• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.43.2003.tde-30102007-084745
Documento
Autor
Nome completo
Roberto Baginski Batista Santos
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2003
Orientador
Banca examinadora
Frenkel, Josif (Presidente)
Accioly, Antônio José
Carneiro, Carlos Eugenio Imbassahy
Fleming, Henrique
Helayël- Neto, José Abdalla
Título em português
Modelos Efetivos para o Elétron
Palavras-chave em português
Auto-aceleração
Auto-energia do elétron
Eletrodinâmica regularizada
Spin do elétron
Teoria efetiva
Resumo em português
Apresentamos dois modelos para o elétron na eletrodinâmica clássica que incorporam alguns efeitos da eletrodinâmica quântica. No primeiro modelo, o elétron é tratado como uma partícula extensa como conseqüência das oscilações de alta-freqüência (Zitterbewegung) que sua carga elétrica realiza. Mostramos que este modelo prevê corretamente a magnitude do spin do elétron e lhe atribui o mesmo fator giromagnético previsto pela equação de Dirac sem correções radiativas. Neste modelo, a auto-energia do elétron diverge logaritmicamente como resultado da distribuição extensa de sua carga elétrica. No segundo modelo, a criação de pares virtuais em torno do elétron é levada em conta por uma generalização da lagrangeana do campo eletromagnético que respeita as simetrias da eletrodinâmica clássica. Esta generalização altera a interação entre o elétron e o campo eletromagnético em pequenas distâncias e permite que a auto-força de uma partícula puntiforme seja determinada de modo consistente. Mostramos que as soluções da equação de movimento resultante não apresentam auto-aceleração nem pré-aceleração, sendo consistentes com a causalidade.
Título em inglês
Effective Models for the Electron
Palavras-chave em inglês
Effective theory
Electron self-energy
Electron spin
Regularized electrodynamics
Self-acceleration
Resumo em inglês
We present two models for the electron in classical electrodynamics, which include some effects from quantum electrodynamics. In the first model, the electron is treated as an extended particle owing to the high-frequency oscillations (Zitterbewegung) of its electrical charge. We show that this model predicts correctly the magnitude of the electron spin and it gives the electron the same gyromagnetic factor as predicted by Dirac equation without radiative corrections. In this model, the electron self-energy has a logarithmic divergence due to the extended distribution of its electric charge. In the second model, virtual pair creation around the electron is taken into account by a generalization of the lagrangian for the electromagnetic field that preserves the symmetries of classical electrodynamics. This generalization changes the interaction of the electron with the electromagnetic field at small distances and allows us to evaluate the self-force of a point particle in a consistent way. We show that the solutions of the derived equation of motion do not exhibit self-acceleration nor pre-acceleration, being consistent with causality.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2007-12-17
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.