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Abstract

This dissertation explores some applications of statistical mechanics and

information theory tools to topics of interest in anthropology, social sciences,

and economics. We intended to develop mathematical and computational

models with empirical and theoretical bases aiming to identify important

features of two problems: the transitions between egalitarian and hierarchical

societies and the emergence of money in human societies.

Anthropological data [1] suggest the existence of a correlation between

the relative neocortex size and the average size of primates' groups, most of

which are hierarchical. Recent theories [2] also suggest that social and evolu-

tionary pressures are responsible for modi�cations in the cognitive capacity

of the individuals, what might have made possible the emergence of di�er-

ent types of social organization. Based on those observations, we studied

a mathematical model that incorporates the hypothesis of cognitive costs,

attributed for each cognitive social representation, to explain the variety of

social structures in which humans may organize themselves. A Monte Carlo

dynamics allows for the plotting of a phase diagram containing hierarchi-

cal, egalitarian, and intermediary regions. There are roughly three param-

eters responsible for that behavior: the cognitive capacity, the number of

agents in the society, and the social and environmental pressure. The model

also introduces a modi�cation in the dynamics to account for a parameter

representing the information exchange rate, which induces the correlations

amongst the cognitive representations. Those correlations ultimately lead to

the phase transition to a hierarchical society. Our results qualitatively agree

with anthropological data [3] if the variables are interpreted as their social

equivalents.

The other model developed during this work tries to give insights into the

problem of emergence of a unique medium of exchange, also called money.

Predominant economical theories [4, 5], describe the emergence of money as

the result of barter economies evolution. However, criticism [6] recently shed

light on the lack of historical and anthropological evidence to corroborate the



barter hypothesis, thus bringing out doubts about the mechanisms leading

to money emergence and questions regarding the in�uence of the social con-

�guration. Recent studies [7] also suggest that money may be perceived by

individuals as a perceptual drug and new money theories [8] have been devel-

oped aiming to explain the monetization of societies. By developing a com-

putational model based on the previous dynamics for hierarchy emergence,

we sought to simulate those phenomena using cognitive representations of

economic networks containing information about the exchangeability of any

two commodities. Similar mathematical frameworks have been used before

[9], but no discussion about the e�ects of the social network con�guration

was presented. The model developed in this dissertation is capable of em-

ploying the concept of cognitive representations and of assigning them costs

as part of the dynamics. The new dynamics is capable of analyzing how

the information exchange depends on the social structure. Our results show

that centralized networks, such as star or scale-free structures, yield a higher

probability of money emergence. The two models suggest, when observe to-

gether, that phase transitions in social organization might be essential factors

for the money emergency phenomena, and thus cannot be ignored in future

social and economical modeling.



Resumo

Nesta dissertação, utilizamos ferramentas de mecânica estatística e de

teoria de informação para aplicações em tópicos signi�cativos ás areas de

antropologia, ciências sociais e economia. Buscamos desenvolver modelos

matemáticos e computacionais com bases empíricas e teóricas para identi-

�car pontos importantes nas questões referentes à transição entre sociedades

igualitárias e hierárquicas e à emergência de dinheiro em sociedades humanas.

Dados antropológicos sugerem que há correlação [1] entre o tamanho rel-

ativo do neocórtex e o tamanho médio de grupos de primatas, predominante-

mente hierárquicos, enquanto teorias recentes [2] sugerem que pressões sociais

e evolutivas alteraram a capacidade cognitiva dos indivíduos, possibilitando

sua organização social em outras con�gurações. Com base nestas obser-

vações, desenvolvemos um modelo matemático capaz de incorporar hipóte-

ses de custos cognitivos de representações sociais para explicar a variação

de estruturas sociais encontradas em sociedades humanas. Uma dinâmica de

Monte Carlo permite a construção de um diagrama de fase, no qual é possivel

identi�car regiões hierárquicas, igualitárias e intermediárias. Os parâmetros

responsáveis pelas transições são a capacidade cognitiva, o número de agentes

na sociedade e a pressão social e ecológica. O modelo também permitiu uma

modi�cação da dinâmica, de modo a incluir um parâmetro representando

a taxa de troca de informação entre os agentes, o que possibilita a intro-

dução de correlações entre as representações cognitivas, sugerindo assim o

aparecimento de assimetrias sociais, que, por �m, resultam em hierarquia.

Os resultados obtidos concordam qualitativamente com dados antropológicos

[3], quando as variáveis são interpretadas de acordo com seus equivalentes

sociais.

O outro modelo desenvolvido neste trabalho diz respeito ao aparecimento

de uma mercadoria única de troca, ou dinheiro. Teorias econômicas predom-

inantes [4, 5] descrevem o aparecimento do dinheiro como resultado de uma

evolução de economias de escambo (barter). Críticas [6], entretanto, alertam

para a falta de evidências históricas e antropológicas que corroborem esta



hipótese, gerando dúvidas sobre os mecanismos que levaram ao advento do

dinheiro e a in�uência da con�guração social neste processo. Estudos recentes

[7] sugerem que o dinheiro pode se comportar como uma droga perceptual, o

que tem levado a novas teorias [8] que objetivam explicar a monetarização de

sociedades. Através de um modelo computacional baseado na dinâmica ante-

rior de emergência de hierarquia, buscamos simular este fenômeno através de

representações cognitivas de redes econômicas, que representam o reconheci-

mento ou não da possibilidade de troca entre duas commodities. Formalismos

semelhantes já foram utilizados anteriormente [9], porém sem discutir a in-

�uência da con�guração social nos resultados. O modelo desenvolvido nesta

dissertação foi capaz de empregar o conceito de representações cognitivas e

novamente atribuir custos a elas. A nova dinâmica resultante é capaz de

analisar como a troca de informações depende da con�guração social dos

agentes. Os resultados mostram que redes hierárquicas, como estrela e redes

livres de escala, induzem uma maior probabilidade de emergência de dinheiro

dos que as demais. Os dois modelos sugerem, quando considerados em con-

junto, que transições de fase na organização social são importantes para o

estudo de emergência de dinheiro, e portanto não podem ser ignoradas em

futuras modelagens sociais e econômicas.
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Chapter 1

Introduction

In 1857, two years before the publication of the groundbreaking book

On the Origin of Species, Charles Darwin began one of his letters to the

British naturalist A. R. Wallace, who independently conceived the principle

of natural selection, with the a�rmation

I am a �rm believer that without speculation there is no good and original

observation. [14]

In a similar way, the present work aims to gain original insights into social

and economic phenomena. It might be said that the contents of this disser-

tation and the computational models developed here are sheer speculation,

since it seems almost impossible to quantify some vaguely de�ned terms such

as social relations and exchangeability of commodities in a unique and e�-

cient way. It is, indeed, a hard task to �nd empirical bases for mathematical

models involving humans and human behavior mostly because they associate

variables to ill-de�ned terms. However, those facts only show the impor-

tance of the recent advances in the �elds of mathematical and computational

modeling of social systems and the need to better understand fundamental

questions in human societies and economies. Without those approaches, the

vague terms will remain vague and the understanding of essential questions

of human nature will remain speculative.

It might also be argued that the models we present in the next chapters
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are overly simpli�ed and human behavior is much more complex than the

current agent-based models are able to simulate. It is a common criticism

of the quantitative models in the social sciences, but not a strong one. It is

worth to note, nonetheless, that every mathematical model is a description

of some physical system or phenomenon, thus a simpli�cation. For example,

the famous Ising Model 1 is a huge simpli�cation of real electrons and the

quantum interactions, but it is able to give insights into the behavior of some

simple ferromagnetic systems, even exhibiting phase transitions. The Ising

model also motivated many studies of other physical systems as, for example,

the spin glass phenomena 2. One should note, however, that the argument is

not the same as saying any simpli�cation is correct and no complex models

are needed in science. We argue here in defense of a typical reductionist ap-

proach in the sciences: although they have limitations, primarily in the �eld

of complex systems, simple models are necessary to �nd important variables

and dependences and to work in new problems 3. In summary, one cannot

run before one walks, thus learning to walk is necessary.

At last, one particularly angry reader might also say our models do not

predict anything in particular, thus they cannot be tested and are only spec-

ulative by nature. That argument is addressed by Duncan Watts in the book

Six Degrees: The Science of a Connected Age, and his conclusion about net-

work models is also valid for agent-based models as the ones presented in

this dissertation.

Darwin's theory of natural selection, for instance, does not actually pre-

dict anything. Nevertheless, it gives us enormous power to understand the

world we observe. In the same way, we can hope that the new science of

networks can help us understand both the structure of connected systems and

the way that di�erent sorts of in�uences propagate through them. [18].

1For non-physicists, the Ising Model describes the ferromagnetism phenomenon by
treating the electrons as two state particles that interact only with their �rst neighbours.
For a detailed description of this model, and a very good introduction to statistical me-
chanics, see S. Salinas' book [15].

2For more on spin glass, see H. Nishimori's book [16].
3For more on the limitations of reductionists approaches and the complexity of physical

systems, see the 1972 Science paper by P. W. Anderson, More is di�erent [17].
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As he states, important works might not predict anything in particular,

at least in the experimental point of view, but might give insights into not

yet understood phenomena. That is our main objective in this work: to

provide innovative mathematical approaches to better understand problems

in the �elds of social sciences and economics. Even if our approaches do not

adequately describe the phenomena, we hope the theoretical framework pre-

sented in the next chapters helps to shed light on some previous unexplored

viewpoints, providing valid arguments for theories in the previously referred

�elds.

In this dissertation, two di�erent agent-based computational models are

presented, with bases in statistical mechanics and information theory tools.

The �rst is a model of hierarchy emergence and phase transitions recently

developed by Caticha et al [11]. This model is revisited and, due to its

similarity with some computational models in the �eld economics regarding

the exchange of commodities [9], adapted to give insights also in the money

emergence phenomenon. Thus, the second agent-based model was developed

during this work to account for the money emergence process and its relations

to social network structure, societies' phase transitions, and social symmetry

breaking. Both models are based on empirical evidence and theories in the

�elds of anthropology, social sciences, and economics. Furthermore, questions

of compatibility of the two models' results with anthropological data from

the Ethnographic Atlas [3] and the Standard Cross-Cultural Sample [12] are

addressed when possible.

1.1 Societies, network models, and money

Two central problems in the studies of human societies are the origins

of social organization and its e�ects on the money emergence phenomenon.

Those two problems have, of course, been extensively studied by anthropolo-

gists, economists, and neuroscientists. Final answers, however, have not been

achieved yet and many di�erent hypothesis and theories exist to explain why

societies organize themselves the way they do. The human organization var-
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ied with the historical periods and geographical locations [19], making the

problem even more complicated. Di�erently from the physical sciences, ex-

periments aiming to test the validity and compare the results from social and

economic models are rare, and sometimes even impossible, mostly because

of three reasons.

The �rst one is the issue of data collection. As will be discussed later, the

most complete compilation of social and cultural data available today was

made by George P. Murdock and is known as the Ethnographic Atlas [3]. It

was initially published between 1962 and 1980, but it is constantly updated

and contains all the available data up to the present day from about twelve

hundred di�erent human cultures across the globe and from di�erent histor-

ical periods. Murdock and his former student Douglas R. White later chose

from the complete data about two hundred well documented cultures, and

published another database known as the Social Cross-Cultural Sample [12].

The new database provides detailed information about many cultures around

the world from di�erent historical periods, most of which are already extinct

or assimilated by others. One problem emerged at this point: how to �nd

sample cultures that are independent 4, therefore de�ned as single cultures?

This question makes any standard statistical analysis involving anthropo-

logical variables di�cult to perform and gives rise to one more problem: the

available data is limited and more information cannot in general be obtained.

As stated in the previous paragraphs, most of the studied cultures do

not exist anymore, making it nearly impossible to include new variables and

societies in Murdock's table. Today, few tribes and groups still live isolated,

and any complete study about them is costly and usually requires anthropol-

ogists to live most of their lives at one particular tribe. The published results

are not usually divided in the same common variables used by Murdock and

White, thus making quantitative comparison di�cult. Since no more data

is currently available and more cannot be easily obtained, any new model

is usually expected to agree with the accessible databases. Accepting this

4This problem of correlation between cultures in databases is known in the literature
as Galton's problem [20]. Murdock and White tried to solve the problem by dividing the
cultures in sample provinces of closely related societies and then choosing a signi�cant
representative of each province.
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point of view is the same as assuming all the possible data is known, which

is obviously not true for any science. On the other hand, accepting that

the databases are not statistically signi�cant is the same as assuming no

statistical signi�cant data will be obtained in the foreseeable future. What-

ever opinion the reader holds, if any, it seems likely that no simple model

will be able to reproduce exactly the empirical data, what may disencourage

quantitative approaches for this non-experimental problem. For these rea-

sons, quantitative approaches aiming to explain the empirical data must be

somewhat sophisticated.

The third problem is the subjective interpretation of the data. As one can

see in the examples in Appendix B, variables describing social and economic

characteristics are not numbers. For instance, there are di�erent classi�-

cations for money existence: no money, domestically usable particles, alien

currency, elementary forms, and true money. Identifying these categories

with numerical parameters from a mathematical model is a di�cult task,

as some of them do not even have exact de�nitions, and the literature does

not provide a unique standard procedure for associating these parameters.

In this work, we followed the approaches of Murdock and White, usually

dividing the societies in the same classi�cations or further grouping them.

No matter how di�cult the data acquisition might be, quantitative anal-

yses are always useful to solve problems and �nd important questions. As

experimental approaches become more demanding, theoretical models may

not only be applied but increase their relative importance. Pure computa-

tional and mathematical models have been developed and increasingly ap-

plied for problems of societies' organization and dynamics in the last decades.

Famous examples of network models are the random networks, �rst intro-

duced by Erd®s and Rényi [21, 22, 23], the small-world models, developed by

Watts and Strogatz [13], and the scale-free networks, extensively studied by

Barabási and Albert [24, 25, 26]. Some of those representations, including

the Erdos and Rényi model, were �rst developed with pure mathematical in-

terests and only after rigorous analysis were borrowed and applied for social

sciences problems. Others, as the small-world algorithms, were developed

already aiming to simulate particular characteristics of human systems, in-
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cluding for example the average number of interactions and the hub e�ects

usually observed in large societies.

In the recent years, many models and experiments appeared in the liter-

ature aiming to investigate questions related to societies' organization using

a network formalism to represent the interactions amongst humans [13, 27,

28, 29, 30] and primates [31, 32]. Important results also include the in�u-

ence of the social network structure in the spread of diseases [33, 34, 35] 5.

Finally, another application of the network approaches is the analysis of the

growing databases from the internet, which involves links and the correlation

of behaviors and opinions of linked individuals 6.

Applications of network models 7 are not limited to mathematics and

social sciences but also include economics modeling. Modern �nancial mar-

kets may be simulated with complex networks of cash �ow and trades, what

makes them di�cult to understand with traditional methods 8. However,

our objective here is not to use network algorithms to understand the be-

havior of modern markets, but to investigate an earlier and almost universal

phenomenon: the emergence of money. Standard economic textbooks [5, 40]

de�ne money as a unique medium of exchange which is the result of the

evolution of early barter economies 9, but there is no consensus about the

existence of societies in which barter played a primary role in the economy

[6]. Since the social interactions are crucial factors to the study of commod-

ity exchange, it is natural to also use network approaches to try to answer

money emergence questions. Thus, network and agent-based models pro-

vide an adequate framework to simulate not only human societies but also

economic exchanges.

Recently, two-level network models were introduced to simulate human

5See also the curious but didactic modeling of an apocalyptic zombie infection [36] and
the spread of low quality music as an infectious disease [37].

6For instance, the data available on facebook might be used to measure social in�uence
and even political mobilization. See Bond et al [38] for an example of these experiments.

7These types of models are also called agent-based when they simulate the interaction
and actions of autonomous individuals.

8For an example of emergence of scale-free networks in markets, see Tseng et al [39].
9As will be discussed later in Chapter 3, this is not the only property one commodity

must have to ful�l the role of money in a society. To avoid repetition, however, the other
properties will not be presented here.
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societies [11] and economic relations [9]. They aimed to account for the

cognitive representation of each individual, which is the con�guration with

which each agent understands the social and economic relations of its soci-

ety. The models described in this dissertation follow the same basic ideas,

and they aim to gain insights into problems of interest in the �elds of an-

thropology, economics, and neuroscience. Using techniques from statistical

mechanics and information theory combined with empirical evidence and the-

ories provided by anthropology, we studied social dynamics models capable of

simulating particular characteristics of societies: the hierarchical-egalitarian

phase transition and the emergence of a unique medium of exchange. Both

problems are treated with statistical inference tools, which are introduced in

the next section.

1.2 Inference and information theory

To treat complex systems and agent-based models as the ones introduced

in the previous section, one must necessarily deal with incomplete informa-

tion systems. It is reasonable to assume that no individual in a society or

market has all the information about its environment available when making

decisions. A rational agent 10 must develop some set of rules to �nd the opti-

mal behavior and make choices using the information it has at the moment.

The information is in general not complete: a certain degree of uncertainty

about events is always present. The language in which such systems with

incomplete information can be best treated is a statistical inference frame-

work, including the concept of probability and entropy. The purpose of this

section is to show why and how the framework is derived.

10It is not our goal to discuss what rationality is. We assume a rational individual is
one that makes decisions based on a set of rules, although it does not need to be conscious
about its decisions or the rules they follow. The decisions are made aiming to obtain a
higher payo� from the options available at any given moment.
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1.2.1 Cox's axioms and probability

In the modern sense, probabilities and inference methods can be derived

from simple statements, as demonstrated by the physicist R. T. Cox in 1946

[41], using the theorems and axioms that would later receive his name. How-

ever, the use of probability theory as a tool for inference can be traced back

as far as Laplace's works [42]. We follow here the modern derivation of prob-

ability theory from postulates as it can be found in the works of Cox and E.

T. Jaynes [43].

First, we consider a simple system with complete information regarding

the veracity of a statement. In this case, a statement A either true or false.

Since this information is known, it is possible to infer the veracity of other

related statements. For instance, if another statement B is such that A⇒ B,

and A = VT is true, we may be certain that B is also true. In the same way,

if B = VF is false, we might conclude with certainty that A = VF , and no

more information is needed to achieve that conclusion, thus the information

is considered complete 11. In systems with incomplete information, however,

the statement A provides some information about another statement B, but

not enough to conclude with certainty A → B. Thus, we need a theory

capable of estimating the degree of belief of a statement B given the veracity

of another statement A, which will be denoted (B|A) 12. Using that notation,

the properties (A|A) = VT and (A|Ā) = VF
13 follow immediately.

As stated by E. T. Jaynes [43] and A. Caticha [44], the degrees of belief

must satisfy some constrains to be useful to construct a theory:

• Degrees of belief must have universal applications.

• Degrees of belief must not be self-refuting, as any mathematical theory.

• Degrees of belief must allow for quantitative analyses, thus be repre-

sented by real numbers. 14.

11Such simple logic deductions follow, as the reader might be aware, the Aristotelian or
traditional logic.

12B given the information A.
13Ā is the negative of the statement A.
14Quoting A. Caticha [44], Otherwise, why bother?.
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With those constraints in mind, we should now try to �nd representations

for the degrees of belief (AB|C) and (A ∨ B|C) 15 for any statements A, B,

and C. Since these are the only statements included in the theory so far, it

is reasonable to assume the degrees of belief must be functions of the single

statements:

(A ∨B|C) = F [(A|C), (B|C), (A|BC), (B|AC)] (1.1)

and

(AB|C) = G[(A|C), (B|C), (A|BC), (B|AC)] (1.2)

The �rst equation, henceforward called the sum rule, may be simpli�ed

if we consider two mutually exclusive statements A and B, as it becomes

simply a function of two variables.

(A ∨B|C) = F [(A|C), (B|C), VF , VF ] = F [(A|C), (B|C)] (1.3)

Since the formalism requires consistency, the associativity 16 of the OR

logic operator for three statements A, B, and D, must also hold, and thus

we are able to �nd a functional equation for F . After applying equation 1.3

to the associativity constraint, it is straightforward to �nd the relation

F [F [(A|C), (B|C)], (D|C)] = F [(A|C), F [(B|C), (D|C)]] (1.4)

The functional equation for F , a function of two real variables, admits an

in�nite number of solutions. As demonstrated by Cox [41], all the functions

that satisfy the previous equation may be rewritten in the form

F (x, y) = Φ−1(Φ(x) + Φ(y)) (1.5)

where Φ is an invertible function and x and y are real variables. It should

15AB is the logical AND: it is true if both A and B are true and false otherwise. A∨B
is the logical OR: it is true if either A or B is true.

16The property of associativity is the same as the one from Boolean formalism, (A ∨
B) ∨D = A ∨ (B ∨D).



10 Bruno Del Papa

be stressed that since Φ is invertible, it is monotonic, hence regraduation of

the degrees of belief does not alter the ordering of preferences. In the same

notation as the equation 1.3, it may be written as

Φ[(A ∨B|C)] = Φ[A|C] + Φ[B|C] (1.6)

which is the usual sum rule in probability theory for mutually exclusive

events, if we de�ne probability as p(A|B) = Φ(A|B). Using this new nota-

tion, we may also �nd a numerical value for Φ(VF ) by making C = Ā and

using the logical relation A ∨B|Ā = B|Ā.

Φ(A ∨B|Ā) = Φ(A|Ā) + Φ(B|Ā) = Φ(B|Ā)⇒ Φ(A|Ā) = Φ(VF ) = 0 (1.7)

For non-mutually exclusive statements, we also may prove the general

sum rule of probability,

A ∨B = [AB ∨ AB̄] ∨ [AB ∨ ĀB] = AB ∨ AB̄ ∨ ĀB (1.8)

and since each of the terms on the right side of the equation are mutually

exclusive, we have

Φ(A ∨B|C) = Φ(AB|C) + Φ(AB̄|C) + Φ(ĀB|C)

= Φ(AB ∨ AB̄|C) + Φ(AB ∨ ĀB|C)− Φ(AB|C)
(1.9)

which leads to

Φ(A ∨B|C) = Φ(A|C) + Φ(B|C)− Φ(AB|C) (1.10)

This last equation may be interpreted as the usual sum rule in probability

theory. The di�erence, however, is that here it was derived from axioms and

consistency constraints. For the equation 1.2, in a similar way, it is possible

to derive the product rule of probabilities. It may be proved that the function
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G depends only on the following two variables 17

Φ(AB|C) = G[Φ(A|C),Φ(B|AC)] (1.11)

Rewriting now the distributivity constraint, A(B ∨ D) = (AB) ∨ (AD),

as

A(B ∨D)|C = (AB|C) + (AD|C) (1.12)

and applying G on both sides

G[Φ(A|C),Φ((B ∨D)|C)] =

G[Φ(A|C),Φ(B|AC)] +G[Φ(A|C),Φ(D|AC)] (1.13)

which may be �nally transformed in a functional equation:

G[Φ(A|C),Φ(B|AC) + Φ(D|AC)] =

G[Φ(A|C),Φ(B|AC)] +G[Φ(A|C),Φ(D|AC)] (1.14)

As it is a function of real variables, we may use the notation G[x, y+z] =

G[x, y]+G[x, z]. Making w = y+z and di�erentiating two times with respect

to w we get

∂2G(x,w)

∂z2
= 0 (1.15)

which shows the solution must be linear in w, or the second argument, and

thus is has the form G(x, y) = a(x)y 18. The function a(x) might be deter-

mined by applying G to the relation Φ(A|C) = Φ(AC|C), which leads to

17For a complete proof of this simpli�cation, it is necessary to test all the distinct
dependence cases, which are seven in total, and conclude that all of them are equivalent
to the dependence used here or lead to inconsistencies. The full derivation is presented in
the section 2.3 of [44] and will not be reproduced here.

18Rigorously, there is another term b(x) independent of y. Is is easy to see, however,
that this term must be zero by substituting G(x, y) = a(x)y + b(x) in the equation 1.14.
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G[Φ(A|C),Φ(C|AC)] = G[Φ(A|C), VT ] = a[Φ(A|C)]VT , and thus a(x) = x
VT
.

At last, the product rule acquires the form

Φ(AB|C) = G[Φ(A|C),Φ(B|AC)] =
1

VT
Φ(A|C)Φ(B|AC) (1.16)

The constant VT , initially a representation for the true logical value, may

be set to 1 for simplicity and consistency with the standard probability theory
19. It is also important to remember that the degrees of belief, now proved

to be probabilities, are real variables and thus may assume any real value

between and including, 0 and 1.

In summary, we demonstrated in this section the sum and product rules

of probability for systems of incomplete information, starting from Cox's

axioms. For a more detailed derivation, including explanations about some

of the steps suppressed here, see the textbooks of probability theory [43, 44]

or the original paper by Cox [41]. We may now assume probability theory is

an adequate framework to treat those types of systems, as the ones studied

in this dissertation. We move now to the information theory tools and more

complex models of inference.

1.2.2 Bayes' rule

After the derivation of a method to assign probabilities to events or state-

ments with incomplete information, the next step is to �nd a way to incor-

porate new information into the probabilities we already know about a given

system. In this section, we will consider new information in the form of data

and derive 20 a rule to update probabilities.

First, we should consider q(θ), the known degree of belief, or probability,

of a single parameter θ in the space Θ 21. In information theory, q(θ) is

denominated the prior probability distribution. The problem is to incorpo-

19Setting VT = 1 is the same as assuming 1 is the total certainty about the statements.
20The derivation method presented here was �rst shown by A. Caticha [44].
21This single parameter may represent a system, an event, a statement, amongst others,

and the space Θ contains all the possible values or representations of the parameter θ.
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rate new data x ∈ X, and nothing else, in the prior distribution to obtain a

posterior distribution p(θ), which is updated after the data is collected. The

probability of obtaining x in a single measure is given by q(x|θ) and called

the likelihood or sampling function.

The joint probability distribution of θ and x is given by q(θ, x) = q(θ)q(x|θ)
and must be used to �nd p(θ, x) after a measure x = y. We should note again

that the probabilities from the previous section are real numbers, and so they

may be extended to continuous distributions. Thus

p(x) =

∫
p(θ, x)dθ = δ(x− y) (1.17)

and

p(θ, x) = p(x)p(θ|x) = δ(x− y)p(θ|x) = δ(x− y)p(θ|y) (1.18)

We must use now the desire to include no more information than the data

require. If only x = y is to be used to update the probability distribution,

then p(θ|y) = q(θ|y) must be true and, a priori, must hold only for y 22.

Using this information we have

p(θ, x) = δ(x− y)q(θ, y) (1.19)

and we may, �nally, use this information to �nd

p(θ) =

∫
p(θ, x)dθ =

∫
δ(x− y)p(θ|y)dx =∫

δ(x− y)q(θ|y)dx = q(θ|y)

(1.20)

Using the product rule

q(θ, x) = q(θ)q(y|θ) = q(x)q(θ|y) (1.21)

22The equation may be true for other values of x, but we must update the probability
distribution only to the extent required.
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we can write the result commonly referred to as the Bayes' rule to update

probability distributions:

p(θ) = q(θ)
q(y|θ)
q(y)

(1.22)

in which q(y) might be interpreted as a normalization factor given by

q(y) =

∫
q(θ)q(y|θ)dθ (1.23)

Therefore, we have derived a formula to update probability distributions

after the acquisition of new information. The Bayes rule is sometimes seen

as an immediate result of the product rule, since it may simply be written as

q(θ|y) = q(θ) q(y|θ)
q(y)

, but the idea of updating probability distributions accord-

ing to this rule is usually explored in Bayesian probabilistic approaches 23.

It is an important result since it may be applied to update any probability

distribution q(θ), for any θ, and for any measure x = y.

1.2.3 Maximum Entropy in information theory

Bayes' rule is not, however, the only procedure to update probabilities.

Given a prior probability distribution q(x), we may also try to �nd a rank of

posterior distributions p(x) and choose the more adequate one for any new

acquired information. Therefore, to each p(x) must be assigned a real num-

ber S[p(x)], called entropy, that should be able to compare di�erent posterior

distributions. Since each functional S depends also on q(x), it is appropriate

to write it as S[q, p], which is commonly called the relative entropy of p rela-

tive to q. The method of Maximum Entropy consists of �nding a functional

S, which is not required a priori to be unique, that yields the most adequate

posterior distribution given both q(x) and some new information about the

system. The more �adequate� the posterior distribution, the higher the func-

tional S[q, p] should be, therefore we should choose the p(x) that maximizes

it with constraints given by the information acquired.

23For contributions of the Bayesian formalism to cognitive science, see Jones and Love
[45]. For applications of this rule to simple problems of disease tests, hypothesis testing,
parameter estimating, and model testing, see also A. Caticha [44].
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To �nd the expression for S, three criteria are required [44]. The �rst is

the locality of the information: if the information acquired x is not included

in some domain A, then p(x|A) = q(x|A). Considering two non-overlapping

domains A and B, whose union forms the space X containing all possible

elements x, we have∫
x∈A

p(x)dx+

∫
x∈B

p(x)dx = PA + PB = 1 (1.24)

and imposing a constraint in one of them to a function b(x),∫
x∈B

b(x)p(x)dx = B (1.25)

no new constraints should be induced in p(x|A). To obtain the p(x) which

maximizes S under the referred constraints, we use Lagrange multipliers λ0,

λ1 ,and λ2 and the variational principle

δ
[
S[p, q]− λ0

(∫
x∈A

p(x)dx− PA
)
− λ1

(∫
x∈B

p(x)dx− PB
)

+

− λ2

(∫
x∈B

b(x)p(x)dx−B
)]

= 0 (1.26)

From the expression above, it is possible, although non-trivial 24, to con-

clude S must have the form

S[p, q] =

∫
F (p(x), q(x), x)dx (1.27)

where F is a function of three real arguments.

The second criteria is the coordinate invariance. Introducing a function

m(x) and de�ning Φ(y, z, w, x) = 1
m(x)

F (ym(x), zm(x), x), the relation

S[p, q] =

∫
m(x)Φ

(
p(x)

m(x)
,
q(x)

m(x)
,m(x), x

)
dx (1.28)

must be true. If we consider again an arbitrary constraint for a scalar function

24The poof involves some functional analysis which is beyond the scope of this disserta-
tion. See A. Caticha [44] for the argument in the discrete case.
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b(x) and use the variational principle, we have

Φ̇

(
p(x)

m(x)
,
q(x)

m(x)
,m(x), x

)
= λ0b(x) (1.29)

where Φ̇ is the derivative with respect to the �rst term. The last equation

must, however, hold for any coordinate system. Since b is scalar, it must be

invariant under the coordinate transformation dx→ γ(x′)dx′, which yields a

similar relation

Φ̇

(
p(x)

m(x)
,
q(x)

m(x)
,m(x)γ(x′), x′

)
= λ1b(x) (1.30)

Since λ1
λ0

is a constant, it follows Φ does not depend explicitly on x, thus

the coordinate invariance requires S to have the form

S[p, q] =

∫
m(x)Φ

(
p(x)

m(x)
,
q(x)

m(x)
,m(x)

)
dx =∫
m(x)Φ

(
p(x)

m(x)
,
q(x)

m(x)

)
dx (1.31)

At last, if we consider m(x) = q(x), Φ is independent of q(x) and the

entropy becomes

S[p, q] =

∫
q(x)Φ

(
p(x)

q(x)

)
dx (1.32)

The third and last criteria is the independence of systems. Two inde-

pendent systems with prior probability distributions q1(x1) and q2(x2) that

receive two independent informations should not a�ect the analysis of each

other. If the two posterior distributions are p1(x1) and p2(x2), respectively,

the joint entropy of the two systems considered together is

S[p, q] =

∫
q1(x1)q2(x2)Φ

(
p(x1, x2)

q1(x1)q2(x2)

)
dx1dx2 (1.33)

where p(x1, x2) = p1(x1)p2(x2) is the joint posterior distribution. We must

now use for the last time the variational principle, but with an in�nite number
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of constraints
∫
p(x1, x2)dx2 = p1(x1) and

∫
p(x1, x2)dx1 = p2(x2), to �nd

Φ̇

(
p(x1, x2)

q1(x1)q2(x2)

)
= Φ̇(y) = λ1(x1) + λ2(x2) (1.34)

where λ1 and λ2 are the in�nite Lagrange multipliers from the constraints.

Di�erentiating with respect to both x1 and x2, we have a di�erential equation

for Φ

Φ′′′(y)y + Φ′′(y) = 0 (1.35)

which results in

Φ(y) = Ay log(y) +By + C (1.36)

As linear functions of y, the terms By + C may be incorporated in the

Lagrange multipliers from equation 1.34, by simply adding them to the con-

strains, and we may rede�ne Φ = Ay log(y).

Finally, after analyzing the three criteria, the entropy is given by

S[p, q] = A

∫
p(x)log

(
p(x)

q(x)

)
dx (1.37)

The functional S measures a �distance� between the prior and posterior

probability distributions. This �distance� is known as the Kullback-Leibler

divergence, if we set A = 1 for simplicity, which is always positive and only

null if p(x) = q(x) 25. Nonetheless, in information theory, we set A = −1 and,

instead of treating it as a minimization problem, we may speak of maximizing

the entropy of the system.

In summary, the maximum entropy principle in information theory states

that given a prior probability distribution and information constraints, we

are able to �nd a posterior probability distribution by ranking the possible

candidates and choosing the one that maximizes the functional S, the relative

entropy, from equation 1.37.

One possible information to be incorporated in the some probability dis-

25The divergence is not, however, a metric, since it is clearly not symmetric and does
not satisfy the triangular inequality.



18 Bruno Del Papa

tribution q(x) is the expected value of a function 〈E(x)〉 = E. Using the

variational principle with two constraints (the expected value E and the

normalization of the posterior probability distribution), we may write

δ
[
S[q, p]− λ

(∫
q(x)dx− 1

)
− β

(∫
q(x)E(x)dx− E

)]
= 0 (1.38)

which leads to

− log
(q(x)

p(x)

)
− 1− λ− βE(x) = 0 (1.39)

and �nally, rearranging the terms, to

q(x) = e−1−λp(x)e−βE(x) =
1

Z
p(x)e−βE(x) (1.40)

where Z is the partition function, also de�ned by Z =
∫
p(x)e−βE(x)dx. In

statistical mechanics, the result is equivalent to the Boltzmann-Gibbs distri-

bution, which is the distribution of energy states in the canonical ensemble of

a system. The function E(x) has its expected value interpreted as the macro-

scopic energy of the system and o�ers some information 26 for the update of

probability distributions.

Therefore, the maximum entropy principle may be employed in any sys-

tem where new information a�ects the known probability distributions, as

the ones analyzed in this dissertation. The results derived here, including

the Gibbs probability distribution, may be combined with computational

algorithms to provide a mathematical framework capable of �nding the sta-

tionary states of a given system. Those algorithms are presented in the next

section.

26The expected value of E(x) must not be minimized, or even known, as one can see in
its derivation.
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1.2.4 Monte Carlo dynamics and the Metropolis Algo-

rithm

Monte Carlo methods are a particular class of computational algorithms

based on repeated random samplings to obtain numerical results in simula-

tions [46]. We focus here on Markov Chain Monte Carlo (MCMC) meth-

ods, which are stochastic processes with discrete time that converge to a

stationary probability distribution. In particular, this section presents the

Metropolis Algorithm, which initially appeared in 1953 in the famous paper

Equation of State Calculations by Fast Computing Machines [47], and since

then is being used in a myriad of computer simulations.

The main idea of the Metropolis Algorithm is to generate states of a

system following a desired probability distribution p(x). The algorithm uses

a Markov process to asymptotically reach a unique stationary distribution.

The process is de�ned by its transition probabilities p(y|x), which are the

probabilities of transition from the state x to the state y. Starting from the

condition of detailed balance

p(x)p(y|x) = p(y)p(x|y) (1.41)

we may separate the transition probability in two terms: a proposal distribu-

tion T (y|x) and an acceptance distribution A(y|x). The proposal distribution

is the probability of y being chosen as the next state given the system is cur-

rently in x. The acceptance distribution is the probability of accepting this

next state. By de�nition, the transition probability is the product of the two

terms

p(y|x) = T (y|x)A(y|x) (1.42)

and so we may rewrite the detailed balance as

T (y|x)A(y|x)p(x) = T (x|y)A(x|y)p(y) (1.43)

This equation is satis�ed by many acceptance distributions 27. The choice

27In fact, for each system the best choice might be di�erent and almost each useful
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in the Metropolis Algorithm is

A(y|x) = min

(
1,
p(y)T (y|x)

p(x)T (x|y)

)
(1.44)

We may also consider the proposal probabilities as constants, T (x|y) =

T (y|x), if all the states of the system are equally likely to be reached from

any given state. In this case, the acceptance probability is given simply by

A(y|x) = min

(
1,
p(y)

p(x)

)
(1.45)

For systems in which the probability distribution for all states follows the

Boltzmann-Gibbs distribution from the equation 1.40, the acceptance rate is

given by

A(y|x) = min(1, e−β(E(x)−E(y))) (1.46)

which allows for a simple procedure for simulations, to be followed in each

time step:

1. Choose a random initial state x,

2. Choose another random state y 28,

3. Accept the new state according to the probability A(y|x). If not ac-

cepted no update will be made.

The processes goes on until its convergence to the stationary state, and

every state modi�cation is always accepted if E(y) ≤ E(x) and with a prob-

ability given by the Gibbs factor e−β(E(x)−E(y)) if E(y) > E(x).

This algorithm provides a simple way of simulating systems with incom-

plete information. Combined with inference approaches, the Metropolis Al-

gorithm was employed in both models studied in this dissertation. The def-

initions of the states x and the function E(x) are di�erent for each model,

choice has its own name. See for example the Swendsen-Wang algorithm [48, 49, 50], with
applications in clusters and percolation.

28If not random and uniform, this second state must be chosen following the probability
distribution T (y|x).
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but the reader might see the models as examples of the Maximum Entropy

principle and the Metropolis Algorithm's applications.

1.3 Structure of the dissertation

The remainder of this dissertation is structured as follows. Chapter 2

presents a model for social dynamics and hierarchy emergence initially de-

veloped by Caticha et al [11]. It is intended to address the theoretical and

empirical evidence that motivated the model, to describe its dynamics and

formalism, and present its results, with focus on the simulations that were

remade during the course of this work. Chapter 3 presents another compu-

tational model that complements the social dynamics one: a model for the

emergence of money. It also includes the theoretical motivations and evidence

that led to the model development, its results, and the comparison with the

available empirical data. Finally, Chapter 4 presents the conclusions of the

dissertation, the �nal considerations about future work, and the implications

of the results.

The dissertation also contains two appendices. The �rst one is intended

to present an introduction to graph theory and network's properties to the

non-familiar reader. It should be viewed only as a guide for some properties

and characteristics of the many network algorithms employed in the compu-

tational models. The second appendix shows some variables from the Stan-

dard Cross-Cultural Sample and explains how and why they were divided in

groups to be compared with the model's results.
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Chapter 2

A computational model for the

breakdown of the egalitarian

society

The objective of this chapter is to present the model for emergence of

hierarchy in human societies initially developed by Caticha et al [11]. It is

intended to address the necessary topics in the �eld of anthropology and the

theories in which the model is based, as well as its structure and dynamics.

The numerical results are also presented and analyzed in this chapter, in-

cluding the comparison with the available anthropological data. The study

of this model, called henceforward the Social Hierarchy Model (SHM), was

the �rst part of the research project. The SHM also provided many insights

and a mathematical framework for the Money Emergence Model presented

in the next chapter, which aims to complement the dynamics of social and

economic relations amongst early groups of humans.

2.1 Social evolution of primates and early hu-

mans: empirical evidence and theories

Humans and primates are social beings [51, 52], thus they organize them-

selves in societies or groups and exhibit a great diversity of structures and
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social activities. For non-human primates, including chimpanzees and bono-

bos, the social activities include also cooperation, war, food sharing, group

defense, �ghts for dominance, and many others activities which might have

been considered uniquely human 1. That behavior is the result of evolutive

pressures and the emergence of cooperation amongst the individuals 2. Re-

cently, a study [56] has shown the possibility of spreading of an altruistic gene
3 in populations where migration is compatible with empirical data. Collab-

oration and punishment amongst subgroups of individuals, two behaviors

widely observed in humans and other primates 4, are essential for the emer-

gence of the altruistic gene, therefore having in�uence on social organization

of the societies.

Although similar, there are many di�erences in the societies of di�erent

primates. The groups' structures may have varied hierarchical con�gurations,

which are most of the time �xed [55]. The great apes, including chimpanzees,

gorillas, and orangutans, live in strong hierarchical societies where resources

are dominated by one or few individuals. On the other hand, humans are

known to live in many di�erent structured societies, going from strong cen-

tralized and hierarchical groups to mostly egalitarian ones, where the re-

sources are shared and controlled by the majority of individuals. The emer-

gence of this spectrum of societies' con�guration is intrinsically connected to

the early human evolution, and thus is a fundamental topic in anthropology.

With the goal of shedding light on this dynamic process, Caticha et al [11]

developed a computational model for the emergence of these varied society

network con�gurations, based on recent empirical evidence and theories.

A social network is the representation of the interaction amongst the indi-

viduals. It is the result of the intense social activities in which both humans

1For a detailed description of the chimpanzees behavior, see the two F.B.M. de Waal
books, Chimpanzee Politics: Power and Sex among Apes. [53] and Peacemaking Among

Primates [54].
2See for example the extensive research of Christopher Boehm [55] in non-human pri-

mates.
3An altruistic gene, in this context, means that its owner will have a lower �tness but

the rest of the group will bene�t and present a higher �tness.
4For experiments of cooperation and punishment using a game theory framework, see

for example Egas et. al. [57]. For computational models of cooperation by social exclusion
see, for instance, Sasaki and Uchida [58].
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and non-human primates engage. The equilibrium amongst the group mem-

bers in these activities gives rise to the di�erence in their social networks.

The �rst extreme of the social spectrum, an egalitarian group, consists of in-

dividuals who interact and share resources with all the others, although the

share might be proportional to the risk taken to acquire the resources [55].

In the other extreme, in the centralized or hierarchical groups, the member

or members with high hierarchy level have access to the majority of the re-

sources and decide how they will be shared 5. In nature, many intermediary

states are also observed in di�erent species.

Since the social activity of an individual is related to the cognitive ca-

pacity in primates [59] 6, it is expected to play an important role in the

emergence of any social con�guration. That hypothesis is corroborated by

archaeological data, primarily the evolution of early human social organiza-

tion in pre-historical times. This evolution period was described by Bruce

Knauft in 1991, who �rst employed the term U-Shaped Evolution [60].

2.1.1 U-Shaped Evolution

The social organization of early humans varied in time. Humans de-

scend from primates with likely hierarchical social organization [60, 61, 62],

but went through a period of egalitarian societies with a small number of

individuals - mostly early hunter-gatherers. Later, in the Neolithic Era, a

transition occurred and groups with centralized authority appeared. This

transition may be linked to the increase in the number of individuals as a

result of the Agricultural Revolution [60].

Thus, the U-Shaped Evolution theory proposes that social organization

went through two distinct transition periods in human evolution. The �rst

one, going from the early hierarchical hominids to the Neolithic Era, was the

result of an increase in the cognitive capacity of the individuals, which might

have transformed the former hierarchical groups in more egalitarian ones.

5The dominance is usually exercised using violence or other form of coercion, both in
humans and non-human primates.

6Species with high neocortical development are usually capable of interacting with a
bigger number of individuals in their lives.
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The change in the cognitive capacity occurred during many thousands of

years in the period when early hominids evolved. This theory is corroborated

by the Social Brain Hypothesis, which will be explained in the next section.

The second period in which a social transformation occurred was the

Agricultural Revolution. In this period, the population increased at a much

faster rate than before, therefore the former egalitarian societies became more

centralized and hierarchy appeared again, going in the opposite direction of

the �rst period, thus resembling a U-Shaped curve 7. The large groups in the

Post-Neolithic Era were predominantly centralized and larger than before,

but when compared to the previous period this change was faster and did not

include important biological modi�cations in the brain. Thus, it is arguable

that the number of individuals was the main cause of the change in social

organization.

Today, humans live in societies with varied structures, however archaeo-

logical and ethnographic evidence suggests that there is a correlation between

the size of hunter-gatherer groups and their social organization [63, 64]. Big-

ger groups usually are organized in centralized societies, where the power is

concentrated in the hands of few individuals 8. Smaller groups usually do

not concentrate power and tend to be more egalitarian.

The evidence and the hypotheses from the U-Shape Evolution theory

are some of the motivations for the SHM. They allow the identi�cation of

two relevant variables to any model that tries to explain social organization

evolution: the cognitive capacity of the individuals and the group size. Both

of these variables are crucial for the model's results, and more evidence of

the important role played by the cognitive capacity are given by the Social

Brain Hypothesis.

7The U-Shape appears when plotting social organization as a function of time. For an
illustration of these phenomena see the previous thesis [10].

8Power, in this context, also means access to resources and wealth and higher social
status.
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2.1.2 Social Brain Hypothesis and brain evolution

The link between the cognitive capacity and social organization is sug-

gested by many recent studies [1, 59, 65, 66, 67]. According to them, the

relative size of some brain regions of many species of primates correlates

with the number of individuals who share social activities and form groups

or subgroups inside a society. The best-known empirical result is the power

law relating the size of the neocortex 9 relative to the total size of the brain

(neocortical ratio) and the average size of the social group for non-human

primates. The results, �rst obtained by Dunbar [2], are illustrated in the

Figure 2.1.

Figure 2.1: Average size of groups of primates as a function of the neocortical
ratio (the volume of the neocortex divided by the total brain volume). Figure as
shown by R. Calsaverini [10] plotting the data available from Dunbar [2].

The relation of the neocortex size to the social interactions of primates

suggests that, in fact, the cognitive capacity has a strong in�uence on their

social relations and could have been the result of evolutive pressures. The

increase in the neocortex relative size was a response to a selective pressure

9The neocortex is the brain region usually associated with higher cognitive functions
such as language, motor commands, sensory perception, and spatial reasoning. It is a
characteristic of the mammal brain and a part of the cerebral cortex.
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associated to the social interaction 10. Individuals who are better at the

social information processing exhibit a higher �tness and thus contribute

to the propagation of this characteristic. That hypothesis is denominated

the Social Brain Hypothesis and has been receiving increasing support from

anthropological data 11.

2.1.3 Reverse Dominance Theory

Besides the plausibility of the relation between cognitive capacity and

social organization, one should also ask how the egalitarian societies can be

stable and how individuals who might try to achieve a high hierarchy level

can be restrained. Reverse Dominance Theory is a theoretical mechanism

to explain the existence of egalitarian social structure in species in which

individuals show characteristics of strong dominance behavior. It was pro-

posed by Christopher Boehm in 1993 [73] and based on his empirical studies

of primate societies. According to his theory, some species, including early

hunter-gatherer humans, show egalitarian behavior due to the resistance of

all the individuals to any dominance by single members of the group. The

egalitarian behavior is the result of a reversion in the usual dominance mech-

anism, where any attempt to exert leadership is opposed by the others and

eventually extinguished. Thus, there is not an absence of dominant behav-

ior, but a dominance by all the individuals of the social group. Boehm also

describes how the individuals express these combative behaviors against oth-

ers [55], and they might include non-cooperation, public criticism, ridicule,

disobedience, aggressive acts, and even murder in extreme cases.

2.1.4 Ethnographic Atlas and the Standard Cross-Cultural

Sample

There are not only theories about the social organization of human so-

cieties but also some raw data compiled from the research of many anthro-

10For more on this topic, see the papers by R. W. Byrne and A. White [68, 69, 70].
11R. I. M. Dunbar has a number of papers showing the empirical evidence for the Social

Brain Hypothesis [2, 71, 72].
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pologists in the last century. The Ethnographic Atlas is a database initially

published by George Murdock in the period between 1962 and 1980 [3], but

still being updated, which contains information about almost twelve hun-

dred di�erent cultures and societies. It is one of the biggest databases in

the social sciences and contains approximately two hundred variables about

each di�erent culture. The database includes data about many character-

istics of human societies which existed in di�erent geographical regions and

historical periods, including even some modern cultures. The characteristics

are organized in the form of discrete variables such as group size, relative

contribution of economic activities, social strati�cation, and other particu-

larities. The database is composed of two parts: one table indicating the

culture's numerical value for each variable and one codeblock describing the

meaning of the numerical values and the total number of cultures in each

classi�cation.

Although one of the biggest databases in anthropology, the Ethnographic

Atlas does not provide complete information about the majority of its cul-

tures due to many factors, such as the extinction or modi�cation of some

societies and the lack of documentation about their activities. Another

problem is the cultures' independence. Most of them have, at some point

in their history, interacted with others, and thus the data are not statisti-

cally independent 12. To solve this dependence and provide a list of the best

documented cultures, Murdock and Douglas White published the Standard

Cross-Cultural Sample (SCCS) [12].

The SCCS is another database containing anthropological data, roughly

formatted in the same way as the Ethnographic Atlas. There are two main

di�erences, however. The �rst one is the number of cultures and variables:

since Murdock and White chose only the best documented cultures, the num-

ber of available societies is much lower, only 186. Also, by the same reason,

the number of variables about each culture is bigger in the SCCS. The other

di�erence is regarding the cultures' independence: the SCCS provides infor-

12This statistical correlation is sometimes referred to as the Galton's Problem, which is
the problem of drawing inferences from cultural data due to autocorrelation. For more on
the subject, see Dow et al [20].



30 Bruno Del Papa

mation about �sampling provinces� of closely related cultures, choosing only

one representative of each sampling to form the database.

Both the Ethnographic Atlas and the SCCS provide variables that may

be used to test the results of the SHM. The variables are adequate for sta-

tistical analysis, and the most di�cult task is, naturally, understanding how

to include the variables in a mathematical or computational model because

it is hard to quantify some of them 13. Although di�cult, a good model

of social evolution that tries to give insights into how real societies orga-

nize themselves, should reproduce at least qualitatively some variables of

the database, since they are the only �experimental results� available. The

model described in the next section aims also to produce results that might

be compared to the anthropological databases 14.

2.2 The Social Hierarchy Model

The Social Hierarchy Model (SHM), as described by Caticha et al [11],

consists of a double structured network of information exchanging social

agents. It aims to describe the social structure using techniques from in-

formation theory and statistical mechanics while taking into account the

empirical evidence and theories described earlier in this chapter. It is also

intended to be a simple model: only a few key variables should be able to

describe the spectrum of social organization and the dynamics of the societies
15. The model has two main parts: the framework and formalism employed

to represent the individuals and their interactions and the dynamics which

aims to simulate how societies evolve.

13For example, variables such as �155 - Money� include di�erent numerical values for
the categories none, domestically usable particles, alien currency, elementary forms, and
true money. Interpreting the results and �nding a numerical scale to compare them is by
no means an easy or well de�ned task, as will be discussed later on this chapter.

14Some comparisons will be discussed here, but for the original results one should see
the original paper by Caticha et al [11].

15This approach is sometimes referred to as KISS - �Keep is simple and straightforward�
or, for more colloquial terms, �Keep it simple, stupid�.
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2.2.1 The formalism and structure of the SHM

Many authors have been using di�erent mathematical formalisms to sim-

ulate human and primate societies 16. It is also a common theme studied in

network theory, including the famous works of Watts and Strogatz [13] and

Barabási and Albert [24]. The SHM follows the main convention of using

graphs to represent societies, agents, and their interactions 17.

In this model, each agent possesses its own cognitive representation of

the local social network, which re�ects information acquired from other group

members or its own conclusions. That information is related to how each pair

of agents interacts between themselves. For example, one agent can know

if two others are friends or enemies, willing to cooperate or to �ght over

resources, forming a coalition, or involved in any kind of social or economic

activities. Knowing any information about the others might be extremely

important to the �tness of the individual because it is a way of knowing if

it should or should not cooperate, share resources, or even try to predict the

others' behavior in competitive activities 18. Any error regarding the social

interactions and social structure might cost resources or social positions, thus

diminishing the individual's �tness in the group.

Since it improves the �tness, a cognitive strategy to minimize the infer-

ence errors about the real social structure must have evolved in a society of

competitive individuals. They should have developed such strategies to in-

crease information reliability, which might be a costly activity: an individual

must employ time, resources, and energy to acquired and store the social

information. One way to increase the reliability of the information is to com-

municate with the other members of the group by adopting an information

exchanging behavior, also known as �gossip" [75]. That kind of behavior is

observed in both humans and non-human primates [53]. Also, the Social

Brain Hypothesis suggests that the ability to acquire social information was

16For recent examples of the diversity of formalisms, see Sasaki and Uchida [58], Egas
et al [57], Kuperman [32], and Caticha and Vicente [74].

17Some preliminary topics in graph theory are necessary to understand the model. The
properties are only presented when needed in this chapter. More about graph theory and
properties can be found in the Appendix A.

18These ideas come from the Social Brain Hypothesis.
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indeed an important evolutionary pressure.

Figure 2.2: Illustration of the SHM structure. Each agent has access to lim-
ited information regarding the social interactions and represents the society in its
own cognitive network. The cognitive networks might be di�erent and are not
necessarily identical to the real social network.

The cognitive social network is mathematically represented by graphs:

each node is an agent and an edge between two agents represents the knowl-

edge of the kind of social interaction. There are only two possibilities: either

an agent knows the social relationship between two random agents or it does

not 19. Therefore, the graph's edges have a constant weight, which for sim-

plicity is considered equal to 1. Social interaction is de�ned as the possibility

of information exchange, which is assumed to be symmetrical (if an agent

i may obtain any information from another agent j, the opposite is also

true). By that reason, this model uses only undirected graphs to represent

the societies.

19This hypothesis means that all the information about the interacting agents are equally
important to any given agent. Naturally, in a complex human society, this fact is not true,
but it is acceptable for a �rst computational model as a way to keep it simple.
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Following the cognitive representation hypothesis, each agent represents

the society with a graph of N vertices (all the agents in the society, including

itself). In the notation used in the remaining of this dissertation, one agent

i possesses its own representation network Si of the real social network S,

which shows how the social network is perceived by the agent. Si represents

the knowledge about the social interactions sijk: the relation between agents

j and k known by the agent i. The convention is used as follows

sijk =

{
1, if the relation between j and k is known by i;

0, if the relation is not known by i.
(2.1)

This model also assumes for simplicity that the society is closed, i.e., the

number of agents is constant and no agent enters or leaves the society 20.

The objective of this simpli�cation if to keep the model as simple as pos-

sible, as previously stated. It is also assumed that there is no incomplete

information about the relation of each pair of agents: either one agent knows

the interaction or it does not. If an agent knows the relation between all

the individuals in the society, its cognitive representation graph is complete,

possessing N(N−1)
2

edges. Also, since any agent is always capable of inferring

at least one social relation for all the others, the minimum number of edges

in any cognitive graph is N − 1. In this case, there are two possible con�gu-

rations that maintain a connected graph: star and path. In the star graph,

all the social relations of one agent are known and the others are not. In

the path graph, each agent knows only the relations of the others with their

direct neighbours.

20It should be noted here that an agent in the model might represent a coalition or
even a family or group of agents, as long as they are the only ones who interact in the
society. In real societies, not all individuals might interact and the society itself might be
composed by some blocks of individuals. However, this fact does not a�ect the model's
results, only the de�nition of the vertices.
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Figure 2.3: Examples of di�erent cognitive graphs. I: A path graph, which
represents a cognitive network where only the relations of each individual with
its direct neighbours are known. II: A star graph, which represents a cognitive
network where only the relations of a central individual with all others are known.
III: A complete, or totally connected, graph, which represents a cognitive network
where all the relations amongst the agents are known.

Another important ingredient of the SHM is the cognitive cost. Since the

agents have cognitive limitations, a cost C(Si) is associated with each cogni-

tive representation graph. There are two di�erent factors that contribute to

that cost. As suggested by Dunbar [75], each agent possesses a limited cogni-

tive capacity, which is associated to the relative size of the neocortex. Thus,

for each representation network Si there is an associated cognitive cost, Ci
cog,

which is a increasing function of the quantity of information known by the

agent. This cost is given, for each agent i, by the number of edges from the

cognitive representation graph Ne(S
i)

Ci
cog = Ne(S

i) =
N∑

j,k=1

sijk
2

(2.2)

The second cost factor is associated with the ignorance of the relation sijk.

In that case, one agent must infer the relation according to the known infor-

mation from the others and one wrong inference might a�ect the decisions

the agent makes. For example, it might share resources with another agent

that is not willing to share its own, thus reducing the �rst one's �tness. The

chance of error increases with the number of di�erent inferences one agent

must make based on the information it already has. Thus, this second cost,
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which will be called the social cost, is proportional to the average path length

L 21.

Ci
soc = L(Si) =

N∑
j,k=1

2lijk
N(N − 1)

(2.3)

in which lijk is the shortest distance between vertices j and k 22, as perceived

by i. The total cost of a representation Si for the agent i is therefore

C(Si, α) = Ci
cog + αCi

soc (2.4)

where α is a non-negative real parameter that controls the relative impor-

tance of each cost. For a small α, the cognitive cost is the predominant

term. On the other hand, for a big α, the opposite occurs: the predominant

term becomes the social cost. It is natural, therefore, to try to associate the

parameter α with some kind of cognitive capacity of the agents. The bigger

it is, the lower the relative importance of the cognitive cost, and the agent

can store more information about the society where it lives.

2.2.2 Single agent Monte Carlo dynamics

The dynamics of the model consists of the agents' strategies to minimize

the total cost C(Si, α) of their cognitive networks. An agent may modify the

edges of the graph based on their e�ects on the total cost. According to the

equation 2.4, the strategy needs to be a function of α, thus it may be �rst

analyzed by looking at the extreme cases.

The �rst extreme case is α = 0, in which the total cost becomes

C(Si, 0) = Ci
cog = Ne(S

i) =
1

2

N∑
j,k=1

sijk (2.5)

Thus, to minimize the total cost one agent should have a cognitive graph

with the least possible number of edges, N − 1. As discussed earlier, there

21For an explanation of the average path length, check the Appendix A and its references.
22See Appendix A for more details.
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are only two possibilities: a star or a path graph. However, for small positive

values of α, the social cost Ci
soc has a small e�ect, but one that is crucial to

�nd the graph con�guration. The average path length L is higher for path

graphs than for star graphs, what makes the minimum cost con�guration a

star.

The second extreme case is α >> 1:

C(Si, α >> 1) ≈ αCi
soc =

2α

N(N − 1)

N∑
j,k=1

lijk (2.6)

in which the social cost becomes the dominant term and to minimize it

the agent must �nd the graph con�guration with lower mean path length

L: a complete graph. For other values of α, each agent tries to modify its

cognitive graph to minimize the total cost and the expected con�guration is

an intermediary state between a star and a complete graph.

A strict minimization bound, however, might not be appropriate to the

model since not only it falls in local minima but also it is impossible to know

the processes and mental rules that each agent uses to �nd the minimum cost

con�guration 23. Thus, to �nd the global minimum con�guration, we use the

Metropolis Algorithm [44, 46] modi�ed for graphs. Although it is not possi-

ble to know the dynamics' details such as the brain processes, the expected

value of the total cost is a relevant variable to the model. Using a Bayesian

approach, we could infer a probability distribution using the Maximum En-

tropy method restrained by the total cost value. This method results in the

Boltzmann-Gibbs probability distribution 24

p(Si) =
q(Si)

Z
e−βC(Si,α) (2.7)

in which β 25 controls the relative importance of the cost C(Si, α), q(Si) is

23These must take into account many brain processes and may even vary for each indi-
vidual, but they are out of the scope of this dissertation. For one example, suggesting the
relation of social rejection with physical pain, see Eisenberger et al [76].

24For the mathematical derivation of the Metropolis Algorithm and the Maximum En-
tropy method, including the Boltzmann-Gibbs distribution, see the �rst chapter of this
dissertation.

25The parameter β is essentially the inverse of the temperature and appears in a similar
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the prior probability distribution, and Z is the partition function, given by

Z =
∑
Si

p(Si)e−βC(Si,α) (2.8)

Another way to see the dynamics is to imagine a simple sequence of rules

repeated in each step of the simulation. Starting with a cognitive network

Si with total cost C(Si, α), the following rules are applied.

1. A random element sijk is chosen and changed, i.e., if sijk represents an

edge, the edge is erased (only if it maintains the graph connected). If

sijk does not contain an edge, one is added.

2. The new total cost C ′(Si, α) is calculated. If the change lowers the cost,

it is accepted and the Monte Carlo step is completed. If the change

increases the total cost, it is only accepted with a probability given by

the Boltzmann-Gibbs factor e−β(C′(Si,α)−C(Si,α)).

2.2.3 Numerical results for a single agent

The single agent dynamics uses simple rules to �nd the con�gurations

to which the cognitive networks converge. The �rst question that arises is,

naturally, the one about the model convergence. We show in the Figure 2.4

the convergence for three di�erent initial graph con�gurations.

One order parameter is used to identify the stationary graph con�gura-

tion. The parameter z was chosen to clearly distinguish between star and

complete graph con�gurations, which are the two expected extreme results.

z is the quotient of the expected value of the average vertex degree davg and

the maximum vertex degree dmax, which are given by

E[dmax] =
∑
Si

p(Si|α, β,N)dmax(S
i) (2.9)

way in statistical mechanics models [43, 44]. Here, however, its interpretation should not
be the same since there is no standard procedure to de�ne a temperature for a cognitive
representation network. For now, it should be viewed only as a mathematical parameter
whose interpretation will be presented together with the results.
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and

E[davg] =
∑
Si

p(Si|α, β,N)davg(S
i) (2.10)

z =
E[davg]

E[dmax]
(2.11)

For the two extreme con�gurations, z assumes the following values

z =
E[davg]

E[dmax]
=


(N−1)∗1+1∗(N−1)

N

N−1
= 2

N
, for a star graph;

N∗(N−1)
N

N−1
= 1, for a complete graph.

(2.12)

Figure 2.4: Convergence of the Social Hierarchy Model for three di�erent initial
networks: (I) Complete, (II) Random (Erd®s-Rényi, with p = 0.5), and (III) Star.
The curves show the average of 250 simulations for di�erent values of α and β.

For a single agent i, the order parameter z converges, as expected, for all

positive values of α and β, independently of the initial con�guration. The

Figure 2.4 shows the convergence for three di�erent initial graph con�gu-

rations: star, random, and complete. Each step of the simulation t is one

step of the Monte Carlo dynamics (a tentative change of one random edge
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of the graph). The convergence is faster for a random initial con�guration,

but do not exceed t = 3, 000 simulation steps for any of the tested graph

con�gurations. The random network was built using the Erd®s and Rényi

algorithm [21, 22, 23] 26, and p = 0.5 is the probability of existence of any

given edge, which is assumed to be independent of all the others.

It is evident from the convergence graphics that the equilibrium con�g-

urations may vary for di�erent values of α, N , and β. The phase diagram

of the stationary con�guration is shown in the Figure 2.5 27. The diagram

shows the value of the order parameter z when we varied α and β for a �xed

number of agents N = 20. It is important to note that the y-axis shows units

of β−1, which means that it is the equivalent of a temperature scale.

The phase-diagram shows at least three distinct phases. The blue region,

standing for high centralized graphs with star or similar con�gurations, exists

for the lower values of the relation 2α
N(N−1)

28 up to a critical temperature. The

red region, standing for fully connected graphs, appears in the opposite side,

where the parameter 2α
N(N−1)

is higher. The last characteristic region appears

for higher temperatures and shows intermediary con�gurations. This region

is considered only one phase for simplicity, although other subdivisions might

exist [11].

Lines indicating the phase transitions can be seen in the diagram. In

the limit β → ∞ (β−1 → 0), only two phases exist: the star graph and the

complete graph, and the phase transition occurs at α = N(N−1)
2

. Also in

that region, the number of agents has a strong in�uence on the stationary

con�guration for a �xed α. The transition point appears for N∗ = 1+
√

1+8α
2

.

For bigger values of N , the cognitive graph assumes a centralized form and

for lower values of N the stationary con�guration becomes a complete graph.

Thus, the number of individuals in a society plays an important role in the

model.

26This algorithm is described in detail in the Appendix A
27Due to the faster convergence rate, random graphs with p = 0.5 were used as initial

con�gurations for the cognitive networks.
28This factor was chosen due to the form of the variables in equation 2.6, as it is the

term that relates the two di�erent sums composing the total cost.
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Figure 2.5: Phase diagram for the stationary state of a single agent simulation,
in two and three dimensions. The simulation was made for N = 20 agents and the
�gures show the average of 20, 000 stationary distributions.
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To also identify the graphs in the phase in which β is lower (or the temper-

ature is higher), we studied the degree distribution of the stationary graphs

for the same phase-diagram shown in Figure 2.5.

Figure 2.6: Degree distribution for the stationary state for N = 20 agents. The
distributions are normalized and the histograms show the average of 200 simula-
tions.

The degree distribution di�erentiates again the centralized and complete

phases. For the star graphs, all the vertices have degrees equal to 1, with

the exception of the central vertex, which has N − 1 degree. For complete

graphs, all the vertices have degrees N − 1. Therefore, in the limit N →∞,

the degree of the central vertex in the star graphs is much lower than the

others and the degree distributions become symmetrical when comparing star

and complete graphs. Also, the graphics show that the intermediary phase

has a distribution of degrees similar to a binomial distribution. That fact

suggests the graphs in that stationary phase are random graphs [22].

The only non-symmetrical phase, with edges not following a binomial

distribution, is the star phase, in which few �uctuations are observed. In

that case, the cognitive network for the agent i exhibits one central indi-
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vidual, meaning that the social status in the society is not symmetrical and

the agents rely on the central node. That is the �rst evidence of hierarchy

emergence in the SHM, although only for the cognitive representation of one

single agent.

The results also qualitatively agree with the Reverse Dominance Theory,

as one can see in the Figure 2.7. For higher values of β, the acceptance rate

of the Monte Carlo dynamics is smaller in both the hierarchical phase (small
2α

N(N−1)
) and the egalitarian phase (bigger values of 2α

N(N−1)
). This means the

agents accept less changes in these regions. In the hierarchical phase, that

fact might be explained by the authority and the asymmetry in the social

relations. On the other hand, in the egalitarian case, a small acceptance of

changes in the social structure is exactly what Boehm suggests as the reason

for the stability of the society: no authority or hierarchy emerges because

the agents do not in general accept changes.

Figure 2.7: Monte Carlo acceptance rate as a function of α and N for four
di�erent values of the parameter β. The curves show the average of 50, 000 Monte
Carlo's steps.

Since they are essential parameters for the stationary state, both α and β
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should be discussed here. As previously stated, the parameter α is associated

to the cognitive capacity of the agents. Mathematically, it only regulates the

relative importance of the two costs - cognitive and social - for the agents,

but this relative importance consists of the agents' capacity of processing

and storing information. A higher α means the cost of storing information

about the society's interactions is lower when compared to the costs of pos-

sible errors in the cognitive network. A lower α means the cognitive cost is

more important than the social cost, thus it should have bigger e�ects in the

total cost. The association of this parameter with the cognitive capacity is,

although expected, a result of the model.

On the other hand, the parameter β is de�ned as the probability of change

acceptance, and by that reason it is related to the inverse of the temperature.

For big values of β, the Boltzmann-Gibbs probability e−β(C′(Si,α)−C(Si,α)) is

small and cost increases are unlikely. Also, for small values of β, the mod-

i�cations are likely for all the cost di�erences. Therefore, the parameter β

regulates mathematically the rate of change acceptance by the agents and

can be a type of �pressure� amongst the agents. The pressure might be so-

cial or environmental, as suggested by Earle [19], but it a�ects the agents

behavior and the society con�guration. Interpreting β as an environmental

pressure has some advantages, making it possible to compare the model's

predictions to data from the SCCS. That comparison will be discussed later

in this chapter, after the results for multiple agents.

2.2.4 Multiple Agents, gossip, and the emergence of the

hierarchical society

For N non-interacting agents, the results from the previous section may

apply, but they are not enough to suggest the emergence of any social struc-

ture since each agent may represent the society with a di�erent and non-

correlated cognitive graph. The correct procedure to account for the social

interactions, according to the SHM formulation by Caticha et al [11], is to

introduce a mechanism for information exchange amongst the agents. That

mechanism involves a modi�cation of the Metropolis dynamics described ear-
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lier, introducing the concept of information exchange, or �gossip� 29.

In the new dynamics, all the agents are able to independently modify

their cognitive networks. However, a new rule was added to account for

the gossip phenomena: a variable g, 0 ≤ g ≤ 1, controls the percentage of

information exchange in the model. All cognitive networks begin again in

random con�guration (Erd®s-Rényi random networks with p = 0.5), by the

same reasons as before, but now the steps are:

1. With a probability g, two random agents i and j are chosen and one

randomly chosen edge of Sj is copied by Si, i.e., the element sikl receives

the value of sjkl
30. The modi�cation is accepted if it lowers the total

cost C(Si, α) or, if the cost increases, with a probability given by the

Boltzmann-Gibbs factor e−β(C(Sj ,α)−C(Si,α)).

2. With a probability 1 − g, the agents do not interact and one single

agent is randomly chosen. The Monte Carlo step in this case is the

same as the one from the single agent dynamics described earlier.

It is important to note that the stationary con�gurations from the phase

diagram are not modi�ed in the cognitive networks of the agents, but a

correlation might be introduced amongst them. The phase of interest now

is the star graphs, the blue region from the Figure 2.5, and a new variable

must be introduced to measure the correlation amongst the central agents in

the di�erent cognitive networks. De�ning the central agent of each cognitive

network as ci, the likelihood of one agent c to be central in all the cognitive

networks is p(c = ci). The most frequent central agent ζ is, therefore, de�ned

as the center c which maximizes p(c = ci)

ζ = E[c|p(c) = max] (2.13)

29The word gossip is used here as a name for the social learning process observed in
human societies. For a good description of this process and its historical importance, as
well as its evolutive mechanisms, see the R. I. M. Dunbar's book, How many Friends Does

One Person Need? Dunbar's Number and Other Evolutionary Quirks [75].
30As in the single agent dynamics, the modi�cation only takes place if it does not break

the connectivity of the graph. It the graph becomes unconnected, it is discarded.
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We can use now the new variable ζ to control the correlation of the cen-

tral agents as a function of the gossip parameter g, and it can be measured

as the model converges to the stationary state. Naturally, the other param-

eters 2α
N(N−1)

and β must be maintained in the star graph stationary region,

otherwise no central agent may be de�ned 31. The Figure 2.8 shows how ζ

behaves as a function of g for di�erent numbers of agents in closed societies.

Figure 2.8: Central agent frequency ζ as a function of the gossip parameter
g for a social graph with star con�guration. The curves are averaged for 2, 000
di�erent simulations, with initial random networks (Erd®s-Rényi with p = 0.5).
The simulations were made from N = 10 to N = 15 agents, with 2α

N(N−1) = 0.2
and β = 10. The shaded regions are the standard deviations of the results.

The graphic suggests the system behaves roughly in the same way for

di�erent numbers of agents 32. However, as the number of agents increases,

31As de�ned, the central agent is self-evident for star graphs but also may exist in other
con�gurations. It is simply the agent with highest degree.

32The relative small number of agents was chosen due to time constrains in the simula-
tion. Adding more agents, however, did not a�ect the behavior of the model nor the form
of the curves.
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it is possible to see that ζ is lower for small values of g, as expected if the

central agents are random. On the other hand, in the region where g → 1,

ζ converges to 1 for all the curves. That behavior suggests information

exchange is the mechanism responsible for the central agent emergence in

the model, i.e., for the correlation amongst the agents with highest degree.

2.3 Signi�cance of the results and possible in-

sights into society evolution

In this last section of this chapter, the results of the model are summarized

and interpreted aiming to gain insights into social organization and early

human evolution. Our purpose was to use the model's results to �nd some of

the important variables in the emergence of hierarchy and the breakdown of

the egalitarian human societies. To better address the details of the model,

each variable is analyzed separately.

2.3.1 The cognitive capacity and the number of agents

The �rst important result is the relation of the cognitive capacity α to the

number of agents N . As it is possible to see in the Figure 2.5, both variables

are essential for the stationary state of the cognitive network. They have,

however, opposite roles. High values of α correspond to complete graphs and

small values of α to star graphs. On the other hand, for large N , the system

stays in the star con�guration, but for lower values of N the system changes

to complete graphs again. Also, when we introduced the �gossip� parameter,

it was possible to see the correlation amongst the central agents emerge for

speci�c intervals of the term 2α
N(N−1)

.

In human societies, those results agree with the Social Brain Hypothesis

[2] and the U-Shaped Evolution [60]. For small groups or groups of indi-

viduals with high cognitive capacity, the agents represent a society with a

complete network. No central agent emerges and the symmetry implies an

egalitarian society. The stability of these types of organization is possible,

as stated in the previous sections, due to the mechanism described by C.



A study of social and economic evolution of human societies 47

Boehm [55, 73] and known as Reverse Dominance Theory. With that theory

in mind, it is possible to conclude that when the cognitive representations

are symmetrical any attempt of dominance by force should be met with re-

sistance by the other individuals, thus no hierarchy emerges. In that sense,

we are able to a�rm that the SHM results in an egalitarian social structure.

For big groups, or groups of agents with low cognitive capacity, the op-

posite occurs and we can see the symmetry breaking: each agent possesses a

star cognitive network. The central agent is the only one with known inter-

actions and all the decisions one agent makes are based on the information

available from that central agent. Therefore, if the central agent is the same

for the majority of the individuals in a society, it is supposed to be able to

achieve high social status, causing hierarchy to emerge.

2.3.2 Information exchange in societies

Another essential parameter to hierarchy emergence in the model is the

percentage of information exchange amongst the agents, or gossip. It is

expected that a correlation amongst cognitive graphs is only possible if the

agents exchange information about each other's relations, but the model sug-

gests this process is determinant for the hierarchy emergence. For smaller

values of g, even in the star stationary state, it is not possible to observe

the emergence of any correlation amongst the di�erent central agents, and

they are randomly distributed (as can be seen in the Figure 2.8). On the

other hand, as g increases, it is possible to see an increase in the correlation,

which converges to the unity as g approaches 1. In human societies, that

convergence may represent the emergence of hierarchy, since only one indi-

vidual has an asymmetrical status 33. As discussed by Dunbar [75], gossip

is a characteristic phenomenon of human societies but may also be observed

in primates [55]. Thus, our model suggests a quantitative measure of the

information exchange in societies should be taken into account to analyze

their hierarchy levels.

33We are working with an extreme simpli�cation from real human societies. In real
societies, many levels of hierarchy may exist and di�erent hierarchy scales may be employed
to measure them.
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2.3.3 Ecological and social pressure: the parameter β

and the Ethnographic Atlas data

In the SHM, the parameter β appears as a Lagrange Multiplier in the

Maximum Entropy algorithm, yielding the Boltzmann-Gibbs probability dis-

tribution for the stationary states with a de�ned total cost. In practice, β

can be viewed as a measure of the acceptance rate in each step of the Monte

Carlo dynamics, as shown in the Figure 2.7. Small values of β imply the

society in general accepts small modi�cations in the social structure, while

high values of β, or low values of the system's �temperature�, mean the oppo-

site. Both the hierarchical and the egalitarian phases may appear in regions

of high values of β, each one with its own explanation. Hierarchical societies,

as expected, tend to conserve their hierarchy due to the asymmetry in the

social relations. Egalitarian societies also do not accept modi�cations, what

agrees with Boehm's Reverse Dominance Theory [73] in a process justi�ed

by the coercive behavior of the individuals.

We might also interpret β as an ecological pressure, which helps to main-

tain the structure of the societies. Ecological pressure, as interpreted by

Caticha et al [11], may be the result of the local climate and other environ-

mental variables that make the life of the individuals easier or harder. For

example, a society that lives in a desert has high environmental pressure. As

a result, it could have developed a smaller tolerance to modi�cations in the

social structure than a society living in a tropical forest. In that sense, β

measures how hard it is to live in a particular climate, given that the eco-

logical pressure is an important factor in the society organization. To check

that hypothesis, data from the Ethnographic Atlas [3] was compared, also by

Caticha et al [11], to the model's results. They analyzed the relation amongst

three variables from the database: �v31 - Mean size of local communities� (s),

�v66 - Class strati�cation� (h), and �v95 - Climate: primary environment�

(c). Those three are associated with three parameters from the model: N ,
E[davg ]

E[dmax]
, and β, respectively, and also divided in three di�erent classi�cations

each 34. Their results are reproduced in this section due to their importance

34The reasons to divide the data in three classi�cations were the same for the variables
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to the comparison between the model and the available data.

Figure 2.9: Probability distributions from the Ethnographic Atlas data [3]. The
graphics were extracted from Caticha et al [11].

The data shows that for large societies, the ones living in harsh and in-

termediate climates have a higher probability of being organized in complex

social structures. For small societies, the probability of being egalitarian is

always higher than the probability of presenting a complex social structure,

although the e�ect is accentuated in harsh climates. These results quali-

tatively agree with the model's predictions, as can be seen in Figure 2.10,

and suggest that β may indeed be interpreted as an ecological pressure. Also,

they suggest the model's parameters might be adequate to describe the evo-

lution of societies: with a simple model based on insights from neuroscience

and anthropology, it was possible to qualitatively reproduce the empirical

data.

of the Money Emergence Model's results, presented in the next chapter. See Appendix B
for the explanations. For the exact classi�cations, see the original paper [11].
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Figure 2.10: Comparison between the model's predictions (Theory) and empirical
data from the Ethnographic Atlas (EA) [3]. Hemp is the expected value of the
empirical class strati�cation h, Hthy is the prediction of the model for the same
parameter, and ∆H is the di�erence between H for large and small groups. The
graphics were reproduced from Caticha et al [11].

Naturally, further studies are required to reproduce other particularities

of human organization, but relations amongst society's size, structure, and

ecological pressure might be investigated with computational and mathemat-

ical models.



Chapter 3

Beyond the social dynamics: a

computational model for the

emergence of money in early

human societies

The purpose of this chapter is to present the main computational model

developed during the research for this dissertation, which will be called here

the Money Emergence Model (MEM). This model should be viewed as a com-

plement to the Social Hierarchy Model presented in the previous chapter. By

that reason, some properties and analyses are skipped (mostly the conver-

gence analyses and the results for a single agent). As the previous chapter,

it starts with an introduction to the relevant topics and ideas in economic

theory that were important to the MEM development. This chapter also

addresses problems and open questions in the studies of the emergence of

money, for which we intended to gain insights by interpreting the model's

results. The mathematical framework, dynamics, and numerical results are

presented in the end of the chapter, as well as the comparison to the variables

of the Standard Cross-Cultural Sample.
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3.1 Origins of money

Even though nowadays trade is present in every human society, the emer-

gence of markets is still a much controversial topic. Many di�erent hypotheses

exist trying to explain why markets and money emerged in di�erent places

and historical periods and how they have been organized so far. It is a known

fact [40, 77] that di�erent cultures have been using di�erent types of money

as currency, such as coins, precious metals, paper, banknotes, �at money 1,

and electronic money. The origins of each of those types of money, however,

are usually associated with the advantages of a monetary system when com-

pared to a pure barter system. Barter 2 as a way of exchanging goods, or

commodities, may date up to 100, 000 years ago [78], although there is no

empirical evidence that one society or economy relied primarily on barter [6].

According to Jevons [5], money in a modern economy may be analyzed

in terms of four distinct functions:

• Medium of Exchange: Money is used as an intermediate commodity in

the exchange of goods and services to avoid problems and ine�ciencies

of the barter system.

• Unit of Account: A standard unit of account is a numerical value em-

ployed to measure the comparative value of goods and services. Any

unit of account, thus any money, must be divisible without loss of value,

fungible, and have a speci�c weight or size, as a way to be veri�able.

• Store of Value: Money should be savable, storable, and retrievable.

• Measure of Value: Money should act as a measure and common domi-

nation of trade, thus being a basis for establishing prices.

1Fiat Money is a kind of money with value not intrinsically connected to a commodity,
being the result of government activities or laws.

2Barter is the direct exchange of two di�erent goods. For example, one individual
possessing beans and in need of copper might �nd another one possessing some copper
and hungry. In that case, the trade is bene�cial for both individuals and the logical choice
for rational agents. The de�nition of a rational agent in the economic sense is out of the
scope of this work, as mentioned earlier.
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To discuss how money may appear in human societies, we should �rst

present its de�nition as used here. In this work, we intended to develop a

computational model to analyze money emergence in a framework similar

to the agent-based model presented in the previous chapter. That is, our

purpose was to �nd a cognitive representation for a special commodity called

money. Therefore, our use of the word money is similar to the de�nition pre-

sented in the classical economics textbooks by Carl Menger [4, 40]. We also

intended to analyze to which extent this de�nition might be applied to com-

putational models and if our numerical results may support or undermine it.

Ultimately, we suggest a barter economy is not enough to ensure the emer-

gence of money and some social structure is required before the dominance

of a unique commodity of exchange.

3.1.1 Menger's Theory of Money and barter economies

One of the most famous 3 theories about the emergence of money in

human societies was developed by Carl Menger and published in 1892 [4].

According to Menger, money emerges from the exchange of di�erent com-

modities by rational agents in pre-existing markets, when one particular com-

modity becomes universally accepted. That phenomenon is not supposed to

be dependent on the physical form of the commodity or the commodity itself,

but might be explained by one individual accepting a commodity when he

does not need it. Menger argues that a pure barter economy, as previously

described, creates many di�culties for economic agents, as it causes the dou-

ble coincidence of wants problem. That problem, also explained by Menger

[4] and Jevons [5], is the result of the great limitations imposed by the lack

of a universally accepted commodity. In that scenario, one individual who

possesses a commodity A and wants a commodity B must �nd another one

possessing B and in need of A, which is impractical in a human society since

A and B might not even be available at the same time, as in the case of crops

or meat. Money solves the problem by permitting A to be sold by a certain

3Although the most accepted theory in economics, there is much criticism and al-
ternative theories for the emergence of money and markets' behavior exist. However, a
theoretical discussion about each theory is not the objective of this dissertation.
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quantity, which may be exchanged by B afterwards.

Other problems solved by the existence of money are the possibilities of

exchanging indivisible commodities, of storing value, and of quantitatively

measuring the relations of the commodities. First, money allows for the

exchange of non-integer items, being itself divisible in small units. Second,

it is an e�cient way of storing value without losing, a priori, its physical

properties. Food and services, for instance, cannot o�er an adequate method

to preserve value. Last, a unique medium of exchange provides a unique way

of establishing equivalent quantities of di�erent commodities. Considering

those arguments, it is easy to understand why money facilitates everyday

economic exchanges, but it does not provide an argument to explain how it

appeared in early human societies.

Although a unique medium of exchange might solve the double coinci-

dence of wants and other problems, it is not obvious how it might appear

even in a barter economy. However, the very nature of trade, according to

Menger, presents a solution for this problem: di�erent commodities have

di�erent degrees of saleableness 4, and thus they are asymmetrical. Some

commodities naturally have a higher acceptance rate in trades and are easy

to be disposed of or sold at any time in a market. Those commodities are

called more saleable, and individuals do not need to lower their price too

much to sell them quickly in case of an emergency. It is important to note

that price is used here with the same meaning as in Menger's work [4], being

the result of mostly six factors: people regularly in need of the commodity,

purchasing power of those people, availability and divisibility of the com-

modity, development of the market, and political and social limitations upon

its exchange.

There are, naturally, space and time constraints for the saleableness of a

commodity, which are generally di�erent for all the commodities in a given

society. The spatial limits a�ect the possibility of transport and the extension

of the markets themselves: being easy to transport and existing in large

markets are two factors that may cause the saleableness of the commodity

to increase, while being hard to transport and existing only in small or local

4From the German term Absatzfahigkeit.
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markets may cause the relative saleableness to decrease. The time constraints

are related to the durability, cost of preservation and storage, and periodicity

of the market. All those factors make some commodities more easy to trade

than others.

In a market �lled with commodities with varied degrees of saleableness,

any individual, given the option, would prefer to acquire the ones which he

can easily dispose of in case of need [4]. The result in the long term is the

appearance of a single commodity accepted by all the individuals due to its

high exchangeability, thus �lling the role of money. Although the saleableness

provides a relatively simple and elegant theory, there is evidence suggesting

many other factors have a�ected the emergence of money. Some opposing

arguments that mainly led to the development of the computational model

described later in this chapter are explained in the next sections.

3.1.2 Money as a tool, money as a drug

Recent research suggested that human behavior towards money cannot be

explained uniquely by its utility, thus trading might not be a purely rational

concern. In fact, individuals who already possess su�cient money for all their

needs and desires not rarely pursue more. Lea and Webley [7] argue that the

usefulness of money - its function as a tool - is not the only factor that may

explain the human behavior and decisions when money is present. Currency

might also behave as a perceptual drug in the human mind, creating mental

states with no practical function. The apparent bene�ts of acquiring money

do not lead to actual bene�ts and, according to their theory, only make

individuals feel better - in the same sense as the mental states generated by

excessive consumption of food or sex.

There are examples of the behavior generated by the perceptual drug

e�ect of money. The �rst and most important is the mental representation

of currency. In one experiment in 1947, Bruner and Goodman [79] found

that ten year-old children perceive coins to be physically larger than objects

of the same size, and the e�ect is bigger for poor children when compared

to rich children. Thus, the representation of money might be related to the
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mental state of the individual. Also corroborating that result, Furnham [80]

found that at a time of high in�ation, people think old notes are physically

bigger than the new ones and tend to give them higher values.

The function of money as an addictive drug might have had, as Lea and

Webley argue, evolutionary origins. The �rst hypothesis is that humans,

as a social species, have been helping each other for a long evolutionary

history. Humans learned to exchange goods and services for the bene�t of

both parties, thus it is plausible that those who traded more successfully were

more likely to survive in a competitive environment, while those individuals

who stuck with what they had had lower �tness. The drug theory of money

provides evidence against the pure barter hypothesis: money may be more

than a tool for facilitating the exchange of commodities, and the emergence

of money might have had more ingredients than the natural evolution from

barter.

The theory of money as a perceptual drug led to the idea that, no mat-

ter in which form, money causes strong emotions in humans, and earning

and spending money have an emotional basis. Starting from Lea and Web-

ley ideas, Herrmann-Pillath [8] proposed the so called Darwinian Theory of

Money. Results from neuroeconomics [81] suggest money activates the same

dopaminergic circuits in the human brain as other items causing pleasure,

thus it may be used as a reward in experiments. Also, there is an asymme-

try in gain and loss perception in experiments 5: people manifest a strong

response to avoid loss aversion when compared to their behavior towards

gains perception. Those facts are replicated amongst di�erent persons: be-

haviors towards money, initially caused by mental representations, trigger

similar actions in others and ultimately lead to the replication of the mental

representations 6. In this sense, money is responsible for creating �xed neu-

ronal patterns leading to a set of emotions governing behavior in economic

exchanges - what gave rise to the name Darwinian Theory. Accepting this

theory is, naturally, accepting that Menger's Theory of Money is incomplete

5For experiments regarding loss aversion, see for example Trepel et al [82].
6The replication, although similar to Dawkins' concept of �meme� [83], has some es-

sential di�erences. See Aunger's works [84, 85] for a detailed introduction to the derived
concept of �neuromeme�.
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and human mental processes must be taken into account when developing a

theory to explain the emergence of money.

3.1.3 Debt and credit

Recently, the anthropologist David Graeber compiled the history of debt

in human societies and its relations to the money emergence phenomenon

[6]. His book primarily points out the lack of historical and archaeological

evidence for economies primarily based on barter. Graeber argues that early

forms of borrowing and lending gave rise to a credit system before the de-

velopment of any unique medium of exchange. Barter economies would only

take place amongst di�erent tribes and during social rituals, explaining the

name �myth of barter�, and money as a currency only appeared afterwards

in big military empires.

In this dissertation, we incorporated in the computational model some

of Graeber's critics to the existence of early barter economies. The social

network in�uence on the agents' behavior must be qualitatively measured for

di�erent social structures, including the egalitarian and hierarchical phases,

which is the main result of the SHM described in the previous chapter. If pure

barter economies might alone be the cause the emergence of money, our model

would not corroborate his critics. On the other hand, if a modi�cation in the

social network is responsible for the emergence, our model would suggest that,

as Graeber argues, social relations have big in�uence on the phenomenon and

should be taken into account when modeling exchange amongst individuals

of a society.

3.2 The Money Emergence Model

The Money Emergence Model's (MEM) framework consists of the same

basic structure of the SHM: a doubly structured network of information ex-

changing agents. It aims now to describe the relations of the economic and

social structures using similar techniques from information theory and statis-

tical mechanics, while taking into account the theories and empirical evidence
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described earlier in this chapter. As the SHM, this model is also intended

to be as simple as possible: only a few key parameters must be responsible

for the money emergence phenomenon. The parameters are identi�ed when

possible and the results are qualitatively compared to the known variables of

the Standard Cross-Cultural Sample (SCCS) database.

3.2.1 The formalism and Structure of the MEM

Many computational models have been used to simulate economical pro-

cesses in societies [9, 86, 87]. They are usually based on a barter economy

scenario with a �xed social network, in which the agents only exchange com-

modities with their �rst neighbours 7. The main idea behind the MEM is

to provide a theory-based dynamics, also derived from statistical mechanics

and information theory tools, that is able to test the in�uence of the social

network con�guration on the emergence of money. To achieve that goal we

introduced new variables in a similar structure already used in the SHM.

As in the previous model, each agent possesses its own cognitive net-

work representation, but re�ecting the information acquired from other group

members or concluded by itself regarding the exchange of di�erent commodi-

ties. That information is based on the Menger's Theory of Money and con-

sists of the possibility of exchanging two commodities. For example, each

agent may recognize two commodities as exchangeable or not exchangeable,

and recognizing this exchangeability is crucial for the economic success of a

rational agent in a competitive environment. As in the saleableness theory,

one agent that fails to recognize the commodities that are easy to trade or

accepts any commodity in the negotiations is fated to face a economic loss.

On the other hand, one agent who does not engage in any trades cannot

access all the commodities it needs, and will also exhibit a lower �tness. In

the model, each economic cognitive network has a cost which the agents try

to minimize in the simulation.

7There are also economy models for modern markets based on rational agents. It is not
the objective of this work to discuss them, but for some examples one should see Tseng
et al [39] or Foley [88]. The most curious and lighthearted reader might also check the
Theory of Interstellar Trade, by Paul Krugman [89].
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Since it improves the �tness, a type of behavior that minimizes the in-

ference errors about the economic structure must have spread in a market

of competitive and rational individuals. As in the SHM, they must have

developed strategies to increase the information reliability employing time,

resources, and energy to develop or acquire cognitive economic networks with

higher payo�. One way to increase the reliability of the information is to com-

municate with the other members of the group by adopting an information

exchanging behavior, or simply observing and copying other agents trades.

The purpose of this type of behavior is to simulate the acceptance of more

saleable commodities.

The cognitive economic network is also mathematically represented by

graphs: each node is a commodity and an edge between two commodities

represents the possibility of exchange between them. There are again only

two possibilities: either two commodities can be exchanged or they cannot 8.

The graph's edges still have a constant weight, which for simplicity is again

considered unitary. The edges are symmetrical since we assume trades are

symmetrical: if an agent recognizes the exchangeability of a commodity x

for another y, he also recognizes that y may be exchanged for x. By that

reason, this model also uses undirected graphs to represent the economy.

Following the cognitive representation hypothesis, each agent represents

the economy with a graph of Θ vertices (all the available commodities 9). In

the notation used in the remaining of this chapter, one agent i possesses its

own economic representation network Θi. The social network S is maintained

�xed and each agent only interacts with its �rst neighbours. Θi represents the

knowledge about the relations θixy between commodities x and y as recognized

by the agent i. The convention is the same as before

8Naturally, commodities do not need to be exchanged in a one by one basis. Each agent
so far only recognizes the possibility of trade if the commodities might be exchanged in
any quantities. If they can, we assume the agent also needs to remember the details about
the negotiations, or the relative price.

9The total number of commodities is �xed during the simulations.
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θixy =

{
1, if i recognizes the exchangeability of x and y;

0, if the exchangeability is not recognized by i.
(3.1)

We also introduced costs for the cognitive representations. As in the case

of the social cognitive networks, there is a cost for storing information from

the local economy. That cost is, however, related to all the characteristics

and relations of the commodities. If one agent recognizes two commodities

as exchangeable, it must also know the quantity, relative price, quality, and

other details. Thus, storing information about each commodity is costly, and

each agent's i network's representation has its own cost of memory, H i
mem,

given by the total number of known relations 10

H i
mem = Ne(θ

i) =
Θ∑

x,y=1

θixy
2

(3.2)

To account for the total cost, another term was necessary. The cost of

trade, H i
tra, is given by

H i
tra = L(θi) =

Θ∑
x,y=1

2lixy
Θ(Θ− 1)

(3.3)

and represent the concept of saleableness. If one agent does not recognize two

commodities as exchangeable, it must engage in intermediary trades until it

�nds the required good 11. These intermediary trades eventually result in

loss of value, being a real cost for the agents. The total cost is given by the

linear combination of those two costs, following the idea introduced in the

SHM. For simplicity, we call again α the variable that relates both costs.

H(θi, α) = H i
mem + α ∗H i

tra (3.4)

It is convenient to de�ne here an output matrix MΘXΘ. This matrix

10This cost is equivalent to the cognitive cost in the SHM.
11We assume for simplicity that every commodity in the economy may be achieved by

intermediary trades. This means the cognitive graphs are connected.
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elements, given by

Mxy =
1

N

N∑
i=1

θixy (3.5)

represents the sum of each cognitive economic network and is essential to

analyze the emergence of money. In the case where all the agents recognize

only one commodity as exchangeable for all the others, this matrix must be

the adjacency matrix of a star graph. On the contrary, in a pure barter

economy it will be the adjacency matrix of a complete network, where all the

commodities may be exchanged directly amongst themselves.

3.2.2 Dynamics: money emergence as a function of the

social network

The dynamics of the model is inspired by the Monte Carlo algorithms for

multiple agents in the SHM. The agents' strategy is to minimize the total

cost given by equation 3.4, which might be rewritten as

H(θi, α) =
1

2

Θ∑
x,y=1

θixy +
2α

Θ(Θ− 1)

Θ∑
x,y=1

lixy (3.6)

The extreme α values are the same as in the previous case and will not

be discussed again 12. Each of the N agents aims to minimize the cost

from its cognitive network employing a similar strategy as before. It is also

impossible to know all the brain processes leading to mental representations

of commodities, thus a Maximum Entropy algorithm was used.

To simulate the information exchange amongst the agents we again use

a probability g as a modi�cation for the Monte Carlo algorithm. This prob-

ability, however, should not be called �gossip� in this model since it also

includes the learning of the exchangeability of commodities by simple obser-

vation. We considered each agent was able to learn that two commodities

may or may not be exchanged by observing or exchanging information with

12See the section �Single agent Monte Carlo dynamics� in Chapter 2.
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its direct neighbours in the social network. The social network is �xed dur-

ing the simulation to better measure its e�ects in the emergence of money.

Many di�erent types of social networks were tested, including star, complete,

scale-free, small-world, and random 13. In summary, the model follows the

steps:

• With a probability g, two random agents i and j are chosen and one

randomly chosen edge of Θj is copied by Θi if it does not break the

connectivity of the graph. The change is accepted if it decreases the

total cost H(Θi, α) or, if the cost increases, with a probability given by

the Boltzmann-Gibbs factor e−β(H(Θj ,α)−H(Θi,α)) and the Monte Carlo

step is completed.

• With a probability 1−g, a random commodity relation in the cognitive

network of a random agent i, θixy, is chosen and modi�ed, i.e., if θixy
represents an edge, the edge is erased (again, only if it maintains the

graph connected). If θixy does not contain an edge, one is added. If this

modi�cation decreases the total cost H(Θi, α), it is accepted and the

Monte Carlo step is completed. If the change increases the total cost,

it is only accepted with a probability given by the Boltzmann-Gibbs

factor e−β(H′(Θi,α)−H(Θi,α)), in which H ′(Θi, α) is the modi�ed cost.

The �rst result that can be tested is the in�uence of the social network

structure in the emergence of money. To measure the probability of money

emergence, we introduced a variable µ given by

µ = max[hx] (3.7)

in which hx is the probability of the commodity x being the central node of

the cognitive graphs amongst the agents. As we intended to analyze scenarios

of money emergence, the parameters α and β were maintained in the region

where the model is known to yield star graphs (that region is the blue phase

13The cognitive networks start, as in the SHM, with a Erd®s-Rényi con�guration with
p = 0.5, by the same reasons as before.
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of the Figure 2.5). To assure the model would converge to this phase, we

�xed the parameters α
Θ(Θ−1)

= 0.1 and β = 10 in the stationary states 14.

Figure 3.1: Money Emergence for di�erent social network structures: star,
Barabási-Albert (BA), small-world (S-W - with k = 4 edges per node and p = 0.1
probability of rewiring), random network (ER - with p = 0.5 edge existence prob-
ability), path, and complete. The curves show the average of 2, 000 simulations
for Θ = 20 commodities and N = 20 agents. The shaded regions are the standard
deviations of the curves.

The Figure 3.1 shows the correlation of the central vertices of the cog-

nitive economic networks. We interpreted the relative frequency of those

vertices as the probability, or likelihood, of money emergence. Naturally, the

money emergence is seen only for high values of g, since each agent must

observe or copy the behavior of the others in order to give rise to one uni-

versal accepted currency. It is possible to observe the in�uence of the social

network e�ects in the money emergence phenomenon: the more centralized

the social structure, the higher the probability of money emergence µ. The

14All the following simulations �xed the parameters in those numbers, except where
stated otherwise.
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two social networks that exhibited a di�erent behavior were the scale-free,

built with the Barabási-Albert algorithm, and in a higher degree the star

network. The remaining tested structures exhibited similar behaviors with

lower probability of money emergence 15.

Those results suggest the social network structure is essential to the

money emergence phenomenon. The more centralized or hierarchical a so-

cial network, the higher the probability of money existence. Other network

properties, as the number of immediate neighbours, clusters, and the density

of edges did not a�ect the results in the same way, since the behavior of

complete, small-world, random, and path networks was roughly the same.

Therefore, in our model, pure barter economies and the concept of saleable-

ness are not enough to explain the process of money emergence. The so-

cial structure also plays an important role in the emergence, contradicting

Menger's Theory of Money.

Recently, following the advances in social network models, many di�erent

computational models were developed to account for the money emergence

phenomenon [9, 86, 87] using the barter economy scenario. Kunigami et

al [9] introduced a model similar to the MEM, which divides the problem

into two di�erent levels of networks: one social network and many cognitive

economic networks. Their model, however, employed a di�erent dynamics:

besides the probability of �imitation� PI , interpreted in the same way that

our parameter g, they also introduced probabilities of forgetting PF and

conceiving PC the exchangeability of commodities, two processes also present

in our Monte Carlo dynamics. In addition, they tested a probability of

trimming PT , which by de�nition excludes the formation of clusters in the

cognitive networks. Their main result is shown in Figure 3.2. To compare

our results with theirs, Figure 3.3 shows the output matrixM of our model

for three characteristic social networks: star, scale-free, and complete.

15The small-world and random networks were also simulated with di�erent parameters.
We varied the number of edges and the probability of rewiring, in the �rst case, and the
probability of edges' existence in the second. No signi�cant variations were observed in
the results.
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Figure 3.2: Money emergence for the Kunigami's model. The �gures represent
the output matrix M for Θ = 16 and Θ = 64 di�erent commodities and N = 250
and N = 1000 agents. The social network, here called regular, was a small-world
network with average degree k = 16. Figure reproduced from Kunigami et al [9].

Figure 3.3: Emergence of a central commodity: the output matrix M for three
simulations with di�erent social network con�gurations: star, scale-free, and com-
plete. The scale shows the frequency of the central commodity. The simulations
were performed for Θ = 20, N = 20, and g = 0.95.
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As it is possible to see in the �gures, the results of both models were

similar when the star social network was considered in our model. This

follows from the di�erences in the rules of the dynamics. While their model

was capable of simulating money emergence in a small-world network, it had

to include additional rules to break the symmetry of the commodities in the

cognitive representations 16. Additionally, it does not include any variation

in the social structure, making it impossible to analyze to which extent the

social network was responsible for the results. Our model, in contrast, did

not show money emergence for small-world networks but includes the social

network e�ects. It did not require additional constraints and the symmetry

breaking in the commodities representation is a direct result of the Monte

Carlo dynamics.

In summary, the MEM was able to di�erentiate the money emergence

phenomenon in many structures of social networks. Centralized, or hierar-

chical, societies exhibited a higher probability of money emergence directly

from a barter economy, and no other properties were responsible for that

result. Therefore, our results suggest that the emergence of money might

not be the natural evolution of barter economy, as the Menger's Theory of

Money states, but might take into account the cognitive representations of

money and the social structure, as suggested by Lea and Webley and Grae-

ber, respectively.

3.2.3 Convergence and parameter dependence

We also analyzed the convergence of the MEM, as a way of understanding

how the emergence of money depends on each of the model's parameters: the

information exchange probability g, the social network structure, the number

of commodities in the local economy Θ, and the number of agents in the

society N .

16The most evident example was the trimming rule, arti�cially introduced to eliminate
clusters in the cognitive networks. See the original paper for details about the rules and
the mean �eld dynamics.
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Figure 3.4: Left: Convergence of the Money Emergence Model, showing the
relative frequency µ as a function of the time steps t of the simulation for di�erent
numbers of agents N . Right: Collapse of the functions for t→ t/N1.2. The curves
were obtained for g = 1.0, star social network, and Θ = 20 commodities and
averaged for 500 simulations. The shaded regions show the standard deviations.

The Figure 3.4 shows the dependence of the model with respect to

the number of agents N in the society. It is reasonable to predict, before

seeing the results, that a society with more agents should take a longer time

to achieve money, as the information takes more Monte Carlo steps to be

received by all the agents. That is exactly what the graphic shows: the

greater the number of agents N , the greater the number of steps the model

takes to converge 17. The curves collapse for an exponent of approximately

1.2, as shown in the graphic II. One interesting detail is the relative fast

convergence rate for the cases Θ > N (the blue, red, and green curves).

Comparing to real societies, this is the same as a�rming a small society

with a large number of commodities tends to develop money faster than the

others.

The second convergence analysis, in Figure 3.5, presents the frequency

µ as a function of the number of commodities which the society recognizes.

As in the previous case, more commodities means more time until the con-

vergence. One remarkable di�erence, however, is a much slower convergence

17It is also the expected result from the computational model. The algorithm developed
during this work is linear with respect to the number of agents.
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for Θ > N 18. In real societies, this result illustrates what happens when the

number of commodities increase, i.e., money takes longer to appear. Regard-

ing barter economies, this result agrees with the Menger's Theory of Money:

in a market with a big number of commodities, the agents take a longer time

to �nd the one with higher saleableness. The results also suggest that the

e�ect of the number of commodities is strong than the e�ect of the number

of agents, since the convergence dependence on N (≈ N1.2) is weaker than

the dependence on Θ (≈ Θ2 log(Θ)).

Figure 3.5: Left: Convergence of the Money Emergence Model, showing the
relative frequency µ as a function of the time steps t of the simulation for di�erent
numbers of commodities Θ. Right: Collapse of the functions for t→ t/Θ2 log(Θ).
The curves were obtained for g = 1.0, star social network, and N = 20 agents and
averaged for 500 simulations. The shaded regions show the standard deviations.

The Figure 3.6 (Left) shows the convergence of the model for di�erent

social structures. One can clearly see the di�erent convergence frequency µ

for the star network, the most hierarchical, and the scale-free network (BA).

Random networks with small p also converged to a higher frequency µ when

compared to the other cases. These results agree with some of the criticism

18As in the dependence with respect to the number of agents, this result is also expected.
The computational model, which used the Djikstra algorithm to calculate the average path
length, has a time dependence O(Θ2log(Θ)). This algorithm was initially published in 1959
by Edsger Dijkstra [90] and is able to calculate the average path length of a graph with
non-negative edges.
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of barter economies, suggesting that a hierarchical social structure greatly

increases the probability of money emergence.

Figure 3.6: Convergence of the Money Emergence Model, showing the relative
frequency µ as a function of the time steps t of the simulation. Left: for di�erent
types of social structure. BA is a scale-free network and ER are random networks
with p being the probability of existence of edges. The curves were obtained for g =
1.0, Θ = 20, and N = 20 agents and averaged for 500 simulations. Right: di�erent
values of the information exchange probability g. The curves were obtained for
N = 20 agents, star social network, and Θ = 20 commodities and averaged for 500
simulations. The shaded regions show the standard deviations.

Lastly, the Figure 3.6 (Right) shows the dependence with respect to the

information exchange probability g. Naturally, as the previous analysis had

already shown, this variable is crucial for the money emergence phenomenon.

The probability of emergence greatly increases after roughly g ≈ 0.8. This

means real information exchange plays an important role in the emergence

of money, as already suggested by Menger's Theory of Money in the concept

of saleableness.

3.2.4 Standard Cross-Cultural Sample data

As the last part of the analyses of the model's results, we compared them,

when possible, to the variables from the SCCS, inspired by the results of the

SHM. Di�erently from the previous model, the comparison could not be made
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to the data of the Ethnographic Atlas due to its lack of variables describing

money and related topics. As explained before, the SCCS has fewer but more

detailed cultures.

Figure 3.7: Money and credit source in societies as a function of the class strat-
i�cation. Top: Data from the SCCS for three di�erent climate regions. Each
variable is divided in three groups and the lines show the expected values of all the
available data from the cultures. The data was extracted from the SCCS [12] and
includes variables v155 (left), v17 (right), v270, and v857. Bottom: MEM's nu-
merical results - probability of money emergence µ for three typical social network
structures. The points show the average of 2,000 simulations for Θ = 20, N = 20,
and g = 0.8.
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The �rst important result from the data is the correlation between social

structure and money existence or credit source, shown in Figure 3.7. If

we assume the same interpretation for the parameter β, the graphics show

it does not a�ect the correlation between social structure and money, since

all the lines exhibit roughly the same behavior, not being a�ected by the

climate type. Recalling its function in the model, β must be in a speci�c

region to result in money emergence, since for higher values of β the sta-

tionary con�guration for the cognitive economic networks is random and not

a star. That fact suggests that in this case β may not only be seen as an

ecological pressure as in the SHM. It, however, still stands for a change ac-

ceptance rate in the cognitive networks. It is important to note there is no

contradiction with the previous model as we assume the two dynamics do

not occur at the same time: the ecological pressure still has its e�ects in the

social structure, thus its e�ects in the money emergence are indirect. This

is also suggested by the number of cultures in each classi�cation: there are

bigger numbers of cultures with egalitarian or hierarchical structures, but

money only appears in the latter case. The analysis also goes against the

usual barter hypothesis as the correlation of money to the social structure is

visible in both variables (v17 and v155). Furthermore, the MEM's numeri-

cal results agree qualitatively with the empirical data, as can be seen in the

bottom graphic of Figure 3.7, reinforcing the correlation of social structure

and money existence.

Other important result is the in�uence of the number of individuals on the

credit source, shown in the Figure 3.8. As discussed by Graeber [6], credit in

the form of money and banks are present only in societies with complex social

structures. The mean size of local communities, however, is also essential for

the phenomenon, since smaller societies exhibit the same behavior for all

the social structures. In this sense, the data agrees with the results from the

MEM, since the number of agentsN is one of the variables capable of breaking

the symmetry amongst the cognitive representations of the commodities.

Both the model and the data show dependence of the credit in the form

of money on the mean size of the communities and social structure. On

the other hand, small or egalitarian societies rely on interpersonal loans and
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debts for credit. In the model, this dependence can be interpreted as a

consequence of the phase diagram (Figure 2.5), in the case of the number

of agents. Given a �xed cognitive capacity, as we assume in this model,

the number of agents may a�ect the social structure of a society, creating a

hierarchical-egalitarian transition. This transition, according to the Figure

3.1, a�ects the possibility of money emergence. Thus, when interpreting the

MEM's results, we should consider the credit, and hence the money, as an

indirect consequence of the increase in the number of agents.

Figure 3.8: Credit source as a function of the mean size of communities for three
di�erent class structures. Each variable is divided in three groups and the lines
show the expected value of all the available data from the cultures. The data was
extracted from the SCCS [12] and includes variables v18, v235, and v270.

As a last comparison, the probability of information exchange g may be

interpreted as the variable v1805 - Gossip importance. According to the

model's results in the Figure 3.9, a high probability of money emergence

occurs in centralized network structures and high ratios of gossip, or informa-

tion exchange rate. Qualitatively, both graphics show that money appears

with a big frequency in societies with more centralized structures and in which

gossip, or information exchange, is considered more important. The money
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emergence, however, does not depend on the gossip importance for egalitar-

ian and intermediary societies, di�ering from the MEM's results, which show

a small dependence between them. As in the model's prediction, hierarchy

increases the probability of money emergence for bigger gossip importances.

Figure 3.9: Money as a function of the gossip importance for societies with dif-
ferent structures. Left: MEM's numerical results for star, scale-free, and complete
social networks. The lines show the expected value of µ averaged in three regions of
g. Right: empirical data from the SCCS. Each variable is divided in three groups
and the lines show the expected value of all the available data from the cultures.
The data was extracted directly from the SCCS [12] and includes variables v155,
v1805, and v270.

In summary, the data from the SCCS suggested that the most important

variables to analize the money emergence phenomenon are two: the social

structure and the societies' size. The gossip importance may a�ect only so-

cieties with prior hierarchical structure, therefore it was not a direct cause of

the phenomenon. The social structure correlates with money: societies with

hierarchical structure exhibited a higher expected value for the variables re-

lated to money and credit, both in the empirical data and in the model's

results. The environmental pressure β may not be seen as a direct �cause� of

money, as the data suggested, but as shown in the previous model (SHM) β

is related to the social structure, thus indirectly related to the emergence of

money. Lastly, the mean size of communities also a�ected the money emer-



74 Bruno Del Papa

gence, as smaller societies had lower expected values in the money related

variables. All those results, although not directly contradicting the Menger's

Theory of Money, suggested simple barter economies were not enough to

account for the emergence of money in all types of societies.



Chapter 4

Conclusions and Final

Considerations

In this dissertation, two di�erent computational models were presented

aiming to gain insights into two di�erent but related problems: the phase

transition between hierarchical and egalitarian societies and the emergence

of money. Both models employed techniques from statistical mechanics and

information theory, including Bayesian inference, the Maximum Entropy

principle, and Monte Carlo algorithms. We also introduced a mathemati-

cal framework for social and economic modeling based on the hypothesis of

cognitive representations and costs. This last chapter summarizes all the

results and discussions from both models and suggests how the work might

be continued and how the computational models might be improved.

4.1 The hierarchical-egalitarian phase transi-

tion

The �rst of the computational models, which we denominated the Social

Hierarchy Model (SHM), was developed to approach the problem of hierar-

chy emergence in early human societies. The main problem arises from the

diversity of social structures in which humans may organize themselves, what

di�ers from the primarily hierarchical structure of the great apes. According
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to the Reverse Dominance Theory, a human society without hierarchy might

be stable due to the individuals' reaction to any dominance attempt, but this

type of organization was mostly observed in small hunter-gatherers groups.

Empirical data also suggests that the social structure might be related to the

cognitive capacity of the species, since in primates the group size correlates

with the neocortical ratio. This correlation ultimately led to the formulation

of the Social Brain Hypothesis.

The temporal evolution of early humans may be denominated U-shaped

evolution, since it had two characteristic transition periods. The �rst one

was the slow transition from a hierarchical to a egalitarian structure, a con-

sequence of the brain evolution in response to social and ecological pressures.

The other was the agricultural revolution, which greatly increased the num-

bers of individuals in the groups, returning to a hierarchical structure. Those

observations and theories were the background and the motivation for the

SHM.

The SHM was an agent-based model which aims to gain insights into the

transitions of hierarchical and egalitarian societies. The model consisted of

a two level network, where each agent had its own cognitive representation

of the social interactions. The society is represented by graphs: each ver-

tex is an agent and an edge amongst two agents indicates that their social

interaction is known. Due to cognitive constrains, each cognitive graph had

a cost consisting of two terms: the cognitive limitation and errors resulting

from incorrect inference caused by limited brains. The strategy of the agents

was to minimize the cost, simulated using the Maximum Entropy method,

which was the appropriate procedure to �nd the probability distributions

of the cognitive graphs in the stationary con�gurations. Besides the cogni-

tive graphs, there was no way of knowing the real social network, but the

procedure implies it follows a Boltzmann-Gibbs probability distribution.

The model indicated that cognitive limitations were responsible for the

symmetry breaking in the cognitive representations of societies. The �rst re-

sult was the phase diagram for each isolated agent. The diagram showed three

phases of interest, with characteristic ratios of average per maximum degree

and degree distribution: hierarchical (represented by star graphs), egalitar-
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ian (represented by totally connected graphs), and intermediary (represented

by random Erd®s-Rényi random graphs). There were three variables control-

ling the stationary con�gurations: the cognitive capacity (α), the number of

agents (N), and the probability of acceptance of modi�cations (β). The lat-

ter could be associated to ecological and social pressures, since those factors

may a�ect the individuals' acceptance of modi�cations in the social struc-

ture. That hypothesis was corroborated by the Reverse Dominance Theory,

which stated that egalitarian societies do not accept modi�cations in their

social structure.

The model also introduced one last parameter, denominated gossip (g),

to control the probability of information exchange amongst the agents in the

hierarchical phase. It was intended to resemble the social learning phenom-

ena observed both in humans and non-human primates. That parameter

was essential for the hierarchy emergence, since it introduced the correlation

amongst the centers of the star graphs. The simulations showed that the

probability of hierarchy emergence was higher for high probabilities of infor-

mation exchange amongst the agents. There was empirical evidence [19] of

the correlation between the real social position and the social status perceived

by the individuals, thus a symmetry breaking in the cognitive representations

of the individuals might lead to a hierarchy emergence in the society.

Including all the parameters (α, N , β, and g), the model exhibited at least

three important phases. The �rst is the egalitarian phase, represented by

complete graphs. It appeared for small groups or groups of agents with high

cognitive capacities. The second was the hierarchical phase, which appeared

for large groups or groups with small cognitive capacity. Both phases are in

the region of large β, what indicated high environmental and social pressures.

The transition between these two phases resembled the U-shaped evolution

theory. The last phase was the intermediary structures that predominated

in the region of low values of β. In those regions, the degree distribution

indicated a random graph structure. Lastly, the model also yielded results

that were compared to the variables from the Ethnographic Atlas [3]. If we

interpreted β as an ecological pressure, the model qualitatively corroborated

the empirical database: societies with high ecological pressure tend to be
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more hierarchical than the others.

The SHM was, therefore, a computational model which aims to better

understand the emergence of hierarchy in human societies. It provided in-

sights into society organization and was able to reproduce some empirical

data while taking into account theoretical particularities. Additional analy-

sis and the introduction of new variables to simulate other brain process are

possible, and should be viewed as a path to continue this work. More impor-

tantly, we hope the model introduces a mathematical framework to better

treat social modeling. The framework might be useful in the modeling of

other social phenomena, beyond the scope of this work and the knowledge of

the authors at the moment. The new viewpoint, however, might inspire simi-

lar statistical mechanics and information theory approaches to social sciences

and anthropology.

4.2 Money emergence and the social network

e�ects in barter economies

The second computational model, which we denominated the Money

Emergence Model (MEM), was developed aiming to approach the problem

of the money emergence in human societies. That problem arises from the

general incompatibility of the most accepted economic theories and histor-

ical and anthropological evidence. Menger's Theory of Money states that

the emergence of a unique medium of exchange occurred as an evolution of

the previous barter systems. Money has its advantages when compared to

barter: it is divisible, an e�cient way to store value, and solves the double

coincidence of wants problem. However, as pointed out by some authors [6],

the lack of historical evidence for the process undermines the barter hypothe-

ses, and although there were some societies in which barter systems existed,

it was never the primary exchange system. Debt and credit appeared before

currency, suggesting the social structure might have had some in�uence on

the money emergence phenomenon. Money also has its e�ects in the mental

perception: recent works suggest it acts as a perceptual drug in the human
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brain, a empirical evidence that constitutes the basis for new theories of

money based on neuroscience and neuroeconomics.

With all those particularities in mind, the MEM was built using the

same mathematical framework as the SHM. Its main goal was to identify the

in�uence of the social network in the emergence of money while accounting

for the mental representation of the social and economic networks. The model

consisted of a �xed social network of N agents, each one with its particular

mental representation of the exchangeability of Θ commodities. The agents

exchange information the same way the agents from the SHM, by introducing

a probability g, now accounting also for the observation phenomenon, which

results in the saleableness concept from Menger's Theory of Money. The

system evolved in a similar Monte Carlo dynamics, however in only one

region of the phase diagram. The region of star graphs in the equilibrium

con�guration was chosen by the de�nition of money: a unique commodity

that may be exchanged by all the others, while the others may not in general

be exchanged amongst themselves.

The MEM had also another additional ingredient when compared to the

SHM. The social structure was �xed, since in a �rst approximation we as-

sumed the two phenomena occurred in distinct scales of time 1. We were

able to test di�erent social network con�gurations, including complete (repre-

senting egalitarian societies), random, small-world, path, scale-free, and star

(representing hierarchical societies). The results showed that the more hier-

archical a social network was, the higher the probability of money emergence

in that network. One key variable for the emergence was g: one commodity

only emerged as money for high values of g. If we qualitatively interpreted

this variable as the gossip importance from the SCCS, the model agrees with

the data, particularly for hierarchical societies.

Other two important variables of the model were again β and the number

of agents N . The number of agents was determinant for the emergence of

money, and the SCCS data show that small societies have a small expected

value for the variables accounting for money - which means they usually

1As described by Graeber [6], this is not true, but we aimed for a simple model that
could reproduce only some of the characteristics of real societies.
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work without any money. β, however, cannot be interpreted now only as

an ecological pressure. The data show the behavior of societies in di�erent

climates are roughly the same, while the model's results vary with β.

Previous barter models have shown the possibility of emergence of money

in networks using a di�erent dynamics. However, they were not able to ac-

count for the e�ects of the social network to discuss the validity of the barter

hypothesis. Our model suggested that the barter hypothesis might not re-

sult in money emergence for all types of societies, particularly in small and

egalitarian groups. A unique medium of exchange was seen in the stationary

con�guration of centralized networks, including scale-free and star, suggest-

ing the social structure might a�ect the emergence of money.

In summary, the model was capable of identifying key features of the

money emergence phenomenon. The simulations agreed with the data from

the SCCS and suggested barter economies are not necessarily independent

of the social structure as stated by Menger's Theory of Money. Future work

should take that into account when simulating the emergence of a unique

medium of exchange for cognitive representations. Also, experiments in neu-

roeconomics might shed light on the mental representation of commodities.

As in the SHM, we hope the MEM provided a mathematical framework to

study economic phenomena as well as showed a possible application of sta-

tistical mechanics and information theory approaches to problems involving

societies, economies, and networks.



Appendix A

Graphs and networks

This �rst Appendix presents some properties and algorithms of graph

theory and network models. The graph's structures commonly used to model

social networks are described in more details here.

A.1 Average path length

In modern notation [91, 92], a graph is a mathematical representation

of a set in which links (also called edges or lines) might connect any two

elements (also vertices or nodes). A graph G can be described by an ordered

pair G = (V,E), where V is a set of vertices and E is a set of edges connecting

pairs of elements of V . One of the most general ways to classify graphs is

regarding to the set of edges: directed or undirected. A directed graph has

oriented edges, going from one element to another. On the other hand, in an

undirected graph, the edges do not have any orientation, they are only links

between two nodes.

In a undirected graph, a path is de�ned as a sequence of linked edges

si,j (which connects the vertices i and j). Two nodes i and j are said to be

connected if it is possible to �nd a path, of any length, that includes both of

them. If one vertex i is connected to all the others in a graph, the graph is

said to be a connected graph [91]. For this types of graphs, the average path

length L is calculated by �nding the shortest path li,j between all pairs of
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nodes, adding them up, and then dividing by the total number of pairs.

L =
2

N(N − 1)

N∑
i,j=1

li,j (A.1)

This de�nition shows, on average, the number of steps needed to go from

one node of the graph to another.

A.1.1 Random graphs

Random graphs were �rst introduced and analyzed by the mathematicians

Paul Erd®s and Alfred Rényi in a series of papers beginning in 1959 [21, 22,

23]. There are two variants of the Erd®s and Rényi model, commonly called

G(n,M) and G(n, p) [92]. The G(n,M) model consists of de�ning a �xed

number of vertices n and edges M , with 0 < M < n(n−1)
2

, and choosing

the graph with equal probability amongst all the possibilities. The G(n, p)

model, which is the one we used in this dissertation, consists of a graph

with a �xed number of vertices n where all the edges have an independent

probability p, 0 ≤ p ≤ 1, of existence. The �rst model introduced by Erd®s

and Rényi was the G(n,M) [21], but the graphs resulting from both algorithms

are equivalent.

Each graph with n vertices and M edges has a probability

P (G|n,M, p) = pM(1− p)
n(n−1)

2
−M (A.2)

of existence. In particular, the case with p = 0.5 corresponds to the case

where all the possible 2(n
2) graphs might be chosen with equal probability.

The degree k distribution is

P (k) =

(
N

k

)
pk(1− p)N−k ≈ zke−z

k!
(A.3)

where the approximation becomes exact in the limit of large N (a Poisson

distribution) and z = p(N − 1), the average number of edges to which each

vertex is connected. The threshold for the connectedness of G(n, p), that is

the value of p for which the graph will almost surely be connected, may be
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proven to be log(n)
n

[22].

As discussed by Newman et al [93], random graphs may sometimes have

an adequate degree distribution to represent real world phenomena, but

sometimes they do not. Diseases, for example, might be modeled using ran-

dom graphs due to the assumption of fully mixed approximations, in which

the contacts amongst the individuals are random and uncorrelated. Social

networks, however, including friendship networks and networks of telephone

calls, have di�erent degree distributions due to the clustering phenomenon.

Similar problems are found in other systems, such as power grids and neural

networks.

A.1.2 Small-world networks and the Watts-Strogatz al-

gorithm

A small-world network is a type of graph which includes cluster e�ects

and the small world phenomenon 1 in networks. Mathematically, the average

path length grows proportionally to the logarithm of the number of nodes

N , L ∝ log(N). The algorithm to construct Small-World networks is the

Watts-Strogatz algorithm, proposed by Duncan J. Watts and Steven Strogatz

in 1998 [13] as a result of social networks' studies. They argued that real

networks possess higher clustering coe�cients and that the presence of hubs

should not yield networks with a Poisson distribution of degrees.

The algorithm starts with an undirected ring lattice of N nodes with a

�xed number of edges per vertex k (assumed to be even). The total number

of edges is therefore kN
2
. The number of nodes and edges is also expected to

satisfy the relation

N � k � log(N)� 1 (A.4)

Each edge sij, for all nodes i and j, is then rewired with a rewiring

probability β, 0 ≤ β ≤ 1. The vertex to which the edge is rewired is chosen

randomly from all the other vertices that are not linked to the node i.

1This phenomenon is the short path between every two nodes of the network [93].
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Figure A.1: Average path lenght L(p) and clustering coe�ciente C(p) for small-
world networks. All graphs have N = 1, 000 and average degree k = 10 edges
per vertex. p is the probability of rewiring. Figure reproduced from Watts and
Strogatz [13].

The algorithm creates approximately βNk
2

non-lattice edges. Varying β

makes it possible to interpolate between a regular lattice, the case β = 0,

and a random graph, the case β = 1. This last network approaches a random

graph G(n, p) with n = N and p = Nk

2(N
2 )
.

The average path length also varies between a regular lattice, which scales

linearly with the number of vertices, and a random graph. The degree dis-

tribution varies from a delta function centered at k = K, for β = 0, to the

Poisson distribution from the random graphs case. The intermediary cases

have more complicates distributions, also functions of β, given by

P (k) =

f(k,K)∑
n=0

Cn
K/2 (1− β)n βK/2−n

(βK/2)k−K/2−n

(k −K/2− n)!
e−βK/2 (A.5)

where K ≤ 2k and f(k,K) = min(k − K
2
, K

2
).
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Random graphs have been used with many applications, from disease

spread to seismic networks. In sociology, they may be applied to study the

information exchange in groups due to the hub e�ects created by the rewiring.

However, the main limitations of the model are the unrealistic degree dis-

tributions and the �xed number of vertices, which makes applications for

society growth impossible.

A.1.3 Scale-free networks and the Barabási-Albert al-

gorithm

A scale-free network is a network in which the degree of the vertices

distribution P (k) asymptotically follows a power law

P (k) ≈ k−γ (A.6)

where the parameter γ varies with the type of system. One model to create

networks with this characteristic was developed by Barabási and Albert [24]

in 1999. Starting from m0 totally connected nodes, the model consists in

adding one new vertex per step. Each new vertex is connected to m ≤ m0

existing vertices. The probability pi of the new vertex to be connected to the

existing vertex i is a function of its degree ki,

pi =
ki∑
j kj

(A.7)

With this procedure, hubs tend to quickly accumulate more edges, as the

probability of being connected to a new vertex is higher. For this algorithm,

γ = 3 and it is possible to prove [94] that the average path length scales with

L =
log(N)

log(log(N))
(A.8)

thus being systematically shorter than the average path length of a random

graph.

The e�ects of that preferential attachment can be applied in the studies

of many network systems. Social networks, for example, are usually expected
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to have similar degree distributions due to the hub e�ect. Famous examples

are the collaboration of movie actors and the mathematicians co-authorship

of papers.



Appendix B

Standard Cross Cultural Sample

This Appendix shows some variables from the Standard Cross Cultural

Sample (SCCS). Some of them were compared to the numerical results from

the Money Emergence Model in the Chapter 3. The data is reproduced

here exactly as presented by Murdock and White, including the variables'

name and number of cultures in each classi�cation. The complete table

includes about 2, 000 variables regarding the characteristics of 186 di�erent

cultures. The full table, indicating all the characteristics of each culture,

and the corresponding codeblock are currently available at Douglas White's

webpage at the University of California, Irvine website [12]. As in the original

codeblock, NA indicates not available data.
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Table 1 - Standard Cross-Cultural Sample

Variable Number of Cultures Name

v17 Money (media of exchange) or credit

1 77 No media of exchange or money

2 12 Domestically Usable Articles

3 26 Tokens of Conventional Value

4 42 Foreign coinage/paper currency

5 26 Indigenous coinage/paper currency

NA 3 NA

v18 Credit Source

1 113 Personal loans/friends/relatives

2 26 Internal Money

3 23 External Money

4 7 Banks or Comparable Institutions

NA 17 NA

v155 Money

1 77 None

2 14 Domestically Usable Particles

3 43 Alien Currency

4 27 Elementary Forms

5 25 True Money

v235 Mean Size of Local Communities

1 31 Fewer than 50

2 29 50 - 99

3 24 100 - 199

4 17 200 - 399

5 12 400 - 1000

6 4 1000 without any town of more than 5000

7 10 One or more towns of 5000 - 50000

8 21 One or more cities of more than 50000

NA 38 NA
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Variable Number of Cultures Name

v270 Class Strati�cation

1 76 absence among free men

2 45 wealth distinctions

3 3 elite

4 37 dual

5 25 complex

v857 Climate Type - Open Access to Rich Ecological

1 6 Polar

2 38 Desert or Cold Steppe

3 50 Tropical Rainforest

4 39 Moist Temperate

5 45 Tropical Savanna

6 8 Tropical Highlands

v1805 Importance of Gossip

1 6 0

2 9 1

3 2 1.5

4 15 2

5 3 2.5

6 37 3

7 10 3.5

8 36 4

9 1 4.5

19 16 5

NA 51 NA

B.1 Variables' division

In the results of the MEM in Chapter 3, some of the variables from the

SCCS were used to test the aplicability of the model to the money emergence

problem. Some of the variables were also analyzed by Caticha et at [11] and
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compared to the SHM results. As in their work, each variable analyzed in

this dissertation was divided in three di�erent categories after the societies

classi�ed in NA were withdrawn from the table. As one can simple check in

the table, the variables from the SCCS may assume more than three values.

We divided them in categories for three reasons.

First, as we developed simple models, there is no expectation that our

results will match exactly the data from the sample. our purpose was to gain

insights into the processes, but our parameters are not the exact variables

compiled by Murdock and White. Thus, we believe the grouping may provide

a better comparison to our model. One example that justify this approach is

the v155−Money variable. It contains cultures classi�ed in �Alien Currency�,

which our model did not take into account. By that reason, those societies

had to be excluded from the analysis, making it impossible to use every point

from the database.

Second, some classi�cations are described with similar terms, which our

computational models are not capable of di�erentiating. For example, the

variable v857 - Climate Type - Ordered in terms of Open Access to Rich

Ecological divides the climates in six classi�cations. Since our model cannot

di�erentiate amongst climate classi�cations (roughly the equivalent of the β

parameter or the ecological pressure), we divided they only in harsh, inter-

mediate, and mild, following the descriptions given by Murdock and White.

Lastly, some of the classi�cations do not have a substantial number of

cultures to make possible any statistical analysis. The variable v270 - Class

Strati�cation, for instance, classi�es only 3 di�erent cultures as possessing

an �elite� class. In those cases, we had to merge the cultures to the nearest

category (in the particular case of the �elite�, it was merged with �wealth

distinctions�) to make the analysis possible. It is important to note here that

if one of the cultures is not classi�ed in one of the variables needed for one

statistical analysis, it could not be taken into account. Since each analysis

was made with three di�erent variables, the number of cultures was already

reduced due to the unavailability of some data (classi�ed as NA).

We recognize, however, that it is extremely di�cult to classify cultures

in simple and well de�ned categories. Our goal was not to discuss the clas-
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si�cation itself but to compare our models' results when possible. The next

table shows how we divided each variable from the SCCS in three di�erent

categories, labelled A, B, and C. �Not applicable� means the classi�cation

was not considered during the comparison to the models' results.

Table 2 - Variable's classi�cation

Variable Classi�cation Name

v17 Money (media of exchange) or credit

1 A - none No media of exchange or money

2 B - articles Domestically Usable Articles

3 C - tokens Tokens of Conventional Value

4 not applicable Foreign coinage/paper currency

5 C - tokens Indigenous coinage/paper currency

NA not applicable NA

v18 Credit Source

1 A - loans Personal loans/friends/relatives

2 B - money Internal Money

3 not applicable External Money

4 C - banks Banks or Comparable Institutions

NA not applicable NA

v155 Money

1 A - none None

2 B - particles Domestically Usable Particles

3 not applicable Alien Currency

4 B - particles Elementary Forms

5 C - money True Money
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Variable Classi�cation Name

v235 Mean Size of Local Communities

1 Fewer than 50

2 A - small 50 - 99

3 100 - 199

4 B - medium 200 - 399

5 400 - 1000

6 1000 without any town of more than 5000

7 C - large One or more towns of 5000 - 50000

8 One or more cities of more than 50000

NA not applicable NA

v270 Class Strati�cation

1 A - absence absence among free men

2 B - elite wealth distinctions

3 elite

4 C - complex dual

5 complex

v857 Climate Type - Open Access to Rich Ecological

1 A - harsh Polar

2 Desert or Cold Steppe

3 B - intermediate Tropical Rainforest

4 Moist Temperate

5 C - mild Tropical Savannah

6 Tropical Highlands

v1805 Importance of Gossip

1 0

2 A -1 1

3 1.5

4 2

5 2.5

6 B -2 3

7 3.5

8 4

9 C -3 4.5

19 5

NA not applicable NA
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