UNIVERSIDADE DE SÃO PAULO INSTITUTO DE GEOCIÊNCIAS

CONTRIBUIÇÃO AO ESTUDO DAS ROCHAS GRANITÓIDES E MINERALIZAÇÕES ASSOCIADAS DA SUITE INTRUSIVA VELHO GUILHERME, PROVÍNCIA ESTANÍFERA DO SUL DO PARÁ

VOLUME 2

Nilson Pinto Teixeira

Orientador: Prof. Dr. Jorge Silva Bettencourt

TESE DE DOUTORAMENTO

Programa de Pós-Graduação em Recursos Minerais e Hidrogeologia

SÃO PAULO 1999

e.2

UNIVERSIDADE DE SÃO PAULO INSTITUTO DE GEOCIÊNCIAS

CONTRIBUIÇÃO AO ESTUDO DAS ROCHAS GRANITÓIDES E MINERALIZAÇÕES ASSOCIADAS DA SUITE INTRUSIVA VELHO GUILHERME, PROVÍNCIA ESTANÍFERA DO SUL DO PARÁ

Volume 2

Nilson Pinto Teixeira

Orientador: Prof. Dr. Jorge Silva Bettencourt

TESE DE DOUTORAMENTO

Programa de Pós-Graduação em Recursos Minerais e Hidrogeologia

São Paulo

1999

ANEXOS

ANEXO 1- Mapa de amostragem do maciço granitóide Antônio Vicente.

ANEXO 2- Análises químicas e fórmulas estruturais de anfibólios das facies granitóides BASMG e BASAFG do maciço granitóide Antônio Vicente, calculadas através do método 13-CNK.

FACIES GRANITOIDE	BASMG											
AMOSTRA	1	01-GFe										
FASE MINERAL				ANFIBÓLIC) ·							
	1=1C1	2=2C1	3=3C1	4=4C2	5=5C2	6=6C2	7=903					
SiO2	40.89	41.09	40.45	40.18	40.84	39.10	41 78					
TiO2	1.92	2.07	2.01	1.98	1.99	1.95	1 79					
AI2O3	8,56	8,18	7.87	7.99	8.24	7.73	8.26					
FeO	25,05	24,66	25,08	24.15	24.00	24.63	25.17					
MnO	0,40	0.39	0.35	0.32	0.32	0.35	0.38					
MgO	6,22	6,70	6,86	7.61	7.24	6,98	6.50					
CaO	10,82	10,63	10,49	10,55	10.68	10.57	10.54					
Na2O	1,71	1,69	1,76	1,59	1.60	1.64	1.67					
К2О	1,28	1.27	1,28	1.40	1.42	1.28	1.31					
ВаО	0,02	0,02	0.06	0.03	0.00	0.00	0.10					
CI	0,92	0,72	0,74	0.69	0.67	0.67	0.80					
F	0,41	0,13	0.26	0.27	0.59	0.28	0.44					
TOTAL	98,20	97,56	97 16	95.86	97.58	95.18	98.72					
TSi	6,406	6.419	6.356	6.302	6,383	6 278	6 472					
TAI	1,579	1,505	1.456	1,476	1.517	1,462	1 507					
TFe3	0.014	0.077	0.187	0.223	0.100	0.261	0.021					
TTI	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
SUM T	8.000	8.000	8,000	8,000	8,000	8,000	8,000					
CAI	0.000	0.000	0.000	0.000	0.000	0,000	0,000					
CFe3	0.733	0.772	0.843	0.922	0.804	0.842	0.851					
CTi	0.226	0.243	0.238	0.234	0.234	0.235	0,001					
CMg	1.453	1.560	1,607	1,779	1,687	1 671	1 501					
CFe2	2.535	2.373	2,266	2.022	2,233	2 204	2,390					
CMn	0.053	0.052	0.047	0.043	0.042	0.048	0.050					
ССа	0.000	0.000	0.000	0.000	0,000	0,000	0,000					
SUM C	5,000	5.000	5.000	5,000	5,000	5,000	5,000					
BMg	0.000	0.000	0.000	0,000	0,000	0,000	0,000					
BFe2	0.000	0.000	0.000	0.000	0.000	0,000	0,000					
BMn	0.000	0.000	0.000	0.000	0.000	0,000	0,000					
BCa	1.816	1.779	1,766	1,773	1 788	1 818	1 749					
BNa	0.184	0.221	0.234	0.227	0.212	0 182	0.251					
SUM B	2.000	2,000	2,000	2 000	2 000	2 000	2,000					
ACa	0.000	0.000	0.000	0.000	0,000	0.000	0,000					
ANa	0.336	0.291	0.302	0.256	0 273	0.329	0,000					
AK	0,256	0.253	0.257	0.280	0.283	0.262	0,259					
SUM A	0,592	0.544	0,559	0.536	0.556	0.591	0.510					
CCI	0,244	0,191	0,197	0,183	0,178	0 182	0,210					
CF	0,203	0,064	0,129	0.134	0.292	0.142	0.216					
SUM CAT.	15,592	15.544	15.559	15.536	15.556	15 591	15 510					
SUM OXI.	23,000	23.000	23.000	23.000	23.000	23,000	23,000					
Ca+Na)B	2.000	2.000	2.000	2,000	2 000	2 000	2000					
VaB	0,184	0,221	0,234	0.227	0 212	0 182	0.251					
CaB	1,816	1,779	1,766	1,773	1 788	1 818	1 740					
Mg/(Mg+Fe2+)	0.36	0.40	0 41	0 47	0.43	0.43	0.38					
Na+K)A	0.592	0.544	0.559	0.536	0.556	0.591	0,00					

Continuação do ANEXO 2.

FACIES GRANITÓIDE		BA	SMG	BASAFG				
AMOSTRA	1	01-	GFe	······		IG-SN	1-11	
FASE MINERAL	1	ANFI	BÓLIO			ANFIB	ÓLIO	
	8=10C3	9=11C3	10=18C5	11=19C5	12=20C1	13=22C1	14=23C1	15=33C4
SiO2	40,47	39,29	40,69	42,03	40,41	40,58	40,56	40,19
TiO2	1,05	1,15	1,85	1,94	1,84	2,01	1,97	1,68
AI2O3	8,47	8,18	8,09	8,26	7,58	8,12	8,00	7,98
FeO	27,09	27,46	24,35	23,48	31,67	31,38	30,91	31,25
MnO	0,37	0,41	0,34	0,30	0,70	0,70	0,67	0,62
MgO	4,77	4,66	6,92	7,07	1,37	1,44	1,45	1,48
CaO	10,76	10,57	10,57	10,61	10,53	10,37	10,22	10,20
Na2O	1,62	1,56	1,60	1,64	1,44	1,88	1,84	1,88
К2О	1,32	1,38	1,24	1,44	1,19	1,31	1,25	1,27
BaO	0,05	0,06	0,00	0,00	0,00	0,00	0,02	0,00
Cl	1,26	1,44	0,69	0,70	0,61	0,68	0,64	0,55
F	0,31	0,22	0,57	0,33	0,24	0,13	0,18	0,16
TOTAL	97,53	96,36	96,92	97,83	97,58	98,60	97,71	97,28
TSi	6,470	6,381	6,406	6,532	6,580	6,542	6,588	6,554
TAL	1,530	1,564	1,500	1,468	1,420	1,458	1,412	1,446
TFe3	0,000	0,055	0,094	0,000	0,000	0,000	0.000	0,000
Πi	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
SUM T	8,000	8,000	8,000	8,000	8,000	8,000	8,000	8,000
CAL	0,065	0,000	0,000	0,044	0,033	0,084	0,118	0,087
CFe3	0,755	0,883	0,853	0,657	0,561	0,477	0,418	0,524
CTi	0,126	0,140	0,219	0,227	0,225	0,244	0,241	0,206
CMg	1,137	1,128	1,624	1,638	0,333	0,346	0,351	0,360
CFe2	2,867	2,792	2,259	2,395	3,752	3,784	3,780	3,738
CMn	0,050	0,056	0,045	0,039	0,097	0,096	0,092	0,086
CCa	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
SUM C	5,000	5,000	5,000	5,000	5,000	5,000	5,000	5,000
BMg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
BFe2	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
BMn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
BCa	1,843	1,839	1,783	1,767	1,837	1,791	1,778	1,782
BNa	0,157	0,161	0,217	0,233	0,163	0,209	0,222	0,218
SUM B	2,000	2,000	2,000	2,000	2,000	2,000	2,000	2,000
ACa	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ANa	0,345	0,3330	0,271	0,261	0,292	0,379	0,358	0,377
AK	0,269	0,286	0,249	0,286	0,247	0,269	0,259	0,264
SUM A	0,615	0,616	0,520	0,546	0,539	0,648	0,617	0,641
CCI	0,342	0,397	0,184	0,184	0,168	0,186	0,176	0,152
CF	0,157	0,113	0,284	0,162	0,124	0,066	0,092	0,083
SUM CAT.	15,615	15,616	15,520	15,546	15,539	15,648	15,617	15,641
SUM OXI.	23,000	23,000	23,000	23,000	23,000	23,000	23,000	23,000
(Ca+Na)B	2,000	<u>z,000</u>	2,000	2,000	2,000	2,000	2,000	2,000
NaB	0,157	0,161	0,217	0,233	0,163	0,209	0,222	0,218
CaB	1,843	1,839	1,783	1,767	1,837	1,791	1,778	1,782
Mg/(Mg+FeZ+)	0,28	0,29	0,42	0,41	0,08	0.08	0,08	0,09
(Na+K)A	0,615	0,616	0,520	0,546	0,539	0,648	0,617	0,641

ANEXO 3- Análises químicas de biotita da facies granitóide BSG, do maciço granitóide Antônio Vicente, obtidas através de microssonda eletrônica, e fórmulas estruturais calculadas. As fórmulas estruturais calculadas na base de 24 oxigênios,(conforme o método de Deer et al., 1966). Ferro total como FeO. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total calculado. Os teores de Li₂O foram obtidos através da equação recomendada por Tischendorf et al.(1997). XFe=Fe/(Fe+Mg). Os conteúdos de FeO foram dosados por via úmida(método de Wilson) e os de Fe₂O₃ a partir da relação %FeO_T=%FeO+0,8998.%Fe₂O₃.

FACIES GRANITOIDE	BSG									
AMOSTRA		SL-9	B-DT							
FASE MINERAL		BIO	TITA							
	1=22C3	2=23C3	3=24C3	4=25C3						
SiO2	35,60	34,68	34,23	34,42						
TiO2	3,02	2,92	2,89	2,98						
Al2O3	14,30	14,26	14,14	14,43						
FeOT	30,35	30,96	31,63	31,91						
MnO	0,27	0,27	0,31	0,34						
MgO	3,01	3,04	3,0	3,0						
BaO	0,0	0,0	0,01	0,0						
CaO	0,0	0,0	0,02	0,12						
Na2O	0,0	0,04	0,06	0,03						
K2O	9,04	8,97	8,76	8,16						
H2O	1,68	1,63	1,65	1,64						
Li2O	0,63	0,36	0,23	0,29						
F	0,0	0,08	0,0	0,07						
CI	0,42	0,39	0,42	0,38						
TOTAL	98,32	97,72 v	97,35	97,77						
· · · · · · · · · · · · · · · · · · ·	Fórmulas es	truturais na base de 24 o	xigênios							
Si	5,742	5,678	5,649	5,605						
AllV	2,258	2,322	2,351	2,395						
AIVI	0,461	0,440	0,400	0,376						
Ti	0,366	0,360	0,359	0,365						
Fe2	4,0527	4,128	4,147	4,091						
Fe3	0,4091	0,416	0,577	0,605						
Mn	0,037	0,038	0,044	0,047						
Mg	0,724	0,744	0,734	0,728						
Ba	0,000	0,000	0,001	0,000						
Са	0,000	0,000	0,004	0,021						
Na	0,000	0,012	0,020	0,010						
K	1,859	1,880	1,845	1,695						
ОН	1,851	1,842	1,873	1,836						
Li	0,422	0,243	0,156	0,190						
CF	0,000	0,042	0,000	0,004						
CCI	0,012	0,108	0,116	0,021						
0	24,000	24,000	24,000	24,000						
XFe	0.85	0.85	0,85	0,85						

ANEXO 3.1- Análises químicas de biotita da facies granitóide BSG, do maciço granitóide Antônio Vicente, obtidas através de microssonda eletrônica, e fórmulas estruturais calculadas. As fórmulas estruturais calculadas na base de 24 oxigênios,(conforme o método de Deer et al., 1966). Ferro total como FeO. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total calculado. Os teores de Li₂O foram obtidos através da equação recomendada por Tischendorf et al.(1997). XFe=Fe/(Fe+Mg). Os conteúdos de FeO foram estimados a partir da equação de Bruiyn et al.(1983; In: Salonsaari(1995) e os de Fe₂O₃ a partir da reiação %FeO_T=%FeO+0,8998.%Fe₂O₃.

FACIES GRANITOIDE		i i	3SG							
AMOSTRA	SL-9B-DT BIOTITA									
FASE MINERAL										
	1=22C3	2=23C3	3=24C3	4=25C3						
SiO2	35,60	34,68	34,23	34,42						
riO2	3,02	2,92	2,89	2,98						
AI2O3	14,30	14,26	14,14	14,43						
eOT	30,35	30,96	31,63	31,91						
AnO	0,27	0,27	0,31	0,34						
AgO	3,01	3,04	3,0	3.0						
BaO	0,0	0,0	0,01	0.0						
aO	0,0	0,0	0,02	0,12						
ia20	0,0	0,04	0,06	0,03						
20	9,04	8,97	8,76	8,16						
120	1,68	1,63	1,65	1,64						
.i20	0,63	0.36	0.23	0.29						
	0,0	0.08	0.0	0.07						
21	0,42	0,39	0.42	0.38						
OTAL	98,32	97,72	97,35	97,77						
· · · · · · · · · · · · · · · · · · ·	Fórmulas estrutur	ais calculadas na base (de 24 oxigênios							
Si l	5,874	5,761	5,736	5.691						
JIV III	2,126	2,239	2,264	2,309						
.M	0,656	0.564	0.529	0.505						
i	0,375	0.366	0.365	0.371						
e2	3,702	3.785	3.857	3.827						
e3	0,487	0.533	0.576	0.585						
In in its in the second se	0,038	0,038	0,044	0.044						
g	0,741	0.755	0.745	0.739						
a	0,000	0,000	0,001	0,000						
a	0,000	0,000	0,004	0.021						
8	0,000	0,012	0,020	0,010						
	1,902	1,907	1,873	1,721						
H	1,894	1,869	1,901	1,864						
F	0,000	0,042	0,000	0.037						
CI	0,011	0,109	0,118	0.213						
,	24,000	24.000	24,000	24.000						
Fe	0.83	0.83	0.84	0.84						

ANEXO 4- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrónica de clorita das facies granitóides BASMG, BASAFG E BSG, do maciço granitóide Antônio Vicente. As fórmulas estruturais calculadas com base em 14 oxigênios, 6 grupos(OH) equivalentes e anions fixos(O, F, CI). Ferro total como FeO. H₂O foi calculada automaticamente através do software Minpet versão 2.02(Richard, 1995). As quantidades de AI tetraedral e octaedral foram calculadas manualmente a partir do AI total formecido pelo Minpet 2.02.

FACIES GRANITÓIDES		BASMG			·		BASAFG				BSG		
AMOSTRA	1	01-GFe			IG-SN-11							SL-9B-DT	
FASE MINERAL		CLORITA					CLORITA					CLORITA	
ANÁLISES	1=12C3	2=13C4	3=14C4	4=24C1	5=25C1	6=26C2	7=27C2	8=30C3	9=31C3	10=32C3	11=19C1	12=20C1	13=21C1
SiO2	29,81	29,93	27,76	32,40	30,37	27,60	29,63	32.09	33.54	34.34	24.52	24.40	25.18
TiO2	5,07	3,87	0,39	0,77	0,97	0,92	1,24	0.33	0.22	0.47	0.01	0.11	0.05
AI2O3	14,34	14,57	15,37	13,53	14,45	15,65	15,46	13,21	12.50	12.39	17.42	17.72	16.92
FeO _T	28,54	31,24	35,04	37,58	38,33	39,96	39,16	38,81	38,01	36,54	40.98	40,78	41,77
MnO	0,18	0,18	0,23	0,49	0,34	0,61	0,61	0,68	0,62	0,57	0,53	0.53	0,58
MgO	5,44	6,10	7,84	1,79	2,08	1,20	1,16	1,77	1,71	1,90	3,53	3,63	3,91
CaO	4,55	2,57	0,26	0,16	0,12	0,14	0,22	0,14	0,12	0,20	0,05	0,08	0.05
Na2O	0,03	0,00	0,00	0,00	0,00	0,00	0,03	0,00	0,02	0,00	0,03	0,03	0,00
K2O	1,57	1,54	0,38	2,20	2,93	1,37	1,40	1,87	1,64	2,34	0,03	0,00	0,04
H2O	11,06	10,98	10,67	10,78	10,71	10,35	10,63	10,68	10,76	10,80	10,28	10,26	10,41
F	0,18	0,35	0,07	0,00	0,00	0,00	0,05	0,05	0,00	0,14	0,00	0,11	0,04
CI	0,18	0,15	0,02	0,04	0,06	0,08	0,07	0,02	0,00	0,01	0,00	0,01	0,00
TOTAL	100,95	101,53	98,03	99,94	100,36	97,88	99,66	99,65	99,14	99,70	97,38	97,66	98,95
				Fór	mula Estrut	tural na basi	e de 14 Oxi	gênios					
Si	2,510	2,522	2,443	2,829	2,668	2,509	2,615	2,823	2,938	2,977	2,249	2,230	2,276
Ti	0,321	0,245	0,026	0,051	0,064	0,063	0,082	0,022	0,014	0,031	0,001	0,008	0.003
AI	1,422	1,446	1,593	1,391	1,495	1,675	1,607	1.368	1,290	1,265	1,881	1,907	1,801
Fe2+	2,010	2,201	2,579	2,744	2,817	3,038	2,891	2,855	2,785	2,649	3,143	3,116	3,158
Fe3+	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
Mn	0,013	0,013	0,017	0,036	0,025	0,047	0,046	0,051	0,046	0,042	0,041	0,041	0,044
Mg	0,683	0,766	1,029	0,233	0,272	0,163	0,153	0,232	0,223	0,246	0,483	0,494	0,527
Ca	0,410	0,232	0,025	0,015	0,011	0,014	0,021	0,013	0,011	0,019	0,005	0,008	0,005
Na	0,005	0,000	0,000	0,000	0,000	0,000	0,005	0,000	0,003	0,000	0,005	0,005	0,000
К	0,169	0,166	0,043	0,245	0,328	0,159	0,158	0,210	0,183	0,259	0,004	0,000	0,005
ОН	5,926	5,885	5,978	5,994	5,991	5,988	5,976	5,983	6,000	5,960	6,000	5,967	5,989
CF	0,096	0,187	0,039	0,000	0,000	0,000	0,028	0,028	0,000	0,077	0,000	0,064	0,023
CCI	0,051	0,043	0,006	0,012	0,018	0,025	0,021	0,006	0,000	0,003	0,000	0,003	0,000
0	14,000	14,000	14,000	14,000	14,000	14,000	14,000	14,000	14,000	14,000	14,000	14,000	14,000
AI(IV)	1,422	1,466	1,557	1,171	1,332	1,491	1,385	1,177	1,062	1,023	1,751	1,770	1,724
AI(VI)	0,000	0,000	0,036	0,220	0,163	0,183	0,222	0,191	0,228	0,242	0,130	0,137	0,077
Fe/(Fe+Mg)	0,746	0,742	0,715	0,922	0,912	0,949	0,950	0,925	0,926	0,915	0,867	0,863	0,857
Fe+Mg	2,693	2,967	3,608	2,977	3,089	3,201	3,044	3,087	3,008	2,895	3,626	3,610	3,685
Si+AI(VI)	2,510	2,522	2,479	3,049	2,831	2,692	2,837	3,014	3,166	3,219	2,379	2 367	2 353

FACIES GRANITOIDES		CI-Sd-Mv-	Qtz Greisen	
AMOSTRA		NN-A	V-IN-10	
FASE MINERAL		CLC	ORITA	
ANÁLISES	14=8C1	15=9C1	16=11C1	17=14C1
SiO2	26,66	29,23	22,23	22,03
TiO2	0,04	0,18	0,04	0,00
AI2O3	23,49	25,68	22,80	22,41
FeO _T	37,55	32,47	44,40	45,17
MnO	0,76	0,68	1,05	0,86
MgO	0,59	0,53	0,48	0,64
CaO	0,02	0,02	0,02	0,02
Na2O	0,02	0,04	0,02	0.01
K2O	2,04	3,42	0,05	0,04
H2O	10,55	11,02	10,10	10,07
F	0,01	0,01	0,00	0.00
ÇI	0,02	0,04	0,03	0,02
TOTAL	101,75	103,32	101,22	101,27
	Fórmula Estrutural na	a base de 14 Oxi	igênios	•
Si	2,270	2,383	1,978	1,967
Ti	0,003	0,011	0,003	0,000
Al _T	2,356	2,466	2,389	2,356
Fe2+	2,674	2,214	3,303	3,373
Fe3+	0,000	0,000	0,000	0.000
Mn	0,055	0,047	0,079	0.065
Mg	0,075	0,064	0,064	0.085
Ca	0,002	0,002	0,002	0,002
Na	0,003	0,006	0,003	0,002
K	0,222	0,356	0,006	0,005
ОН	5,994	5,992	5,995	5,997
CF	0,005	0,005	0,000	0,000
CĊI	0,006	0,011	0,009	0,006
0	14,000	14,000	14,000	14,000
AI(IV)	1,730	1,617	2,022	2,033
AI(VI)	0,626	0,849	0,367	0,323
Fe/(Fe+Mg)	0,97	0,97	0,98	0,98
Fe+Mg	2,749	2,278	3,367	3,458
Si+AI(VI)	2,896	3,232	2,345	2,290

Construction of the second second

+

ANEXO 5- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica da muscovita do clorita-siderofilita-muscovita-quartzo greisen associado ao maciço granitóide Antônio Vicente. Fórmulas estruturais calculadas com base em 22 oxigênios(conforme o método de Deer et al., 1966). Ferro total como FeO_T. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total estrutural de acordo com as recomendações de Deer et al.(1966). Os conteúdos de Li₂O foram estimados a partir da equação recomendada por Tischendorf et al.(1997). XFe=Fe/(Fe+Mg); % mol. celadonítica=100x(Si-6)/2; % mol.paragonítica=100xNa/(Na+K).

LITOLOGIA	CLORITA-SIDEROFILITA-MUSCOVITA-QUARTZO GREISEN									
AMOSTRA			ł	IN-AV-IN-10						
FASE MINERAL	-		ħ	IUSCOVITA						
ANÁLISES	1=2C1	2=3C1	3=5C1	4=1C2	5=12C1	6=13C1				
SiO2	45,61	47,29	43,75	45,98	44,42	44,92				
TiO2	0,00	0,01	0,07	0,04	0,03	0,05				
AI2O3	31,10	31,93	31,68	31,03	30,36	31,73				
FeO _T	8,76	6,97	9,73	7,68	10,64	8,88				
MnO	0,05	0,07	0,13	0,06	0,12	0,10				
MgO	0,07	0,08	0,26	0,10	0,10	0,12				
CaO	0,00	0,00	0,00	0,00	0,00	0,00				
BaO	0,00	0,03	0,00	0,04	0,00	0.02				
Na20	0,14	0,13	0,11	0,12	0,12	0,13				
K20	10,64	10,71	9,85	10,82	10,50	10,65				
H2O	4,62	4,77	4,69	4,72	4,60	4,73				
Li ₂ O	0,12	0,09	0,03	0,04	0,07	0,03				
F	0,41	0,32	0,14	0,18	0,28	0,15				
CI	0,01	0,00	0,01	0,02	0,07	0,07				
TOTAL	101,54	102,39	100;44	100,83	101,33	101,57				
		Fórmula Etru	itural na base d	e 22 oxigênios						
Si	5,651	5,743	5,507	5,717	5,577	5,580				
AIIV	2,349	2,257	2,493	2,283	2,423	2,420				
AIVI	2,192	2,316	2,207	2,266	2,070	2,228				
Ti	0,000	0,000	0,008	0,004	0,004	0,004				
Fer	0,908	0,708	1,021	0,800	1,117	0,926				
Mn	0,007	0,007	0,015	0,007	0,015	0,007				
Mg	0,015	0,015	0,045	0,015	0,015	0,022				
Ca	0,000	0,000	0,000	0,000	0,000	0,000				
Ba	0,000	0,000	0,000	0,000	0,000	0,000				
Na	0,030	0,029	0,030	0,030	0,030	0,030				
К	1,683	1,664	1,589	1,719	1,675	1,687				
OH	3,812	3,867	3,934	3,916	3,849	3,927				
Li	0,060	0,044	0,015	0,015	0,030	0,015				
F	0,164	0,124	0,053	0,067	0,113	0,060				
CI	0,000	0,000	0,000	0,007	0,015	0,015				
XFe	0,98	0,98	0,96	0,98	0,99	0,98				
% mol. Celadonita	-17,45	-12,85	-24,65	-14,50	-21,15	-21,00				
% mol. Paragonita	1.75	1.71	1.85	172	1 76	1 75				

ANEXO 6. - Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de feldspatos potássicos das facies granitóides BASMG, BASAFG e BSG, do maciço granitóide Antônio Vicente. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, Cl).

÷

FACIES	1	BASMG			RASAFG						200		
GRANITÓIDES											83G		
AMOSTRA		01-GFe			IG-SN-11						SI 00 DT	•	
FASE MINERAL	FELDS	PATO POT	ÁSSICO	1	FELDSPATO POTÁSSICO				EELDSPATO POTÁSSICO				
	1=10C7	2=6C7	3=7C7	4=14C5	5=15C5	6=16C5	7=17C5	8=1805	9=1905	10=44C4	11=4504	12-4604	
SiO2	62,86	64,30	63,68	65,55	67.30	66.55	67.90	66.02	68.62	68.16	69.69	64 60	
AI2O3	18,82	18,72	19,28	19,01	19.32	19.10	20.56	19 15	20.01	20.01	20.17	19.00	
FeO	0,09	0,09	0,05	0.11	0.11	0.08	0.13	0.06	0.05	20,01	20,17	0.05	
BaO	0,67	0,56	0,59	0.08	0.09	0.09	0.04	0.13	0,00	0,04	0,00	0,05	
CaO	0,08	0,00	0,18	0.06	0,19	0.14	0.07	0.08	0,00	0,01	0,01	0,10	
Na2O	0,29	1,03	2,96	3,77	6,70	4.75	10.12	3.54	10.19	8.65	10.25	0,00	
K2O	15,79	14,58	11,87	11,12	6.47	9.08	0.20	11 16	0.94	3.58	0.36	15 74	
TOTAL	98,60	99,28	98,61	99,7	100,18	99.79	100.02	100 14	99.99	100.64	100.07	00.86	
Si	11,848	11,942	11,823	11,942	11.983	11,996	11.850	11,960	11 977	11 044	11 956	11 041	
AI	4,177	4,095	4,215	4,079	4.051	4.055	4,225	4 086	4 113	A 120	4 135	4 129	
Fe3+	0,000	0,000	0,000	0,000	0.000	0.000	0.000	0.000	0.000	0,000	0,000	0,000	
Fe2+	0,014	0,014	0,008	0.017	0.016	0.012	0.019	0.009	0.007	0,000	0,000	0,000	
Mn	0,000	0,000	0,000	0.000	0.000	0.000	0.000	0.000	0.000	0,000	0,009	0,000	
Mg	0,000	0,000	0,000	0.000	0.000	0.000	0.000	0.000	0,000	0,000	0,000	0,000	
Ba	0,049	0,041	0.043	0.006	0.006	0.006	0.003	0,009	0,000	0,000	0,000	0,000	
Ca	0,016	0,000	0.036	0.012	0.036	0.027	0 200	0.016	0.034	0,001	0,001	0,007	
Na	0,106	0,371	1,066	1.332	2.313	1,660	3 424	1 243	3 449	2 030	3,460	0,000	
К	3,797	3,455	2,811	2,584	1,470	2,088	0.045	2 579	0,209	0.800	0,090	2 707	
X	16,025	16,015	16,038	16.021	16.034	16.05	16 075	16.046	16.09	16.073	16,000		
Z	3,933	3,84	3,92	3,945	3.835	3 787	3,688	3 847	3 699	3 781	3 650	2 901	
Ab	3%	10%	27%	34%	61%	44%	93%	32%	93%	78%	05%	204	
Or	97%	90%	72%	66%	38%	55%	1%	67%	6%	21%	- 55 /0 - 7%	070	
An	0%	0%	1%	0%	1%	1%	6%	1%	1%	1%	292	0%	
Na/K	0,028	0,11	0,38	0,52	1,57	0,80	76,10	0.48	16.91	3.67	43.25	0.03	

ANEXO 7- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de plagioclásios das facies granitóides BASMG, BASAFG E BSG, do maciço granitóide Antônio Vicente. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, Cl).

FACIES GRANITÓIDE S		BASMG				BASAFG		
AMOSTRA	1		01-GFe		IG-SN-11			
FASE		PLA	GIOCLÁSIC)	PLAGIOCIÁSIO			
MINERAL.								
	1=1C6	2=2C6	3=3C6	4=4C6	5=12C5	6=13C5		
SiO2	60,44	60,66	61,51	61,45	68,50	68,47		
AI2O3	25,29	24,96	24,87	24,95	20,42	20,43		
FeO	0,27	0,20	0,14	0,17	0,11	0,02		
BaO	0,02	0,02	0,01	0,05	0,02	0,01		
CaO	6,98	6,79	6,16	6,10	0.39	0.35		
Na2O	6,94	6,87	7,12	7,39	10,59	10,46		
K2O	0,43	0,42	0,40	0,32	0,26	0.09		
TOTAL	100,37	99,92	100,21	100,43	100,29	99.83		
Si	10,726	10,794	10,882	10,859	11,909	11.930		
Al	5,286	5,230	5,182	5,192	4,181	4,192		
Fe3+	0,000	0,000	0,000	0.000	0.000	0.000		
Fe2+	0,040	0,030	0,021	0.025	0,016	0.003		
Mn	0,000	0,000	0,000	0,000	0,000	0.000		
Mg	0,000	0,000	0,000	0.000	0.000	0.000		
Ba	0,001	0,001	0,001	0.003	0.001	0.001		
Ca	1,327	1,295	1,168	1,155	0.073	0.065		
Na	2,388	2,370	2,442	2,532	3,570	3,534		
К	0,097	0,095	0,090	0,072	0,058	0,020		
X	16,012	16,024	16,064	16,05	16,09	16,122		
Z	3,852	3,79	3,699	3,784	3,717	3,622		
Ab	63%	63%	66%	67%	96%	98%		
Or	2%	3%	2%	2%	2%	0%		
Na	35%	34%	32%	31%	2%	2%		
Na/K		[T	1	····	1		

Continuação do ANEXO 7

FACIES GRANITÓIDE		BSG											
AMOSTRAS	SL-9B-DT												
FASE MINERAL		PLAGIOCLÁSIO											
	7=39C2	8=40C2	9=41C2	10=42C2	11=43C2	12=47C4	13=48C5	14=49C5	15=5005				
SiO2	67,15	66,28	67,17	67,68	67 13	68.48	62.19	64.08	69.31				
AI2O3	20,94	21,86	21,55	21,26	21 19	20,06	24.94	23.16	20.33				
FeO	0,02	0,06	0,09	0,03	0,05	0.04	0.32	0.22	0.03				
BaO	0,00	0,02	0,02	0,00	0,00	0.02	0.02	0.03	0.02				
CaO	1,42	2,31	1,72	0,51	1,77	0.14	0.61	0.40	0.29				
Na2O	9,99	9,57	9,72	10,05	9,87	10.67	8.03	8.76	10.89				
K20	0,14	0,19	0,42	0,41	0,22	0.34	2.83	1.96	0.13				
TOTAL	99,66	100,29	100,69	99,94	100,23	99.75	98.94	98.61	101.00				
Si	11,765	11,581	11,678	11,801	11,714	11,963	11.118	11.425	11.953				
Al	4,321	4,498	4,412	4,365	4,355	4.127	5.251	4.863	4 129				
Fe3+	0,000	0,000	0,000	0,000	0.000	0.000	0.000	0.000	0.000				
Fe2+	0,003	0,009	0,013	0,004	0,007	0.006	0.048	0.033	0.004				
Mn	0,000	0,000	0,000	0,000	0.000	0.000	0.000	0.000	0.000				
Mg	0,000	0,000	0,000	0,000	0.000	0.000	0.000	0.000	0.000				
Ва	0.000	0,001	0,001	0,000	0.000	0.001	0.001	0.002	0.001				
Ca	0,267	0,432	0,320	0,095	0,331	0.026	0.117	0.076	0.054				
Na	3,394	3,242	3,277	3,398	3,340	3,614	2.784	3.028	3.642				
К	0,031	0,042	0,093	0,091	0.049	0.076	0.645	0.446	0.029				
X	16,071	16,079	16,09	16,166	16,069	16,09	16,369	16.288	16.082				
Z	3,695	3,725	3,703	3,588	3,727	3,722	3.594	3.583	3,729				
Ab	92%	87%	89%	95%	90%	97%	79%	85%	98%				
Or	1%	1%	2%	2%	1%	2%	18%	13%	1%				
An	7%	12%	9%	3%	9%	1%	3%	2%	1%				

ANEXO 8-Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra 01-Gfe da facies BASMG do maciço granitóide Antônio Vicente.

FACIES GRANITÓIDE					BASMG			
AMOSTRA					01-GFe			
FASES MINERAIS	ILME	NITA 1	ILMENITA 2	ILMENITA 3	TI-MAGNETITA	MAGNETITA	TITANITA	APATITA
ANÁLISES	1=1C1	2=1C2	3=3C1	4=4C1	5=2C1	6=2C2	7=3C2	8=5C1
Si	-	-	-	-	-	-	13,892	0.151
0	31,354	30,990	28,076	31,255	26,898	27,513	42,643	35,859
Al	-	-	-	-	-	0,208	4.341	0.175
P	•	-	-	-			-	19.850
Fe	36,194	36,297	39,488	36,542	71,620	71,549	2,124	0.277
Ti	30,761	30,923	30,915	30,707	1,360	0,729	16,240	•
Mn	1,691	1,791	1,521	1,496	0,121	0,008	0.029	*
Ca	•	•	-	-	-	-	20,120	40,566
Mg	-	•	-	-	-	-	0.158	-
<u>к</u>	-	-	-	-	-	-	0.096	-
Y	-	-	-	-	-	-	-	1.215
Nb	<u> </u>	-	-	-	-	-	+	0.995
Th	-	-	+	-	*	-	-	0.132
Bi	•	-	-	-	•	-	-	0.008
Yb	•	-	-	-	-	-	-	0.113
Ce	-	•	•	-	-	-	*	0.196
La	-	•	-		-	-	•	0.059
Nd	•	•	-	•	-	-	-	0.398
Sn	-	-	+		-	-	0.351	
TOTAL	100,00 1	100,00 1	100,000	100.001	100,000	99,991	99,941	99,769

ANEXO 9-Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra IG-SN-11 da facies BASAFG do maciço granitóide Antônio Vicente.

FACIES GRANITOIDE	1		BAS AFG	
AMOSTRA	1		IG-SN-11	······································
FASES MINERAIS	APATITA	ZIRCÃO	"ARMSTRONGITA"	"THORIANITA"
ANALISES	1=C1P2	2=C1P3	3=C1P4	4=C1P5
Si	1,093	14,710	13,993	1,344
0	36,335	33,824	38,604	18,265
Al	0,050	-	0,043	0.245
Р	17,878	-		0.074
Fe	0,165	-		0,764
Ti		•	+	+
Mn	-	-		-
Са	37,312	-	2,401	7,177
Mg	-	-		-
Ag	0,268	-	*	3.861
Cd	0,216	-	¥	1.892
Bi	0,424	-	+	1,230
Y	2,927	0,933	1,915	3,710
Nb	0,570	0,133	-	-
Zr	-	49,499	42,596	-
Th	-	-	*	53,231
Bi	+	-	*	-
Yb	-	0,385	-	0,100
Dy	0,092	+	•	1,016
Се	1,661	-	0,131	3,231
La	0,429	-	0,170	1,960
Nd	0,574	0,415	0,214	1,250
Sn		0,143		0,655
TOTAL	99,723	99,674	99,538	99,698

ANEXO 10- Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra NN-AV-BA-4 da facies BSGA do maciço granitóide Antônio Vicente.

FACIES GRANITÓIDE			BSGA		
AMOSTRA		<u> </u>	NN-AV-BA-4		
FASES MINERAIS	APATITA	ILMENITA	MONAZITA-Ce	ÓXIDO DE Ce, La, Nd e Ca	BODENITA
ANÁLISES	1=1C2	2=4C2	3=1C3	4=2C3	5 #3C3
Si	0,166	-	1,144	0,005	15,767
0	37,851	32,841	29,360	38,306	41,401
Al	0,175	0,088	0,126	0,217	9,453
P	19,218	-	12,654	-	•
Fe	0,549	34,054		-	10,060
Ti	-	29,369	*		-
Mn	-	3,848	-	-	-
Са	37,693	-	0,027	5,721	11,144
Mg	-	-	-	-	۰.
Ag	0,217	-	0,418	0,938	0,692
Cd	-	+	0,231	0,349	0,361
Bi	0,574	-	4	•	1,811
Y	1,941	-	3,007	-	0,449
Nb	0,553	0,168	-	-	-
Zr	•	- 1	÷.	-	-
Th	-	-	7,973	•	-
Bi	-	-	0,333	-	•
Yb	0,324	-	-	-	-
Dy	0,136	-	-	-	~
Се	0,264	-	25,071	29,501	6,078
La	0,084	-	12,289	17,700	0,587
Nd	0,247	-	7,371	6,976	2,164
Sn	-	<u> </u>	-	0,280	+
TOTAL	99,816	100,002	99,617	98,328	99,113

ANEXO 11- Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra NE-B-75 da facies BSGIA do maciço granitóide Antônio Vicente.

FACIES GRANITÓIDE	BSGIA						
AMOSTRA	NE	B-75					
FASES MINERAIS	ZIRCÃO	THORITA					
ANÁLISES	1=2C2	2=1C2					
Si	12,601	9,587					
0	40,611	30,722					
Al	1,276	0,826					
P	1,568	0,391					
Fe	0,300	2,272					
Ti	-	+					
Mn	*	-					
Са	-	-					
Mg	-	•					
Ag	2,004	3,996					
Cd	1,343	2,220					
Bí	0,530	1,521					
Y	4,835	4,198					
Nb	0,270	0,137					
Zr	31,740	-					
Th	-	41,337					
Bi	.						
Yb	1,430	1,192					
Dy	0,388	0,509					
Ce	0,189	+					
La	*	•					
Nd	+	-					
Sn	0,918	1,090					
TOTAL	97,615	99,642					

ANEXO 12- Composições químicas semi-quantitativas(EDS) de fases minerais menores de CI-Sd-Mv-Qz greisen médio a grosso associados ao maciço granitóide Antônio Vicente. CI=clorita; Sd=siderofilita; Mv=muscovita; Qz=quartzo.

LITOLOGIA				CLORITA	A-SIDEROFILITA-M	USCOVITA-QUARTZ	O GREISEN		
AMOSTRA					NN-	AV-IN-10		····	
FASES MINERAIS	CASSITER	RITA			CALCOPIRITA	KESTERITA/ES- TANITA	XENO	TIMA(Y)	MONAZITA(Ce)
ANÁLISES	1=1C1	2=1C2	3=2C2	4=6C2	5=4C2	6=5C2	7=8C2	8=9C2	9=10C2
Si	-	-	-	-	-	~			0,347
0	20,866	20,506	20,617	20,957	-	-	40,546	35,150	27,861
AI	-	-	-	-	-	-	0,952	0,908	0,229
S	-	-	-	-	34,157	27,931			-
ρ	-	-	-	-	-	-	17,233	16,856	14,149
Fe	0,334	0,239	0,129	0,094	30,792	12,062	0,606	0,567	0,160
Ti	-		-	-	-	-	-	-	-
Mn	-		-	-	-	-	-	-	-
Ca	-			-	-	-	-	-	-
Mg	-	-	-	-	-	-	-	-	-
К	-	-	-	-	-	-	-	-	-
Y	-	-	-	-	-	-	39,692	37,849	1,850
Ta	-	-	0,322	-	-	-	*	-	-
Nb	0,206	0,083	-	-	-	-	0,309	0,465	0,373
Th	-	-	-	-	-	-	_	-	2,670
Bi	-	-	-	-	-		-	-	0,692
Yb	-	-	-	-	-	-	-	4,626	0,227
Dy	-	-	-	-	-	-	-	3,526	0,157
Ce	-	-	-	-	-	-	-	-	28,044
La	-	-	-	-	-	-	-	-	14,906
Nd	-	-	-	-	-	-	_	-	8,186
Ag	-	- 1	-	-	-	0,090	0,509	0,012	-
Cd	-	-	-	-	-	-	0,033	0,099	-
As	-	-	-	+	0,207	-	-	-	-
Pb	-	-	-	-	-	0,407	-	-	*
Zn	-	-	-	-	0,950	1,529	-	-	-
Cu	-	-	-	-	33,894	28,827	-	-	-
Sn	78,596	79,174	78,934	78,951	-	29,152	0,131	- 1	0,154
TOTAL	99,386	99,668	99,847	99,774	99,630	99,602	98,581	97,270	99,533

ANEXO 13

VARIEDADES		B/	ASMG		BSGCI		
AMOSTRAS	01-GFe	IE-02	N-S-6		NS-04	NS-02	
ANÁLISES	1	2	3	[4	5	
ÓXIDOS MAIORES	1			MÉDIAS			MÉDIAS
SiO2	64,74	71,73	68,66	68,38	73,44	72,37	72,90
TiO2	1,16	0,70	0,47	0,78	0,37	0,24	0,31
AI2O3	13,90	12,63	15,54	14,02	12,68	14,46	13,57
Fe2O3	2.76	1,75	1,47	1,99	1,12	1,90	1,55
FeO	4,10	3,16	1,15	2,80	2,66	0,29	1,48
MnO	0,06	0,05	0,07	0,06	0,07	0,01	0,04
MgO	1,38	0,58	0,46	0,81	0,25	0,09	0,17
CaO	2,29	1,52	1,21	1,67	0,86	0,09	0,48
Na2O	3,81	3,67	4,34	3,93	3,30	0,72	2,01
K2O	3,63	4,42	4,32	4,12	4,63	7,58	6,11
P2O5	0,37	0,25	0,10	0,24	0,07	0,03	0,05
P.F.	1,22	0,56	0,86	0,88	0,69	1,71	1,20
TOTAL	100,23	101,02	98,65	99,68	100,14	99,49	99,83
ELEMENTOS TRACOS			1				
Rb	128	192	425	248,33	175	548	361,50
Ba	1830	1454	225	1169,67	1114	719	916,50
Sr	253	168	23	148	85	39	62,00
Zr	423	397	161	327	341	360	350,50
Nb	<5	16	35	17	25	17	12,59
Y	48	70	219	112.33	276	11	143,50
Sc	15	10	5	10	8	6	7,00
Be	2.1	3.1	4,4	3,20	4,6	<0.5	2,30
V	77	39	<5	38,67	7	11	9,00
Cr	9	9	10	9,33	11	5	8,00
Co	12	23	9	14.67	12	6	9,00
Ni	10	7	17	11.33	15	6	10,50
Cu	25	42	19	15.33	55	22	38,50
Zn	85	79	36	55,87	80	49	64,50
Ga	<5	5	13	6	11	11	11,00
Мо	2,58	2,78	6,23	3,86	2,83	2,84	2,84
Li	10	18	10	12,67	15	12	13,50
Sn	4	8	8	6,67	8	<1	4,00
۶	1100	1100	490	896,67	1400	90	745,00
CI	1080	925	72	692,33	285	71	178,00
W	16	90	49	51,67	43	23	33,00
As	-		6	2	-	-	-
Cs	1,93	0,99	0,29	1,07	1,13	0,78	0,96
Sb	0,08	-	-	0,03	-	0,26	0,13
Bí	-	1,07	2,39	1,15	1,20	0,17	0,69
Та	2,45	1,85	0,66	1,65	2,81	1,15	1,98
Hf	7,63	10.41	3,91	7,32	9,11	10,51	9,81
Th	20	23	66	36,33	52	34	43,00
U	6	10	26	14,00	14	10	12,00
Ag	-	•	-	-	-	1,3	0,70

Tabela 3.13. Análises químicas das facies granitóides BASMG e BSGCI do maciço granitóide Antônio Vicente. Óxidos maiores em (%) e elementos traços e terras raras em (ppm).

ETR	1	2	3	MÉDIAS	4	5	MÉDIAS
La	80	81	245	135,33	468	77	272,50
Ce	148,6	153,8	322,3	208,23	444	132	288,00
Pr	14	13,9	5,3	11,07	57,8	14,4	36,10
Nd	55	59,4	147	87,13	261	44,4	152,70
Sm	11	12,6	31,9	18,50	50	6,5	28,25
Eu	0,58	2,15	1,69	1,47	5,4	0,4	2,90
Gd	9,4	11,7	26,6	15,90	46,9	4,3	25,60
Tb	0,88	1,80	0,56	1,08	6,37	1,34	3,86
Dy	8	11,5	30	16,50	42,3	2,6	22,45
Ho	1,04	2,51	0,55	1,40	8,23	1,62	4,93
Er	4,3	6,9	18,8	10,00	24	16	20,00
Tm	0,47	1,14	0,16	0,59	3,53	0,64	2,09
Yb	4	7	22,2	11,07	22	2	12,00
Lu	0,5	0,9	2,8	1,40	2,8	0,3	1,55

Continuação da Tabela 3.13

Tabela 3.14. Análises químicas da facies granitóide BSG do maciço granitóide Antônio Vicente. Óxidos maiores em (%) e elementos traços e terras raras em (ppm).

VARIEDADE	1	BSG							
AMOSTRAS	SL-3A-DT	SL-6C-DT	SL-7A-DT	SL-7C-DT	SL-8-DT	1			
ANÁLISES	6	7	8	9	10	1			
ÓXIDOS MAIORES						MÉDIAS			
SiO2	72.91	77.29	77.11	76.10	78.28	76.34			
TiO2	0,17	0,13	0.13	0.12	0,16	0.14			
AI2O3	12,32	12.22	12.30	12,05	12,44	12,27			
Fe2O3	0,31	0,34	0,52	0,23	0,32	0,34			
FeO	1,50	1,51	1,15	1,08	1,58	1,36			
MnO	0,03	0,03	0,02	0,02	0,03	0,03			
MgO	0,17	0,12	0,08	0,09	0,12	0,12			
CaO	0,92	0,92	0,84	0,84	0,11	0,73			
Na2O	3,65	3,36	3,35	2,86	3,20	3,28			
K20	4,62	4,80	5,13	4,23	4,90	4,74			
P2O5	0,05	0,02	0,01	0,03	0,02	0,03			
P.F	1,28	0,56	0,70	0,77	0,76	0,81			
TOTAL	97,92	102,30	101,34	98,42	102.92	100,19			
ELEMENTOS TRACOS						İ			
Rb	339	321	323	263	286	306.40			
Ba	386	210	188	98	344	245.20			
Sr	51	39	34	23	50	34.40			
Zr	163	179	175	145	171	166.60			
Nb	34	26	28	27	11	25.20			
Y	63	60	59	56	49	57,40			
Sc	3,6	2,2	2,6	2,2	2,7	2,66			
Be	6	6	5	4,1	5,1	5,24			
V	6	<5	5	<5	<5	2,2			
Cr	57	41	8	30	43	35,80			
Со	26	8	15	17	10	15,20			
Ni	21	11	7	9	9	11,40			
Cu	9	13	26	8	12	13,60			
Zn	24	23	27	21	26	24,20			
Ga	<5	<5	14	<5	<5	2,80			
Мо	2,34	0,81	2,89	1,76	6,34	2,83			
Li	44	41	34	32	29	36,00			
Sn	1	3,5	3,5	2,5	2,5	2,60			
F	2600	2500	2100	2500	3200	2580,00			
ÇI	376	301	397	387	344	361,00			
W	253	48,6	135	158	80	134,92			
As	•			-	6	1,20			
Cs	1,30	0,45	1,73	1,17	3,10	1,55			
Sb	-	-	0,07	-	0,04	0,02			
Та	15,80	3,89	6,87	6,89	17,62	10,21			
Hf	5,72	7,34	6,80	5,13	13,15	7,63			
Th	56	83	87	90	77	78,60			
Ú	29,77	29,92	37,70	39,14	26,56	32,62			
Ag	-	-		2.3	-	0.46			

ETR	6	7	8	9	10	MÉDIAS
La	80,9	108	102,9	103,8	108,1	100.74
Ce	157,8	198	198	189,8	198,6	188.44
Pr	17,15	9,38	16,25	18,83	33,12	18,95
Nd	49,4	57,7	59,9	55,1	55,8	55,58
Sm	10,7	11	12,2	10,4	10,1	10.88
Eu	0,7	0,6	0,6	0,5	0,7	0.62
Gd	8,7	8,8	9,7	7,7	7,6	8,50
Tb	1,91	0,70	1,49	1,42	2,55	1.61
Dy	9,8	9,3	9,8	8,1	7,1	8.82
Но	2,61	0,86	2,01	1,99	3,59	2.21
Er	6,3	6,0	6,1	5,3	4,5	5.64
Tm	1,28	0,36	0,95	1,13	1,84	11,11
Yb	7,6	7,3	7,0	6,5	5,3	6.74
Lu	1.0	1.0	0,9	0.8	0.7	0.88

Continuação da Tabela 3.14

Tabela 3.15	. Análises	químicas	da facies	granitóide	BSGA d	lo maciço	granitóide	Antônio	Vicente.
Óxidos maio	res em (%) e elemer	ntos traços	s e terras ra	aras em ((ppm).	•		

VARIEDADE	BSGA								
AMOSTRAS	SL-1B-DT	SL-4-DT	SL-5-DT	NE-B-82	1				
ANÁLISES	11	12	13	14	1				
ÓXIDOS MAIORES					MÉDIAS				
SiO2	75,55	76,81	78.73	77.37	77 12				
TiO2	0,09	0.08	0.09	0.09	0.09				
AI2O3	12,06	12.58	12.56	12.23	12.36				
Fe2O3	0.47	0.20	0.48	0.24	0.35				
FeO	0,93	1.15	1.00	1.29	1.09				
MnO	0,03	0.02	0.02	0.03	0.02				
MgO	0,06	0.04	0.05	0.05	0.05				
CaO	0,80	0.77	0.75	0 77	0.77				
Na2O	3,64	3.77	3.35	3 22	3.50				
K2O	4,52	4.78	5.01	4 71	4 76				
P2O5	0.02	0.01	0.01	0.02	0.02				
P.F.	0,59	0.64	0.73	0.77	0.68				
TOTAL	101.16	100.85	102.50	100 79	100.81				
ELEMENTOS TRACOS	1				100,01				
Rb	419	524	387	440	442 50				
Ba	152	95	141	127	128 75				
Sr	27	20	29	23	24.75				
Zr	120	132	146	128	131 50				
Nb	35	50	42	41	42.00				
Y	75	105	71	80	82 75				
Sc	1.9	1.5	1.5	17	1.65				
Be	4.3	4.5	4.4	5.3	4 63				
V	<5	<5	<5	<5					
Cr	18	6	25	12	15.25				
Co	8	10	6	5	7.25				
Ni	8	7	<5	<5	3 75				
Cu	11	9	10	10	10.00				
Zn	25	19	21	26	22 75				
Ga	6	17	<5	12	875				
Mo	1.29	1.59	0.92	0.93	1 18				
Lì	59	27	29	16	32.75				
Sn	5,5	11	3,5	8.5	7 13				
F	3500	4600	3000	3600	3675.00				
CI	79	137	101	85	100.50				
W	78	72	46.5	23.6	55.03				
As		-	-	7	1 75				
Cs	2,72	3.36	1.35	1.63	2 27				
Sb	•			0.17	<u> </u>				
Та	8.82	10.97	5,99	10.61	9 10				
-If	5,37	7.50	6.34	5.67	6 22				
ľh –	55	56	73	57	60.25				
J	31.71	37 59	42 27	33.76	36.32				

Continuação da Tabela 3.15

ETR	11	12	13	14	MÉDIAS
La	60,6	57,2	73,3	65,9	64.25
Ce	124,2	120,7	147,6	130,9	130.85
Pr	9,42	10,84	11,43	11,23	10.73
Nd	39,8	39,5	46,1	43,3	42.18
Sm	9,9	11,3	10,5	10,6	10.58
Eu	0,4	0,4	0,5	0,4	0.4
Gđ	8,9	10,7	9,0	9,5	9,53
ТЪ	1,56	2,22	1,60	1,78	1,79
Dy	11,2	14,5	10,9	11,7	12,08
Ho	2,45	3,60	2,37	2,70	2,78
Er	7,5	10,5	7,0	7,9	8.23
Tm	1,27	1,92	1,18	1,41	1,45
Yb	9,3	13,4	8,3	10,1	10,28
Lu	1,2	1,7	1,0	1,3	1.30

Tabela 3.16. Análises químicas da facies granitóide BSGIA do maciço granitóide Antônio Vicente. Óxidos maiores em (%) e elementos traços e terras raras em (ppm).

VARIEDADE		******		BSGIA			
AMOSTRAS	SL-2A-DT	NE-8-63	NR-AV-43	NE-B-83	NE-8-83K	NE-B-831	1
ANÁLISES	15	16	17	18	19	20	
ÓXIDOS MAIORES	1						MÉDIAS
SiO2	76,14	76,07	77,54	74.83	74.29	75.06	75.06
TiO2	0,09	0,03	0.03	0.05	0.04	0.05	0.05
AI2O3	12,61	12,91	12,55	12,44	13,13	13,42	12.84
Fe2O3	0,40	0,65	-	-	0,04	0,48	0.26
FeO	1,00	0,36	0,93	1,65	0,43	1,08	0,90
MnO	0,01	0,01	0,02	0,04	0,01	0,03	0,02
MgO	0,02	0,01	0,01	0,03	0,03	0,02	0,02
CaO	0,72	0,54	0,44	0,78	2,52	1,11	1,02
Na2O	2,99	3,70	3,96	3,57	2,39	3,01	3,27
K2O	5,19	4,70	4,42	3,93	5,14	4,94	4,72
P2O5	0,02	0,02	0,01	0,02	0,02	0,02	0,02
P.F	0,53	0,87	0,35	0,87	1,45	0,99	0,84
TOTAL	99,72	99,86	100,26	98,21	99,49	100,20	99,62
ELEMENTOS TRAÇOS							
Rb	502	452	615	477	570	615	538,50
Ba	99	29	23	8	9	5	28,83
Sr	22	12	11	11	12	<5	11,33
Zr	118	125	124	88	120	134	118,17
Nb	47	40	57	49	63	48	50,67
Y	104	160	120	159	142	205	148,33
Sc	1,2	2,6	1,3	2,7	3,2	3,2	2,37
Be	5.6	3,6	5,0	19,7	11,8	14,3	10,00
V	<5	<5	<5	<5	<5	<5	•
Cr	30	23	26	22	20	30	25,17
Co	7	<5	15	5	6	7	6,67
Ni	<5	<5	5	8	<5	5	3,00
Cu	9	10	10	8	19	13	11,50
Zn	17	21	20	39	19	35	25,17
Ga	7	24	<5	19	30	27	17,83
Mo	1,38	5,89	5,07	0,79	4,41	0,87	3,07
Li	33	2	152	10	88	11	36,00
Sn	13	13	12	54	1690	39	303,50
F	4700	3000	3400	4900	16500	6900	6566,67
<u>CI</u>	121	57	39	30	32	34	52,17
<u>W</u>	86	23,3	135	17,6	16,8	22,4	50,18
Cs	2,81	0,98	6,32	1,75	5,75	2,29	3,31
Sb 1		0,33	0,19	-	0,13	-	0,11
Bi	-	-	-	-	2,67	-	0,45
Та	9,32	6,80	22,99	9,17	22,99	9,02	13,38
Hf	5,81	9,55	13,93	5,77	14,19	7,79	9,51
Th	50	39	35	47	46	49	44,33
U	38,74	39,60	35,29	41,66	38,04	39,59	38,82

ETR	15	16	17	18	19	20	MÉDIAS
La	48,8	32,6	21,5	28,3	26,9	37,4	32,58
Се	102,6	89,2	57,5	76,9	73	98,6	82,97
Pr	8,61	6,72	21,20	6,45	15,75	7,56	11.05
Nd	35	33,4	21	33,2	29,2	39,7	31,92
Sm	10,1	12,8	8,4	13,8	11,1	16	12.03
Eu	0,3	0,2	0,2	0,2	0,2	0,3	0,23
Gd	9,5	12,9	8,6	15	11	16,7	12,28
Tb	1,82	2,72	3,13	3,10	4,29	3,23	3,05
Dy	13	21,2	12,7	23,8	19,1	26,6	19,40
Но	2,97	4,59	5,18	5,18	7,53	5,39	5,14
Er	9,2	14,3	9,3	15,6	14,1	18,7	13,53
Tm	1,60	2,36	2,77	2,52	4,09	2,74	2,68
Yb	11,6	18	12,3	17,5	17,8	22,2	16.67
Lu	1,5	2,1	1,6	2,1	2,2	2,8	2.05

Continuação da Tabela 3.16

Tabela 3.17. Análises químicas da facies granitóide BMG do maciço granitóide Antônio Vicente. Óxidos maiores em (%) e elementos traços e terras raras em (ppm).

VARIEDADE	BMG					
AMOSTRAS	GAM-CS-54	GR-01	GAM-CS-37			
ANALISES	21	22	23			
ÓXIDOS MAIORES				MÉDIAS		
SiO2	76,96	73,68	75,60	75,41		
TiO2	0,13	0,26	0,15	0,18		
AI2O3	12,05	12,79	12,08	12,30		
Fe2O3	0,73	1,70	2,15	1,52		
FeO	1,30	1,22	1,35	1,29		
MnÓ	0,01	0,02	0,01	0,01		
MgO	0,11	0,31	0,12	0,18		
CaO	0,18	0,49	0,76	0,48		
Na2O	3,61	3,40	3	3,34		
K20	5,12	5,17	5,10	5,13		
P2O5	0,02	0,04	0,12	0,06		
P.F.	0,89	0,38	0,80	0,69		
TOTAL	101,11	99,46	101,24	100,59		
ELEMENTOS TRAÇOS		······	I			
Rb	380	313	196	296,33		
Ba	231	572	539	447,33		
Sr	20	61	46	42,33		
Zr	147	264	193	201.33		
Nb	20	27	15	20.67		
Ŷ	30	8	36	24.67		
Sc	2,5	6,0	3,1	3,87		
Be	2,7	4,5	4,1	3,77		
V	<5	8	5	4,33		
Cr	6	15	7	9,33		
Co	9	23	11	14,33		
Ni	10	20	13	14,33		
Cu	26	54	13	31,00		
Zn	24	29	30	27,67		
Ga	6	<5	13	6,33		
Mo	1,41	2,37	3,11	2,30		
Li	10	53	26	29,67		
Sn	6,5	8,5	2,5	5,83		
F	190	2000	1000	1063,33		
CI	120	741	477	446,00		
N	27,6	128	41,1	65,57		
Cs	1,30	2,89	0,17	1,45		
Sb	0,04		-	0,01		
3i	1,57	-	0,57	0,71		
Га	1,40	4,95	0,03	2,13		
-ff	7,81	9,20	0,92	5,98		
ſh	74	100	75	83,00		
U	22	19.72	11 12	17.61		

ETR	21	22	23	MÉDIAS
La	72	203	110,1	128,37
Ce	130	367 1	194	230,37
Pr	10,76	25,83	1,23	12,61
Nd	41,7	113,2	57,3	70,73
Sm	8,2	20,1	10,1	12,80
Eu	0,4	1,1	0,7	0,73
Gd	6,3	15,3	7,2	9,60
ТЪ	0,46	2,09	0,19	0,91
Dy	6,6	12,4	5,7	8,23
Ho	0,47	2,38	0,21	1,02
Er	3,8	6,8	3,3	4,63
Tm	0,24	0.99	0,07	0,43
Yb	4,1	7,2	3,6	4,97
Lu	0,5	0,9	0,5	0,63

Continuação da Tabela 3.17

Tabela 3.18. Análises químicas de greisens associados ao maciço granitóide Antônio Vicente. Óxidos maiores em (%) e elementos traços e terras raras em (ppm).

VARIEDADES	MQGs	CQGs	QGs CSMQGs				
AMOSTRAS	NR-AV38A	NR-AV-26B	NN-AV-IN-12	NN-AV-IN-14	NN-AV-TOP-12	NN-AV-TOP-14	1
ANÁLISES	24	25	26	27	28	29	1
ÓXIDOS MAIORES							MÉDIAS
SiO2	73,47	60,35	74.04	71.43	72.33	74 10	72 97
TiO2	0,19	0,48	0.09	0.13	0.08	0.07	0.09
AI2O3	15,62	9,80	11,13	11.02	12.02	12.03	11 55
Fe2O3*	3,69	26,44	7,39	9.07	6.61	6.33	7 35
MnO	0,35	0,72	0,13	0,09	0.09	0.07	0.09
MgO	0,22	0,27	0,09	0,10	0.08	0.07	0.08
CaO	0,05	0,09	0,48	2,84	2,50	1.23	1.76
Na2O	0,31	0,27	0.04	0,02	0,05	0.05	0.04
K20	5,51	0,06	3,35	2,26	3,85	4,03	3.37
P2O5	0,04	0,10	0,02	0,03	0,02	0,02	0.02
P.F.	2,55	3,94	1,99	1,92	2,81	2,15	2.21
TOTAL	102,00	102,52	98,75	98,89	100,42	100,14	99.51
ELEMENTOS TRAÇOS							
Rb	1493	12	734,48	332.31	895,34	951.46	728.40
8a	-	-	51	24	48	59	45.50
Sr	44	41	6	10	12	10	9.50
Zr	182	435	129	130	124	124	126 75
Nb	26	70	29,77	132,18	51,55	45.92	64.86
Y	107	129	65	79	94	80	79.50
<u>Sc</u>	-	-	2	1	2	2	1.75
Be	-	-	4	2	6	6	4.50
<u>V</u>	~	-	<5	<5	<5	<5	
Co	•	+	17,0	9,8	14,7	9,2	12.68
Ni	-	-	-	-	-	30	7.50
Cu	-		930	1390	386	491	799,25
Zn		-	118	44	538	132	208,00
Ga	· · ·	·	29	14	33	35	27,75
Mo	-	-	5,32	1,21	11,34	6,44	6,08
Sn			799,9	36,2	150,0	82,3	267,10
<u>F</u>	·		5800	22000	20000	12000	14950,00
W	· ·		46,40	40,83	28,74	24,34	35,08
As	· • • • • • • • • • • • • • • • • • • •		22	-	11	10	10,75
<u>Cs</u>			3,24	1,33	4,42	4,61	3,40
		· · · · · · · · · · · · · · · · · · ·	8,68	167,48	50,13	21,99	62,07
18			3,68	4,89	7,88	7,01	5,87
	<u> </u>	-	5,05	4,52	6,87	6,73	5,79
<u>in</u>	·		56,81	49,96	68,95	64,72	60,11
	+ · · · · · · · · · · · · · · · · · · ·		13,12	17,02	25,00	23,08	19,56
Ag	<u> </u>	-	1,8	1,8	1,3	0,8	1,43

ETR	24	25	26	27	28	29	MÉDIAS
La	-	-	66,80	45,24	48,57	46,46	51,77
Ce	-	-	119,36	83,71	95,08	90,52	97,17
Pr	-	-	9,76	7,10	8,15	7,75	8,19
Nd	•	-	36,09	27,11	31,44	29,96	31,15
Sm	-		7,49	6,15	7,00	6,41	6,76
Eu	-	-	0,47	0,49	0,49	0,36	0,45
G	-	-	7,97	6,95	7,79	7,24	7,49
ТЪ	.	-	1,41	1,33	1,49	1,36	1,40
Dy	-	-	9,84	9,65	10,97	9,76	10,06
Но	-	-	2,13	2,13	2,56	2,16	2,25
Er	•	-	7,19	7,39	9,16	7,72	7,87
Tm	-	-	1,2	1,2	1,6	1,3	1,33
Yb	-	-	8,22	9,01	11,56	10,09	9,72
Lu	-	-	1,3	1,4	1,9	1,6	1,55

Continuação da Tabela 3.18

ANEXO 14

Tabela 3.22- Composições normativas CIPW das facies granitóides BASMG e I	3SGCI do maciço
granitóide Antônio Vicente.	•

Facies Granitóides	BASMG			BSGCI		
Amostras	01-GFe	IE-02	N-S-6	NS-04	NS-02	
Análises	1	2	3	4	5	
Quartzo	21,35	28,63	24,31	33,11	39,81	
Ortoclásio	21,68	26,01	26,11	27,51	45,81	
Albita	32,58	30,92	37,56	28,08	6,23	
Anortita	10,22	4,92	5,47	3,83	0,26	
Corindon	-	-	1,81	0,85	5,09	
Diopsídio	0,27	0,82	-	•	÷.	
Hyperstênio	6,82	4,30	1,43	4,12	0,23	
Magnetita	4,04	2,53	2,18	1,63	0,28	
Ilmenita	2,23	1,32	0,91	0,71	0,47	
Hematita	-	-	-	-	1,75	
Apatita	0,82	0,54	0,22	0,15	0,07	
TOTAL	100,01	99,99	100,00	99,94	100,00	
Albita/Anortita	3,19	6,28	6,87	7,33	23,96	
Q	28	34	28	37	43	
Or	29	30	29	31	50	
Ab	43	36	43	32	7	
Ab	51	50	54	47	12	
An	16	8	8	7	0	
Or	33	42	38	46	88	

Tabela 3.23- Composições normativas CIPW da facies granitóide BSG do maciço granitóide Antônio Vicente.

Facies Granitóides			BSG		
Amostras	SL-3A-DT	SL-06C-DT	SL-07A-DT	SL-07C-DT	SL-08-DT
Análises	6	7	8	9	10
Quartzo	32,09	36,04	35,34	41,66	38,53
Ortoclásio	28,25	28,16	30,12	25,60	28,84
Albita	31,96	28,23	28,17	24,78	28,33
Anortita	3,72	4,06	3,36	4,07	0,44
Corindon	-	-	~	-	1,86
Diopsidio	0,58	0,30	0,63	-	-
Hyperstênio	2,49	2,44	1,37	1,90	1,03
Magnetita	0,47	0,49	0,75	0,34	0,72
Ilmenita	0,33	0,25	0,25	0,23	0,17
Hematita	-	+	-	-	-
Apatita	0,11	0,04	0,02	0,07	0,09
TOTAL	100,00	100,01	100,01	98,65	100,01
Albita/Anortita	8,59	6,95	8,38	6,09	64,39
Q	35	39	38	45	40
Or	31	30	32	28	31
Ab	34	31	30	27	29
Ab	50	47	46	46	49
An	6	7	5	7	1
Or	44	46	49	47	50

Tabela 3.24- Composições normativas CIPW das facies granitóides BSGA do maciço granitóide Antônio Vicente.

Facies Granitóides	BSGA						
Amostras	SL-01B-DT	SL-04-DT	SL-05-DT	NE-B-82			
Análises	11	12	13	14			
Quartzo	35,55	34,09	37,05	37,99			
Ortoclásio	27,21	28,19	29,01	27,83			
Albita	31,37	31,83	27,78	27,24			
Anortita	3,29	3,29	3,58	3,69			
Corindon	•	-	0,28	0,49			
Diopsídio	0,55	0,41	-	-			
Hyperstênio	1,12	1,73	1,42	2,20			
Magnetita	0,69	0,29	0,68	0,35			
Ilmenita	0,17	0,15	0,17	0,17			
Hematita	-	-	-	-			
Apatita	0,04	0,02	0,02	0,04			
TOTAL	99,99	100,00	99,99	100,00			
Albita/Anortita	9,53	9,67	7,76	7,38			
Q	38	36	39	41			
Or	29	30	31	30			
Ab	33	34	30	29			
Ab	51	50	46	47			
An	5	5	6	6			
Or	44	45	48	47			

Tabela 3.25- Composições normativas CIPW das facies granitóides BSGIA do maciço granitóide Antônio Vicente.

Facies Granitóides	BSGIA							
Amostras	SL-2A-DT	NE-B-63	NR-AV-43	NE-B-83	NE-B-831	NE-B-83K		
Análises	15	16	17	18	19	20		
Quartzo	37,04	35,76	35,92	36,97	35,85	36,24		
Ortoclásio	30,92	28,06	26,14	23,86	29,42	30,98		
Albita	25,51	31,62	33,63	31,03	25,67	20,63		
Anortita	3,47	2,57	2,12	3,84	5,42	10,12		
Corindon	0,82	0,81	0,48	0,97	1,16	-		
Diopsídio	-	-	-	-	-	1,52		
Hyperstênio	1,44	0,12	1,71	3,17	1,62	-		
Wollastonita	-	•		-	-	0,32		
Magnetita	0,58	0,95	0,01	0,01	0,70	0,06		
Ilmenita	0,17	0,06	0,06	0,10	0,10	0,08		
Hematita	-	-	-	-	-	-		
Apatita	0,04	0,04	0,02	0,04	0,04	0,04		
TOTAL	99,99	99,99	100,09	99,99	99,98	99,99		
Albita/Anortita	7,35		15,82	8,08	4,74	2,04		
Q	40	39	38	40	39	41		
Or	33	29	27	26	33	35		
Ab	27	32	35	34	28	24		
Ab	43	51	54	53	42	33		
An	6	4	4	7	9	17		
Or	51	45	42	40	49	50		

Facies Granitóides		BMG	
Amostras	GAM-CS-54	GR-01	GAM-CS-37
Análises	21	22	23
Quartzo	35,07	32,82	36,77
Ortoclásio	30,19	30,84	30,03
Albita	30,48	29,04	25,24
Anortita	0,76	2,19	3,05
Corindon	0,29	0,82	0,48
Diopsidio	-	-	•
Hyperstênio	1,86	1,23	0,77
Wollastonita	-	+	-
Magnetita	1,06	2,49	3,10
Ilmenita	0,25	0,50	0,28
Hematita	H	-	•
Apatita	0,04	0,09	0,26
TOTAL	100,00	100,02	99,98
Albita/Anortita	40,11	13,26	8,28
Q	37	35	40
Or	31	33	33
Ab	32	32	27
Ab	50	47	43
An	1	3	5
Or	49	50	52

Tabela 3.26 Composições normativas CIPW das facies granitóides BMG do maciço granitóide Antônio Vicente.

Tabela 3.27- Composições normativas CIPW das facies granitóides BMG do maciço granitóide Antônio Vicente.

Variedades de	MQGs	CQGs	CSMQGs				
Greisens							
Amostras	NR-AV-38A	NR-AV-26B	NN-AV-IN-12	NN-AV-IN-14	NN-AV-TOP-12	NN-AV-TOP-14	
Análises	24	25	26	27	28	29	
Quartzo	50,53	5 8, 95	61,91	58,31	53,17	56,89	
Ortoclásio	32,78	0,36	20,49	13,80	23,34	24,34	
Albita	2,64	2,32	0,35	0,17	0,43	0,43	
Anortita	0,01	0,45	2,34	14,37	12,60	6,11	
Corindon	9,18	9,28	6,82	3,54	3,33	5,49	
Diopsidio	-	+	-	•	-	-	
Hyperstênio	0,55	0,69	0,23	0,26	0,21	0,18	
Wollastonita	-	-	-	-	-	-	
Magnetita	1,67	8,78	2,40	2,64	2,01	1,90	
Ilmenita	0,36	0,93	0,18	0,25	0,16	0,14	
Hematita	2,19	18,15	5,22	6,60	4,71	4,51	
Apatita	0,09	0,00	0,05	0,07	0,04	0,04	
TOTAL	100,00	9 9,91	100,00	100,00	100,00	100,00	
Albita/Anortita	264,00	5,16	0,15	0,01	0,03	0,07	
Q	59	96	75	81	69	70	
Or	38	1	25	19	30	30	
Ab	3	3	0	0	1	0	
Ab	7	74	2	1	1	1	
An	0	14	10	51	35	20	
Or	93	12	88	48	64	79	

ANEXO 15- Mapa de amostragem do maciço granitóide Velho Guilherme.

ANEXO 16- Análises químicas de biotita da facies granitóide BSGEm, do maciço granitóide Velho Guilherme, obtidas através de microssonda eletrônica, e fórmulas estruturais calculadas. As fórmulas estruturais calculadas na base de 24 oxigênios,(conforme o método de Deer et al., 1966). Ferro total como FeO. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total calculado. Os teores de Li₂O foram obtidos através da equação recomendada por Tischendorf et al.(1997). XFe=Fe/(Fe+Mg). Os conteúdos de FeO foram estimados através do método de Bruiyn et al.(1983. In: Salonsaari, 1995) e os de Fe₂O₃ a partir da relação %FeO₇=%FeO+0,8998.%Fe₂O₃.

FACIES GRANITOIDE	BSGEm										
AMOSTRA	1		NN	VG-63A							
FASE MINERAL			BI	OTITA							
	1= 1C1	2=2C1	3=3C1	4 ≕ 4C1	5=5C1	6=2C2					
SiO2	34,73	34,67	35,77	34,95	35,09	35,03					
TiO2	0,90	1,35	0,71	1,25	1,19	1,95					
AI2O3	18,81	19,58	20,34	18,97	18,67	17,44					
FeOT	33,10	31,38	28,99	31,23	31,45	32,74					
MnO	0,29	0,29	0,24	0,29	0,27	0,27					
MgO	0,15	0,14	0,12	0,17	0,14	0,24					
BaO	0,00	0,00	0,00	0,08	0,00	0,06					
CaO	0,01	0,00	0,01	0,00	0,005	0,00					
Na2O	0,06	0,10	0,07	0,05	0,057	0,00					
K2O	8,91	8,95	9,08	9,08	9,074	8,90					
H2O	1,53	1,50	1,57	1,55	1,52	1,49					
Li2O	0,38	0,36	0,68	0,44	0,48	0,47					
P	0,40	0,45	0,40	0,36	0,41	0,46					
Cl	0,37	0,43	0,34	0,36	0,38	0,40					
TOTAL	99,66	99,19	99,31	98,78	98,71	99,43					
	Fór	mulas estrutura	is na base de 24	oxigênios							
Si	5,6586	5,6382	5,7268	5,6758	5,7355	5,7215					
AllV	2,3414	2,3618	2,2732	2,3242	2,2645	2,2785					
AIVI	1,2717	1,3918	1,5661	1,3078	1,3330	1,0794					
Ti	0,1106	0,1651	0,2059	0,2288	0,1463	0,2395					
Fe2+	4,0246	3,8764	3,6193	3,8679	3,8738	4,0103					
Fe3+	0,4856	0,3915	0,2623	0,4033	0,4243	0,4619					
Mn	0,0401	0,0401	0,0327	0,0400	0,0373	0,0373					
Mg	0,0362	0,0342	0,0289	0,0410	0,0334	0,0589					
Ba	0,0000	0,0000	0,0000	0,0049	0,0000	0,0000					
Са	0,0000	0,0000	0,0106	0,0000	0,0010	0,0000					
Na	0,0196	0,0313	0,0212	0,0156	0,0157	0,0000					
К	1,8601	1,8566	1,8549	1,8814	1,8917	1,8550					
OH	1,6643	1,6279	1,6759	1,6784	1,6580	1,6234					
Li	0,2545	0,2345	0,4387	0,2869	0,3163	0,3082					
CF	0,2056	0,2316	0,2030	0,1844	0,2122	0,2375					
CCÍ	0,1077	0,1182	0,0924	0,0986	0,1051	0,1109					
0	24,000	24,000	24,000	24,000	24,000	2,2785					
XFe	0,99	0,99	0,99	0,99	0,99	0.99					

ANEXO 17- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de plagioclásios das facies granitóides BSGEm, SGH e MSG, do maciço granitóide Velho Guilherme. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, Cl).

FACIES GRANITÓIDES	88	GEm	S	3H	M	SG	
AMOSTRA	NN-V	'G-63A	NN-V	G-77N	NN-VG-77A		
FASE MINERAL	PLAGIC	DCLÁSIO	PLAGIC	CLÁSIO	PLAGIOCLÁSIO		
	1=C4	2=2C4	3=5C1	4 ≡6C1	5=2C4	6=3C4	
SiO2	68,84	68,99	67,79	69,07	68,96	69,27	
AI2O3	19,84	19,79	20,02	19,72	19,79	19,71	
Fe2O3	0,02	0,00	0,08	0,04	0,02	0,03	
BaO	0,00	0,00	0,01	0,00	0,00	0,00	
CaO	0,52	0,35	0,87	0,55	0,50	0,35	
Na2O	11,09	11,47	10,74	10,96	11,10	11,42	
K20	0,19	0,17	0,28	0,10	0,07	0,06	
TOTAL	100,50	100,77	99,79	10044	100,44	100,84	
Si	11,959	11,961	11,881	11,945	11,976	11,989	
Al	4,063	4,043	4,135	4,078	4,050	4,020	
Fe3+	0,002	0,001	0,010	0,005	0,003	0,004	
Fe2+	0,000	0,000	0,000	0,000	0,000	0,000	
Mn	0,000	0,000	0,000	0,000	0,000	0,000	
Ma	0,000	0,000	0,000	0,000	0,000	0,000	
Ba	0,000	0,000	0,001	0,000	0,000	0,000	
Ca	0.097	0,066	0,163	0,103	0,093	0,064	
Na	3,734	3,856	3,649	3,730	3,737	3,832	
K	0.042	0,038	0,063	0,021	0,015	0,014	
X	16,022	16,004	16,016	16,023	16,026	16,009	
Z	3,873	3,960	3,875	3,854	3,845	3,910	
Āb	96,00	97,00	94,00	97,00	97,00	98,00	
Ör	1,00	1,00	2,00	0,00	0,00	0,00	
Ān	3,00	2,00	4,00	3,00	3,00	2,00	
Na/K	88.90	101,47	57,92	177,62	249,13	273,71	

ANEXO 18 - Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de feldspatos potássicos das facies granitóides BSGEm, SGH e MSG, do maciço granitóide Velho Guilherme. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, Cl).

FACIES GRANITÓIDES	88	GEm		SG	Ĥ		MSG			
AMOSTRA	NN-	/G-63A	1	NN-VC	3-77N			NN-VG	-77A	
FASE MINERAL	K-FEL	DSPATO	K-FELC	SPATO	Na-FELC	SPATO	K-FELC	SPATO	Na-FELDSPATO	
	1=3C4	2=4C4	3=1C1	4=2C1	5=3C1	6=4C1	7=1C4	8=6C4	9=5C4	
SiO2	65,09	65,23	64,23	64,80	67,62	68,12	64,91	66,57	68,51	
TiO2	0,00	0,01	0,00	0,00	0,03	0,02	0,02	0,05	0,02	
AI2O3	18,09	18,13	17,57	17,99	18,94	19,09	18,09	18,52	19,60	
Fe2O3	0,06	0,06	0,08	0,05	0,69	0,03	0,00	0,14	0,00	
BaO	0,03	0,05	0,04	0,02	0,00	0,00	0,07	0,01	0,00	
CaO	0,02	0,00	0,00	0,00	0,03	0,05	0,00	0,01	0,27	
Na2O	0,28	0,74	0,17	0,21	8,29	11,65	1,20	3,22	11,15	
K20	16,59	16,01	16,60	16,75	4,83	0,11	14,89	12,01	0,07	
TOTAL	100,16	100,24	98,70	99,83	100,42	99,06	99,24	100,56	99,64	
Si	12,032	12,027	12,062	12,030	11,976	12,012	12,036	12,040	11,989	
Ti	0,000	0,002	0,000	0,000	0,003	0,003	0,003	0,006	0,002	
Al	3,940	3,940	3,889	3,936	3,953	3,968	3,954	3,947	4,042	
Fe3+	0,008	0,009	0,012	0,007	0,092	0,004	0,000	0,019	0,000	
Fe2+	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	
Ba	0,002	0,004	0,003	0,001	0,000	0,000	0,005	0,001	0,000	
Са	0,005	0,000	0,000	0,000	0,006	0,009	0,000	0,002	0,059	
Na	0,100	0,266	0,063	0,076	2,846	3,983	0,432	1,129	3,782	
K	3,912	3,766	3,976	3,967	1,092	0,024	3,523	2,772	0,015	
X	16,260	15,967	15,951	15,966	15,929	15,980	15,990	15,987	16,031	
Z	4,017	4,034	4,039	4,043	3,947	4,019	3,958	3,909	3,849	
Ab	3,00	7,00	2,00	2,00	72,00	99,00	11,00	29,00	98,00	
Or	97,00	93,00	98,00	98,00	28,00	1,00	89,00	71,00	0,00	
An	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	2,00	
Na/K	0,026	0,071	0,016	0,019	2,606	165,96	0,123	0,407	252,13	

ANEXO 19- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de clorita da facie granitóides SGH, do maciço granitóide Velho Guilherme. As fórmulas estruturais calculadas com base em 14 oxigênios, 6 grupos(OH) equivalentes e ânions fixos(O, F, Cl). Ferro total como FeO_T. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total fornecido pelo Minpet 2.02, de acordo com Deer et. al.(1966).

FACIES GRANITÓIDE	8	GH
AMOSTRA	NN-V	G-77N
FASE MINERAL	CLO	RITA
	1=4C2	2=5C2
SiO2	31,53	32,76
TIO2	0,12	0.04
AI2O3	21,37	21,42
FeOT	21,65	21.01
MnO	0,51	0.50
MgO	11,53	11,14
CaO	0,24	0,13
Na2O	0,06	0,05
K20	1,21	1,62
H2O	11,20	11,38
F	0,15	0.02
CI	0,02	0,01
TOTAL	99,59	100,08
Si	2,516	2,587
AIIV	1,484	1,413
AIVI	0,524	0,579
Ti	0,007	0,002
Fe2+	1,445	1,388
Fe3	0,000	0.000
Mn	0,034	0.033
Mg	1,372	1,312
Са	0,021	0,011
Na	0,009	0,008
K	0,123	0,163
ОН	5,959	5,994
CF	0,076	0,010
CCI	0,005	0,003
0	14.000	14,000

ANEXO 20- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de muscovitas das facies granitóides SGH, do maciço granitóide Velho Guilherme. As fórmulas estruturais calculadas com base em 22 oxigênios(conforme o método de Deer et al., 1966). Ferro total como FeO_T. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total estrutural. Os conteúdos de Li₂O foram estimados a partir da equação recomendada por Tischendorf et al.(1997). XFe=Fe/(Fe+Mg); % mol. celadonítica=100x(Si-6)/2; % mol.paragonítica=100xNa/(Na+K).

FACIES GRANITÓIDES	S SGH									
AMOSTRAS	1	NN-V	G-77N	*****						
FASE MINERAL		MUSC	OVITA							
ANÁLISES	1=1C2	2=2C2	3=3C2	4=6C2						
SIO2	47,38	47,04	46,50	47,62						
TIO2	0,03	0,06	0,12	0,04						
AI2O3	32,09	31,59	32,34	32,89						
Fe2O3	0,00	0,00	0,00	0,00						
FeO	6,51	6,25	4,79	4,48						
MnO	0,04	0,01	0,00	0,01						
MgO	1,09	1,02	1,31	1,41						
CaO	0,07	0,06	0,01	0,00						
Na2O	0,07	0,06	0,09	0,09						
K20	10,32	10,20	10,34	10,60						
H2O	4,93	4,90	4,86	4,91						
Li2O	0,01	0,00	0,01	0,03						
F	0,06	0,00	0,07	0,15						
CI	0,01	0,01	0,00	0,00						
TOTAL	102,61	101,23	100,47							
Fórmu	ila Etrutural na b	ase de 22 oxig	ênios							
Si	5,725	5,755	5,703	5,724						
AIIV	2,275	2,245	2,297	2,276						
AIVI	2,295	2,312	2,379	2,385						
Ti	0,015	0,007	0,011	0,004						
Fe3+	0,000	0,000	0,000	0,000						
Fe2+	0,661	0,639	0,494	0,447						
Mn	0,007	0,000	0,000	0,000						
Mg	0,196	0,184	0,236	0,252						
Ca	0,007	0,007	0,000	0,000						
Na	0,014	0,014	0,015	0,014						
κ	1,597	1,588	1,621	1,618						
OH	3,979	3,998	3,979	3,944						
Li	0,000	0,000	0,000	0,014						
F	0,021	0,000	0,015	0,058						
ĊI	0,000	0,000	0,000	0,000						
XFe	0,77	0,78	0,68	0,64						
% mol. Celadonita	-13,75	-12,25	-14,85	-13,80						
% mol. Paragonita	2.26	2.24	2.45	2.28						

ANEXO 21- Composições químicas semi-quantitativas(EDS) de fases minerais menores das amostras NN-VG-77N e NN-VG-35A, da facies SGH do maciço granitóide Velho Guilherme.

FACIES GRANITÓIDE				······································			SGH					
AMOSTRA						N	N-VG-77N					
FASES MINERAIS	EPI	ото	CERIOPIRO	CLORO-(Ce)/F		-BETA(Y)/FER	SUSONITA-(Y)	ALLANITA				ARMSTRONGIT
			(?)									A/CAPLEITA
ANÁLISES	1=2C1	2=1C2	3=2C2	4=2*C2	5=3C2	6=4C2	7=5C2	8=6C2	9=7C2	10=8C2	11=9C2	12=1C1
Si	17,37	17,48										13.33
0	45,32	45,45									 	41.92
Al	12,75	13,22								-		0.49
Fe	8,14	7,24			+							-
Ťi	0,35	0,04			<u> </u>						<u>+</u>	
Mn	0,07	0,15						· · · · · · · · · · · ·			<u> </u>	-
Na	-	0,01			<u> </u>						<u> </u>	1
к	0,27	0,02										
Ca	15,47	16,01	1								<u> </u>	3.05
Mg	0,10	0,07	1		<u> </u>	с. Э						-
Y	-	-	1		ł	<u> </u>						2,47
Zr	-	-								1	<u> </u>	37,90
Yb	*	-								+	 	0,07
Се	-	-									<u> </u>	0,35
La	-	-									<u>†</u>	0,24
Nd	-	-	1								<u> </u>	0,14
Sn	0,17	0,30	1									-
TOTAL	99,99	100,00	11							+		99,49

······

.

ANEXO 22- Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra NN-VG-35A, da facies SGH do maciço granitóide Velho Guilherme.

FACIES GRANITOIDE						S	GH			_				
AMOSTRA		NN-VG-35A												
FASES MINERAIS	ESFA	LERITA	FLUO	CERITA	FLU	ORITA	MINERAL de Ce La Nd	Ziesta						
ANÁLISES	13=1C1	14=5C2	15=1C3	16=203	17=403	18=503	10-202		2.00		100 4400			
Si	_			10 200	17-400	10-505	19-303	20=102	21=202	22=8C3	23=11C3			
0					-	-	-	13,79	13,65	12,71	13,68			
Δι					-			35,31	38,49	40,37	38,38			
	-	-	-	-	•	-	-	-	0,56	0,85	0,66			
Fe	7,95	5,66	-	-	-	-	-	-	-		-			
S	31,91	31,01	-	-	-	-	•	-	-	-	-			
Са	-	-	0,13	0,05	23,74	48,57	3,28	0,39	1,30	0.85	0.96			
U	-	-	-	-	-	-	-	1,10	2,19	1,34	1,14			
Рb	0,58	0,2 9	-	-	-	-	-	1,02	0.39	0.35	0.17			
Zn	59,57	63,04	-	-	-	-		-						
F	-	-	35,99	35,68	34,93	50,63	•	-			<u> </u>			
Y	-	-	0,09	0,16	0,78	-	0.29	2 55	2.04	3.24	2.54			
Nb	-	-	-	-	-	-	-	2,00	0.13		2,54			
Zr	-	-	-	-	-	-	-	44.06	39.36	36.58	40.71			
Th	-	-	-	-	-		-	0.67	0.50	1.09	0.51			
Bi	-	-	-	-	-	-	-							
Yb	-	-	-	-				0.88	0.93	0.64	0.20			
Dy	-	-	-	÷	-	0,03	-		0.33		0.14			
Ce	-	~	35,60	36,24	22,61	0,46	54.81		0,00	1 07	0.83			
La	-	-	20,29	22,26	11,40	0,18	28.44		0.02	0.21	0,05			
Sm	-	-	0,06	-	0,66	0.06			0,02	0,2 ;	0,10			
Nid	•	-	7,57	5.29	5.89		12 55							
Та	-	-	0,26	0.38		0.09	0.63		-					
Sn		-			-		0,00	0.20	-	0,00	-			
TOTAL	99.58	99.33	99.76	83.99	00.65			0,29	-	0,06	·			
				33,00	99,00	33'30	98,58	99,42	99,76	99,77	99,86			

Continuação do ANEXO 22.

FACIES GRANITÓIDE	I		SGH	
AMOSTRA	<u>†</u>	NN-'	VG-35A	
FASES MINERAIS	THO	RITA	ÓXIDO	DE Y e Zr
ANÁLISES	24=6C3	25=7C3	26 =9C3	27=10C3
Si	6,28	6,39	0,68	0,72
0	18,29	22,54	31,63	32,79
Al	0,48	0,35	0,66	1,17
Mg	12	0,09	-	-
Na	-	0,22	-	-
К	0,20	0,11		-
Са	0,14	0,42	0,08	-
U	-	-	0,03	0,22
Pb	-	-	-	0,48
Y	5,80	4,86	44,03	33,22
Zr	-	-	13,14	13,60
Th	64,69	62,11	0,23	1,09
Bi		-		-
Yb	1,24	1,43	4,72	8,39
Dy	1,27	1,04	4,02	7,84
Се	0,07	0,12	0,15	-
La	0,11	-	0,01	0,51
Sm	0,41	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-
Nd-	-	0,14	0,38	0,30
Та	0,81	0,19	<u> </u>	-
Sn	-	- 1	0,24	0,07
TOTAL	98,74	98,61	96,15	96,72

ANEXO 23

Tabela 4.3-Análises químicas dos granitóides do maciço Velho Guilherme e do veio hidroterma e ele associado. Óxidos maiores em(%), e elementos traços e terras raras em(ppm).

VARIEDADES			BSGEm			[MSG	V.H			
AMOSTRAS	NN-VG-31	NN-VG-32	NN-VG-63	NN-VG-63A		NN-VG-33	NN-VG-35A	NN-VG-77	NN-VG-	NN-VG-77D			NN-VG-77B
ÓXIDOS MAIORES					MÉDIAS						MÉDIAS		
SiO2	76,24	75,67	75,57	76,14	75.90	76,17	76,93	76,78	75,71	76,51	76,42	77.41	84,70
TiO2	0,06	0,05	0,05	0,04	0.05	0,06	0,05	0,05	0,05	0,04	0,05	0,03	0.02
AI2O3	12,40	12,29	12,40	12,52	12.40	12,22	12,43	12,39	12,38	12,43	12,37	12,61	6,59
Fe2O3	1,64	1,39	1,57	1,54	1.54	1,54	0,82	1,20	1,14	1,01	1,14	0,48	3,08
MnO	0,03	0,01	0,01	0,01	0.015	0,01	0,01	< 0,01	0,02	0,01	< 0,012	nd	0,20
MgO	0,01	0,02	0,02	< 0,01	< 0,015	0,02	0,03	0,02	0,04	0,04	0,03	0.03	0.08
CaO	0,20	0,58	0,60	0,59	0,49	0,56	0,91	1,29	1,57	0,75	1,01	0,53	3,94
Na2O	3,14	3,79	3,95	3,97	3,60	3,74	4,03	3,79	3,53	3,85	3,78	3,25	0,03
K20	4,74	4,57	4,55	4,69	4,63	4,53	4,29	4,18	4,01	4,37	4,27	5,66	0.94
P2O5	0,02	0,01	< 0,01	< 0,01	< 0,0125	< 0,01	0,01	< 0,01	< 0,01	< 0,01	< 0.01	0.03	< 0.01
LOI	1,29	0,71	0,42	0,40	0,70	0,51	0,51	0,44	0,68	0,37	0,50	0,52	1.13
TOTAL	99,78	99,09	99,13	99,91	99,32	99,36	100,02	100,12	99,12	99,39	99,12	100,57	100.71
ELEMENTOS TRAÇOS													
Rb	513,08	532,96	499,38	497,70	[486,82	417,46	406,31	374.88	481.74		365	153.96
Ba	39	20	3	3	ľ	20	188	112	355	201		264	101
Sr	13	9	6	6	I	9	40	102	138	63		49	486
Zr	134	106	132	148		109	107	127	144	120		161	54
Nb	32,70	36,57	42,11	42,14		32,36	36,90	42,27	39,14	52,53		52	21,12
Y	55	114	130	130		114	138	132	127	99		237	356
Sc	< 1	< 1	<	< 1		< 1	< 1	<1	< 1	<1		nđ	<1
Be	2	4	4	4		3	4	5	5	11		5	4
V	< 5	< 5	< 5	< 5		< 5	< 5	< 5	< 5	< 5		nd	< 5
Cr	nd	nd	nd	nd		nd	nd	nd	nd	ndi		nđ	nd
Co	6	28	3,9	2,4		3,1	16	5,9	3,7	4,9		67	3,7
Ni	nd .	nd	nd	nd		nd	nd	nd	nd	nd		12	nd
Cu	3	nd	nd	nd	i	30	nd	nd	nd	nd		nd	10
Zn	21	27	44	16		21	17	16	20	37		87	67
Ga	28	29	31	31		29	29	30	29	37		28	32
Mo	2,64	0,75	7,27	4,63	.	1,05	0,53	1,50	2,04	2,33		1,0	12,58
Sn	6,4	5,1	1,3	1,2		4,5	6,9	10,4	16,4	11,4		2,2	86,5
F	900	2900	3000	3200	L	2900	2900	3300	4300	1800		1594	2900
CI	892	nd	1268	1661		923	1458	1014	nd	580		nd	829
W	14,87	181,52	67,77	48,65		53,50	113,57	53,07	36,86	45,37		715	48,38
Bi	0,20	0,45	11,03	6,79		0,15	0,10	1,87	3,94	2,09		0,56	9,14
As	nd	nd	nđ	nd	L	nd	nd	nd	nd	nd		nd	nd

Cs	5,26	8,65	7,70	7,73	7,89	5,42	5,60	4,65	5,11	3,6	4,02
Sb	0,07	0,10	0,03	nd	nd	0,03	nd	nd	nd	nd	0.17
Ta	4,949	6,705	6,185	6,084	4,643	5,219	5,436	5,179	6,006	8,90	2,028
Hf	8,22	7,03	8,84	10,07	6,72	7,15	8,91	9,58	9,54	12	3,23
Th	49,790	47,576	50,168	44,493	48,542	45,016	43,777	41,848	48,685	45,1	20,975
U	11,224	12,490	14,606	14,233	9,386	16,877	9,476	8,105	12,138	20,1	8,149
Ag	1,7	nd	0,6	nd							

Continuação da Tabela 4.3.

TERRAS RARAS											I	I
La	13,70	26,38	17,20	16,67	22,32	25,43	14,25	13,42	16,70	1	6,14	18,85
Ce	31,98	61,58	46,23	44,91	52,06	60,05	39,38	39,50	45,78		21	38,45
Pr	2,822	6,325	5,179	5,140	5,304	6,383	4,660	4,905	5,189		3,42	5,059
Nd	12,89	32,31	28,31	28,06	27,03	32,39	26,04	28,74	28,06		21,8	27,23
Sm	3,58	9,13	9,60	9,62	7,78	9,81	9,26	10,72	9,90		9,34	9
Eu	0,077	0,101	0,055	0,050	0,103	0,117	0,064	0,101	0,075		0,05	0,121
Gd	4,29	10,49	11,85	11,70	9,65	11,43	11,52	12,86	11,75		12,3	14,28
ТЪ	0,97	2,01	2,41	2,39	1,87	2,37	2,41	2,58	2,40		3,49	2,94
Dy	7,66	14,35	17,57	17,44	13,99	17,25	17,53	18	17,14		25,3	24,71
Ho	1,72	3,18	3,83	3,77	3,11	3,70	3,90	3,81	3,68		6,33	6,67
Er	6,33	10,69	12,73	12,28	10,30	12,85	12,90	12,18	11,97		20,5	23,02
Tm	1,072	1,661	1,915	1,868	1,608	2,122	1,913	1,819	1,760		3,02	3,040
Yb	8,33	11,56	13,11	13,02	11,11	15,40	12,99	12,26	12,09		19,5	17,26
Lu	1,341	1,791	1,987	1,980	1,690	2,323	1,931	1,823	1,805		2,84	2,664

Facies Granitóides	l	BS	GEm				SGH		·····	MSG	VH
Amostras	NN-VG-31	NN-VG-32	NN-VG-63	NN-VG-63A	NN-VG-33	NN-VG-35A	NN-VG-77	NN-VG-77C	NN-VG-77D	NN-VG-77A	NN-VG-77B
Análises	1	2	3	4	5	6	7	8	9	10	11
Quartzo	40,08	35,49	34,46	34,25	36,29	35,84	36,91	37,71	36,12	35,75	74,52
Ortoclásio	28,48	27,48	27,27	27,89	27,12	25,50	24,80	24,09	26,11	33,47	5,58
Albita	26,95	32,56	33,82	33,73	31,99	34,23	32,13	30,31	32,87	27,46	0,25
Anortita	0,89	2,87	2,66	2,46	2,81	3,14	4,43	6,15	3,73	2,45	15,11
Corindon	1,80	0,06	-	-	0,13	-	-	-	-	0,22	-
Diopsidio	-	-	0.06	-	-	0,17	0,11	0,22	0,02	-	0,43
Hyperstênio	0,03	0,05	-	-	0,05	-	-	-	0,09	0,07	-
Magnetita	0,38	0,31	0,34	0,34	0,28	0,15	0,21	0,25	0,21	0,04	1,54
Hematita	1,24	1,06	1,19	1,16	1,21	0,63	0,94	0,88	0,78	0,40	1,72
limenita	0,12	0,10	0,10	0,08	0,12	0,10	0,10	0,10	0,08	0,06	0,04
Apatita	0,04	0,02	0,00	0,00	0,00	0,02	0,00	0,00	0,00	0,07	-
										ľ	
TOTAL	100,01	100,00	99,90	99,91	100,00	99,77	99,63	99,70	100,00	100,00	99,19
Albita/Anortita	30,28	11,34	12,71	13,60	11,38	10,90	7,25	4,93	8,81	11,21	0,02
Q	42	37	36	36	38	37	39	41	38	37	93
Or	30	29	29	29	28	27	27	26	27	35	7
Ab	28	34	35	35	34	36	34	33	35	28	0
Ab	48	52	53	53	52	54	52	50	52	43	1
An	2	5	4	4	4	5	7	10	6	4	72
Or	50	43	43	43	44	41	41	40	42	53	27

۰,

ANEXO 24-Composições normativas CIPW dos granitóides do maciço Velho Guilherme.

.

.

N

ANEXO 25-Mapa de amostragem do maciço granitóide Mocambo.

ANEXO 26- Análises químicas de biotita da facies granitóide SGMv, do maciço granitóide Mocambo, obtidas através de microssonda eletrônica, e fórmulas estruturais calculadas. As fórmulas estruturais calculadas na base de 24 oxigênios,(conforme o método de Deer et al., 1966). Ferro total como FeO. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total calculado(conforme Deer et al., 1966). Os teores de Li₂O foram obtidos através da equação recomendada por Tischendorf et al.(1997). XFe=Fe/(Fe+Mg). Os conteúdos de FeO foram estimados a partir da equação de Bruiyn et al.(1983. In: Salosaari(1995) e os de Fe₂O₃ a partir da relação %FeO_T=%FeO+0,8998.%Fe₂O₃.

FACIES GRANITOIDE	SGMv								
AMOSTRA	NN-GM-24								
FASE MINERAL		BIO	TITA						
	Gr	ão 1	Gr	102					
	1=2C1	2=3C2	3=6C2	4=7C2					
SiO2	34,20	36,30	38,16	39.03					
TiO2	0,57	0,68	0,05	0.22					
AI2O3	19,98	19,78	20,61	21.43					
FeOT	28,04	26,14	22,54	19.72					
MnO	0,84	1,11	0,65	0.73					
MgO	0,46	0.35	0.24	0.34					
BaO	0,09	0.09	0.02	0.00					
CaO	0,05	0.03	0.00	0.00					
Na2O	0,13	0.02	0.12	0.10					
К2О	6,81	7.41	9.54	9.50					
H2O	1.02	0.96	0.45	0.36					
Li2O	0.23	0.83	1.37	1.62					
F	1.86	2.06	3.21	3.07					
CI	0.04	0.08	0.05	0,01					
TOTAL	94.32	94.48	97.01	96.18					
	Fórmulas es	truturais na base de 24 o	xidênios						
Si	5.651	5,835	5 954	6.064					
AllV	2.349	2 185	2 046	1 936					
AIVI	1.543	1,583	1 745	1 989					
Ti	0.071	0.082	0.006	0.026					
Fe3+	0 473	0.340	0,000	0,020					
Fe2+	3 403	3 174	2 784	2.516					
Mn	0.117	0 151	0.086	0.006					
Ma	0.113	0.084	0,056	0,030					
Ba	0.006	0.006	0,000	0,070					
Ca	0.010	0.005	0,000	0,000					
Na	0.042	0,006	0,000	0,000					
ĸ	1,436	1 520	1 900	1 882					
ОН	1 124	1 030	0.469	1 373					
Li	0.153	0.537	0.861	1,070					
CF	0.972	1 047	1 584	1,012					
čci –	0.011	0.022	0.013	0.016					
<u>ö</u>	24,000	24 000	24.000	24 000					
xFe	0.97	0.97	<u> </u>	0.07					

ANEXO 27 - Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de Kfeldspato pertítico e Na-feldspato pertítico das amostras NN-GM-56A(facies granitóides SMGP) e NN-GM-24(facies SGMv), do maciço granitóide Mocambo. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, Cl).

FACIES GRANITOIDE	S	MGP	1		S	GMV		
AMOSTRA	NN-C	3M-56A			NN-	GM-24		
FASES MINERAIS	K-FELDSPAT	DPERTITICO		κ.	FELDSPAT	O POTÁS	SICO	
	1=8C5	2=9C5	3=3C1	4=4C1	6=1C5	7=2C5	10=5C5	11=6C5
SiO2	65,29	65,17	63,375	64,208	65,277	65,250	64.541	64,436
TiO2	-	-	0,029	0,000	0,013	0,004	0.000	0.006
AI2O3	18,83	18,63	17,706	18,052	18,202	18,155	17,921	18.031
Fe2O3	•	-	0.625	0,037	0,075	0,003	0,009	0.048
FeO	0,00	0,00	-	-	-	•	-	-
MnO	-	-	0,00	0,024	0,043	0,002	0,000	0.000
BaO	0,01	0,02	0,00	0,016	0,031	0,053	0,051	0.052
CaO	0,00	0,00	0,00	0,000	0,000	0,000	0,000	0.000
Na2O	0,60	0,15	0,155	0,158	0,147	0,173	0,385	0.061
K2O	15,98	15,95	16,296	16,514	16,661	16,670	16,341	3,971
TOTAL	100,71	99,92	98,186	99,009	100,448	100,309	99.247	99.438
Si	11,962	12,012	11,976	12,010	12,029	12,040	12,036	12.013
Ti	•	-	0,004	0,000	0,002	0,001	0,000	0.001
Al	4,063	4,044	3,943	3,980	3,953	3,948	3,939	3,962
Fe3+	-	-	0,089	0,005	0,010	0,000	0,001	0.007
Fe2+	0,00	0,00	-	-	-		-	•
8a	0,001	0,001	0,000	0,016	0,002	0,004	0,004	0.004
Са	0,000	0,00	0,000	0,000	0,000	0,000	0,000	0,000
Na	0,213	0,054	0,0568	0,057	0,052	0,062	0,140	0,061
ĸ	3,735	3,751	3,9284	3,940	3,917	3,924	3,888	3,971
X	16,025	16,05	15,9187	15,9891	15,982	15,988	15,975	15,975
.Z	3,948	3,805	3,9894	3,9978	3,978	3,987	4,027	4,033
Ab	5,00	1,00	1,00	1,00	1,00	2,00	3,00	2,00
An	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Or	95,00	99,00	99,00	99,00	99,00	98,00	97,00	98,00
Na/k	0,057	0.014	0,014	0,015	0,013	0,016	0,036	0.015

Continuação do ANEXO 27

FACIES GRANITÓIDE		SGMv									
AMOSTRA		NN	-GM-24	·····							
FASES MINERAIS	1	Na-FELDSP/	ATO PERTITICO								
	5=5C1	8=3C5	9=4C5	10=7C5							
SiO2	68,538	67,451	68.424	69.392							
TiO2	0,000	0,019	0,000	0.000							
AI2O3	19,425	18,576	19,215	19,158							
Fe2O3	0,006	0,027	0,016	0.018							
FeO	•	-	-	•							
MnO	0,000	0,032	0.000	0.000							
BaO	0,062	0,028	0.000	0.000							
CaO	0,079	0,000	0,010	0,010							
Na2O	11,490	7,434	10.513	11.547							
K2O	0,191	6,110	1,598	0.061							
TOTAL	99,789	99,679	99.774	100,185							
Si	11,999	12,062	12.027	12.074							
Ti	0,000	0,003	0,000	0.000							
Al	4,008	3,915	3,981	3.928							
Fe3+	0,001	0.004	0.002	0.002							
Fe2+	-	_	- 1	•							
Ba	0,004	0,002	0.000	0.000							
Са	0,015	0,000	0.002	0.002							
Na	3,900	2,578	3,583	3.895							
K	0,043	1,394	0,358	0.014							
X	16,006	15,977	16,007	16.002							
Z	3,958	3,979	3,943	3,911							
Ab	99,00	65,00	91,00	100.00							
An	0,00	0,00	0,00	0.00							
Or	1,00	35,00	9.00	0.00							
Na/k	91,55	1,85	9,10	288.55							

ANEXO 28- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de plagioclásio das facies granitóides SMGP e SGMv do maciço granitóide Mocambo. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, Cl).

FACIES GRANITÓIDES		SMGP				SGMv			
AMOSTRA		NN-G	M-56A			NN-GM-2	4		
FASE		PLAGIC	CLÁSIO	, .	F	LAGIOCLA	SIO		
MINERAL									
	1=10C4	2=11C4	3=6C5	4=7C5	5#2C1	6=6C1	7=8C5		
SiO2	69,20	68,98	69,47	69,14	67789	69,086	67,328		
TiO2	-	-	-	-	0,000	0,000	0.015		
AI2O3	20,24	19,96	20,09	19,86	19,170	19,389	18,993		
Fe2O3	-	-	-	- 1	0,023	0,042	0.000		
FeO	0,00	0,00	0,03	0,00		-	-		
MnO	-	-		-	0,000	0,000	0,013		
BaO	0,04	0,00	0,00	0,00	0,049	0,035	0,003		
CaO	0,16	0,01	0,06	0,02	0,700	0,084	1,504		
Na2O	10,61	10,42	10,49	10,60	11,201	11,231	11.363		
K2O	0,13	0,14	0,10	0,12	0,098	0,100	0.084		
TOTAL	100,38	99,51	100,24	99,74	99,029	99,967	99,304		
Si	11,986	12,032	12,030	12,039	11,973	12,044	11,907		
Ti	-	-	-	-	0.000	0.000	0.002		
Al	4,129	4,100	4,097	4,073	0.000	3,984	3.959		
Fe3+	0,000	0,000	0,000	0,000	0,003	0.006	0.000		
Fe2+	0,000	0,000	0,004	0,000	-	-			
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0.002		
Mg	0,000	0,000	0,000	0,000	-	~	-		
Ва	0,003	0,000	0,000	0,000	0,003	0,002	0,000		
Ca	0,030	0,002	0,011	0,004	0,133	0,016	0,285		
Na	3,563	3,524	3,522	3,579	3,836	3,796	3,896		
К	0,029	0,031	0,022	0,027	0,022	0,022	0,019		
X	16,115	16,132	16,127	16,112	15,963	16,028	15,865		
Z	3,622	3,557	3,555	3,61	3,990	3,834	4,204		
Ab	98%	99%	99%	99%	96%	99%	93%		
An	1%	0%	0%	0%	3,%	0%	7%		
Or	1%	1%	1%	1%	1%	1%	0%		
Na/K	122,86	113.68	160.09	132.56	174.35	171 01	205.068		

ANEXO 29- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de muscovitas das facies granitóides SGMv e SMGP e do SCMQGs, do maciço granitóide Mocambo. As fórmulas estruturais calculadas com base em 22 oxigênios(conforme o método de Deer et al., 1966). Ferro total como FeO_T. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total estruturai. Os conteúdos de Li₂O foram estimados a partir da equação recomendada por Tischendorf et al.(1997). XFe=Fe/(Fe+Mg); % mol. celadonítica=100x(Si-6)/2; % mol.paragonítica=100xNa/(Na+K).

FACIES		SMGP										
GRANITOIDES	· · · · · · · · · · · · · · · · · · ·					·						
CARE MINEDAL				NA	-GM-56A							
ANAL ISES	0.4000	0.1100		MU	SCOVITA		T		·			
ANALISES	2=10C3	3=11C3	4=12C3	5=1C1	6=2C1	7=3C1	8=7C2	9=8C2	10=9C2			
5102	46,84	46,57	48,08	44,13	43,09	44,01	44,26	45,49	46,00			
1102	0,18	0,15	0,06	0,00	0,00	0,09	0,00	0,05	0,12			
AI203	29,54	29,28	30,86	30,95	29,56	29,67	30,61	28,52	31,00			
Fe2O3	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
FeO	6,92	6,83	4,87	7,84	8,51	7,92	8,03	8,07	5,67			
MnO	0,10	0,09	0,08	0,11	0,13	0,16	0,16	0,13	0,09			
MgO	0,46	0,51	0,08	0,00	0,05	0,05	0,00	0,05	0,08			
CaO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
Na2O	0,09	0,06	0,19	0,11	0,12	0,11	0,14	0,09	0.13			
K2O	10,67	10,69	10,09	10,11	10,50	10,49	10,53	10,36	10.50			
H2O/	4,17	4,18	4,25	4,26	4,02	4,10	4,37	4,10	4.16			
Li2O	0,55	0,51	0,53	0,32	0,48	0,45	0.23	0.48	0.58			
F	1,29	1,22	1,25	0,86	1,16	1,10	0.67	1.17	1.26			
CI	0,00	0,00	0,01	0,05	0,01	0,00	0.02	0.00	0.01			
TOTAL	100,81	100,09	100,35	98,80	97,63	98,15	99.02	98.51	99.60			
Si	5,778	5,776	5,849	5,586	5,558	5.621	5.610	5.827	5 693			
AIIV	2,222	2,224	2,151	2,414	2,442	2.379	2,390	2,173	2 307			
AIVI	2,052	2,059	2,275	2,205	2.054	2,198	2,183	2,133	2 2 1 5			
Ti	0,019	0,015	0,029	0,000	0.000	0.008	0.000	0.008	0.015			
Fe3+	0,000	0,000	0,000	0.000	0.000	0.000	0.000	0.000	0,000			
Fe2+	0,712	0,708	0,497	0.830	0.915	0.865	0.823	0.862	0.588			
Mn	0,007	0,007	0,007	0.015	0.016	0.016	0.015	0.015	0.007			
Mg	0,082	0,097	0,015	0.000	0.008	0.008	0.000	0.008	0.015			
Са	0,000	0,000	0.000	0.000	0.000	0.000	0.000	0,000	0,000			
Na	0,015	0,015	0,044	0.030	0.032	0.031	0.030	0.016	0.030			
К	1,675	1,684	1,565	1.627	1.721	1,746	1 706	1 693	1 652			
OH	3,425	3.458	3.422	3,589	3.457	3 586	1.850	3 510	3 4 3 6			
Li	0.267	0.253	0.264	0.167	0.248	0.236	0 122	0.246	0.292			
F	0,504	0,477	0.483	0.342	0.473	0.456	0.266	0.254	0 491			
CI	0.000	0.000	0.000	0.008	0.000	0.000	0.008	0.000	0.00			
XFe	0.897	0.880	0.971	1.00	0.991	0.991	1 00	0.000	0.075			
% mol. Celadonita	-11.10	-11.20	-7.55	-20.70	-22 10	-18 95	-19.50	-8.65	-15 25			
% mol. Paragonita	0,88	0.88	2.73	1.81	1.83	1.74	1 73	0.936	1 78			

FACIES	1	SGMv			SCN	CMQGs		
AMOSTRAS	+	NN.GM	24		NIN O	** 000		
FASE	1	MUSCOV	17A		NN-G	M-23		
MINERAL				1	muau	OVITA		
ANÁLISES	1=4C2	15=4C5	16=5C5	11=1C6	12=3C6	13=4C6	14=6C6	
SiO2	49,12	46,698	46,831	44,99	48.39	46.11	45.96	
TiO2	0,77	0,093	0,120	0.060	0.10	0.02	0.12	
AI2O3	26,40	30,456	29,923	32,730	29.35	30.78	32 43	
Fe2O3	0,00	0,000	0,000	0.000	0.00	0.00	0.00	
FeO	7,80	8,307	9,409	6,870	7.81	8.81	7 25	
MnO	0,37	0,177	0,201	0.23	0.11	0.18	0 14	
MgO	0,41	0,082	0,070	0.030	0.11	0.04	0.16	
CaO	0,00	0,000	0,000	0.000	0.00	0.00	0.00	
Na2O	0,09	0,123	0,066	0,140	0.09	0.11	0.16	
K2O	9,88	10,688	10,931	10,820	10.57	11.02	10.82	
H2O	4,02	4,42	4,29	4,42	4.14	4.53	4 55	
Li2O	0,76	0,34	0,49	0,32	0.48	0.39	0.24	
F	1,64	0,892	1,186	0,85	1,167	0.65	0.69	
CI	0,00	0,012	0,017	0.02	0.00	0.01	0.02	
TOTAL	101,34	102,29	103,561	101,48	102,23	102.65	102.54	
Si	5,995	5,717	5,693	5.524	5.883	5.655	5 591	
AllV	2,005	2,283	2,307	2,476	2,117	2.345	2,409	
AIVI	1,808	2,112	1,983	2,262	2.090	2,105	2,240	
Ti	0,075	0,007	0,011	0,007	0.011	0.004	0.011	
Fe3+	0,000	0,000	0,000	0,000	0.000	0.000	0,000	
Fe2+	0,801	0,854	0,957	0,708	0,796	0.906	0.738	
Mn	0,037	0,015	0,022	0,022	0,015	0.022	0.015	
Mg	0,074	0,015	0,015	0,007	0.022	0.007	0.029	
Ca	0,000	0,000	0,000	0,000	0.000	0.000	0.000	
Na	0,015	0,030	0,015	0,030	0.015	0.029	0.044	
K	1,544	1,663	1,695	1,697	1.636	1.724	1.681	
OH.	3,279	3,605	3,477	3,616	3,360	3,699	3,698	
Li	0,368	0,162	0,233	0,162	0,234	0.192	0.117	
F	0,632	0,346	0,453	0,332	0,446	0.251	0.263	
CI	0,00	0,000	0,000	0,007	0,000	0,000	0.007	
XFe	0,915	0,980	0,98	0,99	0,97	0,99	0.96	
% mol.	-0,25	-14,15	-15,35	-23,80	-5,85	-17,25	-20.45	
Celadonita							,	
% mol.	0,962	1,77	0,88	1,74	0,91	1,65	2,55	
Paragonita								

Continuação do ANEXO 29

ANEXO 30- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de clorita da facies granitóideSGMv e do SCMQGs do maciço granitóide Mocambo. As fórmulas estruturais calculadas com base em 14 oxigênios, 6 grupos(OH) eqüivalentes e ânions fixos(O, F, CI). Ferro total como FeO. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total fornecido pelo Minpet 2.02.

FACIES GRANITOIDES		S	GMv		SCMQGs		
AMOSTRA		NN-G	M-23A			NN-GM-24	
FASE MINERAL		CLC	DRITA			CLORITA	
ANALISES1	1=2C6	2=5C6	3=7C6	4=8C6	5=1C5	6=2C5	7=3C5
SiO2	21,113	21,418	22,362	21,818	22.073	22.323	27.038
TiO2	0,016	0,018	0,026	0.014	0.073	0.080	0.054
AI2O3	22,983	23,489	22,334	22,769	22,149	23,547	23,305
Cr2O3	0,000	0,025	0,010	0.000	0.012	0.006	0.016
FeO _T	42,080	43,512	43,212	43,149	43,866	42.126	36.031
MnO	0,718	1,025	0,865	0,865	0.801	0.895	0.639
MgO	0,096	0,126	0,120	0,069	0.029	0.036	0.055
CaO	0,017	0,011	0,007	0,008	0.026	0.007	0.068
Na2O	0,008	0,011	0,000	0.000	0.009	0.004	0.034
K20	0,010	0,010	0,024	0,009	0.061	0.172	1.854
H2O	9,660	9,90	9,880	9,840	9.820	9.920	10.35
F	0,126	0,139	0,086	0,093	0.137	0.212	0.133
CI	0,010	0,012	0,000	0,001	0.000	0.011	0.021
TOTAL	96,838	99,696	98,925	98,635	99.056	99.337	99.597
	Fórm	ula Estrutur	al na base d	e 14 Oxigêni	08		<u> </u>
Si	1,954	1,933	2.027	1,986	2,008	2.003	2.334
Ti	0,001	0,001	0,002	0,001	0,005	0.005	0.004
Al _T	2,505	2,496	2,384	2,441	2,373	2,489	2.369
Cr	0,000	0,002	0,001	0,000	0,001	0,000	0.001
Fe2+	3,257	3,284	3,276	3,284	3,337	3,162	2.601
Fe3+	0,000	0,000	0,000	0,000	0,000	0.000	0.000
Mn	0,056	0,078	0,066	0,067	0,062	0.068	0.047
Mg	0,013	0,017	0,016	0,009	0,004	0,005	0.007
Ca	0,002	0,001	0,001	0,001	0,003	0.001	0.006
Na	0,001	0,002	0,000	0,000	0,002	0,001	0.006
К	0,001	0,001	0,003	0,001	0,007	0,020	0.204
ОН	5,962	5,958	5,975	5,973	5,961	5,938	5,961
CF	0,074	0,079	0,049	0,054	0,079	0,120	0,073
CCI	0,003	0,004	0,000	0,000	0,000	0,003	0,006
<u>o</u>	14,000	14,000	14,000	14,000	14,000	14,000	14,000
<u>AI(IV)</u>	2,046	2,067	1,937	2,014	1,992	1,997	1,666
AI(VI)	0,459	0,429	0,411	0,427	0,381	0,492	0,703
Fe/(Fe+Mg)	0,996	0,995	0,995	0,997	0,999	0,998	0,997
Fe+Mg	3,270	3,301	3,292	3,293	3,341	3,167	2,608
Si+Al(VI)	2,413	2,362	2,436	2,413	2,389	2,495	3.037

FACIES GRANITÓIDE		SMGP										
AMOSTRA					NN-GN	56A						
FASES MINERAIS	SES ZIRC/ IERAIS			TVEITITA/YTTROFLUORITA			RITA	FLUOCERITA-(Ce)				
ANÁLISES	1=1C1	2=1C2	3=1C2'	4=2C1	5=3C1	6=2C2	7=3C2	8=4C1	9=1C4			
Si	11,79	12,86	12,69	-	-	-	~	-	-			
Al	1,36	1,06	1,02	0,24	0,14	-	-	-	-			
0	44,76	34,54	40,41	-	-		-	-	÷			
Mg	-	-	-	-	-	-	-	-				
Са	0,62	0,61	0,60	43,59	41,16	40,73	44,21	0.55	0.72			
Mg	-	-	+	0,02	0,07	-	-	-				
K	-	-	-	0,04		-	-	-	-			
Na	-	-	0,27	0,10	0,16	-	-	-	-			
Y	4,12	2,53	2,54	3,15	3,36	3,48	2,80	-	0.17			
Zr	35,90	40,61	39,88	-	-	-	-	-	+			
La	-	+	-	0,14	0,60	0,67	0,01	21.26	21,78			
Ce	-		0,08	0,25	1,51	1,51	-	34,64	36.62			
Sm	-	+	-	-	-	0,13	-	0.23	0.14			
Nd	-	-	-	-	0,67	0,63	0,27	8,83	5.48			
Dy	0,56	0,36	0,28	0,12	0,26	0,38		-	0.04			
Yb	0,89	0,74	0,71	0,81	0,79	-	-	-	-			
Pb	-	0,28	-	-	-	+	-	- ·	-			
Th	•	0,05	0,22	0,02	+	-	-	•	-			
U	-	1,35	1,31	-	•	-	-	-	÷			
Ta	-			0,25	0,25		0,02	0.21	0.09			
F	-	-		51,27	51,06	52,48	52,72	34.28	34.98			
TOTAL	98,69	98,90	99,25	99,55	99,71	99,91,	99.76	99.58	100.00			

ANEXO 31- Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra NN-GM-56A, da facies SMGP do maciço granitóide Mocambo.

Continuação do ANEXO 31.

FACIES GRANITOIDE	SMGP										
AMOSTRA		NN-GM-56A									
FASES MINERAIS	MONAZITA	PSEUDO	XIOLITA	ROCOLUMBITA	WOLFRAMOIXIOLIT						
ANÁLISES	10=5C1	11=1C6	12=1C6'	13=1C6*	14=2C6	15=2C6'					
Si	0,40	-		-	-	-					
AI	0,36	-	-	+	-	-					
0	30,56	28,00	28,29	26.92	22.60	22.65					
P	15,15	-	-		-	-					
Ті	0,20	1,50	1.57	1.56	0.24	0.26					
Са	0,68	-	-	-	-	-					
Ma	+	2,01	2,00	2,14	2.19	2.11					
Fe	0,83	12,73	13,26	12,97	12.32	12.16					
Nb		47,44	48,45	47,52	29,55	29.11					
La	11,02	-	-	-	-						
Ce	29,45	-	-	-	-	-					
Sm	1,28	· •	+	-	-	-					
Nd	9,98	-	-	-	-	-					
Dy	0,02	-	-	-	-	······································					
Ta	0,09	8,34	6,44	6,88	16,10	12.46					
W	-	-	-	2,02	16,95	21,26					
Sn		1		1	0.06	•					
TOTAL	98,88	100,02	100,02	100,02	100.00	100.00					

2

ANEXO 32- Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra NN-GM-24 da facies SGMv do maciço granitóide Mocambo.

FACIES GRANITOIDE	<u> </u>	SGMv									
AMOSTRA	1		NN-GM-	24							
FASES MINERAIS	FLUC	DRITA	TVEITITANT	YTTROCERITA							
ANÁLISES	1=1C6	2=1C7	3=2C6	4=2C7	5=306						
Si	0,06	0,07	0.04	0.01	0.91						
AI	0,10	0,11	0.11	0.11	0.07						
0	-	_	-	-	23.30						
P	0,02	-	-	0.01	-						
Ti	-	-	-	+	0.09						
Ca	46,81	46,67	45,75	45.06	18.86						
Mn	-	0,01	-	0.02							
Y	0,75	0,73	1,09	1.85	6.54						
La	-	0,01	-	-	4 47						
Ce	-	0,23	-	0.25	11.06						
Nd	0,03	-	-	0.22	621						
<u>Үь</u>				0.33							
Th	0,07	0,06	-								
F	52,16	52,13	53,01	52,14	29.19						
TOTAL	98,81	99,56	98,94	99.16	99.01						

ANEXO 33- Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra NN-GM-56A, da facies SMGP do maciço granitóide Mocambo.

LITOLOGIA	CLORITA-SIDEROFILITA-MUSCOVITA-QUARTZO GREISEN									
AMOSTRA	NN-GM-23A									
FASES MINERAIS		FLUOCERITA								
ANÁLISES	1=1C1	2=1C2	3=1C6	5=1C7	5=1C5					
Si	-	-	-	+	0,19					
Al	-	0,10	•	-	0,25					
0	N	-		-	3,22					
Ti			•	-	0,09					
Ca	-	-	-	-	1,38					
Fe	5,68	5,11	6,50	6,05	-					
Cu	-	-	-	0,06	~					
As	0,08	-	0,02	0,36	*					
Zn	63,22	63,61	62,55	62,52	-					
S	31,02	31,01	30,94	31,01	-					
Y	-	•	•		0,23					
La		-	-	-	15,40					
Ce	-	-	-	-	35,12					
Nd	-	-	-	-	8,38					
Pd		0,17	*	-	*					
Th	•	•		- 1	1,99					
F	-	-	-	-	33,78					
TOTAL	99,90	99,62	100.00	100.00	99.86					

ANEXO 34

Tabela 5.5. Análises químicas das facies granitóides SMGP, SGMv, Aplito e de greisen do maciço granitóide Mocambo. Óxidos maiores em (%) e elementos traços e terras raras em (ppm).

VARIEDADES		SMGP			SGMv		APLITO	GREISEN
AMOSTRAS	NN-GM- 29C	NN-GM-56A		NN-GM-17A	NN-GM-24		NN-GM-27A	NN-GM-234
ANÁLISES	1	2		3	4		5	6
ÓXIDOS MAIORES			MÉDIAS			MÉDIAS		
SiO2	75,77	76,05	75,91	75,71	76,19	75.95	76,76	74.94
TiO2	0,04	0,05	0,04	0,06	0.07	0.06	0.04	0.05
AI2O3	13,05	12,83	12,94	12,48	12,76	12.62	12.64	11.97
Fe2O3	2,88	1,93	2,40	3,54	2,56	3.05	1.02	5,95
MnO	0,06	0,07	0,06	0,12	0,07	0.09	0.02	0.10
MgO	0,02	0,03	0,02	0,02	0.01	0.01	0.02	0.05
CaO	0,58	0,57	0,57	0,52	0.65	0.58	0.43	0.75
Na20	3,08	3,42	3,25	1,68	3.50	2.59	2.03	0.06
K20	3,69	4,38	4,03	4,84	4,22	4.53	6.38	3.80
P2O5	0,01	0,02	0,01	0,01	0,01	0.01	0.01	0.01
LOI	0,92	0,78	0,85	1,34	0.95	1.14	0.89	2.04
TOTAL	100,10	100,13	100,08	100,32	100,99	100.63	100.24	99.72
ELEMENTOS TRAÇOS								
Rb	859,90	810,64	835,27	942,65	628,34	785,50	870.61	936,61
Ва	524	96	310,00	26	29	27.50	32	42
Sr	21	21	21	13	23	18.00	19	20
Zr	103	132	117,50	155	172	163,50	152	152
Nb	55,24	70,69	62,96	75,85	75,81	75,83	119,60	85,83
Ŷ	134	168	151,00	165	174	169,50	79	218
Sc	2	2	2	2	2	2	1	2
Be	2	2	2	4	2	3	2	4
V	< 5	< 5	-	< 5	< 5	-	< 5	< 5
Cr	nd	nd	nd	nd	nd	nd	nd	nd
Co	11,6	5,1	8,35	4,4	21,5	12,95	10,7	17,8
Ni	nd	nd	nd	6	nd	3	nd	17
Cu	nd	24	12,00	147	37	92,00	nd	17
Zn	146	64	105,00	141	111	126,00	247	2330
Ga	32	31	31,50	37	36	36,50	32	35
Mo	3,74	2,57	3,16	1,34	14,93	8,14	2,91	23,91
Sn	18,4	21,4	19,90	56,3	69,8	63,05	10,5	69
F	17000	12000	14500	9100	6000	7550	3400	1300
CI	nd	720	360,00	nd	nd	nd	nd	nd
W	112,09	253.02	182,56	52,34	111.32	81.83	88.92	86.87
Bi	2,42	2,92	2,67	8,26	7,33	7,80	2.38	12.72
As	nd	hn	ha	bo	nd	nd	1 ad	ad a

Cs	8,53	7,67	8,10	7,93	5,56	6,75	4.04	10.61
Sb	0,20	0,04	0,12	0,09	1,18	0,64	0.13	0.52
Ta	14,444	18,142	16,29	9,574	11,794	10,68	18,385	17,858
Hf	6,05	7,48	6,77	9,65	11,31	10,48	12,28	8,97
Th	48,203	55,002	51,60	79,047	69,746	74,40	58,755	83,242
U	17,747	18,550	18,15	15,901	18,799	17,35	20,110	20,413
Ag	nd	nd	nd	1	nd	0,50	nd	1,7

Continuação da Tabela 5.5.

ETR	1	2	MÉDIAS	3	4	MEDIAS	5	6
La	51,98	64,88	58,43	58,14	77,29	67.72	60.86	70.71
Ce	112,23	131,91	122,07	119,27	152,91	136.09	107.19	150.14
Pr	10,453	13,247	11,85	10,734	13,236	7,49	10.003	13.361
Nd	46,60	61,10	53,85	46,04	56,10	51,07	39.67	57.32
Sm	11,69	15,42	13,56	11,07	12,51	11,79	7.90	12.58
Eu	0,152	0,133	0,143	0,090	0,096	0.093	0.060	0.141
Gd	12,05	15,94	14,00	12,16	13.62	12.89	6.80	14.15
ТЪ	2,50	3,19	2,85	2,59	2.65	2.62	1.36	3.13
Dy	18,76	22,58	20,67	19,76	20.36	20.06	10,79	24.83
Ho	4,20	4,82	4,51	4,46	4,60	4.53	2.48	5.69
Er	14,67	16,68	15,68	15,61	16.17	15.89	9.71	20.25
Tm	2,470	2,782	2,63	2,542	2,688	2.62	1.779	3.399
Yb	18,73	20,58	19,66	18,53	19,47	19.00	14.22	24.68
Lu	2,862	3,158	3,01	2,718	2,950	2.83	2,199	3.697

ANEXO 35

Tabela 5.7- Composições normativas CIPW das facies granitóides SMGP, SGMv e Aplítica e de SCMQGs ocorrentes no maciço granitóide Mocambo.

Facies Granitóides	SM	IGP	SGMv		APLITO	SCMQGs	
Amostras	NN-GM-29C	NN-GM-56A	NN-GM-17A	NN-GM-24	NN-GM-27A	NN-GM-23A	
Análises	1	2	3	4	5	6	
Quartzo	42,87	38,37	46.80	38.32	39.88	58.80	
Ortoclásio	22,01	26,02	28.93	24,96	37.99	23.02	
Albita	26,25	29,04	14,35	29,58	17.27	0.52	
Anortita	2,84	2,72	2,55	3,17	2.09	3.75	
Corindon	2,97	1,68	3,58	1.26	1.63	6.56	
Diopsídio	-	-	-	-	-	-	
Hyperstênio	0,05	0,08	0.05	0.02	0.05	0.13	
Magnetita	0,93	0,63	1,23	0,77	0.24	1.97	
Hematita	1,97	1,31	2,38	1,77	0.76	4.12	
Ilmenita	0,08	0,10	0,12	0.13	0.08	0.10	
Apatita	0,02	0,04	0,02	0.02	0.02	0.02	
Albita/Anortita	9,24	10,68	5,63	9.33	8.26	0.14	
TOTAL	100,00	100,00	100.00	100.00	100.00	100.00	

ANEXO 37- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de feldspato potássico da facie granitóide BAFG do maciço granitóide Benedita. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, Cl).

FACIES GRANITÓIDES	BAFG									
AMOSTRAS	NE-B-09									
FASE MINERAL	FELDSPATO POTÁSSICO									
	1=12C4	2=13C4	3=14C4	4=15C5	15C5					
SiO2	65,52	64,52	68,08	64,76	67.55					
AI2O3	19,10	18,61	19,84	18,44	19,30					
FeO	0,10	0,08	0,01	0,15	0,18					
BaO	0,00	0,00	0,00	0,00	0.03					
CaO	0,01	0,00	0,03	0.00	0.00					
Na2O	3,59	0,17	10,62	2,51	7,44					
К2О	10,98	16,25	0,09	12,72	4,60					
TOTAL	99,30	99,63	98,67	98,58	99,60					
Si	11,954	11,966	11,994	11,993	12.007					
Al	4,104	4,065	4,116	4.022	4,040					
Fe3+	0,000	0,000	0,000	0.000	0.000					
Fe2+	0,015	0,012	0,001	0,023	0.027					
Mn	0,000	0,000	0,000	0,000	0,000					
Mg	0,000	0,000	0,000	0.000	0.000					
Ba	0,000	0,000	0,000	0,000	0.002					
Ca	0,002	0,000	0,006	0,000	0.000					
Na	1,270	0,061	3,628	0,901	2,737					
K	2,556	3,845	0,020	3,005	1.043					
X	16,058	16,031	16,11	16,015	16.047					
Z	3,843	3,918	3,655	3,929	3,807					
Ab	33%	2%	99%	23%	72%					
An	0%	0%	0%	0%	0%					
Or	67%	98%	1%	77%	28%					
Na/K	0,496	0,016	181.4	0.299	2.624					

Anexo 38- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de clorita da facie granitóides BAFG, do maciço granitóide Benedita. As fórmulas estruturais calculadas com base em 14 oxigênios, 6 grupos(OH) equivalentes e ânions fixos(O, F, CI). Ferro total como FeO_T. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total fornecido pelo Minpet 2.02, de acordo com Deer et. al.(1966).

FACIES GRANITÓIDE		BA	FG						
AMOSTRA	NE-B-09								
FASE MINERAL	CLORITA								
	1=36C1	2=38C1	3=42C3	43C3					
SiO2	27,60	29,11	25,93	31,08					
TiO2	0,07	0,03	0,07	0,07					
AI2O3	20,63	20,31	19,30	22,68					
FeOT	31,65	31,64	36,64	30,58					
MnO	0,74	0,96	1,05	0,75					
MgO	0,28	0,51	0,52	0,44					
CaO	0,20	0,20	0,26	0,12					
Na2O	0,04	0,02	0,00	0,04					
K2O	1,78	1,41	0,53	3,19					
H2O	9,55	10,09	9,66	10,75					
F	0,67	0,00	0,14	0,00					
CI	0,01	0,00	0,01	0,00					
TOTAL	93,22	94,38	94,11	99,70 .					
Si	2,516	2,596	2,397	2,60					
AIIV	1,484	1,404	1,603	1,399					
AIVI	0,73	0,72	0,498	0,836					
Ti	0,005	0,002	0,005	0,004					
Fe2	2,413	2,360	2,832	2,140					
Fe3	0,000	0,000	0,000	0,000					
Mn	0,057	0,073	0,082	0,053					
Mg	0,038	0,068	0,072	0,055					
Са	0,020	0,019	0,026	0,011					
Na	0,007	0,003	0,000	0,006					
K	0,207	0,160	0,062	0,341					
ОН	5,805	6,00	5,958	6,000					
CF	0,386	0,00	0,082	0,000					
CCI	0,003	0,00	0,003	0,000					
0	14.00	14.00	14.00	14.00					

ANEXO 39- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica da muscovita da facies granitóide BAFG do maciço granitóide Benedita. Fórmulas estruturais calculadas com base em 22 oxigênios(conforme o método de Deer et al., 1966). Ferro total como FeO_T. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total estrutural de acordo com as recomendações de Deer et al.(1966). Os conteúdos de Li₂O foram estimados a partir da equação recomendada por Tischendorf et al.(1997). XFe=Fe/(Fe+Mg); % mol. celadonítica=100x(Si-6)/2; % mol.paragonítica=100xNa/(Na+K).

FACIES GRANITOIDES	BAFG							
AMOSTRAS	NE-B-09							
FASE MINERAL		MUS	COVITA	·····				
ANÁLISES	1=3C6	2=6C6	3=7C6	4=8C6				
SiO2	46,311	46,354	46,031	46,133				
TiO2	0,215	0,116	0,163	0,234				
AI2O3	31,839	30,732	30,757	31,156				
Cr2O3	0,00	0,005	0,000	0,005				
Fe2O3	0,000	0,000	0,000	0,000				
FeO	7,922	7,608	7,825	6,709				
MnO	0,083	0,071	0,103	0,106				
MgO	0,044	0,079	0,075	0.083				
CaO	0,042	0,027	0,023	0,020				
Na2O	0,081	0,058	0,068	0,049				
К2О	10,226	10,137	10,007	9,869				
H2O	4,85	4,75	4,74	4,71				
Li2O	0,006	0,026	0,021	0,038				
F	0,045	0,127	0,109	0,173				
CI	0,004	0,007	0,000	0,002				
TOTAL	101,668	100,097	99,920	99,286				
	Fórmula Etrutura	I na base de 22 oxi	gênios					
Si	5,686	5,773	5,752	5,761				
AIV	2,314	2,227	2,248	2,239				
AIVI	2,296	2,283	2,282	2,350				
Ti	0,018	0,011	0,015	0,023				
Fe3+	0,000	0,000	0,000	0,000				
Fe2+	0,812	0,793	0,818	0,698				
Mn	0,007	0,007	0,008	0,008				
Mg	0,007	0,015	0,015	0,015				
Са	0,007	0,000	0,000	0,000				
Na	0,014	0,014	0,016	0,015				
к	1,609	1,616	1,592	1,576				
ОН	3,970	3,951	3,949	3,918				
Li	0,000	0,014	0,016	0,015				
F	0,015	0,052	0,045	0,068				
CI	0,000	0,00	0,000	0,000				
XFe	0,99	0,98	0,98	0,98				
% mol. Celadonita	-15,70	-11,35	-12,40	-11,96				
% mol. Paragonita	0,86	0,86	1,00	0,94				

ANEXO 40- Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra NE-B-09, da facies BAFG do maciço granitóide Benedita. A=aeschenita-(Y)/yttrocrasita-(Y)/tromounsita-(Y); B= óxido de Fe; C= pirita; D= óxido de Fe e W.

FACIES GRANITOIDE	BAFG NE-B-09									
AMOSTRA										
FASES MINERAIS	AB		с			D				
ANÁLISES	1=1C1	2=2C2	3=1C2	4=2C2'	5=3C2	6=1C3	7=1C2'	8=2C3		
Si	2,94	2,51	2,23	-	•	*	-	-		
0	40,10	37,38	34,44	0,67	*	0,81	37,38	35,88		
Al	0,40	0,61	0,53	-	•	-	-	-		
Ti	22,55	-		1-	-	-	0,01	Ι-		
Fe	5,55	57,59	61,63	47,30	47,24	46,73	58,40	50,13		
Mn	-	-	0,14	-	-	0,06	-] -		
S	-	-	1-	51,80	51,98	51,69	0,23	0,35		
Са	0,85	0,06	0,09	-	-	-	-	-		
Cu	-	-	-	-	0,03	-	-			
U	5,32	-	0,21	-	-	-	-	-		
Pb	1,03	0,30	0,45	-	0,75	1.	-	T-		
P	-	0.06	0.01	•	1.	1-	-	Ι-		
F	-		1-	-		-	-	 -		
Ŷ	7.84	-	1.	-	-	-	.	-		
Nb	4,31	-	-	-	+	0,16	-	-		
Zr	1,11	-	-	-	-	-	-	Τ.		
Th	0,97	0,03	0,28	-	-	-	-			
Bi	-	-	1-	-	-	· .	•			
Yb	0,64	0,78	-	-		-	1-	•		
Dy	2,66	0,47	-	-	-	-	-	-		
Ce	2,23	-	-	*	-	-	1-	1-		
La] -	-		T-	-	-	-	1-		
Sm	-	-	-	-	*	-	-	-		
Nd	1,52	0,21]-	-	-	-		-		
Та	•	1-	-	÷	-	0,44	-	0,07		
W	-	1-	-	0,07	-	0,10	3,98	4,57		
Sn	-	.	1-	0,16	-	•	-	-		
TOTAL	99.23	98.01	98.53	99.65	98.93	99.93	99.81	99.68		

ANEXO 41
Tabela	6.30.	Análises	químicas	das f	aciers	AFG	e	BAFG	do	maciço	granitóide	Benedita.
Óxidos	maior	es em (%)	e elemer	itos tra	aços e	terras	ra	ras em	(pp	m).	-	

VARIEDADES		-	\FG			B		
AMOSTRAS	NE-B-1	NE-B-4	NE-B-5		NE-B-8	NE-8-9	NE-B-10	
ANÁLISES	1	2	3		4	5	6	
ÓXIDOS MAIORES			· · · · ·	MÉDIAS	j			MÉDIAS
SiO2	76.37	79.81	77.13	77.77	77.15	77.94	77.49	77.52
TiO2	0.05	0.04	0.04	0.043	0.04	0.04	0.04	0.04
AI2O3	11.63	10.65	12.37	11.55	12.39	11.91	12.10	12.13
Fe2O3	1,49	1,40	1.24	1.37	1.52	1.75	1.48	1.58
MnO	0.02	0.01	< 0.01	< 0.013	< 0.01	0.01	0.01	< 0.01
MgO	0.04	0.02	0.01	0.02	0.01	0.01	< 0.01	< 0.01
Cao	0.13	0.07	0.19	0.13	0.26	0.21	0.34	0.27
Na2O	3,93	3.92	4.12	3,99	4,42	3.87	4,17	4.15
K2O	4,13	3,60	4,30	4,01	3,95	4,43	4,30	4.22
P205	< 0.01	< 0.01	< 0,01	< 0.01	< 0,01	< 0.01	0,02	< 0.013
LOI	0,49	0,23	0,72	0,48	0,43	0,46	0,55	0.48
TOTAL	98.27	99,75	100,13	99,36	100.20	100.65	100.50	100.39
ELEMENTOS TRACOS							1	
Rb	286.17	324,11	442.97	351.08	439.51	513.58	513.04	488.73
Ва	55	73	6	44.67	5	9	6	6.67
Sr	18	16	11	15.00	9	13	10	10.67
Zr	222	204	281	353.50	315	246	245	268.67
Nb	63.06	60.33	63.08	62.16	75.91	75.36	72.91	74.73
Y	70	57	78	68.33	105	85	77	89.00
Sc	<1	< 1	<1	-	< 1	<1	< 1	•
Be	3	4	2	3,00	3	2	4	3.00
v	< 5	< 5	< 5	-	< 5	< 5	< 5	-
Cr	nd	nd	nd	nd	nd	nd	nd	nd
Со	3,7	8,5	10,4	7,53	14,7	4,7	10,2	9,87
Ni	nd	nd	nd	nd	nd	nd	nd	nd
Cu	28	nd	nd	9,33	nd	nd	nd	nd
Zn	49	22	63	44,67	73	31	42	48,67
Ga	25	22	31	26,00	31	31	30	30,67
Mo	20,08	2,86	1,57	8,17	0,91	1,72	1,07	1,23
Sn	3,3	2,3	3,4	3,00	3,9	7,6	4,8	5,43
F	900	410	1400	903,33	1800	1500	2500	1933,33
ĊI	699	836	594	709,67	762	nd	601	454,33
W	19,35	50,13	65,51	45,00	93,30	41,75	70,04	68,36
As	nd	nd	nd	nd	nd	nd	nd	nd
Cs	0,35	0,72	1,48	0,85	1,91	1,89	2,32	2,04
Sb	0,29	0,36	0,26	0,30	0,50	0,29	0,26	0,35
Bi	1,07	0,36	4,75	2,06	1,78	3,40	6,38	3,85
Та	9.045	5,637	4,945	6,542	5,971	7,087	9,481	7,51
Hf	12,60	10,26	15,01	12,62	17,12	13,59	14,87	15,19
Th	61,197	56,826	76,221	64,75	62,891	70,707	75,124	69,57
V	17,821	11,403	21,648	16,957	20,703	18,330	19,131	19,39
Ag	nd	nd	0,6	0,2	0,9	0,5	0,6	0,67

ETR	1	2	3	MÉDIAS	4	5	6	MÉDIAS
La	22,80	24,38	20,73	22,64	28,79	29,62	26,32	28,24
Ce	68,06	56,75	47,73	57,51	67,91	69,13	60,94	65,99
Pr	5,716	6,087	4,824	5,542	6,882	6,878	6,173	6,64
Nd	27,57	29,30	22,31	26,39	32,67	32,36	29,23	31,42
Sm	7,57	7,55	6,08	7,07	8,90	8,80	7,58	8,43
Eυ	0,032	0,030	0,011	0,024	0,010	0,021	0,023	0,018
Gd	8,17	7,21	6,78	7,39	9,52	9,06	7,93	8,84
Тъ	1,48	1,29	1,43	1,40	1,88	1,74	1,54	1,72
Dy	10,53	8,61	10,51	9,88	13,70	12,23	10,93	12,29
Но	2,15	1,77	2,30	2,07	2,93	2,58	2,29	2,60
Er	6,84	5,56	7,70	6,70	9,84	8,26	7,48	8,53
Tm	1,011	0,840	1,176	1,009	1,563	1,248	1,160	1,324
Yb	6,64	5,87	8,09	6,87	11,03	8,52	7,92	9,16
Lu	0,965	0,883	1,198	1,015	1,670	1,244	1,160	1,358

Continuação da Tabela 63

ANEXO 42

Tabela 6.5 Composições normativas CIPW das facies granitóides AFG e BAFG do maciço granitóide Benedita.

Facies Granitoides		AFG		T	BAFG	
Amostras	NE-B-1	NE-B-4	NE-8-5	NE-8-8	NE-B-9	NE-B-10
Análises	1	2	3	4	5	6
Quartzo	38,25	43,29	36,54	35,89	37,98	36,16
Ortoclásio	24,99	21,40	25,59	23,43	26,16	25,45
Albita	33,97	33,29	35,03	37,46	32,66	35.27
Anortita	0,66	0,35	0,95	1,29	1,04	1.56
Corindon	0,46	0,17	0,58	0,36	0.35	-
Diopsidio	-	-	-	-	-	-
Hyperstênio	0,10	0,05	0,03	0,03	0,02	-
Magnetita	0,35	0,34	0,24	0,30	0,43	0,34
Hematita	1,13	1,03	0,96	1,16	1,27	1,10
Ilmenita	0,10	0,08	0,08	0,08	0.08	0.08
Apatita	0,00	0,00	0,00	0,00	0,00	0.04
Albita/Anortita	51,47	95,11	36,87	29,04	31,40	22,61
TOTAL	100,00	100,00	100,00	100,00	100,00	100,00

ANEXO 43- Análises químicas e fórmulas estruturais de clorita da facies granitóide BMG do maciço Ubim/Sul, obtidas através de microssonda eletrônica. As fórmulas estruturais calculadas com base em 14 oxigênios, 6 grupos(OH) eqüivalentes e ânions fixos(O, F, Cl). Ferro total como FeO. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas através do método de Deer et al.(1966) a partir do Al(total) fornecido pelo Minpet 2.02.

FACIES GRANITÓIDES	BMG									
AMOSTRA		NE-E	1-32							
FASE MINERAL		CLOF	ATA							
ANÁLISES	1=16C6	2=18C6	3=2C1	4=3C2						
SiO2	23,91	22,21	22,58	22,64						
TiO2	0,07	0,00	0,06	0,09						
AI2O3	20,46	20,54	20,02	20,07						
FeOT	42,51	44,15	45,55	44,55						
MnO	0,55	0,61	0,61	0,60						
MgO	0,19	0,11	0,16	0,21						
CaO	0,08	0,03	0,00	0,02						
Na2O	0,00	0,00	0,00	0,04						
K20	0,64	0,08	0,02	0,04						
H2O	9,86	9,68	9,77	9,72						
F	0,05	0,00	0,00	0,03						
CI	0,02	0,00	0,02	0,01						
TOTAL	98,34	97,41	98,79	98,02						
Si	2,175	2,063	2,078	2,092						
Ti .	0,005	0,000	0,004	0,006						
Al	2,192	2,247	2,170	2,184						
Fe2+	3,235	3,430	3,506	3,442						
Fe3+	0,000	0,000	0,000	0,000						
Mn	0,042	0,048	0,048	0,047						
Mg	0,026	0,015	0,022	0,029						
Ca	0,008	0,003	0,000	0,002						
Na	0,000	0,000	0,000	0,007						
K	0,074	0,009	0,002	0,005						
OH	5,983	6,000	5,997	5,990						
CF	0,029	0,000	0,000	0,018						
CCI	0,006	0,000	0,006	0,003						
0	14,000	14,000	14,000	14,000						
AI(IV)	1,825	1,937	1,922	1,908						
AI(VI)	0,367	0,310	0,248	0,276						
Fe/(Fe+Mg)	0,992	0,996	0,994	0,991						
Fe+Mg	3,261	3,445	3,528	3,471						
Si+AI(VI)	2 542	2 373	2 326	2 368						

ANEXO 44- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica da muscovita da facies granitóide BMG do maciço granitóide Ubim/Sul. Fórmulas estruturais calculadas com base em 22 oxigênios(conforme o método de Deer et al., 1966). Ferro total como FeO_T. H₂O foi calculada automaticamente através do *software Minpet versão 2.02*(Richard, 1995). As quantidades de Al tetraedral e octaedral foram calculadas manualmente a partir do Al total estrutural de acordo com as recomendações de Deer et al.(1966). Os conteúdos de Li₂O foram estimados a partir da equação recomendada por Tischendorf et al.(1997). XFe=Fe/(Fe+Mg); % mol. celadonítica=100x(Si-6)/2; % mol.paragonítica=100xNa/(Na+K).

FACIES	[1	BMG				
GRANITOIDES	L	<u></u>				C D 44				
AMOSTRAS	ļ				N	E-D-JZ				
FASE MINERAL		· · · · · · · · · · · · · · · · · · ·			MUS	SCOVITA		0-4000	0-4400	10.1000
ANALISES	1=1C1	2=4C1	3=5C2	4=6C2	5=7C2	6=8C2	7=9C2	8=10C3	9=11C3	10=12C3
SiO2	47,16	43,18	46,72	45,99	49,64	47,44	45,24	48,12	49,04	49,46
TiO2	0,16	0,16	0,21	0,21	0,09	0,13	0,03	0,12	0.14	0.23
AI2O3	22,57	24,78	25,92	26,15	26,46	26,75	30,38	27,17	29,03	26.99
Fe2O3	0,00	0,00	0,00	0,00	0,00	0, 0 0	0,00	0,00	0,00	0,00
FeO	11,42	16,13	10,74	11,15	8,00	9,97	8,13	7,75	5,75	6.74
MnO	0,20	0,24	0,18	0,18	0,15	0,18	0,05	0,13	0,12	0.11
MgO	0,57	0,24	0,30	0,16	0,36	0,28	0,05	0,38	0,27	0.50
CaO	0,00	0,00	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0.00
Na2O	0,03	0,05	0,09	0,05	0,06	0,04	0,16	0,04	0,12	0.03
K20	9,87	8,95	10,38	10,59	10,34	10,28	10,47	10,46	10,13	9.66
H2O	4,18	4,29	4,29	4,01	4,25	4,52	4,24	4,39	4,53	4.47
Li2O	0,27	0,14	0,30	0,59	0,48	0,14	0,39	0,27	0,23	0.23
F	0,76	0,45	0,82	1,35	1,16	0,45	0,99	0,76	0,67	0,67
Ci	0,01	0,00	0,00	0,00	0,02	0,00	0,04	0,00	0,00	0.00
TOTAL	97,02	98,61	99,96	100,43	101,02	100,18	100,19	99,59		99,09
			Fórmula	a Etrutural n	a base de 2	22 oxigênios				
Si	6,168	5,717	5,919	5,813	6,096	5,973	5,652	6,016	100,03	6.142
AllV	1,832	2,283	2,081	1,187	1,904	2,027	2,348	1,984	1,982	1.858
AIVI	1,641	1,581	1,791	1,716	1,934	1,943	2,126	2,022	2,216	2.092
Ti	0,016	0,016	0,023	0,023	0,007	0,012	0,000	0,011	0,015	0.022
Fe3+	0.000	0,000	0,000	0,000	0,000	0,000	0,000	0,00	0,000	0.000
Fe2+	1,249	1,781	1,142	1,177	0,819	1,052	0,848	0,811	0,590	0,701
Mn	0.024	0,024	0,023	0,023	0,015	0,023	0,008	0,015	0,015	0.015
Ma	0,110	0,048	0,053	0,030	0,066	0,053	0,008	0,068	0,052	0.090
Са	0.000	0,008	0,000	0,00	0,000	0,000	0,000	0,000	0,000	0,000
Na	0.016	0,016	0.076	0,016	0,015	0,016	0,046	0,016	0,030	0.000
К	1,650	1,511	1,675	1,702	1,624	1,650	1,666	1,667	1,594	1.537
ОН	3.646	3,784	3,642	3,387	3,484	3,798	3,543	3,665	3,702	3,701
1	1,140	0.080	0,150	0,304	0,236	0,076	0,19	0,135	0,118	0.120
F	0.314	0,191	0,327	0,540	0,450	0,182	0,390	0,300	0,258	0.261
l ci	0.000	0,000	0,00	0,00	0,007	0,000	0,007	0,000	0,000	0,000
XFe	0,919	0,974	0,956	0,975	0,925	0,952	0,991	0,923	0,918	0.886
% mol. Celadonita	8,40	-14,15	-4,05	-9,35	4,80	-1,35	-17,40	0,80	0,90	7.10
% mol. Paragonita	0,96	1,05	4,34	0,93	0,92	0,96	2,69	0,95	1,85	0.00

Continuação	do	ANEXO 44
-------------	----	----------

FACIES GRANITÓIDES	BMG								
AMOSTRAS	NE-B-32								
FASE MINERAL	-	MUSC							
ANÁLISES	11=13C5	12=14C5	13=15C6	14=1706					
SIO2	49.00	47.58	47.45	48.06					
TiO2	0.03	0.09	0.132	0.07					
AI2O3	35.38	32.13	28.63	27.14					
Fe2O3	0.00	0.00	0.00	0.00					
FeO	2.07	4.23	7.77	8.70					
MnO	0.03	0.10	0.12	0.15					
MgO	0.05	0.07	0.23	0.26					
CaO	0.02	0.00	0.03	0.01					
Na2O	0,04	0.08	0.03	0.02					
К2О	9,74	10.88	9,96	10.30					
H2O	5.04	4.50	4.63	4.43					
Li2O	0,01	0.29	0.08	0.24					
F	0,04	0,80	0.30	0.69					
CI	0,01	0.00	0.00	0.01					
TOTAL	101,46	100,75	99.36						
Fórm	ula Etrutural na	base de 22 d	xigênios	·····					
Si	5,809	5,785	5 940	6.013					
AIIV	2,191	2,215	2,060	1,987					
AIVI	2,753	2,391	2,168	2.017					
Ti	0,000	0,007	0.011	0.000					
Fe3+	0,000	0,000	0,000	0.000					
Fe2+	0,207	0,431	0,813	0,909					
Mn	0,000	0,007	0,015	0.015					
Mg	0,007	0,015	0,045	0.045					
Ca	0,000	0,000	0,008	0.000					
Na	0,014	0,015	0,016	0.000					
K	1,468	1,680	1,593	1,638					
ОН	3,989	3,652	3,867	3,698					
Li	0,000	0,146	0,045	0,120					
F	0,014	0,307	0,120	0,271					
CI	0,000	0,000	0,000	0,000					
XFe	0,967	0,966	0,948	0,953					
% mol. Celadonita	-9,55	-10,75	-3,00	0,65					
% mol. Paragonita	0,94	0,88	0,99	0,00					

FACIES GRANITÓIDES		****				BMG									
AMOSTRA	NE-8-32														
FASE MINERAL	FELDSPATO POTÁSSICO														
	1=34C5	2=35C5	3=36C5	4=37C5	5=38C5	6=25C7	7=26C7	8=27C7	9=28C7	10=29C7	11=30C7				
SiO2	64.89	64,98	65,11	64,76	65,59	64,78	69,67	68.35	63,99	69.27	65.29				
AI2O3	18,90	18,69	19,02	18,58	18,86	18,68	19,34	20,21	18,74	20.41	18.95				
FeO	0,00	0,01	0,01	0,00	0,01	0,01	0,03	0.03	0.00	0.01	0.02				
BaO	0,02	0,00	0,00	0,02	0,00	0,01	0,00	0.00	0.01	0.01	0.00				
CaO	0,00	0,00	0,00	0,21	0,00	0,25	0,05	0.34	0.00	0.20	0.00				
Na2O	0,12	0,17	0,11	0,11	0,15	0,14	10,37	10,33	0,13	10.61	0.13				
K2O	16,23	16,27	16,54	16,53	16,31	16,45	0,65	0,23	16,73	0.19	16.41				
TOTAL	100,16	100,12	100,65	100,21	100,92	100,32	100,11	99,49	99.60	100.70	100.80				
Si	11,956	11,981	11,939	11,961	11,988	11,948	12,111	11,953	11.911	11.965	11,959				
Al	4,001	4,058	4,107	4,041	4,059	4,057	3,959	4,162	4,108	4 152	4,088				
Fe3+	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0.000				
Fe2+	0,000	0,02	0,002	0,000	0,002	0,002	0,004	0,004	0,000	0.001	0.003				
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0.000				
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0.000				
Ba	0,001	0,000	0,000	0,001	0,000	0,001	0,000	0,000	0,001	0.001	0.000				
Ca	0,000	0,000	0,000	0,042	0,000	0,049	0,009	0.064	0,000	0.037	0.000				
Na	0,043	0,061	0,039	0,039	0,053	0,050	3,495	3,503	0,047	3,553	0.046				
K	3,815	3,827	3,869	3,895	3,808	3,871	0,144	0,051	3,973	0.042	3.835				
Х	16,057	16,039	16,046	16,002	16,047	16,005	16,07	16,115	16,019	16,117	16.047				
Z	3,858	3,89	3,910	3,976	3,858	3,972	3,652	3,622	4,02	3,633	3,884				
Ab	1,00	2,00	1,00	1,00	1,00	1,00	96,00	97,00	1,00	98.00	1.00				
An	0,00	0,00	0,00	1,00	0,00	1,00	0,00	2,00	0.00	1.00	0.00				
Or	99,00	98,00	99,00	98,00	99,00	98,00	4,00	1,00	99,00	1.00	99.00				
Na/K	0,010	0,016	0,010	0,010	0,014	0,013	24,271	68,686	0.012	84 595	0.012				

٠

ANEXO 45 - Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de feldspato potássico da facies granitóide BMG do maciço granitóide Ubim/Sul. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, CI).

ANEXO 46 - Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de plagioclásio da facies granitóide BMG do maciço granitóide Ubim/Sul. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, Cl).

FACIES GRANITÓIDES	8 BMG										
AMOSTRA				NE-E	3-32		······				
FASE MINERAL		استبر الد متلك فالمالية الأخدية الإرادانية الكال		PLAGIO	CLASIO						
ANÁLISES	1=31C5	2=32C5	3=33C5	4=20C7	5=21C7	6=22C7	7=23C7	8=24C7			
SiO2	69,41	69,90	68,96	68,17	69,60	68,94	68,86	68,40			
AI2O3	20,02	20,07	20,18	20,17	20,03	20,18	20,08	20.20			
FeO	0,02	0,02	0,06	0,00	0,00	0.03	0.01	0.03			
BaO	0,00	0,01	0,00	0,00	0.00	0.00	0.01	0.00			
CaO	0,01	0,01	0,12	0,27	0,02	0.27	0.65	0.14			
Na2O	10,53	10,64	10,60	10,67	10,71	10,50	10.38	10.50			
K2O	0,08	0,08	0,34	0,11	0,08	0,26	0,10	0.22			
TOTAL	100,07	100,73	100,26	99,39	100,44	100,18	100.09	99.49			
Si	12,038	12,046	11,975	11,939	12,034	11,975	11,972	11,960			
A	4,089	4,073	4,127	4,160	4,079	4,128	4,111	4,159			
Fe3+	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0.000			
Fe2+	0,003	0,003	0,009	0,000	0,000	0,004	0,001	0.004			
Mn	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000			
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0.000	0.000			
Ba	0,000	0,001	0,000	0,000	0,000	0,000	0,001	0.000			
Ca	0,002	0,002	0,022	0,051	0,004	0,050	0,121	0.026			
Na	3,541	3,555	3,569	3,624	3,591	3,537	3,499	3,560			
ĸ	0,018	0,018	0,075	0,025	0,018	0,058	0,022	0.049			
X	16,127	16,119	16,102	16,099	16,113	16,103	16,083	16,119			
Ž ·	3,564	3,578	3,675	3,700	3,613	3,649	3,643	3,639			
Ab	99,00	99,00	97,00	98,00	99,00	97,00	96,00	98,00			
An	0,00	0,00	1,00	1,00	0,00	1,00	3,00	1,00			
Or	1,00	1,00	2,00	1,00	1,00	2,00	1,00	1.00			
Na/K	196.72	197,50	47.58	144.96	199.50	60.98	159.045	72,653			

MACIÇOS GRANITOIDES	UE	BIM/SUL
FACIES GRANITÓIDES		BMG
AMOSTRA	N	E-B-32
FASES MINERAIS	THORITA	DAVIDITA(?)
ANÁLISES	1=1C4	2=2C4
Si	7,65	4,36
AL	0,52	1,05
0	25,73	30,12
Ρ	e	-
Ti	e	27.63
Ca	0,70	-
Mg	0,07	•
Fe	-	7,63
K	0,28	·
Na	0,04	•
Y	5,65	6.66
Nb		4,13
Zr	0,37	-
La	0,32	
Ce	1,21	•
Sm	-	•
Nd	0,34	•
Dy	-	•
Yb	0,27	·
Pb		·
Th	56,86	6,66
U	-	8,79
W	-	•
Ta	*	1,64
		·
ci i i i i i i i i i i i i i i i i i i	······································	•
5n		1,36
TOTAL	99,21	99.35

ANEXO 47- Composições químicas semi-quantitativas(EDS) de fases minerais menores da amostra NE-B-32, da facies BMG, do maciço granitóide Ubim/Sul

ANEXO 48

Tabela 7.4. Análises químicas das faciers BSGCI e BMG do maciço granitóide Ubim/Sul. Óxidos maiores em (%) e elementos traços e terras raras em (ppm).

VARIEDADES	1	· · · · ·	BSGC			BMG		
AMOSTRAS	NE-B-31	NE-B-33	NE-B-38	NE-B-39				
ANÁLISES	1	2	3	4		5	6	
ÓXIDOS MAIORES					MÉDIAS			MÉDIAS
SiO2	76,06	76,41	75,31	75,91	75,92	76,02	76,39	76,21
TiO2	0,04	0,04	0,04	0,04	0,04	0,04	0,04	0,04
AI2O3	12,54	12,58	11,91	12,17	12,30	12,61	12,08	12,35
Fe2O3	1,97	2,71	1,89	2,20	2,19	1,77	1,79	1,78
MnO	0,03	0,03	0,03	0,04	0,03	0,02	0,05	0,04
MgO	0,02	0,02	0,02	0,02	0,02	0.01	0,10	0.06
CaO	0,73	0,56	0,08	0,65	0,50	2.07	2.08	2.49
Na2O	2,97	2,69	2,97	2,13	2,0 4	5.03	<u> </u>	A 73
R20	4,04	4,59	4,09	4,07	0.015	0.12	0.02	0.07
10	0,01	1 12	0.02	0,02	0.93	0.99	1.32	1 16
	100 15	100.74	97.69	99.57	99.52	100.22	98.95	99.66
ELEMENTOS TRACOS	100,10	100,74	07,00					
Ph	643.24	732 50	627.46	643.22	661.61	673	722	697.50
Ba	18	25	24	33	25.00	18	56	37,00
Sr	16	15	8	14	13,25	9,57	110	59,79
2r	130	113	120	113	119,00	12,50	122	67,25
Nb	80,20	80,99	71,49	82,33	79,00	77,00	65,00	71,00
Y	139	128	68	149	121,00	200,00	154,00	177,00
Sc	2	3	2	2	2,25	3,00	2,00	2,50
Ве	5	3	4	6	4,50	2,00	14,00	8,00
V	< 5	< 5	< 5	< 5	•	-	•	-
Cr	nd	nd	nd	nd	nd	-	-	•
Co	49,4	4,7	29,4	3,2	21,68	29,00	40	34,50
Ni	nd	nd	nd	nd	nd	65	-	32,50
Cu	10	nd	41	7	14,50	-		
Zn	27	28	46	38	34,75	19,00	80,00	49,50
Ga	27	28	27	27	27,25	28,00	27,00	27,50
Mo	1,//	12.2	3,02	0,40	53 A5	10.00	13.00	11.50
Sn	4000	10,0	750	4100	3287 50	5024	4574	4799
F	4900 nd	761	777		384.50		0.02	0.01
W SI	258 12	71 42	181.65	54 56	141.44	266.00	382.00	324.00
Bi	11 03	7 13	15.89	3.60	9.41	1.58	4.40	2.99
Δe	nd	nd	nd	14	3.50		-	-
Cs	1.54	2.28	1.97	1.92	1.93	2,00	2,40	2,20
Sb	0.23	0,05	0,12	0,19	0,15	-	0,06	0,03
Та	15,020	13,444	12,266	14,565	13,82	13,30	11,20	12,25
H	7,30	6,66	6,98	6,81	6,94	7,10	7,00	7,05
Th	52,840	52,360	52,893	60,614	54,677	63,10	59,70	61,40
U	25,610	25,661	23,789	26,235	25,324	44,80	42,40	43,60
Ag	nd	nd	nd	nd	nd	0,80	1,00	0,90
ETR	1	2	3	4	MEDIAS	5	6	MEDIAS
La	47,73	40,75	33,62	48,29	42,60	52,00	43,40	47,70
Се	96,57	83,91	65,32	100,11	86,48	120,00	108,00	114,00
Pr	8,4/3	1,232	5,363	9,208	7,009	13,22	FE 40	57.50
Nd	37,64	31,58	22,00	42,11	9.51	15.60	14 30	14.96
Sm	9,29	1,90	0.055	0.002	0,068	0.11	0.10	0.11
EU Gd	10 08	8 77	5 RA	11.87	9.37	14 20	12.00	13 10
Th I I	2 26	1 90	1 23	2 41	1.95	3,89	3.16	3.53
	17 16	14 67	9 43	18 17	14.86	26.40	21.20	23.80
Но	3.88	3 32	2 11	4,03	3.34	5.81	4,76	5,29
Fr	14.06	12.08	7.74	14.69	12.14	19.40	15.70	17.55
Tm	2,472	2,107	1,342	2,513	2,109	3,36	2,70	3,03
Yb	19.03	16.36	10.28	19.25	16.23	25.30	20,70	23,00
Lu	3,104	2,636	1,663	3,072	2,619	3,92	3,16	3,54

ANEXO 49

Tabela 7.6- Composições normativas CIPW das facies granitóides BSGCI e BMG do maciço granitóide Ubim/Sul.

Facies Granitóides		BS	GCI		В	MG
Amostras	NE-B-31	NE-B-33	NE-B-38	NE-B-39	NE-B-32	NE-B-36
Análises	1	2	3	4	5	6
Quartzo	39,03	42,17	41,21	40.59	38,93	46.97
Ortoclásio	28,86	27,26	28.62	29.21	29.97	26.98
Albita	25,31	22,82	25.89	23.39	24.43	18.01
Anortita	3,59	2,73	0.29	3.15	3.34	3 29
Corindon	1,10	2,18	1.89	1.27	1.22	2 75
Diopsídio	-		-	-	-	
Hyperstênio	0.05	0,05	0.05	0.05	0.03	0.26
Magnetita	0,57	0,76	0.55	0.67	0.47	0.58
Hematita	1,39	1,93	1.38	1.55	1.28	1.25
Ilmenita	0,08	0.08	0.08	0.08	0.08	0.08
Apatita	0,02	0,02	0.05	0.04	0.26	0.04
Albita/Anortita	7,05	8,36	89.28	7.43	7.31	5.47
TOTAL	100,00	100,00	100,00	100.00	100.00	100.00

ANEXO 50- Análises químicas e fórmulas estruturais obtidas através de microssonda eletrônica de feldspoato potássico e de plagioclásio da facies granitóide SAFGP do maciço granitóide Rio Xingu. As fórmulas estruturais calculadas com base em 32 oxigênios e ânions fixos(O, F, Cl).

Facies Granitóide		SAFGP									
AMOSTRA	NN-AV-40			NN-AV-40							
FASE MINERAL		FELDSP	ATO POTÁ	SSICO		PLAGIOCLÁSIO					
ANÁLISES	1=1C5	2 ≈2C 5	3=3C5	4=4C5	5=5C5	6=2C3	7=3C3	8=4C3	9=5C3	10=6C3	11=7C3
SIO2	65,40	65,29	65,50	64,36	64,98	69,20	68,32	68,45	66,71	69.50	70.06
TiO2	0,00	0,02	0,00	0,00	0,03	0,00	0,00	0,05	0,001	0.00	0.02
Al2O3	18,42	18,58	18,50	18,32	18,44	19,73	20,09	19,61	20,81	19,84	19,79
Fe2O3	0,02	0,18	0,01	0,02	0,07	0,03	0,14	0,06	0,83	0,03	0.01
FeO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0.00
MnO	0,00	0,02	0,00	0,01	0,07	0,00	0,02	0,02	0,001	0.02	0.00
BaO	0,30	0,66	0,23	0,43	0,60	0,03	0,02	0,00	0,00	0,00	0,00
CaO	0,00	0,00	0,00	0,00	0,00	0,15	0,10	0,12	0,14	0,13	0,09
Na2O	0,17	0,18	0,22	0,21	0,91	11,51	11,24	11,24	10,30	11,51	11,87
K20	16,80	16,45	16,60	16,55	15,44	0,06	0,39	0,09	1,28	0,11	0.07
TOTAL	102,01	101,38	100,06	99,90	100,54	100,71	100,32	99,64	100,09	101,14	101,89
Si	12,001	11,966	12,004	11,969	11,970	11,990	11,909	11,982	11,722	11,990	12,003
Ті	0,000	0,003	0,000	0,000	0,005	0,000	0,000	0,007	0,001	0,000	0.002
Al	3,984	4,014	3,995	4,016	4,004	4,030	4,127	4,045	4,309	4,034	3,996
Fe3+	0,002	0,025	0,002	0,002	0,010	0,004	0,018	0,008	0,110	0,003	0,001
Fe2+	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000
Mn	0,000	0,003	0,000	0,002	0,011	0,000	0,003	0,003	0,001	0,003	0.000
Mg	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0.000
Ba	0,022	0,047	0,017	0,031	0,043	0,002	0,001	0,000	0,000	0,000	0,000
Ca	0,000	0,000	0,000	0,000	0,000	0,027	0,019	0,023	0,027	0,024	0,017
Na	0,061	0,063	0,080	0,075	0,327	3,868	3,797	3,813	3,508	3,850	3,942
K	3,932	3,846	3,882	3,93	3,628	0,014	0,087	0,019	0,287	0,025	0,012
X	15,99	15,98	16,00	15,99	15,97	16,02	16,04	16,03	16,03	16,02	16,00
Z	3,99	3,91	3,96	4,00	3,96	3,91	3,99	3,86	3,82	3,90	3,97
Ab	2,00	2,00	2,00	2,00	8,00	99,00	95,00	99,00	92,00	98,00	99,00
An	0,00	0,00	0,00	0,00	0,00	1,00	3,00	1,00	1,00	1,00	1,00
Or	98,00	98,00	98,00	98,00	92,00	0,00	2,00	0,00	7,00	1,00	0.00
Na/K	0,016	0,016	0,021	0,019	0,090	276,28	43,64	200,68	12,22	154,00	328.50

ANEXO	51-	Composições	químicas	semi-quantitativas(EDS)	de fa	ases	minerais
menores c	la am	ostra NN-AV-4	0, da facie	s SAFGP, do maciço gra	nitóide	e Rio	Xingu.

MACIÇOS GRANITÓIDES	RIO XINGU					
FACIES GRANITÓIDES						
AMOSTRA	NN-AV-40					
FASES MINERAIS	AP/	ATITA	ÓXIDO DE Fe			
ANÁLISES	3=1C1	4=2C1	· 5=1C4			
Si	0,23	0, 37	65,76			
AL	0,14	0,07	-			
0	40,80	40,95	30,80			
Р	19,07	18,69	-			
TI	-	•	0,05			
Ca	38,50	37,76	-			
Mg	•	•	-			
Fe	0,10	0,16	-			
К	•	-	•			
Na	•	•	-			
Y	1,08	1,58	-			
Nb	•	-	-			
Zr	•	•	-			
La	-	•	-			
Се	•	•	-			
Sm	-	•	-			
Nd	•	-	•			
Dy	•	-	-			
Yb	•	•	-			
Pb	•	-	-			
Th	•	-	•			
U	•	-	•			
W	u	-	3,17			
Та	•		0,23			
F	•	-	4			
Ċl	0,07	0,41	÷			
Sn	•	-	•			
TOTAL	99,87	99,79	99,95			

ANEXO 52

Tabela 8.3. Análises químicas das faciers SAFGP do maciço granitóide Rio Xingu. Óxidos maiores em (%) e elementos traços e terras raras em (ppm).

VARIEDADE	1	SAFGP	
AMOSTRAS	NN-AV-40	NN-AV-44	1
ANÁLISES	1	2	
ÓXIDOS MAIORES			MÉDIAS
SiO2	74,55	75,00	74,77
TiO2	0,25	0,25	0,25
AI2O3	12,16	11,79	11,97
Fe2O3	3,28	3,31	3,29
MnO	0,09	0,10	0,09
MgO	0,13	0,12	0,12
CaO	1,08	0,86	0,97
Na2O	2,63	2,61	* 2,62
K2O	5,48	5,41	5,44
P2O5	0,04	0,05	0,04
LOI	1,17	1,00	1,08
TOTAL	100,87	100;51 -/	100,64
ELEMENTOS TRAÇOS		5	
Rb	226,34	214,58	220,46
Ва	1380	1375	1377,50
Sr	99	102	100,50
Zr	353	346	349,50
Nb	30,09	30,77	30,43
Y	88	77	82,50
Sc	5	4	4,50
8e	4	3.	3,50
V	< 5	< 5	-
Cr	nd	nd	nđ
Со	13,2	6,6	9,90
Ni	nd	nd	nd
Cu	nd	nd	nd
Zn	288	244	266,00
Ga	23	23	23,00
Mo	1,38	0,99	1,19
Sn	2,6	1,5	2,05
<u>F</u>	820	230	525,00
Cl	nd	nd	nd
W	84,86	49,32	67,09
Bi	1,90	0,95	1,43
As	nd	nd	nd
Cs	0,93	0,94	0,94
Sb	0,49	0,12	0,31
Та	2,123	2,111	2,117
Hſ	10,87	11,08	10,98
Th	58,014	61,598	59,806
U	5,213	5,484	5,349
Ag	nd	nd	nd

Continuação da Tabela 8.3

ETR	1	2	MÉDIAS
La	175,40	163,29	169,35
Ce	314,24	295,24	304,74
Pr	26,083	24,280	25,182
Nd	101,64	94,76	98,20
Sm	16,85	15,91	16,38
Eu	1,597	1,446	1,522
Gđ	15,43	14,45	14,94
ть	2,13	1,99	2,06
Dy	12,59	12,04	12,32
Но	2,53	2,35	2,44
Er	7,83	7,02	7,43
Tm	1,055	0,991	1,023
Yb	6,52	6,23	6,38
Lu	1,058	0,990	1,024

ANEXO 53

Tabela	8.5-	Composições	normativas
CIPW do	SAFG	SP do maciço g	ranitóide Rio
Xingu.			

Facies Granitóides	SA	FGP
Amostras	NN-AV40	NN-AV-44
Análises	1	2
Quartzo	36,01	37,43
Ortoclásio	32,52	32,17
Albita	22,30	22,18
Anortita	5,14	4,00
Corindon	0,01	0,17
Diopsídio	-	-
Hyperstênio	0,33	0,30
Magnetita	0,54	0,57
Hematita	2,59	2,60
Ilmenita	0,48	0,48
Apatita	0,09	0,11
Albita/Anortita	4,34	5,55
TOTAL	100,00	100,00

.

ANEXO 54- Composição de fases e Temperatura de cristalização de Eutéticos de certos Sistemas Salinos. 1-Borizenko(1978); 2-Yanatieva(1946); 3- Linke(1965); 4- Mylius & Dietz(1945. In: Linke, 1965); 5- Luzhnaja & Vereshtchetina(1946); 6- Crawford(1981); 7- Oakes et al.(1990a); 8- Davis et al.(1990); 9- Brass(1980); 10- Cornec & Krombach(1932); 11- Molnár et al.(1999).

Componentes	Pontos Eutéticos([®] O)	Composição das Fases da Mistura
Composicionais dos		Eutética
Sistemas Salinos		
LICI-KCI-H2O		LiCI. 5H2O+KCI+gelo
LiCI-MgCl ₂ -H ₂ O	-78,0 ¹	LiCI. 5H2O+sal duplo+gelo
LiCI-CaCl ₂ -H ₂ O	-78,0 ¹	LiCI. 5H ₂ O+CaCl ₂ . 6H ₂ O+gelo
LiCI-NaCI-H ₂ O	-77,0 ¹	LiCI. 5H ₂ O+NaCI. 2H ₂ O+gelo
LICI-H ₂ O	-74,0 ¹	LiCI. 5H ₂ O+gelo
ZnCl ₂ -H ₂ O	-62,0 ^{3,4}	
CaCl ₂ -MgCl ₂ -NaCl-H ₂ O	-58,O ⁵	
CaCl2-MgCl2-NaCl-H ₂ O	-57,05	
CaCl ₂ -NaCl-H ₂ O	-55,01	CaCl ₂ . 6H ₂ O+NaCl. 2H ₂ O+gelo
CaCl ₂ -KCl-NaCl-H ₂ O	-55,0 ²	
Ca Cl ₂ -MgCl ₂ -H ₂ O	-55,0 ²	
FeCl ₃ -H ₂ O	-55,0 ³	
AICI ₃ -H ₂ O	-55,0 ³	
CaCl ₂ -MgCl ₂ -H ₂ O	-52,21	CaCl ₂ . 6H ₂ O+MgCl ₂ .12H ₂ O+gelo
CaCl ₂ -NaCl-H ₂ O	-52,0 ^{5,8,7}	
CaCl2-H2O	-50,09	
CaCl ₂ -H ₂ O	-49,8 ^{1,6}	CaCl ₂ . 6H ₂ O+gelo
MgCl ₂ -KCl-H ₂ O	-37,81	MgCl ₂ , 12H ₂ O+KCl, 4H ₂ O+gelo
NaCO ₃ -KCO ₃	-37,01	(K,Na) ₂ CO ₃ , 6H ₂ O+K ₂ CO ₃ , 6H ₂ O+gelo
NaCl-FeCl ₂	-37,01	NaCl. 2H2O+FeCl2. 6H2O+H2O
FeCl ₃ -H ₂ O	-36,51	FeCl ₃ . 10H ₂ O+gelo
MgCl ₂ -NaCl-H ₂ O	-35,0 ^{1,8,8}	MgCl ₂ , 12H ₂ O+NaCl, 2H ₂ O+gelo
MgCl ₂ -H ₂ O	-33,6 ^{1, 6}	MgCl ₂ , 12H ₂ O+gelo
NaCI-H2O	-28,0 ^{6,8}	
NaCI-KCI-H2O	-28,0 ⁸	
NaBr-H2O	-28,0 ⁶	
NaCI-KCI-H ₂ O	-23,5 ^{1,8}	NaCl. 2H ₂ O+KCl. 4H ₂ O+gelo
NaCI-KCI-H ₂ O	-22,9 ⁸	
KCI-NaCI-H2O	-22,9 ¹⁰	
NaCINaHCO3-H2O	-21,81	NaCl. 2H ₂ O+NaHCO ₃ +gelo
NaCl-Na ₂ B ₃ O ₈ -H ₂ O	-22,71	NaCl. 2H ₂ O+Na ₂ B ₃ O ₈ . 10H ₂ O+gelo
NaCl-Na ₂ SO ₄ -H ₂ O	-21,71	NaCl. 2H ₂ O+Na ₂ SO ₄ . 5H ₂ O+gelo
NaCl-KF-H ₂ O	-21,7	NaCl. 2H ₂ O+KF. 4H ₂ O+gelo
KF-H ₂ O	-21,5	KF. 4H ₂ O+gelo
NaCl-NaCO ₃ -H ₂ O	-21,4	NaCl. 2H ₂ O+NaCO ₃ , 10H ₂ O+gelo
NaCl-H ₂ O	-21,2 ^{1,8}	NaCl. 2H ₂ O+NaF+gelo
NaCl-NaF-H ₂ O	-21,2	NaCl. 2H ₂ O+NaF+gelo
NaCI-H2O	-20,8 ⁶	
KBr-H2O	-11,0 ⁶	
KCI-H ₂ O	-10,6 ^{1,6}	KCI. 4H2O+aelo
KHCO ₃ -H ₂ O	-6.01	KHCO ₃ +gelo
MnCl ₂ -H ₂ O	-5.611	
NaSO4-MgSO4-H2O	-5.0	NaSO4. 10H2O+MgSO4. 12H2O+gelo
MgSO ₄ -H ₂ O	4,8 ¹	MgSO ₄ . 12H ₂ O+gelo

NaF-H2O	-3,51	NaF+gelo
Na ₂ CO ₃ -NaHCO ₃ -H ₂ O	-3,3 [†]	NaCO ₃ . 10H ₂ O+NaHCO ₃ +gelo
NaSO ₄ -NaHCO ₃ -H ₂ O	-3,1	NaSO ₄ . 10H ₂ O+NaHCO ₃ +gelo
NaSO ₄ -KSO ₄ -H ₂ O	-3,01	NaSO ₄ . 10H ₂ O+K ₂ SO ₄ +gelo
NaSiO ₃ -H ₂ O	-2,71	NaSiO ₃ . 9H ₂ O+gelo
NaHCO ₃ -H ₂ O	-2,3 ^{1,6}	NaHCO ₃ +gelo
Na ₂ CO ₃ -H ₂ O	-2,1 ^{1,6}	NaCO ₃ , 10H ₂ O+gelo
K ₂ SO ₄ -H2O	-1,6'	K ₂ SO ₄ +gelo
NaSO ₄ -H ₂ O	-1,2 ^{1,6}	Na ₂ SO ₄ . 10H ₂ O+gelo

•

PRANCHAS

INSTITUTO DE GEOCIÊNCIAS - USP - BIBLIOTECA -

Prancha 1. A) Aspecto textural mesoscópico do muscovita- quartzo greisen associado à facies BSG do maciço granitóide Antônio Vicente; B) Aspecto textural mesoscópico dos veios hidrotermais associados à facies BSG da maciço granitóide Antônio Vicente; C) Aspecto textural mesoscópico dos veios de fluorita associados à facies BSG do maciço granitóide Antônio Vicente.

Prancha 2. Facies BASMG do maciço granitóide Antônio Vicente: A) Aspecto textural macroscópico; B) Aspecto textural microscópico, NX; C) Aspecto da substituição parcial do feldspato potássico(FK1) pela em biotita, ressaltada por um nítido halo pleocróico, NX; D) Aspecto da substituição parcial do plagioclásio(PI1) por sericita±muscovita(finas palhetas claras) e por feldspato potássico a partir dos planos de macla(microclina pertítica/FK2; manchas escuras no centro da fotomicrografia), NX; E) "Fantasmas" de plagioclásio(PI1) em feldspato potássico(microclina pertítica/FK2), NX; F) Detalhe das "strings perthites" (linhas brancas muito finas mais nítidas no centro da fotomicrografia), NX.

Prancha 3. Facies BASMG do maciço granitóide Antônio Vicente: A) Detalhe das "films perthites" (linhas brancas horizontais) e das "chess-board perthites" (plaquetas verticais) em feldspato potássico (microclina pertítica/FK2), NX; B) Detalhe das maclas em xadrez em cristal de feldspato potássico (microclina pertítica/FK2), NX; C) Inclusão de quarizo em cristal de feldspato potássico (microclina pertítica/FK2), NX; C) Inclusão de quarizo em cristal de feldspato potássico (microclina pertítica/FK2), NX; C) Inclusão de quarizo em cristal de feldspato potássico (microclina pertítica/FK2), Nota-se que as fraturas de contração desenvolvidas ao longo da inclusão são preenchidas pelas fases albíticas da microclina pertítica, NX; D) Aspecto das inclusões de plagioclásio ("poikilitic albite"/PI2) em cristal de feldspato potássico (microclina pertítica/FK2), NX; E) Inclusão de anfibólio em grão de feldspato potássico (microclina pertítica/FK2). Observa-se, também, que as fraturas de contração desenvolvidas no contato da inclusão são preenchidas por fases albíticas da microclina pertítica, NX; F) Detalhe da "swapped rim" (faixa branca no quadrante inferior esquerdo da fotomicrografia) desenvolvida no feldspato potássico (microclina pertítica/FK2) ao contato com plagioclásio(PI1; no centro). Nota-se, ainda que o PI1 está parcialmente substituído por FK2, a partir das bordas(quadrante superior direito), NX.

Prancha 4. Facies BASMG do maciço granitóide Antônio Vicente: A) Aglomerado de plagioclásio(PI1, cristais brancos con aspecto sujo, próximo ao centro e o quadrante superior direito), anfibólio(grãos esverdeados), minerais opacos(MOP1) e apatita(cristais alongados e/ou prismáticos, brancos limpos e fraturados), LN; B) Aspecto da descalcificação do plagioclásio(PI1), em cristal com zoneamento normal(centro da fotomicrografia), NX; C) Detalhe da "poikilitic albite"(PI2) inclusa em cristal de feldspato potássico(FK2). Nota-se a presença de "myrmekite rims" nas bordas do PI2, NX; D) Detalhe da presença de inclusões de apatita em cristal de PI1, NX; E) Detalhe das inclusões de minerais opacos(MOP1) e apatita em anfibólio, LN; F) Detalhe da "alteração"(desiquilíbrio) do anfibólio para biotita, minerais opacos(MOP2), epidoto, quartzo(Qtz3), LN.

Prancha 5. Facies BASMG do maciço granitóide Antônio Vicente: A) Inclusões de anfibólio em grãos de plagioclásio(PI1),NX; B)Aspecto da intersticial em relação a grãos de quartzo(Qtz1), LN; C) Aspecto da alteração da biotita para clorita(Cl2, principalmente no quadrante inferior direito)+epidoto+(Ep2)+muscovita(Mv2)+quartzo(Qtz4)+minerais opacos(MOP3), NX; D) Detalhe dos hábitos da apatita(mineral cinza alongado), NX; E)Detalhe da titanita associada a minerais opacos(MOP2) e à biotita, LN; F) Detalhe da fluorita(F I 2, mineral escuro) associada à biotita parcialmente cloritizada, NX.

Prancha 6. Facies BASMG do maciço granitóide Antônio Vicente: A) Detalhe das "swapped rims" (porção superior da fotomicrografia), NX; B) Detalhe das "albite rims" (porção branca no centro da fotomicrografia), NX; C) Aspecto dos agrupamentos albíticos com formas de "mãos" (linhas finas oblíquas no centro da fotomicrografia), NX; D) Detalhe das "coroas trocadas" (porção inferior da fotomicrografia) desenvilvidas no contato entre dois cristais de FK2, NX; E) Detalhe das "chess-board albite", NX; F) Detralhe das "myrmekite rims" (finas "vermes escuras próximo ao centro da fotomicrografia), NX.

Prancha 7. Facies BASMG do maciço granitóide Antônio Vicente: A) Inclusões de minerais opacos(MOP1) e apatita(cinza escuro) em P11, anfibólio, quartzo(Qtz2) e biotita, NX; B) Detalhe das inclusões de anfibólio(grãos amarelos), minerais opacos(MOP1) e apatita(cinza escuro) em quartzo(Qtz 2), NX; C) Aspecto das "bands perthites", NX; D) Aspecto das "veins perthites" gradando para "patch perthites", NX; E) Detalhe das "films perthites" gradando para "patch perthites", NX; F) "Chess-board perthites", NX.

Prancha 8. A) Aspecto dos intercrescimentos granofíricos presentes na facies BSGCL, NX; B) Detalhe da alteração da biotita para clorita(Cl2)+minerais opacos(MOP2)+quartzo(Qt23), os quais mostram-se dispostos preferencialmente ao longo dos planos de clivagem da mesma. Facies BSGCI, LN; C) Detalhe dos halos pleocróicos desenvolvidos ao contato entre inclusões de zircão e os grãos hospedeiros de biotita, LN; D) Aspecto textural microscópico da facies AFG do maciço granitóide Antônio Vicente, NX; E) Detalhe das "films perthites" gradando para "bands perthites" presentes na Facies AFG, NX; F) Aspecto das "coroas trocadas" presentes na facies AFG, NX. Maciço granitóide Antônio Vicente.

Prancha 9. Aspectos texturais mesoscópicos das variedades (A) rosa grossa e (B) cinza grossa, da facies BSG; Aspectos texturais mesocópicos das variedades (C) heterogranular média, vermelho tijolo e (D) cinza fina a média, da variedade BSGIA da facies BSG; Aspecto textural microscópico da facies BSG(E), NX;(F) Apecto textural microscópico da variedade BSGIA da facies BSG, NX. Maciço granitóide Antônio Vicente.

Prancha 10. A) Detalhe das pertitas compostas de substituição presentes na facies BSG e nas suas variedades. Observa-se os tipos "films"(linhas brancas finas, oblíquas), que gradam para o tipo "bands"(faixas brancas grossas), NX; B) Detalhe dos intercrescimentos granofíricos do tipo insular presentes na facies BSG, NX; C) Detalhe dos intercrescimentos mirmequíticos do tipo "bulbous" presentes na facies BSG, NX; D) Aspectos das "coroas trocadas" desenvolvidas no contata entre dois cristais de FK2 presentes na variedade BASIA da facies BSG, NX; E) Detalhe dos agrupamentos albíticos tipo "dedos" ou "mãos", dispostos como invasores do cristal de FK2 hospedeiro, presentes na variedade BSGIA da facies BSG, NX; F) Detalhe da intensa alteração do PI1. Observa-se na porção central do cristal o desenvolvimento de sericita±muscovita(Mv1)±clorita(CI1)±fluorita(FI1), variedade BSGIA da facies BSG, NX. Maciço granitóide Antônio Vicente.

Prancha 11. Variedade BSGIA da facies BSG: A) Cristais de Fuorita(FI2, grãos negros) associados a alteração da biotita, NX; B) Cristal de topázio(Top 2, no centro da fotomicrografia), envolto por auréolas de muscovita(Mv2), NX: C) "Chess-board albite", NX; D) Cristal maclado de cassiterita, NX; E) Mesmo cristal apenas a LN; F) Agregados de finos grãos de cassiterita(grãos escuros levemente coloridos) ao lado de uma lamela de muscovita(Mv2).

Prancha 12. A) Aspecto textural mesoscópico da facies BMG; B) Aspecto textural microscópico da facies BMG, NX: C) Aspecto textural mesoscópico da facies MMG, D) Aspecto textural microscópico da facies SMGGF; F) Aspecto textural mesoscópico da facies SMGGF; F) Aspecto textural microscópico da facies SMGGF; NX. Maciço granitóide Antônio Vicente.

Prancha 13. A) Aspecto textural mesoscópico do clorita-siderofilita-muscovita-quartzo greisen médio a grosso; B) Características texturais mesoscópicas do clorita-siderofilita-muscovita-quartzo greisen fino; C) Aspecto textural microscópico do clorita-quartzo greisen, NX; D) Aspecto textural microscópico do clorita-siderofilita-muscovita-quartzo greisen médio a grosso, NX; E) Aspecto textural microscópico do clorita-siderofilita-muscovita-quartzo greisen fino, NX; F) Aspecto da textural microscópico do clorita-siderofilita-muscovita-quartzo greisen fino, NX; F) Aspecto da relação granito greisen. Observa-se à direita(porção rosa) a variedade BSGIA da facies BSG, no centro o clorita-siderofilita-muscovita-quartzo greisen médio a grosso(porção cinza) e, à esquerda, o clorita-siderofilita-muscovita-quartzo greisen fino(porção cinza escura laminada). Greisens associados cao maciço granitóide Antônio Vicente.

F

Prancha 14. A) Aspecto textural mesoscópico do clorita-siderofilita-muscovita-quartzo greisen fino, evidenciando a linearidade de fluxo(à esquerda), em contato com o clorita-siderofilita-muscovitaquartzo greisen(à direita); B) Detalhe da linearidade de fluxo observada no clorita-siderofilitamuscovita-quartzo greisen médio a grosso, traduzida por cristais alongados de quartzo(no centro da fotomicrografia), NX; C) Detalhe de microfraturas preenchidas por veios de fluorita(porções escuras presentes no clorita-siderofilita-muscovita-quartzo greisen médio a grosso, NX; D) Aspecto de agregados de grãos de cassiterita(grãos casatanhos no centro da fotomicrografia) presentes no clorita-siderofilita-muscovita-quartzo greisen, proximo ao contato com o clorita-siderofilitamuscovita-quartzo greisen, LN; E) Mesma fotomicrografia de D, apenas com nicóis cruzados; F) Detalhe de um cristal maclado de cassiterita(no centro) presente na clorita-siderofilita-muscovitaquartzo greisen médio a grosso, NX. Maciço granitóide Antônio Vicente.

Prancha 15. A) Aspecto da relação da ordem de colocação entre as facies BSGEm e SGH. Notase que a primeira é seccionada pela segunda; B) Características texturais mesoscópicas da facies BSGEm; C) Aspecto textural microscópico da facies BSGEm, NX; D)Detalhe da alteração da biotita para clorita(Cl₂), minerais opacos(MOP₂), fluorita(Fl₂) e quartzo(Qtz₃), na facies BSGEm, LN; E) Detalhe da cloritização da biotita, com minerais opacos(MOP₂)+quartzo(Qtz₃) presentes como fases associadas. Observa-se a disposição preferencial dessas fases ao longo dos planos de clivagem da biotita. Facies BSGEm, LN; F) Detalhe da ítima relação da Fluorita(Fl₂, cristais escuros) com a biotita na facies BSGEm, NX. Maciço granitóide Velho Guilherme.

Prancha 16. A) Cristal de topázio(Top₂) envolto por auréolas de muscovita(Mv₂). Facies BSGEm, NX; B) Lamelas de muscovita(Mv2) presentes na facies BSGEm, LN; C) Características texturais mesoscópicas da facies SGH; D) Aspecto textural microscópico da facies SGH, NX; E) Detalhe das "swapped rims" (centro da fotomicrografia) e das "coroas tracadas" (quadrante inferior esquerdo) presentes na facies SGH, NX; F) Detalhe da alteração da biotita para clorita(Cl₂)+minerais opacos(MOP₂)+quartzo(QTZ₃) na facies SGH, LN. Maciço granitóide Antônio Vicente.

Prancha 17. A) Características texturais mesoscópicas da facies MSG; B) Aspecto textural microscópico da facies MSG, NX; C) Características texturais mesoscópicas dos veios hidrotermais; D) Aspecto textural microscópico dos veios hidrotermais, NX; E) Aspecto textural mecroscópico das porções finas dos veios hidrotermais, NX; F) Mesma seção, apenas à LN. Maciço granitóide Velho Guilherme.

Prancha 18. A) Características texturais mesoscópicas da facies SMGP; B) Aspecto textural microscópico da facies SMGP, NX; C) Aspecto da intensa alteração tardi a pós-magmática do plagioclásio(PI1). Observa-se a paragênese sericita±muscovita(Mv1)±clorita(CI1)±fluorita(FI1, finos grãos escuros)±topázio(Top1, mineral cinza próximo ao centro da fotomicrografia). Facies SMGP, NX; D) Detalhe da substituição do PI1 por FK2(mancha escura) e sericita±muscovita(Mv1). Facies SMGP, NX; E) Detalhe da alteração da biotita. Nota-se a presença de minerais opacos(MOP2, grãos alongados paralelamente aos planos de clivagem da biotita), muscovita(Mv2, porções azuladas) e de fluorita(FI2, mineral escuro na porção inferior da fotomicrografia). Facies SMGP; F) Aspectos da substituição de topázio(Top2, porção centro-superior da fotomicrografia) por muscovita (Mv2), NX. Facies SMGP. Maciço granitóide Mocambo.

Prancha 19. A) Detalhe da intensa muscovitização do feldspato potássico(FK₂) na facies SMGP, NX; B) O mesmo em relação ao topázio(TOP₂), NX; C) Características texturais mesoscópicas da facies SGMv; D) Aspecto textural microscópico da facies SGMv, NX; E) Detalhe da intensa muscovitização(Mv₂) da facies SGMv, NX; F) Detalhe da intensa albitização da facies SGMv, NX. Maciço granitóide Mocambo.

Prancha 20. A) Detalhe das "swapped rims" (franjas claras nas bordas do feldspato potásico) presentes na facies SGMv, NX; B) Detalhe das "coroas trocadas" (centro da fotomicrografia) desenvolvidas entre os contatos de dois cristais de FK2. Facies SGMv, NX; C) Aspecto dos agrupamentos albíticos do tipo "dedos" ou "mãos" dispostos como invasores do FK2, presentes na facies SGMv, NX; D) Detalhe das "chess-board albites" presentes na facies SGMv, NX; E) Finos grãos de cassiterita(centro da fotomicrografia) ocorrentes na facies SGMv, LN; F) A mesma seção, apenas com nicóis cruzados. Maciço granitóide Mocambo.

Prancha 21. A) Características texturais mesoscópicas da faciea aplito; B) Aspecto textural microscópico da facies aplito, NX; C) Características texturais mesoscópicas do siderifilita-cloritamuscovita-quartzo greisen; D) Aspecto textural microscópico do siderofilita-clorita-muscovitaquartzo greisen, NX; E) Detalhe da alteração da clorita(porções amerelas) para siderofilita(porções avermelhadas) e quartzo(porção clara) no siderofilita-clorita-muscovita-quartzo greisen, NX; F) Detalhe da fluorita(no centro da fotomicrografia) associada à clorita(porções esverdeadas) no siderofilita-clorita-muscovita-quartzo greisen, LN. Maciço granitóide Mocambo.

Prancha 22. A) Cristal de cassiterita(no centro) associado ao siderofilita-clorita-muscovita-quartzo greisen(LN). Maciço granitóide Mocambo; B) Mesma seção com nicóis cruzados; C) Características texturais mesoscópicas da facies BAFG do maciço granitóide Benedita; D) Aspecto textural microscópico da facies BAFG do maciço granitóide Benedita(NX); E) Aspecto dos intercrescimentos granofíricos dos tipos insular e vermicular presentes na facies BAFG do maciço granitóide Benedita(NX); F) Cristais de fluorita(Fl₂, grãos equidimensionais em torno do centro da fotomicrografia) e grãos alongados paralelamente aos planos de clivagem da biotita (na porção inferior), associados à alteração da mesma, presentes na facies BAFG, do maciço granitóide Benedita.

Prancha 23. Maciço granitóide Ubim/sul: A) Características texturais mesoscópicas da facies BSGCI; B) Aspecto textural microscópico da facies BSGCI(NX); C) Detalhe da substituição(microclinização do plagioclásio(PI1, no centro) por feldspato potássico(FK2). Observa-se que o PI1 apresenta-se como "fantasma" parcialmente alterado para sericita±muscovita(Mv1)+fuorita(FI1, pontos escuros). Facies BSGCI, NX; D) Detalhe das inclusões de PI2("poikilitic albite", pequenos cristais à esquerda e à direita da fotomicrografia) em grão de FK2, da facies BSGCI. NX; E) Detalhe da intensa alteração da biotita para clorita(CI2)+muscovita(Mv2)+fluorita(FI2)+minerais opacos(MOP2)+quartzo(Qtz 3), na facies BSGCI, NX; F) Fino grão de topázio(Top2, no centro) parcialmente envolto por muscovita(Mv2), presente na facies BSGCI, NX.

Prancha 24. A) Detalhe da muscovita(Mv2) na facies BSGCI do maciço granitóide Ubim/Sul(NX); B) Cristal de cassiterita(centro) presente na facies BSGCI do maciço granitóide Ubim/Sul(LN); C) Mesma seção com nicóis cruzados; D) Características texturais mesoscópicas da facies SAFGP do maciço granitóide Rio Xingu; E) Aspecto textural microscópico da facies SAFGP do maciço granitóide Rio Xingu(NX); F) Detalhe de uma inclusão de matriz em grão de quartzi(Qtz1), no centro da fotomicrografia. Observa-se, ainda, a matriz bordejando o cristal de quartzo de referência(Iado esquerdo da fotomicrografia), presente na facies SAFGP do maciço granitóide Rio Xingu.