of shapefiles to

azimuth data, conversion of sampled three-dimensional meshes to plane data,

continuous weighted rose diagrams, angle measurement tool and project man-

agement support. This release also provides more customization options, and

was structured as to facilitate further extensions to the software.

Keywords: Spherical projection, Python, Stereonet.

1. Introduction

Many different directional data analysis software have been developed over

the decades, both commercial, such as DIPS (Rocscience, 2013) and freeware, as

Orient (Frederick W. Vollmer, 2017) and Stereonet (Cardozo and Allmendinger,

2013). OpenStereo was originally built as a free, Open Source and cross-platform5

alternative, aiming for a clean interface, simple data input and extensibility.

Over the years OpenStereo have acquire a great number of users, being

cited in several articles such as the most recent Gehrmann et al. (2016),Moreno-
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Sánchez et al. (2016) and Phillips et al. (2016). From its first release, the authors

set a development path that would focus on tools as merging and rotation of10

datasets, possibility to save projects and paleostress analysis.

Focusing on the same objectives, this work is the result of a restructuring

of the original software in two parts. First the creation of a directional data

analysis library, AUTTITUDE, that encapsulates data input, pre-processing

and numerical analysis (Endlein et al., a). From this framework it was possible15

to concentrate the development of OpenStereo on a better user interface, offering

additional plot options, analysis methods and data management capabilities.

Both existing tools were expanded, such as the added option to calculate

continuous rose diagrams (Munro and Blenkinsop, 2012), the inclusion of rota-

tion and angle measurement to the projection plot, and new tools were added,20

as projects, extracting planar attitudes from three-dimensional models and az-

imuths and lengths from shapefiles.

2. Functionality

OpenStereo tries to simplify as much as possible loading data sets. In this

release it supports loading data from Excel Spreadsheets and text files, either25

in CSV or GeoEAS formats. If one of the specific import menus is used, such

as Import Planar Data (Dip Direction) the software will handle the file format,

detect if it has a header and make a best guess on which columns should be

used, defaulting to the first for dip direction and the second for dip. In case

there is any need of a finer control on the data loading, it is possible to open30

the import dialog (Fig. 1) and change any settings on the import process.

(figure 1 around here)

OpenStereo’s plotting area is organized in tabs (Fig. 2): Projection, show-

ing spherical data projected in either Equal-Area or Equal-Angle projections,35

Rose Diagram, with either binned or moving average counts of circular data

and Classification, which includes both Woodcock (1977) and Vollmer (1990)
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methods of distribution shape classification.

(figure 2 around here)

40

The Projection tab generically allows the plotting of vectors as points, circles

as lines and counting grids as contours, whenever adequate to each data set type.

It also allows the rotation of the whole plot and the inclusion of grids with user

defined spacing of great and small circles (Fig. 3). The plot is also interactive.

Inspired by Stereo32 (Röller and Trepmann, 2008) it is possible to measure45

angles between points on the projection by click and drag.

(figure 3 around here)

The Rose Diagram tab serves for plotting circular counts, either as petals,

kites or lines (Fig. 4). The scale of the plot can be either set by the user or50

obtained automatically from the given data. The underlying grid can also be

configured, both the spacing of the grid lines and its span (Fig. 5).

(figure 4 around here)

(figure 5 around here)

55

The classification tab allows choosing between Woodcock’s adapted Flinn

diagram or Vollmer’s triangular plot (Fig. 6). The points that are plotted on

the diagrams use the same settings as the vectors for the Projection tab.

(figure 6 around here)

60

A major change relative to the original OpenStereo was the inclusion of

projects. OpenStereo project files are zip compressed folders with extension

”.openstereo”. They include a json (http://www.json.org/) file containing the

data sets list and information relative to the project itself, such as title, author-

ship, description and specific parameters of the plotting tabs. For each data set65

another json file containing its plotting information is kept. These plot settings

can also be exported and imported individually as ”.os lyr” files.

If desired by the user, the data files themselves are included inside the project
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file, being then decompressed on the fly for loading. If not, the data file paths

relative to the project file are saved, allowing the user to easily work on multiple70

computers.

2.1. Data Types and Properties

The software currently supports loading planes, lines, small circles and circu-

lar data. After loading, the data set will be included in the items tree, showing

as options its plot elements (Fig. 7). With the exception of ”Rose”, these refer75

to plotting on the Projection tab.

(figure 7 around here)

Each supported data type has its own properties window, allowing the defi-

nition of the plot options of each possible element. The Properties window (Fig.80

8) of a planar dataset can be taken as a comprehensive example, being the other

data types effectively subsets of this one.

(figure 8 around here)

The Projection tab houses options for plotting projections of vectors and85

circles, being them original from the input data, as poles to planes or great

circles or derived, as poles and circles of the dataset eigenvectors, average vector

and best fit small circle.

OpenStereo offer two ways to calculate the average vector. By default, the

vector will be calculated directly from the direction cosines of the dataset. Alter-90

natively the data can be first oriented so it occupies the hemisphere defined by

the first eigenvector, which may give better results for sub-horizontal datasets

that cross the primitive (Endlein et al., a).

The best fit small circle is calculated as suggested by Bingham and Mardia

(1978), with options for re-orientating the vectors to the hemisphere of one of95

the eigenvectors, as it heavily depends on a good estimate of the average vector

(Endlein et al., b). This should be set to the first eigenvector for circles with

semi-apical angle of less than 45 degrees, otherwise to the third eigenvector.
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Another option for troublesome datasets is to rotate the projection until the

circle does not cross the primitive. This can be done on the Projection tab of100

the settings dialog, as explained above.

The second tab, Contours (Fig. 9), defines options for the calculation and

graphical display of counting grids. The grid may either be used to count points

that fall within a given θ angle to each node (Kamb, 1959), or sum for each node

a smoothing function of its angle to each point, controlled by a factor K (Robin105

and Jowett, 1986). Both θ and K may be defined by the user or calculated

automatically by two different methods. The first one, from Robin and Jowett

(1986), depends only on the number of points while the second (Diggle and

Fisher, 1985) performs an optimization based on the cross validation of the

smoothing function.110

(figure 9 around here)

Plotting circular data and horizontal components of spherical data is con-

trolled by the Rose tab on the properties dialog (Fig. 10). Here, it is possible

to define whether dip directions or directions are going to be used and if these115

should be considered vectors, with direction and sense, or axes, with only di-

rection (Fisher, 1993). The actual counting can be made as a standard rose

diagram, effectively a circular histogram, or as a moving average, weighted or

not (Munro and Blenkinsop, 2012). The results may be plotted as petals, kites

or lines, the last from either the center of the diagram or as deviations from the120

average frequency (as suggested in Wells (2000)).

(figure 10 around here)

The last three tabs, Statistics, General and Data Source contain respectively

the statistics for the dataset calculated automatically by auttitude, legend op-125

tions for the plot elements and information on the import process of the data.

This last may either be used for solving problems on the data import or used

by OpenStereo for reloading the data, as lines can be added or edited in the

original source.
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2.2. Mesh analysis130

The emergence of methods for easily building three-dimensional digital mod-

els, either with terrestrial laser scanning or digital photogrammetry, have opened

a new venue for geological attitudes measurement. Ply2atti is a tool developed

in a previous work that uses a combination of graph analysis and linear algebra

to calculate the attitudes of selected planar features on a digital model of an135

outcrop (Viana et al., 2016). It has been integrated in this version of OpenStereo

as a tool.

An external software must be used to digitally paint the surfaces to be

measured on the three-dimensional model, for example Meshlab (Cignoni et al.,

2008), an open source model visualization and editing software. It is important140

to use colors that do not appear naturally in the model, such as pure basic

colors, and as many planes as needed can be painted with the same color, as

long as they do not share a vertex. The model should then be exported in binary

Stanford Polygon format (.PLY ), and the colors used noted (Fig. 11).

(figure 11 around here)145

When opening the file for conversion in OpenStereo a dialog will appear

where the colors used for painting the model can be input. By default, red (255,

0, 0), green (0, 255, 0) and blue (0, 0, 255) will be suggested, but other colors

may be used (Fig. 12).150

(figure 12 around here)

The internal processing of the dataset consists in building graphs using the

vertices of the three-dimensional mesh that have the given colors, splitting the

graphs in their connected components to separate different planes, and for each155

plane calculating the eigenvector associated with the smallest eigenvalue of the

covariance matrix of its vertices. This eigenvector is kept as the best fit nor-

mal vector to the plane (Pearson, 1901). A CSV file containing the calcu-

lated attitudes and some additional parameters is generated for each given color

and loaded on OpenStereo, automatically changing the poles to planes color to160
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match. Additional details on the method and procedure can be found at Viana

et al. (2016).

2.3. Shapefile analysis

An experimental tool to convert lines shapefiles to circular data was also

included in this release. The pyshp (Ian Bicking and Michael Foord, 2005)165

library is used to parse the shapefile, which must be in geographical coordinates.

Being r the average radius of Earth (6,371km), the length of each segment

of each line in the file is calculated by taking the latitudes (φ1 and φ2) and

longitudes (λ1 and λ2) in radians of their endpoints and applying the haversine

formula,170

a = sin2

(
φ2 − φ1

2

)
+ cosφ1 cosφ2 sin2

(
λ2 − λ1

2

)

c =atan2
(√
a,
√

(1− a)
)

d =2rc

(1)

Similarly the forward azimuth formula is used to calculate the bearing θ of

the segment,

θ = atan2 (sin (λ2 − λ1) cosφ2, cosφ1 sinφ2 − sinφ1 cosφ2 cos (λ2 − λ1)) (2)

The resulting lengths and azimuths are exported to a CSV file and automat-

ically imported to OpenStereo as a circular dataset (Figs. 13 and 14).

(figure 13 around here)175

(figure 14 around here)

Both formulas where adapted from Chris Veness (2016). atan2 is a function

available on most programming languages that calculates the arctangent of the

ratio of its two parameters while comparing their signs to determine the correct180

quadrant of the angle and handling cases in which one of them is equal to zero.
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3. Development

OpenStereo was developed in Python series 2.7.x (Python Software Foun-

dation, 2013), though also being compatible with Python Series 3.x. Most cal-

culations are actually performed by the AUTTITUDE library (Endlein et al.,185

a), which also uses the Numpy (Oliphant, 2006) library for vectors and linear

algebra and xlrd (Python Software Foundation, 2016) for excel spreadsheets

parsing.

Plotting is done using the Matplotlib (Hunter, 2007) library, which pro-

vides methods for producing high quality figures and exporting the results in190

many different formats. An important change from the original implementation

of OpenStereo was the switch from Wx (http://www.wxwidgets.org/) to Qt

(https://www.qt.io/) as its graphical interface toolkit. This greatly facilitated

the development of the interface while also making it possible to internationalize

the software in the future. The specific Python implementation of Qt used was195

the PySide library (https://wiki.qt.io/PySide).

4. Conclusion

This restructuring of OpenStereo greatly expands its capabilities, not only

directly, by offering new tools and enhancing the existing ones, but also by

focusing from the ground up on making it easy to maintain and improve.200

Future developments will include paleostress analysis of faults, kinematic

criteria analysis of rock slopes, clustering datasets and expanding interactivity

with the plot area, such as allowing direct drawing of new data.

Supplementary Material

Supplementary data related to this article can be found at https://git.io/vMjma.205
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Röller, K., Trepmann, C., 2008. Stereo32 version 1.01. Ruhr-Universität

Bochum, Institut für Geologie, Mineralogie & Geophysik, Germany .275

Viana, C.D., Endlein, A., da Cruz Campanha, G.A., Grohmann, C.H., 2016.

Algorithms for extraction of structural attitudes from 3d outcrop models.

Computers & Geosciences 90, 112–122. URL: https://doi.org/10.1016%

2Fj.cageo.2016.02.017, doi:10.1016/j.cageo.2016.02.017.

Vollmer, F.W., 1990. An application of eigenvalue methods to structural domain280

analysis. Geological Society of America Bulletin 102, 786–791.

Wells, N.A., 2000. Are there better alternatives to standard

rose diagrams? Journal of Sedimentary Research 70, 37–

46. URL: http://jsedres.geoscienceworld.org/content/

70/1/37, doi:10.1306/2DC408FC-0E47-11D7-8643000102C1865D,285

arXiv:http://jsedres.geoscienceworld.org/content/70/1/37.full.pdf.

Woodcock, N., 1977. Specification of fabric shapes using an eigenvalue method.

Geological Society of America Bulletin 88, 1231–1236.

74



Figure captions

Figure 1: Image of the import dialog, demonstrating the automatic detection of delimiter and

headers.
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Figure 2: Image of the main window on the Project tab, showing a rotated contoured dataset

with grid.
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Figure 3: Image of the settings dialog for the Projection tab, including setting the projection,

hemisphere, rotation of the plot and grid overlay.
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Figure 4: Image of Rose Diagram tab, showing a standard rose diagram for an example

dataset.
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Figure 5: Image of the settings dialog for the Rose Diagram tab, including plot scale and grid

options.
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Figure 6: Image of the Classification tab, showing a Vollmer Triangular plot.

80



Figure 7: Example of datasets loaded on the item tree, showing the currently supported data

types.
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Figure 8: Projection tab on properties window for planar dataset, showing options for graph-

ical display of elements and calculation of average vector and small circle fit.
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Figure 9: Contours tab on properties window for planar dataset, showing options for graphical

display, calculation and parameters estimation.
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Figure 10: Rose tab on properties window for planar dataset, showing options for graphical

display and calculation.

Figure 11: Example of three-dimensional outcrop model with planes digitally painted for

extraction of planar attitudes. Original data from Viana et al. (2016).
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Figure 12: Example of datasets extracted using ply2atti loaded on openstereo. Original data

from Viana et al. (2016).
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Figure 13: Example of a lines shapefile to be processed on OpenStereo.

86



Figure 14: Rose plot of the example shapefile.

87



88 Chapter 5. OpenStereo 1.0



Chapter 6

Conclusions

The restructuring of OpenStereo was a long but successful process. The resulting

software is robust and fast, able to work with many different data sources, while helping

users manage their data and hopefully obtain new insights. It is much easier to maintain

and extend, providing a strong foundation over which future projects may be developed.The

Auttitude library is also an interesting subproduct, should it be used in other new software

of on its own.

The research involved also generated a new graphical method for small circle data

fitting, that though not perfect in all situations, can and will be further developed and

may result in other methods or applications of existing methods.

Future developments over both OpenStereo and Auttitude are planned, such as in-

cluding new data types, plotting methods and workflows. Being open source projects,

contributions by other researchers and users will be invaluable, and it is hoped that this

new version will spark the growth of a larger community around OpenStereo.
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