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Viktor Jahnke
Orientador: Diego Trancanelli

Tese de doutorado apresentada ao

Instituto de F́ısica da Universidade de São Paulo

para obtenção do t́ıtulo de Doutor em Ciências

Banca examinadora:

Prof. Dr. Diego Trancanelli - IFUSP (Orientador)

Prof. Dr. Victor Oliveira Rivelles - IFUSP

Prof. Dr. Matthew Luzum - IFUSP

Prof. Dr. Horatiu Stefan Nastase - IFT/UNESP
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Resumo

O objetivo desse trabalho é estudar aplicações da correspondência AdS/CFT

na descrição de plasmas fortemente acoplados similares ao plasma de

quarks e glúons (PQG) produzido em colisões de ı́ons pesados no RHIC

e no LHC. O projeto está articulado em duas partes. Inicialmente es-

tudamos como alguns observáveis, como a taxa de produção de fótons

e diléptons, são afetados por anisotropias espaciais presentes no plasma.

Isso é importante porque o PQG produzido em experimentos do mundo

real tipicamente começa em configurações de alta anisotropia, que depois

evoluem para configurações isotrópicas. Para modelar a anisotropia a

acoplamento forte fizemos uso de uma solução de buraco negro de super-

gravidade do tipo IIB encontrada recentemente em arXiv:1105.3472/hep-

th. Como segunda direção de pesquisa e novamente focando em aplicações

da correspondência AdS/CFT na descrição do PQG, investigamos teorias

de gravidade de Lovelock, que são generalizações naturais da teoria de rel-

atividade geral de Einstein. Essas teorias contém termos com derivadas

de ordem superior ao mesmo tempo que mantém equações do movimento

de segunda ordem, e por isso constituem uma arena ideal para começar

a entender como termos de derivada de ordem superior afetam vários ob-

serváveis f́ısicos do plasma.

Palavras-chave: correspondência gauge-gravidade, holografia e o plasma

de quarks e glúons, gravidade de curvatura de ordem mais elevada.



Abstract

The aim of this work is to study applications of the AdS/CFT corre-

spondence to strongly coupled plasmas similar to the quark-gluon plasma

(QGP) produced in heavy ion collisions at RHIC and LHC. The project

is articulated in two parts. Initially, we will study how some observa-

bles, such as photon and dilepton production rates, are affected by spatial

anisotropies present in the plasma. This is important, since the QGP pro-

duced in real world experiments generically starts in highly anisotropic

configurations, which later evolve towards isotropy. To model anisotropy

at strong coupling we will make use of an anisotropic black hole solution of

type IIB supergravity which has been recently obtained in arXiv:1105.3472/

hep-th. As a second direction of research and again focusing on applica-

tions of the AdS/CFT correspondence to the QGP, we will investigate

Lovelock theories of gravity, which are a natural generalizations of Ein-

steins general relativity. These theories contain higher derivative terms,

while maintaining the equations of motion of second order, and consti-

tute an ideal arena where to start understanding how higher derivative

corrections affect various physical observables of the plasma.

Keywords: Gauge-gravity correspondence, holography and quark-gluon

plasmas, Higher curvature gravity.
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Chapter 1

Introduction

The AdS/CFT correspondence [1–3] is the best known example of a gauge/gravity

duality. These dualities are realizations of the Holographic Principle, which asserts

that a gravity theory in d+ 1 dimensions is equivalent to a d-dimensional gauge the-

ory. As the gauge theory can be thought as living on the boundary of the space where

the gravity theory is defined, these dualities also goes under the name of holography.

Given this holographic interpretation, the gravity theory and the gauge theory are

usually referred to as the bulk theory and the boundary theory, respectively. The par-

ticular case of AdS/CFT correspondence proposes an equilvalence between conformal

field theories (CFT) in four dimensional Minkowski space and string theory in five

dimensional Anti-de Sitter (AdS) space.

In the best undestood example of the AdS/CFT correspondence the gravity theory

is type IIB string theory in AdS5×S5 and the dual gauge theory is the so-calledN = 4

Super Yang-Mills (SYM) theory with gauge group SU(N) in four dimensions. The

realization of the holographic principle is clear when one performs a compactification

on S5 and obtains an effective five-dimensional gravity theory in AdS5. In this case,
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the gauge theory lives in the four-dimensional boundary of AdS5.

The power of the AdS/CFT correspondence resides in the fact that it is a strong/weak

coupling duality. That means that, when one side of the duality is strongly coupled,

the other is weakly coupled, and vice-versa. This allows one to reformulate diffi-

cult non-perturbative problems in one side of the duality in the language of the dual

weakly coupled theory.

Remarkably, the AdS/CFT correspondence has found applications in the study

of the “quark-gluon plasma” (QGP) produced in heavy-ion collisions, at RHIC [4, 5]

and LHC [6]. This plasma cannot be well described by perturbative QCD because it

behaves as a strongly coupled fluid at the typical temperatures in which it is produced

[7, 8]. Lattice techniques can be use for studying thermodynamic properties of this

plasma, but such approach is poorly suited to compute dynamical quantities such as

transport coefficients. With this in view, the AdS/CFT correspondence seems to be

one of the few alternatives to study strongly coupled systems. Indeed, besides pro-

viding us with many tools and insights to understand qualitative features of strongly

coupled dynamics, such approach has allowed the computation of some quantities,

called universal, that are independent of the fine details of the microscopic theory.

The most notable example is the shear viscosity to entropy density ratio [9].

In the most simple applications, the stronlgy coupled plasma of the N = 4 SYM

theory at finite temperature is used as a model for the QGP phase of Quantum

Chromodynamics (QCD). Of course, these two theories are very different at zero

temperature. The N = 4 SYM is highly supersymmetric, conformal and only have

fields in the adjoint representation of the gauge group, which SU(N) with N large,

while QCD has no supersymmetries and it is a confining theory, with flavored fields in

the fundamental and adjoint representation of the color gauge group SU(3). However,
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slightly above the deconfinement temperature of QCD, that is the typical tempera-

tures explored at RHIC and LHC, many of these differences disappear [95]. It is

then interesting to use the AdS/CFT correspondence to gain insights about the QGP

phase of QCD and, hopefully, calculate some model independent quantities of this

plasma.

The QGP produced in heavy-ion collisions at RHIC and LHC is highly anisotropic

in the initial stages of its evolution. This is due to the fact that the system expands

mainly along the beam axis at the earliest times after the collision.This anisotropy is

a very important characteristic of the plasma and can be holographically described at

strong coupling via a type IIB supergravity black brane solution with an anisotropic

horizon [10, 11].1 The effects this anisotropy in various physical observables has

recently received some attention. Quantities that have been studied include the shear

viscosity to entropy density ratio [13, 14], the drag force experienced by a heavy quark

[15, 16], the energy lost by a quark rotating in the transverse plane [17], the stopping

distance of a light probe [18], the jet quenching parameter of the medium [16, 19, 20],

the potential between a quark and antiquark pair, both static [16, 20–22] and in a

plasma wind [22], including its imaginary part [23], Langevin diffusion and Brownian

motion [24, 25], chiral symmetry breaking [26], and the production of thermal photons

[27–29].2

In this thesis we study the effects of anisotropy in the production of thermal

photons and dileptons in a strongly coupled anisotropic medium with massive quarks.

This study was published in JHEP [31] and is presented in Chapter 6.

In order to consider more realistic gauge theories, we consider, as a second direc-

1This geometry is the finite temperature generalization of the geometry found in [12].
2For a review of many of these studies, see [30].
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tion of research, gravity theories that incorporate higher derivatives corrections, as

we explain below.

Two important parameters that characterize the N = 4 SYM theory are the

rank of the gauge group N and the ’t Hooft coupling λ. For generic values of these

parameters this theory is conjectured to be dual to type IIB string theory. However,

the AdS/CFT correspondence is best undestood in the limit where both N and λ are

infinite. This is because the large N limit suppress quantum or loop corrections in

the gravity side while the large λ limit suppress the appearance of higher curvature

terms (α′ corrections). As a result IIB string theory reduces to classical type IIB

supergravity in this limit.

To investigate departures from this limit one have to consider more general grav-

ity theories, including α′ and loop corrections to the supergravity action, which is

generally very difficult. The first α′ correction to type IIB supergravity, for example,

has the schematic form α′3R4.

A possible approach is to consider toy models that incorporates higher curvatures

corrections while maintaining the calculations under control, in the hope to gain qual-

itative insigths about the effects these terms might have in the physical observables

of the dual gauge theory. A possible family of toy models is constituted by the so-

called Lovelock theories of gravity [32–35].3 These theories are generalizations of the

Einstein’s general relativity to dimensions higher than four. Despite contain higher

curvature terms these theories are free of pathologies, because they are defined in such

a way that the equations of motion for the metric are still of second order. Another

important characteristic of the Lovelock theories of gravity is the fact that they admit

exact black hole solutions with AdS asymptotics; for a comprehensive review, see e.g.

3Reviews on Lovelock theories in the context of AdS/CFT can be found in, e.g., [36–38].
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[39, 40] and [41]. The first Lovelock correction is the so-called Gauus-Bonnet (GB)

term. This term appears in five dimensions and it is quadratic in the curvature.

In this thesis we consider higher curvature corrections to the Chern-Simons diffu-

sion rate in Chapter 7. The results were published in PRD [42]. In Chapter 8 we also

consider a bottom up model which incorporates both higher curvature corrections

and anisotropy. We compute several physical observables in this model. The results

were published in JHEP [43] and EPJC [44].

1.1 Organization of this thesis

This thesis is organized as follows. Chapter 2 provides a brief introduction to QCD,

explains the QGP phase from the theoretical point of view and discuss how it is

produced in heavy ion collisions. Chapter 3 presents some basic results about CFTs

and give some details about the N = 4 SYM theory. In Chapter 4 we present

some basic concepts of string theory that are relevant in AdS/CFT applications.

We then motivate and discuss the AdS/CFT correspondence in Chapter 5. These

first chapters aim to provide the reader some basic knowledge useful to apply the

AdS/CFT correspondence to study the QGP. The subsequent chapters present the

original work of this thesis. In Chapter 6 we calculate the production rate of photons

and dileptons in a stronlgy coupled anisotropic plasma. The results were published

in JHEP [31]. Chapter 7 presents the computation of the sphaleron rate in higher

derivative gravity theories. The results were published in PRD [42]. We then consider

a bottom up model that incorporate both anisotropy and higher derivative corrections

in Chapter 8. The studies of this chapter were publish in JHEP [43] and EPJC [44].

The conclusions of this thesis are presented in Chapter 9.
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Chapter 2

Quark-gluon plasma

In this chapter we will discuss some basic properties of the quark-gluon plasma formed

in ultra-relativistic heavy-ion collisions. We first made a brief review of quantum

chromodynamics (QCD) and its phase diagram. We also present some lattice results

regarding the equation of state of QCD. We then explain the production of the QGP

from the experimental point of view, discussing the evidence for its existence and the

probes used to study it.

2.1 QCD lagrangian and symmetries

QCD is the theory that describes the hadrons and the nuclear physics. This theory

is based on the principle of local SU(3)c color symmetry. For later purposes, let ta,

with a = 1, ..., 8 denote the generators of this group of symmetry.

The basic fields of QCD are quarks and gluons. The quark fields are described

by 4-component Dirac spinors ψcf , where c = 1, 2, 3 is a color index of SU(3)c and
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f = u, d, s, c, b, t is a flavor index1. The gluon fields are described by a Lorentz vector

Aaµ, where a = 1, ..., 8 is an adjoint color index of SU(3)c.

Given the number of flavors and the quark masses mf , the QCD lagrangian is

completely fixed by requiring local SU(3)c color symmetry and is given by

LQCD = −1

2
Tr
[
GµνG

µν
]

+
∑
f

ψ̄f (iγµD
µ −mf )ψf (2.1)

where g denotes the QCD coupling,

Dµ = ∂µ − igAµ(x), with Aµ(x) =
8∑

a=1

taA
a
µ (2.2)

is the gauge covariant derivative and

Gµν ≡
8∑

a=1

taG
a
µν =

i

g
[Dµ, Dν ] (2.3)

is the gluonic field strengh. As we said above, the QCD lagrangian is invariant

under local gauge transformations V (x) = e−iθ
a(x) ta of SU(3)c, under which the fields

transforms as

ψ → ψ′ = V ψ,

Aµ → A′µ = V AµV
† +

1

g
V (∂µV

†) (2.4)

At low temperatures all the excitations of QCD are color singlets under the gauge

group. These excitations are observed in nature as mesons, which are composed of

1Here, u, d, s, c, b and t stands for up, down, strange, charm, bottom and top, respectively, which
are the names of the different flavors (types) of quarks.
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a quark and an anti-quark qq̄, and baryons, composed of three quarks qqq. These

bound states of quarks are held together by the exchange of gluons. In other words,

at ordinary temperatures, quarks and gluons cannot be observed as free particles.

They only appears as bounds states, like mesons and baryons. This phenomenom is

known as color confinement.

QCD is invariant under scale transformations x → λx at the classical level, but

this symmetry is broken when quantum effects are taken into account. This happens

because the renormalization of the theory requires the running of its coupling g, that,

in a given process, becomes a function of the characteristic momentum transfer Q

g2(Q2) ∼ 1

log
(

Q2

Λ2
QCD

) .
As a consequence the scale invariance is broken by the introduction of a scale ΛQCD,

which is known as the QCD scale. One can think of ΛQCD as the scale at which g

becomes large. The numerical value of this scale is ΛQCD ' 200 MeV ' 1 fm−1[45].

Note that g is large in the infrared, but becomes small at large Q. In fact, for

sufficiently large values of Q, QCD is a free theory. This phenomenom is known as

asymptotic freedom [46, 47].

QCD also has some approximate flavor symmetries. This depends on the active

number of flavors that we take into account. As the quarks, c, b and t are very heavy

(mc,mb ∼ 1 GeV and mt ≈ 170 GeV) we can consider, for many purposes, that they

are infinite massive, and work with only three flavors of quarks u, d and s.

To appreciate the power of the approximate flavor symmetry, let us first ignore

the s quark, and work only with two flavors, u and d. We write the QCD lagrangian
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as

LQCD = ψ̄u(iγµD
µ −mu)ψu + ψ̄d(iγµD

µ −md)ψd + ... (2.5)

where the dots represent the omitted bosonic part. We can write the quark fields in

terms of right-handed and left-handed fields as

ψLf =
(1 + γ5)

2
ψf , ψRf =

(1− γ5)

2
ψf (2.6)

where f = u, d. In terms of this fields the lagrangian becomes

LQCD =
∑
f=u,d

(
ψ̄Lf iγµD

µψLf + ψ̄Rf iγµD
µψRf + ψ̄Lfmfψ

R
f + ψ̄Rf mfψ

L
f

)
+ ... (2.7)

Note that in the massless limit mu = md = 0, the left and right-handed fields decouple

and are independently invariant under SU(2) flavor rotations

ψLf → Lfg ψ
L
g

ψRf → Rfg ψ
R
g (2.8)

where (L,R) ∈ SU(2)L × SU(2)R. This is the so-called chiral symmetry. This

symmetry is espontaneously broken at the quantum level because, even if we start

with massless quarks in the lagrangian, the quarks inside the hadrons interacts with

the gluonic medium and this generates a dynamic mass for them [48, 49]. This

mass is independent of flavor and is given by a non-zero value of the so-called chiral

condensate
〈
ψ̄ψ
〉
∼Mq.

So, if we start with a lagrangian with massless u and d quarks the QCD dynamics
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generates a non-zero mass for them2 that breaks the chiral symmetry to a SU(2)f

flavor symmetry

ψf → Vfg ψg, V ∈ SU(2)f (2.9)

As we know from Goldstone’s theorem, for every spontaneously broken global sym-

metry, there exists a massless state that carries the quantum numbers of the cor-

responding symmetry charge. Since the quark condensate breaks the approximate

chiral symmetry there must be (approximate) massless Goldstone bosons associated

to this symmetry breaking. It turns out that these are the pions (π+, π0, π−). This

fields are not massless because the chiral symmetry is only approximate, since the

quarks in the QCD lagrangian are not massless and we are ignoring the s, c, t and b

quarks.

If we start with massless u, d and s quarks the associated chiral symmetry is

SU(3)L × SU(3)R. The chiral condensate breaks this symmetry to a SU(3)f fla-

vor symmetry. The Goldstone theorem implies the appearance of eight approxi-

mately massless Goldstone bosons, which turn out to be the pseudoscalar meson

octet (π,K, K̄, η). Again, this fields are not massless because the chiral symmetry

of QCD is only approximate. These flavor symmetry groups discussed above are the

famous isospin group of the strong interactions. The observed spectrum of hadrons

can be approximately associated to representations of SU(3)f , and the low energy

effective lagrangian for them is partially fixed by this group of symmetry [50].

Finally, LQCD is also invariant under the U(1)B global symmetry ψf → eiθψf . The

Noether current associated to this symmetry is JµB = ψ̄(x)γµψ(x) and the associated

conserved charge is the baryon number B =
∫
d3xψ†(x)ψ(x), which can also be

2As we will see in the following, this only happens below the QCD critical temperature. Above
this temperature the chiral condensate is approximately zero
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calculated as

B =
1

3
(nq − nq̄) (2.10)

where nq is the number of quarks and nq̄ is the number of anti-quarks.

2.2 QCD thermodynamics

The study of QCD thermodynamics, besides being interesting from the purely the-

oretical point of view, its also important in the description of natural phenomena,

like the early universe, compact stars, heavy ion collisions, etc. Indeed, lattice calcu-

lations at zero chemical potential allows the determination of the QCD equation of

state, which is used as an input in hydrodynamical models used in the description of

these phenomena.

The static thermodynamic properies of QCD at zero chemical potential can be

obtained by taking derivatives of the partition function Z(T ) = Tr e−H/T , where H

is the QCD hamiltonian and T is the temperature. This corresponds to use the

canonical ensemble.

In the presence of a conserved charge, like the baryon number B in QCD, and

particles with non-zero chemical potential, it is appropriate to use the grand canonical

ensemble. In this case, the partition function is characterized by the temperature T

and the baryon chemical potential µb as

Z(T, µb) = Tr e−(H−µbB)/T (2.11)

In principle, the above partition function allows the determination of a phase diagram

T − µb for QCD. Each point of this diagram corresponds to a stable thermodynamic
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state, with well defined pressure, baryon density, kinetic coefficients, etc.

Unfortunally, full analytical treatment of QCD is only possible at weak coupling,

what requires large values for T and/or µb [51]. This leaves a large part of phase space

unexplored and, as will see in the following, this is precisely the most interesting part

of the phase diagram.

Lattice methods can be used to study QCD thermodynamics at µb = 0 [52] and

also for small values of µb [53], but they encounter difficulties for generic values of

µb. On can access regions of larger values of µb in the phase diagram of QCD using

phenomenological models, like the linear sigma model (see, e.g., [54] and references

therein).

Figure 2.1 shows the conjectured QCD phase diagram. The sketch is based on

lattice calculations, phenomenological models and calculations in asymptotic regions

[51, 55].

Figure 2.1: Contemporary view of the QCD phase diagram. Figure taken from [51].

Let us now discuss some basic features of this phase diagram. At low tempera-

tures and low chemical potential the quarks and gluons are confined in color-singlet
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combinations inside hadrons with masses of order ΛQCD. As we increase the tempera-

ture, the QCD coupling decreases and, for sufficiently high temperature T >> ΛQCD,

asymptotic freedom implies that we have a weakly interacting plasma of deconfined

quarks and gluons [56–58].

It is then clear that at some intermediate temperature there must be some kind

of phase transition, in which the hadrons melt giving rise to deconfined quarks and

gluons. The blue line in Fig. 2.1 indicates a first order transition that ends at the

critical point of QCD. In the region between this line and the origin, the quarks and

gluons are confinend inside hadrons. Outside this region we have a deconfined phase

known as Quark-Gluon Plasma (QGP). Lattice calculations performed with realistic

quark masses shows that, for µb = 0, the transition from hadrons to deconfined quarks

and gluons is an analytic crossover [59]. The transition temperature, also known as

critical temperature, is obtained as Tc ≈ 150 MeV. The precise determination of the

QCD critical point (T, µb) has not been done yet and it is a subject of intense study.

The difficult lies in the fact that lattice techniques can only be applied for small

values of µb. The exploration of the QCD phase diagram for larges value of µb must

rely on phenomenological models, like linear sigma models. For more details, see, for

instance, the reference [54].

We briefly comment that for asymptotically large chemical potential QCD has a

color superconducting phase, called CFL (color- flavor locked) phase. We will not be

interested in this superconducting phase in this work. A good reference to study it is

[55]. We also comment the existence of a phase transition between the nuclear matter

to a strongly correlated superfluid, composed of protons and neutrons [56].

Phase transitions are associated to a change in the global symmetries of the system

under study. The confinement/deconfinement transitions in QCD with zero flavors
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are associated to a break of a global ZNc discrete symmetry of SU(Nc) gauge theory.

The associated order parameter is related to the Polyakov loop, which is defined as

[60]

L(~x) =
1

Nc

TrP exp
[
ig

∫ 1/T

0

A0(τ, ~x) dτ
]

(2.12)

where P is the path-ordered product and the trace is taken over the color indices.

Although the full QCD don’t have the ZNc symmetry, the Polyakov loop is still a good

quantity to characterize the crossover between the confinement and the deconfinement

phase. On can show that the average value of the Polyakov loop is given by

〈L(T )〉 ∼ exp
[
− Fqq̄ (r →∞, T )

]
(2.13)

where Fqq̄ (r, T ) is the free energy of a static quark-antiquark pair sepated by a dis-

tance r. In a confining medium Fqq̄ (r, T ) ∼ r and 〈L(T )〉confined = 0. In a deconfined

medium screening prevents the interaction between the quar-antiquark pair beyond

certain distance and 〈L(T )〉deconfined 6= 0. In summary, we can write

〈L(T )〉 =


0 T < TL

non-zero T > TL

(2.14)

where TL denotes the temperature of the confinement/deconfinement transition.

Actually, 〈L(T )〉confined = 0, only in the limit of infinitely heavy quarks, where the

symmetry ZNc is present. For finite quark masses this quantity is small, but non-zero.

As a result the order parameter 〈L(T )〉 is no longer discontinuous at TL, presenting a

continuous behaviour with respect to T along the confinement/deconfinement transi-

tion.
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QCD also exibits a phase transition characterized in terms of the chiral symme-

try breaking. As we explain before, QCD has an approximate chiral symmetry that

is spontaneouly broken at low energies by a non-zero value of the chiral condensate

χ(T ) =
〈
ψ̄ψ
〉
. At temperatures above the chiral phase transition the thermal fluctua-

tions melt the gluon cloud around the quarks and their dynamical masses disappears

Mq ∼
〈
ψ̄ψ
〉

= 0. It is then clear that

χ(T ) =


non-zero T < Tχ

0 T > Tχ

(2.15)

where Tχ is the temperature of the phase transition. In this context, this quantity

is also known chiral symmetry restoration temperature. This makes evident that

the chiral condensate can also be used as an order parameter for the chiral phase

transition. As the chiral symmetry is only approximate, χ is small, but not exactly

zero for T > Tχ. So, like the Polyakov loop, the chiral condensate also presents a

smooth behaviour with respect to T in the region of the chiral symmetry restoration.

Note that, if 〈L(T )〉 or χ(T ) really have the form of a step function, their deriva-

tives ∂TL(T ) or ∂Tχ(T ) would diverge at the critical temperature. In more realistic

situations, instead of diverging, these derivatives present a peak around the critical

temperature Tc. ∂TL(T ) and ∂Tχ(T ) are known as Polyakov loop and chiral con-

densate susceptibilities, respectively. This quantities were extensively studied using

lattice techniques (Fig. 2.2 shows an example) and the results shows that, at zero

chemical potential, chiral symmetry restorarion and deconfinement happens at the

same temperature TL = Tχ ' 175 MeV. This number is usually used as the definition

of the critical temperature. For non-zero chemical potential it is not likely that de-
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confinement and chiral symmetry restoration happens at the same temperature, but

this is still a subject of investigation [61].

Figure 2.2: Left: Polyakov loop and its susceptibility as a funtion of the bare coupling.

Right: Chiral condensate and its susceptibilty as a function of the bare coupling. Both

results were obtained in QCD with two flavors. Figure taken from [62].

2.2.1 QCD equation of state at µb = 0

In this section we discuss the equation of state of QCD at zero chemical potential.

This information it is important in phenomenological applications, like the description

of elliptic flow in heavy-ion collisions, for example, where it enters as an input in

hydrodynamical models.

We will be interested in study the equation of state of QCD near of the critical

temperature Tc, where the most interesting phenomena takes place. To do that, it will

be useful to compare the thermodynamic quantities near of the crtical temperature

with the corresponding quantities at very high temperature T >> Tc, where QCD

can be approximately described as an ideal gas of quarks and gluons. In this appro-

ximation the only scale with dimension of energy is T . This implies, by dimensional
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analysis, that

εgas ≈ T 4, Pgas ≈ T 4 (2.16)

where εgas and Pgas are the energy density and the pressure of the gas of quarks and

gluons. In fact, the ratio Pgas/T
4 defines the so-called Stefan-Boltzmman constant,

which only depends on the number of degrees of freedom of the system. For a SU(Nc)

gauge theory with Nf massless quark flavors one obtains [63]

Pgas

T 4
=
[
2(N2

c − 1) + 2NcNf
7

4

]π2

90
(2.17)

The energy-momentum tensor of a ideal gas is given by Tµν = diag[εgas, Pgas, Pgas, Pgas]

and the corresponding equation of state is obtained from the condition T µµ = 0 as

εgas = 3Pgas.

As Tc ∼ ΛQCD, QCD is strongly coupled near of the critical temperature. As a

result, the computation of thermodynamics quantity must rely on lattice techniques.

Figure 2.3 shows the ratios ε/T 4 and 3P/T 4 as a function of the temperature obtained

from lattice calculations. The figure also shows the results for the entropy density

divided by the corresponding ideal gas result as a funtion of the temperature. The sud-

den jump in the curves corresponds to the latent heat of confinement/deconfinement

transition.

The deviation from the ideal gas approximation is best measure by the trace

anomaly

∆ =
ε− 3P

T 4
(2.18)

which is identically zero in an ideal gas. Figure 2.4 shows the behaviour of the

trace anomaly as a function of the temperature obtained from lattice calculations
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[64]. The result makes clear that the plasma of quarks and gluons formed after the

deconfinement transition is strongly coupled in the region approximately given by

Tc ≤ T ≤ 5Tc.

Figure 2.3: Left: ε/T 4 and 3P/T 4 as a function of the temperature. Right: entropy

density divided by the corresponding ideal gas result as a function of the temperature.

Results obtained from lattice calculations. SB indicates the Stefan-Boltzmman result,

obtained in the ideal gas approximation. Figure taken from [64].
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Figure 2.4: Trace anomaly as a function of the temperature obtained from lattice

calculations. Figure taken from [64].

2.3 The QGP and ultra-relativistic heavy-ion col-

lisions

For small values of temperature T and chemical potential µB quarks and gluons are

confined in color-singlet combinations inside hadrons. As we increase T or µB we

reach a new state of matter in which the quarks and gluons are no longer confined

inside hadrons, appearing as individual particles. This deconfined phase is known as

the Quark-Gluon Plasma (see Fig. 2.1 and the discussion below it).

The extreme conditions required to produce the QGP are expected to have existed

in the early universe and may exist in the dense core of neutron stars [66]. The
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controlled reproduction of these conditions can be achieved in ultra-relativistic heavy-

ion collisions. The recent experimental efforts with the aim of study the QGP phase of

QCD were realized at the RHIC and LHC [4–6]. In both cases the experiment involves

the collision of counter-circulating beams of ultra-relativistic heavy-ions (gold nuclei

at RHIC and lead nuclei at the LHC).

The collision of two nuclei produces regions of very high energy densities and tem-

peratures in which the QGP is formed. As the produced plasma it is hotter than the

enviroment it expands and, as a consequence, the temperature falls. When the falling

temperature reaches the critical temperature the plasma undergoes a hadronization

process, in which the deconfined quarks and gluons join together forming hadrons.

The hadrons produced, or the product of their decay, can be observed at the detectors

placed in the region of collision. This radiation does not provide information about

the properties of the QGP, but only about the hadronization process [67]. However,

the asymmetric flow of hadrons provides evidence for the existence of the QGP, as

we explain below.

The Fig. 2.5 shows a non-central collision of two heavy nuclei, where we define

z as the beam direction, and the plane xy as the transverse plane. As seen from

the laboratory, the two nuclei are Lorentz contracted in the beam direction and they

interact in an almond-shaped region.
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Figure 2.5: Geometry of a heavy-ion collision. The beam direction is z and xy is the

transverse plane. Left: two Lorentz contracted gold nuclei colliding. Right Overlap

region projected in the transverse plane. Figure taken from [93].

If the QGP were not produced in ultra-relativistic heavy ion collisions and the

hadrons observed after the collision were produced in nucleon-nucleon interactions

in the almond-shaped region, the flow of hadrons would be symmetric along the

transverse plane and unrelated to the form of the overlap region. On the other

hand, if the QGP were produced in the overlap region, we would expect, with base

in hydrodynamical models, an asymmetric flow of hadrons after the hadronization

process [68]. Indeed, this asymmetric flow was observed in the results of RHIC and

this provides strongly indication that the QGP is indeed produced in ultra-relativistic

heavy ion collisions [68]. Other evidences for the formation of the QGP are provided

by some probes that we describe below.

Jet quenching parameter. Results from RHIC [69–72] indicate a strong suppres-

sion of particles with high transversal momentum pT in Au-Au collisions, but not

in d-Au collisions. The explanation for this phenomenon is that in Au-Au collisions

the hot and dense quark gluon plasma is produced, and the jets lose energy due to
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the interaction with this medium before hadronizing. This energy loss effect is called

“jet quenching” and it can give valuable information as regards the properties of the

plasma.

Thermal production of photons and dileptons. The limited extension of the

QGP created in heavy ion collisions and the weakness of the electromagnetic inter-

actions imply that this medium should be optically thin. Therefore, the photons

produced in the plasma escape from it without subsequent interactions, providing an

excellent probe of the conditions of the medium.

Quarkonium. Quarkonium mesons are produced in the early stages of heavy ion

collisions, before the creation of the QGP. As they are much more tightly bound

and smaller than ordinary ‘light’ hadrons, they can survive as bound states in the

QGP at temperatures above the deconfinement temperature up to some dissociation

temperature. This property, together with the fact that their interaction with the

thermal medium is comparatively stronger than their interaction with the hadronic

matter formed after hadronization, makes the quarkonium mesons excellent probes

to study the QGP formed in heavy ion collisions [67].

There are, of course, several other probes that can be used to study the QGP.

Here we only describe the probes that (together with other more abstract quantities)

were studied in this thesis. Along with these probes, other quantities that are very

important in the study of the properties of the QGP are the transport coefficients

of the plasma, which are necessary inputs in hydrodynamic models.
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Chapter 3

Conformal Field Theories

In this chapter we present some general properties of conformal field theories (CFTs)

in spacetimes with d > 21. In particular, we present some basic aspects of the N = 4

SYM theory, which is the CFT relevant in the most known and studied example of

the AdS/CFT correspondence.

The so-called conformal field theories are quantum field theories which are invari-

ant under conformal tranformations. Besides being very important in the context of

AdS/CFT correspondence and in string theory, CFT also has applications in more

applied fields of physics, like statistical physics and condensed matter physics.

Before adressing CFTs let us discuss some basic properties of quantum field the-

ories (QFTs). The basic observables of a QFT are correlation functions of a product

of local operators

〈O1(x1)O2(x2)...On(xn)〉 (3.1)

the operator are made out of fields that define the QFT and are characterized by

1The conformal group is infinite dimensional for d = 2. In this special case the symmetry group
is SL(2,C). The standard references for CFT in two-dimensional spacetimes are [65, 73]
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their Lorentz structure, charges and scaling dimensions. All information regarding

the correlation functions is encoded in the partition function of the QFT, ZQFT[Ji(x)],

which is given by

ZQFT[Ji(x)] =

〈
exp

∫
ddxJi(x)Oi(x)

〉
(3.2)

where Ji(x) represent the sources for the operators Oi(x). The correlation function

can be calculated taking derivatives of the partition function

〈O1(x1)O2(x2)...On(xn)〉 =
δn logZQFT[Ji(x)]

δJ1(x1)δJ2(x2)...δJn(xn)

∣∣∣
Ji=0

(3.3)

The scaling dimension and the Lorentz structure of the sources Ji are completely

determined by those of Oi.

A QFT is said to be solved if all the correlation functions are known. In general,

the determination of the correlation functions is difficult, specially for strongly inter-

acting theories, where we cannot use perturbation theory. However, this task is easier

if the theory has some symmetries. As we will se in the next section, the conformal

symmetry is so strong that it fix the form of the 2- and 3-point functions of local

operators.

3.1 Conformal Group in d > 2 dimensions

Consider a d-dimensional spacetime (d > 2) with flat metric gαβ = ηαβ of signature

(1, d− 1). Under a general coordinate transformation, x→ x′, the metric transforms

as a two-tensor

gµν(x)→ g′µν(x) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) (3.4)
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The group of conformal transformations are a subclass of the group of general coor-

dinate transformations that preserve the angle between two arbitrary vectors. Math-

ematically, this corresponds to a transformation, x → x′, under which the metric is

invariant up to a scale factor Ω(x),

gµν(x)→ g′µν(x
′) = Ω(x)gµν(x) (3.5)

To find the infinitesimal generators of the conformal group we consider a infinites-

imal coordinate transformation x → x′ = x − ε respecting Eq. (3.5). Under this

transformation we have, using Eq. (3.4),

g′µν(x
′) = gµν + ∂µεν + ∂νεµ (3.6)

Using Eq. (3.5) we find

gµν(Ω(x)− 1) = ∂µεν + ∂νεµ (3.7)

Contracting both sides with gµν we obtain

Ω(x) = 1 +
2

d
(∂ · ε) (3.8)

Substituting (3.8) in (3.7) we find a differential equation for ε

∂µεν + ∂νεµ =
2

d
(∂ · ε) (3.9)

which is known as the conformal Killing vector equation. Solutions of (3.9) charac-
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terize the possible type of conformal transformations, which are

εµ = aµ translations

εµ = ωµνx
ν rotations (ωµν = −ωνµ)

εµ = λxµ dilations

εµ = bµx2 − 2xµ(b · x) special conformal transformations (3.10)

Integrating the infinitesimal generators we find the finite conformal trasformations

x′ = x+ a translations

x′ = Λx rotations

x′ = λx dilations

x′ = x+bx2

1+2b·x+b2x2 special conformal transformations (3.11)

These transformations form the conformal group in d dimensions. The corresponding

generators are

Pµ = −i∂µ, Jµν = i(xµ∂ν−xν∂µ), Kµ = −i[x2∂µ−2xµ(x ·∂)], D = −ix ·∂ (3.12)
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These generators satisfy the following commutation relations

[Jµν , Pα] = −i(ηµαPν − ηναPµ),

[Pµ, Kν ] = 2i(Jµν − ηµνD),

[Jµν , Jαβ] = −i(ηµαJνβ − ηµβJνα − ηναJµβ + ηνβJµα),

[Jµν , Kα] = −i(ηµαKν − ηναKµ),

[D,Kµ] = iKµ, [D,Pµ] = −iPµ, [Jµν , D] = 0. (3.13)

The total number of parameters of the conformal group is d+d(d−1)/2+1+d =

(d+2)(d+1)/2. The algebra of the above generators is locally isomorphic to SO(2, d).

This can be seen defining the generators

Mµν = Jµν , Mµ,d =
1

2
(Kµ − Pµ), Mµ,d+1 =

1

2
(Kµ + Pµ), Md,d+1 = D (3.14)

and checking that they satisfy the algebra of SO(2, d).

3.2 Primary fields and correlation functions

The fields and operators of a CFT are usually classified by their Lorentz quantum

numbers (jL, jR) and scaling dimension ∆. To have a well defined scaling dimension

an operator O(x) must be a eingenstate of D

[D,O(x)] = i(−∆ + xµ∂µ)O(x) (3.15)
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Under dilations, x→ λx, this operator transforms as

O(x)→ λ∆O(λx) (3.16)

Imposing that all states in a given representation have positive norm (unitarity

condition) implies the existence of a lower bound on the dimesion of all operators [74]

∆ ≥ ε(jL, jR) (3.17)

where ε(jL, jR) is a lower bound that depends on the Lorentz quantum numbers of the

operators in question. For supersymmetric theories ε also depends on the R-symmetry

quantum numbers.

Observing the commutation relations between Pµ and Kµ with D it is easy to

verify that Pµ raises the dimension of the operator while Kµ lowers it. As there is

a lower bound on the dimension of all operators, there must be an operator which

is annihilated by Kµ. Such an operator is called a conformal primary operator. In a

(jL, jR) representation of the Lorentz group, this operator is defined as

[D,O(∆,jL,jR)(0)] = i∆O(∆,jL,jR)(0) (3.18)

[Kµ, O(∆,jL,jR)(0)] = 0 (3.19)

Acting on a primary operator with the other generators of the conformal group we

obtain a infinite dimensional representation of this group specified by the numbers

(∆, jL, jR).

Classically, the scaling dimension of the fields or operators of a QFT can be

determined by dimensional analysis, as they correspond to the enginering dimension
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of these fields. At the quantum level, however, the scaling dimensions can get quantum

corrections in interacting theories.

The conformal symmetry is so strong that it fix the form of the 2- and 3-point

functions of CFTs. Using the conformal algebra one can show that: 2-point functions

vanish if the operators have different dimensions; The 2-point function of a single

operator O with dimension ∆ is

O(0)O(x) ∝ 1

|x|2∆
; (3.20)

The 3-point function of Oi, Oj and Ok with dimensions ∆1, ∆2 and ∆3 is given by

Oi(x1)Oj(x2)Ok(x3) =
cijk

|x1 − x2|∆1+∆2−∆3|x1 − x3|∆1+∆3−∆2|x2 − x3|∆2+∆3−∆1
.

(3.21)

The conformal symmetry is even more powerfull when it can be mix with super-

symmetry. In this case, the conformal group is enlarged to the superconformal group.

Special representations of the superconformal group are extremely important in tests

of the AdS/CFT duality. In the next section we will discuss the superconformal group

in the special case of the four-dimensional N = 4 SYM theory.

3.3 d = 4, N = 4 Super Yang-Mills theory

The most general renormalizable theory consistent with N = 4 global supersymme-

tries in four dimensions is the so-called N = 4 Super Yang-Mills (SYM) theory. In

the case relevant for AdS/CFT correspondence, the gauge group G of this theory

SU(N). For now we let G be a generic Lie group. Later we will discuss the special
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properties of G = SU(N) case.

This theory can be obtained by dimensional reduction of the N = 1 SYM theory

in ten dimensions [75, 76]. The action of this ten dimensional theory is given by

SN=1 =

∫
d10xTr

(
− 1

4
FMNF

MN +
i

2
λ̄ΓMDM λ

)
(3.22)

where DMλ = ∂Mλ + igYM[AM , λ], FMN = ∂MAN − ∂NAM + igYM[AM , AN ], and λ is

a Majorana-Weyl spinor. The indices M and N run from 0 to 9 and ΓM is a ten-

dimensional Dirac matrix. Both FMN and λ are written in matrix notation. gYM is

the coupling of the theory.

The above action is invariant under the supersymmetry transformation

δAM = −iζ̄ ΓMλ,

δλ =
1

2
FMNΓMNζ (3.23)

where ζ is the supersymmetry generator, which is also a Majorana-Weyl spinor, and

ΓMN = ΓMΓN − ΓNΓM .

Performing a Kaluza-Klein compactification in a six-dimensional torus, T 6, the

action becomes

SN=4 =

∫
d4xTr

[
−1

4
FµνF

µν+2DµAmD
µAm−g2

YM[Am, An]2− i
2

(
λ̄ΓµDµ λ+λ̄Γm[Am, λ]

)]
(3.24)

where µ, ν run from 0 to 3 and m,n run from 4 to 9. The coordinates xm label the
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compact space T 6. The supersymmetry transformation becomes

δAµ = −iζ̄ Γµλ,

δAm = −iζ̄ Γmλ,

δλ =
(1

2
FµνF

µν +DµAnΓµn +
igYM

2
[Am, An]Γmn

)
ζ. (3.25)

The ten-dimensional gauge field gives rise to a four-dimensional gauge field Aµ and

six scalars Am. The Majorana-Weyl spinor λ (with sixteen components) gives rise to

four four-dimensional Weyl spinors. These fileds form the vector multiplet of N = 4

SUSY and all of them transform in the adjoint representation of the gauge group

G. The ten-dimensional SUSY generator separates into four four-dimensional SUSY

generators, giving rise to N = 4 SUSY.2

Under the Kaluza-Klein compactification is convenient to consider the following

decomposition of the ten-dimensional Lorentz group

SO(9, 1)→ SO(3, 1)× SO(6) (3.26)

where SO(3, 1) is the Lorentz group in four dimensions and SO(6) is the isometry

group of the compact space (a six dimensional torus).

From the point of view of the four-dimensional theory, the fields have a SO(6)

global symmetry under which Aµ is a singlet and Am is a vector. This global symmetry

is identified with the R-symmetry group of the N = 4 SUSY algebra.

2In a d-dimensional spacetime, N denotes the ratio of the number of supercharges to the smallest
spinor representation.
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3.3.1 Symmetries of N = 4 SYM

In this section we discuss the symmetries of the N = 4 SYM theory. This theory is

invariant under:

• Conformal transformations: genetared by D,Pµ, Kµ and Jµν . The correspond-

ing symmetry group is SO(2, 4) ∼ SU(2, 2);

• R-symmetry transformations: the symmetry group is SO(6) ∼ SU(4). Let TA,

with A = 1, ..., 15, be the generators of this symmetry;

• Poincare supersymmetries: the supercharges Qa
α and Q̄α̇a with a = 1, ..., 4,

generates the N = 4 SUSY;

• Superconformal symmetries generated by the supercharges Saα and S̄α̇a with

a = 1, ..., 4. This charges arise from the non-vanishing commutator between Q

and Q̄ with Kµ. Schematically, we have: [K,Q] ∼ S and [K, Q̄] ∼ S̄. As both

operators inside the commutator generate symmetries, their commutator (S or

S̄) also generate symmetries.

Together, all these symmetries form the superconformal group SU(2, 2|4).3 Supressing

the indices of the generators, the non-trivial part of the superconformal algebra is

schematically given by4

[D,Q] = − i
2
Q, [D,S] =

i

2
S, [K,Q] ∼ S, [P, S] ∼ Q,

Q, Q̄ ∼ P, S, S̄ ∼ K, Q, S ∼ J +D + T, (3.27)

3In d = 4, the superconformal group of a theory with N supersymmetries is denoted as
SU(2, 2|N ).

4For more details about the superconformal algebra in N = 4 SYM, see [77].
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Remarkably, the superconformal symmetry remains unbroken after the quantization

of N = 4 SYM theory. As a consequence, the β-function of this theory vanishes

identically and the coupling of the theory is constant

β = E
dg

dE
= 0 ⇒ g = constant (3.28)

where E is some scale of energy and g is the coupling of theory.

3.3.2 Representations of the superconformal algebra

The commutation relation between S and D show us that the operator S lowers

the dimension of the operator where it is applied. As there is a lower bound on

the dimension of all operator in unitary CFTs, there must be an operator that is

annihilated by S. We define a superconformal primary operator O to be a non-

vanishing operator such that

[S,O] = 0, [S̄, O] = 0, for O bosonic (3.29)

{S,O} = 0, {S̄, O} = 0, for O fermionic (3.30)

Since S, S̄ ∼ Kµ, a superconformal primary operator is also a conformal primary

operator, but the converse is not necessarily true.

Given a superconformal primary operator we can construct descendant operators

by applying any generator of the superconformal algebra. A superconformal primary

operator and all its descendant operators form a infinite dimensional representation

of SU(2, 2|4).

A special type of superconformal primary operators are the so-called chiral pri-
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mary operators. Besides being annihilated by S, this operators are also annihilated

by at least one of the supercharges

[Qa
α, O] = 0, for O bosonic (3.31)

{Qa
α, O} = 0, for O fermionic (3.32)

for at least one a = 1, ..., 4, and one α = 1, 2. As they are annihilated by some of the

supercharges, the chiral primary operators are BPS states of the N = 4 SUSY.5

By acting with the other generators of the conformal algebra in a chiral primary

operator we obtain a multiplet (representation) of the superconformal group which

is short than generic multiplets obtained from generic superconformal primary oper-

ators. Because of that, representations obtained from chiral primary operators are

also called short multiplets.

The chiral primary operators are very important because their scaling dimension

∆ does not receive quantum corrections. ∆ is fixed by the superconformal algebra.

From the superconformal algebra on can deduce that all the superconformal pri-

mary operators of the N = 4 SYM theory are built from gauge-invariant symmetric

combinations of the scalar fields Am’s. The simplest example are the single trace

operators given by

O(x) = Tr
(
A(i1Ai2 ...Aik)

)
− traces (3.33)

where i1, i2, ..., ik are indices of the fundamental representation of SO(6). The subtrac-

tion of all the traces ensures that O(x) corresponds to an irreducible representation

of the superconformal algebra. Operators with the above form are chiral primary

operators of the theory. This operators are very useful in tests of the AdS/CFT du-

5For a good introduction to BPS states in N = 4 SYM theory, see the Appendix J of [78].
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ality, because we can use them to compare the spectrum of the N = 4 SYM theory

with the spectrum of type IIB supergravity. We will discuss tests of the AdS/CFT

correspondence in the Chapter 5.

3.3.3 Large N limit

Now we discuss some basic properties of this theory at large N . As pointed out by ’t

Hooft [79], in the large N limit of a non-abelian gauge theory, with N ×N matrices,

the physical quantities can be expanded in powers of 1/N . Let Z be the partition

function of the non-abelian gauge theory and gYM its coupling constant. Defining the

’t Hooft coupling, λ = g2
YMN , one can show that the vacuum-to-vacuum amplitude,

logZ, can be written as

logZ =
∞∑
h=0

N2−2hfh(λ) = N2f0(λ) + f1(λ) +
1

N2
f2(λ) + ... (3.34)

where fh(λ) are functions of the ’t Hooft coupling that includes the contributions of

all diagrams which can be drawn in a two-dimensional surface with h holes without

crossing any lines. Therefore, the Feynman diagrams are organized by their topolo-

gies: planar diagrams are included in f0(λ) and are proportional to N2; Non-planar

diagrams that can be drawn on a torus are included in f1(λ) and are proportional

to N0 = 1; Non-planar diagrams that can be drawn on a donut with two holes are

included in f2(λ) and are proportional to 1/N2, etc. Note that, in the large N limit,

only planar diagrams contribute. The same holds for other physical observables, the

only difference is an overall factor of Nm multipling the expansion, where m is some

number that depends on the observable in question.
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Chapter 4

Basics of string theory

In this chapter we present very basic concepts of string theory necessary to understand

the AdS/CFT correspondence. String theory is a relativistic quantum theory in which

the basic objects are: closed strings, open strings and D-branes. D-branes (short for

Dirichlet-branes) are non-perturbative solitonic objects where open strings can end

and closed string can break into open strings. The only free parameter in string

theory is a lengh scale `s known as string lengh. It is also customary to use another

parameters like α′ = `2
s or the string tension, Tstr = 1/(2πα′).

4.1 Bosonic string theory

Let us first consider the dynamics of a single string propagating in a flat d-dimensional

spacetime. In analogy with the case of a point particle, whose action is given by the

lengh of its wordline, in string theory the action is defined as proportional to the area

of the surface swept by the string in the spacetime. This surface is known as string

worldsheet. Parametrizing the string worldsheet with the coordinates (σ0, σ1), this
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action can be written as

Sstr = −Tstr

∫
d2σ
√
−det gαβ (4.1)

where d2σ = dσ0 dσ1 and gαβ is the metric induced on the worldsheet and α, β = 0, 1.

This action was first proposed in 1970 [80, 81] and is known as Nambu-Goto action.

The quantization of the above action requires d =26. This is necessary to avoid

negative-norm states and the anomaly of the Lorentz group at the quantum level.

We emphasize that we consider here the “first-quantizatized” point of view, which

means that we consider different statets of a single string. Creation and anihilation

of strings are possible with a “second quantized” point of view known as string field

theory which we will not adress here.

After quantization we get a spectrum that corresponds to the different vibration

modes of the string. It turns out that the vibration modes have properties of the

usual elementary particles with interger spin. The spectrum contains a finite number

of massless modes and an infinity tower of massive modes with mass of the order

ms = `−1
s . The spectrum of closed and open string for the tachyonic and massless

modes is summarized in Table 4.1.

Table 4.1: Massless and tachyonic spectrum of closed and open strings.

Mass Closed string Open string

M < 0 tachyon tachyon

M = 0 gµν , Bµν , Φ Aµ

The spectrum of open string with free endpoints1 has a tachyon (particle with

1In order to assume that the string’s endpoint are free, we have to assume the existence of a space
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negative squared mass) as the fundamental state, with M2 = −1/α′. The first excited

state is massless vector boson and the first massive state is a spin-two particle with

M2 = 1/α′. Then we have states with higher mass and spin.

The spectrum of closed strings also contains a tachyon as the fundamental state,

with M2 = −4/α′. In the first excited state we have a massless spin-two particle,

the graviton gµν ; a massless scalar Φ called dilaton and a antisymmetric second rank

tensor Bµν , called Kalb-Ramond field. Again, the massive modes corresponds to

particles of higher mass and spin. As this theory contains a graviton its spacetime is

not fixed, as we assume in the begining, being actually dynamical.

An unsatisfactory feature of this theory is the presence of tachyons. Tachyons are

unphysical because they imply the instability of the vacuum. The open-string tachyon

can be understood in terms of the decay of D-branes, but the closed string tachyon

is still a problem for this theory [82]. Besides that, another unsatisfactory feature

of open and closed string theories is that in both cases the spectrum only contains

bosons. Because of that this theory is usually known as bosonic string theory.

At low energies E << ms string theory massive modes are not excited and one

can obtain a effective low energy action that describes the massless fields. This can

be done by considering strings propagating in the background of the massless fields

gµν , Bµν and Φ and requiring conformal invariance of the worldsheet. The resulting

low energy theory is basically the general theory of relativity with some additional

fileds2

Seff =

∫
d26x
√
−ge−2Φ

(
R− 1

12
HµνλH

µνλ + 4 ∂µΦ ∂µΦ
)

(4.2)

filling D-brane, that is, a D25-brane. This is necessary because the string’s endpoints are confined
to move in the world-volume of the branes where it ends.

2A detailed derivation of this effective action can be found in [83].
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where g = det (gµν), R is the scalar of curvature derived from gµν , and Hµνλ =

∂µBνλ + ∂νBλν + ∂λBµν is the field strength associated to Bµν . This procedure of

deducing an effective action by requiring conformal invariance can also be used in

superstring theories to show that the low energy limit of this theories are supergravity

theories.

4.2 Superstring theories

To describe fermions it is necessary to add fermionic degrees of freedom to the action

(4.1). There are at least three ways of doing that. In the RNS formalism [84, 85],

this is done imposing supersymmetry in the string worldsheet. In the Green-Schwarzs

(GS) formalism [86, 87], one requires supersymmetry in the d-dimensional spacetime.

In the pure spinor formalism one covariantly quantize the superstring in a manifestly

super-Poincaré covariant manner [88].

The quantization of the supersymmetric generalization of (4.1) gives rise to the

so-called superstring theories.3 As before, the vibration modes of the superstrings

will give rise to different particles, but this time including bosons nd fermions. There

are five types of superstring theory and all these theories live in 10-dimensional space-

times, as required for anomaly cancellation. These five theories are: type I, type IIA,

type IIB, heterotic SO(32) and heterotic E8 × E8. The type of theory we get after

quantization depends on the boundary conditions chosen for the fermionic degrees of

freedom and on the way we built the closed string theories. These theories have dif-

ferent properties like: spectrum, gauge group, chirality, etc. Despite these differences

all these theories are related to each other by dualities and are belived to be part of

3In general, the term “string theory” is used refering to “superstring theories”. The string theory
that only contain bosons is usually known as “bosonic string theory”.
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a single theory called M-theory [82].

In thesis we will focus on type IIB string theory, that is the superstring theory

relevant for the AdS/CFT correspondence. Table 4.2 shows the massless spectrum of

type IIB string theory.

Table 4.2: Massless spectrum of type IIB string theory.

Sector Fields

R-R C0, C2µν , C
+
4µνλρ

NS-NS gµν , B2µν , Φ

R-NS λ1+, ψµ1−

NS-R λ2+, ψµ2−

The letters R-R, NS-NS, R-NS and NS-R in the rows of Table 4.2 indicate different

sectors of the supestring spectrum. R stands for Ramond and NS for Neveu-Schwarz.

The R-R and NS-NS sectors contains the bosons of the theory, while the R-NS and

NS-R contains the fermions.4 The fields in the R-R sectors are a 0-form C0 (the axion

field), a 2-form C2µν and a 4-form C+
4µνλρ. The superscript + indicate that C4 has a

self-dual field strength. The NS-NS sectors contains the same fields of the bosonic

string theory, that is, a rank two symmetric tensor gµν (the metric tensor), a rank two

antisymmetric tensor B2µν (the Kalb-Ramond field) and a scalar field Φ (the dilaton).

The fields of the R-NS sector are a left-handed Majorana-Weyl dilatino λ1+, and a

right-handed Majorana-Weyl gravitino ψµ1−. The NS-R sector contains a right-handed

Majorana-Weyl dilatino λ2+, and a left-handed Majorana-Weyl gravitino ψµ2−. The

numbers 1 e 2 indicate whether the fermionic fields are in the R-NS or in the NS-R

4For more details regarding the precise definition of these sectors, see for instance [82].
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sector, respectively, while the sign +(-) indicate a positive (negative) chirality. As

the two gravitinos and the two dilatinos have the same chirality, this theory is said

to be chiral or parity violating.

Type IIB string theory is supersymmetric, so it must have the same number of

degrees of freedom at each mass level, in particular, at the massless level. Indeed, we

can check that we have the same number of fermionic and bosonic degrees of freedom

in the massless part of the IIB spectrum:

Type IIB bosons:

NS-NS sector︷ ︸︸ ︷
1︸︷︷︸
Φ

+ 28︸︷︷︸
Bµν

+ 35︸︷︷︸
gµν

+

R-R sector︷ ︸︸ ︷
1︸︷︷︸
C0

+ 28︸︷︷︸
C2

+ 35︸︷︷︸
C4

= 128

Type IIB fermions:

R-NS sector︷ ︸︸ ︷
8︸︷︷︸
λ1+

+ 56︸︷︷︸
ψµ1−

+

NS-R sector︷ ︸︸ ︷
8︸︷︷︸
λ2+

+ 56︸︷︷︸
ψµ2−

= 128

The low energy limit of this theory, as in the case o bosonic string theory, the

massive modes are not excited and one can obtain a effective low energy theory for

the massless fields. As in the case of bosonic string theory, this is done by consid-

ering superstring propagating in the background of the bosonic fields and requiring

conformal invariance of the worldsheet.

Before writing the action of low energy type IIB string theory we introduce the

field strengths H3 = dB2, F1 = dA0, F3 = dC2 and F5 = dC4 and other convenient

quantities

F̃3 = F3 − C0 ∧H3, (4.3)

F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3
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With the quantities defined above one can write the bosonic part of the effective low

energy action as [82]

SIIB = S1 + S2, (4.4)

S1 =
1

2κ2
10

∫
d10x
√
−ge−2Φ

(
R− 1

2
|H3|2 + 4(∂φ)2

)
,

S2 = − 1

4κ2
10

∫
d10x

[√
−g
(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
+ C4 ∧H3 ∧ F3

]

where κ2
10 = 8πG(10) (G(10) is the ten-dimensional Newton constant), g = det (gµν),

and R is the scalar of curvature. Along with the action SIIB it is also necessary to

require F̃(5) to be self-dual, that is, F̃(5) = ?F̃(5). The low-energy theory resulting

from this action has N = 2 spacetime supersymmetries and is known as type IIB

supergravity [89, 90].

As we will discuss in the Chapter 5, the AdS/CFT correspondence is mostly

understood in the low energy limit of type IIB string theory, in which these theory

is effectively described by a supergravity theory. In the section 4.4 we will describe

special solutions of the supergravity field equations that will be useful in the context

of the AdS/CFT correspondence.

4.3 Interactions

The interaction between two closed strings can be introduced postulating that two

strings can join together forming a single string which, by its turn, can split in

two strings. Scattering amplitudes are given by a sum over the topologies of two-

dimensional surfaces formed by the worldsheets of the strings in interaction as shown

in Figure 1.
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Figure 4.1: Two-to-two amplitude expressed as a sum over topologies. Figure taken

from [93].

In the above sum the contribution of surfaces with h holes is weighted by a factor

g2h−2
s , where gs is the string coupling constant. Surprisingly, gs is not a independent

parameter of the theory. One can show that gs =
〈
eφ
〉
, that is, gs is dynamical

parameter related to the expectation value of the dilaton field.

4.4 D-branes

Besides open and closed strings, string theory also contains higher dimensional objects

known as D-branes5 (or Dp-branes). A Dp-brane is a hypersurface with p spatial

directions where the open strings endpoints can move freely, but these endpoints

are not aloud to move outside the brane volume. Mathematicaly, this implies that

coordinates of open strings endpoints must respect Neumann boundary conditions

along the (p+1) spacetime coordinates of the brane worldvolume and (9−p) Dirichlet

boundary conditions for the other coordinates.

The presence of a Dp-brane breaks the Lorentz group SO(9, 1) to SO(p, 1) ×

SO(9 − p), with SO(p, 1) being the Lorentz group of the brane world-volume and

SO(9− p) the rotational group of the space transverse to the brane.

The quantization of open strings ending on a Dp-brane gives rise to a spectrum

5This section is based on the section 4.4 of [91].
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of fields that lives inside the brande world-volume and transform under its SO(p, 1)

Lorentz group. At the massless level there is a photon field Aa, (a = 1, 2, ..., p) and

(9− p) scalars fields φI , (I = p+ 1, ..., 9). The number of scalar fields is equal to the

number of directions transverse to the brane and these fields represent fluctuations of

the branes in these directions [83]. Note that while φI are scalar under the SO(p, 1)

Lorentz group of the brane, they behave as vectors under the SO(9 − p) rotational

symmetry of the directions transverse to the brane. In the brane world-volume the

SO(9− p) symmetry appears as a global symmetry.

As before, there is also massive excitations that we will not consider because they

are not excited at the low energy limit, which is the limit that we will always work.

The above results indicate that Dp-branes are dynamical objects rather than just

geometrical objects that encode boundary conditions. Indeed, the open strings ending

on a Dp-brane can be viewed as excitations of the brane itself [92].

4.4.1 Low energy limit

As in the case of closed strings we can obtain an effective low energy theory that

describes the massless open string excitations that lives insides the Dp-brane by re-

quiring the conformal invariance of the world-sheet of these strings in the presence

of the background field of these massless excitations. One can show that the bosonic

part of the efffective low energy action of a Dp-brane is given by

SDp = SDBI + SWZ (4.5)

where SDBI is the Dirac-Born-Infeld (DBI) action and SWZ is the Wess-Zumino (WZ)

term. We will describe these two terms below.
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Let xM , (M = 0, 1, ..., 9) denote the space-time coordinates and σa, (a = 1, ..., p)

denote the coordinates of the D-brane world-volume. In terms of these coordinates

the DBI action reads

SDBI = −τp
∫
dp+1σ e−φ

√
−det

(
P [g]ab + P [B]ab + 2πα′Fab

)
(4.6)

where τp = (2π)−pα′−(p+ 1)/2 is a constant, Fab is the field strength associated to

the gauge field Aa that lives inside the Dp-brane and

P [g]ab =
∂xM

∂σa
∂xN

∂σb
gMN , P [B]ab =

∂xM

∂σa
∂xN

∂σb
BMN . (4.7)

denotes the pullback of gMN and BMN , respectively.

To better understand the DBI action let us consider some special cases of it.

Consider that Bab = Fab = 0, and the dilaton field φ is constant eφ = gs. In this case

the DBI action reduces to

SDBI =
τp
gs

∫
dp+1σ

√
det
(
P [g]ab

)
(4.8)

which is proportional to the Dp-brane world-volume. This shows that the DBI

action is a generalization of the Nambu-Goto action to objects of higher dimen-

sions. As the action is dimensionless and the Dp-brane world-volume has units of

(length)p+1 the prefactor τp/gs must have units of (length)−p−1, or, equivalently, units

of mass/(length)p. Hence this prefactor has units of mass divided by the spatial vol-

ume of the Dp-brane and be viewed as a tension, Tp = τp/gs. Therefore, unlike the

fundamental string, which has a tension proportional do α′−2, the Dp-brane tension

is proportional to 1/gs, what makes it a non-perturbative object.
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Le us now investigate another special case of the DBI action in which, as before,

the dilaton field is constant eφ = gs and Bab = 0, but now gMN = ηMN and Fab 6= 0.

In this case the DBI action can be expanded in powers of α′ and the first non-trivial

contribution is

−(2πα′)2 τp
4gs

∫
dp+1σ FabF

ab (4.9)

this shows that the DBI action for a singles Dp-brane is a generalization of the Yang-

Mills action with gauge group U(1) and coupling gYM = (2π)p−2α′(p−3)/2gs. The

Yang-Mills theory lives in the Dp-brane world-volume.

The Wess-Zumino term describe a non-trivial coupling between the NS-NS fields,

Fab and the R-R forms,

SWZ = Tp

∫ ∑
p

P [Cp+1] ∧ eP [B]+2πα′F (4.10)

where the sum extends over the forms present in the superstring theory in question

(for type IIB theory, for instance, we have C0, C2 and C4) and the exponential has

to be understood in terms of the wedge product.

4.4.2 D-brane charges

The Dp-brane word-volume Σp+1 is a (p+ 1)-dimensional hypersurface tha naturally

couples to the pullback of a (p+ 1)-form

Sp = Tp

∫
Σp+1

P [Cp+1] (4.11)

this can be viewed as a generalization of the coupling of a charged particle world-line

Σ1 to a Maxwell one-form S1 = q
∫

Σ1
P [A] = q

∫
Aµ

dxµ

dτ
dτ , where q is the charge of
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the particle. The action S1 represents the action of a external electric field provided

by Aµ over a charged particle, while Sp represent the action of a external eletric field

provided by Cp+1 over the Dp-brane. This shows that a Dp-brane is charged with

respect to a (p+ 1)-form Cp+1.

The action Sp is invariant under diffeomorphisms and under Abelian gauge trans-

formations Λp of rank p

Ap+1 → Ap+1 + dΛp (4.12)

There is a gauge invariant field strength associated to Ap+1, defined as Fp+2 = dAp+1,

whose flux is conserved when appropriately integrated in the coordinates of the space

transverse to the brane world-volume.

The (p+ 1)-orm Cp+1 has a magnetic dual Cmagn
7−p which is a (7− p)-form defined

by the relation

dCmagn
7−p = ?dCp+1 (4.13)

Therefore, a Dp-brane associated to Cp+1 has a magnetic dual D(6 − p)-brane that

couples to the gauge field Cmagn
7−p . The type IIB theory has a 0-form, a 2-form and a

4-form. The magnetic dual of the 0-form and of the 2-form are a 8-form and a 6-form,

respectively. The 4-form is said to be self-dual because it is equal to its magnetic dual

form.

In principle D-branes can decay into lighter objetcs, like closed strings, for ex-

ample. However, a Dp-brane will be stable if it is charged with respect to eletric

or magnetic R-R fields. This is because there isn’t any lighter object which is also

charged with respect to the R-R fields and then the Dp-brane cannot decay without

violating a conservation law. Thus, whether or not a superstring theory have stables

Dp-branes depends on the R-R fields present in the theory. Type IIB string theory has
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a 0-form, a 2-form, and a 4-form along with their magnetic duals 8-form and 6-form,

respectively. These forms allow the stability of the D1-brane, D3-brane, D5-brane,

D7-brane and of the D9-brane6 in type IIB theory.

4.4.3 N coincident Dp-branes

In the last section we saw that open strings ending on a single Dp-brane can be

described, at low energy, by a U(1) abelian gauge theory.

Non-abelian gauge theories can be introduced in string theory by considering a

stack of N coincident Dp-branes. Indeed, the quantization of open strings stretching

between the Dp-branes gives rise to U(N) massless gauge fields that live in the world-

volume of the branes. The two indices of non-abelian gauge fields can be visualized

as labeling in which Dp-brane the open string is ending. The excitations of the U(1)

subgroup of U(N) describe motion of the center of mass of the branes. Because of the

overall translation invariance, these excitations decouple from the other excitations

(motions of the branes relative to one another) that can be described by the SU(N)

subgroup of U(N).

In summary, at the low energy, the massless open strings excitations between

the D-branes can be described by a Yang-Mills theory with gauge group SU(N).

By considering unoriented strings one can obtain other gauge groups like SO(N) or

USp(N) [91].

6The D9-brane is usually disregarded because it requires additional conditions [92].
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4.4.4 Dp-branes as p-branes

Dp-branes can also be viewed as solutions of the supergravity field equations known

as p-branes. A p-brane is a solution that carry a charge with respect to a (p+1)-form

Ap+1. If this (p + 1)-form is one of the R-R fields of supestring theories this p-brane

is called a Dp-brane7.

A p-brane has a flat (p + 1)-dimensional hypersurface with invariance under the

group of translations Rp+1 and under the Lorentz group SO(p, 1). One can always

loook for a solution of the supergravity field equation with maximal rotational sym-

metry SO(9 − p) in the transverse directions [101]. The group of symmetry of a

p-brane is then Rp+1 × SO(p, 1)× SO(9− p).

Because of the the Poincaré symmetry the world-volume metric has to be a rescal-

ing of the Minkowski metric while the metric in the transverse direction has to be a

rescaling of the Euclidean metric. An anzats which incorporates the above restrictions

and solves the equations of motion is [91]

ds2 = Hp(r)
−1/2ηabdx

adxb +Hp(r)
1/2dyIdyI , (4.14)

eφ = gsHp(r)
(3−p)/4, (4.15)

Cp+1 =
(
Hp(r)

−1 − 1
)
dx0 ∧ dx1 ∧ ... ∧ dxp, (4.16)

BMN = 0, (4.17)

r2 =
9∑

I=p+1

yIyI , (4.18)

where xa, (a = 0, 1, ..., p) denotes coordinates of the brane world-volume and yI ,

(I = p+ 1, ..., 9) denotes coordinates perpendicular to the brane. The function Hp(r)

7Other p-branes include the fundamental string F1 and its magnetic dual brane NS5, that couples
to the Kalb-Ramond two-form B2, and to its magnetic dual form, respectively.
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has to be an harmonic function

9∑
I=p+1

∂

∂yI
∂

∂yI
Hp(r) = 0 (4.19)

This is the Laplace equation in the (9 − p) transverse directions. A solution of this

equation has the form Hp = A+B rp−7, where A and B are constants. The constant

A can be set equal to 1 by requiring the solution to recover the ten dimensional

Minkowski spacetime in the limit r → ∞ (far away from the brane). One usually

writes the other constante as B = L7−p
p , where Lp is another constant with units of

length. In terms of Lp the function Hp(r) reads [91]

Hp(r) = 1 +
(Lp
r

)7−p
. (4.20)

The constant Lp can be determined in terms of the charge of the Dp-brane solution,

as we explain below. To calculate the charge of the Dp-brane one must note that

the brane appears as pointlike charge in the space transverse to itself. Therefore,

the charge Q of the brane can be calculated by integrating the R-R flux through a

(8− p)-dimensional sphere at the infinity

Q =
1

κ2
10

∫
S8−p

?Fp+2, Fp+2 = dCp+1. (4.21)

For a supergravity solution representing N coincidents Dp-branes we have Q = N Tp.

Calculating Q for the above solution and imposing the result to be equal to N fixes

the constant Lp to be [91]

L7−p
p = (4π)(5−p)/2 Γ

(7− p
2

)
gsN α′(7−p/2) (4.22)
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Note that the mass of the N coincident Dp-branes is proportional to their charge

Q,

M = Vol(Rp,1)N Tp = Vol(Rp,1)Q. (4.23)

this represents an extremal p-brane solution, because it saturates a BPS bound M ≥

cpQ, where cp is some numerical constant. Because of that these solutions are also

refered to as BPS solutions [100].

There are also non-BPS solutions, also known as near-extremal solutions, for which

the dilaton and the R-R forms are the same as in the extremal case, the charge is also

given by Q = N Tp, but the mass is no longer proportional to Q. These solutions are

given by [91]

ds2 = Hp(r)
−1/2

(
− f(r)dt2 + dxidxi

)
+Hp(r)

1/2
( dr2

f(r)
+ r2dΩ2

8−p

)
, (4.24)

f(r) = 1− r7−p
h

r7−p . (4.25)

where i = 1, 2, ..., p and the transverse coordinates are written as dyIdyI = dr2 +

r2dΩ2
8−p. These solutions represent black p-branes, which are basically black-holes

that extend in p spatial directions but are localized (in the sense that they do not

extend to infinity). Since f(rh) = 0 the parameter rh represents the radial position

of the black p-brane horizon.
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Chapter 5

The AdS/CFT correspondence

In this chapter we present an introduction to the AdS/CFT correspondence1. We

first give a motivation for the correspondence and discuss some basic checks of it. We

then explain how to use holographic techniques to compute correlation functions and

transport coefficients of a strongly coupled system.

5.1 Motivating the AdS/CFT correspondence

In this section we motivate the AdS/CFT correspondence studying a system of N

D3-branes, with N fixed e large, in type IIB string theory. Let g be the string coupling

constant. We start with g such that gN << 12. We will take the strongly coupled

and low energy limits of this system. Depending on the order in which these limits

are taken we obtain different pictures described by different theories, as shown in

figure 1. One of this theories is N = 4 super Yang-Mills (SYM) with gauge group

1What follows is based on [93–97]
2g is related to the expectation value of the dilaton. In this case, because of the conformal

symmetry of the SYM theory, we can tune the g for any value we want.

52



SU(N) in R3,1 e the other is type IIB string theory in AdS5 × S5. As theses two

theories are obtained from the same basic objects, is natural to conjecture that they

are equivalent descriptions of the same system. In what follows we give more details

of what happens in these two limits.

5.1.1 First low energy limit and then strongly coupled limit

At the begining gN << 1 so that we can ignore the backreaction of the spacetime

geometry. In this picture we have closed strings in R9,1 and open strings that begin

and end on the D3-branes. The strengh of the interaction of the closed strings with

each other and with the open strings is controlled by the dimensionless coupling

constant GE8, where G is the Newton constant and E is the scale of energy in which

the interaction takes place. Hence, at low energies, the closed strings are free and

the interacting sector is described by the open strings excitations of the branes. If

the energy is suficiently small the massive open strings modes will not be excited

and only the massless modes will be relevant. The dynamics of these massless modes

is described by the N = 4 SYM with gauge group SU(N) in R3,1. Note that, as

long as we stay at the low energy limit, the closed string sector is always decoupled

from the open string sector, so, if we take the strong coupling limit gN >> 1 we will

obtain two decoupled sectors: closed strings in R9,1 and the strongly interacting N =

4 theory in R3,1.

5.1.2 First strongly coupled limit and then low energy limit

When we take the strong coupling limit, gN >> 1, the presence of the branes will

deform the space-time around them. In this case, the D3-branes are described by a
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nontrivial solution of the massless field equations of type IIB string theory (super-

gravity). This solution is given by [98, 99]:

ds2 = H−1/2(−dt2 + d~x2) +H1/2(dr2 + r2dΩ2
5) (5.1)

where ~x are the coordinates along the D3-branes and the second parenteses is the

metric of the directions transverse to the D3-branes. H(r) is given by

H = 1 +
L4

r4
(5.2)

where

L4 = 4πgN`4
s (5.3)

For r >> L the metric reduces to that of a flat space-time, R9,1. In the strong gravity

region, r << L, we have

ds2 = ds2
AdS5

+ L2dΩ2
5 (5.4)

where

ds2
AdS5

=
r2

L2
(−dt2 + d~x2) +

L2

r2
dr2 (5.5)

So, we see that very close to the D3-branes the 10-dimensional metric factorizes into

AdS5 × S5. This solution is well represented by a throat geometry, as ilustrated in

Fig. 2. In this description there are no open strings and the D3-branes correspond

to a space-time geometry where closed strings propagate.
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Figure 5.1: Throat geometry generated by a system ofN coincident D3-branes. Figure

from [93].

Now, let’s take the low energy limit of this system from the point of view of a

observer far away from the branes, at r >> L, where the space is asymptotically flat.

To this observer, the low energy excitations are of two types: low energy excitations

of the asymptotically flat region and finite energy excitations from the throat part

of the geometry. Low energy excitations from the flat region correspond to massless

modes of closed strings. These excitations decouple from each other at low energies

because their interactions are proportional to GE8. The finite energy excitations

from the throat have to climb a gravitational potential to reach the flat region where

they are perceived as low energy excitations. For this reason, the whole tower of

massive string excitations are relevant from the point of view of the observer in the

flat region. Finally, it can be shown that these two types of excitations decoupled

at small energies [96, 100]. In conclusion, we have two decoupled system: free closed
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strings in the asymptotically flat region and closed strings in AdS5 × S5.

5.1.3 The AdS/CFT conjecture

As we have seen in the last two subsections, a system of N D3-branes have two com-

pletely different descriptions at the low energy and strongly coupled limits, depending

on the order in which these limits are taken. In both descriptions we have free closed

strings in flat space-time. The interacting parts are N = 4 SYM theory in R3,1,

with gauge group SU(N), in one of these descriptions, and type IIB string theory in

AdS5 × S5 in the other description. It is then natural to conjecture that these two

pictures describe the same physics which implies that the two theories are equivalent.

As the gravity theory is defined in ten dimensions and the gauge theory (the N =

4 theory) is defined in four dimensions, it is necessary to clarify the role of the six extra

dimensions. The string theory lives in AdS5 × S5. In general, we consider situations

where we do a compactification on S5 in such a way that we deal with a 5 dimensional

gravity theory. Nevertheless, the gravity theory still have one dimension more than

the gauge theory, this extra dimension corresponds to the AdS radial coordinate r.

For each constant value of the AdS radial coordinate the corresponding subspace

is conformally flat. Therefore, one can say that we have a 4-dimensional Minkowski

spacetime for each constant value of r. The boundary of AdS, in particular, is also

a 4-dimensional Minkowski spacetime. It is possible to show that the AdS radial

coordinate is related to the renormalization group (RG) scale of the N = 4 theory.

This fact provides a geometrical visualization of the RG flow, since one can picture

different 4-dimensional effective theories, each one corresponding to a given value of

r. Using this geometrization of the RG flow together with the holographic principle,
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which asserts that a theory of quantum gravity in a region of space should be described

by a non-gravitational theory living on the boundary of that region, the N = 4 theory

can be thought as living on the boundary of AdS. Because of that, the gravitational

theory (string theory), which is defined in the interior of AdS, is also called bulk

theory, and the N = 4 theory is also called boundary theory. In what follows we also

refer to the N = 4 theory as the gauge theory.

5.2 Parameters of the correspondence

To analyse the situations where the duality is useful it is important to study the

relations between the parameters in both theories (the gauge theory and the gravity

theory). The relevant parameters in the N =4 theory are coupling constant gYM and

the constant N . For type IIB string theory in AdS5×S5 the relevant parameters are

the string coupling g and radius L of S5. In order to deal only with dimensionless

parameters we will express L in units of the string length `s.

As we said before, the N = 4 theory appears in the low energy limit of a system

of N D3-branes. The precise relation between the parameter gYM and g is

g2
YM = 4πg (5.6)

the relation between the other parameters is given by the black-brane solution for the

system of D3-branes in the limit gN >> 1. According to Eq. (5.3) we have

L4 = 4πgN`4
s = g2

YMN`
4
s (5.7)
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in terms of the ’t Hooft coupling we have

L4

`4
s

= λ (5.8)

g =
λ

4πN
(5.9)

It is also interesting to express this relation in terms of the 10-dimensional Newton

constant G(10). In string theory this constant can be written in terms of the string

length `s and the string coupling g by the relation3

16πG(10) = (2π)7g2`2
s (5.10)

Using the relations above it is easy to show that

G(10) =
π4L8

2N2
(5.11)

As G(10) = `8
p, where `p is the Planck length, we can write

(`p
L

)8

=
π4

2N2
(5.12)

The equations (5.8) and (5.12) will be relevant for us because the ratio `s/L tell us

whether stringy correction are important and, in the same way, the ratio `p/L tell us

wheter quantum corrections are important.

Let us now discuss some limits of these parameters that are relevant in applications

involving the AdS/CFT correspondence. If `p/L << 1 the system can be treated

3It is also very common to use the symbol κ10, which is related to G(10) by the equation κ2
10 =

8πG(10).
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classically, which means that we can ignore the quantum fluctuations of the spacetime.

From the relations above we can see that this happens in the large N limit. Therefore,

gravitational quantum corrections can be incorporated in a power series of `8
p/L

8,

which corresponds to corrections in a power series of 1/N2 in the N = 4 theory.

Stringy corretions, which are related to the difference between point particles and

strings, are controlled by the dimensionless parameter `s/L. The limit `s/L << 1

means that, for the system under consideration, the strings can be treated as point

particles. In this case, the massive modes, with masses of the order ms = `−2
s ,

require to much energy to be excited and only the massless modes will be relevant.

For the particular case of type of type IIB string theory, this limit leads to type

IIB supergravity theory. As the scale of curvature of the system is given by 1/L2,

corrections in a power series of `2
s/L

2 corresponds to addition of higher curvatures

terms in the lagrangian of the effective low-energy gravity theory. As we can see from

the relations above, this corresponds to corrections in a power series of 1/
√
λ in the

gauge theory.

Note that, if we take both limits, that is `p/L << 1 and `s/L << 1, the theory

obtained is classical type IIB supergravity. On the other side of the duality we get

the N =4 with gauge group SU(N) at strong coupling and in the large N limit. This

limit is relevant because we can investigate non-perturbative aspects of the N = 4

theory using a classical gravity theory in a perturbative regime4.

4The classical gravity theory is weakly coupled because taking the large N limit with the ’t Hoot
coupling fixed requires a small g
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5.3 Matching symmetries and spectrum

Both sides of the duality share the same group of global symmetry. The N = 4 SYM

theory have: the conformal symmetry, with group SO(2, 4); the R-symmetry, with

group SU(4) ∼ SO(6); Poincare supersymmetries, generated by 16 supercharges,

and superconformal symmetries, generated by 16 supercharges. The total number of

supercharges is 32, as discussed in 3.3.1. All these symmetries can be join together

forming the supergroup SU(2, 2|4).

The symmetries of type IIB string theory in AdS5×S5 are: the isometry of AdS5,

with group SO(2, 4), the isometry of S5, with group SO(6), and the supersymmetry

transformations generated by 32 supercharges. Again, the supergroup which join all

these symmetries is SU(2, 2|4).5

The spectrum of both theories can be organized in terms of representations of

the superconformal group SU(2, 2|4). From the point of view of the N = 4 SYM

theory, the spectrum can be organized in terms of superconformal primary operators

and theirs descendants, as discussed in 3.3.2. A generic operator O(x) in this repre-

sentation is characterized by a scaling dimension, ∆, by a Lorentz structure, and by

R-symmetry quantum numbers.

In the supergravity side, after compactification in S5, each SUGRA field gives rise

to a tower of KK modes with a given mass that depends on the Lorentz structure

and on the SO(6) quantum numbers of the fields. The resulting spectrum can be

organized in terms of the mass, Lorentz structure and SO(6) quantum numbers of

this fields.

As will see in the following, the AdS/CFT correspondence predictcs a one-to-

5Both theories have also the so-called S duality, with gauge group SL(2,Z).
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one correspondence between fields of the gravity theory and operators of the gauge

theory. The field and the operator must have the same quantum numbers and there is

a relation between the scaling dimension ∆ of the operator and the mass m of the bulk

field. For the case of a scalar bulk field, for instance, the relation is ∆(∆−4) = m2L2.

Thus, if the correspondence is true, given a gauge theory operator O(x) with

scaling dimension ∆, there must be a corresponding field in the gravity theory, with

the same quantum numbers, and with a mass equal to the one predicted by the

AdS/CFT, which is determined by ∆.

However, this matching between fields and operators is not easy to verify, because

the scaling dimension of generic operators of the gauge theory receives quantum

corrections. As the AdS/CFT duality is useful when the gauge theory is strongle

coupled, this quantum corrections are difficult to calculate. A way to circumvent this

difficult is to work with chiral primary operators (discussed in Section 3.3.2), whose

scaling dimensions are protected against quantum corrections. From the point of view

of the gravity theory, one must look for the corresponding short representations. It

turns out that the supergravity KK modes in AdS5 are in such short representations

and, by consequence, they are dual to chiral primary operators.

In fact, a perfect matching between chiral primary operators and all the KK modes

of type IIB supergravity was verified [101]. As an example of how this maching is

done, consider an operator of the form

O(x) = Tr
[
FµνF

µν
]

(5.13)

as O(x) is a Lorentz scalar, has ∆ = 4 and a singlet under the SO(6) symmetry,

there must be a dual field with the same quantum numbers and with mass m2L2 =
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4(4−4) = 0. The dual field is the zero mode of the dilaton, φn=0, with massmn=0 = 06,

which is also a Lorentz scalar and a singlet under SO(6). Consider now an operator

of the form

Oi1...in = Tr
[
FµνF

µνA(i1 ...Ain)
]

(5.14)

where A(i1...in) is the traceless symmetric product of the scalar fields A′ms. This

operator has scaling dimension ∆ = 4 + n, and transforms as a product of 6’s under

SO(6). The corresponding bulk field must have mass given by m2L2 = n(n + 4). In

fact, the associated bulk field is φn, which also transforms as a traceless symmetric

product of 6’s under SO(6) and have mass m2L2 = n(n+ 4) (as given by (5.21)).

5.4 Bulk fields in AdS5

In this section we describe some general properties of the fields of type IIB super-

gravity in AdS5 × S5. Let x be a coordinate on AdS5 and y a coordinate on S5. A

generic bilk field φ(x, y) can be expanded in terms of spherical harmonics in S5

φ(x, y) =
∞∑
n=0

φn(x)Y n(y) (5.15)

where Y n(y) ∼ y(I1yI2 ...yIn) are spherical harmonics in S5. They satisfy the equation

∇2
S5 Y n(y) = −n(n+ 4)

L2
Y n(y) (5.16)

6φn and mn will be defined in Section 5.4
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The type IIB SUGRA action, after the dimensional reduction on S5, has the following

form

S5 =
1

16πG(5)

∫
d5x
[√
−g
(
R +

12

L2

)
+ Lmatter

]
(5.17)

where R is the 5-dimensional scalar of curvature and Lmatter is the lagrangian for the

matter fields, which includes the infinite tower φn(x) of components of the SUGRA

fields coming from the expansion on S5. The 5-dimensional Newton constant G(5)

can be obtained from the 10-dimensional Newton constant by the equation G(5) =

G(10)/(L
5Ω5), where Ω5 is the volume of the unity S5. Using that G(10) = π4L8/(2N2)

one can show that

G(5) =
π

2N2
L3 (5.18)

If we set all the matter fields to zero, the maximally-symmetric solution of the

equations of motion derived from the action (5.17) is given by

ds2
AdS =

L2

z2

(
− dt2 + d~x2 + dz2

)
(5.19)

which is the AdS5 metric of Eq. (5.5) with z = L2/r. In these coordinates the

boundary is located at z = 0.

The fields φn, viewed as living in AdS5, aquire a mass equal to the eigenvalue of

the laplacian on S5.

Consider, for example, a scalar field ϕ(x, y) in AdS5×S5. The equation of motion

for this field is

∇2ϕ(x, y) = 0 (5.20)

Decomposing the ten-dimensional laplacian as ∇2 = ∇2
AdS5

+ ∇2
S5 , and expanding
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the scalar field in terms of spherical harmonics, ϕ(x, y) =
∑

k ϕn(x)Y n(y), we have

(∇2
AdS5

+m2
n)
∑
n

ϕn(x) = 0, m2
n = n(n+ 4)/L2. (5.21)

Note that φn transforms as traceless symmetric products of 6’s under the SO(6)

symmetry group.

5.5 Correlation functions

5.5.1 Euclidian correlation functions

In this section we explain how to obtain the gauge theory correlators from gravity in

the Euclidean formulation of the AdS/CFT correspondence. The Euclidean version

of the AdS5 metric is

ds2
AdS =

L2

z2

(
dτ 2 + d~x2 + dz2

)
(5.22)

where x = (τ, ~x) denote coordinates of the gauge theory, and z is the AdS radial

coordinate. In these coordinates, the boundary of AdS5 is located at z = 0.

According to [2, 3], there is a one-to-one correspondence between bulk fields Φ(x, z)

and operators O(x) of the gauge theory. The boundary value of the bulk field (prop-

erly renormalized) act as a source J(x) for the operator O(x). The field and the

operator identified under this map must have the same quantum numbers under the

global symmetries of the theory. The mass m of the bulk fields is related to the scaling

dimension ∆ of the gauge theory operators. This relation depends on the Lorentz
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structure of Φ and O, as shown in the equation below

scalars m2 = ∆(∆− 4)

spin 1/2, 3/2 |m| = ∆− 2

p− form m2 = (∆− p)(∆ + p− 4)

spin 2 m2 = ∆(∆− 4) (5.23)

where the scaling dimension ∆ corresponds to the largest root of the above equations.

Given this map, known as the field/operator correspondence, the AdS/CFT cor-

respondence can be state as

〈
e
∫
d4xJ(x)O(x)

〉
CFT

= Zstring

[
φbdry(x) = J(x)

]
(5.24)

where the left-hand side is the generating functional for the correlators of O(x) cal-

culated in the SYM theory and the right-hand side is the partition function of type

IIB string theory with the condition that φbdry(x) = J(x) at the boundary of AdS5.

In the above equation, φbdry(x) is not the boundary value of the bulk field Φ(x, z),

because this quantity generaly diverges at z = 0. In fact, the the near-boundary

behaviour of this field is of the form

Φ(x, z) ≈ f(z)φbdry(x), (5.25)

where f(z) is a function that diverges at the boundary z = 0 when m 6= 0. Therefore,

φbdry(x) can be defined as

φbdry(x) = lim
z→0

Φ(x, z)

f(z)
(5.26)
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The right-hand side of Eq. (5.24) can be simplified in the large-N and large-λ

limit, in which type IIB string theory can be effectively described by type IIB SUGRA.

In this limit we can write

Zstring[φ] = e−SSUGRA[φclass] (5.27)

where SSUGRA[φclass] is the classical supergravity action evaluated on a classical solu-

tion φclass. Here, φ denotes a collection of bulk fields of type IIB string theory and

φclass denotes a collection of bulk fields satisfying the classical equations of motion of

type IIB SUGRA.

Using the Eq. (5.27), the connected correlators of the SYM theory can be calcu-

lated as 〈∏
n

O(xn)

〉
=
∏
n

δ

δJ(xn)
SSUGRA

[
φbdry = J

]
J=0

(5.28)

where φbdry(x) satisfies the classical equations of motion and is regular everywhere in

AdS5.

One- and Two-point functions

Now we exemplify how the calculation of one- and two-point functions using the

AdS/CFT prescription. We will consider a gravity theory in AdSd+1 space. Let ϕ be

a bulk field with the following effective action

S =

∫∫
AdS

dz ddxL[ϕ, ∂ϕ] (5.29)

where z is the AdS radial coordinate and L[ϕ, ∂ϕ] is the lagrangian density for the

field ϕ. We will use as system of coordinates in which the AdS boundary is located
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at z = 0. To avoid complications, we will introduce a IR cuttof and put the boundary

at z = ε. In the end of the calculations we set ε→ 0.

According to (5.28), if ϕ is the source of the operator O(x), the one point function

of this operator in the presence of the source ϕ is given by

〈O(x)〉ϕ =
δSon−shell

δϕ
(5.30)

We now explain how to calculate the the action on-shell, Son−shell, and its functional

derivative δSon−shell

δϕ
.

Under a general transformation ϕ→ ϕ+ δϕ, tha action changes as

δS =

∫∫
AdS

dz ddx
[∂L
∂ϕ

δϕ+
∂L

∂(∂µϕ)
δ(∂µϕ)

]
(5.31)

using integration by parts and the equations of motion, it is easy to show that the

variation of the action on-shell is

δSon−shell =

∫∫
AdS

dz ddx ∂µ

( ∂L
∂(∂µϕ)

)
= −

∫
∂AdS

ddx
∂L

∂(∂zϕ)
δϕ
∣∣∣
z=ε

(5.32)

where we required that [∂L/∂(∂zϕ)] δϕ vanishes at z →∞.

In analogy we classical mechanics, we define the canonical momentum conjugated

to ϕ as

Π ≡ − ∂L
∂(∂zϕ)

(5.33)

where z plays the role of time. With this notation, the variation of the action on-shell

can be written as

δSon−shell =

∫∫
AdS

dz ddxΠ(x, ε) δϕ(x, ε) (5.34)
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Then, we find the on-shell action

Son−shell =

∫∫
AdS

dz ddxΠ(x, ε)ϕ(x, ε) (5.35)

and its functional derivative

δSon−shell

δϕ(x, ε)
= Π(x, ε) = − ∂L

∂(∂zϕ)
(5.36)

As we are dealing with an effective action, the on-shell action generally diverges and

needs to be renormalized. This is done with the addition of a conter term Sct defined

at the boundary of AdS. The renormalized action is defined as

Sren = Son−shell + Sct (5.37)

and the associated functional derivative is

δSren

δϕ(x, ε)
≡ Πren(x, ε) = Π(x, ε) +

δSct

δϕ(x, ε)
(5.38)

where we defined the renormalized conjugated momentum Πren(x, ε) as the functional

derivative of the renormalized Sren action with respect to the boundary field ϕ(x, ε).

Finally, the renormalized one-point function of O(x) in the presence of a source ϕ

is given by

〈O(x)〉ϕ = lim
ε→ 0

Πren(x, ε) (5.39)

Once obtained the one-point function, one can use linear response theory to determine

the two-point function. From the point of view of the gauge theory, the one-point
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function is calculated as

〈O(x)〉ϕ =

∫
[DA]O(x)eSE [A]+

∫
ddy ϕ(y)O(y) (5.40)

where A denote a collection of fields of the gauge theory ad SE is the Euclidean gauge

theory action. Expanding the exponent in a power series of ϕ, we have

〈O(x)〉ϕ = 〈O(x)〉ϕ=0 +

∫
ddy 〈O(x)O(y)〉ϕ(y) + ... (5.41)

wihtout loss of generality, we can put 〈O(x)〉ϕ=0 = 0 in such a way that 〈O(x)〉ϕ

measures the fluctuations of O(x) away from its vacuum expectation value. Thus, at

linear order in ϕ, we have

〈O(x)〉ϕ =

∫
ddy GE(x− y)ϕ(y) (5.42)

where GE(x− y) is the Euclidean two-point function, defined as

GE(x− y) = 〈O(x)O(y)〉 (5.43)

Using the Fourier representations

ϕ(y) =

∫
ddk

(2π)d
ϕ(k)eik·y,

GE(x− y) =

∫
ddq

(2π)d
GE(q)eiq·(x−y),

〈O(x)〉ϕ =

∫
ddk

(2π)d
〈O(k)〉ϕ e

ik·x, (5.44)
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one can check that

〈O(k)〉ϕ = GE(k)ϕ(k) (5.45)

We then find that, in momentum space, the two-point function is given by the simple

formula

GE(k) =
〈O(k)〉ϕ
ϕ(k)

(5.46)

Performing the inverse Fourier transformation, we finally obtain

〈O(x)O(y)〉 =

∫
ddk

(2π)d
〈O(k)〉ϕ
ϕ(k)

eik·(x−y). (5.47)

Exemple: a scalar field in Euclidean AdS

Now we discuss the particular case of a massive scalar field φ in Euclidean AdSd+1.

The metric in this case is

ds2 =
L2

z2
(dz2 + δµνdx

µdxν) (5.48)

Let us consider that the scalar field have an effective action of the form

S = −1

2

∫
ddx
√
g
[
gMN∂Mφ∂Nφ+m2φ2

]
(5.49)

The equation of motion for this field is

1
√
g
∂M

(√
ggMN∂Nφ

)
+m2φ2 = 0 (5.50)
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Using the Fourier representation

φ(x, z) =

∫
ddx

(2π)d
φk(z) eik·x (5.51)

the equation of motion can be written as

zd+1∂z(z
1−d∂zφk)− z2k2φk −m2L2φk = 0 (5.52)

where k2 = ω2
E + ~k2 is the Euclidean momentum. Near of the boundary, at z ≈ 0, it

is easy to see that φk has the following behaviour

φk = A(k)zd−∆ +B(k)z∆ (5.53)

where

∆ =
d

2
+

√
d2

4
+m2L2 (5.54)

We present this near-boundary solution in this asymmetric form because the quantity

∆ has physical meaning that we will clarify later. For later purposes, let us define

the quantity ν =
√

d2

4
+m2L2 = 2∆− d. Going back to position space, we can write

φ(x, z) = A(x)zd−∆ +B(x)z∆ (5.55)

Note that, as d−∆ = d
2
−
√

d2

4
+m2L2 < 0 < ∆, the dominant term very close to the

boundary is A(x) zd−∆, which diverges as z → 0. Thus, the renormalized boundary

value of φ(x, z), which we denote as φbdry, is defined as

φbdry = lim
z→ε

z∆−dφ(x, z) = A(x). (5.56)
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As discussed in section 5.5.1, this quantity acts as a source for the operator O(x).

From the point of view of the boundary theory, the correlation functions of the

operator O(x) are obtained by adding to the boundary action a term of the form

∫
ddx
√
γ φ(x, ε)O(x, ε) (5.57)

where γ = (L/ε)2d is the determinant of the induced metric on the boundary. Using

that φ(x, ε) = εd−∆φbdry, we obtain

∫
ddx(L/ε)d εd−∆φbdry O(x, ε) (5.58)

in order to make this term independent of the cutoff ε, we need to absorve the multi-

plicative factor ε−∆ into O(x, ε). This can be done considering that O(x, ε) = O(εx) =

ε∆O(x), where the last property comes from that fact that the boundary theory is

scale invariant. This make evident that ∆ corresponds to the scalar dimension of the

operator O(x), and also show us that the AdS radial coordinate can be used to make

a change of scale in the boundary theory.

Using (5.33), the momentum conjugated to φ(x, z) is Π(x, z) =
√
g gzz ∂zφ(x, z).

The on-shell action is given (5.34) and is equal to

Son−shell =
1

2

∫
ddx
(√

g gzz φ ∂zφ
)
z=ε

(5.59)

As the on-shell action is calculated at the boundary, one can use the near-boundary

expression for φ(x, z), given by (5.55), to calculate this quantity. The result is the
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following

Son−shell =
Ld−1

2

∫
ddx

[
(d−∆)A2(x)ε−2ν + dA(x)B(x) + ∆B2(x)ε2ν

]
(5.60)

Note that, as 2ν > 0, the first term in the integral is divergent, and the above action

needs to be renormalized. This is done with the addition of a boundary term that

cancels the divergente term. One could naively guess that this is easily done with the

additon of a term of the form

−1

2

∫
ddx (d−∆)A2(x)ε−2ν (5.61)

but this is not the case. In order to maintain the invariance under diffeomorphisms of

the theory, the counter-terms need to be expressed in terms of the bulk fields living

at the regulated surface z = ε. It turns out that the appropriate counter-term for

this action is [102]

Sct = −1

2

d−∆

L

∫
∂AdS

ddx
√
γ φ2 (5.62)

where γ is the determinant of γµν , the metric induced at z = ε, which is given by

ds2
z=ε = γµνdx

µdxν =
L2

ε2
δµνdx

µdxν (5.63)

In the calculation of the counter-term above we assume that 2ν is not an integer. If

that is the case there will be an extra logaritmic term, as explained in [102]. The

renormalized action is then given by

Sren = Son−shell + Sct =
Ld−1

2
(2∆− d)

∫
ddxA(x)B(x) (5.64)
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one should be carefull in calculating the functional derivatives of this action with

respect to φbdry(x) = A(x), because B(x) also depends functionally of A(x). Indeed,

we will show below that

B(k) = χ(k)A(k) (5.65)

In position space, this relation is written as

B(x) =

∫
ddy χ(x− y)A(y) (5.66)

Thus, the on-shell action becomes

Sren =
Ld−1

2
(2∆− d)

∫
ddx

∫
ddy χ(x− y)A(x)A(y) (5.67)

We emphasize that, as φbdry(x) = A(x), is this quantity that acts as a source for the

dual operator O(x), and the n-point functions are calculated by taking derivatives of

the renormalized action with respect to A(x). The one-point function in the presence

of the source A, for example, is calculated as

〈O(x)〉A =
δSren

δA(x)
=
Ld−1

2
(2∆− d)

∫
ddy χ(x− y)A(y) = 2νLd−1B(x) (5.68)

where we use 2∆− d = 2ν in the last equatity. In momentum space, this relation is

written as

〈O(k)〉A = 2νLd−1B(k) (5.69)

from this relation we can easily calculate the two-point function in momentum space

as

GE(k) =
〈O(k)〉A
A(k)

= 2νLd−1B(k)

A(k)
(5.70)
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For this particular case of a scalar field in AdSd+1 we can calculate A(k) and B(k)

analitically, as we will show below. The equation of motion for φk(z) is

zd+1∂z(z
1−d∂zφk)− z2k2φk −m2L2φk = 0 (5.71)

The general solution of this equation is

φk(z) = zd/2
[
C1Jν(−ikz) + C2Yν(−ikz)

]
(5.72)

Where C1 and C2 are constants. However, to analize the behaviour of φk(z) for large

z, is more convenient to work with the Hankel functions

φk(z) = zd/2
[
B1H

(1)
ν (−ikz) +B2H

(2)
ν (−ikz)

]
(5.73)

where B1 and B2 are also constants. The asymptotic behavior of the Hankel functions

for large argument is

H(1,2)
ν (x) ≈ e±ix√

x
(5.74)

This implies that

H(1,2)
ν (−ikz) ≈ e±kz√

z
(5.75)

Thus, to require regularity for large z we choose B1 = 0, and the solutions becomes

φk(z) = zd/2H(2)
ν (−ikz) (5.76)
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Near of the boundary the above solutions has the form

φk(z) = − (−i)−ν2νk−ν

i sin (νπ)Γ(1− ν)︸ ︷︷ ︸
A(k)

zd−∆ +
eiπνkν2−ν(−i)ν

i sin (νπ)Γ(1 + ν)︸ ︷︷ ︸
B(k)

z∆ (5.77)

from this expression one can see that

B(k)

A(k)
= −Γ(1− ν)

Γ(1 + ν)

(k
2

)2ν

=
Γ(−ν)

Γ(ν)

(k
2

)2ν

(5.78)

With the above result we can calculated the two-point function in momentum space

GE(k) = 2ν
Γ(−ν)

Γ(ν)

(k
2

)2ν

(5.79)

The two-point function in position space is finally given by

GE(x) = 〈O(x)O(0)〉 =

∫
ddk

(2π)d
eik·xGE(k) =

2νLd−1

πd/2
Γ(d

2
+ ν)

Γ(−ν)

1

|x|2∆
(5.80)

where we use the formula

∫
ddk

(2π)d
eik·xkn =

2n

πd/2
Γ(d+ν

2
)

Γ(n
2
)

1

|x|2∆
(5.81)

The result for the two-point function 〈O(x)O(0)〉 ∼ |x|−2∆ is expected from the fact

that the operator O(x) has scaling dimension ∆.
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5.5.2 Real-time correlators

In this section we describe the recipe to calculate real time correlators in AdS/CFT.

One could naively guess that we could obtain this correlators by applying the same

procedures of the Euclidean case, but this is not the case. In fact, as discussed in

[103, 104], the real-time correlators cannot be obtained by an action principle. This

happens because, while in the Euclidean case a solution is completely fixed by its

value at the boundary and by the condition of regularity at the horizon, in Lorentzian

signature these two conditions are not enough, because there is an ambiguity related

to the fact that we can have incoming-waves and outgoing-waves at the horizon of the

black brane. It turns out that the solution representing incoming-waves is related to

the retarded correlator, while the solution representing an outgoing-wave is related

to advanced correlators. We will only focus on retarded correlators, because this

quantity is important in determination of transport coefficients.

Real-time correlators are usually discussed when we have a black brane in AdS5.

In this case, the metric is

ds2 =
L2

z2

(
− fdt2 + d~x2

)
+

L2

z2f
dz2, f(z) = 1− z4

z4
H

(5.82)

where the boundary of the space is at z = 0 and the black brane horizon is located

at z = zH. Note that we can easily recover the pure AdS case by taking the limit

zH →∞.

Retarded correlators can be obtained by performing an analytic continuation of

the Euclidean correlators. However, this is difficult to do when we only have numerical

results, what unfortunately corresponds to the most cases.

The way to circunvent this is to perform an analytic continuation of the classical
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Euclidean solution φE(ωE, ~k) and of the associated conjugated momentum ΠE(ωE, ~k)

as

φR(ω,~k) = φE(−i(ω + iε), ~k)

ΠR(ω,~k) = ΠE(−i(ω + iε), ~k) (5.83)

where φR(ω,~k) and ΠR(ω,~k) are the corresponding quantities in Lorentzian signature.

As before, the one- and two-point functions in momentum space are given by

〈O(k)〉A = 2νLd−1B(k),

GR(k) = 2νLd−1B(k)

A(k)
(5.84)

where A and B are obtained from the near-boundary expansion of φR

φR(k, z) ≈ A(k)zd−∆ +B(k)z∆ (5.85)

With the above prescription, the φR(ω,~k) satisfy an in-falling boundary condition at

the horizon. Let us verify that for the case of a massive scalar field in a black brane

background which is asymptotically AdSd+1

The equation of motion for this field in momentum space and in Euclidean signa-

ture is

zd+1∂z(z
1−df∂zφE)− ω2

Ez
2

f
φE − ~k2z2φE −m2L2φE = 0 (5.86)

The two independent solutions of this equation in the near-horizon limit are

φ(+) ≈ (z − zH)ωEzH/4, φ(−) ≈ (z − zH)−ωEzH/4 (5.87)
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For ωE > 0, the solution that is regular at z = zH is φE = φ(+). Performing the

analytic continuation we find

φR(ω,~k) = φE(−i(ω + iε), ~k) = (z − zH)−iωzH/4, (5.88)

that indeed corresponds to an incoming-wave at the horizon, as we can easily see by

writing this near-horizon solution in position space

φR(x, z) ≈ ei(k·x−ωρ), where ρ =
zH

4
log (z − zH) (5.89)

Of course, it is not necessary to first calculate the Euclidean classical solutions and

then perform an analytic continuation to obtain the retarded correlators. One can

solve directly the equations of motion in Lorentzian signature, impose the incoming-

wave boundary condition, find the near-boudary behaviour (5.85) and then apply the

prescription (5.84).

Example: a scalar field in Lorentzian AdS

The metric of AdSd+1 in Lorentzian signature is

ds2 =
L2

z2
(dz2 + ηµνdx

µdxν) (5.90)

In Lorentzian signature, the scalar field have an effective action of the form

S =
1

2

∫
ddx
√
−g
[
gMN∂Mφ∂Nφ+m2φ2

]
(5.91)
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The equation of motion for this field in momentum space is

zd+1∂z(z
1−d∂zφk)− z2(−ω2 + ~k2)φk −m2L2φk = 0 (5.92)

This equation have a different solution depending on whether k = (ω,~k) is space-like

on time-like. We will consider the time-like case, since the space-like case provides

the same solution (and the same one- and two-point functions) as the Euclidean case.

Defining q =
√
−k2, the general solution of the above equation is

φk(z) = C1z
d/2H(1)

ν (qz) + C2z
d/2H(2)

ν (qz) (5.93)

where C1 and C2 are arbitray constants. Assuming ω > 0, the solution that represents

an incoming-wave at the horizon (z →∞) is

φk(z) = zd/2H(1)
ν (qz) ≈ eiqz

√
qz

(5.94)

The near-boundary behaviour of this solution is

φk(z) = − 2νq−ν

i sin (νπ)Γ(1− ν)︸ ︷︷ ︸
A(q)

zd−∆ +
e−iπνqν2−ν

i sin (νπ)Γ(1 + ν)︸ ︷︷ ︸
B(q)

z∆ (5.95)

The ratio B/A becomes

B(q)

A(q)
=

Γ(−ν)

Γ(ν)

(q
2

)2ν

e−iν (5.96)

With the above result it is then clear that, as in the Euclidean case, the two-point

function is given by 〈O(x)O(0)〉 ∼ |x|−2∆.
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5.6 Generalizations

The AdS/CFT correspondence, as described in this chapter as an equivalence between

N = 4 SYM theory and type IIB superstring theory, can be extended in several ways.

The most basic type of extensions is the ones whose the bulk theory lives in a space

which is not exactly AdS5×S5, but is asymptotically AdS5×S5. The most important

case is the one in which we have a black-brane in the interior of AdS5. In this case,

the metric is given by

ds2
BB =

r2

L2

(
− fdt2 + d~x2

)
+

L2

r2f
dr2 + L2dΩ2

5 (5.97)

where

f(r) = 1− r4
0

r4
(5.98)

The constant r0 represents the coordinate of the black brane horizon. We can associate

a Hawking temperature TH to this solution. This temperature is given by

TH =
r0

πL2
(5.99)

Note that, for r → ∞, the above solution is asymptotically AdS5 × S5. From the

point of view of th boundary theory we still have the N = 4 theory, but in a non-zero

temperature T = TH.

Another class of generalizations consists in considering bulk theories that lives in

spaces which are asymptotically AdS5×M, whereM is a compact manifold. In this

generalizations we can have less symmetries (and supersymmetries), what allows us

to consider more realistic situations. Finally, it is also possible to consider dualities
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that holds for different dimensions, like d-dimensional CFTs dual to gravity theories

in AdSd+1 [74].

5.7 Thermodynamic properties

In the non-zero temperature generalization of the duality we can can calculate the

thermodynamic properties of our system. From the point of view of the boundary

theory, our system is a strongly coupled plasma. This plasma can be used as a toy

model to study the QGP formed in heavy ion collisions. Besides the temperature of

the plasma, which is easily obtained as the Hawking temperature of the black hole

of the boundary theory, the thermodynamic quantity that is very easy to calculate is

the entropy, which is given by the Bekenstein-Hawking formula

S =
AH

4G(5)

(5.100)

where AH is the horizon area, which is given by

AH =

∫
d3x
√
g3
xx

∣∣∣
z=zH

=
L3

z3
H

V3 (5.101)

where gxx = L2/z2 and V3 is the volume of the space of the boundary theory. From

the above formulas one obtains the entropy density as

s =
S

V3

=
1

4G(5)

L3

z3
H

(5.102)
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as zH = 1/(πT ) and G(5) = πL3/(2N2), this expressions can be written as

s =
π2

2
N2T 3 (5.103)

Using standard theormodynamic relations

s =
∂p

∂T

ε = −p+ Ts (5.104)

we obtain the pressure p and the energy density ε as

p =
π2

8
N2T 4

ε =
3π2

8
N2T 4 (5.105)

The results we obtain for s, p and ε at strong coupling are 3/4 times the corresponding

quantities at zero coupling, that can be calculated by standard techniques of statistical

physics. This is in qualitative agreement with the results obtained for other gauge

theories using lattice techniques [97].

5.8 Transport coefficients

In this section we consider the calculation of transport coefficients using holographic

techniques. We assume that the boundary theory lives in a d-dimensional Minkowski

spacetime and consider the following deformation of the boundary theory action

∫
ddxO(x)ϕ(x) (5.106)
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In linear response theory, the one-point function of O(x) in the presence of the source

ϕ(x) is given by

〈O(x)〉ϕ = −
∫
ddy GR(x− y)ϕ(y) (5.107)

where we assume 〈O(x)〉ϕ=0 = 0 and GR(x − y) is the retarded Green’s function,

given by

iGR(x− y) ≡ θ(x0 − y0) 〈[O(x), O(y)]〉 (5.108)

Causality implies that the linear response theory is determined by the retarded cor-

relator. This happens because the influence of the source in the system will only take

place after it is been turn on. In momentum space the above equation is written as

〈
O(ω,~k)

〉
ϕ

= −GR(ω,~k)ϕ(ω,~k) (5.109)

The transport coefficients are relevant in the long wavelengh hydrodynamical limit,

in which we take the limits ω,~k → 0. We will assume a transport coefficient defined

by the following relation

〈O〉ϕ ≈ −χ∂tϕ, (ω → 0) (5.110)

Note tha χ basically specifies the response of the system to the presence of a source

ϕ. In the frequency space the above relation is written as

〈O〉ϕ ≈ i ω χϕ(ω), (ω → 0) (5.111)
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In linear response theory the same relation is written as

〈O〉ϕ = −GR(ω,~k = 0)ϕ(ω), (ω → 0) (5.112)

Comparing (5.111) and (5.112) we have

GR(ω,~k = 0) = −i ω χ (5.113)

The transport coefficient, χ, is then given by the following ordered limit

χ = lim
ω→0

lim
~k→0

1

ω
ImGR(ω,~k) (5.114)

Let us now explain how one can calculate χ using holography. We will assume a

(d+ 1)-dimensional metric of the form

ds2 = gttdt
2 + gzzdz

2 + gijdx
idxj (5.115)

where gij = δijgxx and all the metric component only depends on z. We will assume

the presence of a horizon at z = zH, that is

gtt ≈ −c0 (zH − z), gzz ≈
cz

(zH − z)
, (z → zH) (5.116)

where c0 and cz are positive constants.

Let φ be a scalar field with action effective action

S = −1

2

∫
dd+1x

√
−g 1

q(z)
∂Mφ ∂

Mφ (5.117)
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where φ(z) is some effective coupling for φ. We take φ as massless because several

transport coefficients are obtained by massless modes with effective action like the

action above. The equation of motion for φ is

∂M

(√−g
q(z)

gMN∂Mφ
)

= 0 (5.118)

The canonical momentum cojugated to φ is

Π ≡ − ∂L
∂(∂zφ)

=

√
−g

q(z)
gzz∂zφ (5.119)

Written in terms of the canonical momentum, the equation of motion is written as

∂zΠ = −
√
−g

q(z)

(∂2
t φ

gtt
+
∂2
i φ

gxx

)
(5.120)

Working in Fourier space

φ(z, t, ~x) =

∫
dωdd−1~k

(2π)d
ei(

~k·~x−ωt)φ(z, ω,~k) (5.121)

Π(z, t, ~x) =

∫
dωdd−1~k

(2π)d
ei(

~k·~x−ωt)Π(z, ω,~k) (5.122)

the equation of motion can be written as

∂zΠ = −
√
−g

q(z)

(ω2

gtt
+
~k2

gxx

)
φ (5.123)

It is then clear that, in the limits where ω → 0 and ~k → 0, Π is independent of z.
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As φ is massless, we have ∆ = d, and the retarded correlator is simply given by

GR(ω,~k) =
Π(z, ω,~k)

φ(z, ω,~k)

∣∣∣
z=0

(5.124)

from the retarded correlator one can calculated χ as

χ = lim
ω→0

lim
~k→0

Π(z, ω,~k)

ω φ(z, ω,~k)

∣∣∣
z=0

(5.125)

One can check this quantity does not depend on z. Because of that, it can be calcu-

lated for any convenient value of z. In particular, it can be calculated at the horizon,

where we know the behaviour of the metric components for a large class of black hole

backgrounds.

The near-horizon equation of motion for φ is

∂z
[
(zH − z)∂zφ

]
+ cz

[ ω2

c0(zH − z)
−

~k2

gxx(zH)

]
φ = 0 (5.126)

Looking for a solution of the form φ = (zH − z)β we found two solutions

φ± ≈ (zH − z)
±
√

cz
c0
ω

(5.127)

where φ+ represents a outgoing wave and φ− represents an incoming wave at the

horizon. Causality implies that we must chose φ− as our solution. The corresponding

conjugated momentum is

Π− =
1

cz

√
−g

q(zH)
(zH − z) ∂zφ−︸ ︷︷ ︸√

cz/c0i ω φ−

(5.128)
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From this expression one can easily calculate the near-horizon retarded correlator

GR =
Π−
φ−

=
i ω

q(zH)

√
g

c0cz

∣∣∣
z=zH

(5.129)

The transport coefficient, χ, is finally determined as

χ =
1

q(zh)

√
g

gttgzz

∣∣∣
z=zH

(5.130)

where we use the fact that gtt gzz = c0 cz at the horizon.

Note that the horizon area is given by

AH =

∫
ddx
√
gd−1
xx =

√
g

gttgzz

∣∣∣
z=zH

∫
ddx︸ ︷︷ ︸

Vd−1

(5.131)

Thus, we can write

AH

Vd−1

=

√
g

gttgzz

∣∣∣
z=zH

(5.132)

where Vd−1 is the volume of the space of the boundary theory. Written in terms of

this geometrical quantities, the transport coefficient reads

χ =
1

q(zH)

AH

Vd−1

(5.133)

The boundary theory entropy density is also proportional to AH/Vd−1

s =
AH

4GNVd−1

(5.134)

where GN is the d-dimensional Newton constant. Therefore, the ratio χ/s is simply
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given by

χ

s
=

4GN

q(zH)
(5.135)

The above formula also holds for more general actions provided that the equation of

motion remains trivial in the zero frequency and zero momentum limit.
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Chapter 6

Thermal probes of an anisotropic

plasma

In this chapter1 we study the production of thermal photons and dileptons in a

strongly coupling anisotropic background. In particular, we study how the anisotropy

and the quark mass affects these observables.

This quantity is particularly interesting since it furnishes valuable data about the

conditions of the in-medium location of production of the photons. This is because,

given the limited spatial extend of the plasma and the weakness of the electromagnetic

interaction, photons produced in the plasma escape from it virtually unperturbed.

Some of the holographic studies of this quantity include [105–117].2 Here we extend

the analysis started in [27] in two different directions.

First, we consider non-equatorial embeddings of the flavor D7-branes introduced

in [27], corresponding to quarks with non-vanishing masses, thus making our analysis

1In parts of this chapter we reproduce the text of arXiv:1311.5513v3 [hep-th], which is one of the
papers published in this work.

2At weak coupling, this has been studied in the presence of anisotropy in, for example, [148].

90



closer to the real-world system. We allow for arbitrary values of the anisotropy

parameter a/T and for arbitrary angles between the photon wave vectors and the

anisotropic direction, or beam direction. We also study the DC conductivity as a

function of the quark mass. We find that, in general, an anisotropic plasma glows

brighter than its isotropic counterpart at the same temperature. This holds for all

values of the quark masses and for all angles between the anisotropic direction and

the photon wave vector. This same computation for a specific value of the anisotropy

and for wave vectors either parallel or perpendicular to the anisotropic direction has

already been performed in [28], where a strong, external magnetic field was also

included.

As a second extension of [27], we study thermal production, via virtual photon

decay, of lepton/antilepton pairs (dileptons) in the same background. This quantity

is also of phenomenological interest and is obtained by considering time-like momenta

for the emitted particles, which can be massive. Compared to the photon production

calculation, there is now an extra parameter, namely the magnitude of the spatial

momentum. We find that the dilepton production rate is generically larger than the

corresponding rate of an isotropic plasma at the same temperature, except for a small

range of anisotropies, if the quark mass and the frequency are sufficiently large. These

quantities are generically monotonically dependent (either increasing or decreasing)

on the angle between the momentum and the anisotropic direction.

This chapter is organized as follows. In Sec. 6.1 we review how to compute the

production rate of photons and dileptons in an anisotropic plasma first in the gauge

theory side and then via holography using the anisotropic background of [10, 11]. In

Sec. 8.1 we present our results for the spectral densities, conductivities, and total

production rates for photons in a plasma with massive quarks. In Sec. 6.3 we do the
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same for dileptons, which is essentially the extension of the previous computation to

the case in which the emitted particles have a time-like momentum, rather than a

light-like one. We discuss our results in Sec. 8.4. We relegate to two appendices some

technical details of the computation.

6.1 Photon and dilepton production in an anisotropic

plasma

Here we briefly recall the basic setup of [27]. The gauge theory we shall consider

is obtained via an isotropy-breaking deformation of four-dimensional N = 4 super

Yang-Mills (SYM) with gauge group SU(Nc), at large Nc and large ’t Hooft coupling

λ = g2
YMNc. The deformation consists in including in the action a theta-term which

depends linearly on one of the spatial directions, say z, [12]

SSU(Nc) = SN=4 +
1

8π2

∫
θ(z) TrF ∧ F , θ(z) ∝ z , (6.1)

where the proportionality constant in θ(z) has dimensions of energy and will be related

to the parameter a that we shall introduce in the next subsection. The rotational

SO(3) symmetry in the space directions is broken by the new term down to SO(2)

in the xy-plane. For this reason we shall call the z-direction the longitudinal (or

anisotropic) direction, while x and y will be the transverse directions. This theory

has matter fields in the adjoint representation of the gauge group. We can also

introduce Nf flavors of scalars Φa and fermions Ψa in the fundamental representation,

with the index a = 1, . . . , Nf. With an abuse of language, we will refer to these

fundamental fields indistinctly as ‘quarks’.
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To study photon production we turn on a dynamical photon by including a U(1)

kinetic term in the action (6.1) and a coupling to the fields that we want to be

charged under this Abelian symmetry. In order to realize a situation as similar to

QCD as possible, we require that only the fundamental fields be charged, while the

adjoint fields are to remain neutral. We do not know the gravitational dual of the full

SU(Nc)×U(1) theory, but fortunately this will not be necessary for our purposes. It

was in fact shown in [105] that to compute the two-point correlation function of the

electromagnetic current to leading order in the electromagnetic coupling αEM, it is

enough to consider the SU(Nc) theory only, whose dual is known from [10, 11]. Our

computation will then be to leading order in αEM, since the coupling of the photons to

the surrounding medium is small, but fully non-perturbative in the ’t Hooft coupling

λ of the SU(Nc) theory.

In general, photon production in differential form is given by the expression [105,

107, 119]

dΓγ

d~k
=

e2

(2π)32|~k|
Φ(k)ηµν χµν(k)

∣∣∣
k0=|~k|

, (6.2)

with ηµν the Minkowski metric (our convention is (−+++)), kµ = (k0, ~k) the photon

null momentum and Φ(k) the distribution function, which for thermal equilibrium,

as in our case, reduces to the Bose-Einstein distribution nB(k0) = 1/(ek
0/T − 1). The

spectral density is χµν(k) = −2 Im GR
µν(k), with

GR

µν(k) = −i
∫
d4x e−ik·x Θ(t)

〈
[JEM

µ (x), JEM

ν (0)]
〉

(6.3)

the retarded correlator of two electro-magnetic currents JEM
µ .

93



If the theory also includes fermions bearing electric charge e`, these can be pro-

duced in particle/antiparticle pairs (called dileptons in the following) via virtual pho-

ton decay processes. The spectral density above can then be used to compute the

dilepton production rate by means of the expression [119]

dΓ`¯̀

dk
=

e2e`
2

(2π)46π|k|5
Φ(k) Θ(k0)Θ(−k2 − 4m`

2)(−k2 − 4m`
2)1/2(−k2 + 2m`

2)ηµν χµν(k) ,

(6.4)

where m` is the mass of the lepton/antilepton and the spectral function is now eval-

uated on the time-like four-momentum kµ of the virtual photon.

A consequence of the Ward identity kµχµν = 0 for null kµ is that, for the photon

production rate, only the transverse spectral functions contribute. A simple way to

extract this contribution is by not taking the whole trace as in (8.65), but by summing

over the projections into the polarization vectors for the photon that are mutually

orthogonal and orthogonal to ~k:

dΓγ

d~k
=

e2

(2π)32|~k|
Φ(k)

∑
s=1,2

εµ(s)(
~k) εν(s)(

~k)χµν(k)
∣∣∣
k0=|~k|

. (6.5)

Each term of the sum stands for the number of photons emitted with polarization

vector ~ε(s).

Given the SO(2) symmetry in the xy-plane, we can choose without loss of gener-

ality ~k to lie in the xz-plane, forming an angle ϑ with the z-direction – see Fig. 8.8.

Specifically, we set

~k = q(sinϑ, 0, cosϑ) . (6.6)

In the photon production computation it will be q = k0, while in the dilepton pro-
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Figure 6.1: Momentum and polarization vectors. Because of the rotational symmetry
in the xy-plane, the momentum can be chosen to be contained in the xz-plane, forming
an angle ϑ with the z-direction. ~ε(1) is oriented along the y-direction and ~ε(2) is

contained in the xz-plane, orthogonally to ~k.

duction computation q will be an independent parameter. This means that we can

choose the polarization vectors as

~ε(1) = (0, 1, 0) , ~ε(2) = (cosϑ, 0,− sinϑ) . (6.7)

Production of photons with polarization ~ε(1) is then proportional to χyy ∼ Im 〈JEM
y JEM

y 〉,

whereas for those with polarization ~ε(2) it is proportional to3

εµ(2) ε
ν
(2) χµν = cos2 ϑχxx + sin2 ϑχzz − 2 cosϑ sinϑχxz . (6.8)

For the dilepton production, on the other hand, we will just compute the trace of the

spectral density, as it appears in (6.4). We see then that we need to compute the

different correlators χµν of the current for both null and time-like momenta, and plug

them in the production densities described above. In the following section we will see

3Note that χxz = χzx; see e.g. [105].
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how these correlators can be obtained from gravity.

6.1.1 Gravity set-up

The dual gravitational background for the theory (6.1) at finite temperature is the

type IIB supergravity geometry found in [10, 11], whose string frame metric reads

ds2 =
L2

u2

(
−BF dt2 + dx2 + dy2 +Hdz2 +

du2

F

)
+ L2 e

1
2
φdΩ2

5 , (6.9)

with H = e−φ and Ω5 the volume form of a round 5-sphere. The gauge theory

coordinates are (t, x, y, z) while u is the AdS radial coordinate, with the black hole

horizon lying at u = uH (where F vanishes) and the boundary at u = 0. As mentioned

already, we refer to the z-direction as the longitudinal direction and to x and y as

the transverse directions. L is set to unity in the following. Besides the metric and

the dilaton φ, the forms

F5 = 4 (Ω5 + ?Ω5) , F1 = a dz (6.10)

are also turned on, with a being a parameter with units of energy that controls the

degree of anisotropy of the system. The potential for the 1-form is a linear axion,

χ = a z. This acts as an isotropy-breaking external source that forces the system into

an anisotropic equilibrium state.

The functions B,F , and φ depend solely on u. They are known analytically in

limiting regimes of low and high temperature, and numerically in intermediate regimes

[11]. For u → 0 (independently of the value of a) they asymptote to the AdS5 × S5

metric, F = B = H = 1 and φ = 0, while for a = 0 they reduce to the black D3-brane
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solution

B = H = 1 , φ = χ = 0 , F = 1− u4

u4
H

, (6.11)

which has temperature and entropy density given by [120]

Tiso =
1

πuH

, siso =
π2

2
N2

c T
3 . (6.12)

The temperature and entropy density of the anisotropic geometry are given by [11]

T =
e−

1
2
φH
√
BH(16 + a2u2

He
7
2
φH)

16πuH

, s =
N2

c

2πu3
H

e−
5
4
φH , (6.13)

where φH ≡ φ(u = uH) and BH ≡ B(u = uH). As depicted in Fig. 6.2, the entropy

density of the system interpolates smoothly between the isotropic scaling above for

small a/T and the scaling [11, 12]

s ' 3.21N2
c T

3
( a
T

) 1
3
, (6.14)

for large a/T , the transition between the two behaviors taking place at approximately

a/T ' 3.7. The space can then be interpreted as a domain-wall-like solution inter-

polating between an AdS geometry in the UV and a Lifshitz-like geometry in the

IR, with the radial position at which the transition takes place being set by the

anisotropic scale a: when T � a the horizon lies in the asymptotic AdS region with

scaling (6.12), whereas for T � a it lies in the anisotropic region with scaling (6.14).

It might be useful to compare the anisotropy introduced in this setup with the

anisotropy of other holographic models, or even weak coupling computations. To do
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Figure 6.2: Log-log plot of the entropy density as a function of a/T . The dashed blue line
is a straight line with slope 1/3.

this one could consider the following ratio [22]

α =
4E + P⊥ − PL

3Ts
, (6.15)

where E is the energy density and P⊥, PL are the transverse and longitudinal pressures,

respectively. These quantities are presented in great detail in [11]. For the isotropic

N = 4 super Yang-Mills plasma α = 1, whereas for 0 < a/T . 20 the ratio is well

approximated by the expression

α ' 1− 0.0036
( a
T

)2

− 0.000072
( a
T

)4

, (6.16)

as shown in Fig. 6.3.

A feature of the anisotropic geometry of [10, 11] is the presence of a conformal

anomaly that appears during the renormalization of the theory, introducing a ref-

erence scale µ. This anomaly implies that some physical quantities (such as, for

example, the energy density and pressures) do not depend only on the ratio a/T ,

but on two independent dimensionless ratios that can be built out of a, T , and µ.
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Figure 6.3: Ratio (6.15) as a function of a/T . The blue dots are the actual values of the
ratio, and the red curve is the fit (6.16).

Fortunately, as we shall see in the following, all the quantities computed in this paper

are not affected by this anomaly and will be independent of µ.4

The introduction of Nf flavors of quarks is achieved by placing Nf probe D7-branes

in the background (6.9). To keep the system in a deconfined phase we will work with

‘black-hole embeddings’ [121] for the D7 branes. The complete system can then be

thought of as a D3/D7 system with two different kinds of D7-branes, one kind sourcing

the anisotropy [11, 12]5 and the other kind sourcing flavor [122, 123]; see [27]. As

argued in [105], at leading order in αEM it suffices to evaluate the correlators needed

for (8.65) and (6.4) in the SU(Nc) gauge theory with no dynamical photons. At strong

’t Hooft coupling and large Nc, these correlators can be calculated holographically, as

we explain now.

Let Am (m = 0, . . . , 7) be the gauge field associated to the overall U(1) ⊂ U(Nf)

gauge symmetry on the D7-branes. Upon dimensional reduction on the 3-sphere

wrapped by the flavor D7-branes, Am gives rise to a massless gauge field (Aµ, Au),

4The same happens for the quantity α introduced in (6.15), which does not depend on a and T
separately, but only on the combination a/T .

5These ND7 branes are smeared homogeneously along the z-direction and can be thought of as
giving rise to a density nD7 = ND7/Lz of extended charges, with Lz being the (infinite) length of the
z-direction. This charge density is related to the anisotropy parameter a through a = g2

YMnD7/4π
[11].
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three massless scalars, and a tower of massive Kaluza-Klein (KK) modes. All these

fields propagate on the five non-compact dimensions of the D7-branes. We will work

in the gauge Au = 0,6 and we will consistently set the scalars and the higher KK

modes to zero, since these are not of interest here. According to the prescription of

[2, 3], correlation functions of JEM
µ can be calculated by varying the string partition

function with respect to the value of Aµ at the boundary of the spacetime (6.9).

We now proceed to write down the action for the D7-branes. It is easy to realize

that there is no Wess-Zumino coupling of the branes to the background F5, because

of the particular brane orientation that has been chosen, nor a coupling to the back-

ground axion, which would be quartic in the U(1) field strength F = dA [27]. This

means that the Dirac-Born-Infeld (DBI) action is all we need to consider:

S = −Nf TD7

∫
D7

d8σ e−φ
√
− det (g + 2π`2

sF ) , (6.17)

where g is the induced metric on the D7-branes and TD7 = 1/(2π`s)
7gs`s is the D7-

brane tension. To obtain the equations of motion for Aµ, it suffices to expand the

action above and use the quadratic part only:

S = −NfTD7

∫
D7

d8σ e−φ
√
− det g

(2π`2
s)

2

4
F 2 , (6.18)

where F 2 = FmnF
mn. The embedding of the branes inside the S5 of the geometry

can be parametrized by the polar angle ξ of the S5 with cos ξ ≡ ψ(u). The induced

6This gauge choice will be immaterial in the following, since we shall switch to gauge invariant
quantities, but it has the advantage of simplifying our formulas.
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metric on the branes is then given by

ds2
D7 =

1

u2

(
−FB dt2 + dx2 + dy2 +H dz2

)
+

1− ψ2 + u2Fe 1
2
φψ′2

u2F(1− ψ2)
du2

+e
1
2
φ(1− ψ2)dΩ2

3 . (6.19)

After the dimensional reduction on the three-sphere, the action reduces to

S = −KD7

∫
dt d3~xduM FmnFmn (6.20)

where

M =
e−

3
4
φ
√
B

u5

(
1− ψ2

)√
1− ψ2 + u2Feφ2ψ′2,

KD7 = 2π4NfTD7`
4
s =

1

16π2
NcNf , (6.21)

and Fm is restricted to the components m = (µ, u).

As argued in [107, 121], in order to calculate the photon emission rate, we may

consistently proceed by finding the embedding of the D7-branes that extremizes (6.17)

in the absence of the gauge field, and then solving for the gauge field perturbations

propagating on that embedding considered as a fixed background. By checking that

the gauge field obtained in this way does not grow beyond the perturbation limit, we

can ensure that no modes of the metric or of the background fields will be excited

when following this procedure. We set to zero the components of the gauge field on

the three-sphere wrapped by the D7-branes and Fourier decompose the remaining as

Aµ(t, ~x, u) =

∫
dk0d~k

(2π)4
e−ik

0t+i~k·~xAµ(k0, ~k, u) , ~k = (kx, 0, kz) = q(sinϑ, 0, cosϑ) .

(6.22)
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This is possible because the state we consider, although anisotropic, is translation-

ally invariant along the gauge theory directions [11]. As mentioned above, in the

photon production computation it will be q = k0, while in the dilepton production

computation q will be an independent parameter.

Doing so, the equations for the gauge field deriving from (6.20) split into the

following decoupled equation for Ay (primes denote derivatives with respect to u)

(
MguugyyA′y

)′ −Mgyy
(
gttk2

0 + gxxk2
x + gzzk2

z

)
Ay = 0 , (6.23)

together with a coupled system of three equations for the remaining components

At,x,z:

(MguugttA′t)
′ −Mgtt [gxxkx(kxAt − k0Ax) + gzzkz(kzAt − k0Az)] = 0 , (6.24)

(MguugxxA′x)
′ −Mgxx

[
gttk0(k0Ax − kxAt) + gzzkz(kzAx − kxAz)

]
= 0 , (6.25)

(MguugzzA′z)
′ −Mgzz

[
gttk0(k0Az − kzAt) + gxxkx(kxAz − kzAx)

]
= 0 . (6.26)

The inverse metric can be read off directly from (6.19). Equations (6.23)-(6.26) consti-

tute the set of equations that we shall solve in the next sections, with the appropriate

boundary conditions, to obtain the correlation functions of the electromagnetic cur-

rents JEM
µ .

6.1.2 Quark masses

Given that both M and guu depend on ψ, we need to know this embedding function

of the D7-branes to solve (6.23)-(6.26). The action (6.20) for the D7-branes in the
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absence of the gauge field, takes the form

Sψ = −KD7

∫
dt d~x duM0

(
1− ψ2

)√
1− ψ2 + u2Feφ2ψ′2, (6.27)

where

M0 =
e−

3
4
φ
√
B

u5
. (6.28)

By varying Sψ with respect to ψ(u) one obtains the equation for the D7-branes

embedding

M0 (1− ψ2)u2Feφ2ψ′√
1− ψ2 + u2Feφ2ψ′2

′ +M0
3ψ (1− ψ2) + 2u2Feφ2ψψ′2√

1− ψ2 + u2Feφ2ψ′2
= 0 . (6.29)

This equation can be solved near the boundary u = 0 using the near-boundary ex-

pansions of the metric [11]

F = 1 +
11

24
a2u2 + F4u

4 +
7

12
a4u4log u+O

(
u6
)
,

B = 1− 11

24
a2u2 + B4u

4 − 7

12
a4u4log u+O

(
u6
)
,

φ = −a
2

2
u2 +

(
1152B4 + 121a4

4032

)
u4 − a4

6
u4logu+O

(
u6
)
, (6.30)

where F4 and B4 are integration constants which are undetermined by the boundary

equations of motion, but that can be read off from the numerics [11]. The result for

the near-boundary expansion of ψ(u) is

ψ = ψ1u+

(
ψ3 +

5

24
a2ψ1logu

)
u3 +O

(
u5
)
, (6.31)
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where ψ1 and ψ3 are related to the quark mass and condensate, respectively. To

solve (6.29), we follow [107] and specify the boundary conditions at the horizon as

ψ(uH) = ψH and ψ′(uH) = 0. We determine ψ1 and ψ3 by fitting the numerical solution

near the boundary. The relation between ψ1 and the quark mass is given by [107]

Mq =
√
λT uH

ψ1√
2
, (6.32)

and the explicit dependence of the dimensionless ratio Mq/
√
λT for given ψH and a/T

is detailed in Fig. 6.4.
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√
λT
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Figure 6.4: The curves correspond, from bottom to top, to a/T =
0, 4.41, 12.2, 86, 249.

Note that in the isotropic case the maximum value of ψH corresponding to a sta-

ble embedding of the D7-branes was ψH = 0.941 [121]. In the presence of anisotropy

this will presumably change and some of the higher values of ψH might correspond

to metastable or unstable embeddings.7 To settle this issue one should analyze

phase transitions between black-hole and Minkowski embeddings in the presence of

anisotropy, which is something that goes beyond the scope of the present paper.

7All the values of ψH we have considered result, however, in numerically stable evaluations.
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6.2 Photon production with massive quarks from

holography

In this section we extend the massless quark analysis of [27] to non-vanishing quark

masses and we refer the reader to that reference for more details. The motivation for

this extension is to bring our analysis closer to the real-world system studied in the

RHIC and LHC experiments.

To compute the various correlation functions,8 we start by writing the boundary

action as

Sε = −2KD7

∫
dt d~x

[
Mguu

(
gttAtA

′
t + gxxAxA

′
x + gyyAyA

′
y + gzzAzA

′
z

)]
u=ε

, (6.33)

where the limit ε→ 0 is intended.

6.2.1 Spectral density for the polarization ε(1)

As in the massless case, the spectral density χyy ≡ χ(1) is the easiest to compute,

since Ay does not couple to any other mode. The calculation is very similar to the

one in [27], the only difference being that now the induced metric has a non-trivial

brane embedding, ψ(u) 6= 0, contained in the new expression for M and guu.

Before proceeding further, we recall the isotropic result of [107], since ultimately

we want to understand whether the presence of an anisotropy increases or decreases

the isotropic photon production and conductivity. Unfortunately, it does not seem

possible to obtain analytical results for the spectral density when the quark mass is

not zero. One then needs to resort to numerics. In order to compare an anisotropic

8The original references for this prescription include [103, 124–126].
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plasma with the isotropic one, we need that both be at the same temperature. We

fix the temperature in the isotropic case by adjusting the position of the black hole

horizon, since Tiso = 1/πuH. We then obtain isotropic plots corresponding to the

particular temperatures used in the anisotropic geometry. More specifically, we are

using T = 0.33, 0.36, 0.48, 0.58 which are the temperatures for the geometries with

a/T = 4.41, 12.2, 86, and 249, respectively, that we consider below. The results for

T = 0.33 are plotted in Fig. 6.5, for the various masses of interest.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

χ
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o
/8
Ñ

D
7
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Figure 6.5: The isotropic correlator χiso for T = 0.33 and, from top to bottom on
the left side of the plot, ψH =0 (black), 0.53 (blue), 0.75 (purple), 0.941(red), 0.98
(orange). Here ÑD7 = 4KD7/u

2
H and w = k0/2πT is the dimensionless frequency. This

color code will be respected throughout this section.

In principle we could also compare the anisotropic plasma with an isotropic plasma

at the same entropy density but different temperature. We have checked that the

quantities studied in this paper do not depend strongly on whether the comparison is

made at the same temperature or at the same entropy density, unlike what happened

for other observables, as the ones studied in [15, 19, 22]. For this reason we do not

include here plots with curves normalized with an isotropic plasma with the same

entropy density.
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The correlation function is given by

GR

yy = − 4KD7

|Ay (k0, 0)|2
lim
u→0

Q (u)A∗y (k0, u)A′y (k0, u) , (6.34)

where

Q (u) ≡Mguugyy. (6.35)

The spectral density then reads

χ(1) =
NcNf

2π2 |Ay (k0, 0)|2
Im lim

u→0
Q (u)A∗y (k0, u)A′y (k0, u) , (6.36)

and is plotted in Fig. 6.6. The curves are normalized with the results for an isotropic

plasma at the same temperature.

The zero-frequency limit of the spectral density gives the electric DC conductivity.

For photons with polarization ε(1) this would be the conductivity along the transverse

y-direction. The quantity

σ(1)(T ) = lim
k0→0

χ(1)

χ(1),iso(T )
= lim

k0→0
2
χ(1)

χiso(T )
(6.37)

is mass independent, and therefore given by Fig. 8 of [27]. In Fig. 6.7 we plot the

conductivity

σ̃(1) = 2 lim
w→0

χ(1)

8ÑD7w
(6.38)

not normalized with the isotropic result, for the various values of the quark mass.

Here ÑD7 = NcNfT
2/4 and w = k0/2πT . We observe that the conductivity decreases

as the quark mass increases.

It is worth pointing out that, as it will be discussed in Appendix 6.A, the imaginary
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Figure 6.6: Plots of the spectral density χ(1) corresponding to the polarization ε(1), norma-
lized with respect to the isotropic result at fixed temperature χiso(T ). The curves correspond
from top to bottom to the angles ϑ = 0 (solid), π/4 (dashed), π/2 (dotted). Within each
group of curves the values of the mass are given, from bottom to top on the right side
(black to orange), by ψH = 0, 0.53, 0.75, 0.941, 0.98. The four plots correspond to the cases
a/T = 4.41 (a), 12.2 (b), 86 (c), 249 (d).
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Figure 6.7: Plot of the conductivity σ̃(1) corresponding to the polarization ε(1) as a function
of a/T for, from top to bottom, ψH = 0, 0.53, 0.75, 0.941, 0.98.

part of (6.36) is independent of u. Numerical accuracy can then be improved by

evaluating this quantity at the horizon instead of at the boundary, since we know the

analytic values for the metric functions and the ingoing fields at uH.

6.2.2 Spectral density for the polarization ε(2)

We now move on to compute χ(2), the correlator corresponding to ε(2). To obtain this,

it is easier to work in terms of the gauge invariant fields Ei ≡ ∂iAt− ∂tAi. Equations

(6.23)-(6.26) can be rewritten in terms of Ei with the aid of the constraint

−gttk0A
′
t + gxxkxA

′
x + gzzkzA

′
z = 0 , (6.39)

resulting in

E ′′x+

[
(logMguugxx)′ +

(
log

gxx

gtt

)′
k2
x

u2k
2 g

xx

]
E ′x+

u2k
2

guu
Ex+

(
log

gxx

gtt

)′
kzkx

u2k
2 g

zzE ′z = 0 ,

(6.40)
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E ′′z +

[
(logMguugzz)′ +

(
log

gzz

gtt

)′
k2
z

u2k
2 g

zz

]
E ′z+

u2k
2

guu
Ez+

(
log

gzz

gtt

)′
kzkx

u2k
2 g

xxE ′x = 0 ,

(6.41)

where u2k
2 ≡ −gttk2

0 − gxxk2
x − gzzk2

z . The action (6.33) can also be written in terms

of these fields as

Sε = −2KD7

∫
dt d~x

Mguu

−k2
0u

2k
2

[(
−gttk2

0 − gzzk2
z

)
gxxExE

′
x + u2k

2
gyyEyE

′
y+

+ gxxgzzkxkz (ExEz)
′ +
(
−gttk2

0 − gxxk2
x

)
gzzEzE

′
z

]
u=ε

. (6.42)

Since we need to take the limit ε → 0, before proceeding any further, we need

to verify that the correlators will remain finite in this limit. To this end we use the

near-boundary expansion of the metric (6.30) and of the embedding ψ (6.31) to solve

the equations (6.40) and (6.41) perturbatively. We find

Ex = E(0)
x +E(2)

x cosϑu2− 1

24

(
3

4
E(0)
x k2

0 cosϑ+

(
5− 24ψ2

1

a2

)
E(2)
x

)
cosϑ a2 u4+O

(
u6
)
,

(6.43)

Ez = E(0)
z +E(2)

x sinϑu2+E(4)
z u4−a

2k2
0 cosϑ

16

(
E(0)
z cos θ + E(0)

x sinϑ
)
u4 log u+O

(
u6
)
.

(6.44)

Using these expressions, we can rewrite (8.79) as

Sε = −2KD7

∫
dt d~x

[
L1 + L2 + L3 + Lm + . . .+O

(
u2
)]
u=ε

, (6.45)

where

L1 = −3

4
sin2 ϑE(0)2

x − 1

4
cos2 ϑE(0)2

z − sinϑ cosϑE(0)
x E(0)

z ,
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L2 =
1

3k2
0

[
1 + 5 cos 2ϑ

cosϑ
E(0)
x E(2)

x +
48

a2
tanϑE(0)

x E(4)
z − 10 sinϑE(0)

z E(2)
x +

48

a2
E(0)
z E(4)

z

]
,

L3 = −
(
E(0)
x sinϑ+ E(0)

z cosϑ
)2

log u ,

Lm =
16ψ2

1

a2k2
0

tanϑ
(
E(0)
x E(2)

x sinϑ+ E(0)
z E(2)

x cosϑ
)
, (6.46)

and the ellipsis stands for the terms in the y-components that have been already dealt

with. Notice that L1, L2, L3 are the same as in the ψ = 0 case of [27].

The contribution of Lm to the production of photons with polarization ε(2) is

proportional to

cos2 ϑ
δ2Lm

δE
(0)2
x

+ sin2 ϑ
δ2Lm

δE
(0)2
z

− 2 sinϑ cosϑ
δ2Lm

δE
(0)
z δE

(0)
x

= 0 , (6.47)

and therefore vanishes identically, and so does the divergent term L3, as shown in

[27]. We obtain then the simple result

χ(2) ≡ εµ(2)ε
ν
(2)χµν = 16KD7Im

[
cosϑ

δE
(2)
x

δE
(0)
x

− sinϑ
δE

(2)
x

δE
(0)
z

]
. (6.48)

We can now proceed as in [27] to determine how E
(2)
x varies with respect of E

(0)
x and

E
(0)
z . Alternatively, we will explain in Appendix 6.A how to apply the technology

developed in [127] to obtain χ(2) using the values of the fields at the horizon. As

a check of our results, we have verified that we obtain the same results using both

methods. We display the results in Fig. 6.8 for various values of the anisotropy, of

the angles, and of the quark masses.

For photons with polarization along ε(2), the conductivity

σ(2)(T ) = lim
k0→0

χ(2)

χ(2),iso(T )
= lim

k0→0
2
χ(2)

χiso(T )
(6.49)
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Figure 6.8: Plots of the spectral density χ(2) corresponding to the polarization ε(2), norma-
lized with respect to the isotropic result at fixed temperature χiso(T ). The curves correspond
from top to bottom to the angles ϑ = 0 (solid), π/4 (dashed), π/2 (dotted). Within each
group of curves the values of the mass are given, from bottom to top on the right side
(black to orange), by ψH = 0, 0.53, 0.75, 0.941, 0.98. The four plots correspond to the
cases a/T = 4.41 (a), 12.2 (b), 86 (c), 249 (d).
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Figure 6.9: Plot of the conductivity σ̃(2) corresponding to the polarization ε(2) as a function
of a/T . The groups of curves correspond from top to bottom to ψH = 0, 0.53, 0.75, 0.941.
Inside each group we plot the angles ϑ = 0 (solid), π/4 (dashed), and π/2 (dotted).

depends not only on the anisotropy and quark mass, as was the case for the polari-

zation along the y-direction, but also on the angle ϑ. If we normalize with respect

to the isotropic case, the conductivity does not depend on the quark masses and is

therefore identical to the one depicted in Figs. 11 and 12 of [27]. We can then define

unnormalized conductivities, as done above for σ̃(1),

σ̃(2) = 2 lim
w→0

χ(2)

8ÑD7w
, (6.50)

which do depend on the masses and are reported in Figs. 6.9 (as a function of a/T

for fixed ϑ) and 6.10 (as a function of ϑ for fixed a/T ).

6.2.3 Total photon production rate

We have now all the ingredients to calculate the total emission rate (8.69). We

convert this quantity to the emission rate per unit photon energy in a infinitesimal
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Figure 6.10: Plot of the conductivity σ̃(2) corresponding to the polarization ε(2) as a
function of the angle ϑ. The groups of curves correspond, from top to bottom, to
ψH = 0, 0.53, 0.75, 0.941, 0.98. Within each group we have, from bottom to top on the
left side of the graph, a/T =1.38 (solid), 5.9 (dashed), 9.25 (dot-dashed), and 12.2 (dotted).

angle around ϑ. Using that the photon momentum is light-like, we have

−1

2αEMNcNfT 3

dΓγ
d cosϑ dk0

=
w

2NcNfT 2

1

e2πw − 1

(
χ(1) + χ(2)

)
, (6.51)

which is plotted in Fig. 6.11 for different values of a/T , ϑ and ψH. The isotropic

result at the same temperature cannot be calculated analytically, since we only have

a numerical solution for ψ. So, we calculated this quantity numerically and the

results are shown in the figures as coarsely dashed curves. We observe that, even in

the massive quark case, the anisotropic plasma emits more photons, in total, than

the corresponding isotropic plasma at the same temperature.

6.3 Dilepton production from holography

The same electromagnetic current considered above, if evaluated for time-like mo-

menta, allows to compute the rate of emission of lepton/antilepton pairs, which are
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Figure 6.11: Plots of the total production rate. The groups of curves correspond from
top to bottom to ψH = 0, 0.53, 0.75, 0.941, 0.98. Within each group we plot the angles
ϑ = 0 (solid), π/4, (dashed), and π/2 (dotted). The four plots correspond to the cases
a/T = 4.41 (a), 12.2 (b), 86 (c), 249 (d). The temperatures in the four cases are, respectively,
T = 0.33, 0.36, 0.49, 0.58. The isotropic results at the same temperatures and masses are
the coarsely dashed curves.
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produced via decay of virtual photons. From (6.4) we see that the total dilepton

production rate is proportional to the trace of the spectral density

ηµνχµν = −χtt + χxx + χyy + χzz . (6.52)

Since the equation of motion for the y-component of the gauge field is decoupled from

the equations for the other components, we can split the trace as

ηµνχµν = χ(1) + χ(2) , (6.53)

where

χ(1) ≡ χyy , χ(2) ≡ −χtt + χxx + χzz . (6.54)

The spectral densities are calculated again as χµν = −2 ImGR
µν . We will obtain the

retarded Green functions GR
µν by varying the boundary action (8.79) with respect to

the values of the gauge fields at the boundary A
(0)
µ :

GR

µν =
δ2Sε

δAµ(0) δAν(0)
.

As in the previous section, it will prove convenient to work with the gauge invariant

quantities Ei = ∂iAt − ∂tAi instead of the gauge fields. The Green functions can be
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obtained as

GR

ii = −k2
0

δ2Sε

δE
(0) 2
i

, i = x, y, z , (6.55)

GR

tt = −k2
x

δ2Sε

δE
(0) 2
x

− k2
z

δ2Sε

δE
(0) 2
z

− 2kx kz
δ2Sε

δE
(0)
x δE

(0)
z

, (6.56)

where E
(0)
i are the values of the gauge invariant fields evaluated at the boundary. In

writing (6.56) we have already used the fact that ky is zero and that the equation for

Ey decouples from the rest. We arrive at

χ(1) = 2 Im

[
k2

0

δ2Sε

δE
(0) 2
y

]
, (6.57)

χ(2) = −2 Im

[
(k2
x − k2

0)
δ2Sε

δE
(0)2
x

+ (k2
z − k2

0)
δ2Sε

δE
(0)2
z

+ 2 kx kz
δ2Sε

δE
(0)
x δE

(0)
z

]
. (6.58)

In terms of the spectral densities the latter equation is

χ(2) =

(
1− k2

x

k2
0

)
χxx +

(
1− k2

z

k2
0

)
χzz − 2

kxkz
k2

0

χxz . (6.59)

When light-like momentum is considered, the previous calculation coincides, as it

should, with the one for the photon production. For dilepton production, the spatial

part of the momentum will be given by ~k = q(sinϑ, 0, cosϑ) for q < k0, and the

equation (6.58) will read

χ(2) = −2 Im

[
(q2sin2ϑ− k2

0)
δ2Sε

δE
(0)2
x

+ (q2cos2ϑ− k2
0)

δ2Sε

δE
(0)2
z

+ 2 q2sinϑ cosϑ
δ2Sε

δE
(0)
x δE

(0)
z

]
.

(6.60)

As a warm up, we will begin by performing the calculation in the isotropic limit.

117



This will be used to normalize the results for the anisotropic plasma.

6.3.1 Isotropic limit

In the isotropic limit (6.11) we can use the SO(3) symmetry to set ϑ = π/2, fixing

the spatial component of k in the x-direction. We have kx = q, ky = kz = 0 which

simplifies the equations above to

χ(1)iso = χyy,iso , χ(2)iso =

(
1− q2

k2
0

)
χxx,iso + χzz,iso. (6.61)

We will compute χyy repeating the same steps used in the photon production for

polarization ε(1). This spectral density reads

χ(1)iso

8ÑD7w
=

1

2πTk0 |Ay,iso(k, 0)|2
Im lim

u→uH

Q(u)A′y,iso(k, u)A∗y,iso(k, u) (6.62)

where Q(u) was defined in (6.35) and Ay,iso solves equation (6.23), in the isotropic

limit (6.11) but with q 6= k0.

To compute χxx,iso and χzz,iso, we make two observations. First, for ϑ = π/2,

equations (6.40) and (6.41) decouple from each other. Second, the action (8.79) will

have no mixed terms, so we can vary the action with respect to Ex,iso and Ez,iso in a

similar fashion to what has been done for Ay,iso, and get

χxx,iso

8ÑD7w
=

k0

2πT |Ex,iso(k, 0)|2
Im lim

u→uH

Qx(u)E ′x,iso(k, u)E∗x,iso(k, u) , (6.63)

χzz,iso

8ÑD7w
=

k0

2πT |Ez,iso(k, 0)|2
Im lim

u→uH

Qz(u)E ′z,iso(k, u)E∗z,iso(k, u) , (6.64)

where Qx(u) = Mguu

u2k
2 gttgxx and Qz(u) = Mguu

−k2
0u

2k
2 (−gttk2

0 − gxxq2) gzz are, respectively,
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Figure 6.12: Plots of the spectral densities χ(1)iso and χ(2)iso. Here we have fixed T = 0.33.
Curves of different colors and traits denote different values of q (q =0 (blue), 1 (red), 1.5
(green)) and of ψH (ψH =0 (solid), 0.75 (dashed), 0.941 (dot-dashed)). The curves for q = 0
are identical in the two plots, up to an overall factor of 2, as it should be, considering that
(6.63) and (6.64) coincide in this case.

the coefficients multiplying the ExE
′
x and EzE

′
z terms in the boundary action (8.79).

Ex,iso and Ez,iso are solutions to (6.40) and (6.41) in the isotropic limit (6.11). These

quantities reduce to the expressions in [105] and are plotted as a function of w ≡

k0/2πT for various values of q ≡ q/2πT in Fig. 6.12.

6.3.2 Dilepton spectral density χ(1)

The equation to solve is (6.23)) with ~k = q(sinϑ, 0, cosϑ). Using the results obtained

for different values of q, ψH, and ϑ we compute the spectral density from

χ(1) = − 4KD7

|Ay(k, 0)|2
Im lim

u→uH

Q(u)A∗y(k, u)A′y(k, u) , (6.65)

where Q(u) was defined in (6.35). The imaginary part of (6.65) does not depend on

u, as we shall prove in Appendix 6.A. This justifies the fact that we evaluate the limit
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at u = uH, where the numerics are under better control. The results are plotted in

Fig. 6.13 for the spectral density χ(1) as a function of w, and in Fig. 6.14 as a function

of q. In Figs. 6.15 and 6.16 we plot χ(1) as a function of the anisotropy a/T .

6.3.3 Dilepton spectral density χ(2)

The gauge invariant fields satisfy equations (6.40)-(6.41). Solving such equations for

Ex and Ez close to the boundary we find

Ex = E(0)
x +

(
E(2)
x cosϑ+

1

2
E(0)
x (q2 − k2

0) log u

)
u2

+
1

192

(
8
(
24ψ2

1 − 5a2 + 3(q2 − k2
0)
)
E(2)
x cosϑ

−3
(
3(q2 − k2

0)2 + 3a2q2 − 2a2k2
0 + a2q2 cos 2ϑ

)
E(0)
x

)
u4

+
1

48

(
24ψ2

1 − 5a2 + 3(q2 − k2
0)
)

(q2 − k2
0)u4 log u+O

(
u6
)
, (6.66)

and

Ez = E(0)
z +

1

2
E(0)
x (q2 − k2

0)u2 log u

− 3(q2 − k2
0)[64E

(4)
z + 3E

(0)
z (q2 − k2

0)(a2 + q2 − k2
0)]

8 [(q2 − k2
0)(2 a2 − 3 (q2 + 8ψ2

1 − k2
0)) + 3 a2 q2 cos2 ϑ]

u2

+
a2E

(0)
z q2 (q2 − k2

0) cos2 ϑ− a2 q2 cosϑ sinϑ [E
(0)
x (q2 − k2

0)− 8E
(2)
x cosϑ]

8 [(q2 − k2
0)(2 a2 − 3 (q2 + 8ψ2

1 − k2
0)) + 3 a2 q2 cos2 ϑ]

u2

+

(
E(4)
z −

1

96
E(0)
z (a2(7q2 − 4k2

0)− 6(q2 − k2
0)(q2 + 8ψ2

1 − k2
0)) log u

)
u4

+3a2q2
(
E(0)
x sin 2ϑ+ E(0)

z cos 2ϑ
)
u4 log u+O

(
u6
)
, (6.67)

where E
(0)
x , E

(2)
x , E

(0)
z , and E

(4)
z are expansion coefficients which are not determined

by the boundary equations, but that can be extracted from the numerical solutions,

as we shall explain presently.
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Figure 6.13: Plots of the spectral density χ(1) normalized with respect to the isotropic
result at fixed temperature χ(1)iso(T ). Curves of different colors denote different values of
a/T as follows a/T =4.41 (blue), 12.2 (red), 86 (green). The angles are ϑ = 0 (solid),
π/4 (dashed), π/2 (dot-dashed). Columns correspond to different values of q: from left to
right it is q = 0, 1, 1.5. Rows correspond to different values of the quark mass: from top to
bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (h) corresponds to q = 1, ψH = 0.941.
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Figure 6.14: Plots of the spectral density χ(1) normalized with respect to the isotropic
result at fixed temperature χ(1)iso(T ). Curves of different colors denote different values of
a/T as follows a/T =4.41 (blue), 12.2 (red), 86 (green). The angles are ϑ = 0 (solid), π/4
(dashed), π/2 (dash-dotted). Columns correspond to different values of w: from left to right
it is w = 1/2, 1, 1.5. Rows correspond to different values of the quark mass: from top to
bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (f) corresponds to w = 3/2, ψH = 0.75.
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Figure 6.15: Plots of the spectral density χ(1) normalized with respect to the isotropic
result at fixed temperature χ(1)iso(T ). Curves of different colors denote different values of
q as follows q =0 (purple), 1/2 (magenta), 1 (green). The angles are ϑ = 0 (solid), π/4
(dashed), π/2 (dash-dotted). Columns correspond to different values of w: from left to right
it is w = 0.5, 1, 1.5. Rows correspond to different values of the quark mass: from top to
bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (f) corresponds to w = 1.5, ψH = 0.75.
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Figure 6.16: Plots of the spectral density χ(1) normalized with respect to the isotropic
result at fixed temperature χ(1)iso(T ). Curves of different colors denote different values of
w as follows w =1/2 (black), 1 (brown), 3/2 (blue). The angles are ϑ = 0 (solid), π/4
(dashed), π/2 (dash-dotted). Columns correspond to different values of q: from left to right
it is q = 0, 0.5, 1. Rows correspond to different values of the quark mass: from top to bottom
it is ψ0 = 0, 0.75, 0.941. Then, for instance, (f) corresponds to q = 1, ψH = 0.75.
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Using these expressions, we can write the boundary action as

Sε = −2KD7

∫
dt d~x

[
L1 + L2 + L3 + . . .+O

(
u2
)]
u=ε

, (6.68)

where

L1 = A1E
(0) 2
x +B1E

(0) 2
z + C1E

(0)
x E(0)

z ,

L2 = A2E
(0)
x E(2)

x +B2E
(0)
x E(2)

x + C2E
(0)
x E(2)

x +D2E
(0)
x E(2)

x ,

L3 = − log u

k2
0

[
(E(0) 2

x + E(0) 2
z ) k2

0 + (E(0)
x cosϑ− E(0)

z sinϑ)2 q2
]
, (6.69)

and Ai, Bi, Ci (i = 1, 2) and D2 are given by (6.99) in Appendix 8.B. The contri-

butions of L1 and L3 to the Green’s functions are real, so they don’t enter in the

computation of χ(2). Defining

S2 = −2KD7

∫
dt d~xL2 ,

we can write

δ2S2

δE
(0) 2
x

= 2A2
δE

(2)
x

δE
(0)
x

+ 2B2
δE

(4)
z

δE
(0)
x

,

δ2S2

δE
(0) 2
z

= 2C2
δE

(2)
x

δE
(0)
z

+ 2D2
δE

(4)
z

δ
,

δ2S2

δE
(0)
x δE

(0)
z

= A2
δE

(2)
x

δE
(0)
z

+B2
δE

(4)
z

δE
(0)
z

+ C2
δE

(2)
x

δE
(0)
x

+D2
δE

(4)
z

δE
(0)
x

. (6.70)
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Using the explicit expressions for the coefficients, one can show that

χ(2) = 16KD7 Im

cosϑ
δE

(2)
x

δE
(0)
x

+
6a2q2 cos2 ϑ sinϑ δE

(2)
x

δE
(0)
z

+ 48(q2 − k2
0) δE

(4)
z

δE
(0)
z

6(q2 − k2
0)(q2 − k2

0 + 8ψ2
1)− a2(7q2 − 4k2

0)− 3a2q2 cos 2ϑ

 .

(6.71)

When q = k0 this expression reduces to (6.48), the expression used to calculate the

photon production rate.

Having checked that there will be no divergent contributions for the correlators,

we can now proceed as in [27] to find the way in which E
(2)
x and E

(4)
z vary with respect

to E
(0)
x and E

(0)
z . To calculate the functional derivative δ2Sε

δE
(0)
i δE

(0)
j

, we can use the fields

Ex and Ez to construct the column

E ≡

 Ex

Ez

 , (6.72)

so that (6.40) and (6.41) can be written as the matrix equation

M−1 (ME′)
′
+ f(u)E = 0, (6.73)

where

M≡ M guu

k2
0u

2k̄2

 (gttk2
0 + gzzk2

z)k
2
x −gxxgzzkxkz

−gxxgzzkxkz (gttk2
0 + gxxk2

x)k
2
z

 , f(u) ≡ u2k̄2

guu
. (6.74)
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We can also write the boundary action (excluding the part with AyA
′
y) as

Sε = −2KD7

∫
dt d~x [ETME′]u=ε . (6.75)

Notice that if we can find two linearly independent solutions to (6.73), E1 and

E2, such that at the boundary they reduce to E1|bdry = (1 0)T and E2|bdry = (0 1)T,

and we arrange them as the columns of a 2×2 matrix E ≡ (E1 E2), then, given that

(6.73) is linear, its general solution Esol will be given by

Esol = E(0)
x E1 + E(0)

z E2 = E

 E
(0)
x

E
(0)
z

 . (6.76)

Using (6.76) we can write the boundary action (6.75) as

Sε = −2KD7

∫
dt d~x

(E(0)
x E(0)

z )ME ′

 E
(0)
x

E
(0)
z



u=ε

, (6.77)

where the fact that E becomes the identity matrix at the boundary has been used.

From (6.77) we see that the variation δ2Sε

δE
(0)
i δE

(0)
j

, and hence the Green’s function GR
ij,

is given by the ij component of the matrix ME ′. As will be seen in Appendix 6.A,

this way of writing the variation of the action permits to express the imaginary part

of the integrand in (6.77), which is all we need to compute the spectral densities, in

terms of u-independent quantities. The evaluation can then be done at the horizon,

where the numerics are under better control. In Appendix 6.A we also elaborate on

how to construct the solutions necessary to carry out this procedure.

With this ground work in place, we use these expressions to numerically obtain
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the dilepton production rate for different values of q, ψH, and ϑ. In Fig. 6.17 we

plot the spectral density χ(2) as a function of w, normalized with the corresponding

spectral density χ(2)iso for an isotropic plasma at the same temperature. The same

quantity as a function of q is plotted in Fig. 6.18. In Figs. 6.19 and 6.20 we plot χ(2)

as a function of the anisotropy a/T .

6.3.4 Total dilepton production rate

In Fig. 6.21 we plot the trace of the spectral density χµµ as a function of w, normalized

with the corresponding trace χµµiso for an isotropic plasma at the same temperature.

The same quantity as a function of q is plotted in Fig. 6.22, and in Figs. 6.23 and

6.24 as a function of the anisotropy parameter a/T .

6.4 Discussion

In this paper we have studied two important phenomenological probes of a strongly

coupled anisotropic plasma, namely the in-medium production of photons and of

dileptons. In order to model the plasma at strong coupling, we have used the dual

anisotropic black brane solution found in [10, 11]. This geometry is static, regular

on and outside the horizon, and asymptotically AdS. The anisotropic equilibrium is

due to a bulk axion field, corresponding on the gauge theory side to a marginally

relevant deformation of the N = 4 SYM action. The insertion of flavor D7-branes

in this background has allowed us to couple the N = 4 adjoint fields to fields in the

fundamental representation, which we have called ‘quarks’.

First, we have completed the computation of the photon production rate initiated

in [27], where the plasma of the adjoint N = 4 fields was coupled to massless quarks.
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Figure 6.17: Plots of the spectral density χ(2) normalized with respect to the isotropic
result at fixed temperature χ(2)iso(T ). Curves of different colors denote different values of
a/T as follows a/T =4.41 (blue), 12.2 (red), 86 (green). The angles are ϑ = 0 (solid),
π/4 (dashed), π/2 (dash-dotted). Columns correspond to different values of q: from left to
right it is q = 0, 1, 1.5. Rows correspond to different values of the quark mass: from top to
bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (h) corresponds to q = 1, ψH = 0.941.
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Figure 6.18: Plots of the spectral density χ(2) normalized with respect to the isotropic
result at fixed temperature χ(2)iso(T ). Curves of different colors denote different values of
a/T as follows a/T =4.41 (blue), 12.2 (red), 86 (green). The angles are ϑ = 0 (solid), π/4
(dashed), π/2 (dash-dotted). Columns correspond to different values of w: from left to right
it is w = 0.5, 1, 1.5. Rows correspond to different values of the quark mass: from top to
bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (f) corresponds to w = 1.5, ψH = 0.75.
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Figure 6.19: Plots of the spectral density χ(2) normalized with respect to the isotropic
result at fixed temperature χ(2)iso(T ). Curves of different colors denote different values of
q as follows q =0 (purple), 0.5 (magenta), 1 (green). The angles are ϑ = 0 (solid), π/4
(dashed), π/2 (dash-dotted). Columns correspond to different values of w: from left to
right it is w = 0.5, 1, 1.5. Rows correspond to different values of the quark mass: from
top to bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (f) corresponds to w = 1.5,
ψH = 0.75.
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Figure 6.20: Plots of the spectral density χ(2) normalized with respect to the isotropic
result at fixed temperature χ(2)iso(T ). Curves of different colors denote different values of
w as follows w =0.5 (black), 1 (brown), 1.5 (blue). The angles are ϑ = 0 (solid), π/4
(dashed), π/2 (dash-dotted). Columns correspond to different values of q: from left to right
it is q = 0, 0.5, 1. Rows correspond to different values of the quark mass: from top to bottom
it is ψ0 = 0, 0.75, 0.941. Then, for instance, (f) corresponds to q = 1, ψH = 0.75.
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Figure 6.21: Plots of the spectral density χµµ normalized with respect to the isotropic
result at fixed temperature χµµiso(T ). Curves of different colors denote different values of
a/T as follows a/T =4.41 (blue), 12.2 (red), 86 (green). The angles are ϑ = 0 (solid),
π/4 (dashed), π/2 (dash-dotted). Columns correspond to different values of q: from left to
right it is q = 0, 1, 1.5. Rows correspond to different values of the quark mass: from top to
bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (h) corresponds to q = 1, ψH = 0.941.
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Figure 6.22: Plots of the spectral density χµµ normalized with respect to the isotropic
result at fixed temperature χµµiso(T ). Curves of different colors denote different values of
a/T as follows a/T =4.41 (blue), 12.2 (red), 86 (green). The angles are ϑ = 0 (solid), π/4
(dashed), π/2 (dash-dotted). Columns correspond to different values of w: from left to right
it is w = 0.5, 1, 1.5. Rows correspond to different values of the quark mass: from top to
bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (f) corresponds to w = 1.5, ψH = 0.75.
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Figure 6.23: Plots of the spectral density χµµ normalized with respect to the isotropic
result at fixed temperature χµµiso(T ). Curves of different colors denote different values of
q as follows q =0 (purple), 0.5 (magenta), 1 (green). The angles are ϑ = 0 (solid), π/4
(dashed), π/2 (dash-dotted). Columns correspond to different values of w: from left to
right it is w = 0.5, 1, 1.5. Rows correspond to different values of the quark mass: from
top to bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (f) corresponds to w = 1.5,
ψH = 0.75.
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Figure 6.24: Plots of the trace of spectral density χµµ normalized with respect to the
isotropic result at fixed temperature χµµiso(T ). Curves of different colors denote different
values of w as follows w =0.5 (black), 1 (brown), 1.5 (blue). The angles are ϑ = 0 (solid),
π/4 (dashed), π/2 (dash-dotted). Columns correspond to different values of q: from left to
right it is q = 0, 0.5, 1. Rows correspond to different values of the quark mass: from top to
bottom it is ψH = 0, 0.75, 0.941. Then, for instance, (f) corresponds to q = 1, ψH = 0.75.
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Here we have allowed these fields to have a non vanishing mass, thus bringing the

analysis closer to the real world experiments performed at RHIC and LHC. Secondly,

we have considered the possibility of the plasma emitting these massive fundamental

fields in pairs, which with a slight abuse of notation we have called ‘dileptons’, and

we have computed their production rate.

The main results of our analysis may be summarized as follows. As for the photon

production rate, we have seen that, in general, an anisotropic plasma glows brighter

than its isotropic counterpart at the same temperature, both in the case of massless

fundamental fields, as found in [27], and in the case of massive fundamental fields.

Moreover, increasing the mass of these fields results in a decrease of the photon

production rate and the DC conductivity of the plasma, as can be anticipated on

general grounds. This also happens in the isotropic plasma considered in [107].

As for the dilepton production rate, the analysis is made more complicated by the

presence of an extra parameter, the magnitude of the spatial part of the momentum,

q. We have studied the total production rate, normalized with respect to an isotropic

plasma at the same temperature, first as a function of the frequency w for fixed

values of q (see Fig. 6.21), and then as a function of q for fixed values of w (see

Fig. 6.22). For fixed values of q, we have seen that the anisotropic rate is higher than

the isotropic counterpart at small frequencies (the larger the anisotropy the larger

the deviation) and tends to the isotropic one at large frequencies. Moreover, the

production for momenta along the anisotropic direction z is always larger than when

the momenta are contained in the transverse xy-plane. Increasing the quark mass

and/or q increases the deviation from the corresponding isotropic results. For fixed

values of w, we have found that for small spatial momentum the production rate does

not depend on the quark mass nor on the angle, but only on the anisotropy and on w.
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Production along the anisotropic direction is always an increasing function of q (in

the regime of values we have explored), whereas the production along the transverse

plane can be increasing or decreasing, depending on the value of w.

The dependence of the dilepton production rate on the degree of anisotropy of the

system is detailed in Figs. 6.23 and 6.24. We find that in general the anisotropic rate

is larger than the isotropic one, but, if the quark mass and w are large enough, there

is a range of anisotropies where it might be smaller. The dependence on the angle is

always monotonic, either increasing or decreasing depending on the specific quantity

which is studied.

It is interesting to compare our results with what happens at weak coupling.

Dilepton production in weakly coupled anisotropic plasmas has been studied in [128,

129], where an enhancement of the spectral functions with respect to the isotropic

case has been reported, in agreement with the present work. However, dilepton

production at weak coupling is suppressed along the forward direction [130], unlike

what we observe in our strong coupling results shown in Figs. 6.21 to 6.24, where the

suppression takes place along the transverse directions. In those works the dilepton

production density per space-time volume and momentum space volume is computed

using

dR`+`−

d4P
=

∫
d~p1

(2π)3

d~p2

(2π)3
fq(~p1)fq̄(~p2)vqq̄σqq̄

`+`−δ(4)(P − p1 − p2), (6.78)

where fq,q̄ are the phase space distribution functions of the quarks and antiquarks in

the plasma, while vqq̄ and σqq̄
`+`− are their relative velocities and total cross section,

respectively. The anisotropy of the plasma is modeled by including a parameter ξ
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which encodes the type and strength of the anisotropy:

fq,q̄(~p, ξ, phard) = fq,q̄
iso(
√
~p2 + ξ (~p · n̂)2, phard), (6.79)

with fq,q̄
iso being the isotropic phase space distribution function, phard the hard mo-

mentum scale (which can be identified with the temperature T when ξ = 0), and

n̂ defining the anisotropic direction. What we provide in the present work is a non

perturbative expression for the factors fq,q̄(~p, ξ, phard) used in the small coupling calcu-

lations. It is interesting to note that the enhancement of dilepton production appears

to be a robust feature of anisotropic plasmas, which is present both at weak and strong

coupling, unlike its dependence on the rapidity, which is sensitive to the strength of

the coupling. Of course, the source of anisotropy in [128–130] is different than the

one we have used in this paper, so that comparisons have to be taken with a grain of

salt. Nonetheless, these comparisons certainly motivate further analysis.

As for the generality of our results, we observe that while we have used a very

specific source of anisotropy, namely a non-trivial axion, we expect our results to

be quite general. We observe in fact that the equations of motion for the gauge

fields (6.23)-(6.26) are solely dependent on the metric and dilaton, meaning that

any source of anisotropy that gives rise to similar metric and dilaton (and no Kalb-

Ramond field) will produce qualitatively similar results for the photon and dilepton

production rates. It would be interesting, nonetheless, to compute these quantities

in as many anisotropic backgrounds as possible, including e.g. the one of [131, 132],

to understand which features are really model-independent and therefore the most

likely to be realized in the real-world QGP.

One thing we have left open is to determine what is the maximum value of ψH
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which results in a stable embedding of the flavor D7-branes. To address this question

one needs to perform a careful analysis of the phase transition between the black

hole and Minkowski embedding of the branes [121]. This requires comparing the free

energy of the system in the two phases. To do that one would presumably need to

perform from scratch the holographic renormalization process done in [133] for the

axion-dilaton gravity, including this time also the DBI action for the branes. The

UV limit (ε → 0) and the probe brane limit (Nf/Nc → 0) do not in fact commute,

in principle. This is because the dilaton of [10, 11] vanishes at the boundary and the

introduction of additional D7-branes sources a dilaton that blows up before reaching

the boundary; see e.g. [134]. This means that no matter how small Nf/Nc is, it

eventually overtakes the asymptotics and one cannot simply try to renormalize the

D7-brane action in the fixed anisotropic background (as made evident by the fact

that there do not seem to be enough counterterms to cancel all the divergences).

Appendix 6.A Solutions for E1 and E2

In this appendix we describe how to construct the two linearly independent solutions

E1 and E2 used in subsection 6.3.3.

When solving the equation of motion for (6.72) near the horizon, we assume that

the fields Ei behave like

Ei(u) = (uH − u)νei(u) , i = x, z , (6.80)

where ei(u) is some regular function at uH. We obtain that the exponent ν for both

components of this vector is the same as that for the Ay mode, namely ν = ±iw/2.
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After imposing the infalling wave condition (by choosing the minus sign for ν), the

rest of the power series is linearly determined by the value of E at the horizon,

EH. Integrating from the horizon using any choice of such a vector EH would pick

a particular solution to the equation of motion (6.73), which is linear. The general

solution can then be written as a linear combination of any two linearly independent

solutions Ea = (Ex,a Ez,a)
T and Eb = (Ex,b Ez,b)

T. Using any two solutions Ea and

Eb we can construct the matrix E that was needed in subsection 6.3.3:

E ≡ (E1 E2) = (Ea Eb)I, (6.81)

where the matrix I is given by

I = (Ea Eb)
−1
∣∣
bdry

. (6.82)

This makes E a matrix whose columns are solutions to (6.73) and that satisfies the

desired property

E
∣∣
bdry

=

 1 0

0 1

 . (6.83)

Using (6.81) and (6.76), we can write

Esol = (Ea Eb)I

 E
(0)
x

E
(0)
z

 ,

E′sol = (E′a E′b)I

 E
(0)
x

E
(0)
z

 , (6.84)
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and use it to write the boundary action (6.85) as

Sε = −2KD7

∫
dt d~x

(E(0)
x E(0)

z )M(E′a E′b)I

 E
(0)
x

E
(0)
z



u=ε

, (6.85)

where (6.83) was used. If we define the matrix

C =M(E′a E′b)
∣∣
bdry
I , (6.86)

we can see that

δ2Sε

δE
(0)2
x

= −4KD7Cxx ,

δ2Sε

δE
(0)2
z

= −4KD7Czz ,

δ2Sε

δE
(0)
z δE

(0)
x

= −2KD7(Czx + Cxz) . (6.87)

Using the technology developed in [127], we will now see how to obtain the imag-

inary parts of the components of C from u-independent quantities that can be com-

puted at the horizon, so that all of the information of the boundary is encoded

exclusively in I. The first step is to show that the matrix C̃ ≡ E†ME ′ − E† ′ME is

u-independent. To prove this, we start by multiplying (6.73) on the left by M to

obtain

(ME′)
′
+ f(u)ME = 0, (6.88)
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which implies that the equation

(ME ′)′ + f(u)ME = 0 (6.89)

holds for the matrix E . If we multiply (6.89) on the left by E† and subtract from it

its transpose conjugate multiplied on the right by E , we are left with

E† (ME ′)′ −
(
E†′M

)′ E = 0 . (6.90)

Since

E† (ME ′)′ −
(
E†′M

)′ E =
(
E†ME ′ − E† ′ME

)′
, (6.91)

equation (6.90) proves that C̃ is indeed u-independent. Notice now that, since E

reduces to the identity matrix at the boundary, we have

C̃ =
(
E†ME ′ − E† ′ME

) ∣∣
H

=
(
E†ME ′ − E† ′ME

) ∣∣
bdry

=
(
ME ′ − E† ′M

) ∣∣
bdry

= C − C† . (6.92)

With (6.92) we can finally write

C̃xx = 2i Im Cxx , (6.93)

C̃zz = 2i Im Czz , (6.94)

C̃xz + C̃zx = 2i Im (Cxz + Czx) , (6.95)

which achieves the desired result of writing the imaginary parts of the correlators in
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terms of M and E evaluated at the horizon, leaving only I to be evaluated at the

boundary.

The final expression for χ(2) can then be obtained by inserting (6.87) into (6.58),

and using (6.93)-(6.95) to write

χ(2) = −4KD7i
(

(k2
0 − q2 sin2 ϑ)C̃xx + (k2

0 − q2 cos2 ϑ)C̃zz − 2q2 cosϑ sinϑ(C̃xz + C̃zx)
)
.

(6.96)

Appendix 6.B Explicit near-boundary-expansion for

the action (6.68)

We report here the explicit expression for the boundary action, eq. (6.68). The action

reads

Sε = −2KD7

∫
dt d~x

[
L1 + L2 + L3 + . . .+O

(
u2
)]
u=ε

, (6.97)

where

L1 = A1E
(0)2
x +B1E

(0)2
z + C1E

(0)
x E(0)

z ,

L2 = A2E
(0)
x E(2)

x +B2E
(0)
x E(2)

x + C2E
(0)
x E(2)

x +D2E
(0)
x E(2)

x ,

L3 = − log u

k2
0

[
(E(0)2

x + E(0)2
z ) k2

0 + (E(0)
x cosϑ− E(0)

z sinϑ)2 q2
]
, (6.98)

and the various expansion coefficients are given by

A1 =
(q2 − k2

0)(2a2 − 3(q2 − k2
0 + 8ψ2

1))

2(q2 − k2
0)(q2 − k2

0 + 8ψ2
1)− 6a2 q2 cos2 ϑ

+

+
6a2q4cos4ϑ− q2cos2ϑ[6(q2 − k2

0)(q2 − k2
0 + 8ψ2

1)− a2(4q2 − 10k2
0) + 3a2q2cos2ϑ]

4k2
0[(q2 − k2

0)(2a2 − 3(q2 − k2
0 + 8ψ2

1)) + 3a2q2cos2ϑ]
,
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B1 =
((5a2 + 15q2 + 48ψ2

1 − 15k2
0)(q2 − k2

0)− 3a2q2cos2ϑ) (q2sin2ϑ− k2
0)

4k2
0[(q2 − k2

0)(2a2 − 3(q2 − k2
0 + 8ψ2

1)) + 3a2q2cos2ϑ]
,

C1 =
q2[3(7q2 − 7k2

0 + 32ψ2
1)(q2 − k2

0)− 2a2(q2 + 2k2
0)− 6a2q2 cos 2ϑ] sin 2ϑ

8k2
0((q2 − k2

0)(2a2 − 3(q2 − k2
0 + 8ψ2

1)) + 3a2q2cos2ϑ)
,

A2 =
2 cosϑ[3(q2 − 2k2

0)(q2 − k2
0 + 8ψ2

1)− a2(5q2 − 4k2
0)− q2(5a2 − 3(q2 − k2

0 + 8ψ2
1)) cos 2ϑ]

k2
0[6(q2 − k2

0)(q2 + 8ψ2
1 − k2

0)− a2(7q2 − 4k2
0)− 3a2q2 cos 2ϑ]

,

B2 = − 48q2 sin 2ϑ

k2
0[6(q2 − k2

0)(q2 − k2
0 + 8ψ2

1)− a2(7q2 − 4k2
0)− 3a2q2 cos 2ϑ]

,

C2 =
4q2(5a2 − 3(q2 − k2

0 + 8ψ2
1))cos2ϑ sinϑ

k2
0[6(q2 − k2

0)(q2 − k2
0 + 8ψ2

1)− a2(7q2 − 4k2
0)− 3a2q2 cos 2ϑ]

,

D2 =
96(q2 sin2 ϑ− k2

0)

k2
0[6(q2 − k2

0)(q2 − k2
0 + 8ψ2

1)− a2(7q2 − 4k2
0)− 3a2q2 cos 2ϑ]

. (6.99)
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Chapter 7

Chern-Simons diffusion rate from

higher curvature gravity

In this chapter1 we study the effects of higher curvature terms in the so-called Chern-

Simons diffusion rate, ΓCS. This quantity parametrizes transitions among the different

classical vacua of non-abelian gauge theories.

Gauge field configurations that produce transitions between different vacua through

quantum tunneling are called instantons. The contribution of instantons to ΓCS is ex-

ponentially suppressed in the coupling constant both at zero and finite temperature

[135, 136].

At non-zero temperature classical thermal fluctuations can excite unstable gauge

field configuration that give a contribution to ΓCS upon decay. In the context of the

electroweak theory, these excitations are called sphalerons [137–141]. Differently to

the case of instantons, these classical thermal process are not exponentially suppressed

1In parts of this chapter we reproduce the text of arXiv:1403.2681v2 [hep-th], which is one of the
papers published in this work.
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[139].

In non-abelian gauge theories coupled to fundamental fermions a transition be-

tween different vacua is accompanied by flips of chirality that contributes to chiral

anomalies in global symmetries. Because of that the Chern-Simons diffusion rate is

relevant in the description of phenomena where there is a violation of the baryon

number, like the baryogenesis process in the early universe [142, 143]. In the context

of heavy-ion collisions a non-zero ΓCS produces regions of net chirality that plays a

role in the description of the so-called Chiral Magnetic Effect (CME) [144, 145].This

effect is expected to take place in non-central heavy-ion collisions where the produced

QGP has a magnetic field that acts in domains of non-zero net chirality producing

an eletric current paralel to the magnetic field [146].

ΓCS has been computed at weak coupling for a SU(Nc) Yang-Mills theory and its

parametric behavior has been found to be [147–150]

Γweak

CS ∝ λ5 log

(
1

λ

)
T 4 , λ� 1 , (7.1)

where λ ≡ g2
YMNc is the ’t Hooft coupling and T is the temperature. Motivated by the

strongly coupled nature of the quark-gluon plasma (QGP) produced in relativistic

heavy ion collisions, this quantity has also been computed at strong coupling via

holography in Einstein’s gravity, with the result [103]

ΓEinstein

CS =
λ2

256π3
T 4 , Nc � 1 and λ� 1 . (7.2)

Other holographic studies of ΓCS include [146, 151–153].

It is interesting to understand modifications to eq. (7.2) due to higher curvature
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corrections. These are in principle dictated by string theory and would correspond,

in the gauge theory, to corrections in 1/Nc and 1/λ. In this chapter, we limit our

attention to two specific types of higher curvature extensions of Einstein’s gravity

and compute the Chern-Simons diffusion rate in Gauss-Bonnet (GB) gravity [32–35]2

and in quasi-topological (QT) gravity [154].

These theories contain higher derivative terms, but are such that the equations

of motion for the metric are still second order,3 thus avoiding pathologies. It is not

yet clear whether they emerge as a low energy solution of some string theory, so that

their ultimate relevance is not yet established, but they do present very nice features.

Besides being free of pathologies, as mentioned already, they possess a large class of

black hole solutions and admit AdS boundary conditions, motivating their use in a

‘bottom-up’ approach to the study of strongly coupled plasmas.

Various physical observables relevant in the study of the QGP have already been

computed from these theories. Notable examples are given by [156] and [155], where

the shear viscosity to entropy ratio was studied. There it was found that higher

derivative terms may violate the famous bound η/s ≥ 1/4π proposed in [9].

In the next section we made a brief introduction to the non-trivial topology of

non-abelian gauge theories and introduce the concept of Chern-Simons number and

give a precise definition to the Chern-Simons diffusion rate, ΓCS. In section 7.2 we

introduce the higher curvatures gravity theories and present our results.

2For reviews of Gauss-Bonnet and, more generally, Lovelock gravity in the context of the
AdS/CFT correspondence see e.g. [37, 38]. A nice overview of black hole solutions can be found
in [41].

3For quasi-topological gravity this is true for the linearized equations in an AdS5 background.
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7.1 Topology of non-abelian gauge theories

A remarkable property of non-abelian gauge theories is the existence of a infinite

number of degenerate classical vacua in these theories. In this section4 we show that

this is due to the non-trivial topology of these theories.

Consider a (3 + 1)-dimensional classical Yang-Mills theory with gauge group G

and action

SYM = −1

2

∫
d4xTr

(
FµνF

µν
)

(7.3)

where Fµν = ∂µAν − ∂νAµ + gYM [Aµ, Aν ] is the field strength and Aµ = AaµT
a is

the gauge field, with T a being the generators of G. Under gauge transformations

U(x, t) ∈ G these fields transform as

Aµ → A′µ = U Aµ U
† + (∂µU)U † (7.4)

Fµν → F ′µν = U FµνU
†. (7.5)

The minimum energy of this theory is zero and is achieved by Fµν = 0. This is

consistent with Aµ = 0 and with gauge transformations of it. Then, the zero energy

configuratons must be pure gauge

A′µ =
(
∂µU(x, t)

)
U †(x, t) (7.6)

Let us now consider time-independent gauge transformation U(x). For this transfor-

mations

A′0 = 0, ∂0A
′
j = 0, A′j =

(
∂jU(x)

)
U †(x). (7.7)

4This section is based on the chapter 5 of [157].
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This time-independent transformation define a map U(x) : R3 → G. If we further

require that U(x) → 1 as x → ∞, the three-dimensional space R3 becomes topo-

logically equivalent to a three-sphere S3 for this class of transformations and we can

write U(x) : S3 → G.

The classification of the possible maps between S3 and G reveal the non-trivial

topological structure of Yang-Mills theories. From the mathematical point of view

the gauge transformation U(x) provides a map between two topological spaces, the

3-sphere and G. These maps can be classified in terms of homotopy groups, which

record information about the topology (shapes and holes) of topological spaces.

The n-th homotopy group Πn(X) can be defined as follows. Consider the maps

between the n-sphere and some topological space X. These maps can be collected

into equivalence classes, called homotopy classes. Two maps are in the same equiva-

lence class if they can be continuously deformed into each other. Maps in the same

equivalence class are said to be homotopic. These homotopy classes form a group,

which is the n-th homotopy group Πn(X).

Therefore, the gauge transformations U(x) that can be continuously deformed into

each other define a homotopy class. The corresponding homotopy group is Π3(G).

Consider two pure gauge configurations A′µ and A′′µ obtained from Aµ = 0 by the

gauge transformations U ′ and U ′′, respectively. If U ′ and U ′′ belong to the same

homotopy class, they can be continuously deformed into each other and, therefore,

there is a gauge transformation connecting A′µ and A′′µ. These gauge transformations

are usually called small gauge transformations and they relate two different represen-

tations of the same classical vacua.

However, if U ′ and U ′′ belong to different homotopy classes, the gauge transfor-

mations connecting A′µ and A′′µ are called large gauge transformations, and can be
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viewed as relating two different classical vacua. As local gauge transformations can-

not connect distinct physical situations, the presence of degenerate classical vacua

leads to the notion of θ-vaccum, in which the true vaccum of the theory is given by

a superposition of the classical vacua states [157].

For simplicity, let us consider the case where G = SU(2). As SU(2) is diffeomor-

phic to S3 the above gauge transformations define a set of maps U(x) : S3 → S3.

These maps can be classified by the so-called winding number, which counts the num-

ber of times the S3 of the group space is swept as the S3 of the coordinate space is

swept once. It turns out that the winding number can be n = 0,±1,±2, ..., and so on.

The negative values are allowed because the above maps are orientable [Shifman, 15].

This is mathematically expressed as Π3(SU(2)) = Π3(S3) = Z, where Z represents

the set of integer numbers. Morover, one can show that Π3(SU(N)) = Z, for all N .

The above classification of the maps U(x) : S3 → SU(N) in terms of interger

numbers is basically telling us that there is a non-trivial topology in the space of

gauge field configurations. One can say that there is a “hole” in the space of gauge

fields with non-contractible loops winding around this hole [Shifman].

To identify the degree of freedom corresponding to motion around this “hole” one

defines the Chern-Simons current

Kµ = 2 εµναβ
(
Aaν∂αA

a
β +

gYM

3
fabcAaνA

b
αA

c
β

)
(7.8)

From it one defines the Chern-Simons number

NCS =
g2

YM

32π2

∫
K0(x)d3x (7.9)
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One can show that for pure gauge configurations A′µ =
(
∂µU(x)

)
U †(x), obtained from

a gauge transformation U(x) with winding number n, the Chern-Simons number is

equal to the winding number

NCS = n, (winding number) (7.10)

This shows us the existence of a “direction” in the space of fields that has the topology

of a circle, and NCS counts the number of loops around this circle. Because of that

NCS can be used to classify different classical vacua states.

An analogy that helps to understand the hole of NCS in Yang-Mills theories is the

motion of a particle in a vertically oriented circle and in the presence of a gravitational

field. Let us say that the position of the particle is specified by an angle θ, that is zero

at the bottom of the circle. Classically, a particle with zero energy will stay at rest

at the bottom of the circle, at θ = 0. Quantum mechanically, zero-energy oscilations

allows the particle to go around the circle via quantum tunneling, reaching the angular

position θ = ±2π. Of course these angular positions corresponds to the same physical

point of θ = 0, but there was a motion around the circle, and this is recorded by NCS.

A possible way to represent these situation is to cut this circle and map it many

times onto a straight line. If the line give the value of the Chern-Simons number, the

potential energy of the system V (NCS) must be zero for interger values of NCS, as

represented in Fig. 7.1.

A variation in the Chern-Simons number NCS is given by

∆NCS =
g2

YM

8π2

∫
d4xTrF ∧ F =

g2
YM

16π2

∫
d4xTrF µν F̃µν , (7.11)
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-2 -1 0 1 2
NCS

V (NCS)

Figure 7.1: Schematic representation of the vacuum of non-abelian gauge theories. The
Chern-Simons number, NCS , labels the different classical vacua states.

where

F̃µν =
1

2
εµναβF

αβ (7.12)

We thus conclude that a variation in the Chern-Simons number is possible if add to

the Yang-Mills lagrangian a θ-term

LYM → LYM + Lθ . (7.13)

where

Lθ = θ
g2

YM

16π2
TrF µν F̃µν , (7.14)

The topological nature of the θ-term is evidenciated by the fact that it is a full

derivative. Indeed, one can show that Lθ ∝ ∂µK
µ, where Kµ is the Chern-Simons

current. Threfore, this term will have an effect on the action only for gauge field

configurations with non-trivial topology.

In Euclidean time, a gauge field configuration that interpolates between two vacua

is called an instanton. Such configurations represents a quantum tunneling event
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between two vacua and they produce a change in the Chern-Simons number.

At finite temperature, thermal fluctuations can produce an unstable gauge field

configuration that has energy equal to the height of the barrier of potential energy that

separates two classical vacua. Such a solution is called an sphaleron5. A sphaleron

that interpolates between the classical vacua with Chern-Simons number equal to 0

and 1 has NCS = 1/2. Just like the instantons, the sphalerons also produce a change

in the Chern-Simons number.

The rate of change of NCS per unit volume V and unit time t is a transport

coefficient called the Chern-Simons diffusion rate, ΓCS, which is defined as

ΓCS ≡
〈∆N2

CS〉
V · t

=

(
g2

YM

8π2

)2 ∫
d4x 〈O(x)O(0)〉 , O(x) = (TrF ∧ F )(x) . (7.15)

The “diffusion” that appears in the name of this coefficient occurs in the space of

solutions, not in the space-time. The excitations (both thermal and quantum) of

gauge field configurations connecting different classical vacua can be viewed as a

propagation or diffusion in the space of fields of the theory.

7.2 Gravity setup and results

To study ΓCS holographically we consider gravity in 5-dimensions with a negative

cosmological constant and the inclusion of the GB and QT terms, with action given

by

S =
1

16πG5

∫
d5x
√
−g
[
R +

12

L2
+
L2

2
λGB L2 + L4µΞ3

]
+ Sbdry . (7.16)

5This name cames from the Greek adjective sphaleros that means unstable, ready to fall.
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Here L is a length scale, later to be related with the AdS radius, λGB and µ are two

dimensionless couplings, the quadratic term L2 = R2−4RmnR
mn+RmnrsR

mnrs is the

Euler density of GB gravity, and Ξ3 is the cubic term of QT gravity, whose explicit

expression [154] won’t be needed in the following. Sbdry is a boundary term that

makes the variational problem well posed. Remarkably, this action admits6 planar

AdS black hole solutions, given by [32–35, 154]

ds2 =
L2

z2

(
−a2f(z)dt2 +

dz2

f(z)
+

3∑
i=1

dx2
i

)
, (7.17)

where xµ = (t, xi) are the gauge theory coordinates, z is the radial AdS coordinate,

a is a constant, and f(z) is a function that vanishes at the horizon, z = zH, and

which will be given below. The AdS boundary is located at z = 0. Requiring c = 1

in the boundary theory fixes a = f(0)−1/2. The black hole temperature is given by

T = a/πzH.

In the AdS/CFT correspondence, the operator O(x) of eq. (7.15) is coupled to a

bulk scalar field, χ(z, xµ), whose background value is zero in the present case. The

(retarded) 2-point function of O(x) can be obtained by computing the fluctuations

of this field, δχ(z, xµ), subject to infalling boundary conditions at the horizon and

plugging the result into the corresponding boundary action, minimally coupled to

eq. (7.16). This procedure is detailed in [103], where, as a first step, the definition

(7.15) is rewritten in Fourier space as

ΓCS = −
(
g2

YM

8π2

)2

lim
ω→0

2T

ω
ImGR(ω,0) . (7.18)

6This is true for appropriate values of the couplings. For example, it must be λGB <
1
4 .
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GR(ω,0) is the retarded Green’s function associated to O(x), evaluated at zero spatial

momentum. It can be calculated as

GR(ω,0) =
N2

c

8π2L3

√
−ggzzf−k(z)∂zfk(z)

∣∣∣
z→0

, (7.19)

where fk(z) is the Fourier mode of the scalar field fluctuation

δχ(z, xµ) =

∫
d4k

(2π)4
eik·xfk(z) , (7.20)

which can be obtained as a solution of the equation

1√
−g

∂z(
√
−ggzz∂zfk(z))− gµνkµkνfk(z) = 0 , kµ = (−ω,k) . (7.21)

It is convenient to work with the dimensionless coordinate u defined as u = z2/z2
H, in

terms of which we have (setting already k = 0)

∂2
ufk(u) +

[
∂u ln

f(u)

u

]
∂ufk(u) +

w2

uf(u)2
fk(u) = 0 , (7.22)

where we have defined for convenience the dimensionless frequency w ≡ ω/2πT .

The ‘blackening factor’ f(u) is defined implicitly through the cubic equation [154]

1− f(u) + λGB f(u)2 + µ f(u)3 = u2 . (7.23)

Out of the three solutions, we select the one which is regular when µ → 0 and

reproduces the expression f(u) =
(

1−
√

1− 4λGB (1− u2)
)
/2λGB of the GB case

[39, 41].7 We recall that the couplings λGB and µ are constrained by requirements of

7The GB case has also another solution for f(u), with a plus sign in front of the square root,
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unitarity, causality, and positivity of energy fluxes in the dual conformal field theory.

It turns out that it must be [155]8

−0.36 . λGB . 0.12 , |µ| . 0.001 . (7.24)

In view of this, we will solve eqs. (7.22) and (7.23) exactly in λGB, but only approxi-

mately to first order in small µ. This allows us to we write explicitly

f(u) =
1

2λGB

(
1−

√
1− 4λGB (1− u2)

)
+

+
1−

√
1− 4λGB (1− u2)− λGB(1− u2)

(
3−

√
1− 4λGB (1− u2)

)
2λ3

GB

√
1− 4λGB (1− u2)

µ+O(µ2) .

(7.25)

There is no known analytic solution to eq. (7.22), but this is not needed anyway,

since only the small frequency behavior w → 0 of the Green’s function enters in the

Chern-Simons diffusion rate. We can then make the following Ansatz:

fk(u) = f(u)−i
w
2

(
F0(u) + w

(
F

(0)
1 (u) + µF

(1)
1 (u) +O(µ2)

)
+O(w2)

)
. (7.26)

Here F0, F
(0)
1 , and F

(1)
1 are regular functions at the horizon, u = 1. In fact, we can

choose them to be such that

F0(1) = 1 , F
(0)
1 (1) =

i

2
log 2 , F

(1)
1 (1) = 0 . (7.27)

which is however known to be unstable and to contain ghosts; see e.g. [37, 38].
8The constraints on λGB and µ are not independent; see Fig. 1 of [155]. In particular, in the case

of pure GB gravity (µ = 0), the allowed range of λGB is −7/36 ≤ λGB ≤ 9/100. For µ < 0 there are
instabilities in the graviton tensor channel for momenta above a certain critical value [155]. Since
ΓCS is computed at k = 0 we do not worry about this here.
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The exponent of f(u) has been chosen to give infalling boundary conditions at the

horizon, which correspond to having a retarded Green’s function in the boundary.

Expanding around u = 1, one finds in fact that fk(u) ∼ (1 − u)−i
w
2 (1 + O(w2)).

Plugging the Ansatz above in eq. (7.22), it is easy9 to find the following solutions

which respect the boundary conditions above:

F0(u) = 1 , F
(0)
1 (u) =

i

2

(
1 + log 2−

√
1− 4λGB(1− u2)

)
,

F
(1)
1 (u) = − i

8λ2
GB

1− 2λGB(1− u2)− 8λ2
GB(1− u2)2 −

√
1− 4λGB(1− u2)

1− 4λGB(1− u2)
.(7.28)

Using eqs. (7.18) and (7.19), and keeping only terms linear in µ, we finally arrive at

ΓCS = ΓEinstein

CS

(
H(0)(λGB) + µH(1)(λGB) +O(µ2)

)
, (7.29)

with

H(0)(λGB) =

(
1−
√

1− 4λGB

2λGB

)3/2

,

H(1)(λGB) =
3

4

√
1−
√

1− 4λGB

2λ7
GB (1− 4λGB)

(
1−

√
1− 4λGB − λGB

(
3−

√
1− 4λGB

))
.(7.30)

We stress that this result is fully non-perturbative in λGB, at any order in µ. We see

that the Chern-Simons diffusion rate in GB and QT gravity is a rescaling of the result

in eq. (7.2). The dependence on T is dictated by conformal invariance: ΓCS must

be proportional to T 4 for dimensional reasons, with the factor of proportionality de-

pending solely on the dimensionless parameters, which are λGB and µ.10 Fig. 7.2(Left)

9The equations simplify if one changes coordinates u→
√

1− 4λGB(1− u2) in intermediate steps.
10An interesting context where this does not happen is Improved Holographic QCD [146], where

the absence of conformal symmetry makes ΓCS/Γ
Einstein
CS depend on T .

158



shows the two terms in ΓCS as functions of λGB. Both terms are finite, monotonically

increasing and positive in the allowed range of λGB, given in eq. (7.24). The GB

contribution can be either smaller or larger than 1, depending on the sign of λGB, and

the corresponding Chern-Simons diffusion rate can be either smaller or larger than

the result obtained from Einstein’s gravity, but, in the allowed range of eq. (7.24),

cannot get arbitrarily small.

Fig. 7.2(Right) displays the two contributions H(0) and H(1) as functions of the

shear viscosity over entropy ratio, which is given by [155, 156]

η

s
=

1

4π

[
1− 4λGB − 36µ(9− 64λGB + 128λ2

GB)
]

+O(µ2) . (7.31)

We observe that ΓCS for GB gravity decreases as η/s is increased (for QT gravity this

depends on the sign of µ, whose contribution is however suppressed). It would be

very interesting to understand if there is a microscopic interpretation of this behavior.

7.3 Discussion

Understanding corrections away from the infinite Nc and infinite λ limit is clearly of

the utmost importance in order to make contact with realistic systems. Unfortunately,

loop and stringy corrections are in general hard to compute, so that our philosophy in

this note has been to consider two simple extensions of Einstein’s gravity with higher

curvature terms, just to gain a qualitative understanding of how such terms might

modify the computation of an important observable in strongly coupled non-Abelian
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Figure 7.2: (Left) The factors H(0)(λGB) (red, solid curve) and H(1)(λGB) (blue, dashed
curve) as functions of λGB. (Right) The same factors as functions of η/s. The plots are
exact in λGB and in η/s, whose allowed ranges are obtained from eqs. (7.24) and (7.31).
In these ranges, the corrections to eq. (7.2) are finite and cannot make the diffusion rate
arbitrarily small.

plasmas.11 This is similar in spirit to what has been done, in [156] for GB gravity and

in [155] for QT gravity, for the shear viscosity over entropy ratio, which turned out to

be lower in these theories than what it is in Einstein’s gravity. In [156] it was in fact

found to be η/s = (1 − 4λGB)/4π and in [155] to be η/s & 0.4140/4π, both cases in

violation of the bound proposed in [9].12 It is interesting to observe that a subsequent

computation [165] in a setting [166–168] where α′-corrections can be solved exactly

yielded the same qualitative behavior, with the bound η/s ≥ 1/4π being violated.

The presence of the new gravitational couplings λGB and µ corresponds on the

boundary to considering conformal field theories which are more generic than the

ones usually studied. In particular, a non-vanishing λGB results in having independent

11Besides making things more realistic, the study of how higher derivative terms affect the com-
putation of gauge theory observables might also be useful to put constraints on the string landscape,
e.g. by excluding ranges of parameters that would produce pathologies in the dual gauge theory, as
suggested in [40].

12See also, for instance, [158–163] and [10, 11, 13] for violations of the bound in an anisotropic
plasma. A status report of the Kovtun-Son-Starinets conjecture can be found in [164].
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central charges a 6= c [169–171], whereas a non-vanishing µ also results in the breaking

of supersymmetry [154]. For these reasons, these theories, even if they turn out to be

just toy models without a UV completion, may still be useful in exploring situations

which require an understanding of holography in non-trivial backgrounds.
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Chapter 8

Anisotropic black branes in GB

gravity theory

In this chapter1 we consider a GB correction to Einstein-Hilbert gravity in five di-

mensions with a negative cosmological constant and a coupling to an axion-dilaton

field. It is not clear whether this system might be obtained by some string theory

compactification, so that our philosophy in this work is ‘bottom-up’.

The first result of our analysis is a new solution of the equations of motion rep-

resenting a black brane with a translationally invariant but anisotropic horizon. The

force responsible for keeping the horizon in an anisotropic state is furnished by the

axion field, which we take to have a fixed profile in the radial coordinate but to de-

pend linearly in one of the horizon coordinates. This is similar to what has been done

in [12] and later in [10, 11]. This new solution is interesting from a purely General

Relativity point of view, for it opens up the possibility to study the thermodynam-

1In parts of this chapter we reproduce the text of arXiv:1411.5964v2 [hep-th] and 1510.03774v3
[hep-th], which are papers published in this work.
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ics of a black brane which depends on several parameters (the temperature, the GB

coupling and an anisotropy parameter), presumably giving rise to a rich phase space.

The GB coupling that we introduce here corresponds to allowing for different

central charges, a 6= c, in the gauge theory [169–171]. We compute these two cen-

tral charges for our particular solution, verifying that they are indeed different. On

general grounds, looking at how higher derivative terms affect physical observables

on the gauge theory might also be useful to constrain the string landscape, e.g. by

excluding regions of parameters that would result in pathologies, as advocated for

example in [40, 175]. As a final, concrete application of our geometry we compute

the shear viscosity over entropy density ratio (in a few, equivalent ways), the eletric

conductivities, the drag force, the jet quenching parameter, the quarkonium static

potential and the photon production rate for the corresponding gauge theory plasma.

This chapter is organized as follows. In Sec. 8.1 we present our solution and

compute its temperature and entropy density. In Sec. 8.2 we calculate the central

charges a and c and we verify that a 6= c. In Sec. 8.3 we present the stress energy

tensor of our solution and discuss the various features of energy density and pressures.

In Sec. 8.4 we use the solution as a model for a strongly coupled anisotropic plasma

and compute various physical observables. We finally discuss our results and outline

possible future extensions of our work in Sec. 8.5. A series of appendices contains

some of the more technical details of our computations, like the explicit derivation of

the solution and the derivation of the shear viscosity tensor using alternative methods.
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8.1 Action and solution

We are interested in five-dimensional gravity with a negative cosmological constant

and the inclusion of a Gauss-Bonnet term, which we also couple to an axion-dilaton

system in the following way

S =
1

16πG

∫
d5x
√
−g
[
R +

12

`2
− 1

2
(∂φ)2 − e2φ

2
(∂χ)2 +

`2

2
λGBLGB

]
+ SGH . (8.1)

The scalar fields φ and χ are the dilaton and axion, respectively, λGB is the (dimen-

sionless) Gauss-Bonnet coupling and

LGB = R2 − 4RmnR
mn +RmnrsR

mnrs (8.2)

is the Gauss-Bonnet term. ` is a parameter with dimensions of length that we set

to one in what follows, without loss of generality. We use the Latin indices m,n, . . .

for the five-dimensional coordinates (t, x, y, z, u), with u being the radial coordinate.

The term SGH is the usual Gibbons-Hawking term, necessary to render the variational

problem well posed. When λGB = 0 the action above can be obtained from type IIB

superstrings [10, 11], but this is no longer true when the Gauss-Bonnet coupling is

turned on. In fact, it is not clear whether (8.1) can be obtained from any string theory

compactification, so that our point of view in the present paper is ‘bottom-up’, as

already discussed in the Introduction.

The field equations for the metric resulting from the action above are given by

Rmn−
1

2
gmnR+

λGB

2
δLGBmn =

1

2
∂mφ ∂nφ+

1

2
e2φ∂mχ∂nχ−

gmn
4

[
(∂φ)2 + e2φ(∂χ)2 − 12

]
,

(8.3)
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where

δLGBmn = −gmn
2
LGB − 4R r

m Rrn + 2RmnR− 4RrsRmrns + 2R rst
m Rnrst (8.4)

is the variation of the Gauss-Bonnet term. The equations for the dilaton and axion

read instead

∂m(
√
−ggmn∂nφ) =

√
−ge2φ(∂χ)2 , ∂m(

√
−ge2φgmn∂nχ) = 0 . (8.5)

We want to obtain a solution which displays a spatial anisotropy. This is achieved by

singling out one direction, say the z-direction, which will be later identified with the

‘beam direction’ in a heavy ion collision experiment occurring in the boundary theory.

To get an anisotropy between the z-direction and the xy-directions (the transverse

plane to the beam), we consider the following Ansatz2

ds2 =
1

u2

(
−FB dt2 + dx2 + dy2 +H dz2 +

du2

F

)
. (8.6)

All the metric components F , B, and H, as well as the dilaton φ, depend solely

on the radial coordinate u. This guarantees that the solution be static. In this

parametrization the boundary is located at u = 0. F is a ‘blackening factor’ that

introduces an horizon in the geometry at u = uH, where F (uH) = 0. There is a scaling

symmetry in the coordinates t and z that allows us to set BbdryFbdry = Hbdry = 1,

thus recovering a canonically normalized AdS metric in the UV region (with radius

1/
√
Fbdry). Here and in what follows we use the subscript ‘bdry’ to denote the value

of the fields at u = 0.

2Note that this Ansatz is slightly different than the one used in [10, 11].
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Following [10, 12] we consider an axion field which has a constant profile in the

radial direction and depends linearly on z

χ = a z . (8.7)

The parameter a has dimensions of energy and controls the amount of anisotropy. It

is clear that this is a solution of the axion equation, since the metric is diagonal and

the metric and dilaton do not depend on z.

In this paper we limit ourselves to considering the case of small anisotropy, which

will allow for an analytic solution of the equations of motion. To do this we expand

all the fields around the (isotropic) Gauss-Bonnet black brane solution3

φ(u) = a2φ2(u) +O(a4) ,

F (u) = F0(u) + a2F2(u) +O(a4) ,

B(u) = B0

(
1 + a2B2(u) +O(a4)

)
,

H(u) = 1 + a2H2(u) +O(a4) , (8.8)

where

F0(u) =
1

2λGB

(
1−

√
1− 4λGB

(
1− u4

u4
H

))
, λGB <

1

4
. (8.9)

This is a solution of the equations of motion when a = 0. In order to have a unit

speed of light at the boundary we set

B0 =
1

2

(
1 +

√
1− 4λGB

)
. (8.10)

3See e.g. [156] or [37] for a review.
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Figure 8.1: The metric functions at order O(a2). Here we have set λGB = 0.2.

This is possible due to the scaling symmetry in t, which we have mentioned above.

Note that only even powers of a can appear in the expansion because of the symmetry

z → −z.

Luckily it is possible to solve the equations analytically at order O(a2). The

equations at this order and the explicit solutions are detailed in App. 8.A. A plot of

representative solutions is contained in Fig. 8.1, where the regularity of the geometry

is explicitly exhibited. Here we just mention that we have fixed the integration

constants in such a way that all the metric functions are regular at the horizon and

moreover

φ2,bdry = F2,bdry = B2,bdry = H2,bdry = 0 , (8.11)

thus recovering AdS in the UV. A direct computation of the Kretschmann invariant

RmnpqR
mnpq shows no singularity in the geometry except for λGB = 1/4, which is

however excluded, as can be seen from (8.9).

Unfortunately, we have not been able to find analytic solutions beyond order
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O(a2) and most likely a numerical analysis will turn out to be necessary to go to

higher anisotropies. This is however beyond the scope of the present work.

The temperature of the solution can be computed as usual from the standard

requirement that the (Euclideanized) metric be regular at u = uH. One finds that

T = −
F ′(u)

√
B(u)

4π

∣∣∣
u=uH

. (8.12)

Specializing to our solution this becomes4

T =
√
B0

 1

πuH

−
2B0 − 6λGB +

√
λGB log

(
1+2
√
λGB

1−2
√
λGB

)
− log

(
4B0√

1−4λGB

)
48π(1− 4λGB)

uHa
2 +O(a4)

 .

(8.13)

This equation can be easily inverted to find uH as a function of T .

For planar black holes in GB gravity the entropy density is still given by the usual

formula in terms of the area of the horizon. We find (here V3 is the infinite volume∫
dx dy dz)

s =
Ahor

4GV3

=
π

4GB
3/2
0

(
π2T 3 +

1

8
TB0a

2 +O(a4)

)
. (8.14)

We notice that for λGB = 0 this matches the result obtained in [10, 11].

A final comment on the IR behavior of the geometry is in order. The solution of

[10, 11] was interpolating between AdS boundary conditions in the UV and a Lifshitz-

like scaling solution [12] in the IR. We believe that the finite λGB generalization

discussed here does not share this feature with [10, 11], although we have not been

4Note that this expression is valid, and real, even for negative λGB.
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able to prove this rigorously. More specifically, we have not been able to find a

scaling solution in the IR (even for T = 0), as done in [12] for the case λGB = 0. One

obstruction might be that Lifshitz solutions in GB gravity seem to require to tune

the cosmological constant in ways that are not compatible with our equations. For

example, in the case of GB gravity coupled to a massive vector field the condition for

a Lifshitz scaling is that the cosmological constant be half of the usual value [176].5

It would certainly be interesting to settle this point, but this goes beyond the scope

of this work.

8.2 Central charges

The trace of the stress energy tensor is related to the central charges a and c by the

following expression6 〈
T ii
〉

=
1

16π2
(cW − aE) + . . . , (8.15)

where E is the four-dimensional Euler density

E = R2 − 4RijRij +RijklRijkl , (8.16)

W is the square of the Weyl tensor

W = CijklCijkl =
R2

3
− 2RijRij +RijklRijkl , (8.17)

5A flow between a Lifshitz solution in the UV and an AdS solution in the IR for GB-gravity
coupled to a massive vector field was discussed in [177].

6Notice that in this section a denotes one of the central charges and not the anisotropy parameter.
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and where the ellipsis indicates the contribution by other fields (the axion-dilaton in

our specific setting). The trace of the stress energy tensor [133] is given by

〈
T ii
〉

=
1

r
√
−γ
L(4) . (8.18)

where L(4), γ and r are defined in [43]. To isolate the metric contribution we set

φ = χ = 0 in that expression and arrive at

〈
T ii
〉

= − 1

12
R2 +

1

4
RijRij +

(
19

24
R2 +

1

2
RijklRijkl − 23

8
RijRij

)
λGB +O(λ2

GB) .

(8.19)

Comparing (8.15) and (8.19), we find that

a = π2(2− 15λGB) +O(λ2
GB) , c = π2(2− 7λGB) +O(λ2

GB) , (8.20)

thus confirming that indeed a 6= c for theories with GB corrections. These results are

in perfect agreement with previous literature, see e.g. [178].

8.3 Boundary stress tensor

In this section we present the boundary stress tensor corresponding to our solution.

This computation requires the machinery of holographic renormalization and it was

performed in [43] using a Hamiltonian approach developed in [133]. We will only

state the results, more details can be found in [43].
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The obtained stress energy tensor is

〈Ttt〉 = 3π4T 4

[
1 +

1

12π2

( a
T

)2

+

(
3

2
+

1

24π2

( a
T

)2
)
λGB

]
+O(a4, λ2

GB) ,

〈Txx〉 = 〈Tyy〉 = π4T 4

[
1 +

1

4π2

( a
T

)2

+

(
3

2
+

1

8π2

( a
T

)2
)
λGB

]
+O(a4, λ2

GB) ,

〈Tzz〉 = π4T 4

[
1− 1

4π2

( a
T

)2

+

(
3

2
− 1

8π2

( a
T

)2
)
λGB

]
+O(a4, λ2

GB) . (8.21)

These quantities correspond to the energy density and pressures of the dual gauge

theory

E =
N2

c

8π2
〈Ttt〉 , P⊥ =

N2
c

8π2
〈Txx〉 , P‖ =

N2
c

8π2
〈Tzz〉 , (8.22)

with Nc being the number of colors of the gauge theory and P⊥ and P‖ the pressures

along the transverse plane and the longitudinal direction, respectively. The compari-

son with the energy density E0(T ) = 3π2N2
c T

4/8 and the pressure P0(T ) = π2N2
c T

4/8

of an isotropic plasma at the same temperature and λGB = 0 is obvious from the ex-

pressions above. We see in particular that the anisotropy has the effect of increasing

the energy density and perpendicular pressure compared to the isotropic case, while

decreasing the longitudinal pressure. This is consistent with the findings of [10, 11]

in the small anisotropy limit (whose results we reproduce for λGB = 0, see eq. (168)

of [11]).

These results show that the system is really anisotropic in the z-direction, as

P⊥ 6= P‖. Notice that at this order in a, the trace of the stress tensor is vanishing

〈
T ii
〉

= O(a4, λ2
GB) . (8.23)

This is in agreement with what found in [10, 11], where the conformal anomaly was
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also vanishing at order O(a2) and appearing only at order O(a4) and beyond. We

can also check some basic thermodynamic relations. In particular, the free energy

F = E − Ts, in the limit of a = 0, matches perfectly the value found in [156] from

evaluating the Euclidean action on-shell. We can also check that F = −P⊥, as it

should be [173].

8.4 Observables of the dual anisotropic plasma

As anticipated before one application of the solution we have found is modeling higher

curvature effects on the dual gauge theory plasma. Generically, heavy ion collisions

in experiments are non-central, resulting in a spatial anisotropy of the QGP formed

in the collision. This represents one of the main motivations for our Ansatz.

In this section we compute several observables relevant to the study of the QGP.

Most part of the analysis of our results involves a comparison with the isotropic

N = 4 SYM result, obtained by taking a→ 0 and λGB → 0. We limit ourselves to the

comparison at the same temperature, for simplicity, but a comparison at the same

entropy density is still possible, and it was done for the observables computed in the

model of [10, 11].

In the following we will identify with z the anisotropic direction (or ‘beam’ direc-

tion), while x and y parametrize the plane transverse to the beam.
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8.4.1 Shear viscosity to entropy ratios

An important quantity to compute in a plasma is the ratio of shear viscosity over

entropy density.7 This is a rather universal quantity for theories with an Einstein

dual, which has been conjectured to obey the Kovtun-Son-Starinets (KSS) bound

η/s ≥ 1/4π [9]. This bound can however be violated by the inclusion of higher

derivative corrections [156] (see also [156, 158–160, 162, 163]) and by the breaking of

spatial isotropy [13, 14]; see [164] for a status report on the viscosity bound.

In this section, we employ the membrane paradigm, proposed in [174] and used

in [13] for the anisotropic plasma of [10], to compute η/s for our geometry (8.8).8

Appendix 8.B contains two alternative derivations of the results in this section.9 As

in [13], we will be interested in two components of the shear viscosity tensor: ηxyxy,

which is entirely in the transverse (isotropic) plane, and ηxzxz = ηyzyz, which mixes

the anisotropic direction z with one of the directions in the transverse plane. We

denote these two components as

η⊥ = ηxyxy , η‖ = ηxzxz . (8.24)

To calculate these viscosities we consider the fluctuations hxy and hxz around the back-

ground (8.8). Given the symmetry in the transverse plane, we can take these fluctu-

ations to depend solely on (t, y, z, u). The equations of motion for ψ⊥ = hxy(t, y, z, u)

and ψ‖ = hxz(t, y, z, u) decouple from all other equations and from each other. In

7Other observables that have been computed in Einstein plus GB gravity can be found in, e.g.,
[42, 172].

8The computation of the shear viscosity in an anisotropic superfluid with a GB term has recently
been presented in [179].

9Yet another way of doing the computation would be the so-called Riccati equation method,
developed in [180] and revisited in [181]. This method allows to obtain the 2-point functions directly
from the canonical momenta of Sec. 6.3, without deriving any effective action.
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both cases, they have the following form

a(u)ψ′′ + b(u)ψ′ + c(u)ψ = 0 , (8.25)

where a(u), b(u) and c(u) are functions of the background fields and ψ stands for

either ψ⊥ or ψ‖, depending on the case. Here the primes denote derivatives with

respect to u. To use the membrane paradigm, we need to write an effective action

for ψ⊥ and ψ‖. To this scope we write (8.25) in the form10

(n(u)ψ′)′ −m(u)ψ = 0 , (8.26)

with

n(u) = exp

(∫
u

du′
b(u′)

a(u′)

)
, m(u) =

c(u)

a(u)
exp

(∫
u

du′
b(u′)

a(u)

)
. (8.27)

The effective action that gives rise to the equation of motion above is

Seff = −1

2

1

16πG

∫
d4x du

[
n(u)(ψ′)2 −m(u)ψ2

]
. (8.28)

To compare this action with the one of [174], we need to transform it to Fourier space.

To do that, we write

ψ(t, y, z, u) =

∫
dω

2π

d3k

(2π)3
ψ(u)e−iωt+ikyy+ikzz , (8.29)

where we have used the axial symmetry to rotate k = (0, ky, kz). Plugging (8.29) into

10It is important to emphasize that n(u) and m(u) are not the same in the equations of motion
for ψ⊥ and ψ‖. Here n(u) stands for either n⊥ or n‖, and m(u) stands for either m⊥ or m‖.
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(8.28) and using Plancherel’s theorem, it can be shown that

Seff = −1

2

1

16πG

∫
dω

2π

d3k

(2π)3
du
[
n(u)(ψ′)2 −m(u)ψ2

]
. (8.30)

Using the notation of [174], this can be recast in the following form

Seff = −1

2

∫
dω

2π

d3k

(2π)3
du
√
−g
[

guu

Q(u, k)
(ψ′)2 + P (u, k)ψ2

]
, (8.31)

with

1

16πG
n(u) =

√
−g guu

Q(u, k)
. (8.32)

The shear viscosity is then obtained as [174]

η

s
=

1

4π

16πG

Q(uH, k → 0)
. (8.33)

Writing the equations of motion for ψ⊥ and ψ‖, we can obtain explicit expressions

for the n(u)’s and m(u)’s. Putting these together with (8.32) and (8.33), it is readily

found that

η⊥
s

=
1

4π

(
gxx
gyy
− λGB

2

g2
xxg
′
ttg
′
zz

g

)
,

η‖
s

=
1

4π

(
gxx
gzz
− λGB

2

g2
xxg
′
ttg
′
yy

g

)
. (8.34)

These results are completely generic for the system we have considered. In particular,

we can check them against the known results from pure Einstein-Hilbert gravity with a

GB term [156] and with the anisotropic background of [13], finding perfect agreement

in both cases. In the first case, we need to take the limit of a → 0 of the equations
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above. We find

η⊥
s

=
η‖
s

=
1− 4λGB

4π
, (8.35)

as in [156]. To perform the second check we take the limit λGB → 0 and obtain11

η⊥
s

=
1

4π
,

η‖
s

=
1

4π

1

H(uH)
=

1

4π
− log 2

16π3

( a
T

)2

+O(a4) . (8.36)

Note how the longitudinal shear viscosity violates the KSS bound.

Specializing (8.34) to our solution (8.8) we find

η⊥
s

=
1− 4λGB

4π
+

B0

24π3

λGB(3− 4λGB)

(1− 4λGB)

( a
T

)2

+O
(
a4
)
,

η‖
s

=
1− 4λGB

4π
+

B0

32π3
G(λGB)

( a
T

)2

+O(a4) , (8.37)

where G(λGB) is given by

G(λGB) = −1 + 2λGB

(
8λGB

12λGB − 3
+ 1

)
+
√

1− 4λGB

+
√
λGB log

(
1 + 2

√
λGB

1− 2
√
λGB

)
+ log

(√
1− 4λGB − 1 + 4λGB

8λGB

)
.(8.38)

We emphasize that these results, despite being of second order in a, are fully non-

perturbative in λGB. The KSS bound might be violated in this setting both by the

anisotropy and by the GB coupling.

11Note that to compare the expressions for η‖ one needs to take into account the different factors
of the dilaton in the Ansäzte of [10, 13] and (8.6).
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8.4.2 Conductivities

To calculate the plasma conductivities,12 we need to introduce13 a U(1) gauge field

Am in the bulk, with a standard Maxwell action

SMaxwell = −
∫
d5x
√
−g 1

4g2
eff(u)

FmnF
mn , (8.39)

where geff(u) is a generic u-dependent coupling constant. The conjugate momentum

to the gauge field is given by14

ji = −
√
−g
g2

eff

F iu . (8.40)

The gauge field Am is dual to a conserved current J i in the boundary theory whose

expectation value is equal to ji evaluated at the boundary

〈
J i(k)

〉
= ji(u→ 0 ; k) . (8.41)

The AC conductivity is given by the following relation between the spatial part of ji

and the electric field Fjt

〈
J i=x,y,z(k)

〉
= σij(k)Fjt(u→ 0) , (8.42)

12For a related computation in an isotropic background with linear scalar fields and a GB term
see [182].

13We introduce this field only in this section, solely for the purpose of computing the conductivities.
Of course, the analysis of Sec. 6.3 would be modified by the inclusion of an extra field.

14In this section we keep denoting the boundary coordinates by the Latin indices i, j, . . ., as in
Sec. 6.3.
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while the DC conductivity is defined by the zero momentum limit of σij(k)

σijDC = lim
k→0

σij(k) . (8.43)

It turns out that we can calculate these quantities doing a near horizon analysis [174].

Imposing infalling boundary conditions at the horizon implies that

Fui =

√
−guu
gtt

Fti

∣∣∣
u=uH

. (8.44)

Combining (8.40) and (8.44) it can be readily shown that

ji(uH) =
1

g2
eff

√
g

gttguu
gijFjt(uH) , (8.45)

and that, in the zero momentum limit, this relation holds for all u [174]. Because of

this, we can do the calculation at the horizon, instead of doing it at the boundary.

Comparing (8.42) with (8.45) we see that the conductivity along the i-direction is

σiiDC =
1

g2
eff

√
g

gttguu
gii
∣∣∣
uH

. (8.46)

For an isotropic background we have σijDC = σδij (from now on we are going to use

the symbol σ to represent the DC conductivity and will drop the subscript). When

the background is anisotropic, there will be two different conductivities: σ⊥ and σ‖.

The former corresponds to an electric field aligned along the x- and y-directions,

resulting in a corresponding conductivity along the transverse plane, whereas the

latter corresponds to electric field and conductivity along the beam direction. These
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quantities are given by

σ⊥ =
1

g2
eff

√
g

gttguu
gxx
∣∣∣
uH

, σ‖ =
1

g2
eff

√
g

gttguu
gzz
∣∣∣
uH

=
σ⊥

H(uH)
. (8.47)

Normalizing with the isotropic result, we get

σ⊥
σiso

= H(uH)1/2 = 1 +
a2

2
H2(uH) +O(a4) ,

σ‖
σiso

= H(uH)−1/2 = 1− a2

2
H2(uH) +O(a4) . (8.48)

Since H2(uH) is a positive quantity, we see that the anisotropy has the effect of

enhancing the conductivity along the perpendicular directions, as compared to the

isotropic case, while suppressing the one along the longitudinal direction, consistently

with the findings of [27, 31].

8.4.3 Drag force

A heavy quark propagating through a strongly coupled plasma it loses energy due to

the interaction with the medium. One quantity related to the dissipation of energy of

the quark is the drag force. The study of drag force in a strongly coupled plasma was

initiated in [183, 184] for the case of (isotropic) N = 4 SYM and subsequently it was

extended in several ways. See, for instance [185–204]. The two computations of the

drag force closely related to the present work were done in [15, 205], corresponding

to the limits λGB = 0 and a = 0, respectively.

Following the standard prescription of the computation of the drag force, we

consider an external heavy quark moving through the strongly coupled plasma with

constant velocity v. Since the heavy quark loses energy due to the interaction with the
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plasma, an external force is necessary to maintain the motion stationary. In the dual

picture, we have a classical string with an endpoint in the quark (at the boundary)

and the other endpoint in the bulk, in a picture usually referred to as “trailing string”

[183, 184]. The derivation of the general formula is presented in Appendix 8.C. As a

result, we first need to determine a critical point uc by solving the equation

[
2Gtt

v2
+Gxx +Gzz + (Gzz −Gxx) cos(2ϕ)

]
u=uc

= 0, (8.49)

where ϕ is the angle between the direction of motion of the quark and the z-direction.

In the following, we will be interested in the cases where the motion of the quark is

parallel (||) and transversal (⊥) to the direction of anisotropy, corresponding to ϕ = 0

and ϕ = π/2, respectively. Once the critical point is determined, it is straightforward

to compute the drag force using

F
||

drag = eφ/2Gzzv
∣∣∣
u=uc

, F⊥drag = eφ/2Gxxv
∣∣∣
u=uc

. (8.50)

Since we are working in the small anisotropy regime, the critical point can be written

as

uc = u0c + a2u2c +O(a4). (8.51)

For our particular background (8.6), the equation for the critical point (8.49) ex-

panded to second order in a becomes

B0F0 − v2 + a2
(
B0B2F0 +B0F2 − v2 cos2 ϕH2 +B0u2cF

′
0

) ∣∣∣
u0c

= 0, (8.52)
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Solving the equation order by order gives

u0c = uH

(
B2

0 − v2B0 + v4λGB

B2
0

) 1
4

,

u2c = −B0B2(u0c)F0(u0c) +B0F2(u0c)− v2H2(u0c) cos2 ϕ

B0F ′0(u0c)
. (8.53)

Plugging the solution for the critical point (8.53) into the formulas of the drag force

(8.50), we obtain

F
||

drag =
v

u0c
2

+
a2v

2u0c
2

(
φ2(u0c)− 4

u2c

u0c

+ 2H2(u0c)

)
+O(a4),

F⊥drag =
v

u0c
2

+
a2v

2u0c
2

(
φ2(u0c)− 4

u2c

u0c

)
+O(a4). (8.54)

We do not report the full explicit expressions for the drag force here since they are

too long and not very illuminating. Inverting the first relation of (8.13), the drag

force can be expressed as a function of the temperature.15 We can then check that in

the limit λGB → 0 we recover the result of [15],

F
||MT

drag =
π2T 2v√
1− v2

+
a2v

(
−v2 +

√
1− v2 + (v2 + 1) log

(√
1− v2 + 1

)
+ 1
)

24 (1− v2)3/2
,

F⊥MT

drag =
π2T 2v√
1− v2

+
a2v

(
−v2 +

√
1− v2 + (4v2 − 5) log

(√
1− v2 + 1

)
+ 1
)

24 (1− v2)3/2
, (8.55)

and in the limit a→ 0 we recover the result of [205]

F GB

drag =

√
2π2T 2v√

(v2 − 1)
(
2 (v2 + 1)λGB −

√
1− 4λGB − 1

) . (8.56)

15The easiest way to write the drag force in terms of the temperature is by noting that the critical
point scales as uc = uHγ0 + a2u3

Hγ2 +O(a4), where γ0 and γ2 are quantities that do not depend on
uH.
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Of course, in the limit where both a and λGB go to zero we recover the isotropic N = 4

SYM result [183, 184]

F iso

drag =
π2T 2v√
1− v2

. (8.57)

In the analysis of our results, it is useful to normalize the drag force by the

isotropic result (8.57). The normalized drag force here depends on v, λGB and a/T .

The main result is shown in Fig. 8.2. Our results are, as expected, a combined

effect of their limiting cases [15, 205]. The effect of the Gauss-Bonnet coupling is,

in general, to enhance the drag force for λGB > 0 and to decrease it for λGB < 0,

for both longitudinal and transversal motion. This is the same effect observed in the

case of pure Gauss-Bonnet gravity [205], but it is different from what happens with

corrections of type α′3R4, where the drag force is always enhanced [203]. The effect

of the anisotropy is qualitatively the same found in [15]: for the transversal motion

the drag force can increase or decrease, while for the parallel motion the drag force

increases in general (except for sufficiently large negative values of λGB). We also

plotted the drag force as a function of the quark velocity (Fig. 8.3). In general, the

drag is increased for larger velocities and there is a divergence in the limit v → 1,

similarly to what occurred in [15].
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Figure 8.2: Drag force normalized by the isotropic result as a function of (λGB,
a
T

).

Here we have fixed v = 0.3. Left: Motion along the anisotropic direction. Right:

Motion along the direction transversal to the anisotropy.
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Figure 8.3: Drag force normalized by the isotropic result as a function of (λGB, v).

Here we have fixed a
T

= 0.2. Left: Motion along the anisotropic direction. Right:

Motion along the direction transversal to the anisotropy. For other values of a
T

the

results were qualitatively the same.

8.4.4 Jet quenching parameter

Results from RHIC [69–72] indicate a strong suppression of particles with high transver-

sal momentum pT in Au-Au collisions, but not in d-Au collisions. The explanation for

this phenomenon is that in Au-Au collisions the hot and dense quark gluon plasma

is produced, and the jets lose energy due to the interaction with this medium before

hadronizing. This energy loss effect is called “jet quenching” and can give valuable

information as regards the properties of the plasma. One important quantity re-

lated to jet quenching is the jet quenching parameter q̂, which quantify the change of

transverse momentum of the parton per unit length when suffering multiple scatter-

ing with the medium. The change in transverse momentum is usually referred to as
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“momentum broadening”.

The jet quenching parameter has been calculated at weak coupling for several

models (see [206] for a review) and has been consistent with data [207]. However, the

assumption of weak coupling is still not well justified, since different energy scales are

involved in heavy ion collision experiments and thus a calculation at strongly coupling

may be necessary. This motivates a non-perturbative definition of the jet quenching

parameter. The non-perturbative definition of the jet quenching parameter and its

first computation using holography was done in [208–210]. After that, it was extended

in several directions.16 See, for instance [215–217].

The non-perturbative definition of the jet quenching parameter q̂ was inspired by

its perturbative calculation in the so called dipole approximation [218]

〈
WA(C)

〉
' exp

[
−L

−`2

4
√

2
q̂

]
, (8.58)

where WA(C) is a rectangular light-like Wilson loop in the adjoint representation with

sizes L− and `, with L− � `. Using the holographic dictionary the jet quenching pa-

rameter is given in terms of the on-shell Nambu-Goto action whose string worldsheet

boundary coincides with the Wilson loop17

q̂ =
8
√

2

L−`2
Son-shell. (8.59)

16There are also some attempts of non-perturbative computations of the jet quenching parameter
on the lattice (see, for instance [211–213]).

17The extra factor of 2 comes from the fact that, for large Nc, the Wilson loop in the adjoint
representation is roughly speaking the square of the Wilson loop in the fundamental representation.

185



In the case of pure (isotropic) N = 4 SYM, the result obtained was [208–210]

q̂iso =
π3/2Γ(3

4
)

Γ(5
4
)

√
λT 3. (8.60)

Here we compute the jet quenching parameter for the anisotropic background

with Gauss-Bonnet term (8.6). A detailed derivation of the formula we used here

is presented in Appendix 8.D. The parameters involved are the Gauss-Bonnet cou-

pling λGB, the ratio of the anisotropy parameter to temperature a/T and the angles

(θ, ϕ) associated with the direction of motion of the quark and the direction of the

momentum broadening, respectively.18

Our results are summarized in Fig. 8.4. Similarly to the drag force computation

of the previous subsection, the effect of the Gauss-Bonnet coupling is controlled by

its sign: the jet quenching parameter is increased for λGB > 0 and decreased for

λGB < 0. The effect of the anisotropy, in the small anisotropy limit, is to increase

the jet quenching parameter as it occurred in [30, 186, 214], with the highest increase

taking place when the quark moves in the anisotropic direction. We also verified that,

for a fixed value of θ, the jet quenching parameter is slightly larger for the momentum

broadening taking place in the anisotropic (ϕ = π/2) direction than in the transversal

direction to the anisotropy (ϕ = 0).

18More precisely, θ is the angle between the direction of motion of the quark and the anisotropic
direction. The direction of the momentum broadening is transversal to the direction of motion of
the quark and forms an angle ϕ with the y-axis. Note that the same symbols θ and ϕ were used for
other observables, but with different meanings.
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θ
ϕ

λGB

a/T

q̂/q̂iso q̂/q̂iso

Figure 8.4: Left: Jet quenching parameter as a function of (θ, ϕ). We have set

λGB = 0.1 and a/T = 0.33. Right: The jet quenching parameter as a function of

(λGB,
a
T

). We have set θ = ϕ = π/4. Both plots were normalized by the isotropic

result (8.60).

As argued in [207], weak coupling models of jet quenching are in general lower

than the value obtained at strong coupling for N = 4 SYM (8.60). If we would expect

a smooth interpolation between the weak and strong coupling values, the case λGB < 0

would become particularly interesting since it decreases the N = 4 SYM result. The

same decreasing effect was also found in [219], where one considered fluctuations of

the string worldsheet, and in [220], where curvature corrections of type α′3R4 in the

AdS-Schwarzschild background were taken into account.
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8.4.5 Quarkonium static potential

Quarkonium mesons are produced in the early stages of heavy ion collisions, before the

creation of the QGP. As they are much more tightly bound and smaller than ordinary

‘light’ hadrons, they can survive as bound states in the QGP at temperatures above

the deconfinement temperature up to some dissociation temperature. This property,

together with the fact that their interaction with the thermal medium is comparatively

stronger than their interaction with the hadronic matter formed after hadronization,

makes the quarkonium mesons excellent probes to study the QGP formed in heavy

ion collisions [67].

Here we study the static quarkonium potential in a strongly coupled plasma dual

to the gravity theory described in Section 8.1. In particular, we analyze how the

anisotropy and the higher derivative terms affect the potential energy and the screen-

ing length of a heavy quark-antiquark pair. The holographic studies of this quantity

were initiated in [221, 222], for infinitely heavy quarks in the N = 4 SYM theory,

and since then several extensions of this work have been performed. See, for instance

[223–234]. Higher derivative corrections to the quarkonium potential were considered

in [223, 230] and the effects of anisotropy were taken into account in [186, 224].

The static quarkonium potential can be extracted from the expectation value of

a Wilson loop

lim
T →∞

〈W (C)〉 ∼ eiT (VQQ̄+2MQ), (8.61)

where C is a rectangular loop with time extension T and spatial extension L, VQQ̄ is

the quark-antiquark potential energy and MQ is the quark mass. The Wilson loop

can be viewed as a static quark-antiquark pair separated by a distance L. In the

gravity side, the pair is described by an open string with both endpoints attached
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to a D7-brane sitting at some AdS radial position, which determines the quark mass

(MQ ∼ 1/u). For simplicity, we will work in the case where the D7-brane is at the

boundary of AdS and, consequently, the quark is infinitely heavy and non-dynamical.

In the large Nc and large λ limits the Wilson loop of Eq. (8.61) can be calculated

in the gravity side by the expression

lim
T →∞

〈W (C)〉 = eiS
(on-shell)

, (8.62)

where S(on-shell) is the on-shell Nambu-Goto action of a U-shaped string whose world-

sheet boundary coincides with the curve C. The quarkonium potential is thus obtained

as

VQQ̄ =
S(on-shell)

T
− 2MQ, (8.63)

where the quark mass MQ is determined by evaluating the Nambu-Goto action of a

straight string connecting the boundary to the horizon. Given the rotational symme-

try in the xy-plane, we can assume the quark-antiquark pair to lie in the xz-plane,

forming an angle θ with the z-direction. Since we want to focus on the results, we

leave the details of the calculation of VQQ̄(L) in Appendix 8.E.

First, let us discuss some general properties of VQQ̄(L). From Fig. 8.5, we see

that VQQ̄ only exists up to a maximum separation length Lmax. For each value of

L ≤ Lmax there are two possible string configurations corresponding to the upper

and lower parts of VQQ̄. It turns out that only the lower part of VQQ̄ represents a

physical solution [225]. Note that VQQ̄ = 0 at some point L = Ls, usually referred

to as “screening length”. Since VQQ̄ represents the difference between the energy and

mass of the quarkonium, a negative value of the potential (L ≤ Ls) represents a

situation where the U-shaped string (bound state) is energetically favorable over the
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configuration with two straight strings (unbound state). On the other hand, when the

potential is positive (L ≥ Ls), the opposite happens and the unbound configuration

is energetically favorable.19 Another point is that the screening of a plasma is weaker

for large Ls and stronger for small Ls. This is because Ls represents the separation

in which the interaction between the quark and the antiquark becomes completely

screened by the medium.

0.6 0.7 0.8 0.9

- 0.2

- 0.1

0.0

0.1

0.2

V
Q
Q̄

L
Figure 8.5: Quark-antiquark potential VQQ̄ as a function of their separation L for
different values of the Gauss-Bonnet coupling: λGB = −0.1 (red, dotted), λGB = 0
(black, solid) and λGB = 0.1 (blue, dashed). For all curves a/T ≈ 0.3 and θ = π/4.

Fig. 8.5 shows that positive values of λGB decrease the screening length, while

negative values of λGB increase this quantity. This effect can be better visualized in

Fig. 8.6 (a), where the screening length is presented as a function of (λGB, a). Now

let us discuss the effect of the anisotropy. First of all, Fig. 8.6 (b) shows that the

19However, we emphasize that the solution for VQQ̄ is not valid when L ≥ Ls. In this case the
quark-antiquark interaction is completely screened by the presence of QGP between them and, as a
consequence, their separation can be increased with no additional energy cost. This implies that the
potential is actually constant for L ≥ Ls. The dual gravity picture can be understood as follows: as
we increase the quark-antiquark separation, the U-shaped string connecting the quarks eventually
touches the horizon. At this point the string can minimize its energy by splitting into straight strings
connecting the boundary of AdS to the horizon.
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screening length for a quarkonium oriented along the anisotropic direction (θ = 0)

is always smaller than the corresponding quantity for a quarkonium oriented in the

transverse plane (θ = π/2). Second, the 2D plot of Fig. 8.7 reveals that the screening

length always decrease as we increase a/T , for any orientation of the pair, at fixed

λGB. These anisotropic effects are also observed in holographic calculations at strong

coupling when the anisotropy is introduced by a magnetic field [234] and at weak

coupling in calculations based on “hard-thermal-loop” resummed perturbative QCD

[235]. The limit λGB → 0 of the above results agrees with the calculations of [186].

We also checked that the limit a → 0 for VQQ̄ agrees with the results of [223] when

the quasi-topological coupling constant is zero.20

λGB

a/T

λGB

a/T

Ls/Liso L⊥/L||

(a) (b)

Figure 8.6: (a) Screening length Ls(λGB, a) normalized with respect to the isotropic

result Liso = Ls(λGB = 0, a = 0) for θ = 0. (b) Ratio L⊥/L||, where L⊥ is the

screening length calculated at θ = π/2, and L|| is the screening length calculated at

θ = 0.

20In the comparison of our results with [223], one should note that the potential of [223] is nor-
malized with 1/(πα′), while our results are normalized with 1/(2πα′).
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Figure 8.7: Screening length Ls as a function of a/T for three different quarkonium

orientations: θ = 0 (black, solid), θ = π/4 (purple, dashed) and θ = π/2 (blue,

dotted). The Gauss-Bonnet coupling is fixed λGB = 0.

8.4.6 Photon production

The limited extension of the QGP created in heavy ion collisions and the weakness

of the electromagnetic interactions imply that this medium should be optically thin.

Therefore, the photons produced in the plasma escape from it without subsequent

interactions, providing an excellent probe of the conditions of the medium. The

holographic studies of this quantity were initiated in [236] and extended in several

directions, see, for instance [237–255]. In this section we study how the anisotropy and

higher derivative corrections affect the photon production rate in the model described

in Section 8.1.

Let L0 be the Lagrangian of the field theory dual to the gravity theory described

by the action (8.1). The photon production rate is calculated by adding a dynamical
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photon to L0 coupled to the electric charged matter fields, that is,

L = L0 + eJEM

µ Aµ − 1

4
FµνF

µν , (8.64)

where Fµν = ∂µAν − ∂νAµ is the field strength associated to the photon field Aµ, e

is the electromagnetic coupling constant and JEM
µ is the electromagnetic current. At

leading order in e, the number of photons emitted per unit time and unit volume is

given by [119]

dΓγ
d3k

=
e2

(2π)32|~k|
Φ(k) ηµνχµν(k)

∣∣∣
k0=|~k|

, (8.65)

where ηµν = diag(− + ++) is the Minkowski metric, kµ = (k0, ~k) is the photon

null momentum, Φ(k) is the distribution function and χµν is the spectral density.

Assuming thermal equilibrium, the distribution function reduces to the Bose-Einstein

distribution nB(k0) = 1/(ek
0/T − 1). The spectral density can be obtained as

χµν(k) = −2 Im GR

µν(k), (8.66)

where

GR

µν(k) = −i
∫
d4x e−ik·x Θ(t)

〈
[JEM

µ (x), JEM

ν (0)]
〉

(8.67)

is the retarded correlator of two electromagnetic currents JEM
µ and the above expecta-

tion value is taken in the thermal equilibrium state. The Ward identity kµχµν = 0 for

null kµ implies that only the transverse spectral functions contribute in the calculation
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Figure 8.8: Momentum ~k and polarization vectors ~ε(1) and ~ε(2). The SO(2) rotational
symmetry in the xy-plane allows us to choose the momentum lying in the xz-plane,
forming an angle ϑ with the z-direction. Both polarization vectors are orthogonal to
~k. We chose ~ε(1) oriented along the y-direction and ~ε(2) contained in the xz-plane.

of the trace of the spectral density, that is,

ηµνχµν =
∑
s=1,2

εµ(s)(
~k) εν(s)(

~k)χµν(k)
∣∣∣
k0=|~k|

. (8.68)

Using the above formula, the differential photon production rate can be rewritten as

dΓγ
d3k

=
e2

(2π)32|~k|
Φ(k)

∑
s=1,2

εµ(s)(
~k) εν(s)(

~k)χµν(k)
∣∣∣
k0=|~k|

, (8.69)

where εµ(1) and εµ(2) are mutually orthogonal polarization vectors that are also orthog-

onal to kµ. By the SO(2) symmetry in the xy-plane of our model we can choose ~k to

lie in the xz-plane – see Fig. 8.8. Following [238, 239], we set

~k = k0(sinϑ, 0, cosϑ) . (8.70)

With this choice of ~k the polarization vectors can be chosen as
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~ε(1) = (0, 1, 0) , ~ε(2) = (cosϑ, 0,− sinϑ) . (8.71)

For later purposes we split the trace of the spectral density into two parts

ηµνχµν = χ(1) + χ(2), (8.72)

where χ(s) is proportional to the number of photons emitted with polarization ~ε(s).

These quantities are given by

χ(1) = εµ(1)ε
ν
(1)χµν = χyy

χ(2) = εµ(2) ε
ν
(2) χµν = cos2 ϑχxx + sin2 ϑχzz − 2 cosϑ sinϑχxz . (8.73)

We now proceed to explain how to compute the retarded Green function of two

electromagnetic currents using holography. It turns out that the gravity theory dual

to the field theory described by the Lagrangian L is simply obtained by adding a

U(1) kinetic term to the action (8.1). As we are dealing with a bottom-up model, we

consider a five-dimensional U(1) kinetic term of the form,

SU(1) = −K
∫
d5xFmnF

mn, (8.74)

where Fmn = ∂mAn − ∂nAm is the field strength associated to the gauge field Am

(m = 0, 1, 2, 3, 4) and K is a constant.21 Let Aµ (µ = 0, 1, 2, 3) denote the components

21In top-down calculations, K is proportional to the number of electrically charged degrees of
freedom times the number of colors in the dual gauge theory. For instance, when photons are
produced from adjoint matter we have K ∝ N2

c [236], while for fundamental fields, K ∝ NcNf
[238–240, 254]. In bottom-up models, this constant can be chosen freely and, since we are only
interested in ratios of spectral densities (which are proportional to K), this constant will play no
role in our analysis.
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of this gauge field along the gauge theory coordinates (t, ~x) and A4 = Au denote the

component along the radial coordinate of AdS. In order to simplify our calculations,

we gauge fix Au = 0. Our final results, however, will be written only in terms of

gauge invariant quantities, in such a way that this gauge choice will not be relevant.

Given the translation invariance of our model, we can Fourier decompose the

gauge field Aµ as

Aµ(t, ~x, u) =

∫
d4k

(2π)4
e−ik

0t+i~k·~xAµ(k0, ~k, u) . (8.75)

The equations of motion derived from (8.74) are given by

∂µ
(√
−ggµαgνβFαβ

)
= 0 . (8.76)

In terms of the gauge invariant quantities Ei = ∂0Ai − ∂yAi, the above equations of

motion split into a decoupled equation for Ey,

E ′′y +
(
log
√
−gguugyy

)′
E ′y −

k
2

guu
Ey = 0 , (8.77)

and a system of two coupled equations for Ex and Ez,
22

E ′′x +

[(
log
√
−gguugxx

)′ − (log
gxx

gtt

)′
k2
x

k
2 g

xx

]
E ′x −

k
2

guu
Ex −

(
log

gxx

gtt

)′
kzkx

k
2 gzzE ′z = 0 ,

E ′′z +

[(
log
√
−gguugzz

)′ − (log
gzz

gtt

)′
k2
z

k
2 g

zz

]
E ′z −

k
2

guu
Ez −

(
log

gzz

gtt

)′
kzkx

k
2 gxxE ′x = 0 ,

(8.78)

22In the derivation of the equations of motion for Ex and Ez we used the constraint gαβkαA
′
β = 0.
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where the primes denote derivatives with respect to u and k
2 ≡ gαβkαkβ. Note that

the above equations are written in momentum space.

The action (8.74) can be written in terms of the gauge invariant fields Ei as

Sε = −2K

∫
dt d~x

√
−gguu

k2
0k

2

[(
−gttk2

0 − gzzk2
z

)
gxxExE

′
x − k

2
gyyEyE

′
y+

+ gxxgzzkxkz (ExEz)
′ +
(
−gttk2

0 − gxxk2
x

)
gzzEzE

′
z

]
u=ε

. (8.79)

The retarded correlators are obtained by taking functional derivatives of the above

action with respect to the boundary values of the gauge fields Aµ(0). In the com-

putation of χ(1) and χ(2) we only need the spatial correlators GR
xx, G

R
yy, G

R
zz, and

GR
xz = GR

zx. This correlators can be obtained in terms of the Ei’s as

GR
ij =

δ2Sε
δAi(0)δAj(0)

= k2
0

δ2Sε

δE
(0)
i δE

(0)
j

, (8.80)

where E
(0)
i is the boundary value of the gauge field Ei.

As the mode Ey does not couple to the other modes, the spectral density for

photons with polarization ~ε(1) can be obtained by applying the prescription of [103].

The retarded correlator reads

GR
yy = k2

0

δ2Sε

δE
(0)2
y

= −4K

k2
0

√
−gguugyy

E ′y(k, u)

Ey(k, u)

∣∣∣
u→0

. (8.81)

The corresponding spectral density is then given by

χ(1) = χyy = −2ImGR
yy =

8K

k2
0

Im
[√
−gguugyy

E ′y(k, u)

Ey(k, u)

]
u→0

. (8.82)
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The computation of χ(2) is more involved, because of the coupling between Ex

and Ez. We face this problem by following the technique developed in [238] to deal

with mixed operators. First, we write a near-boundary expression for the fields Ex

and Ez,

Ex = E(0)
x + u2E(2)

x cosϑ+ u4E(4)
x +O(u6) ,

Ez = E(0)
z − u2E(2)

x sinϑ+ u4E(4)
z +O(u6) . (8.83)

The form of the second order coefficients was chosen such that the equations of motion

(8.78) are satisfied. The equations of motion also determine the coefficients E
(4)
x and

E
(4)
z in terms of the lower order coefficients,

E(4)
x =

a2λGB cosϑ

96(1−B0)(1− 4λGB)

(
3k2

0(B0 − 2λGB)E(0)
x cosϑ+ 8(1− 2B0)E(2)

x

)
,

E(4)
z =

a2

192
√

1− 4λGB

[
3k2

0(λGB −B0)
(
E(0)
x sinϑ− E(0)

z cosϑ
)

cosϑ− 8B0E
(2)
x sinϑ

]
.

(8.84)

The remaining coefficients E
(0)
x , E

(0)
z and E

(2)
x can be extracted from the numerical

solution. With the above expressions the boundary action (8.79) takes the form

Sε =
√
B0K

[
−1

2

(
E(0)
x sinϑ+ E(0)

z cosϑ
)2 − 4

B0k2
0

(
E(0)
x E(2)

x cosϑ+ E(0)
z E(2)

x sinϑ
)]
.

(8.85)

Finally, using (8.66), (8.73), and (8.80) we can show that

χ(2) =
16K√
B0

Im

[
δE

(2)
x

δE
(0)
x

cosϑ− δE
(2)
x

δE
(0)
z

sinϑ

]
, (8.86)
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where the functional derivatives δE
(2)
x /δE

(0)
x and δE

(2)
x /δE

(0)
z are calculated according

to the prescription given in [238].

The trace of the spectral density χµµ = χ(1) + χ(2) is a function of the parameters

(λGB, a, ϑ, uH, k
0). In order to study the effects of the anisotropy parameter and the

Gauss-Bonnet coupling, we computed χµµ for several values of (λGB, a, ϑ), choosing as

normalization the isotropic result

χiso = χµµ(λGB = 0, a = 0). (8.87)

Our comparison with the isotropic result was made at fixed temperature T0 =

0.32.23 The results for the ratio χµµ/χiso as a function of the dimensionless frequency

w = k0/2πT0 are presented in Fig. 8.9. For an anisotropic plasma, we have χ(1) 6= χ(2).

However, in our case the smallness of the anisotropy parameter a makes these two

quantities almost equal, presenting a very similar behavior as a function of w, so

we chose to plot only the total spectral density instead of plotting the two spectral

densities separately. At least, we observed that χ(1) is slightly bigger than χ(2), as

was the case in [238, 239]. We also verified that our results reproduce the calculations

of [253] in the limit a→ 0 and that they are consistent with anisotropic calculations

of [238] in the limit λGB → 0 and small values of a/T .

23Doing this, one must note that the temperature T of the system is a function of (λGB, a, uH)
and, consequently, it changes as we vary these parameters. Therefore, we need to adjust uH in such a
way that all the spectral densities are calculated at same temperature T0, defined by T0 = T (λGB =
0, a = 0, uH = 1).
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Figure 8.9: The trace of the spectral density χµµ(λGB, a, ϑ) normalized with respect to the

isotropic result (8.87). All the spectral densities were calculated at the same temperature

T0 = 0.316698. The colors of the curves identify the value of the λGB parameter as: red

curves (λGB = −0.1), brown curves (λGB = −0.05), black curves (λGB = 0), purple curves

(λGB = 0.05) and blue curves (λGB = 0.1). In (a), the angle of emission is fixed (ϑ = 0)

and we have solid curves (a = 0.2), dashed curves (a = 0.1) and dotted curves (a = 0). In

(b), the anisotropy is fixed (a = 0.2) and we have solid curves (ϑ = 0), dot-dashed curves

(ϑ = π/4), and dotted curves (ϑ = π/2).

From Fig. 8.9 it is clear that the effect of the Gauss-Bonnet coupling is to increase

or decrease the photon production rate, depending on whether λGB > 0 or λGB < 0,

respectively. The main effect of the anisotropy parameter is to increase the photon

production rate. At small frequencies, χµµ does not depend strongly on a. For generic

frequencies, the χµµ is higher for photons with longitudinal wave vectors (ϑ = 0)

than for the ones with transverse wave vectors (ϑ = π/2). One qualitative difference

between the corrections introduced by λGB and a is their dependence on the frequency.
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Looking at the curves for a = 0 in Fig. 8.9, we see that the Gauss-Bonnet correction

reaches a constant value after a sufficiently large value of w. On the other hand, the

effect of the anisotropy parameter a is enhanced as we increase w.

It is also interesting to analyze how the anisotropy and the Gauss-Bonnet term

affects the total photon production (8.65), which can be expressed as

−1

4Ke2T 3
0

dΓγ
d cosϑ dk0

=
w

32Kπ3T 2
0

1

e2πw − 1

(
χ(1) + χ(2)

)
(8.88)

This quantity is shown in Fig. 8.10, for different values of λGB and ϑ. From Fig. 8.10

we see that, for λGB > 0, the peak in the spectrum of photons becomes higher, widens

and gets shifted to the right. For λGB < 0, the peak becomes smaller, sharpens and

gets shifted to the left. This should be contrasted with the results of [248] for a top-

down higher derivative correction of the form α′3R4, where the peak in the spectrum

becomes higher, sharpens and gets shifted to the left, approaching the weak coupling

result [236], which shows a very sharp peak at small w in the photon spectrum.

Therefore, the inclusion of the α′3R4 correction (which corresponds to a finite ’t Hooft

coupling correction in the gauge theory) goes into the direction of the weak coupling

results, while this does not seems to be possible in the case of Gauss-Bonnet. However,

a partial agreement between these two types of corrections is found when λGB < 0,

where the peak in the photon spectrum sharpens and moves to the left, but it also

becomes smaller, contrary to what happens at weak coupling. We can understand

this partial agreement noting that, for λGB < 0, the ratio η/s = (1 − 4λGB)/(4π)

increases, which also happens with η/s when finite ’t Hooft coupling corrections were

taking into account. Since at weak coupling the shear viscosity over the entropy

density ratio is proportional to the mean free path of momentum isotropization, we
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can associate the approaching of the weak coupling results (negative λGB corrections

or α′-corrections) with a larger mean free path in both cases.
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Figure 8.10: Total photon production rate as a function of w = k0/2πT0. From top

to bottom, the value of the Gauss-Bonnet coupling is identified as λGB = 0.1 (blue),

λGB = 0.05 (purple), λGB = 0 (black), λGB = −0.05 (brown), λGB = −0.1 (red). We

have fixed ϑ = 0 and a = 0.2. The results for different angles are very similar to the

plot above due to the smallness of the anisotropy.

8.5 Discussion

In this chapter we have explored the effects of higher curvature corrections (given by

the inclusion of a GB term) in a system of AdS-gravity in five dimensions coupled

to an axion-dilaton field. As we have explained above, these corrections correspond,

on the gauge theory side, to considering cases that are more generic than the ones
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usually considered, e.g. conformal field theories with independent central charges,

a 6= c. It is still unclear whether our setup might be obtained in the low energy limit

of some string theory, and our philosophy has been ‘bottom-up’.

We have also considered a particular black brane Ansatz, in which the axion field is

linearly dependent on one of the horizon coordinates, while being independent of the

radial coordinate. This has resulted in finding an anisotropic black brane solution

to the equations of motion, which is the GB-corrected equivalent of the geometry

discovered in [10, 11]. As discussed in Sec. 8.1, one point that remains to be settled in

our analysis is whether our solution might be interpreted as an interpolating solution

between a Lifshitz-like scaling solution in the IR and an asymptotically AdS space,

as was the case for the λGB = 0 limit of [10, 11].

One of the most interesting applications of the present work would be a detailed

study of the thermodynamics of this black brane and of its corresponding plasma.

This analysis was carried out, in the canonical ensemble, for the case of vanishing

λGB in [10, 11] and a rich phase diagram was discovered, with, in particular, the

presence of instabilities that might turn out to be useful in understanding the fast

thermalization time of the QGP. To this regard it is relevant to observe that part of

the richness of the solution in [10, 11] was due to a conformal anomaly, appearing in

the renormalization process at order O(a4) and beyond. In the present solution we

also have an anomaly, which we expect to appear at the fourth order in the anisotropy

parameter, but we are not able to capture with our analytic solution, which only goes

up to second order. Extending our analytic solution to order O(a4) seems unviable

and presumably numerical methods would have to be employed to explore larger

values of the anisotropy. Given the large number of parameters in the game, this

might be cumbersome, but it surely is something worth pursuing.
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We also have studied how the anisotropy and higher curvature terms affect se-

veral observables relevant to the study of the QGP, namely, the shear viscosity over

the entropy density ratio, the eletric conductivity, the drag force, the jet quenching

parameter, the quarkonium static potential and the photon production rate.

We found that the KSS bound [9] for the shear viscosity over entropy density ratio

is violated, as expected from previous works where either the case (a = 0, λGB 6= 0)

[156] or the case (a 6= 0, λGB = 0) [13] were considered.

The effect of the Gauss-Bonnet term in our results are consistent with previous

results [223, 253, 258, 259] and they are summarized in Table 8.1, where we specify

if the value of the observable increases or decreases compared to the case of isotropic

N = 4 SYM. In this table we also present the result for the shear viscosity over

entropy density obtained previously [43] and the finite ’t Hooft corrections of type

α′3R4 for these observables [185, 248, 261, 262].

Table 8.1: Summary of the effect of the Gauss-Bonnet coupling λGB on several observa-

bles. We also present the finite ’t Hooft corrections of type α′3R4 [185, 248, 261, 262].

The comparison is taken w.r.t. the respective N = 4 SYM result at same tempera-

ture.

η/s Drag force Jet quenching Screening length Photon production

λGB > 0 decrease increase increase decrease increase

λGB < 0 increase decrease decrease increase decrease

α′3R4 increase increase decrease decrease increase

A possible heuristic interpretation of the increasing/decreasing in the above obser-

vables is to correlate these results with the changes in the ratio η/s. At weak coupling,
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η/s is proportional to the mean free path of momentum isotropization of the plasma

(η/s ∼ `mfp). Imagining a situation where the mean free path is decreasing, we should

expect an external probe to interact more with the medium, increasing the energy

loss of the probe and its probability to suffer scattering. As a result, we would obtain

an increase in the drag force and the jet quenching parameter. Moreover, a low mean

free path would break the connection between a quark-antiquark pair more easily,

resulting in a low value of screening length. Finally, a low mean free path would raise

the number of collisions per time and, consequently, the number of photons produced

in these interactions would increase. Note that this situation matches exactly the case

of λGB > 0. Of course, the opposite idea applies for λGB < 0. Although this reasoning

seems to be consistent for the Gauss-Bonnet, it does not work when applied to the

α′3R4 correction.

The effect of the anisotropy is similar to what was found previously [15, 30, 186,

214, 224, 238]. The photon production rate and the quarkonium dissociation length

in an anisotropic plasma are bigger than the corresponding quantities in an isotropic

plasma at the same temperature. The drag force and the jet quenching parameter

in an anisotropic plasma can be bigger or smaller than its isotropic counterparts,

depending on several parameters like the quark velocity, the direction of the quark

motion, and the direction of momentum broadening. Below we also summarize the

effects of the anisotropy with a comparison between the value of the observables along

the anisotropic direction (||) and along the transverse plane (⊥):

• Shear viscosity: η⊥ > η||,

• Drag force: F⊥drag < F
||
drag,

• Jet quenching parameter: q̂⊥ < q̂||,
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• Screening length: L⊥ > L||,

• Photon production rate: χ µ
µ ⊥ < χ µ

µ ||.

The same interpretation in terms of the mean free path for the Gauss-Bonnet term can

be applied here. Considering the mean free path in the anisotropic direction `
||
mfp and

in the transverse plane `⊥mfp, we note that the mean free path of an anisotropic system

in the transverse plane is larger than the corresponding quantity in the anisotropic

direction, because η⊥ > η||. This can be associated with a smaller drag force, a

smaller jet quenching parameter, less screening (larger screening length), a smaller

drag force and less photon production in the transverse plane when compared with

the corresponding quantities in the anisotropic direction.

It would be interesting to see how these observables behave for similar models. As

far as we are aware, the only model that incorporates both the anisotropy and the

higher curvature correction is [256]. Possible extensions of this work include the study

of how the anisotropy and the higher derivative terms affect other observables like

the imaginary part of the quarkonium potential, the quarkonium dissociation length

in a plasma wind, Langevin diffusion coefficients, the dilepton production rate or the

elliptic flow of photons and dileptons, to name a few.

Appendix 8.A Derivation of the solution

In this appendix we give some details on how we have found our solution (8.8) and

present its explicit expression.

The Einstein equations (8.3) are diagonal, as a consequence of the fact that the

metric only depends on u. We have then four equations for the metric (since the xx-
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and yy-components are not independent) plus the equation for the dilaton in (8.5).

There are four fields to solve for: φ, F , B, and H. Plugging the Ansatz (8.6)-(8.8)

into the equations and expanding to order O(a2) one finds that the equation for φ2(u)

decouples. It reads

φ′′2 +
uF ′0 − 3F0

uF0

φ′2 =
1

F0

, (8.89)

with F0 given by (8.9). This can be readily solved changing coordinates as

u→ U(u) =

√
1− 4λGB

(
1− u4

u4
H

)
(8.90)

in intermediate steps. The two integration constants are fixed in such a way that φ2

is regular at the horizon and vanishes at the boundary, φ2,bdry = 0. One finds

φ2(u) = −u
2
H

8

[
α + U(u) + log

(
1 +

u2

u2
H

)2

−
√
λGB log

(
U(u) + 2

√
λGB

u2

u2
H

)2

− log

(
U(u) + 1− 4λGB

(
1 +

u2

u2
H

))]
,

(8.91)

where

α ≡ −
√

1− 4λGB +
√
λGB log (1− 4λGB) + log

(
1− 4λGB +

√
1− 4λGB

)
, (8.92)

and U(u) is defined as above. We notice that U is always positive (since λGB < 1/4),

and so is the argument of the last logarithm in (8.91). When λGB = 0 we recover the

result of [11], see eq. (164) of that paper.

To find H2, we take the difference of the xx- and zz-components of (8.3). One
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obtains a decoupled equation that reads

H ′′2 (u) + p(u)H ′2(u) = q(u) , (8.93)

with

p(u) =
3(1− 4λGB)(U(u)− 1) + 4λGB(3U(u)− 5)u4/u4

H

uU(u)2 (1− U(u))
,

q(u) =
2λGBU(u)

(1− 4λGB)(1− U(u))
. (8.94)

This equation can be integrated readily via (8.90), fixing the integration constants as

above. In particular we request that H2,bdry = 0. The final result is

H2(u) =
u2

H

8(1− 4λGB)

[
β + U(u) + log

(
1 +

u2

u2
H

)
+ 2λGB

u2

u2
H

(
u2

u2
H

− 2

)

−
√
λGB log

(
U(u) + 2

√
λGB

u2

u2
H

)2

− log

U(u) + 1− 4λGB

(
1 + u2

u2
H

)
U(u)− 1 + 4λGB

(
1 + u2

u2
H

)
1/2

 ,

(8.95)

where, again, we have left U(u) implicit in some places for compactness and where

β ≡ −
√

1− 4λGB +
√
λGB log(1− 4λGB) + log

(
1 +
√

1− 4λGB

2
√
λGB

)
. (8.96)

Similarly we can solve for the other fields. More specifically, now that we know

φ2 and H2, we can use the tt-component of (8.3) to obtain F2 and the uu-component

to obtain B2. One can finally check that the xx- and zz-components are also solved

separately, as expected because of the Bianchi identities. The explicit expressions for

the equations are not particularly illuminating, so that we limit ourselves to reporting
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the final results for the remaining fields, which are given by

F2(u) =
u2

H

12(1− 4λGB)U(u)

(
u

uH

)4 [
γ + U(u) + (1− 4λGB)

(uH

u

)2

+4λGB

(
u

uH

)2

− 6λGB

(
u

uH

)4

+ log

(
1 +

u2

u2
H

)2

−
√
λGB log

(
U(u) + 2

√
λGB

u2

u2
H

)2

− log

(
U(u) + 1− 4λGB

(
1 +

u2

u2
H

))]
,

(8.97)

with

γ ≡ −2 + 6λGB +
√
λGB log

(
1 + 2

√
λGB

)2

+ log

(
1− 4λGB

2

)
, (8.98)

and by

B2(u) =
u2

H

24(1− 4λGB)

[
α + U(u)

u2
H − u2

u2
H + u2

+ log

(
1 +

u2

u2
H

)2

− 2u2

u2
H + u2

(
1− 2λGB + λGB

(
u

uH

)2

+ 3λGB

(
u

uH

)4
)

−
√
λGB log

(
U(u) + 2

√
λGB

u2

u2
H

)2

− log

(
U(u) + 1− 4λGB

(
1 +

u2

u2
H

))]
.

(8.99)

Again, we have fixed the integration constants in such a way that the fields be regular

at the horizon and vanish at the boundary, F2,bdry = B2,bdry = 0. Notice also that

F2(uH) = 0, as it should be for a blackening factor. One can check that when λGB = 0

the results from [10] are recovered.24

24In order to do so, one needs to take into account the different Ansätze and include a factor of
the dilaton in (8.6), according to eq. (8) of [11].
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Appendix 8.B Shear viscosity tensor

In this appendix we report two alternative derivations of the shear viscosity tensor

(8.37).

8.B.1 Kubo formula

As is well known (see e.g. [103, 124–126]), the shear viscosity can be also computed

using a Kubo formula

η = lim
ω→0

1

ω
ImGR(ω,~k = 0), (8.100)

where GR(k) is the retarded Green’s function for the stress tensor. First, we take

metric fluctuations hmn around our solution and linearize the equations of motion.

Here, we are interested in the modes ψ⊥ = hxy and ψ‖ = hxz. In momentum space, we

have

ψ(u, x) =

∫
d4k

(2π)4
J(k)ψ(u; k)e−ikix

i

, ki = (−ω,k), (8.101)

where ψ denotes generically one of the modes ψ⊥ or ψ‖. The prescription tells us to

solve the equation for ψ(u; k) imposing infalling boundary conditions and regularity

at the horizon and satisfying ψ = 1 at the boundary.

To compute the shear viscosity, we can restrict ourselves to zero spatial momentum

and small frequency ω. For simplicity, we also consider small λGB. The linearized

equations for ψ(u;ω) have the form

K0(u)ψ′′ +K ′0(u)ψ′ = 0, (8.102)
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where for ψ = ψ⊥ we have, up to orders O(a4, λ2
GB, ω

2),

K⊥0 (u) =
u4 (a2u2

H log 2 + 6)− a2u6
H log

(
1 + u2

u2
H

)
− 6u4

H

12u3u4
H

+
λGB

12u3u8
H

[
u8
(
a2u2

H(5− 6 log 2)− 18
)
− u4u4

H

(
a2u2

H(2− 5 log 2)− 6
)

−4a2u6u4
H + (12 + a2u2)u8

H + a2u2
H

(
3u8 − 2u8

H

)
log

(
1 +

u2

u2
H

)]
,

(8.103)

and for ψ = ψ‖ we have

K
‖
0(u) = K⊥0 (u) +

a2 (u4
H − u4) log

(
1 + u2

u2
H

)
8u3u2

H

+
a2λGB

(
−7u8 + 10u6u2

H − u4u4
H − 2u2u6

H + 2 (3u8 − 5u4u4
H + 2u8

H) log
(

1 + u2

u2
H

))
16u3u6

H

.

(8.104)

The equations above can be solved by considering an Ansatz of the form

ψ(u;ω) =

(
1− u4

u4
H

)− iω
4πT [

1 + ω
(
f0(u) + λGB(f1(u) + a2f2(u))

)
+O(a4, λ2

GB, ω
2)
]
,

(8.105)

where T is the temperature given by (8.13). The functions f0(u), f1(u) and f2(u) can

be determined by substituting the Ansatz into the linearized equation and solving

order by order. The resulting expressions are not particularly illuminating and we

do not report them here. The next step is to compute the quadratic on-shell action,

which turns out to be a surface term of the form

S
(2)
on-shell = −1

2

∫
d4k

(2π)4
J(k)F(u; k)J(−k)

∣∣∣u=uH

u→0
, (8.106)
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with F(u, k) = 1
16πG

K0(u)ψ′(u; k)ψ(u;−k). The prescription of [103] instructs us to

take only the contribution of the boundary. The retarded Green’s function is then

given by

GR(k) = lim
u→0
F(u; k). (8.107)

Finally, using (8.100) and the result for the entropy (8.14) we can compute the ratio

of the shear viscosity over entropy density

η⊥
s

=
1− 4λGB

4π
+ a2λGB

u2
H

8π
+O(a4, λ2

GB) ,

η‖
s

=
1− 4λGB

4π
+ a2 (3λGB − 2 log 2)

u2
H

32π
+O(a4, λ2

GB) . (8.108)

These results agree with the ones obtained via the membrane paradigm expanded to

first order in λGB.

8.B.2 Near-horizon matching technique

In this appendix we calculate the viscosities η⊥ and η‖ using the near-horizon matching

technique of [263]. We first solve the fluctuation equation for ω = 0 and then expand

the solution near the horizon. After that, we reverse the order of the operations,

finding first a near-horizon solution and then expanding it for small ω. Matching the

two solutions we obtain the retarded correlator GR from which we can calculate η⊥

and η‖.

Consider a fluctuation ψ (again, ψ could be ψ⊥ = hxy(t, y, z, u) or ψ|| = hxz(t, y, z, u),

as in the main body of this paper). The effective action and the equation of motion
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for ψ have the following form

Seff = −1

2

1

16πG

∫
dω

2π

d3k

(2π)3
du
[
n(u)(ψ′)2 −m(u)ψ2

]
,

(n(u)ψ′)′ −m(u)ψ = 0 , ψ = ψ(u, k) . (8.109)

To be concrete, let us work out the case ψ = ψ‖. For k = 0, we have

n‖(u) = guu
√
−g
(
gxx
gzz
− λGB

2

g2
xxg
′
ttg
′
yy

g

)
,

m‖(u) = −ω2gtt
√
−ggxx

gzz
− λGB

2
ω2

[
gyyg

′
uug
′
yy + g′2yy − 2gyyg

′
yy√

gttgzz(guugyy)3/2

]
g3/2
xx . (8.110)

When ω = 0 and k = 0, we get that m‖(u) = 0 and (n(u)ψ′)′ = 0. Hence n(u)ψ′ = C2,

where C2 is a constant. This implies that

ψ‖ = C1 + C2

∫ u

0

du′

n‖(u′)
. (8.111)

As n‖ ∝ guu and guu goes to zero at the horizon, we must have C2 = 0 for ω = 0. For

small ω we can have a normalizable solution with C2 ∝ ω. Using the prescription of

[103] we calculate GR as

GR = −2

[
−1

2

1

16πG
n‖(u)ψ‖(u,−k)∂uψ‖(u, k)

]
u=0

, (8.112)

where ψ‖ should be equal to one at the boundary u = 0. Using (8.111) and (8.112)

we can see that

GR =
C2

16πG
, (small ω, k = 0) . (8.113)

We set C1 = 1 in the equation above in order to have ψ‖(0, k) = 1. Now we have to
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determine C2. Near the horizon, (8.111) can be written as

ψ‖ = 1 + C2

∫ u

0

du′

n′‖(uH)(u− uH)
= 1 +

C2

n′‖(uH)
log

(
1− u

uH

)
. (8.114)

We now find a near-horizon expression for ψ‖ and expand it for small ω. The first

thing we need to do is to write the ψ‖ equation of motion in the limit u → uH. In

what follows, it will be convenient to work with the constants c0 and c1, defined by

the near-horizon expansions for gtt and guu as

gtt = c0(u− uH) , guu = c1(u− uH) . (8.115)

The near-horizon equation of motion is

(n‖(uH)(u− uH)ψ′‖)
′ −m‖(uH)ψ‖ = 0 , (8.116)

where

n‖(uH) = c1

√
−g
(
gxx
gzz
− λGB

2

g2
xxg
′
ttg
′
yy

−g

) ∣∣∣
uH

,

m‖(uH) = − ω2

c0(u− uH)

√
−g gxx

gzz

∣∣∣
uH

. (8.117)

Plugging (8.117) into (8.116) and using the anzats ψ‖ = (1 − u/uH)β we can show

that β = ±iω/√c0c1.25 The general solution of (8.116) is then given by

ψ‖ = C+

(
1− u

uH

) iω√
c0c1

+ C−

(
1− u

uH

)− iω√
c0c1

. (8.118)

25Note that the temperature is given by T =
√
c0c1
4π , so that β = ± iω

4πT .
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We choose C+ = 0 to impose infalling boundary conditions at the horizon. For small

β, i.e. for ω � T , we have

ψ‖ = C−

[
1 +

iω
√
c0c1

log

(
1− u

uH

)]
. (8.119)

Comparing (8.119) with (8.114) we can see that

C2

n‖(uH)
=
−iω
√
c0c1

, (8.120)

and using (8.117) it is easy to show that

C2 = −iω
√
c1

c0

√
−g
(
gxx
gzz
− λGB

2

g2
xxg
′
ttg
′
yy

−g

) ∣∣∣
uH

. (8.121)

Plugging this result into (8.113) we have

GR = − iω

16πG

√
c1

c0

√
−g
(
gxx
gzz
− λGB

2

g2
xxg
′
ttg
′
yy

−g

) ∣∣∣
uH

. (8.122)

According to the Kubo formula

η‖ = lim
ω→0

1

ω
ImGR =

1

16πG

√
c1

c0

√
−g
(
gxx
gzz
− λGB

2

g2
xxg
′
ttg
′
yy

−g

) ∣∣∣
uH

. (8.123)

The density entropy s is given by

s =
1

4G

√
g

gttguu

∣∣∣
uH

= 4π

√
−g

16πG

√
c1

c0

, (8.124)
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and we can finally calculate the ratio

η‖
s

=
1

4π

(
gxx
gzz
− λGB

2

g2
xxg
′
ttg
′
yy

g

) ∣∣∣
uH

. (8.125)

Doing the same for ψ⊥ it is possible to show that

η⊥
s

=
1

4π

(
gxx
gyy
− λGB

2

g2
xxg
′
ttg
′
zz

g

) ∣∣∣
uH

. (8.126)

In both cases we find the same result (8.37) that we had obtained using the membrane

paradigm.

Appendix 8.C Drag force for a general background

and arbitrary direction

In this appendix we derive a formula for the drag force. The metric background is

assumed to be of the form

ds2 = Gttdt
2 +Gxx(dx

2 + dy2) +Gzzdz
2 +Guudu

2. (8.127)

We will only assume rotational symmetry in the xy directions and consider the metric

to depend only on u. This is essentially what was done in [186], but here we consider

the motion of the quark along an arbitrary direction, as in [15].

The Nambu-Goto action for the string is given by

S = − 1

2πα′

∫
dτdσ eφ/2

√
− det g =

∫
dτdσL, (8.128)
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where φ = φ(u) is the dilaton field. By rotational symmetry in the xy directions we

can set y = 0. We choose static gauge (t, u) = (τ, σ) and let us consider the motion

of the quark in the xz plane with a string embedding

x(t, u) = (vt+ ξ(u)) sinϕ, z(t, u) = (vt+ ζ(u)) cosϕ, (8.129)

where ϕ is the angle of the quark trajectory with the z axis, i.e., ϕ = 0 corresponds

to the motion parallel with the anisotropic direction and ϕ = π/2 corresponds to the

motion in the transversal direction. The boundary conditions are ξ(u → 0) = 0 and

ζ(u→ 0) = 0, which are necessary in order to reproduce the stationary motion of the

quark.

First, we need to compute the induced metric gαβ = Gµν∂αx
µ∂βx

ν on the string

worldsheet,

gαβ =

 Gtt + v2(Gzz cos2 ϕ+Gxx sin2 ϕ) v
(
Gzzζ

′(u) cos2 ϕ+Gxxξ
′ sin2 ϕ

)
v
(
Gzzζ

′ cos2 ϕ+Gxxξ
′ sin2 ϕ

)
Guu +Gzzζ

′2 cos2 ϕ+Gxxξ
′2 sin2 ϕ

 ,

(8.130)

where the prime denotes the derivative w.r.t. u. Ignoring factors of 1
2πα′

, the La-

grangian takes the form

L = −eφ/2
[
−Gzz cos2 ϕ(ζ ′2Gtt +Guuv

2 +Gxxv
2(ζ ′ − ξ′)2 sin2 ϕ)−

−Gxx sin2 ϕ(Gttξ
′2 +Guuv

2)−GttGuu

] 1
2
.

(8.131)
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We have the associated (conserved) momentum flow

Πx =
δL
δx′

= −e
φGxx sinϕ

L
(
Gttξ

′ −Gzzv
2(ζ ′ − ξ′) cos2 ϕ

)
, (8.132)

Πz =
δL
δz′

= −e
φGzz cosϕ

L
(
Gttζ

′ +Gxxv
2(ζ ′ − ξ′) sin2 ϕ

)
. (8.133)

The values of the momenta will be fixed by imposing the requirement that ξ′ and ζ ′

are both real. To do this, we invert the above expression, writing

ξ′(u) =
GzzNx

GxxNz

ζ ′(u), (8.134)

where we have defined the quantities

Nx = GttΠx csc(ϕ) +Gxxv
2(Πx sin(ϕ) + Πz cos(ϕ)), (8.135)

Nz = GttΠz sec(ϕ) +Gzzv
2(Πx sin(ϕ) + Πz cos(ϕ)). (8.136)

Then we can use, for example, the expression for Πz to obtain ζ ′. The final expressions

we found are given by

ξ′ = ±
√
− 2GuuGzz

GttGxxD
Nx, ζ ′ = ±

√
−2GuuGxx

GttGzzD
Nz, (8.137)

where

D = 2Gtt

(
GxxΠ

2
z +GzzΠ

2
x

)
+GxxGzz

[
Gtte

φ
(
2Gtt + v2(Gxx +Gzz)

)
+ v2

(
Π2
x + Π2

z

)]
+

+GxxGzzv
2
[(
−Gtt(Gxx −Gzz)e

φ − Π2
x + Π2

z

)
cos(2ϕ) + 2ΠxΠz sin(2ϕ)

]
.

(8.138)
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There is a sign ambiguity here, which we will fix later. The condition that ξ′ and

ζ ′ are always real can be satisfied only if D is positive for all u. But, in general, D

has two zeros (turning points). Thus, in order to satisfy the positivity condition the

two zeros should coincide at some critical point uc. Also, the numerators Nx and Nz

should vanish at the same point uc, because otherwise ξ′ and ζ ′ would diverge. We

begin the analysis finding the zeros of the numerator. Imposing Nx and Nz to vanish

at uc gives us a relation between Πx and Πz,

Πx

Πz

=
Gxx

Gzz

tanϕ
∣∣∣
u=uc

. (8.139)

Using this relation, we can find the two zeros of D at uc. This gives us two equations;

the first one is

[
2Gtt

v2
+Gxx +Gzz + (Gzz −Gxx) cos(2ϕ)

]
u=uc

= 0, (8.140)

which can be used to fix the value of the critical point uc. The second equation

completely fixes the values of Πx and Πz and gives us the drag force

Πx = eφ/2Gxxv sinϕ
∣∣∣
u=uc

, Πz = eφ/2Gzzv cosϕ
∣∣∣
u=uc

. (8.141)

We have fixed the sign of the momenta to be positive, thus ξ′ and ζ ′ are both negative,

which is consistent with the physical condition that the string “trails” behind the

quark [183, 184] and not in front of it. Two special cases are obtained from (8.50) by

setting ϕ = 0 and ϕ = π/2. This gives us the drag force parallel and transversal to
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the direction of motion of the quark, respectively,

F
||

drag = eφ/2Gzzv
∣∣∣
u=uc

, F⊥drag = eφ/2Gxxv
∣∣∣
u=uc

. (8.142)

Appendix 8.D Jet quenching parameter for an ar-

bitrary motion

In this appendix we derive a formula for q̂ considering a motion in an arbitrary

direction and generic background. The steps are basically the same of [214], but here

the computation is carried out in Einstein frame and the metric is left generic, with

only a few assumptions, which we will specify below.

We assume a five-dimensional background displaying rotational symmetry in the

xy directions,

ds2 = Gttdt
2 +Gxx(dx

2 + dy2) +Gzzdz
2 +Guudu

2. (8.143)

From the rotational symmetry we can choose the direction of motion within the xz-

plane. We define rotated coordinates

z = Z cos θ −X sin θ,

x = Z sin θ +X cos θ,

y = Y. (8.144)

The new coordinates (X, Y, Z) are obtained from the old coordinates (x, y, z) by a

rotation of an angle θ around the y-axis. We choose Z to be the direction of motion of
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the quark. The direction of the momentum broadening takes place in the XY -plane

and it forms an angle ϕ with the Y -axis. The prescription instructs us to consider a

string with an endpoint moving at the speed of light along the Z direction. The other

endpoint is separated by a small distance ` along the direction of the momentum

broadening. Thus we have a string worldsheet whose boundary is a rectangular light-

like Wilson loop with sizes L− (along the Z− direction) and `, where L− is assumed

to be very large. Our task is to find a string worldsheet that minimizes the Nambu-

Goto action satisfying this boundary condition. We then need to evaluate the on-shell

Nambu-Goto action and expand it to second order in ` to obtain

〈
WA(C)

〉
' exp

[
−L

−`2

4
√

2
q̂

]
, (8.145)

from which we extract the jet quenching parameter. It is convenient to work in

light-cone coordinates

t =
Z− + Z√

2
, Z =

Z− − Z+

√
2

. (8.146)

The metric in these new coordinates takes the form

G(LC)
µν =



G++ G+− GX− 0 0

G+− G++ −GX− 0 0

GX− −GX− GXX 0 0

0 0 0 Gxx 0

0 0 0 0 Guu


, (8.147)
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where

G++ =
1

2

(
Gtt +Gxx sin2 θ +Gzz cos2 θ

)
,

G+− =
1

2

(
Gtt −Gxx sin2 θ −Gzz cos2 θ

)
,

GX− =
sin θ cos θ√

2
(Gxx −Gzz),

GXX = Gxx cos2 θ +Gzz sin2 θ. (8.148)

We choose the static gauge (τ, σ) = (Z−, u). Since we are assuming L− to be very

large, there is a translational symmetry in the Z− direction, and we can fix the string

embedding to only depend on u,

Z+ = Z+(u), X → X(u) sinϕ, Y → Y (u) cosϕ. (8.149)

The induced metric on the string worldsheet, gαβ = Gµν ∂αx
µ∂βx

ν , is given by

gττ = G++, gτσ = sinϕGX−X
′ +G+−(Z+)′,

gσσ = Guu + sin2 ϕGXXX
′2 − 2 sinϕGX−(Z+)′X ′ + cos2 ϕGxxY

′2 +G++(Z+)′
2
,

(8.150)

where the primes denote the derivative w.r.t. u. We can now write the Nambu-Goto

action,26

S = −2
L−

2πα′

∫ uH

0

du eφ/2
√
− det g ≡ L−

πα′

∫ uH

0

duL, (8.151)

26The extra factor of 2 comes from the two branches of the string worldsheet.
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where φ = φ(u) is the dilaton scalar field and

L =− eφ/2
[
(G+− +G++)

(
2GX−X

′(Z+)′ sinϕ−GXX(Z+)′
2
)

−G++

(
Guu +GxxY

′2 cos2 ϕ
)

+X ′
2

sin2 ϕ
(
G2
X− −G++GXX

)] 1
2
.

(8.152)

Since the Lagrangian does not depend on Z+, X, and Y , we have three conserved

quantities, given by the canonical conjugate momenta. Up to a constant factor, they

are given by

Π+ =
eφ

L
(G+− +G++)(GX−X

′ sinϕ−GXX(Z+)′),

ΠX =
eφ

L
sinϕ

[
GX−(Z+)′(G+− +G++) +X ′ sinϕ

(
G2
X− −G++GXX

)]
,

ΠY = −e
φ

L
G++GxxY

′ cos2 ϕ. (8.153)

We are interested in the limit where Π+, ΠX , and ΠY are small.27 Working in first

order in the Π+, ΠX and ΠY , we can invert the above expressions to obtain (Z+)′, X ′

and Y ′, we find that

(Z+)
′
= c++Π+ + c+XΠX cscϕ,

X ′ = cX+Π+ cscϕ+ cXXΠX csc2 ϕ,

Y ′ = cY Y ΠY sec2 ϕ, (8.154)

27This is a consequence of ` be small, as explained in [214].
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where

c++ =
e−φ/2Guu

(
G2
X− −G++GXX

)
(G+− +G++)

√
−G++Guu

(
G2
XX − 2G2

X−
) ,

c+X = cX+ =
e−φ/2GuuGX−√

−G++Guu

(
2G2

X− −G2
XX

) ,
cXX = − e−φ/2GuuGXX√

−G++Guu

(
G2
XX − 2G2

X−
) ,

cY Y = − e−φ/2Guu

Gxx

√
−G++Guu

. (8.155)

Integration of Z+′ gives zero. Integration of X ′ gives `/2. Integration of Y ′ also gives

`/2. The conclusion is that

Π+ =
` sinϕ

(∫ uH

0
c+X(u) du

)
2
((∫ uH

0
c+X(u) du

)
2 −

(∫ uH

0
c++(u) du

) ∫ uH

0
c+X(u) du

) ,
ΠX =

` sin2 ϕ
(∫ uH

0
c++(u) du

)
2
(∫ uH

0
c++(u) du

) ∫ uH

0
c+X(u) du− 2

(∫ uH

0
c+X(u) du

)
2
,

ΠY =
` cos2 ϕ

2
∫ uH

0
cY Y (u) du

. (8.156)

The on-shell action then takes the form, up to second order in the momenta,

S = 2i

√
λL−

4π

∫ uH

0

du

[
c++Π2

+ +
1

sin2 ϕ
cXXΠ2

X +
2

sinϕ
c+XΠ+ΠX +

1

cos2 ϕ
cY Y Π2

Y

]
.

(8.157)

Using the expressions for the coefficients the action can be rewritten as

S = 2i

√
λL−`2

16π

(
P̂ (θ) sin2 ϕ+ Q̂(θ) cos2 ϕ

)
, (8.158)

224



where

P̂ (θ) ≡
∫ uH

0
c++(u) du(∫ uH

0
c++(u) du

) ∫ uH

0
c+X(u) du−

(∫ uH

0
c+X(u) du

)
2
,

Q̂(θ) ≡ 1∫ uH

0
cY Y du

. (8.159)

From this we immediately extract the jet quenching parameter

q̂ =

√
2λ

π

(
P̂ (θ) sin2 ϕ+ Q̂(θ) cos2 ϕ

)
. (8.160)

Appendix 8.E Quarkonium static potential in generic

background

In this appendix we derive a formula for the static potential of a quark-antiquark

pair (quarkonium).28 Let L be the separation between the quarks and assume a

generic background of the form (8.127). The dual picture corresponds to an U-shaped

open string whose endpoints are located at the boundary and are identified with the

quarks. Our task is to find the string worldsheet that minimizes the Nambu-Goto

action (8.128). By rotational symmetry in the xy-plane we can assume the pair to

live in the xz-plane. Putting the center of mass of the pair at the origin, let q be the

polar radial coordinate and θ the angle between the pair and the z direction. We fix

the gauge (τ, σ) = (t, q). In this way the string embedding has the form

Xµ = (τ, σ sin θ, 0, σ cos θ, u(σ)) (8.161)

28This computation is similar to what was done in [186], generalizing the prescription of [257] for
an anisotropic background.
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The induced metric on the string worldsheet is given by

gττ = Gtt, gσσ = Gpp +Guuu
′2, gτσ = 0, (8.162)

where Gpp ≡ Gzz cos2 θ + Gxx sin2 θ and the prime denotes derivative w.r.t. σ. The

Nambu-Goto action takes the form

S = − T
2πα′

∫ L/2

−L/2
dσ eφ/2

√
−Gtt (Gpp +Guuu′2) ≡

∫ L/2

−L/2
dσL. (8.163)

Since the Lagrangian L does not depend explicitly on σ, the Hamiltonian is a constant

of motion

H =
∂L
∂σ′

σ′ − L = − T
2πα′

eφ/2GttGpp√
−Gtt (Gpp +Guuu′2)

. (8.164)

Evaluating the Hamiltonian at the turning point u0 ≡ u(0), where u′ = 0, we find

the value of the constant to be

C =
T

2πα′
e
φ
2

√
−GppGtt

∣∣∣
u=u0

. (8.165)

In order to simplify the expressions, it is useful to define the auxiliary quantities

P ≡ e
φ
2

√
−GppGtt , Q ≡ e

φ
2

√
−GttGuu . (8.166)

Using (8.164) and(8.165) we can find an expression for u′,29

u′ = ±P
Q

√
P 2 − P 2

0

P0

, P0 ≡ P |u=u0 . (8.167)

29One needs to be careful with the choice of sign here: when σ goes from 0 to L/2, then u goes
from u0 to 0 and thus u′ < 0.
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Integrating the above expression we find that the separation between the quarks is

given by

L = −2

∫ u0

0

dσ

du
du = 2

∫ u0

0

Q

P

P0√
P 2 − P 2

0

. (8.168)

Before we compute the on-shell Nambu-Goto action to find the potential energy that

keeps the pair bounded, we need to take care of the ultraviolet divergence due to the

infinite mass of the quarks. The mass term corresponds to a string hanging down

straight from the boundary to the horizon. Note that in this case the string goes

from 0 to uH while σ is fixed, thus it effectively corresponds to u′ → ∞. Expanding

the on-shell Nambu-Goto action in powers of 1/u′ for this configuration we obtain

MQ = − T
2πα′

∫ uH

0

duQ+O

(
1

u′

)
. (8.169)

Finally, computing the on-shell Nambu-Goto action for the U-shaped configuration

with the mass subtraction we obtain the static potential

VQQ̄ =
S(on-shell)

T
−2MQ = − 1

2πα′

[
P0L+ 2

∫ u0

0

du
Q

P

(√
P 2 − P 2

0 − P
)
− 2

∫ uH

u0

duQ

]
.

(8.170)
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Chapter 9

Conclusion

The main goal of this thesis is to apply the AdS/CFT correspondence to the study

strongly coupled systems similar to the QGP formed in heavy ion collisions. The

aim of the chapters 2-5 is to provide a basic introduction to some topics relevant for

those who study applications of the AdS/CFT to the QGP. The Chapter 2 presents

a brief introduction to QCD and its thermodynamics. In this chapter we present the

strongly coupled deconfined phase of QCD known as QGP, which is our object of

study in this work. In Chapters 3 and 4 we present some basic knowledge necessary

to understand the gauge/gravity duality. Chapter 3 gives a brief introduction to

conformal field theories, with emphasys to theN = 4 SYM theory. Chapter 4 presents

some basic aspects of string theory and D-branes. We then present an introduction

to the AdS/CFT correspondence in Chapter 5. The chapters 6, 7, 8 contains the

original work of this thesis.

In Chapter 6 we study the thermal production of photons and dileptons in a

strongly coupled anisotropic plasma. We also compute the DC conductivity of this

plasma. We compare the obtained results with the isotropic counterparts of a plasma
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at the same temperature. This plasma was modeled using the anisotropic black brane

solution found in [10, 11]. Despite being asymptotically AdS, this geometry is static

and regular everywhere. The anisotropy is provided by a bulk axion field, linear in

one of the gauge theory directions (z in our case).

The charged particles of this plasma are “quarks” (fields in the fundamental rep-

resentation of the gauge group) provided by the introduction of flavor D7-branes. We

consider non-equatorial embeddings of the flavor D7-branes, corresponding to quarks

with non-vanishing masses, thus making a more realistic model.

The main results for the photon production rate may be summarized as follows:

the anisotropic plasma glows brighter than its isotropic counterpart at the same tem-

perature. The quark mass has the effect of decreasing the photon production rate

and the DC conductivity of the plasma. The decrease is greater as we increase the

quark mass, as expected on general grounds.

Generically, the dilepton production rate is larger than its isotropic counterpart

at the same temperature, except for a small range of anisotropies, if the frequency

and the quark mass are sufficiently large. Increasing the quark masses increases the

deviation from the corresponding isotropic results.

The production of dileptons for momenta along the anisotropic direction is always

larger than the production in the transverse plane. This is contrary to what is ob-

tained for a weakly coupled anisotropic plasma, where there is a suppression along the

forward direction [57,58,59]. However, the enhancement of the dilepton production

rate in an anisotropic plasma appears to be a robust feature of this system, which is

present both at weak and strong coupling.

All the quantities cited above were found to be monotonically dependent (either

increasing or decreasing) on the angle between the momentum and the anisotropic
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direction.

Finally, we expected our results concerning the effects of the anisotropy to be

quite general, because the source of the anisotropy, the axion field, does not appear

in the equation of motion of the gauge fields. However, it would be interesting to

compute these quantities in other anisotropic models to understand which features

are really model-independent and therefore more realistic.

In Chapter 7 we study how higher derivative terms affects the Chern-Simons

diffusion rate. We compute this quantity in Gauss-Bonnet theory of gravity and also

in Quasi-topological gravity theory. Let λGB be dimensionless coupling of the Gauss-

Bonnet quadratic term and µ the dimensonless coupling of the Quasi-topological cubic

term. This couplings corresponds to have more general conformal field theories on the

boudary than the ones usually consider. The Gauss-Bonnet term results in having

different central charges a 6= c [169–171], while the Quasi-topological term results in

the breaking of suersymmetry.

We compare our results with the result obtained in Einstein’s theory of gravity

(in which λGB = 0 and µ = 0). We found corrections that can be either smaller or

greater than one, depending on the value of the parameters.

We conclude that, even if there isn’t a UV completion for these higher derivative

gravity theories, we can use it as toy models to investigate how the correspondence

works in larger regions of the parameter space.

In Chapter 8 we found an anisotropic black brane solution (Eq. (8.8)) in five

dimensional GB-gravity coupled to an axion-dilation field which incorporates both

the effects of anysotropy and higher curvature corrections. The higher curvature

correction is a Gauss-Bonnet term and the source of anisotropy is an axion field

linearly dependent on one of the horizon coordinates. The solution found is the GB
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corrected equivalent of the geometry discovered in [10, 11].

We have computed the shear viscosity over entropy density ratio for the dual

plasma and found that the KSS bound [9] is violated, as expected from previous works

where either the case (a = 0, λGB 6= 0) [156] or the case (a 6= 0, λGB = 0) [13] were

considered. We also computed several other observables, like the eletric conductivity,

the drag force, the jet quenching parameter, the quark-antiquark potential, and the

photon production rate. The effects of anisotropy and of higher curvature term can

be understood in terms of the corresponding effects on the mean free-path of medium,

as explained the Section 8.5.

An interesting application of the solution (8.8) would be a detailed investigation

of the thermodynamic properties of the dual plasma, as was done in [10, 11] for the

λGB = 0 case. The conformal anomaly plays an important role in such analysis, but

this quantity only appears at order O(a4) while our solution is only valid up to second

order. Then, it is necessary to extend our analytic solution to order O(a4) to achieve

an interesting thermodynamic description of this system. This extension presumably

requires the use of numerical methods to explore larger values of the anisotropy.
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