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Resumo

Critelli, R. Propriedades fora do equilíbrio do plasma de quarks e glúons forte-
mente acoplado. Tese (Doutorado) - Instituto de Física, Universidade de São Paulo,
São Paulo, 2019.

A cromodinâmica quântica (QCD) é a teoria fundamental que rege as interações fortes,
cujas partículas elementares são os quarks e glúons. Em termos de escala de energia,
a QCD é caracterizada pela liberdade assintótica (quarks e glúons aproximadamente
livres) e confinamento de cor (quarks e gluons confinados dentro de hádrons), sendo o
primeiro tratado de maneira perturbativa e o último sendo um fenômeno intrinsicamente
não-perturbativo. À temperatura finita, conforme se aumenta a temperatura, a matéria
hadrônica sofre uma transição de fase do tipo crossover indo de um gás de hádrons ao
plasma de quarks e glúons (QGP). Na vizinhança do crossover, onde os hádrons estão
“derretendo” para formar o QGP, a QCD se encontra em uma região não perturbativa
e portanto o QGP nessa região é fortemente acoplado, dificultando estudos analíticos. A
chamada dualidade AdS/CFT, também conhecida como holografia, aparece para oferecer
uma oportunidade única para o estudo do QGP ao prover um mapa entre teorias forte-
mente acopladas (muito difícil de serem resolvidas) e uma teoria de gravitação clássica.

Na frente experimental, o estudo do QGP é feito em aceleradores de partículas col-
idindo íons pesados ultrarelativísticos. Nestes experimentos, o QGP criado sofre rápida
expansão, com uma intrincada interação entre escalas duras e moles de energia, do estado
inicial ao estado final. Tal cenário evidencia a necessidade de formular uma teoria para o
QGP que inclua propriedades fora do equilíbrio. Afortunadamente, a dualidade holográfica
encaixa-se bem para essa tarefa. Resolvendo-se as equações de Einstein dependentes do
tempo, um problema da área da relatividade geral numérica, é possível estudar fenômenos
fora do equilíbrio de plasmas fortemente acoplados.

Ademais, o diagrama de fase da QCD no plano (T, µB), onde T é a temperatura e
µB o potencial químico bariônico, permanece amplamente desconhecido devido a sua na-
tureza não-perturbativa. Em particular, é conjecturada a existência de um ponto crítico
delimitando o crossover de uma transição de fase de primeira ordem. Motivados por tais
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fatos, esta tese utiliza a dualidade holográfica para analisar o papel do ponto crítico na
dinâmica fora do equilíbrio. Por exemplo, é apresentado aqui um estudo de como o ponto
crítico afeta o tempo que leva para um plasma não-Abeliano fortemente acoplado adquirir
comportamento hidrodinâmico partindo de um estado completamente fora do equilíbrio.

Palavras-chave: Holografia, dualidade gauge-gravidade, plasma não-Abeliano, dinâmica
fora do equilíbrio, fenômenos críticos.



Abstract

Critelli, R. Far-from-equilibrium properties of the strongly coupled quark-gluon
plasma. Thesis (PhD) - Institute of Physics, University of São Paulo, São Paulo, 2019.

Quantum Chromodynamics (QCD) is the fundamental theory that governs the strong
interaction, whose fundamental particles are quarks and gluons. In terms of energy scales,
QCD is characterized by asymptotic freedom (approximately free quarks and gluons) and
color confinement (quarks and gluons confined inside hadrons), where the former can
be treated perturbatively and the latter is an intrinsic non-perturbative phenomenon.
At finite temperature, hadronic matter undergoes a crossover phase transition from a
gas of hadrons to the quark-gluon plasma (QGP) as the temperature increases. Near
the crossover, where hadrons “melt” to release quarks and gluons, QCD is in its non-
perturbative regime and the QGP is strongly coupled, posing great challenges for ana-
lytical studies. The so-called AdS/CFT duality, also known as holography, comes to offer
a unique opportunity to study the QGP by providing a map between strongly coupled
theories (which are generally very hard to solve) and a classical theory of gravity.

On the experimental front, the study of the QGP is carried out in particle accelerators
by colliding ultrarelativistic heavy ions. In these experiments, the QGP created undergoes
rapid expansion and there is a very intricate interplay between soft and hard scales,
from initial conditions to final the stream of particles. This scenario makes it evident
that one must understand the QGP also out of equilibrium. Fortunately, holography
is well suited for this task. By solving the time dependent Einstein’s equations, using
general techniques previously employed in numerical general relativity, one can study
non-equilibrium phenomena of strongly coupled plasmas.

Furthermore, the QCD phase diagram on the (T, µB) plane, where T is the temper-
ature and µB the baryon chemical potential, remains largely unknown due to its non-
perturbative aspects. In particular, it is conjectured the existence of a critical point de-
limiting the crossover region from the first order phase transition. Motivated by these
facts, this thesis employs holography to analyze the role of the critical point on far-from-
equilibrium dynamics. For instance, it is investigated how the critical point affects the
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time that it takes for a strongly coupled plasma to display hydrodynamic behavior start-
ing from a far-from-equilibrium initial state.

Keywords:Holography, gauge-gravity duality, non-Abelian plasmas, far-from-equilibrium
dynamics, critical phenomena.
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Chapter 1

Introduction

Interactions are hard to understand.
The phrase above synthesizes the struggles of theoretical physicists in the realm of

quantum field theory (QFT). Nonetheless, even in more ordinary situations, interactions
tend to add substantial complexity to different phenomena. For instance, the equation of
state of a classical rarefied gas is approximated by the relation pV = NRT . However, if
the gas is not so dilute, and the interactions between the molecules become relevant, one
can derive corrections to this equation of state from the underlying microscopic theory
via statistical physics methods [1]. It happens that such corrections, known as the virial
expansion, are extremely hard to do in practice, and the complexity increases rapidly as
one advances in the number of terms of this perturbative approach. Similarly, one may
also use the Boltzmann transport equation [2], a non-linear integro-differential equation,
to describe transport phenomena in many-body dilute systems from a microscopic point
of view. This transport equation possessess the so-called collision term, which is a com-
plicated integral in phase space which encompasses the interactions of the constituents of
the gas1. Indeed, even from a purely mathematical point of view the Boltzmann equation
is interesting, with a Fields Medal being given to Cédric Villani in 2010 for his work on
this problem [4,5].

Coming back to the QFT case, the situation is similar. After learning the free scalar
field, the typical graduate student is introduced to its interactions (e.g. λφ4) as a slight
deformation of the free field theory. What is important here is that such approach is valid
only if the coupling among the fields is small, i.e. the rules to compute the S-matrix in
QFT are perturbative corrections of the free theory [6]. After the formal exposition to
the interaction picture in QFT, the graduate student learns how to compute the S-matrix
using the so-called Feynman diagrams, which represent a pictorial way to organize the

1The collision term can be so complicated that very often one uses an ad-hoc simplification that
substitutes it by a relaxation-like term [3].

1
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perturbative expansion in QFT. Nonetheless, even in this “simple” approach things are
tough, especially if one wants to increase the order of the perturbative series and/or the
number of interacting particles. For instance, in a non-Abelian gauge theory, a simple
2-to-6 boson interaction at the leading order needs more than 106 (one million) Feynman
diagrams [7]. As a consequence, people tried to figure out how to simplify the evaluation
of Feynman diagrams and, as a consequence, there is now a whole field (scattering ampli-
tudes) dedicated to solve these diagrams in a smarter way [8]. Moreover, with the recent
progress made in the mathematical structure of quantum amplitudes, such as the fact that
amplitudes of highly symmetric theories2 have an analogous description in terms of high
simplified geometrical patterns, it became feasible to infer the properties of fundamental
aspects of spacetime by studying quantum scattering [9, 10].

Regarding the formal mathematics behind quantum field theories, things become even
more puzzling. The oddity is that, according to Haag’s theorem [11, 12], the interaction
picture that is used to derive scattering amplitudes in QFT is not well defined. This illus-
trates that the mathematics of QFT is still poorly understood, and there is room for new
mathematics to play an important role in QFT. Nonetheless, despite the lack of rigorous
mathematical proofs in field theories, physicists stick with the set of rules derived for
QFT’s due to its tremendous success; for instance, in the context of quantum electrody-
namics (QED), the anomalous magnetic moment of the electron can be calculated within
a precision of 12 digits [13–15].

While one can follow the standard perturbative QFT rules to calculate processes when
interactions among the particles are weak, i.e. when the coupling constant is small, the
scenario is different when the coupling is large. In fact, we do not have a general recipe
in such a case. To circumvent this problem, one has three alternatives:

1. Build a new weakly coupled effective theory that encompasses the important aspects
of the strongly coupled theory. This lies within the framework of effective field
theories (EFT), which provide general guidance to construct quantum field theories
even beyond the standard model [16].

2. Solve numerically the path integral in supercomputers [17]. This approach, known
as lattice QFT is being more explored now since it requires powerful supercomputers
to do the calculations. More comments on this will be made when we talk about
lattice QCD [18] below.

3. Resort to a weak/strong duality [19]. The philosophy here is to find an equivalent
description of a strongly coupled theory in terms of a weakly coupled one. In contrast

2As it is common in physics, when dealing with an extremely complex problem, it is better to start
with simplified models also referred as “toy models”.
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with the first option, there are no general recipes to find dualities.

Now, one may wonder in what situation one may encounter a strongly coupled field
theory. There are at least two major areas that involve the study of strongly coupled
QFT’s: (a) in the context of condensed matter, we have for instance the so-called strange
metals, which correspond to an emergent strongly interacting phase that appears in some
materials [20]; (b) in the context of nuclear physics one has the famous example of quantum
chromodynamics (QCD) [21, 22], which is the fundamental theory of the strong interac-
tions. In this thesis, we are interested in the latter, i.e. we want to further our knowledge
of strongly coupled QCD matter. Thus, in what follows, I will briefly review the main
features of the strong interactions and why it is still a challenge to understand them.

The fundamental interactions of nature are organized in the so-called Standard Model
[23], the current theory responsible to describe the basic building blocks of our universe -
with the exception of gravity3, dark matter and dark energy. Furthermore, all fundamental
interactions are based on gauge theories and, in terms of group theory, the Standard Model
is organized as

SU(3)× SU(2)× U(1), (1.1)

where, in general, SU(N) denotes the special unitary group of rank N. The SU(2)×U(1)
part is the electroweak sector, whilst the SU(3) factor denotes the strong interactions,
the aim of this thesis. The strong interactions are responsible for nearly 98% of the
visible matter in the known universe [24]4, and they describe the complex and intricate
interactions between quarks and gluons.

The Lagrangian density of QCD, which defines the set of rules of how the strong
interactions behave in Nature, is a four dimensional Lorentz invariant and local SU(3)
gauge theory whose explicit expression is [21,22]

L = −1
4G

a
µνG

aµν +
Nf∑
f

ψ̄f (γµDµ −mf )ψf , (1.2)

where ψf denotes Dirac quark fields with mass mf , and γµ are the Dirac matrices. Above,
Nf defines the number of quark flavors and, as far as we know, QCD has six flavors of
quarks: up, down, strange, charm, bottom, and top5. The covariant derivative Dµ is given

3The “problem” with gravity is that this force is too weak compared to the others. For instance,
compared to electromagnetism, gravity is about 1040 weaker. As a consequence, to probe the quantum
nature of gravity would require access to an energy scale (EPlanck ∼ 1019 GeV) far beyond our current
reach in particles accelerators.

4The other 2% is due to the Higgs mechanism [25–27] that gives mass to elementary particles such
as electrons and quarks. Moreover, the “invisible” universe, i.e. the part that does not interact with
photons, is constituted by the so-called dark matter and dark energy, whose microscopic origin are still
unknown [28].

5The current masses of these flavors are, mu = 2.3 MeV, md = 4.8 MeV, ms = 95 MeV, mc = 1275
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by
Dµ = ∂µ + igAaµt

a, (1.3)

where g is the strong coupling constant, Aaµ is the gluon field in the adjoint representation,
and ta represents the Gell-Mann matrices that span the Lie algebra of the SU(3) group.
The quantity Ga

µν is the non-Abelian Yang-Mills field strength, defined as

Ga
µν = ∂µAν + ∂νAµ + gfabcAaAb, (1.4)

where fabc are the structure constants of the SU(3) group, i.e. [ta, tb] = ifabctc.
With the Lagrangian (1.2) at hand, one is able to proceed with standard perturbative

calculations as long as the coupling g remains small. To see the validity of this assumption,
one has to look at the QCD beta function β(µ) = ∂g/∂ lnµ [6]. The beta function of a
quantum field theory tells us how the coupling runs with the energy scale µ. For a non-
Abelian SU(Nc) gauge theory with Nf flavors, at the 1-loop level, the beta function is
given by [6]

β(µ) = −
(11

3 Nc −
2Nf

3

)
g3

16π2 . (1.5)

Thus, if we use the values of QCD for the number of colors and flavors, i.e. Nc = 3 and
Nf = 6, we conclude that the beta function (1.5) is always negative. Moreover, from the
QCD beta function, it is possible to get an expression for g as a function of the energy
scale

g(µ) ∼ 1
ln µ

ΛQCD
, (1.6)

where ΛQCD ≈ 200 MeV is the QCD intrinsic energy scale [6]. The physical interpretation
of this result is straightforward: as the energy increases, the strength of interactions de-
creases. This result is the celebrated property of asymptotic freedom [21,22], in the sense
that quarks and gluons interact very weakly at sufficiently large energies. Furthermore,
this property allows one to compute high energy QCD scatterings using perturbative
methods and, as one can observe in e.g. Fig. 1.1, this has achieved great success.

However, for low energy processes QCD becomes a strongly coupled theory, a fact that
can be suggested by looking at the enhancement of αs(Q) = g2(Q)/(4π) as Q decreases in
Fig. 1.1. In this sense, the strong interaction is the only fundamental force that has this
peculiar behavior. Such feature is responsible for the phenomenon of color confinement,
that is, if one tries to pull apart a quark from the proton, it will be more favourable
energetically for the vacuum to create a quark-antiquark pair and form a meson. As a
consequence, color charged particles cannot be observed in experiments. Given the break-
down of perturbative QCD one cannot compute analytically, for instance, the spectrum

MeV, mb = 4180 MeV, mt = 173 GeV [29], respectively.
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Figure 1.1: The QCD coupling αs as function of the energy scale Q. Figure adapted from
Ref. [30].

of hadrons, which can only be done using ab initio techniques such as Lattice QCD [24]6.
Lattice quantum field theories were proposed by Kenneth Wilson in 1974 [33] and

were first implemented by Michael Creutz in 1980 in the case of SU(2) gauge theory [34].
Roughly speaking, the idea is to solve the path integral corresponding to the QCD gener-
ating functional in supercomputers. Evidently, such effort is highly non-trivial, but Lattice
QCD managed to have great success over the years and it has become our main guide when
experiments are absent. Nowadays, the fundamental issues of Lattice methods are the dif-
ficulties in handling out of equilibrium behavior [35] and finite density phenomena [36].
The subject of this thesis, which is the study of hot QCD matter out of equilibrium at
finite chemical potential, deals precisely with those limitations of lattice techniques.

Although quarks and gluons are confined inside hadrons in vacuum, it is possible to
deconfine them for a very short time in laboratory. The way to do this is by colliding
two ultrarelativistic heavy nuclei against each other. In this way, as proposed more than
thirty years ago [37], one can inject enough energy to probe the bulk properties of the
vacuum, in this case, the quarks and gluons. In the very short period of time that quarks
and gluons are deconfined, the quark-gluon plasma (QGP) [38–41] is formed. Additionally,
the experimental data indicates that the QGP behaves more like a fluid than a colored
plasma [42–44], in the sense that the ratio between the shear viscosity (η) and the en-
tropy density (s) is closer to the non-perturbative regime of QCD than the corresponding
perturbative regime [45, 46]. This “perfect fluidity” of the QGP was a great surprise for
the community as it contradicted many early predictions that the QGP would be a gas
of weakly interacting particles [47]. In Sec. 1.3 more details are given about how one can

6It is also possible to devise effective theory descriptions, such as QCD sum rules [31], which give
estimates for the QCD spectrum which match some experimental data and lattice results [32].
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describe the different stages of the QGP created in laboratory.
Furthermore, one could add to the seminal phrase “interactions are hard to under-

stand” that liquids are difficult to understand as well. In order to describe a liquid, besides
using equations of motion, one has to specify some transport coefficients, such as shear
viscosity, bulk viscosity, conductivities and so on, and each type of liquid has different
underlying microscopic physics from which these emergent properties are derived. Indeed,
when comparing liquids to solids and gases, the famous physicist Viktor Weisskopf re-
marked how difficult it is to predict emergent properties from liquids found in even daily
life such as water [48]. Imagine then how difficult it is to extract the emergent properties
of the QGP (the hottest, tiniest, most perfect and vortical fluid [49]) from the QCD La-
grangian in the non-perturbative regime. To make it even more challenging to describe the
time evolution of the QGP, there is also the fact that viscous relativistic hydrodynamics is
far from being a trivial generalization of Navier-Stokes theory [50]. For instance, Landau
and Lifshitz developed the relativistic version of Navier-Stokes theory in Ref. [51] (see also
Eckart in [52]), whose resulting partial differential equations are parabolic and, as such,
this theory is acausal (for more information, see Ref. [53]). Therefore, it is paramount
to have a complete theoretical understanding of relativistic viscous hydrodynamics to
unequivocally interpret heavy ion experimental data.

In the middle of the dearth of tools to describe dynamic properties of the QGP, a very
unusual and unpredictable way to describe this system appeared in 1997. In this year,
Maldacena conjectured the existence of a duality between a quantum field theory and a
string theory [54]. This duality, commonly known as AdS/CFT (anti-de Sitter/Conformal
field theory) correspondence, states that SU(Nc) N = 4 super Yang-Mills (SYM) in the
large number of colors (Nc →∞) and sufficently large coupling, has a dual description in
terms of classical gravity in anti-de Sitter space [55]. Such duality sparked a revolution in
high energy physics since it gave the opportunity to study strongly coupled non-Abelian
QFT’s from first principles by solving Einstein’s equations of general relativity. One of the
most startling results obtained from AdS/CFT is the ratio between the shear viscosity to
entropy density [56],

η

s
= ~

4πkB
, (1.7)

where ~ is the Planck constant and kB is the Boltzmann constant. The importance of the
result (1.7) is that it is valid for a broad range of systems according to the AdS/CFT
conjecture. As aforementioned, the estimates for the QGP η/s extracted from comparisons
between phenomenological calculations to heavy ion experiments produce very small value,
being remarkably compatible with (1.7). This agreement suggested a new way to study
the dynamics of QGP [57].

One of the features that makes AdS/CFT very attractive is its ability to deal with
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non-equilibrium phenomena, which is a very hard task to do in QFT [58]. For instance,
in the context of strongly coupled theories, it is possible to study the formation and
thermalization of the plasma through the time dependence of an asymptotically AdS5

space-time that evolves according to general relativity [59]. This is precisely the main
goal of this thesis: to unveil the properties of a strongly coupled non-Abelian plasma in
the far-from-equilibrium regime. Evidently, as will be discussed in Chapter 2, AdS/CFT
does not provide a holographic dual of QCD but it certainly gives fresh insight into this
complex problem.

However, before we dwell into the details of the original research done in this thesis,
in the rest of this Introduction a more detailed overview of the QGP is given to help
motivate the work presented here. In Sec. 1.1 I present some well-established results
concerning thermal QCD that come from lattice calculations. Sec. 1.2 explains how the
QGP is created in laboratory and why this introduces several theoretical and experimental
challenges that must be surpassed. Next, in Sec. 1.3 there is a more detailed explanation
of how AdS/CFT is used to study the properties of the QGP, though the technical details
are presented in Chapter 2. In Sec. 1.4 a detailed summary of each chapter of this thesis
is given.

1.1 Strong interactions under extreme conditions
One question that may be posed is the following: what happens to hadrons under

extreme conditions? Here, by extreme conditions we mean high temperature and/or high
density. Clearly, to answer this question, one has to resort to a many-body QCD formu-
lation that allows us to, at least, compute the equilibrium properties, i.e. the thermody-
namics, of the system [60].

The first step to work with QFT at finite temperature is to go from Minkowski space
to Euclidean space with periodic boundary conditions, that is, t→ iτ (0 ≤ τ ≤ β), where
β = 1/(kBT ), with T being the temperature. With this procedure, the action in the path
integral formulation becomes a probability weight, and the path integral itself becomes
a partition function. In the grand canonical ensemble, the partition function of QCD is
a functional that depends on the temperature (T ), flavor chemical potential (µf ), and
volume (V ) [61],

Z[V, µ, T ] =
∫
DADψDψ̄ e−Sg [Aµ]e−Sf [ψ,ψ̄,Aµ], (1.8)

where Sg and Sf are the Euclidean gluonic and fermionic actions, respectively. Their
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explicit forms are

Sg[Aµ] =
∫ β

dτ
∫
V
d3x

1
4G

a
µν(x)Gaµν(x), (1.9)

Sf [ψ, ψ̄, Aµ] =
∫ β

dτ
∫
V
d3x

Nf∑
f=1

ψ̄f (x) (γµDµ +mf − µfγ0)ψf (x). (1.10)

Moreover, in order to ensure Bose-Einstein statistics for bosons and Fermi-Dirac statis-
tics for fermions, the fields must have periodic/anti-periodic boundary conditions, i.e.
Aµ(τ,x) = Aµ(τ + β,x) and ψ(τ,x) = −ψ(τ + β,x).

Thus, once one is given equations (1.8), (1.9), and (1.10), in principle one could proceed
to “solve” the theory and compute its observables, such as the free energy density (f) and
pressure (p), which are given by

f = −kBT
V

lnZ, p = −f. (1.11)

However, as extensively remarked before, this is not easy to do in practice and it is
even worse in the non-perturbative regime due to lack of analytic approaches. At very
high temperatures, where the coupling is small and perturbation theory is applicable,
it is possible to perform calculations and obtain reasonable results. Moreover, at finite
temperature, although the convergence of perturbation theory is poor7, the hard-thermal-
loop (HTLpt) program managed to achieve some interesting results [62]. On the other
hand, as the temperature decreases and the coupling increases, we do not have an analytic
method to compute the QCD partition function. Currently, the only way to overcome this
limitation in ab initio calculations is to solve the path integral (1.8) in supercomputers
using lattice QCD.

Following the standard paradigms of physical simulations in digital computers, in
lattice QCD one has to discretize the QCD Lagrangian in a four-dimensional Euclidean
space. Then, Monte-Carlo method is employed to integrate numerically the path integral.
At the end, the infinite volume limit (i.e. the continuum limit), and the physical quark
mass8 limit are taken. In Fig. 1.2 recent lattice results for the Equation of State (EoS)
near the confined/deconfined phase transition around T ∼ 150 MeV are shown. It is
important to notice that the phase transition between the gas of hadrons and the QGP is

7At finite temperature one needs to introduce the scales gT and g2T , and perturbation theory is
organized assuming g2T � gT � T [47].

8It is interesting to notice that the type of phase transition (i.e. 1st order, 2nd order, or crossover)
between confined/deconfined quarks and gluons depends on the masses of the quarks. For instance, in
the chiral limit, i.e. when the masses of the light quarks vanish, one has a first order phase transition, as
one can see from the famous Columbia plot [63,64].
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a crossover, i.e. the thermodynamic variables vary smoothly in the transition9. Moreover,
in a crossover, there is not a sharp definition for the critical temperature (Tc) since each
observable may give a slight different result, which can be inferred from the inflection
points of the observables. For this reason, it is common to use the term pseudo critical
temperature in crossovers transitions. Lastly, the “HRG” acronym in Fig. 1.2 refers to the
Hadron Resonance Gas [66], an effective weakly interacting QCD theory assumed to be
valid low temperatures.

Figure 1.2: The equation of state for the strong interactions at zero chemical potential. The
plot shows simultaneously the result for the pressure (p), energy density (ε), and entropy density
(s). Figure taken from Ref. [67].

At this stage, for zero chemical potential, the general picture is the following. It is
possible to study QCD analytically for very low temperatures (T . 100 MeV) using
the HRG, and also at very high temperatures (T & 500 MeV) via perturbative QCD.
However, near the crossover, when the hadrons “melt” and the quarks and gluons become
the important degrees of freedom, one does not have a clear effective theory to do the
computations. It is in this regime that AdS/CFT enters since it offers tools to compute
observables of strongly coupled theories that resemble QCD [68–70]. Naturally, there are
other ways to try to study the non-perturbative QGP, such as the so-called Nambu-Jona-
Lasinio (NJL) [71,72] model and its subsequent improvements [73]. Furthermore, it is nice
to have lattice results near the crossover region because one can see the validity of a given
model by looking at how it matches the lattice.

The current status of lattice QCD at finite chemical potential is much worse due to
fundamental technical complications [36,74]. To understand this, let us first integrate out
the fermions in Eq. (1.8) assuming only one flavor for the sake of simplicity (µ = µf )

9For some time in the 80’s it was thought that the transiton was a first order phase transition, similar
to what occurs in pure gauge theory [65].
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[75,76],
Z =

∫
dUe−SgdetM(µ), (1.12)

where detM(µ) is the so-called fermionic determinant, given by

M(µ) = γµDµ +mf − µγ0. (1.13)

It turns out that due to the absence of γ5−hermicity in the term containing µ, the
determinant of M(µ) is a complex quantity, i.e,

[detM(µ)]∗ = detM(−µ∗). (1.14)

This is the famous sign problem found in lattice formulations of quantum field theo-
ries10 [36] and, as consequence, one cannot use Monte Carlo sampling because the prob-
ability measure would possess an imaginary part.

As expected, many people tried - and they are still trying - to circumvent this problem.
One strategy that led to useful results is to Taylor expand the fermionic determinant in
powers of µ/T (see, for instance, Ref. [78]). In this scheme, in the case of baryon chemical
potential µB, the pressure can be reconstructed from the susceptibilities χBn (T, µB) ≡
∂np/∂µnB, i.e.

p(T, µB) = p(T, 0) +
∞∑
n=1

1
n!χ

B
n (T, 0)µnB. (1.15)

The state-of-the-art lattice calculations in this regard go up to χ8 [78], which means that
one can probe regions where µB/T . 2.5 in the (T, µB) plane. The drawback of this
method is that it is very costly and, thus, it is unlikely that one can go much further in
the phase diagram in this way. Also, it is interesting to notice that for purely imaginary
chemical potential the determinant ofM(µ) is always real and calculations can be directly
performed [79]. The main issue in this method is how to translate the results to the real-
valued chemical potentials. Such calculations provide another path that is currently being
taken to circumvent the sign problem.

Therefore, without lattice results for a broad range of values of µB, the phase diagram
of the strong interactions is vastly unknown and uncharted, with the experimental aspect
being covered in the next section. In Fig. 1.3 there is a cartoon of the conjectured phase
diagram. In this diagram there are only a few parts that we know for sure: the parts
where perturbative QCD is applicable, i.e. where T � ΛQCD and/or µB � ΛQCD, and
the part where µB ∼ 0 because lattice QCD gives unequivocally precise results in this

10This problem also pervades other systems as well. For instance, in a condensed matter context, the
lattice formulation of strongly coupled models in the strange metal phase also suffers from this issue [77].
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Figure 1.3: Conjectured phase diagram of strong interactions. The critical point along with the
1st order phase transition line is the fruit of theoretical speculations. The yellow bands around
the crossover are the regions probed so far in heavy ion collisions. The BES-II refers to the beam
energy scan project developed at RHIC [80] to study the baryon rich QGP. For extremely large
values of µB, where perturbative methods are applicable, there is an intriguing phase known as
the color superconducting phase (CSC) [81]. Figure adapted from Ref. [82].

region for T & 100. Hence, the first order phase transition line along with its critical
end point (CEP), which may appear as the baryon chemical potential increases, is still
a conjecture. Indeed, it is possible that such structure does not exist, or even that there
are multiple CEP’s in the phase diagram [83]. In the meantime, theorists came up with
a considerable number of models to extend our knowledge of the phase diagram, but we
are still far from a consensus. For instance, two models that can reproduce lattice EoS for
small chemical potential are the Cluster Expansion Model (CEM) of Ref. [84], and the
holographic model of Ref. [70].

In the next section we shall see how one can probe the QGP and the QCD phase
diagram in laboratory and see how complex this task might be.

1.2 Heavy ion collisions, relativistic (viscous) hydro-
dynamics, and the primordial liquid

The way to produce the QGP in laboratory is by colliding heavy ions against each
other - see Refs. [42–44, 85] for reviews. In these collisions, two ultrarelativistic nuclei
collide with an amount of energy more than sufficient to break the Coulomb barrier to
allow hadrons to interact and create the QGP. As it is usual in particle physics, one does
not measure the QGP directly, that is, one has to figure out how it behaves solely from



1.2
HEAVY ION COLLISIONS, RELATIVISTIC (VISCOUS) HYDRODYNAMICS, AND THE

PRIMORDIAL LIQUID 12

the final particles measured in detectors (e.g. protons, kaons, photons, etc.). Analogously,
imagine that you have to guess how a wooden house was before a fire that completely
destroyed it having access only to its ashes. Another complication is that the QGP created
is out-of-equilibrium and it is not clear how that affects the idea to explore the phase
diagram of the strong interactions.

The history of colliding heavy ions began in 1971 with the Bevalac, the first heavy
ion collider at the Lawrence Berkeley National Laboratory (LBNL). The next experiment
was designed in Europe with the Super Proton Synchrotron (SPS) at CERN in 1981 [86],
and then again in the US with the Alternating Gradient Synchrotron Booster (AGS) at
Brookhaven National Laboratory (BNL) in 1991 [87]. Currently, there are two operational
facilities, the Relativistic Heavy Ion Collider (RHIC) at BNL, with energy capability of
7.7GeV . √sNN . 200 GeV, and the Large Hadron Collider (LHC) at the CERN, with
energy capability in the TeV regime. It is interesting to notice that, to study the baryon
rich QGP the collision energy must go down. Indeed, one of the objectives of RHIC is to
perform a beam energy scan (BES) of the collisions [80]. For the future, besides updates
on the LHC and RHIC programs, it is expected that new facilities to study the QGP phase
diagram and the location of the CEP will become operational: the compressed baryonic
matter (CBM) experiment at FAIR (GSI) [88, 89] and also the upcoming experiments at
NICA [90].

As mentioned above, one does not create only the QGP in heavy ion collisions. On
the contrary, the collision probes a very wide range of energy scales in QCD. In Fig.
1.4 it is shown schematically the different stages of the collision: initially, due to the
immense speed of the nuclei, the initial phase is usually described by the so-called color-
glass-condensate (CGC) formalism [91]; after the collision, for a very short period of time
(∼ 0.5 fm/c) an intermediate stage between the CGC and the QGP called glasma [92,93]
is formed. Eventually, the quarks and gluons thermalize and the QGP is formed. The
QGP is described by relativistic viscous hydrodynamics, an effective theory for many-
body problems valid at longwavelengths [50]. As the plasma expands and cools down,
hadronization occurs and after the interaction between the hadrons cease (and after they
decay) the final fragments of the collision are measured in the detectors.

Thus, although we have a good idea of what happens in a heavy ion collision, one of the
main challenges lies in making connections between these different stages. For instance,
the initial stage described by CGC is an effective theory derived from weakly coupled
QCD, whilst the QGP seems to be strongly coupled; a smooth connection between the
initial stages and the strongly coupled QGP is essential for a consistent description of
heavy ion collisions.

The success of describing the QGP as a relativistic viscous fluid is remarkable. In
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Figure 1.4: A cartoon showing the main stages of heavy ion collisions. The scale of time in
such an event is about 10−23 s. Typical lenghscales involved in this process are . 10 fm. This
figure was adapted from [94].

Fig. 1.5 it is presented some results that validate this description. Furthermore, in recent
years, experimental results have suggested that one could have hydrodynamics even in
smaller systems, such as in proton-nucleus and even in proton-proton collisions. Thus,
the fact that hydrodynamics seems to be more effective than one previously imagined
led theorists to pursue a more general formulation [95], where hydrodynamics works even
when the system is not so close to equilibrium. Today, this is a rapidly developing topic
of fundamental research in fluid dynamics [95–101].

Figure 1.5: The striking success in treating the QGP as a relativistic viscous fluid. The dots are
experimental data, and the curves are results from hydrodynamic model [102]. Left: Multiplicity
of charged hadrons as function of centrality. Center: Mean pT as function of centrality. Right:
Particle correlations as function of centrality. Figure adapted from [102].

Now that while there is a general consensus that hydrodynamics is a reasonable de-
scription of the QGP formed in nucleus-nucleus collisions, one still has to compute the
transport coefficients from the underlying microscopic theory. One way to compute these
coefficients, such as the shear viscosity η, is using the so-called Kubo formulas [103]. This
was done for the Effective Kinetic Theory (EKT) of QCD [45,46] and for AdS/CFT [56].
The hydrodynamic model combined with experimental data favored the AdS/CFT re-
sult [102], which indicates the strongly coupled nature of the QGP created in heavy ion
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collisions; indeed, the result displayed in Fig. 1.5 for the shear viscosity (in natural units)
is in the ballpark of result (1.7). Fig. 1.6 is a cartoon that shows the abysmal difference
between the QGP and other liquids when it comes to viscous effects. The viscosity of the
QGP is believed to be in the vicinity of the AdS/CFT result11. A more phenomenological
path to extract transport coefficients is using Bayesian analysis, in which, given a theory,
one can calculate what is the most likely for the coefficients of the theory [105].

Figure 1.6: A comparison between η/s in the QGP and other types of fluids (in units of
4π~/kB), with the “String Theory Limit” being defined by Eq. (1.7). Notice also that the QGP
viscosity is near unity, which suggests that quantum effects governs its behavior. The red band
around the QGP viscosity expresses our ignorance about its details, and it is less wide for low
temperatures because the HRG model [106, 107] gives us more reliable results than perturbative
QCD for temperatures that are not so large. Figure adapted from [108].

Although great progress have been made in the last years, several important points
remain unanswered and here I give a sample of them: What is the general principle that
can be used to derive far-from-equilibrium hydrodynamics? What is the value of the
transport coefficients in the strongly coupled regime? And what about their values at
finite baryon chemical potential? Indeed, Ref. [109] studied the baryon rich QGP using
mixed values of transport coefficients provenient from AdS/CFT and kinetic theory, which
are two very distinct approaches. Moreover, looking carefully at Fig. 1.5, one realizes that
the bulk viscosity (absent in conformal theories) is very important to describe the QGP,
which implies that more elaborated holographic models are needed for a quantitative
description of the QGP.

Now, let us check in the next section in a more precise way how the AdS/CFT corre-
spondence might help us to study properties of the QGP.

11It is interesting to point out that the AdS/CFT result for η/s is very close to a quantum limit
derived in 1984 [104], where the authors used the uncertainty principle in a quasi-particle description of
the plasma.
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1.3 Dualities to the rescue
The idea that there may be a duality between gauge theories and string theory is

somewhat old. In 1973 Gerard ’t Hooft found an intriguing relation between large Nc

theories and the perturbative expansion of string theories [110], although at the time this
analogy was not very clear yet. Only in 1997, after Maldacena’s seminal paper that intro-
duced a duality between QFT’s in flat space and string theory [54], that the connection
between gauge theories and string theory became clear. To be more precise, the duality
corresponds to the equivalence between the strongly coupled N = 4 SYM and type IIB
superstring theory12 in AdS5 × S5. Further technical details are given in Chapter 2.

Moreover, motivated by the fact that the entropy of a black hole grows with its area
rather than its volume, ’t Hooft tried in 1993 to connect gauge theories with gravity in
higher dimensions by proposing that all information could be encoded on the boundary
of the gravitational theory [111]. Later, Susskind defined this idea as the Holographic
Principle [112]. In this case, the AdS/CFT correspondence is the first practical realization
of the holographic principle in which there exists a bulk-to-boundary correspondence.

Soon after Maldacena’s paper, Witten, Gubser, Polyakov, and Klebanov provided a
holographic dictionary [113, 114]. Hence, the idea is to compute quantities on the easy
side of the duality, namely classical gravity being described by general relativity, and then
translate the result to the hard part, i.e., the strongly coupled field theory. Additionally,
the original duality was extended to embrace thermal field theory [115], opening new ways
to study strongly coupled plasmas such as the QGP. Next, around 2005, one of the most
important papers in holography came out. In this paper, Son, Kovtun, and Starinets
showed that the ratio between the shear viscosity and the entropy density is given by
Eq. (1.7) for a broad range of holographic models [56]13. This result for η/s, which is
in the ballpark of the QGP created in heavy ion collisions, sparked great interest in the
scientific community to study strongly coupled plasmas via AdS/CFT. Now, after many
years of efforts, we have many interesting possibilities to pursue this goal: ability to study
non-equilibrium physics [59]; development of more realistic phenomenological models that
match lattice EoS with magnetic field or chemical potential [68,70,119–121]; developments
in fluid dynamics [122]; study of hard probes and jets from a strongly coupled point of
view [123–125]. The list goes on and on.

It is also challenging to study strongly coupled systems in condensed matter systems.
For instance, one can find strongly interacting QFT’s in ultracold fermi systems [126],

12The “super” in this case refers to the supersymmetry that is incorporated in these string theories.
13More precisely, this result holds for any holographic theory whose gravitational dual is isotropic and

its Lagrangian has at most two derivatives of the metric. For instance, in Gauss-Bonnet gravity, where
one includes corrections proportional to the square of the curvature (i.e. ∝ R2), the result (1.7) is no
longer valid [116–118].
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graphene [127], and high Tc superconductors [128]. Theoretical tools to investigate these
phenomena are scarce, and AdS/CFT – or better AdS/CMT [129, 130] in this context –
came to help theorists to devise models able to describe strongly interacting systems.

Today, it is fair to say that the majority of the original community of string theorists
that worked on AdS/CFT now turned their eyes towards quantum information theory
[131]. This interest was sparked by the seminal papers of Ryu and Takayanagi [132,133],
in which the authors calculated the entanglement entropy (EE) of a QFT via AdS/CFT.
Additionally, the EE entropy is extremely hard to be computed in field theory and only
CFT’s in low dimensions have their EE known [134]. In hindsight, this led to efforts
towards understanding classical gravity as an emergent phenomenon from quantum infor-
mation theory [135].

The main goal of the work done in this thesis is to use the capacity of holography to
compute non-equilibrium phenomena in strongly coupled plasmas with nonzero chemical
potential. In this context, near equilibrium dynamics can be understood in terms of the
quasinormal modes (QNM) [136]. On the other hand, far-from-equilibrium dynamics is
harder to study and one needs a sophisticated scheme to solve the time dependent Ein-
stein’s equations. In holography, far-from-equilibrium dynamics started with Chesler and
Yaffe in 2008, in a paper about the isotropization of strongly coupled N = 4 SYM, where
they found a “nested” way to organize the corresponding partial differential equations
in the bulk. Soon after, several other papers followed this idea, helping define how first
principles calculations in non-equilibrium phenomena may be done in strongly coupled
plasmas. In other words, with this method one can study how the plasma thermalizes and
acquires hydrodynamic behavior.

1.4 Structure of this thesis
In this section there is a detailed summary of the work done in this thesis.

• In Chapter 2 further explanations regarding the AdS/CFT duality are given. After
an overview of the original conjecture proposed by Maldacena, it is explained how
one can compute observables using the holographic dictionary. In particular, there
is an emphasis in how one can compute one-point functions in the gauge theory
using the correspondence. This procedure is fundamental to obtain the one-point
functions (〈Tµν〉, 〈Jµ〉, 〈Oφ〉 [137]) discussed in Chapters 3 and 4.

• Chapter 3, which is based on Ref. [137], starts the part of original work done in
this thesis. There, it is presented in more details the holographic model 1-R charged
black (1RCBH) [138–143], which possesses a critical point. This model is a rigorous
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top-down model obtained from truncations of the superstring theory. The point of
this Chapter is to perform the first study of the homogeneous isotropization near a
critical point. Moreover, for this far-from-equilibrium calculation, several numerical
details are given in this chapter as well.

• Chapter 4 is based on Ref. [144] and it deals with the holographic 1RCBH model
undergoing Bjorken flow [145]. The goal here is to assess the influence of the critical
point on the hydrodynamization process of a non-Abelian strongly coupled plasma.
In other words, we investigate how hydrodynamics emerges near a critical point
starting from initial conditions out-of-equilibrium.

• Chapter 5 ends the main body of this thesis with conclusions and outlook.

• Appendix A is an augmented version of Ref. [146] that incorporates the appendix of
Ref. [137]. This appendix analyzes the near-equilibrium behavior of the 1RCBH via
its QNM’s. This is also interesting because the near-equilibrium behavior is captured
by the final evolution of the plasma in the homogeneous isotropization process. More
discussions about this can be found in Chapter 3.

1.4.1 Units and conventions used throughout this thesis

In this thesis we use natural units where c = ~ = kB = 1. For instance, in this
convention ,Eq. (1.7) becomes η/s = 1/(4π).

Capital Latin indices {M,N, . . . } denote the coordinates {t, r, x, y, z} of a five dimen-
sional asymptotically AdS spacetime where the gravity theory is defined, whereas Greek
indices {µ, ν, . . . } represent the coordinates {t, x, y, z} of the four dimensional boundary.
Additionally, we use a mostly plus metric signature.

Given a line element of a generic pseudo-Riemannian manifold

ds2 = gµνdx
µdxν (1.16)

where gµν is the metric for a specific chart xµ, the Riemann tensor will be given by the
expression

Rα
βµν = ∂µΓαβν − ∂νΓαβµ + ΓαµσΓσβµ − ΓανσΓσβµ, (1.17)

with Γµαβ being the Christoffel symbol, defined as

Γαµν = 1
2g

ασ (∂νgσµ + ∂µgσν − ∂σgµν) . (1.18)

Regarding the radial coordinate of the AdS5 space, we use the letter r to represent it
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when the boundary is located at infinity (rbdry → ∞), and we use the letter u when the
boundary is at the origin (ubdry = 0).



Chapter 2

The gauge/gravity duality

Now it is time to take a closer look at the gauge/gravity duality, which started a
revolution in high energy physics by giving tools and recipes to study strongly coupled
quantum field theories. Moreover, it is based on this framework that the whole work of
this thesis is done.

In this work holography is introduced in a more or less chronological order, i.e. we
first give the original argument presented by Maldacena1, then we discuss the holographic
dictionary derived by Gubser, Klebanov, Polyakov, and Witten [113, 114]. In the end of
this chapter there is a thorough discussion of the holographic renormalization procedure
under the light of modern algorithms.

Moreover, after twenty years of the AdS/CFT duality proposal, there is now plenty of
good quality reviews [55,147,148] and books [130,149,150] available for further reading.

2.1 The original AdS/CFT correspondence conjec-
ture

Before we present the decoupling argument that led Maldacena to establish the Ad-
S/CFT duality, let us analyze first some arguments that give support to the correspon-
dence.

Back in 1973, ’t Hooft considered the large Nc limit of SU(Nc) gauge theories [110] in
an attempt to simplify the theory in the non-perturbative regime and solve it through an
expansion in powers of 1/Nc

2. To follow his argument, we first have to understand what
is the effective coupling of a gauge theory in terms of its original coupling gYM and the

1Another way to introduce the AdS/CFT duality is via the renormalization group and how the radial
coordinate of the AdS5 space may be viewed as an energy scale of the theory [147].

2Notice also that in four dimensions the Lagrangian of a pure gauge theory does not have any dimen-
sional parameter and the energy scale Λ of the theory arises from dimensional transmutation.

19
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number of colors Nc. The beta function of a pure gauge theory is given by

µ
dgYM
dµ

= −11
3 Nc

g3
YM

16π2 +O(g5
YM), (2.1)

where µ is the energy scale. Taking now the ’t Hooft limit Nc → ∞ while keeping the ’t
Hooft coupling λt ≡ g2

YMNc fixed (i.e. gYM → 0), the beta function (2.1) can be rearranged
as

µ
dλt
dµ

= − 11
24π2λ

2
t +O(λ3

t ), (2.2)

whose expression makes patent the asymptotic freedom character of the theory. Moreover,
the perturbative expansion parameter of large Nc Yang-Mills theory is λt.

With the definition of λt at hand, it is time to organize the perturbative expansion
of the Yang-Mills theory in terms of Nc and λt. To accomplish this, we take the U(Nc)
Yang-Mills Lagrangian

L = − 1
g2
YM

TrFµνF µν , (2.3)

and redefine the gauge field in a way that the final Lagrangian reads

L = −Nc

λt
TrFµνF µν . (2.4)

For the Feynman rules of large Nc theories that come from the Lagrangian (2.4), it is
easier to work with the so-called double line formalism since it saves us from dealing with
structure constants fabc. The propagator of the gauge field, in the adjoint representation,
is given by the product of a fundamental and anti-fundamental representations of the
gauge field3

〈AabAcd〉 ∝ δadδ
b
c, (2.5)

where A is the gluon field, and a, b = 1, 2, . . . , Nc. The representation of this propagator
in the double line formalism for the Feynman diagrams is shown in Fig 2.1. We also give
in Fig. 2.1 the Feynman rules that are necessary to perform the power counting. For more
examples and details about large Nc gauge theories we indicate Ref. [151].

Hence, a generic vacuum amplitude A with P propagators, V vertices and L loops has
the following schematic form

M(P, V, L) ∝
(
g2
YM

)P ( 1
g2
YM

)V
(Nc)L = NV−P+L

c λP−Vt , (2.6)

where in the last step we wrote the answer in terms of the ’t Hooft coupling. Now, the
3For an SU(Nc) theory there is also a mixing term proportional to 1/Nc (δab δcd). However, as Nc →∞,

this difference becomes negligible.
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Figure 2.1: Feynman rules for the gauge theory in the double line formalism in terms of N
and gYM . In the scattering amplitude, the propagator contributes with g2

YMδ
d
aδ
b
c, the vertices

contribute with 1/g2
YM , and the loops contribute with δaa = Nc.

key observation to relate a gauge theory amplitude to the ones found in string theory is
to evoke Euler’s characteristic formula, i.e. [152,153]

V − P + L = 2 + 2g, (2.7)

where g is the genus number, that is, the number of “holes” in the topology of the Feynman
diagram. In Fig. 2.2 there are two examples of Feynman diagrams with different topologies.

The final expansion form for the scattering amplitude becomes

M =
∞∑
g=0

N2−2gfg(λt). (2.8)

Therefore, from the above expression it is evident that the planar diagrams, the ones
with g = 0, will be the dominant ones in the perturbation expansion as Nc →∞. What is
remarkable in Eq. (2.8) is that it has the same structure of vacuum-to-vacuum amplitudes
of string theory. Moreover, since the argument of large Nc was rather general, one may
conclude that different gauge theories will correspond to different truncations of the dual
string theory, if it exists.

Now, let us analyze the argument that led to the AdS/CFT duality. The theoretical
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Figure 2.2: Different topologies for scattering amplitudes in the double line formalism. Accord-
ing to Eq. (2.8), scattering amplitudes whose topology has higher genus-number are suppresed in
the large Nc limit. Hence, the diagram on the right (torus) is suppressed when compared to the
diagram on the left (sphere).

background is superstring theory [152, 153], more specifically the 10-dimensional type
IIB theory. This decoupling argument is based on two rather distinct views of the same
physical situation: imagine that you have a stack of Nc coincident D3-branes4 inserted in
spacetime, then, you can proceed to describe this situation as follows:

(a) Due to the massless spectrum of open strings living at the brane, each D3-brane
associated with type IIB theory carries a U(1) maximally symmetric gauge field in
3+1 dimensions. Hence, the stack of Nc coincident D3-branes will possess a field
theory description in terms of U(Nc) N = 4 SYM theory. This is the open string
point of view.

(b) If the number of D3-branes is large (Nc � 1) in a way that the energy density
increases, it is expected that spacetime will curve and gravity must be included in
order to describe the physics. Indeed, in the low energy limit (α′ → 0), supergravity
solutions were known since the beginning of the 90’s [156, 157]. The supergravity
solution corresponding the stack of D3-branes gives the famous AdS5 × S5 space,
which is valid when the AdS radius is large, i.e. when Nc is large. This is the closed
string point of view.

Although different at first sight, the two descriptions above were derived from the
same physics, hence, they are equivalent, i.e. (a) = (b). This observation led one to
conjecture [54]

N = 4 SU(Nc) SYM in four dimensions = type IIB string theory in AdS5 × S5. (2.9)

4Dp-branes are soliton-like extended objects with p dimensions where open strings can end [154].
Indeed, the name of this object is a direct reference to the Dirichlet boundary condition. Moreover, as
showed by Witten in 1995 [155], D-branes are interesting objects because they incorporate gauge theories
in their worldvolume.
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To better understand the limits in which this duality is valid, we write the following
relation

L4

l4s
= g2

YMNc = λt, (2.10)

where L is the AdS radius, and ls is the string length. Therefore, if the AdS radius is large
(supergravity solution is valid), then the ’t Hooft coupling is also large, which means that
there is a weak/strong duality at play here.

The basic consistency checks that one could perform is to compare the symmetries of
each side of the duality. For instance, AdS5 × S5 has 32 Killing spinors and N = 4 SYM
has 32 supercharges. Nowadays, after 20 years of the conjecture, we have many precise
tests of the duality [158,159].

2.2 Obtaining observables from the holographic dic-
tionary

A duality is only useful if you can compute quantities on one side and translate the
result to the other side. In the case of the AdS/CFT correspondence, we want to do some
classical general relativity calculations in AdS, which is the “easy” side, and translate this
result to the CFT side. Below, we shall see how to relate the partition function of the
CFT side to the gravity action of the dual theory.

Given a generic field (Φ) with its source (Φ0) and corresponding expectation value
(O), the “GKPW” rule states that [113,114]

〈
exp

(∫
x

Φ0O
)〉

CFT
= ZString[Φ], (2.11)

where ZString is the partition function of the IIB superstring theory. Additionally, the
above expression is only meaningful if the procedure of holographic renormalization, which
we explain in the next section, is performed.

In the classical approximation, the partition function of the string side is simplified to

ZString[Φ] ≈ exp (−Sclas[Φ(u = 0, x) = Φ0]) , (2.12)

where the on-shell action is assumed. In this supergravity approximation, the partition
function is approximated by a steepest descent method in which the classical solution is
the saddle point.

Moreover, to compute Eq. (2.11), one first need to know what is the field on the gravity
side that is dual to the operator on the CFT side, i.e. the field-operator map. For instance,
the dual field in the bulk corresponding to the stress-energy tensor operator (T µν) is the
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metric (gMN) of the AdS space. Once the map between fields on the gravity side and
operators of the CFT side has been identified, one uses the GKPW rule (2.11) to obtain
the partition function.

In general, at least in Euclidean signature5, any n-point functions can be obtained via
functional derivatives of the partition function with respect to the source and then taking
the limit where the source vanishes, i.e.

〈O1(x1) . . .On(xn)〉 = δnZstring[J ]
δJ1(x1) . . . δJn(xn)

∣∣∣∣∣
J=0

, (2.13)

where the source is the boundary value of the field, e.g. Φ0(~x) = Φ(u = 0, ~x).
Furthermore, to introduce temperature in the dual field theory, one has to insert

a black hole in the AdS space and then all the thermodynamic properties of the theory
follows from the laws of black holes thermodynamic. For instance, the temperature is given
by Hawking’s temperature [162], whilst the entropy is calculated using the Bekenstein-
Hawking prescription [163,164].

2.3 Holographic renormalization
In this section it is given the details on how one may obtain the one-point functions

〈Tµν〉, 〈Jν〉, and 〈Oφ〉 of an Einstein-Maxwell-Dilaton (EMD) theory using the holographic
renormalization procedure [165–167]. As remarked in Sec. 1.4, the one-point functions
are the core observables probed throughout this thesis. The purpose of the holographic
renormalization is to determine the counter-term action Sct that removes the divergences
of the theory when one calculates one-point functions.

The general EMD holographic model is characterized by the following five dimensional
bulk gravitational Lagrangian6,

S = 1
2κ2

5

∫
M
d5x
√
−g

[
R− f(φ)

4 FMNF
MN − 1

2(∂Mφ)2 − V (φ)
]
, (2.14)

where κ2
5 = 8πG5 with G5 being the five dimensional Newton’s constant, FMN = ∂MAN −

∂NAM , with AM being the Maxwell gauge field, and φ is the dilaton field. To perform the
holographic renormalization, we do not need to specify the dilaton potential V (φ) and
the coupling f(φ). The only thing that we need to specify is the mass (m) of the dilaton,
i.e.

m2L2 = V ′′(0). (2.15)
5The generalization to Minkowski signature is somewhat non-trivial [160, 161], especially for higher

point functions [113].
6The Chern-Simon term is not included because it does not appear in the 1RCBH holographic model.
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The reason for that is because the mass of the dilaton is related to its asymptotic behavior,
i.e. φ(r → ∞, x) ∼ r∆−4, where ∆(∆ − 4) = m2L2 is the scaling dimension. Moreover,
the scaling dimension of the dilaton reveals which kind of the deformation it induces in
the original conformal field theory.

The possible deformations of the theory are

• 4−∆ > 0: relevant operator.

• 4−∆ < 0: irrelevant operator.

• 4−∆ = 0: marginal operator.

In this thesis we are interested in a relevant operator, where the deformation is weak
in the UV (φ(r → ∞) → 0) and strong in the IR. Indeed, the 1RCBH has ∆ = 2 (c.f.
Chap. 3), which means that the analysis done below will be valid for this deformation
only. After this interlude about the EMD holographic model, whose details are given in
Chap. 3, we can continue with the renormalization procedure.

In what follows, and as it is common in the treatment of holographic renormalization,
we adopt the Fefferman-Graham (FG) coordinates in which there is an explicit relation
between the renormalization group (RG) flow at the boundary QFT and the bulk radial
coordinate

ds2
FG = dρ2

4ρ2 + γµν(ρ, x)dxµdxν , (2.16)

with the Greek indices running through the coordinates of the dual QFT, x ∈ {t, ~x}, and
ρ denoting the radial coordinate in the FG chart, where the boundary lies at ρ = 0.

The first step to renormalize the on-shell action is to identify, in a covariant manner,
what are the divergent terms. This analysis is done by integrating out the ρ-direction in
the on-shell action up to a near-boundary hypersuface ρ = ε that acts as a cutoff, defining
then a regulated action, Sreg = (Sbulk + SGHY )|ε. Once the divergences of the regulated
action are identified, the counterterm action Sct is defined as follows [165–167]

Sct = −(divergent terms of Sreg). (2.17)

The subtracted action, Ssub, which is supposed to be evaluated at the cutoff ρ = ε, is
given by

Ssub = Sreg + Sct = Sbulk + SGHY + Sct. (2.18)

The renormalized on-shell action is obtained by taking the limit ρ→ 0 on the subtracted
action, i.e.

Sren = lim
ρ→0

Ssub. (2.19)
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Once the renormalized on-shell action (2.19) is found, we follow the holographic dic-
tionary and take functional derivatives of the renormalized action with respect to the
boundary values of the bulk fields to obtain the corresponding one-point functions in the
dual QFT. In particular, for an EMD model, the important one-point functions are7

〈Tµν〉 = − 2
√−g(0)

δSren
δgµν(0)

= − lim
ρ→0

1
ρ

2√
−γ

δSsub
δγµν

, (2.20)

〈Jµ〉 = 1
√−g(0)

δSren
δA(0)µ

= lim
ρ→0

1
ρ2

1√
−γ

δSsub
δAµ

, (2.21)

〈Oφ〉 = 1
√−g(0)

δSren
δφ(0)

= lim
ρ→0

ln ρ
ρ

1√
−γ

δSsub
δφ

, (2.22)

where gµν = ρ γµν is the metric of the boundary QFT, which we shall take to be Minkowski
at the end of the calculations. The subscript (0) denotes that these fields are computed
at the boundary of the asymptotically AdS space; we will give the precise meaning of it
below when we expand the fields near the boundary.

2.3.1 Counterterm action

Counterterm action for ∆ = 2

The counterterm action for the 1RCBH model, which is an EMD model whose bulk
scalar field has dimension ∆ = 2, is the same counterterm action for the Coulomb branch
flow [167]

Sct = 1
κ2

5

∫
∂M

d4x
√
−γ

[
−3− 1

4R[γ] + ln ρ
16

(
Rµν [γ]Rµν [γ]− 1

3R[γ]2 + f(0)FµνF µν
)

+ 1
2

(
1 + 1

ln ρ

)
φ2
]
, (2.23)

where f(0) = f(φ = 0), and R[γ], Rµν [γ], are the respective Ricci scalar and Ricci
tensor of the induced metric at the boundary, γµν . From now on, though, in order to
simplify the notation, we will suppress the explicit metric dependence γ of the curvature
tensors evaluated at the boundary of the bulk space, e.g. R ≡ R[γ]. Also, from the term
multiplying ln ρ one can already see what is the trace anomaly of the theory, which is zero
for the case of the conformal 1RCBH model8. Regarding the derivation of the counterterm
action, we refer the reader to Ref. [169] for very enlightening and clear discussions about

7Note that for a bulk scalar field with dimension ∆ = 2, as it is the case of the dilaton in the 1RCBH
model, we need to introduce an extra ln ρ term to regularize the expectation value of its dual scalar
operator in the boundary QFT.

8We remark that, although a chemical potential does not induce a trace anomaly, a magnetic field
does induce a trace anomaly in the SYM plasma [168].
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it. Also, one may find insightful discussions about the derivation of counterterm actions
in the EMD context using the Hamiltonian approach in Ref. [170].

Moreover, it is important to know that, due to the fact that in the 1RCBH model the
scalar field and the Abelian gauge field do not break the original conformal symmetry
of the SYM plasma, one may add finite contributions to the counterterm action (2.23),
which unveils the scheme dependence of the holographic renormalization procedure. The
finite counterterms that one may add are

Sfinitect = 1
κ2

5

∫
∂M

d4x
√
−γ

[
c1FµνF

µν + c2φ
2
]
, (2.24)

where {c1, c2} ∈ R. In short, to see why these terms are finite, one just needs to recall
that, with the scaling dimensions of the EMD fields for the 1RCBH model, one obtains

√
−γ ∼ ρ−2, FµνF

µν ∼ ρ2, φ2 ∼ ρ2,

⇒
√
−γFµνF µν ∼ constant, and

√
−γφ2 ∼ constant. (2.25)

Consequently, one may try to simplify the final expressions for the one-point functions of
the dual QFT by including some finite counterterms, i.e.

Sct → Sct + Sfinitect . (2.26)

In this work, though, we will not resort to the addition of any extra finite term to the
counterterm action (2.23).

2.3.2 One-point functions

One-point functions for ∆ = 2

With the counterterm action at hand, we now have the subtracted on-shell action
(2.18), which means that we can proceed with the functional derivatives to extract the
one-point functions given in Eqs. (2.20)—(2.22). The analysis for the scalar field carried
out here is based on Appendix C of Ref. [169], whilst the vector field analysis is based on
Ref. [171]. Nonetheless, the full analysis of the EMD holographic renormalization is done
for the first time here, and its results are essential for the next chapters.

It is clear from Eqs. (2.20)—(2.22) that we need to expand the fields near the boundary.
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Thus, we perform the FG expansion of the EMD fields9

γµν(ρ, x) = 1
ρ
γ(0)µν(x) + γ(2)µν(x) + γ(2,1)µν(x) ln ρ

+ ρ
(
γ(4)µν(x) + γ(4,1)µν(x) ln ρ+ γ(4,2)µν(x) ln2 ρ

)
+O(ρ2), (2.27)

Aµ(ρ, x) = A(0)µ(x) + ρ
(
A(2)µ(x) + A(2,1)µ(x) ln ρ

)
+O(ρ2), (2.28)

φ(ρ, x) = ρ
(
φ(0)(x) + φ(0,1)(x) ln ρ

)
+O(ρ2). (2.29)

Note that in order to obtain the one-point functions, it suffices to expand the fields up
to O(ρ) since the remaining terms vanish as ρ→ 0. The independent terms of the above
expansions are {φ(0), φ(0,1), A(0)µ, A(2)µ, γ(0)µν , γ(4)µν} and, thus, any other coefficient may
be recast in terms of these independent ones. Furthermore, we are keeping here the analysis
fairly general for any EMD model with ∆ = 2; we shall only specialize to the 1RCBH
background at the end of the calculations.

Next, one substitutes the above near-boundary expansions for γµν , Aµ, and φ into Eqs.
(2.20)—(2.22) to obtain the explicit formulas for the one-point functions. However, since
the required algebra is not so simple, we give some further details below. First, let us
provide the formulas for the variation of the regularized on-shell action with respect to
the sources10

1
ρ

2√
−γ

δSsub
δγµν

= 1
ρ

(
T regµν + T ctµν

)
, (2.30)

1
ρ2

1√
−γ

δSsub
δAµ

= 1
ρ2J

µ, (2.31)

ln ρ
ρ

1√
−γ

δSsub
δφ

= − 1
κ2

5

ln ρ
ρ

(
−ρ∂ρφ+

(
1 + 1

ln ρ

)
φ

)
, (2.32)

where

T regµν = 2√
−γ

δSreg
δγµν

= 1
κ2

5
(Kµν − γµνK) , (2.33)

T ctµν = 1
κ2

5
(−2Yµν + Lctγµν) , (2.34)

Jµ = 1
κ2

5

(
ρf(φ)γµν∂ρAν + f(φ)

4 ∇νF
µν ln ρ

)
, (2.35)

9Note that in the subscripts (n,m) of the coefficients of these expansions, n = 0 denotes the leading
order term in ρ (as it goes to zero) and m denotes the power of ln ρ. This is reminiscent of the general
form of these expansions presented in Eqs. (3.18)—(3.22).

10When we integrated the ρ coordinate by parts in the variation of the integrals we considered that
the normal vector nM = (−2ρ, 0, 0, 0, 0) at the boundary of the manifold is “outward-pointing”, i.e.
gMNn

MnM = 1.
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with Kµν = ρ∂ργµν denoting the extrinsic curvature of the boundary and K = γµνKµν its
trace. We also have defined the following objects

Lct = −3− 1
4R + 1

2

(
1 + 1

ln ρ

)
φ2 + ln ρ

16

(
RµνRµν −

1
3R

2 + f(0)FµνF µν
)
, (2.36)

Yµν = δLct
δγµν

= 1
4Rµν + ln ρ

[
−f(0)

8 FµσF
σ
ν + f(0)

32 FσλF
σλγµν + 1

32γµνR
σλRσλ

+ 1
24RµνR−

1
96γµνR−

1
8R

σλRµσνλ + 1
48(∇µ∇νR)− 1

16�Rµν + 1
96γµν�R

]
. (2.37)

Substituting Eq. (2.32) into Eq. (2.22), and performing the asymptotic expansion of the
dilaton field (2.29), we obtain the expectation value of the dual scalar operator at the
boundary QFT

〈Oφ〉 = − 1
κ2

5
φ(0). (2.38)

By the same token, if we substitute Eq. (2.35) into Eq. (2.31), expand the result-
ing equation near the boundary and take the limit ρ → 0, we obtain the renormalized
expectation value of the U(1) R-current,

〈Jµ〉 = 1
κ2

5

(
Aµ(2) + Aµ(2,1)

)
. (2.39)

Moreover, the leading order solution of Maxwell’s equations (3.9) under the expansion
(2.27)—(2.29) give us a relation between A(2,1)µ and A(0)µ, i.e.

A(2,1)µ = f(0)
4 ∇νF

ν
(0)µ , (2.40)

which leads us to the final form the U(1) R-current,

〈Jµ〉 = 1
κ2

5

(
A(2)µ + f(0)

4 ∇νF
ν

(0)µ

)
. (2.41)

Notice, however, that the last term of the equation above is absent in the 1RCBH back-
ground since ∂µA(0)ν = 0.

Regarding the one-point function 〈Tµν〉, the algebra is a little bit more complicated.
Thus, in order to simplify the analysis, we will only focus on the finite contributions of



2.3 HOLOGRAPHIC RENORMALIZATION 30

Eq. (2.30)11. The finite terms coming from T regµν are

−κ
2
5
ρ
T regµν = −5γ(4)µν − γ(4,1)µν + γ(2)µνγ

σ
(2)σ + γ(0)µν(2γ σ

(4)σ + γ σ
(4,1)σ − γ(2)σλγ

σλ
(2))

+ divergent terms + vanishing terms as ρ→ 0. (2.42)

On the other hand, T ctµν also contributes to the finite part of the total stress-energy
tensor, i.e.

−κ
2
5
ρ
T ctµν = 3γ(4)µν + 1

4γ(2)µνR(0) + 1
4γ

µσ
(2)R(0)µσνλ + 1

4∇ν∇µγ
σ
(2)σ −

1
4∇ν∇σγ

σ
(2)ν

− 1
4∇σ∇µγ

σ
(2)ν + 1

4�(0)γ(2)µν + 1
4γ(0)µν

(
−Rσλ

(0)γ(2)σλ + 4φ2
(0) + 8φ(0)φ(0,1)

+∇σ∇λγ
σλ
(2) −�(0)γ

σ
(2)σ

)
+ divergent terms + vanishing terms as ρ→ 0. (2.43)

Hence, the counterterms impact the finite result for the one-point functions, even though
their original purpose was to eliminate the divergences of the on-shell action.

Proceeding with the tensorial algebra to obtain the one-point function of the stress-
energy tensor, the next step is to sum Eq. (2.42) with Eq. (2.43), i.e.

−κ2
5〈Tµν〉 = −2γ(4)µν − γ(4,1)µν + γ(2)µνγ

σ
(2)σ + 1

4γ(2)µνR(0) + 1
4γ

µσ
(2)R(0)µσνλ

+ 1
4∇ν∇µγ

σ
(2)σ −

1
4∇ν∇σγ

σ
(2)ν −

1
4∇σ∇µγ

σ
(2)ν + 1

4�(0)γ(2)µν

+ 1
4γ(0)µν

(
8γ σ

(4)σ + 4γ σ
(4,1)σ − 4γ(2)σλγ

σλ
(2) −Rσλ

(0)γ(2)σλ + 2φ2
(0) + 4φ(0)φ(0,1)

+∇σ∇λγ
σλ
(2) −�(0)γ

σ
(2)σ

)
. (2.44)

Now we are close to give the full expression for 〈Tµν〉. The final step consists in ex-
pressing the coefficients of the metric expansion, such as γ(2), in terms of the curvature
tensors of the boundary metric γ(0)µν . This step, though, requires more laborious algebra,
and more definitions are needed in order to do it in an simple way.

A convenient way to expand the EMD equations of motion using the FG coordinates
is to use the ADM decomposition of general relativity [172, 173] in which one considers
spacelike foliations keeping ρ = constant at each foliation. We suggest at this point Ref.
[170] for a more complete discussion about this subject. Using the ADM decomposition,
from where the Gauss-Codazzi equations are derived, the (µν)-components of Einstein’s

11Since all the divergences are mutually canceled out by taking into account the counterterms.
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equations become

0 = 2ρ2∂2
ργµν + ρ2γσλ(∂ργµσ)(∂ργνλ)− 2ρ2γσλ(∂ργσλ)(∂ργµν)−Rµν + 1

2∂µφ∂νφ

+ 1
3γµνV (φ) + 2ρ2f(φ)(∂ρAµ)(∂ρAν)−

1
12f(φ)FσλF σλγµν + 1

2f(φ)FµσF σ
ν

− 2
3f(φ)γµνγσλ(∂ρAσ)(∂ρAλ). (2.45)

One can now expand the above equation near the boundary using Eqs. (2.27)—(2.29),
obtaining

γ(2)µν = 1
12
(
γ(0)µνR(0) − 6R(0)µν

)
, (2.46)

γ(2,1)µν = 0, (2.47)

γ(4,2)µν = − 1
12φ

2
(0,1)γ(0)µν , (2.48)

γ(4,1)µν = −1
8f(0)F(0)µσF

σ
(0)ν + 1

8R
σλ
(0)R(0)µσνλ −

1
24R(0)µνR(0) + 1

16�(0)R(0)µν

− 1
48∇µ∇νR(0) + γ(0)µν

[ 1
32f(0)F(0)σλF

σλ
(0) −

1
32R(0)σλR

σλ
(0) + 1

96R
2
(0)

−
φ(0)φ(0,1)

6 − 1
96�(0)R(0)

]
, (2.49)

γ µ
(4)µ = 1

48f(0)F(0)µνF
µν
(0) + 1

16R(0)µνR
(0)µν −

R2
(0)

72 −
2
6φ

2
(0) −

1
6φ

2
(0,1). (2.50)

Finally, by substituting Eqs. (2.46)—(2.50) into Eq. (2.44), we obtain the expectation
value of the stress-energy tensor of the dual QFT

κ2
5〈Tµν〉 = 2γ(4)µν −

1
4

(
Rσ

(0)µR(0)σν −
3
2R

σλ
(0)R(0)µσνλ + 1

4∇µ∇νR(0) −
3
4�(0)R(0)µν

)

+ 1
8f(0)F(0)µσF

σ
(0)ν −

γ(0)µν

2

(
f(0)
48 F(0)σλF

σλ
(0) −

φ2
(0)

3 + φ(0)φ(0,1) −
2φ2

(0,1)

3

)

− 1
32γ(0)µν

(
R(0)σλR

σλ
(0) + 1

9R
2
(0) −�(0)R(0)

)
, (2.51)

which is valid for any five dimensional EMD theory with a bulk scalar field with dimension
∆ = 2 and for any kind of boundary.

Specializing the above results for the 1RCBH background will vastly simplify the
expression for 〈Tµν〉. First, the conformal boundary of such theory is flat (i.e., Minkowski),
which means that all the curvature tensors are identically zero. Second, if one takes the



2.3 HOLOGRAPHIC RENORMALIZATION 32

trace of Eq. (2.51), the resulting expression reads

κ2
5〈T µµ〉 = −2φ(0)φ(0,1) + φ2

(0,1) −
1
8

(
R(0)µνR

µν
(0) −

1
3R

2
(0)

)
− f(0)

8 F(0)µνF
µν
(0) . (2.52)

Hence, one arrives at a very important result: in a conformal EMD model with ∆ = 2
the logarithmic terms on the near-boundary expansions of the bulk fields are absent. This
sentence justifies the assumption made in Sec. 3.2 when we set to zero the logarithmic
terms of the near-boundary asymptotic expansions. Furthermore, we remark that the
finite counterterm contribution (2.24) does not modify the trace anomaly of the theory.

From the previous discussion, the stress-energy tensor for the 1RCBH model reads,

〈Tµν〉 = 1
κ2

5

[
2γ(4)µν + 1

8f(0)F(0)µσF
σ

(0)ν − γ(0)µν

(
f(0)
96 F(0)σλF

σλ
(0) −

φ2
(0)

6

)]
, (2.53)

which is the one-point function adopted throughout this work. We remark once more that,
due to the fact ∂µA(0)ν = 0 in our setup, the Maxwell terms in Eq. (2.53) will vanish.

A minimal internal consistency check of the above results may be done by looking at
the trace Ward Identity [170,174], i.e.

〈T µµ〉 − (4−∆)φ(0,1)〈Oφ〉 = A, (2.54)

where A denotes the trace anomaly of the theory. For the specific case of the EMD theory
with ∆ = 2, the anomaly is given by

A = Agravity +AMaxwell +Adilaton, (2.55)

where,

Agravity = 1
8

(
R(0)µνR

µν
(0) −

1
3R

2
(0)

)
, AMaxwell = −f(0)

8 F(0)µνF
µν
(0) , Adilaton = φ2

(0,1).

(2.56)



Chapter 3

Homogeneous isotropization and
equilibration of a strongly coupled
plasma with a critical point

This chapter initiates some novel applications of the gauge/gravity duality (see Chap-
ter 2) in the calculation of observables in strongly coupled non-Abelian plasmas, such as
the QGP described in Chapter 1. More specifically, this chapter is concerned with the
homogeneous isotropization and equilibration of a strongly coupled plasma with a critical
point. This chapter is based on Ref. [137].

.
With the advent of the holographic gauge/gravity duality [54,113–115], it has become

possible to study physical properties of some strongly coupled quantum systems using
classical gravity in higher dimensions (for reviews see, e.g., [57, 147, 175]). Concerning
strongly correlated quantum fluids, this framework has made it possible the investigation
of several aspects of such systems, such as their thermodynamics and hydrodynamics
[56, 176, 177], quasinormal modes [178–180], and also the far-from-equilibrium dynamics
describing the relaxation of holographic fluids toward thermodynamic equilibrium in many
different settings (see e.g. [59,181] for recent reviews).

One of the main attractive features of holography is its unique ability to deal with the
entire evolution of a strongly coupled fluid within a single framework, starting from far-
from-equilibrium anisotropic initial states and dynamically evolving them passing through
different stages comprising several kinds of characteristic “relaxation times” until reaching
thermodynamic equilibrium. These different relaxation times characterize, for instance,
the onset of applicability of hydrodynamics (known as the “hydrodynamization time”,
which also depends on the specific formulation of hydrodynamics considered), the onset
of nearly isotropization of the system (when the longitudinal and transverse pressures

33
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in a given flow are approximately equal), the onset of applicability of the equilibrium
equation of state in nonconformal plasmas (known as the “EoSization time” [182]), and
the onset of true thermalization (when all the physical observables of the theory have
approximately relaxed to their equilibrium values). In fact, one of the main outcomes of
holographic investigations of far-from-equilibrium strongly coupled quantum fluids was
the conclusion that in some cases the system may hydrodynamize when the fluid is still
significantly anisotropic and far-from-equilibrium [95,183–185]. This finding, together with
recent calculations [180,186–188] that showed that the gradient expansion diverges, have
significantly changed our understanding of relativistic hydrodynamics (for a review see
[97]).

The fast expanding fireball produced in ultrarelativistic heavy ion collisions at RHIC
[38–41] and LHC [189] is probably the most remarkable example of a dynamical system
actually realized in nature featuring a very rich and complex time evolution characterized
by both hard (i.e., perturbative) and soft (nonperturbative) physics. Just before the heavy
ions collide, the gluon density inside these large nuclei at very high energies is expected
to saturate producing the so-called color glass condensate (CGC) [91, 190–192], which
has become the starting point for the initial conditions in heavy ion collisions. Right
after the collision the medium has an enormous amount of energy concentrated in a very
small volume, which starts to rapidly expand passing through different stages. Before 1
fm/c after the collision the system is expected to be a highly dense coherent medium
dominated by the dynamics of classical QCD fields called glasma [193]. As the system
keeps expanding, the glasma decoheres towards a new state of QCD matter called the
quark-gluon plasma (QGP) [85, 194, 195], whose relevant degrees of freedom correspond
to deconfined quarks and gluons.

In practice, the QGP produced in heavy ion collisions is well described by viscous
hydrodynamics with an equilibrium equation of state and transport coefficients which
are compatible with soft physics expectations [102,196–198], indicating that at this stage
the system is strongly coupled, contrary to the scenario just after the collision where
weak coupling physics plays a prominent role. As the QGP keeps expanding and cooling
down it eventually enters in the crossover region [199, 200] and hadronizes, giving place
to a hadron gas. Later stages of the temporal evolution of heavy ion collisions include the
regions of chemical freeze-out1 and the thermal or kinetic freeze-out2. After this stage, the
produced hadrons are essentially free and the yields of their decays reach the detectors of
the experimental apparatus providing a large amount of information about the evolution

1When inelastic collisions between the produced hadrons cease and the relative ratio between the
different kinds of particles remains fixed.

2When the average distance between the hadrons is large enough to make the nuclear interaction
between them effectively negligible, causing the momentum distribution of the particles to remain fixed.
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of the system.
The full dynamical evolution of high energy heavy ion collisions outlined above cannot

be completely described by the gauge/gravity duality since the former encompasses both
hard and soft physics while the latter can only deal with strongly coupled systems. In
fact, it is well-known that the asymptotically free ultraviolet regime of QCD cannot be
described by the gauge/gravity duality given that holographic models are usually char-
acterized by strongly coupled ultraviolet fixed points. On the other hand, even though
a rigorous top-down construction of a gravity dual of the hydrodynamized and strongly
coupled QGP is missing, there are phenomenological bottom-up EMD gauge/gravity con-
structions which have been shown to successfully describe in practice, not only on a qual-
itative level but also quantitatively, a plethora of thermodynamical and hydrodynamical
observables characterizing the physics of the strongly coupled QGP under many differ-
ent situations [68, 70, 119–122, 201–207]. Therefore, one striking question which is posed
in face of the above considerations is the following: in which cases could one hope, at
least in principle, to obtain possible useful insights (or even some quantitatively accurate
results) for the far-from-equilibrium dynamics of heavy ion collisions using holographic
techniques?

The answer to the question above is still unsettled but one may gauge the applicability
of gauge/gravity models to the analysis of heavy ion collisions by looking at some recent
results comparing lattice QCD calculations (which are performed in equilibrium) with
heavy ion experimental data. This kind of comparison may help to identify under which
conditions the expanding fireball would probe, through more stages, a strongly coupled
regime of QCD.

For instance, in Ref. [198] it was shown that in central heavy ion collisions at RHIC
and LHC the experimentally extracted ratio between the pressure and the internal energy
density of the QGP, (p/ε)exp(Teff) = 0.21 ± 0.10, is in good agreement with the corre-
sponding lattice QCD estimate, (p/ε)lQCD(Teff) ≈ 0.23, where Teff is half-way between the
effective temperatures associated with the collision energies

√
s = 200 GeV and

√
s = 2.76

TeV (at these high energies, the baryon chemical potential is negligible compared to the
temperature of the medium). Moreover, in Ref. [197] a state-of-the-art Bayesian analysis
was simultaneously applied to several physical observables while varying the free param-
eters of the model. The results in the space of parameters of the model which match
combined heavy ion data measured at RHIC and LHC within the interval

√
s = 200 GeV

— 2.76 TeV were also found to be consistent with results from lattice QCD simulations.
These findings show that the QGP produced in these collisions at high energies is not only
adequately described by hydrodynamics but also that the (equilibrium) QCD equation of
state obtained in lattice simulations may be trustfully used in hydrodynamic simulations
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of the spacetime evolution of the system at these high energies (i.e.,
√
s & 200 GeV).

Furthermore, it was also shown in Refs. [208, 209] that ratios between higher order
susceptibilities of baryon and electric charges calculated in equilibrium on the lattice give
a good description of experimentally measured ratios between moments of net-proton and
net-electric charge multiplicity distributions for collision energies

√
s ≥ 39 GeV; however,

for
√
s < 39 GeV the compatibility observed at higher energies between the set of chemical

freeze-out parameters extracted from the independent analysis performed in the baryon
and electric charge sectors on the lattice is not warranted [209]. This suggests that at
chemical freeze-out the system produced in heavy ion collisions is less close to equilibrium
if the system has a higher chemical potential (corresponding to a lower collision energy).

Recently, using a phenomenological holographic EMD model which quantitatively
reproduces lattice QCD thermodynamics at zero and nonzero baryon chemical poten-
tial [204, 207], it was found that an increase in the baryon chemical potential decreases
the shear viscosity times temperature to enthalpy density ratio, ηT/(ε + p), which gives
a measure of the fluidity of the medium [210]3. This indicates that the QGP at finite
baryon density remains strongly coupled. From the above considerations, one may expect
that the gauge/gravity duality is more likely to produce useful insights for the far-from-
equilibrium dynamics of heavy ion collisions when the system is doped with a nonzero
chemical potential4. This is exactly the scenario we are interested in analyzing in the
present chapter.

The literature regarding out-of-equilibrium holographic dynamics is vast, and even if
we restrict ourselves to works that deal with models endowed with a chemical potential
there is a substantial amount of papers already available. For non-equilibrium aspects
of some strongly coupled plasmas doped with a chemical potential which do not employ
numerical relativity and probe the thermalization process using non-local observables (e.g.
Wilson’s loops), see e.g. Refs. [212–215]. In the far-from-equilibrium context, there is the
study of Ref. [168] regarding homogeneous equilibration in a charged plasma without
a critical point, while Ref. [211] considers a shock wave analysis with baryon charge,
yet without a critical point. One can also study quantum critical points in the context
of holographic quenches, as done in Refs. [216, 217]. Recent studies about holographic
isotropization in the context of Gauss-Bonnet gravity can be found in Ref. [218].

3At zero density this ratio reduces to η/s.
4This is so because, as discussed before, there are indications that the baryon dense QGP experiences

relevant far-from-equilibrium effects while remaining strongly coupled through more stages than in the
case of higher energy collisions (where the chemical potential is negligible). In fact, this may provide
a partial explanation for the findings of Ref. [211] where a qualitative agreement between the rapidity
distribution of baryon charge in a holographic shock wave analysis at finite density and in heavy ion
collisions at moderate and low energies was found to disappear at full RHIC or LHC energies (i.e.,√
s & 200 GeV).
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One of the main goals of the present chapter is to assess the impact of a critical point
in the far-from-equilibrium dynamics of a relativistic strongly coupled plasma at finite
density, which to the best of our knowledge is a question that has not been previously
studied in the literature. In fact, this is the simplest problem one may consider that can
lead to interesting insights into the strongly coupled dynamics of the QGP near a critical
point at finite density, one of the focus of RHIC’s Beam Energy Scan (BES) program. Even
though the holographic model we consider here is very different from QCD, we believe
such a study is important given that there are no other approaches that can be used
to perform real-time, far-from-equilibrium calculations at strong coupling near a critical
point.

More specifically, we shall investigate here the homogeneous equilibration dynam-
ics of a far-from-equilibrium top-down holographic plasma at finite density known as the
1RCBH [138–143]. This model describes a strongly coupled conformal N = 4 Super Yang-
Mills (SYM) plasma charged under a U(1) subgroup of the global SU(4) R-symmetry and
features a critical point (CP)5 in its phase diagram. Our gravitational setup is different
from the one considered in Ref. [168] where the authors studied the homogeneous equili-
bration of a strongly coupled SYM plasma with a nonzero charge density without a CP.
Indeed, as we are going to see in a moment, the action of the 1RCBH model includes a
dilaton field that considerably changes the dynamics of the theory and leads to a CP in
its phase diagram.

In order to solve the corresponding numerical relativity problem, in this chapter we
follow the pioneering work of Chesler and Yaffe [219] by employing the so-called charac-
teristic formulation of general relativity [220], which is very convenient for asymptotically
AdS spacetimes (see, e.g., Ref. [59] for a review). Alternatively, one may also use the ADM
formulation [172, 173] of numerical relativity in asymptotically AdS spacetimes, as done
in Refs. [221,222].

An important remark must be done at this point. As it is well-known, the thermo-
dynamics and the hydrodynamics of the SYM plasma are very different than what is
observed in the QGP produced in heavy ion collisions (see, e.g., [223]). Thus, one should
not expect to obtain, in general, quantitative insights for the early time dynamics of heavy
ion collisions from the study of the far-from-equilibrium dynamics of the 1RCBH model.
However, it may be that some qualitative properties derived in the far-from-equilibrium
dynamics of this model are robust or “nearly universal”, as it happens with the shear
viscosity to entropy density ratio of holographic fluids where η/s = 1/4π for a broad
class of strongly coupled systems [56]. In order to look for possible signatures of this kind

5Since the 1RCBH does not have a first order phase transition line, we refer to the critical point of
this model as CP instead of CEP.
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of “universality”, one should also consider the far-from-equilibrium dynamics in other
holographic models at finite density endowed with a CP.

For instance, QNM oscillations of the 1RCBH model in the external scalar and vector
diffusion channels were found in the Appendix A [146] to be damped as one increases the
U(1) R-charge chemical potential, as long as one is away from criticality. This finding is
in qualitative accordance with the observation done in Ref. [204] that by increasing the
baryon chemical potential far from the CP there is a damping in the QNM oscillations of
the external scalar channel of a phenomenological bottom-up EMD model at finite baryon
density that quantitatively describes QGP thermodynamics. This damping of the QNM
oscillations caused by increasing the chemical potential away from criticality in two very
different holographic models may be a signature of robustness or an indication of a general
behavior for strongly coupled systems at finite density.

Therefore, even though the 1RCBH model (and the SYM plasma in general) is not
a holographic setup suited for direct applications to heavy ion phenomenology, it may
potentially contain some general properties displayed by strongly coupled fluids driven
out-of-equilibrium. Moreover, one of the main conclusions of the present work will be the
distinction of two characteristic equilibration times of the far-from-equilibrium system.
Namely, by looking at the imaginary part of the lowest non-hydrodynamic QNM’s of the
model one may extract an upper bound for some characteristic “relaxation times” of the
theory, according to the general reasoning first devised in Ref. [178]. The aforementioned
behavior of the QNM’s in the external scalar and vector diffusion channels would, there-
fore, suggest that the “equilibration time” of the 1RCBH model decreases with increasing
chemical potential far from the CP, while close to the CP it would instead increase. As
we shall see in this work, this is, in fact, the behavior found for the isotropization time
of the system, which is dominated by the lowest non-hydrodynamic QNM of the external
scalar channel of the theory.

On the other hand, even after (nearly) isotropization is reached, the scalar condensate
dual to the bulk dilaton field may still be significantly far from its equilibrium value.
Since in the present work the equilibration of the scalar condensate will always be the
last equilibration time of the system, we shall associate it with the true thermalization
time of the medium. Contrary to the isotropization time, in this model the thermalization
time always increase with increasing chemical potential. As we are going to show, this
is in consonance with the behavior of the lowest non-hydrodynamic QNM of the dilaton
channel. Also, it would be interesting to extend the present analysis to consider the case
of the QCD-like EMD model of Ref. [70], which provided a prediction for the location of
the long-sought critical point of the QCD phase diagram in the plane of temperature and
baryon chemical potential.
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The outline of this chapter is as follows. In Sec. 3.1 we present the equations of
motion for the 1RCBH model assuming a time-dependent and spatially homogeneous
anisotropic Ansatz for the bulk fields. This gives a set of nonlinear partial differential
equations (PDEs) to be solved numerically. We also discuss the relevant observables of
the dual quantum field theory (QFT) that we need to compute to analyze the homo-
geneous isotropization and thermalization processes in this setup, namely, the one-point
functions associated with the expectation value of the boundary stress-energy tensor,
〈Tµν〉, dual to the bulk metric field gµν , the scalar condensate, 〈Oφ〉, dual to the bulk dila-
ton field φ, and the expectation value of the conserved U(1) R-current, 〈Jµ〉, dual to the
bulk Maxwell field Aµ. The derivation of the general form of these one-point functions via
holographic renormalization were presented in Sec. 2.3. In Sec. 3.2 we perform the near-
boundary asymptotic expansion of the bulk fields in order to fix the boundary conditions
for the set of PDEs. From this near-boundary analysis, we will be left with a couple of
unknown time-dependent ultraviolet coefficients that shall be related with the one-point
functions of the dual QFT. In Sec. 3.3, we briefly review the analytical equilibrium solu-
tions of the 1RCBH model and its thermodynamics. In Sec. 3.4, we discuss some relevant
technical issues related to the numerical time-dependent far-from-equilibrium solutions
of the 1RCBH model, such as the choice of the initial conditions, and explain how we
numerically solve the set of coupled nonlinear PDEs for the far-from-equilibrium system.
Once the numerics is settled, we proceed in Sec. 3.5 to provide the main results of the
homogeneous equilibration dynamics of the 1RCBH model. Moreover, in Subsection 3.5.7
we perform the match of the late time behavior of the pressure anisotropy and the scalar
condensate with the lowest non-hydrodynamic QNM’s of the external scalar and dilaton
channels, respectively. The details regarding the QNM’s are treated in the Appendix A.
Finally, we close the work in Sec. 3.6 with an outlook of our main results and also point
out future perspectives and ongoing investigations.

3.1 The holographic model and its equations of mo-
tion

The 1RCBH model [138–143] first appeared as a solution of the five dimensionalN = 8
gauged supergravity action [139], which was later demonstrated to lie within a class of
solutions equivalent to near-extremal spinning D3-branes in AdS5×S5 [142]. The Kaluza-
Klein compactification of the five sphere S5 on the spinning D3-branes solutions leads to
the SU(4) R-symmetry and the three independent Cartan subgroups of the R-Symmetry
U(1)a × U(1)b × U(1)c are associated with three distinct conserved charges (Qa, Qb, Qc)
of the black hole background [139]. The general solution is known as the STU model,
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whilst the 1RCBH model is obtained by considering only one charge, i.e., Q ≡ Qa and
Qb = Qc = 0. A thorough discussion of the matter content of the dual QFT at zero
temperature may be found in Ref. [224]. For the thermal plasma at finite density, detailed
discussions may be found in Refs. [146,203]. For the sake of completeness, in the present
chapter we briefly review the thermodynamics of the 1RCBH plasma in Sec. 3.3.1.

The gravitational action of the 1RCBH model is given by [138–143],

S = 1
2κ2

5

∫
M
d5x
√
−g

[
R− f(φ)

4 FMNF
MN − 1

2(∂Mφ)2 − V (φ)
]

+ SGHY + Sct, (3.1)

where
SGHY = 1

κ2
5

∫
∂M

d4x
√
−γK (3.2)

is the Gibbons-Hawking-York boundary action [225, 226] needed to provide a well-posed
Dirichlet problem. In this term, γµν denotes the induced metric at the boundary and K
represents its extrinsic curvature. The last term in Eq. (3.1) is the boundary counterterm
action needed to remove the divergences of the on-shell action. In Sec. 2.3 we gave the
details regarding the boundary terms and showed how to obtain the desired one-point
functions of the dual QFT.

The expressions for the dilaton potential V (φ) and the Maxwell-Dilaton coupling f(φ)
in the action (3.1), which define the top-down construction corresponding to the 1RCBH
model, are given by

V (φ) = − 1
L2

(
8e

φ√
6 + 4e−

√
2
3φ
)
, f(φ) = e−2

√
2
3φ, (3.3)

with the AdS radius L being set to unity henceforth for simplicity. Moreover, by Taylor
expanding the dilaton potential in powers of φ close to the boundary, we obtain

V (φ) = −12− 2φ2 +O(φ4), (3.4)

which tells us that the mass of the dilaton is given by m2 = −4. Recalling that the
relation between the mass of the dilaton and the scaling dimension of its dual operator
in the boundary QFT is given by m2 = ∆(∆ − 4), one concludes that ∆ = 2 (as stated
in Sec. 2.3). Note also that the dilaton field vanishes at the boundary such that the bulk
geometry is asymptotically AdS5.

Einstein’s equations are obtained from the variation of the EMD action with respect
to the metric,

RMN −
1
2gMNR = κ2

5TMN , (3.5)
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where,

TMN = 1
κ2

5

[
1
2∂Mφ∂Nφ+ f(φ)

2 FMPF
P
N −

gMN

2

(
1
2(∂Pφ)2 + V (φ) + f(φ)

4 FPQF
PQ

)]
,

(3.6)

is the stress-energy tensor of the matter fields Aµ and φ. It is usually simpler to work
with the “trace-reversed” form of Einstein’s equations.6 This may be derived by noting
that Eq. (3.5) implies that

RMN = κ2
5

(
TMN −

1
2gMNT

Q
Q

)
. (3.7)

By substituting Eq. (3.6) into Eq. (3.7), one rewrites Einstein’s equations as follows

RMN −
gMN

3

[
V (φ)− f(φ)

4 FPQF
PQ

]
− 1

2∂Mφ∂Nφ−
f(φ)

2 FMPF
P
N = 0. (3.8)

On the other hand, Maxwell’s equations are obtained by varying the EMD action with
respect to the Maxwell field

∇M

(
f(φ)FMN

)
= 0. (3.9)

The last equation that one needs to fully specify the dynamics of the model is the Klein-
Gordon equation for the dilaton field

∇2φ− ∂V

∂φ
− FPQF

PQ

4
∂f

∂φ
= 1√
−g

∂M
(√
−ggMN∂Nφ

)
− ∂φV −

FPQF
PQ

4 ∂φf = 0.

(3.10)

To explore the far-from-equilibrium solutions of the model, we adopt the well-known
characteristic formulation for asymptotically AdS spacetimes [219]. We consider here a
time-dependent and spatially homogeneous anisotropic Ansatz for the metric field, which
is suited to study homogeneous isotropization dynamics, in which one starts with an
anisotropic configuration and an energy density that is conserved as time evolves. We
work with generalized infalling Eddington-Finkelstein (EF) coordinates, in terms of which
one may write the Ansatz for the line element as follows [219],

ds2 = 2dv [dr − A(v, r)dv] + Σ(v, r)2
[
eB(v,r)(dx2 + dy2) + e−2B(v,r)dz2

]
, (3.11)

where v represents the EF time, which near the boundary is interpreted as the time of
6The tensorial algebra using a specific chart in this work is done with the help of the Mathematica

package “Riemann Geometry and Tensor Calculus” (RGTC) [227].
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the dual QFT. To see this, recall that the EF time is defined via

dv = dt+
√
−grr
gtt
dr, (3.12)

where grr and gtt are the radial and temporal diagonal components of an asymptoti-
cally AdS5 metric. Thus, as one goes to the boundary located at r → ∞, one obtains
v → t. We also remark that in these generalized infalling EF coordinates, infalling
radial null geodesics satisfy v = constant, while outgoing radial null geodesics satisfy
dr/dv = A(v, r) [219]7. Furthermore, there is a residual diffeomorphism invariance in Eq.
(3.11) corresponding to the radial shift r 7→ r+ λ(v), where λ(v) is an arbitrary function
of the EF time [59].

With respect to the Maxwell and dilaton fields, the Ansätze are

A = Φ(v, r)dv, φ = φ(v, r). (3.13)

The U(1) R-charge chemical potential is associated with the boundary value of the
Maxwell field Φ(v, r) in equilibrium, while the dilaton field vanishes at the boundary,
as mentioned above.

The resulting equations of motion for the EMD system, which are obtained by plugging
the line element (3.11), the dilaton and gauge field profiles (3.13) into Eqs. (3.8)–(3.10),
form a set of coupled nonlinear PDEs,

4Σ(d+φ)′ + 6φ′d+Σ + 6Σ′d+φ+ Σ∂φfE2 − 2Σ∂φV = 0, (3.14a)
∂φfφ

′

f
+ 3Σ′

Σ + E
′

E
= 0 (3.14b)

A′′ + 1
12

(
18B′d+B −

72Σ′d+Σ
Σ2 + 6φ′d+φ− 7fE2 − 2V

)
= 0, (3.14c)

(d+Σ)′ + 2Σ′
Σ d+Σ + 1

12Σ
(
fE2 + 2V

)
= 0,

(3.14d)

Σ (d+B)′ + 3Σ′
2 d+B + 3d+Σ

2 B′ = 0, (3.14e)
1
6Σ

(
3 (B′)2 + (φ′)2)+ Σ′′ = 0, (3.14f)

d+(d+Σ)− A′ d+Σ + A2Σ′′ + Σ
6
(
3A2 (B′)2 + A2 (φ′)2 + 3(d+B)2 + (d+φ)2

)
= 0, (3.14g)

7Note that A(v, r) here is half the corresponding metric function in the convention of Ref. [219].
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where the prime denotes ∂r, and

d+ ≡ ∂v + A(v, r)∂r, (3.15)

defines the directional derivative along outgoing null vectors. Eq. (3.14a) is the dilaton
equation, Eq. (3.14b) is the Maxwell equation, and Eqs. (3.14c)—(3.14g) are Einstein’s
equations8. As in Ref. [168], we also defined a bulk “electric field”,

E ≡ −Φ′. (3.16)

It is important to note that the Maxwell equation (3.14b) relates φ, Σ, and Φ′, i.e.

ln(Σ3E)− 2
√

2
3φ = constant. (3.17)

We will show in the next section how one can relate the above unknown constant to
the U(1) R-charge density ρc using results from holographic renormalization. Indeed, Eq.
(3.17) expresses the existence of a Gauss charge coming from the Gauss law of classical
electromagnetism.

We explain now the general algorithm to solve the system of PDEs (3.14a)—(3.14g):

1. Choose an initial profile for B(v0, r) and φ(v0, r), where v0 denotes the initial time;

2. Once B(v0, r) and φ(v0, r) are given, one can solve Eq. (3.14f) to obtain Σ(v0, r).
Using the constraint (3.17) we also determine E(v0, r);

3. With B(v0, r), φ(v0, r), Σ(v0, r), and E(v0, r) at hand, we proceed to solve Eq. (3.14d)
for d+Σ(v0, r);

4. Next we solve Eq. (3.14e) for d+B(v0, r);

5. Next we solve Eq. (3.14a) for d+φ(v0, r);

6. Next we solve Eq. (3.14c) for A(v0, r);

7. When B(v0, r), d+B(v0, r), φ(v0, r), d+φ(v0, r), and A(v0, r) are known, it is clear
from the definition of d+ in Eq. (3.15) that we also have ∂vB(v0, r) and ∂vφ(v0, r).
With {B(v0, r), ∂vB(v0, r)} and {φ(v0, r), ∂vφ(v0, r)} at hand we have now the initial
conditions required to evolve in time B(v0) and φ(v0, r) from v0 to v0 + ∆v;

8Eqs. (3.14f) and (3.14g) are constraints, whose derivatives are implied by the dynamical Eqs.
(3.14c)—(3.14e). Therefore, there is in total five dynamical equations, (3.14a)—(3.14e), for five unknowns,
{φ,Φ, A,Σ, B}.
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8. Next we repeat the process to obtain the fields at the next instant v0 + ∆v.

9. The constraint (3.14g) is useful for checking the accuracy of the numerical solutions.

Before we delve into the numerics and solve the system of PDEs (3.14a)—(3.14g)
following the above algorithm, there are still some technical details that we need to take
into account. Some of these details are: the boundary conditions, the equilibrium solutions,
and the initial data.

In order to fix the boundary conditions for the EMD fields we first need to perform a
near-boundary expansion of the bulk fields. This expansion will reveal which ultraviolet
coefficients need to be dynamically fixed. Such analysis is done in Sec. 3.2. The detailed
knowledge of the equilibrium solutions, which are discussed in Sec. 3.3, is very important
to determine the final state given some initial geometry. Moreover, it is only possible to
predict the equilibrium state because in this homogeneous setup the energy and charge
density are constant. Still in Sec. 3.3, using the formulas derived from holographic renor-
malization in Sec. 2.3, we provide holographic formulas to calculate the energy density
and the pressure coming from 〈Tµν〉, the charge density that comes from the temporal
component of 〈Jµ〉, and the expectation value of the scalar operator dual to the dilaton
field, 〈Oφ〉. In Sec. 3.4, we discuss different initial data and specify the numerical tech-
niques that we shall employ to solve the equations of motion of the 1RCBH model. After
that, we will be ready to present in Sec. 3.5 our results for the homogeneous isotropization
and thermalization of the 1RCBH plasma, emphasizing in particular the dynamics near
the critical point.

3.2 Near-boundary expansion of the bulk fields
In a five dimensional model where the dilaton field has scaling dimension ∆ = 2 the

near-boundary expansions of the bulk fields are given by integer powers of the radial
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coordinate plus logarithmic terms [167], i.e.

A(v, r) = 1
2(r + λ(v))2 − ∂vλ(v) +

n,m=∞∑
n=0,m=0,m<n

An,m(v)
rn

lnm r, (3.18)

Σ(v, r) = r + λ(v) +
n,m=∞∑

n=0,m=0,m<n

Σn,m(v)
rn

lnm r, (3.19)

B(v, r) =
n,m=∞∑

n=0,m=0,m<n

Bn,m(v)
rn

lnm r, (3.20)

φ(v, r) =
n,m=∞∑

n=2,m=0,m<n

φn,m(v)
rn

lnm r, (3.21)

Φ(v, r) =
n,m=∞∑

n=0,m=0,m<n

Φn,m(v)
rn

lnm r, (3.22)

where λ(v) is the radial shift function associated with the aforementioned residual dif-
feomorphism invariance of the bulk metric [59]. As we saw in Sec. 2.3, the logarithmic
terms in the above expansions vanish due to three main facts: the conformal flatness of the
boundary, the scaling dimension of the QFT scalar operator dual to the bulk dilaton field,
and the conformal symmetry of the system. Therefore, we can already set the logarithmic
corrections to zero. We adopt then the following notation

{An, Σn, Bn, φn, Φn} ≡ {An,0, Σn,0, Bn,0, φn,0, Φn,0}. (3.23)

Substituting the expansions (3.18)—(3.22) into the equations of motion (3.14a)—
(3.14g), setting the radial shift function λ(v) to zero, and eliminating all possible co-
efficients in favor of the others, the ultraviolet asymptotic behavior of the EMD fields
reads

A(v, r) = r2

2 + H − φ2(v)2/18
r2 − φ2(v)φ̇2(v)

18r3 +O(r−4) (3.24)

Σ(v, r) = r − φ2(v)2

18r3 −
φ2(v)φ̇(v)

10r4 +O(r−5) (3.25)

d+Σ(v, r) = r2

2 + H + 1/36φ2(v)2

r2 +O(r−3) (3.26)

B(v, r) = B4(v)
r4 + Ḃ4(v)

r5 +O(r−6) (3.27)

φ(v, r) = φ2(v)
r2 + φ̇2(v)

r3 +
√

6φ2(v)2 + 9φ̈2(v)
12r4 +O(r−5) (3.28)

d+φ(v, r) = −φ2(v)
r

+O(r−2) (3.29)

Φ(v, r) = Φ0(v) + Φ2(v)
r2 +

√
2
3φ2(v)Φ2(v)

r4 +O(r−5). (3.30)
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where the dot represents the time derivative ∂v.
Furthermore, we find that this near-boundary analysis cannot determine five coeffi-

cients: A2(v) (or, equivalently, the coefficient H defined below), B4(v), φ2(v), Φ0(v), and
Φ2(v). With the exception of Φ0, these coefficients are dynamical, i.e. we need the bulk
solution to determine them. The coefficient Φ0(v) is fixed by the Dirichlet boundary con-
dition for the Maxwell field which imposes that its boundary value gives the chemical
potential associated with the U(1) R-symmetry9

µ = lim
v→∞

Φ0(v). (3.31)

The coefficient H is defined by

H ≡ 18A2(v) + φ2(v)2. (3.32)

By working out the equations of motion up to O(r−3) in the near-boundary expansions of
the bulk fields one concludes that H is a constant. Moreover, as we shall see in a moment,
this coefficient H is, up to a numerical factor, the energy of the system which is conserved
in this homogeneous setup. On the other hand, the coefficients B4(v) and φ2(v) are time-
dependent quantities related to the pressure anisotropy and the scalar condensate dual to
the dilaton field, respectively.

Additionally, the coefficient Φ2(v) is actually a constant. This can be shown by ex-
panding the equations of motion near the boundary up to O(r−5). Moreover, by exploring
relation (3.17) near the boundary using the expansions (3.24)—(3.30), one finds that,

E(v, r) = 2Φ2Σ(v, r)−3e2
√

2
3φ(v,r). (3.33)

We shall discuss how the charge density can be related to Φ2 in Sec. 3.3.

3.3 Equilibrium solutions
Here we briefly review the main features of the equilibrium solution of the 1RCBH

plasma and its thermodynamics [146,203].

3.3.1 Thermodynamics

In equilibrium this model has the following analytical solution (written in a slightly
different chart from Eq. (3.11), which we call the “modified EF” coordinates and denote

9The Dirichlet boundary condition for the metric field gµν has been already implemented when we
imposed an asymptotically AdS5 solution.
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with a tilde),

ds2 = dv
[
2ea(r̃)+b(r̃)dr̃ − e2a(r̃)h(r̃)dv

]
+ e2a(r̃)d~x2 (3.34)

a(r̃) = ln r̃ + 1
6 ln

(
1 + Q2

r̃2

)
, (3.35)

b(r̃) = − ln r̃ − 1
3 ln

(
1 + Q2

r̃2

)
, (3.36)

h(r̃) = 1− M2

r̃2(r̃2 +Q2) , (3.37)

φ(r̃) = −
√

2
3 ln

(
1 + Q2

r̃2

)
, (3.38)

Φ(r̃) =
(
− MQ

r̃2 +Q2 + MQ

r̃2
H +Q2

)
, (3.39)

where r̃h is the radius of the black hole’s event horizon given by

r̃h =
√√

Q4 + 4M2 −Q2

2 . (3.40)

As discussed in Refs. [146,203] this model is characterized by two non-negative parameters
(Q,M) or, alternatively, (Q, r̃h). They are related to the Hawking temperature of the black
hole

T = Q2 + 2r̃2
h

2π
√
Q2 + r̃2

h

, (3.41)

and the U(1) R-charge chemical potential

µ = lim
r̃→∞

Φ(r̃) = Qr̃h√
Q2 + r̃2

h

. (3.42)

In fact, standard algebraic manipulations show that

Q

r̃h
=
√

2

1±
√

1−
(
µ/T

π/
√

2

)2

µ/T

π/
√

2

 . (3.43)

Since Q/r̃h is non-negative, Eq. (3.43) implies that µ/T ∈
[
0, π/

√
2
]
. It also follows

from (3.43) that for every value of µ/T ∈
[
0, π/

√
2
)
there are two different values of

Q/r̃h, which in turn parameterize two different branches of solutions. By analyzing the
thermodynamics in Fig. 3.1, one can see the two branches merge at µ/T = π/

√
2, which

defines a critical point marking a 2nd order phase transition.
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(d) Heat capacity

Figure 3.1: Thermodynamic quantities for the 1RCBH model. These figures are taken from
Ref. [146].

Since 1
κ2

5
= N2

c

4π2 for a SYM plasma [228], the entropy density can be determined from
Bekenstein-Hawking’s relation [162,163] as follows

s

N2
c T

3 = π2

16

3±

√√√√1−
(
µ/T

π/
√

2

)2


21∓

√√√√1−
(
µ/T

π/
√

2

)2
 . (3.44)

On the other hand, the U(1) R-charge density, ρc = limr̃→∞ δS/δΦ′, may be expressed as

ρc
N2
c T

3 = µ/T

16

3±

√√√√1−
(
µ/T

π/
√

2

)2


2

, (3.45)

where the stable/unstable branches correspond to lower/upper signs, as in Eq. (3.43).



3.3 EQUILIBRIUM SOLUTIONS 49

Furthermore, standard thermodynamic relations give us the pressure

p

N2
c T

4 = π2

128

3±

√√√√1−
(
µ/T

π/
√

2

)2


31∓

√√√√1−
(
µ/T

π/
√

2

)2
 . (3.46)

which can be shown to be p = ε/3 with the internal energy density given by ε = Ts−p+µρ.
This is the expected result for a conformal field theory (CFT) in 4 spacetime dimensions.

3.3.2 Mapping between FG (2.16) and the modified EF (3.34)
coordinates

Once the equilibrium solution is known, one may compute the one-point functions of
the dual QFT by using Eqs. (2.38), (2.41), and (2.53) derived in Sec. 2.3. However, we note
that these equations are written in the so-called Fefferman-Graham (FG) coordinates and,
thus, we need to find a relation between these coordinates and the modified EF coordinates
in order to calculate 〈Tµν〉, 〈Jµ〉, and 〈Oφ〉 in equilibrium.

First we consider the diagonal form of the line element (3.34),

ds2 = e2a(r̃)(−h(r̃)dt2 + d~x2) + eb(r̃)

h(r̃)dr̃
2. (3.47)

The task now is to find a relation between r̃ and ρ (the radial coordinate of the FG chart
discussed in Sec. 2.3). This can be achieved by evaluating the following integral

∫ eb(r̃)√
h(r̃)

dr̃ = −1
2 ln ρ. (3.48)

This integral can be solved perturbatively in r̃ close to the boundary in order to determine
r̃(ρ) as a series expansion. Such expansion will enable us to expand the bulk fields near the
boundary in the form of Eqs. (2.27)—(2.29), which is what we need to fix the ultraviolet
coefficients γ(4)µν , A(0)µ, and φ(0) by comparing these expansions with the equilibrium
solution. With these ultraviolet coefficients fixed, we may proceed to calculate 〈T µν〉,
〈Jµ〉 and 〈Oφ〉 using Eqs. (2.53), (2.41), and (2.38), respectively. Thus, by perturbatively
evaluating the integral (3.48) close to the boundary using the equilibrium solution, we
find that

r̃ = 1
√
ρ
−
Q2√ρ

6 + 1
72
(
9M2 +Q4

)
ρ3/2 +O(ρ)5/2. (3.49)

The next step is to expand the bulk fields near the boundary and substitute r̃ by ρ
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using Eq. (3.49). This gives the following asymptotic results,

γtt(ρ) = −1
ρ
− ρ

2

(
5
2M

2 − Q4

9

)
+O(ρ2), (3.50)

γxx(ρ) = 1
ρ

+ ρ

2

(
1
2M

2 − Q4

9

)
+O(ρ2), (3.51)

Φ(ρ) = MQ

Q2 + r̃2
h

−MQρ+O(ρ2), (3.52)

φ(ρ) = −
√

2
3Q

2ρ+O(ρ2). (3.53)

By comparing the above expressions with Eqs. (2.27)—(2.29) (taking into account
that all the logarithmic terms vanish for the 1RCBH model, as stated before), and then
using Eqs. (2.53), (2.41), and (2.38), we find

〈Ttt〉 = 1
κ2

5

3M2

2 , (3.54)

〈Txx〉 = 1
κ2

5

M2

2 , (3.55)

〈J t〉 = 1
κ2

5
MQ, (3.56)

〈Oφ〉 = 1
κ2

5

√
2
3Q

2. (3.57)

At this stage, it is useful to rewrite the energy density (ε), the equilibrium pressure
(p), and the U(1) R-charge density (ρc) as

ε ≡ 〈Ttt〉 = N2
c

4π2
3M2

2 , p ≡ 〈Txx〉 = N2
c

4π2
M2

2 , ρc ≡ 〈J t〉 = N2
c

4π2MQ. (3.58)

The above results hold for the 1RCBH plasma in equilibrium.

3.3.3 Mapping between modified EF (3.34) and the original EF
(3.11) coordinates

The purpose of this subsection is to find relations between the coefficients of the non-
equilibrium solution in the near-boundary expansions (3.24)—(3.30), and the parameters
of the equilibrium solution for the 1RCBH plasma (3.34). Evidently, we can only match
the equilibrium solution with the asymptotically late time behavior of the non-equilibrium
solution when thermodynamic equilibrium is achieved by the system. For this reason,
before we derive an expression for r(r̃), we define the equilibrium coefficients of the non-
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equilibrium solution as follows,

X(eq) ≡ lim
v→∞

X(v), with ∂vX
(eq) = 0, (3.59)

where X(v) ∈ {B4(v), φ2(v),Φ0(v)}. Note that the coefficients H and Φ2 are not included
in this definition because they are constant, as stated before.

In order to find the relation between r̃ and r, we need to solve the following equation

ea(r̃)+b(r̃)dr̃ = dr. (3.60)

The above expression renders an analytical relation between r and r̃,

r =
3r̃4/3

2F1
(

1
6 ,

2
3 ; 5

3 ;− r̃2

Q2

)
4 3
√
Q

+ ξ, (3.61)

where 2F1 is the hypergeometric function and ξ is an integration constant which we choose
to be

ξ =
3
√
π Γ

[
5
3

]
2 Γ

[
1
6

] Q, (3.62)

in order to obtain limr̃→∞ r(r̃)− r̃ = 0. Just as we did in Sec. 3.3.2 to relate r̃ with ρ, we
expand the above relation in powers of r̃ close to the boundary

r(r̃) = r̃ + Q2

6r̃ −
7Q4

216r̃3 + 91Q6

6480r̃5 +O(r̃−7). (3.63)

Next, we substitute the above expression into Eqs. (3.24)—(3.30) and take the asymp-
totic equilibrium limit defined by Eq. (3.59). The result reads

gtt(r̃) = −2A(r̃) = −r̃2 − Q2

3 + Q4 − 54H + 3(φ(eq)
2 )2

27r̃2 +O(r̃−4), (3.64a)

gxx(r̃) = Σ(r̃)2 = r̃2 + Q2

3 + −Q
4 − 3(φ(eq)

2 )2

27r̃2 +O(r̃−4), (3.64b)

φ(r̃) = φ
(eq)
2
r̃2 + −4Q2φ

(eq)
2 +

√
6(φ(eq)

2 )2

12r̃4 +O(r̃−6), (3.64c)

Φ(r̃) = Φ(eq)
0 + Φ2

r2 −

(
Q2 −

√
6φ(eq)

2

)
Φ2

3r4 +O(r̃−6). (3.64d)

On the other hand, the near-boundary behavior of the analytical static solution of the
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1RCBH model obtained from Eqs. (3.35)—(3.39) is

gtt(r̃) = −r̃2 − Q2

3 +
M2 + Q4

9
r̃2 +

−1
3 (2M2Q2)− 5Q6

81
r̃4 +

5M2Q4

9 + 10Q8

243
r̃6 +O(r̃−8),

(3.65a)

gxx(r̃) = r̃2 + Q2

3 −
Q4

9r̃2 + 5Q6

81r̃4 −
10Q8

243r̃6 +O(r̃−8), (3.65b)

φ(r̃) = −

√
2
3Q

2

r̃2 + Q4
√

6r̃4
−

√
2
3Q

6

3r̃6 +O(r̃−8), (3.65c)

Φ(r̃) = MQ

Q2 + r̃2
h

− MQ

r̃2 + MQ3

r̃4 − MQ5

r̃6 +O(r̃−8). (3.65d)

Comparing Eqs. (3.64a)—(3.64d) and Eqs. (3.65a)—(3.65d), we find that

φ
(eq)
2 = −

√
2
3Q

2, (3.66)

H = −M
2

2 , (3.67)

Φ(eq)
0 = MQ

Q2 + r̃2
h

, (3.68)

Φ2 = −MQ. (3.69)

3.3.4 Mapping between EF (3.11) and FG (2.16) coordinates

Now we want to relate the non-equilibrium metric in EF coordinates (3.11) with the
expression for the metric in FG coordinates (2.16) in order to obtain expressions for the
one-point functions 〈Tµν〉, 〈Jµ〉, and 〈Oφ〉 far-from-equilibrium. To do so, we need to solve
the integral below ∫ dr√

2A(v, r)
= −1

2 ln ρ, (3.70)

which, again, may be solved perturbatively near the boundary with the help of Eq. (3.24).
The result is,

r(ρ) = 1
√
ρ

+ ρ3/2
(
−H4 + 1

72φ2(v)2
)

+ 1
90ρ

2φ2(v)φ̇2(v) +O(ρ5/2). (3.71)
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Plugging r(ρ) into Eqs. (3.24)—(3.30), one obtains

γtt(ρ) = −1
ρ

+ 1
12ρ

(
−18H + φ2(v)2

)
+O(ρ2), (3.72a)

γxx(ρ) = 1
ρ

+ ρ
(
−H2 +B4(v)− 1

12φ2(v)2
)

+O(ρ2), (3.72b)

γzz(ρ) = 1
ρ

+ ρ
(
−H2 − 2B4(v)− 1

12φ2(v)2
)

+O(ρ2), (3.72c)

φ(ρ) = ρφ2(v) +O(ρ2), (3.72d)
Φ(ρ) = Φ0(v) + ρΦ2(v) +O(ρ2). (3.72e)

With the above set of equations at hand, we obtain 〈T µν〉, 〈Jµ〉, and 〈Oφ〉 from Eqs.
(2.53), (2.41), and (2.38), respectively,

〈Ttt〉 = 1
κ2

5
(−3H), (3.73)

〈Txx〉 = 1
κ2

5
(−H + 2B4(v)), (3.74)

〈Tzz〉 = 1
κ2

5
(−H − 4B4(v)), (3.75)

〈J t〉 = − 1
κ2

5
Φ2, (3.76)

〈Oφ〉 = − 1
κ2

5
φ2(v). (3.77)

Analogously to what was done in Eqs. (3.58), one may recast the physical observables
of the boundary QFT as follows

ε = 〈Ttt〉 = N2
c

4π2 (−3H), (3.78a)

∆p(v) ≡ 〈Txx〉 − 〈Tzz〉 = N2
c

4π2 6B4(v), (3.78b)

ρc = 〈J t〉 = −N
2
c

4π2 Φ2, (3.78c)

〈Oφ〉(v) = −N
2
c

4π2φ2(v), (3.78d)

where ∆p(v) is the pressure anisotropy. The above expressions hold for the far-from-
equilibrium 1RCBH plasma undergoing a spatially homogeneous equilibration process.
Moreover, in terms of the charge density ρc, the bulk electric field defined in Eq. (3.33) is
given by

E(v, r) = −8π2ρc
N2
c

Σ−3(v, r)e2
√

2
3φ(v,r). (3.79)
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Thus, we finish here the discussion of the quantities that we need to follow when solving
the full nonlinear PDEs of the 1RCBH model far-from-equilibrium. Next, we discuss how
to proceed with the numerics to obtain the time evolution of the 1RCBH plasma.

3.4 Far-from-equilibrium solutions

3.4.1 Field redefinitions

First, we express the system of PDEs in a form where the numerical analysis becomes
as simple as possible, mapping the infinite radial domain to a finite one. This may be
accomplished by redefining the radial coordinate as follows

u = 1
r
, (3.80)

which means that the boundary now lies at u = 0. How far we go into the bulk in a
numerical simulation is an issue which shall be discussed in Sec. 3.4.2. Moreover, since
all the nontrivial dynamics of the system depends on the subleading terms of the near-
boundary expansion of the bulk fields, as indicated in Eqs. (3.18)—(3.22), we define the
following subtracted fields10

u2As = A− 1
2u2 , u4Bs = B, u2Σs = Σ− 1

u
, u2φs = φ, Es = E ,

u2(d+Σ)s = d+Σ− 1
2u2 , u3(d+B)s = d+B, u(d+φ)s = d+φ. (3.81)

The equations of motion (3.14a)—(3.14f) rewritten in terms of these subtracted fields
10Our redefinitions are similar to the ones given in Ref. [181]. We also remark that d+(Σs) 6= (d+Σ)s.
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read

u2Σ′′s + 6uΣ′s + Σs

6
(
36 + u4

(
4φ2

s + u
(
3u3 (4Bs + uB′s)

2 + u(φ′s)2 + 4φ′sφs
)))

+ 1
6u
(
4φ2

s + u
(
3u3(4Bs + uB′s)2 + u(φ′s)2 + 4φ′sφs

))
= 0, (3.82a)

E = 2e2
√

2
3u

2φsu3Φ2

(1 + u3Σs)3 , (3.82b)

− (1 + u3Σs)(d+Σ)′s − 2u2(3Σs + uΣ′s)(d+Σ)s

+ 12 (1 + Σsu
3)− 12 (−1 + 2Σsu

3 + u4Σ′s) + (1 + Σsu
3)2 (E2f (u2φs) + 2V (u2φs))

12u5 = 0,

(3.82c)

− u
(
1 + Σsu

3
)

(d+B)′s −
3
2
(
1 + 4Σsu

3 + u4Σ′s
)

(d+B)s

− 3
4
(
1 + 2u4(d+Σ)s

)
(4Bs + uB′s) = 0, (3.82d)

− 4
(
u+ u4Σs

)
(d+φ)′s + (2− 2u3(8Σs + 3uΣ′s))(d+φ)s

+ −3u3 (1 + 2u4(d+Σ)s)φ′s − 6 (u2 + 2u6(d+Σ)s)φs
u2

+ (1 + Σsu
3) (E2∂φf (u2φs)− 2∂φV (u2φs))

u2 = 0, (3.82e)

u2
(
1 + u3Σs

)2
A′′s + 6u

(
1 + u3Σs

)2
A′s + 6

(
1 + u3Σs

)2
As

− − (1 + u3Σs)2 − 3 (1 + 2(d+Σ)su4) (−1 + 2u3Σs + u4Σ′s)
u4

− 6(d+B)su8 (1 + u3Σs)2 (4Bs + uB′s) + 2(d+φ)su4 (1 + u3Σs)2 (uφ′s + 2φs)
4u4

+ 7 (1 + u3Σs)2 E2f (u2φs) + 2 (1 + u3Σs)2
V (u2φs)

12u4 = 0, (3.82f)

with the prime now representing ∂u. The price we paid to remove the redundant infor-
mation from the bulk fields is that the equations of motion for them are now longer.
Moreover, to solve these equations we need to specify the boundary conditions which, in
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light of Eqs. (3.24)—(3.30) and Eqs. (3.81), are given by

As(v, u) = H − φ2(v)2/18 +O(u), (3.83)

Σs(v, u) = −φ2(v)2

18 u− φ2(v)φ̇(v)
10 u2 +O(u3), (3.84)

(d+Σ)s(v, u) = H + 1/36φ2(v)2 +O(u), (3.85)
Bs(v, u) = B4(v) +O(u), (3.86)

(d+B)s(v, u) = −2B4(v) +O(u), (3.87)
φs(v, u) = φ2(v) + φ̇2(v)u+O(u2), (3.88)

(d+φ)s(v, u) = −φ2(v) +O(u). (3.89)

The time evolution equations for Bs and φs, which are obtained from the definitions
of d+B and d+φ using the redefined fields (3.81), are given by

∂vBs = 2Bs

u
+ (d+B)s

u
+ 4AsBsu

3 + B′s
2 + Asu

4B′s, (3.90)

∂vφs = (d+φ)s
u

+ φs
u

+ 2u3Asφs + 1
2φ
′
s + u4Asφ

′
s. (3.91)

We discuss in Sec. 3.4.4 the numerical scheme we use to evolve in time the EMD fields
provided ∂vBs and ∂vφs are known.

3.4.2 Radial position of the black hole event horizon

A delicate aspect of the numerical solution of the far-from-equilibrium equations of
motion is how deep into the bulk one should go when integrating the radial dependence
of the PDEs. Since we are working with a finite temperature setup, there is a black hole
inside the bulk and one needs to cover the entire portion of the bulk between the black
hole’s event horizon and the boundary of the asymptotically AdS5 spacetime, since this is
the region of the bulk geometry causally connected to the boundary QFT. In the case of
time-dependent backgrounds, one main difficulty is that the radial position of the event
horizon is unknown a priori since it depends on the time evolution of the system. If one
cuts off the radial integration before reaching the horizon, then the obtained numerical
solution will be inevitably inaccurate; on the other hand, if the radial integration proceeds
too deep inside the horizon, the numerical simulation will probably break down due to
possible singularities (caustics) associated with strong curvatures in this deep infrared
region.

One possible way to deal with this issue is to use the radial shift function λ(v) as-
sociated with the residual diffeomorphism invariance of the metric and regard it as an



3.4 FAR-FROM-EQUILIBRIUM SOLUTIONS 57

auxiliary field to fix the (apparent) horizon position at a specific value of the radial coor-
dinate [59]. However, we do not adopt this strategy here. Instead, as mentioned above Eq.
(3.24) we set λ(v) = 0 and let the horizon position fluctuate in each simulation. We then
follow the reasoning of Ref. [229] in which it is imposed that in equilibrium the radius of
the black hole is located at uh = 1, while the inner radial cutoff for numerical integration
lies at u ≈ 1.01. Moreover, since we are interested here in analyzing the equilibration
dynamics of the system in terms of the dimensionless “time combination” vT for different
values of µ/T , we choose to set the equilibrium temperature to 1/π for any value of µ/T .
This gives the following relation between r̃h and Q coming from Eq. (3.41),

1
π

= Q2 + 2r̃2
h

2π
√
Q2 + r̃2

h

. (3.92)

Therefore, given some value of µ/T we use Eqs. (3.43) and (3.92) to determine the
corresponding values of r̃h and Q. In Fig. 3.2 we show the plots for r̃h, Q, and uh as
functions of µ/T .11 In particular, Fig. 3.2 (c) indicates that it is fine to adopt u ≈ 1.01 as
the inner radial cutoff for numerical integration since this prescription already works well
at zero density and the horizon position in equilibrium gets closer to the boundary as the
chemical potential is increased. Moreover, in Fig. 3.2 (d) we illustrate a typical case with
the time evolution of the event horizon12, showing that also for transient states our inner
radial cutoff is always beyond the horizon.

3.4.3 Initial states

The last step required before we numerically simulate the far-from-equilibrium evolu-
tion of the 1RCBH plasma is to choose the initial data. In the context of the homogeneous
equilibration of the 1RCBH model, we need to specify three inputs to start the numerical
integration of the PDEs (3.82a)—(3.82f):

• The initial metric anisotropy function, Bs(v0, u);

• The initial profile for the dilaton, φs(v0, u);

• The value of the equilibrium chemical potential, µ/T .
11In order to go from r̃h to rh and then to uh one must use Eqs. (3.61) and (3.80).
12To calculate the event horizon, one just needs to calculate a null geodesic

0 = 2dvdr − 2A(v, r)dv2 ⇒ dr

dv
= A(v, r(v)), (3.93)

subjected to the boundary condition r(v →∞) = rh.
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Figure 3.2: (a) Radius of the equilibrium black hole expressed in the modified EF coordinates
(3.34), (b) the parameter Q of the equilibrium solution, and (c) the radius of the equilibrium
black hole expressed in the numerical radial coordinate (3.80), all of them plotted as functions
of the chemical potential µ/T . (d) Time evolution of the radius of the far-from-equilibrium black
hole solution obtained using constant profiles for the initial metric anisotropy and dilaton field
at µ/T = 2.

The initial metric anisotropy will be assumed to have either the form of a “pulse” with
a Gaussian parameterization [168], or simply a constant profile

(a) Bs(v0, u) = A e 1
2 (u−u0)2/σ2

, (3.94)
(b) Bs(v0, u) = A. (3.95)

The parameter A controls the initial amplitude of the metric anisotropy whereas the
parameters σ and u0 are related to the width and how deep into the bulk the pulse is
centered.

For the initial dilaton profile, we shall consider again the constant and Gaussian forms
and, additionally, we will also consider the case where the initial dilaton profile is already
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at its equilibrium solution, i.e.13

(a) φs(v0, u) = −κ2
5〈Oφ〉 = −

√
2
3Q

2, (3.96)

(b) φs(v0, u) = Aφe
1
2 (u−u0)2/σ2

, (3.97)

(c) φs(v0, u) = − 1
u2

√
2
3 ln

(
1 + ũ(u)Q2

)
, (3.98)

where ũ = 1/r̃, and Eq. (3.98) has this form to match the equilibrium solution (3.38).
Note that for B(v0, u) = 0 (corresponding to a pure thermalization process with no initial
anisotropy), the use of the last initial condition for the dilaton field automatically gives
the equilibrium solution for the 1RCBH plasma.

Finally, one needs to choose a value for the equilibrium chemical potential µ/T ∈
[0, π/

√
2]. The value µ/T = 0 corresponds to the standard N = 4 SYM plasma whereas

µ/T = π/
√

2 corresponds to the critical point. Moreover, by fixing µ/T we also fix the
values of Q and uh as explained above in Eq. (3.92).

Regarding the initial energy density (and the pressure, since ε = 3p), one may find
it using the expression obtained in Eq. (3.46) from the thermodynamics of the 1RCBH
plasma, i.e.

ε = −3H = 3π2N2
c T

4

128

3−

√√√√1−
(
µ/T

π/
√

2

)2


31 +

√√√√1−
(
µ/T

π/
√

2

)2
 , (3.99)

where the temperature T is given by Eq. (3.41). Hence, far-from-equilibrium solutions
with different values of µ/T will have different energy density and equilibrium pressure.

Furthermore, since the 1RCBH model is a conformal theory, one cannot use only v
to measure the time evolution of the fields, i.e. one needs to compose this EF time with
another quantity to produce a dimensionless time measure. Thus, since the temperature
T will be the same for all the numerical simulations, as explained in Sec. 3.4.2, the
dimensionless quantity that we use to measure the time flow is vT . A different approach,
which we do not explore in this chapter, would be to fix the energy density for all the values
of µ/T and let the temperature T vary among the solutions; in this case, one would use
the dimensionless quantity vε1/4 to compare the time evolution between different values
of µ/T . This is scheme will be explored in Sec. 4 and it is also done in Ref. [168].

13Note that these are initial profiles for the subtracted dilaton field defined in Eqs. (3.81). Therefore,
the full initial dilaton profile φ(v0, u) = u2φs(v0, u) vanishes at the boundary u = 0 for all these initial
data, as it should be.
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3.4.4 Numerical techniques

In this work, in order to deal with the radial part of the system of PDEs (3.82a)—
(3.82f) we developed a new numerical code that employs the so-called pseudospectral (or
collocant) method [230–232], which is a widespread technique used to solve the equations
of motion in the characteristic formulation of numerical relativity due to its accuracy and
rapid convergence.

The main idea behind the pseudospectral method is to expand the numerical solution
in terms of functions that form a complete basis, converge, and are easy to compute. One
family of functions that accomplishes these demands are the Chebyshev polynomials of
the first kind, Tn(x). Indeed, for well-behaved functions, the convergence of the numerical
solution is exponential with respect to the number of added polynomials [230,231]. A sim-
ple example where the solution is not so well-behaved occurs when there are logarithmic
terms in the near-boundary expansion of the bulk fields; this situation led the authors of
Ref. [233] to favor the Runge-Kutta method to solve the radial part of the PDEs.

Assuming that the domain of interest is u ∈ [0, 1], which is the case throughout this
work, we write the numerical approximation XN(u) of a function X(u) as,

X(u) ≈ XN(u) =
N−1∑
k=0

akTk(2u− 1), (3.100)

where {ak} is the set of spectral coefficients. In the problem that we are interested to solve
here, X(u) represents the elements of the set {Σs, (d+Σ)s, E , Bs, (d+B)s, φs, (d+φ)s, As}.

In the numerical calculation one needs to specify the set of grid points {ui} where the
discretized equations of motion take place. For this work, we adopt the Chebyshev-Gauss-
Lobatto grid, which is given by

uk = 1
2

(
1 + cos

(
kπ

N − 1

))
, k = 0, . . . , N − 1, (3.101)

where N is the number of grid points, also known as the collocant points.
Another important representation of XN is given in terms of the values it assumes at

the grid points, i.e.

XN(ui) =
N−1∑
j=0

Cj(ui)Xj, (3.102)

where Ci(u) is the cardinal function defined as

Ci(u) =
N−1∏

j=0,j 6=i

u− uj
ui − uj

, (3.103)
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which satisfies the condition,
Cj(ui) = δij. (3.104)

It is then evident that the set of coefficients {Xi} are precisely the values of XN(ui).
Moreover, the description of the problem in terms of {Xi} is completely equivalent to the
description in terms of the spectral coefficients {ai}, the choice between them being just a
matter of convenience. In this work, in particular, we will solve the PDEs (3.82a)-(3.82f)
using the cardinal basis representation (3.102) to get {Xi}.

The last element that we need to define before numerically solving the equations
of motion is the pseudospectral differentiation matrix, Dij, which provides the discrete
version of X ′(u), i.e. X ′i = DijXj. To obtain this matrix, one needs to go through the
derivation of the cardinal functions. Here we just give the final form of the differentiation
matrix [230]:14

Dij = dCj
du

∣∣∣∣∣
u=ui

=



(1 + 2(N − 1)2)/6 i = j = 0,

−(1 + 2(N − 1)2)/6 i = j = N − 1,

−uj/(2(1− u2
j)) i = j; 0 < j < N − 1,

(−1)i+jpi/(pj(ui − uj)) i 6= j,

(3.105)

where p0 = pN−1 = 2 and pi = 1 otherwise. A nice property of Dij is that, to obtain
higher order derivatives, one just needs to exponentiate this matrix

D
(n)
ij = (Dn)ij, (3.106)

where n is the order of the desired derivative. The discretized version of the differential
equations acquire then the following generic form

QX
~X = ~fX , (3.107)

where QX is a N×N matrix and ~fX is a vector with N components. Hence, we have trans-
formed a continuum differential problem into a linear algebra problem, i.e. an inversion
matrix problem since the solution of Eq. (3.107) is given by

~X = Q−1
X
~fX . (3.108)

We note that when going from Eq. (3.107) to Eq. (3.108) we assumed that QX is invertible.
14One can obtain the differentiation matrix in Mathematica using the command:

NDSolve‘FiniteDifferenceDerivative[1,ugrid,DifferenceOrder->N-1][“DifferentiationMatrix”]
where ugrid denotes the radial grid and N is the number of collocant points.
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This is not always true. Indeed, in many cases one needs to add an initial/boundary
condition to the original Eq. (3.107) to obtain an invertible matrix.

At this stage it is instructive to give a simple example to see what should be the form
of QX and ~fX . For instance, the following second order differential equation

X ′′(u) = 2, (3.109)

assumes a discretized version given by,

(D2)ijXj = (2, . . . , 2)i, (3.110)

which means that QX = D2 and ~fX = (2, . . . , 2)T . Now the discussion regarding the
solution of the radial part of the equations of motion is almost done, we only have to
discuss the filtering process.

In our calculations, we have found the common “aliasing” (a.k.a. “spectral blocking”)
problem where high frequency modes have spurious growth and contaminate the numerical
computation until it eventually breaks down. Such issue is typical in problems involving
nonlinear equations [230,231]. To circumvent this problem, we need to access the spectral
coefficients ai and perform a “damping” on the higher modes. To go from {Xi} to {ai}
we use the Matrix Multiplication Transform (MMT) as defined in Ref. [230],

ai = MijXj, (3.111)

where
Mij = w(j)Ti(2uj+1 − 1)

(Ti, Ti)
, (3.112)

with

w(i) = π

N − 1

[
1− δi,0 + δi,N−1

2

]
, (3.113)

denoting the Gaussian quadrature weight function and (Ti, Ti) denoting the scalar prod-
uct,

(Ti, Ti) ≡

π i ∈ {0, N − 1},

π/2 i /∈ {0, N − 1}.
(3.114)

Our damping process, in particular, is very efficient. For instance, if we take N = 40
as the number of radial grid points, setting the last three spectral coefficients to zero at
each time step suffices to produce a well behaved numerical evolution. We illustrate this



3.5 EQUILIBRATION DYNAMICS: RESULTS FOR DIFFERENT INITIAL DATA 63

process schematically below15

{Xi}
M−→ {aaliasedi } damp−−−→ {aanti-aliasedi } M−1

−−−→ {Xfiltered
i }. (3.115)

For the time evolution we have used the Adams-Bashforth (AB) method, which is a
well-known explicit multi-step method employed to solve ordinary differential equations.
In particular, the third order AB formula is given by

~Xn+1 = ~Xn + ∆t
12

(
23 ~Xn − 16 ~Xn−1 + 5 ~Xn−2

)
, (3.116)

where the subscript n denotes the position of the variable at the nth time step and ∆t is
the time step value. Furthermore, since the AB method (3.116) requires the time derivative
of several previous steps it needs to be initialized with another method. In this work we
used the Euler method for the first three steps.

3.5 Equilibration dynamics: results for different ini-
tial data

After the detailed discussion carried out in the previous sections, we are finally in po-
sition to perform the full numerical evolution of the nonlinear PDEs of the 1RCBH model
in their numerical form (3.82a)—(3.82f). Next, we present the results for the homogeneous
equilibration of the 1RCBH plasma for different initial data given in Eqs. (3.94), (3.95)
and Eqs. (3.96)—(3.98).

3.5.1 Constant metric anisotropy and dilaton profiles

We begin by discussing the results for the initial data specified in Eqs. (3.95) and
(3.96), i.e. when the initial profiles for the metric anisotropy Bs(v0, u) and the dilaton
field φs(v0, u) are both constant with respect to the radial coordinate u. We are going to
consider here the values

Bs(v0, u) = 2 and φs(v0, u) = −
√

2
3Q

2, (3.117)

which are similar to the first condition probed in Ref. [229].
In Fig. 3.3 we show a 3D plot with the time evolution of Bs and φs for µ/T = 2. As

discussed before, we choose the dimensionless quantity vT to represent the time flow in
15Another common way to do the filtering process is to use the Fast Fourier Transform (FFT). This is

explained in the review [59] and it is also used, e.g., in Ref. [185].
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(a) (b)

Figure 3.3: Results for the time evolution of some fields involved in the 1RCBH setup for the
initial condition (3.117) with µ/T = 2: (a) the subtracted metric anisotropy function Bs(v, u),
and (b) the subtracted dilaton field φs(v, u).

the CFT. With Bs and φs now fully determined, one may compute the time evolution of
the pressure anisotropy ∆p (3.78b) and the scalar condensate 〈Oφ〉 (3.78d).

The results for the isotropization process describing how the pressure anisotropy ∆p
goes to zero as the time evolves, taking into account the initial condition (3.117), are shown
in Fig. 3.4. In Fig. 3.4 (a), where ∆p is normalized by the (equilibrium) temperature to
the fourth, one notes that at the earliest times the pressure anisotropy in insensitive to
the value of the dimensionless chemical potential µ/T which, however, becomes relevant
as the time evolves. In fact, as we shall discuss in Sec. 3.5.7, the isotropization time (which
cannot be adequately resolved by eyeball in the scale of the plot shown in Fig. 3.4 (a))
has a non-monotonic dependence on the value of µ/T , which is a direct consequence of
the presence of a critical point in the phase diagram of the 1RCBH model. Namely, as
it will become clear in the analysis of Sec. 3.5.7, the isotropization time may decrease or
increase for increasing values of µ/T depending on whether µ/T is far or close enough
to the critical point, respectively. This is very different from what happens e.g. in the
case of the AdS-Reissner-Nordstrom background investigated in Ref. [168], which does
not feature a critical point in its phase diagram. It is also interesting to note that, as
anticipated around Eq. (3.99), the equilibrium pressure (and energy density) depends on
the chosen value of µ/T , which is clear from the curves shown in Fig. 3.4 (b), where ∆p
is normalized by the equilibrium pressure. Moreover, we have verified the effect on the
isotropization time obtained by varying the value of the initial metric anisotropy and the
effect was negligible. For instance, if one doubles the initial anisotropy, the only effect is
to have a steeper downfall of ∆p before it reaches the first minimum. The explanation for
this is the surprising low nonlinearity of the system [229,234], which is also quantitatively
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Figure 3.4: Time evolution of the pressure anisotropy for several values of the chemical potential
using the initial data (3.117): (a) ∆p normalized by the (equilibrium) temperature to the fourth,
and (b) ∆p normalized by the equilibrium pressure.

explored at length in Ref. [168].
The time evolution of the scalar condensate 〈Oφ〉 for different values of µ/T is pre-

sented in Fig. 3.5. The first remarkable feature of the time evolution of the scalar con-
densate is that it takes a much longer time to relax to equilibrium than the pressure
anisotropy. This is the reason why we adopted the equilibration time associated with the
relaxation of the scalar condensate toward equilibrium as the true thermalization time of
the 1RCBH plasma. We also observe a qualitatively different behavior for the dependence
of the thermalization time with µ/T when compared to the corresponding dependence of
the isotropization time (note also that in the case of the AdS-Reisser-Nordstrom back-
ground studied in Ref. [168], spatially homogeneous isotropization corresponds already to
the true thermalization of the system since there is no scalar condensate in that case).
The thermalization time associated with the relaxation of the scalar condensate always in-
creases with increasing µ/T . It is also interesting to note the qualitative similarity between
the time evolution of 〈Oφ〉 and the thermalization process of confining theories studied in
Ref. [233] using holographic quenches, even though the 1RCBH model is non-confining.

3.5.2 Constant metric anisotropy profile and Gaussian dilaton
profile

In this subsection we study the time evolution of the system given the initial data:

Bs(v0, u) = 2 and φs(v0, u) = 0.5 e−100(u−0.3)2
, (3.118)
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Figure 3.5: Time evolution of the scalar condensate 〈Oφ〉 for different µ/T using the initial
data (3.117).

where we kept the same constant initial metric anisotropy as before but changed the
initial condition for the dilaton field and considered now a Gaussian profile. This is a way
to look for possible new features depending mostly on the choice for the initial dilaton
profile.

In Fig. 3.6 we display a 3D plot with the time evolution of Bs(v, u) and φs(v, u) for
µ/T = 2 and the initial conditions set by Eq. (3.118). By comparing with Fig. 3.3, one
notes that the evolution of the metric anisotropy is not very sensitive to the variation of
the initial profile for the dilaton field. On the other hand, as expected, the evolution of the
dilaton field is significantly affected by the choice of its initial value. This seems to suggest
that the backreaction produced on the metric anisotropy by varying the initial profile for
the dilaton is small, which will be confirmed in the course of the next subsections.

In Fig. 3.7 we show our results for the time evolution of the pressure anisotropy ∆p for
different values of µ/T and the initial conditions given in Eq. (3.118). By comparing with
the results obtained in the previous subsection, displayed in Fig. 3.4, one notes that the
pressure anisotropy does not change much by varying the initial condition for the dilaton,
if we keep fixed the constant initial metric anisotropy. This is a direct consequence of the



3.5 EQUILIBRATION DYNAMICS: RESULTS FOR DIFFERENT INITIAL DATA 67

(a) (b)

Figure 3.6: Results for the time evolution of some fields involved in the 1RCBH setup for the
initial condition (3.118) with µ/T = 2: (a) the subtracted metric anisotropy function Bs(v, u),
and (b) the subtracted dilaton field φs(v, u).

previously mentioned robustness of the metric anisotropy against variations of the initial
dilaton profile. On the other hand, the early time dynamics of the scalar condensate 〈Oφ〉
displayed in Fig. 3.8 is very different from the result obtained in the previous subsection
and shown in Fig. 3.5, while its late time dynamics is remarkably similar for the two
different set of initial conditions given in Eqs. (3.118) and (3.117). Moreover, the same
observations done in the previous subsection, that the thermalization time associated with
the equilibration of the scalar condensate only happens significantly after the system has
already relaxed to an (approximately) isotropic state, and that this thermalization time
always increases with increasing µ/T , also hold for the initial conditions given in Eq.
(3.118). As we are going to see in the next subsections, these qualitative trends hold for
all the different initial conditions considered in the present work, suggesting that they are
general features of the equilibration process of the 1RCBH plasma.

3.5.3 Constant metric anisotropy profile and equilibrium dila-
ton profile

In this subsection we study the time evolution of the system given the initial data:

Bs(v0, u) = 2 and φs(v0, u) = − 1
u2

√
2
3 ln

(
1 + ũ(u)Q2

)
, (3.119)

where we kept the same constant initial metric anisotropy as in the two previous subsec-
tions but considered now the initial dilaton profile discussed in Eq. (3.98), corresponding
to the equilibrium value of the dilaton field.
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Figure 3.7: Time evolution of the pressure anisotropy for several values of the chemical potential
using the initial data (3.118): (a) ∆p normalized by the (equilibrium) temperature to the fourth,
and (b) ∆p normalized by the equilibrium pressure.

In Fig. 3.9 we display a 3D plot with the time evolution of Bs(v, u) and φs(v, u) for
µ/T = 2 and the initial conditions set by Eq. (3.119). By comparing with the results in
the two previous subsections, one confirms once again the robustness of the time evolution
of the metric anisotropy against different choices for the initial dilaton profile.

In Fig. 3.10 we display our results for the time evolution of the pressure anisotropy,
which are similar to what we have found in the two previous subsections. Regarding
the time evolution of the scalar condensate shown in Fig. 3.11, we see that its early
time dynamics is different from the previous cases considered here, although its late time
dynamics is very similar to those found before. Furthermore, one also notes that in the
present case where the initial condition for the dilaton is already its equilibrium value
that the fluctuations in the value of the dilaton as time evolves are generally small. This
is expected since in the present case the far-from-equilibrium dynamics of the system is
being initially driven solely by the metric anisotropy.

3.5.4 Gaussian metric anisotropy profile and constant dilaton
profile

Now we consider a different set of initial conditions to scan out possible new features in
the equilibration dynamics of the 1RCBH plasma as a function of the chosen initial data.
We change the initial metric anisotropy profile Bs(v0, u) but use the same constant initial
profile for the dilaton field φs(v0, u) as in subsection 3.5.1, which is a way to probe if there
are some new features depending mostly on the chosen initial anisotropy. We present in
this subsection the results for a Gaussian initial metric anisotropy (3.94), which is perhaps
the most common initial condition chosen for this field, combined with a constant initial
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Figure 3.8: Time evolution of the scalar condensate 〈Oφ〉 for different µ/T using the initial
data (3.118).

profile for the dilaton field (3.96)

Bs(v0, u) = 0.5 e−100(u−0.4)2 and φs(v0, u) = −
√

2
3Q

2, (3.120)

where the Gaussian initial anisotropy was chosen to be more or less half-way between the
black hole horizon and the boundary.

In Fig. 3.12 we show a 3D plot with the time evolution of Bs(v, u) and φs(v, u) using
the initial condition given in Eq. (3.120) and µ/T = 2. The shape of both functions are
very different than the case considered in subsection 3.5.1, whose results are displayed in
Fig. 3.3 and where the initial condition for the dilaton was the same as in Eq. (3.120) but
the initial metric anisotropy was constant. This signalizes a strong backreaction induced
on the dilaton field by changing the initial metric anisotropy, in contrast to the general
trend observed in the previous subsections that the backreaction induced on the metric
anisotropy by changing the initial dilaton profile is quite small. These general features
of the far-from-equilibrium 1RCBH plasma will be further confirmed in subsections 3.5.5
and 3.5.6.
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(a) (b)

Figure 3.9: Results for the time evolution of some fields involved in the 1RCBH setup for the
initial condition (3.119) with µ/T = 2: (a) the subtracted metric anisotropy function Bs(v, u),
and (b) the subtracted dilaton field φs(v, u).

The time evolution of the pressure anisotropy ∆p that we obtain from the boundary
value of Bs(v, u) in the present case is shown in Fig. 3.13. One can see that the early
time dynamics of the pressure anisotropy in the case of the initial condition set in Eq.
(3.120) is completely different than the one obtained in Fig. 3.4 by considering the initial
condition given by Eq. (3.117). In particular, the isotropization time has significantly
decreased by considering a Gaussian initial metric anisotropy when compared to the
isotropization times associated with a constant initial metric anisotropy analyzed in the
previous subsections.

The time evolution of the scalar condensate 〈Oφ〉 for the initial condition (3.120) is
shown in Fig. 3.14. Compared with the result presented in Fig. 3.5 using a constant
initial anisotropy (3.117), we note that the early time dynamics of 〈Oφ〉 is very different
depending on the chosen initial data. However, the late time dynamics of the scalar
condensate and the associated thermalization time are actually very similar for both
sets of initial conditions. These observations are in agreement with the general trend
observed in the previous subsections and will be further confirmed in the course of the
next subsections.

3.5.5 Gaussian metric anisotropy and dilaton profiles

Now we change the initial dilaton profile φs(v0, u) but maintain the prior parametriza-
tion for the initial metric anisotropy Bs(v0, u)

Bs(v0, u) = 0.5 e−100(u−0.4)2 and φs(v0, u) = 0.5 e−100(u−0.3)2
, (3.121)
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Figure 3.10: Time evolution of the pressure anisotropy for several values of the chemical po-
tential using the initial data (3.119): (a) ∆p normalized by the (equilibrium) temperature to the
fourth, and (b) ∆p normalized by the equilibrium pressure.

where Bs(v0, u) is kept the same as in the analysis of the previous subsection. Moreover,
we also considered different values for Bs(v0, u) and φs(v0, u) with the same functional
forms provided in Eq. (3.121) and the results follow the same general behavior as the ones
obtained with this equation.

The 3D plot with the time evolution of Bs(v, u) and φs(v, u) is shown in Fig. 3.15
for the initial condition (3.121) and µ/T = 2. From this plot, it is evident the similarity
of the shape of the metric anisotropy Bs(v, u) with the previous result shown in 3.12,
i.e. a different parameterization for the initial dilaton profile φs(v0, u) has essentially no
effect on the time evolution of the metric anisotropy. On the other hand, one notes a very
different time evolution for the dilaton φs(v, u), which is expected since we changed the
initial parameterization of this field.

As a direct consequence of the features above, the time evolution of the pressure
anisotropy ∆p depicted in Fig. 3.16 is essentially the same as in the previous case shown
in Fig. 3.13. The difference between them can be barely seen (what configures an even
stronger test of robustness than observed before by considering initial conditions with
a fixed constant initial metric anisotropy), indicating that the pressure anisotropy is re-
markably robust against the addition of other fields in the gravitational action besides
the metric. On the other hand, the early time dynamics of the scalar condensate 〈Oφ〉
presented in Fig. 3.17 is very different from the previous case shown in Fig. 3.14, although
its late time dynamics and the associated thermalization time are very similar to the ones
obtained in the previous subsections.
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Figure 3.11: Time evolution of the scalar condensate 〈Oφ〉 for different µ/T using the initial
data (3.119).

3.5.6 Gaussian metric anisotropy profile and equilibrium dilaton
profile

Finally, the last case which remains to be analyzed corresponds to the initial condition
with Gaussian initial metric anisotropy and an initial profile for the dilaton field equal to
its equilibrium value

Bs(v0, u) = 0.5 e−100(u−0.4)2 and φs(v0, u) = − 1
u2

√
2
3 ln

(
1 + ũ(u)Q2

)
. (3.122)

In Fig. 3.18 we present the 3D plot with the time evolution of Bs(v, u) and φs(v, u)
using the initial condition (3.122) and µ/T = 2. As before, the metric anisotropy Bs(v, u)
is effectively unaffected by the change done in the initial condition for the dilaton field,
while the dilaton profile φs(v, u) has only very small fluctuations in time, which is expected
since we have already started the numerical simulations in the present case with an initial
dilaton profile equal to its value in thermodynamic equilibrium. The pressure anisotropy
evolves in time according to Fig. 3.19, which displays essentially the very same behavior
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(a) (b)

Figure 3.12: Results for the time evolution of some fields involved in the 1RCBH setup for the
initial condition (3.120) with µ/T = 2: (a) the subtracted metric anisotropy function Bs(v, u),
and (b) the subtracted dilaton field φs(v, u).

found in the last two subsections. On the other hand, the early time dynamics of the
scalar condensate depicted in Fig. 3.20 is different than what we have seen in the previous
subsection, displaying only very small fluctuations in time. In any case, the thermalization
time associated with the equilibration of the scalar condensate is found to be very similar
to what has been observed in all the previous cases considered here.

Therefore, after we have exhausted the analysis of the selected sets of initial conditions,
we may draw some general conclusions for the homogeneous equilibration dynamics of the
1RCBH plasma analyzed here:

1. The backreaction produced in the time evolution of the dilaton field by changing the
initial metric anisotropy is extremely large, in contrast to what happens with the
backreaction produced on the time evolution of the metric anisotropy by changing
the initial dilaton profile, which is small. This implies that the pressure anisotropy
is robust against the addition of other fields in the gravitational action besides the
metric;

2. The isotropization (associated with the approximate vanishing of the pressure an-
isotropy ∆p) always happen (well) before the true thermalization of the system
(associated with the equilibration of the scalar condensate 〈Oφ〉);

3. Regarding the late time dynamics of the scalar condensate and the associated ther-
malization time, these are robust features of the medium which remain almost un-
changed regardless of the initial conditions considered. In particular, the thermal-
ization time always increases with increasing chemical potential. On the other hand,
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Figure 3.13: Time evolution of the pressure anisotropy for several values of the chemical po-
tential using the initial data (3.120): (a) ∆p normalized by the (equilibrium) temperature to the
fourth, and (b) ∆p normalized by the equilibrium pressure.

the early time dynamics of the scalar condensate is strongly dependent on the set
of initial data chosen to seed the time evolution of the far-from-equilibrium 1RCBH
plasma;

4. The time evolution of the pressure anisotropy and the associated isotropization
time of the system strongly depend on the chosen initial condition for the metric
anisotropy.

However, in the different cases considered above, due to the large scales plotted to
cover the large amplitudes of oscillation observed in the time evolution of the pressure
anisotropy, it was not possible yet to clearly reveal the crucial role played by the critical
point in the isotropization of the system. We analyze this issue in detail in the next
subsection, where we confront the late time dynamics of the pressure anisotropy with
the lowest non-hydrodynamic QNM of the external scalar channel of the 1RCBH plasma
obtained in Appendix A [146]. We also compare the late time behavior of the scalar
condensate with the lowest non-hydrodynamic QNM of the dilaton channel, also derived
in Appendix A.

3.5.7 Matching the quasinormal modes

In this section we compare the late time behavior of the full nonlinear evolution of
the equations of motion with the quasinormal modes of the system, which describe expo-
nentially damped collective excitations produced in response to disturbances of a black
hole background (see e.g. [136, 235] for some recent reviews). The QNM spectra of the
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Figure 3.14: Time evolution of the scalar condensate 〈Oφ〉 for different µ/T using the initial
data (3.120).

theory are responsible for the so-called “quasinormal ringdown” phenomenon describing
the linear part of the decaying perturbations of a disturbed black hole at late times.

The purpose of this comparison is threefold: it can give a measure of the degree of
nonlinearity of the full out-of-equilibrium solutions of the equations of motion16; it may
be also used to provide an independent check of the accuracy of the numerical solutions
at late times; finally, it can unveil some of the main differences between the early and the
late time equilibration dynamics of the system.

By following the classification given in Ref. [203] for the gauge and diffeomorphism
invariant perturbations of the EMD fields in the homogeneous zero wavenumber limit, in
which case the system has a rotational SO(3) symmetry, one has three different channels
to analyze corresponding to the three lowest dimensional representations of SO(3): the
tensor/quintuplet channel, the vector/triplet channel, and the scalar/singlet channel. By
working with the non-normalizable modes17 of each channel, one obtains the associated

16Note that in the analysis of QNM’s, by assuming small perturbations, one just considers quadratic
fluctuations of the bulk fields in the disturbed action, which gives linearized equations of motion for these
perturbations.

17These are the solutions of the linearized equations of motion for the perturbations with the conditions
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(a) (b)

Figure 3.15: Results for the time evolution of some fields involved in the 1RCBH setup for the
initial condition (3.121) with µ/T = 2: (a) the subtracted metric anisotropy function Bs(v, u),
and (b) the subtracted dilaton field φs(v, u).

transport coefficients through the use of Kubo formulas, namely, the shear viscosity from
the SO(3) quintuplet channel, the charge conductivity and diffusion from the SO(3)
triplet channel, and the bulk viscosity from the SO(3) singlet channel [203]. On the other
hand, by working with the normalizable modes18, one obtains the QNM’s of each channel.
All the spectra of QNM’s of the 1RCBH plasma are reviewed in the Appendix A.19 The
lowest non-hydrodynamic QNM’s of the SO(3) quintuplet and singlet channels will be
compared in what follows with the late time dynamics of the pressure anisotropy and the
scalar condensate, respectively.

In Fig. 3.21 we display our numerical results for the time evolution of the pressure
anisotropy using the initial conditions set in Eq. (3.117) for different values of µ/T .20

This time we plot the logarithmic of ∆p which makes it possible to clearly resolve the
late time exponential damp of the black hole oscillations. The inset displayed in Fig. 3.21
gives a zoom of the behavior of the pressure anisotropy in the far-from-equilibrium zone.
To check whether the late time dynamics of the pressure anisotropy can be described by
the lowest non-hydrodynamic QNM of the SO(3) quintuple (external scalar) channel, we

that these perturbations are regular at the horizon and normalized to unity at the boundary.
18These are the solutions of the linearized equations of motions which are regular at the horizon and

subjected to the Dirichlet condition that these perturbations vanish at the boundary.
19The SO(3) quintuplet channel coincides with the perturbation for a massless external scalar field

[146,203,204], while the SO(3) singlet channel may be identified more generally with a so-called “dilaton
channel”, as we are going to explain in Appendix A.

20We remark that although the early time behavior of this plot changes significantly depending on the
initial conditions considered, the qualitative behavior observed at late times is the same for the different
initial conditions considered here.
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Figure 3.16: Time evolution of the pressure anisotropy for several values of the chemical po-
tential using the initial data (3.121): (a) ∆p normalized by the (equilibrium) temperature to the
fourth, and (b) ∆p normalized by the equilibrium pressure.

parametrize ∆p using the following functional form

4π2

N2
c

∆p
T 4 = A e

Im[ω]
T

vT cos
(
Re[ω]
T

vT + ϕ

)
, (3.123)

where Re[ω]/T , Im[ω]/T , A, and ϕ are fixed by fitting the functional form (3.123) to the
numerical result for the pressure anisotropy evaluated within the late time interval vT ∈
[1.8, 4.1].21 The relevant parameters extracted from this fitting procedure are Re[ω]/T
and Im[ω]/T , which may be then compared with the real and imaginary parts of the
non-hydrodynamic QNM with lowest imaginary part (in magnitude), corresponding to
the dominant, less damped mode in the external scalar channel.

Such comparison is done in Fig. 3.22, from which one notes a good agreement between
the late time decay of the pressure anisotropy and the lowest non-hydrodynamic QNM of
the external scalar channel obtained in Ref. [146]. Such agreement provides an independent
check of the accuracy of our numerical routine at late times, as aforementioned. More
importantly, we are now able to understand how the isotropization time depends on the
presence of a critical point in the phase diagram of the 1RCBH plasma.

We note from Fig. 3.21 that the early time dynamics of the pressure anisotropy is
qualitatively different from its late time dynamics. At early times, the pressure anisotropy
is always damped as one increases µ/T , however, at late times the pressure anisotropy
may decrease or increase with increasing chemical potential depending on whether the

21For the specific value of µ/T = π/
√

2 (critical point), the fit interval used was vT ∈ [5.0, 7.0], since
the late time decay of the pressure anisotropy only converges to the critical behavior of the lowest non-
hydrodynamic QNM of the external scalar channel at later times when compared to other values of
µ/T .
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Figure 3.17: Time evolution of the scalar condensate 〈Oφ〉 for different µ/T using the initial
data (3.121).

system is far or close enough to the critical point. Therefore, the isotropization time of
the 1RCBH plasma is affected by the critical point in accordance with the behavior of
the “relaxation time” extracted from the imaginary part of the lowest non-hydrodynamic
QNM of the external scalar channel of the theory [146]. This is explained by the fact that,
as shown in Fig. 3.22, the late time decay of the pressure anisotropy is in fact described
by the lowest non-hydrodynamic QNM of the SO(3) quintuplet channel.

This is qualitatively different from the thermalization time discussed before, which is
associated with the equilibration of the scalar condensate. This process only sets in after
a nearly isotropic state has been already achieved by the system and it always increase
with increasing µ/T . In Fig. 3.23 we show our numerical results for the time evolution
of the difference between the scalar condensate and its equilibrium value using the initial
conditions set in Eq. (3.117) for different values of µ/T . To check whether the late time
dynamics of this observable can be described by the lowest non-hydrodynamic QNM of
the SO(3) singlet (dilaton) channel, we parametrize it using once more the following
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(a) (b)

Figure 3.18: Results for the time evolution of some fields involved in the 1RCBH setup for the
initial condition (3.122) with µ/T = 2: (a) the subtracted metric anisotropy function Bs(v, u),
and (b) the subtracted dilaton field φs(v, u).

functional form

4π2

N2
c

(〈Oφ〉 − 〈Oφ〉eq)
T 2 = A e

Im[ω]
T

vT cos
(
Re[ω]
T

vT + ϕ

)
, (3.124)

where Re[ω]/T , Im[ω]/T , A, and ϕ are fixed by fitting the functional form (3.124) to the
numerical result for the difference between the scalar condensate and its equilibrium value
evaluated within the late time interval vT ∈ [1.8, 4.1].22

The comparison between Re[ω]/T and Im[ω]/T extracted from these fits to the late
time behavior of the full numerical solutions and the lowest non-hydrodynamic QNM of
the dilaton channel is displayed in Fig. 3.24. One notes a good agreement between both
results, which shows that the late dynamics of the scalar condensate is indeed dominated
by the lowest non-hydrodynamic QNM of the dilaton channel. This also gives another
independent check of the accuracy of our numerical routine at late times.

In summary, we see that the late time dynamics of the pressure anisotropy and the
scalar condensate are dominated by the lowest non-hydrodynamic QNM’s of the external
scalar and dilaton channels, respectively. Consequently, the behavior of the isotropization
and thermalization times of the 1RCBH plasma can be correctly inferred from the analysis
of the QNM’s of the system, even though the early time dynamics of these observables
cannot be described by these linearized perturbations.

22At the critical point, however, we performed the fit starting from vT = 2.2.
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Figure 3.19: Time evolution of the pressure anisotropy for several values of the chemical po-
tential using the initial data (3.122): (a) ∆p normalized by the (equilibrium) temperature to the
fourth, and (b) ∆p normalized by the equilibrium pressure.

3.6 Conclusions of the chapter
Now we summarize the main findings of the present work concerning the spatially

homogeneous equilibration dynamics of the 1RCBH plasma. The relevant one-point func-
tions of the 1RCBH model correspond to the expectation value of the stress-energy tensor
〈T µν〉 dual to the bulk metric gµν , the scalar condensate 〈Oφ〉 dual to the bulk dilaton field
φ, and the U(1) R-charge density ρc = 〈J t〉 associated with the bulk Maxwell field Aµ.
The charge density is time-independent in this spatially homogeneous setup and it only
depends on the value of the chemical potential of the medium. From 〈T µν〉 one extracts
the pressure anisotropy ∆p which describes the isotropization of the system, while the
approach of the scalar condensate toward its thermodynamic equilibrium value is asso-
ciated with the true thermalization of the 1RCBH plasma. This is so because the scalar
condensate was found here to always equilibrate only after the system has already reached
a nearly isotropic state, being always the last equilibration time scale of the system. In
other words, generally the isotropization time is shorter than the thermalization time of
the 1RCBH plasma.

Moreover, while the thermalization time was found to always increase with increasing
values of the U(1) R-charge chemical potential, in agreement with the behavior of the
lowest non-hydrodynamic QNM of the dilaton channel, the isotropization time shows a
non-monotonic dependence on the chemical potential, namely, it decreases or increases
with increasing chemical potential depending on how far or close to the critical point the
system is, respectively. This behavior of the isotropization time is in consonance with
the behavior of the lowest non-hydrodynamic QNM of the external scalar channel of the
1RCBH plasma [146]. These two observations are explained by the fact that the late
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Figure 3.20: Time evolution of the scalar condensate 〈Oφ〉 for different µ/T using the initial
data (3.122).

time dynamics of the pressure anisotropy and the scalar condensate are dominated by the
lowest non-hydrodynamic QNM’s of the external scalar and dilaton channels, respectively.
These qualitative findings are robust for the 1RCBH model, in the sense that they hold for
different initial conditions chosen to seed the time evolution of the far-from-equilibrium
plasma.

On the other hand, the early time dynamics of the pressure anisotropy and the scalar
condensate are strongly dependent on the chosen initial data. More specifically, the back-
reaction produced in the time evolution of the dilaton field by changing the initial metric
anisotropy was found to be very large, in contrast to what happens with the backreaction
produced on the time evolution of the metric anisotropy by changing the initial dilaton
profile, which was generally found to be small. This suggests that the pressure anisotropy
is robust against the addition of other fields in the gravitational action besides the metric,
being only significantly sensitive to the initial profile chosen for the metric anisotropy. In
particular, the isotropization time may be significantly modified by changing the initial
metric anisotropy. On the other hand, while the early time dynamics of the scalar conden-
sate is strongly dependent on the set of initial data chosen to seed the time evolution of
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Figure 3.21: Time evolution of the pressure anisotropy for different µ/T .

the far-from-equilibrium 1RCBH plasma, its late time dynamics and the associated ther-
malization time of the medium were found to be remarkably similar for all the different
initial conditions considered here.

Some follow-ups of the present work which will appear soon regard the generalization
of the analysis of the spatially homogeneous equilibration dynamics of the 1RCBH plasma
performed here to consider spatially dependent hydrodynamic flows, such as the Bjorken
[145] and the Gubser [236, 237] flows. Indeed, the next chapter deals exactly with the
Bjorken flow on top of the 1RCBH model [144]. Gubser flow is particulary interesting
since the solution for the hydrodynamic Navier-Stokes approximation in this case displays
general inconsistencies, such as regions in the fluid with negative temperature [236], which
do not appear after resummation [53, 238]. We also intend to investigate the collisions of
shock waves in the 1RCBH setup in the near future to study the interplay between critical
phenomena and the rapid expansion developed by the system under these conditions.

As discussed at length in the introduction of this chapter, the 1RCBH plasma (as
any conformal plasma) is not suited for direct applications in heavy ion phenomenology.
Nonetheless, some of the qualitative features disclosed in the present analysis may be
general enough and hold for other strongly coupled holographic fluids. Indeed, the fact
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Figure 3.22: (a) Real and (b) imaginary parts of the lowest non-hydrodynamic QNM of the
SO(3) quintuplet (external scalar) channel (curves) [146] compared with the late time decay of
the pressure anisotropy (diamonds) described according to Eq. (3.123).

that the thermalization time of the 1RCBH plasma increases with increasing chemical
potential is in consonance with the suggested delayed equilibration of heavy ion collisions
at lower energies or higher densities discussed in the introduction. In order to look for
possible signatures of far-from-equilibrium universal dynamics of holographic systems,
we also intend to generalize the analysis of the present work to the phenomenologically
realistic EMD construction of Ref. [70], which provides a quantitative description of QCD
thermodynamics at zero and finite baryon chemical potential.

Another perspective for future investigations consists in going beyond the calculation
of one-point functions and study also higher order correlation functions [239–243] in far-
from-equilibrium holographic settings. In particular, this kind of study may be of relevance
for many different ongoing and future low energy heavy ion experiments, such as the BES
program [80] being conducted at RHIC, the future fixed target (FXT) experiments [244,
245] also at RHIC, the ongoing HADES experiment [246] at GSI, the future Compressed
Baryonic Matter (CBM) experiment at FAIR/GSI [88, 89], and also experiments in the
future NICA facility [90].23 This is so because, as recently discussed in Refs. [247, 248],
the behavior of out-of-equilibrium critical cumulants in the QCD phase diagram may
be very different from the equilibrium behavior of these real-time correlation functions
[249–252]. Since ratios between some of these cumulants may be compared with ratios
between moments of particle multiplicity distributions measured in heavy ion collisions,
they are the main smoking gun used in experiments in order to try to identify clear
experimental signatures of the QCD critical point in heavy ion collisions. Therefore, an

23The center of mass collision energies
√
s (planned to be) reached in these experiments are the fol-

lowing: 7.7 — 200 GeV (BES), 3.0 — 7.7 GeV (FXT), 1.0 — 3.5 GeV (HADES), 2.7 — 4.9 GeV (CBM),
and 4.0 — 11 GeV (NICA).
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Figure 3.23: Time evolution of the difference between the scalar condensate and its equilibrium
value for different µ/T .

understanding of the behavior of higher order correlation functions in out-of-equilibrium
strongly coupled systems could disclose some fundamental insights which may potentially
drive the experimental searches for the QCD critical point in the near future.
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Figure 3.24: (a) Real and (b) imaginary parts of the lowest non-hydrodynamic QNM of the
SO(3) singlet (dilaton) channel (curves) — see their derivation in Appendix A — compared
with the late time decay of the difference between the scalar condensate and its equilibrium value
(diamonds) described according to Eq. (3.124).



Chapter 4

Holographic Bjorken flow of a hot
and dense fluid in the vicinity of a
critical point

In the last Chapter we presented a novel holographic study about the far-from-
equilibrium dynamics of a strongly coupled plasma in the vicinity of a critical point.
Nonetheless, the setup of the homogeneous isotropization that was employed does not
have a description in terms of hydrodynamics since there is no flow, and, because heavy
ion collisions produce the QGP which is described by relativistic viscous hydrodynam-
ics, it is important to construct a holographic model which incorporates hydrodynamics.
Hence, in this Chapter we will surpass this previous limitation of the mode, and go fur-
ther in trying to answer some long-standing challenges in the field of high energy nuclear
physics, which been the determination of the equilibrium and non-equilibrium properties
of the QGP as a function of temperature T and baryon chemical potential µB [61].

In particular, a crucial question for the beam energy scan (BES) program conducted at
RHIC [80], the future fixed target experiments at RHIC [244, 245], the CBM experiment
at FAIR [88,89], and also the upcoming experiments at NICA [90], is the location of the
QCD CEP, which would mark the end of a first order phase transition line expected to
exist in the QCD phase diagram at nonzero baryon density [249–252].

If the QCD CEP is within the reach of low energy heavy ion collisions, as predicted
by a recent phenomenological holographic model [70] which is in quantitative agreement
with state-of-the-art lattice QCD results [78,253], the rapidly expanding medium formed
in these collisions may generally pass close to this point when it is still far from thermal
equilibrium being perhaps not even close to a hydrodynamical regime. Therefore, the in-
vestigation of how the presence of a critical point affects the far-from-equilibrium dynamics
of the expanding medium, and its subsequent approach to hydrodynamics, is of fundamen-
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tal importance. In the absence of first principle QCD calculations of the full dynamical
evolution of the system, one must resort to effective models. Holographic shockwave-like
simulations of a strongly coupled plasma at finite chemical potential (though without crit-
ical phenomena) were investigated in [211] while the spinodal instability in a first-order
phase transition at strong coupling was studied in [254]. A way to extend hydrodynamics
through the inclusion of parametric slowing down and critical fluctuations induced by a
critical point has been recently proposed in [255]. Also, recently out-of-equilibrium effects
have been shown to produce significant impact on the critical behavior of the cumulants
of fluctuations of conserved charges, which has been investigated using the Fokker-Planck
equation [247] and also the Kibble-Zurek formalism [248].

In this Chapter we employ the gauge/gravity correspondence [54,113–115] to investi-
gate the effects of a critical point on the hydrodynamization properties of a top-down holo-
graphic construction that stems from string theory known as the 1RCBH model [138–143].
This is the holographic dual of a N = 4 SYM plasma at finite temperature and chemical
potential featuring a critical point in its phase diagram. Although not directly related
to QCD, the 1RCBH model is a very attractive setup for studying far-from-equilibrium
phenomena at finite temperature and density in the presence of a critical point. This well-
defined holographic construction allows one to investigate many different physical aspects
of a strongly coupled relativistic fluid with chemical potential and critical behavior under
well controlled theoretical conditions. As a matter of fact, in previous works the thermo-
dynamics and hydrodynamics [203], the spectra of quasinormal modes [146] (Appendix
A), and the homogeneous isotropization and thermalization dynamics [137] (Chap. 3) of
the 1RCBH system have been analyzed in detail.

In this present Chapter we perform, for the first time in the literature, a first principles
holographic evaluation of the full far-from-equilibrium evolution of a hot and dense rela-
tivistic fluid endowed with a critical point — the 1RCBH plasma —, undergoing a boost
invariant expansion known as Bjorken flow [145]. The calculations done in the present
work are all performed within a single theoretical framework, the gauge/gravity dual-
ity, and since the 1RCBH model is a top-down string theory construction, no auxiliary
hypotheses or approximations are needed in order to investigate its physical properties.
Such a simple and well controlled theoretical setting constitutes the ideal toy model for
understanding general aspects of the influence of a critical point on the hydrodynamiza-
tion dynamics of out-of-equilibrium strongly coupled media. As an example of a general
insight coming from the holographic correspondence concerning hydrodynamics, the most
robust result obtained from the duality is the nearly perfect fluidity of strongly cou-
pled plasmas, which is encoded in a very small shear viscosity to entropy density ratio,
η/s = 1/4π [56, 256, 257]. This general feature of holographic models is remarkable close
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to the results of the latest phenomenological simulations describing heavy ion data [105].
The properties of a SYM plasma undergoing Bjorken flow at zero chemical potential

has been previously investigated using numerical general relativity techniques [183, 184,
258], which determined how long it takes for this system to hydrodynamize or, in other
words, what is the relevant timescale that characterizes the emergence of hydrodynamic
behavior. In the present work, we generalize these studies to the case of the 1RCBH model
at finite chemical potential with a critical point. By numerically evolving the full nonlinear
partial differential equations of motion of the system in the bulk using a large set of initial
conditions that span different values of µ/T , we evaluate the pressure anisotropy, the
charge density, the scalar condensate, and the hydrodynamization timescale. The latter
describes the time after which a given far-from-equilibrium solution can be reasonably
described in terms of the relativistic Navier-Stokes (NS) equations. As the main result of
the present work, we show that the onset of hydrodynamics is considerably delayed as the
chemical potential is increased towards its critical value.

However, before we go into the details of holographic calculations of the Bjorken flow
near a critical point, let us review some of the basic features of dissipative relativistic
hydrodynamics, and how the Bjorken flow appeared in the context of heavy ion collisions.
For further details, we indicate Refs. [50,259].

4.1 Relativistic viscous hydrodynamics
In the Introduction of this thesis, it was remarked that dissipative relativistic hydro-

dynamics is far from being an easy subject to study, being not completely understood
albeit its tremendous success in describing heavy ion collisions. Hence, the purpose of this
section is to review recent developments of this theory, which is also essential to cosmol-
ogy [260] and astrophysics [261]. Moreover, the discussion performed here will be useful
to define the Bjorken flow in subsection 4.1.1, and also to define later an extension that
accommodates conserved charges in Sec. 4.3.

Hydrodynamics is a long-wavelength effective field theory1 designed to describe few
bulk macroscopic properties of the system such as energy density, pressure, and charge
density. Textbooks definitions also include that hydrodynamics is valid only near local
equilibrium, however, as we shall see in this Chapter, it is possible to be more flexible
with this requirement and extend the validity of hydrodynamics to regions where the
pressure anisotropy is not small.

1There are two main ingredients in the process of construction of an effective theory: the knowledge
of the degrees of freedom that one tries to describe and the underlying symmetries of the theory. In a
Lorentz invariant QFT, the symmetry to be considered is that of the diffeomorphism group, which means
invariance under general coordinate transformations.
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The fundamental ingredient to build a theory of fluid dynamics relies on (local) con-
servation laws. In the context of a quantum field theory in absence of conserved charges2,
the conservation law that we are interested in is energy and momentum conservation, i.e.

∇µT
µν = 0, (4.2)

where T µν is the stress-energy tensor of the theory. If one looks at the conventions defined
in Sec. 1.4.1, one realizes that we tacitly assume a QFT in four dimensions. The discussion
performed here can be easily extended to arbitrary dimensions, but we will stick with the
four-dimensional case.

The modern construction of dissipative relativistic fluid dynamics is based on a series
expansion of the stress-energy tensor relative to equilibrium. First, one begins considering
the fluid in equilibrium with no fluctuations (dissipation) to construct the stress-energy
tensor using the macroscopic degrees of freedom, namely, the energy density (ε), four-
velocity (uµ), and the space-time metric (gµν). This process will give us the so-called
ideal fluid dynamics. After ideal hydrodynamics is derived, one proceeds to include small
departures from equilibrium of the fields, such as the velocity of the fluid, and a subsequent
term on the stress-energy tensor must be considered. The consequence of these small
gradients is the appearance of friction terms (viscosity) that break time reversal invariance
and increase entropy3 . The construction described here, which is based on a gradient
expansion scheme, can be written as follows

T µν = T µνideal + T µν(1) + T µν(2) + . . . , (4.3)

where T µνideal is the ideal hydrodynamic part, T µν(1) is the first order correction, and T µν(2) is
the second order correction. The inclusion of all these terms gives rise to second order
hydrodynamics4. Furthermore, the most accepted small parameter used to perform the
gradient expansion (4.3) is the so-called Knudsen number (Kn), which is the ratio between
the microscopic scale (`) and the macroscopic scale (L), i.e. Kn = `/L. We will discuss
more about Kn after we introduce the first order correction.

Let us then begin the discussion of ideal fluid dynamics, which is a well-defined theory,
2If the system has some global symmetry, i.e. a conserved charged associated with a four-current Jµ,

then one has to consider also the current conservation equation

∇µJµ = 0. (4.1)

3Interestingly enough, according to Refs. [262, 263], there are some intriguing solutions of conformal
dissipative relativistic hydrodynamics in which entropy is not increased.

4The third order correction was studied in Ref. [264], in which was found that 68 independent structures
contributes to form the part Tµν(3) of the stress-energy tensor. However, since second order hydrodynamics
is already very hard to work with in practice, we tend to neglect the third order correction.
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free from the problems encountered in the dissipative formulation. The ideal part of the
stress-energy tensor T µνideal can be written as

T µνideal = εuµuν + ∆µνp, (4.4)

where ∆µν = gµν + uµuµ is the orthogonal time-like projector of the four-velocity uµ, and
p = p(ε) is the equilibrium pressure given by EoS. The projections of Eq. (4.2) parallel
and orthogonal to the four-velocity, i.e. uµ∇νT

µν and ∆α
ν∇µT

µν , give us the relativistic
version of Euler’s equations,

Dε+ (ε+ p)∇α
⊥uα = 0, (ε+ p)Duα + c2

s∇α
⊥ε = 0, (4.5)

where D = uµ∇µ is the comoving derivative, ∇α
⊥ = ∆αν∇ν , and

c2
s = ∂p

∂ε
(4.6)

is the speed of sound of the medium. The speed of sound is often recognized as the “zeroth
order” transport coefficient that can be obtained once the EoS (i.e. p = p(ε)) is given. The
relativistic Euler equations are mathematically well-defined, and can be easily extended
to cases where one has magnetic field and/or conserved charges [265,266]. Although ideal
fluid dynamics can be a good starting point, it has limitations, since friction (viscosity)
is absent and the domain of validity of ideal hydrodynamics is unknown a priori.

The first order correction to the stress-energy tensor, namely T µν(1) , produces the so-
called relativistic Navier-Stokes (NS) theory where ∇µ

[
T µνideal + T µν(1)

]
= 0. Following the

same idea of the non-relativistic case, it is interesting to split T µν(1) into a traceless part
(πµν) and a part with trace (Π), i.e.

T µν(1) = πµν + ∆µνΠ, (4.7)

where
πµν = −ησµν , Π = −ζ∇λ

⊥uλ (4.8)

with the shear tensor σµν being defined as

σµν = 2∇〈µuν〉, (4.9)

whereA〈µν〉 = ∆µναβAαβ for a given tensorAµν . The operator ∆µναβ = 1
2

(
∆µα∆νβ + ∆µβ∆να

)
−

1
3∆µν∆αβ is responsible to project the traceless part of a given tensor. Therefore, Eq. (4.8)
defines the shear and bulk contributions to the dissipation of the fluid. Furthermore, the
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scalars η = η(ε) and ζ = ζ(ε) are the shear and bulk viscosities, respectively. These
coefficients are emergent properties from the underlying microscopic interactions of the
theory.

The explicit form of the NS equations obtained from the projections uµ∇νT
µν and

∆α
ν∇µT

µν are, respectively

Dε+ (ε+ p+ Π)∇⊥µuµ + 1
2πµνσ

µν = 0 (4.10)

(ε+ p+ Π)Duµ +∇⊥µ (p+ Π) + ∆µ
ν∇απ

αν = 0. (4.11)

Moreover, with the first correction T µν(1) at hand, it is possible to begin to infer the
validity of the gradient expansion (4.3) using the Knudsen number defined above. For
such a task, one can use the “size” of the gradient σµν of the first correction to obtain
the inverse value of the macroscopic scale L−1, and use the transport coefficient of T µν(1) to
produce the small scale as follows

η

ε+ p
≡ ` = λmfp, (4.12)

where λmfp can be considered to be like mean free path in a gas. For the gradient expansion
(4.3) to be accurate, the mathematical reasoning requires that λmfp � L [267], which
means that

Kn � 1. (4.13)

The above requirement would then set a limit of applicability for a theory of dissipative
fluid dynamics. However, recent studies in the context of heavy ion collisions suggest
that a good description of the system using hydrodynamics can be done even when the
Knudsen number is close to unity [268,269], which induces one to think that it is possible
to extend the validity of fluid dynamics to regions not so close to the equilibrium [95].
A recent step towards a hydrodynamic formulation for systems that are not close to
equilibrium, now in the context of the boost-invariant Bjorken flow, was the discovery of
special solutions [96–101]. These solutions, dubbed as “attractors”, indicate that different
non-equilibrium solutions would coalesce first to these attractors rather than to other
hydrodynamic solutions. This unreasonable success of hydrodynamics is a very active
area of research [96–101].

Moving now to the second order correction, T µν(2) , Romatschke proposed in Ref. [270]
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the following general form for the dissipative part of the stress-energy tensor

πµν =− ησµν + ητπ

[
Dσ〈µν〉 + ∇

λ
⊥uλ
3 σµν

]
+ κ

[
R〈µν〉 − 2uλuρRλ〈µν〉ρ

]
+ λ1σ

〈µ
λσ

ν〉λ + λ2σ
〈µ
λΩσ〉λ + λ3Ω〈µλΩσ〉λ

+ κ?2uλuρRλ〈µν〉 + ητ ?π
∇λ
⊥uλ
3 σµν + λ4∇〈µ⊥ ln ε∇ν〉

⊥ ln ε, (4.14)

Π =− ζ∇λ
⊥uλ + ζτΠD(∇λ

⊥uλ) + ξ1σ
µνσµν + ξ2(∇λ

⊥uλ)2

+ ξ3ΩµνΩµν + ξ4∇µ
⊥ ln ε∇⊥µ ln ε+ ξ5R + ξ6u

λuρRλρ, (4.15)

where Ω = 1
2 (∇µ

⊥u
ν −∇ν

⊥u
µ) is the vorticity tensor. The coefficients τπ, τ ?π , τΠ, κ, κ?,

λ1,2,3,4, and ξ1,2,3,4,5,6, are second order transport coefficients.
Using Eq. (4.2) in the gradient expansion (4.3), i.e. ∇µ

[
T µνideal + T µν(1) + T µν(2)

]
= 0, one

obtains the equations of motion for the second order dissipative relativstic hydrodynamics,
also known as the non-conformal generalization of BRSSS theory (Baier-Romatschke-Son-
Stephanov-Starinets) [177]. However, this theory solely based on a gradient expansion has
problems with causality and stability [271,272]. Evidently, in a relativistic theory, causality
is vital and it might even be the guiding principle to formulate a dissipative theory of
fluid dynamics [53]. Hence, something must change in order to transform viscous fluid
dynamics into a theory that respects causality and is stable. The standard way that
this is currently done is to promote πµν and Π to independent dynamical variables, and
then use relaxation-like equations for πµν and Π coupled to the old equations of motion
obtained from Eq. (4.2).

From a historical perspective, Maxwell [273] and Cattaneo [274] were the first ones
to introduce an ad-hoc modification of the structure of viscous fluid dynamics equations
in a way where the final theory obeys causality at least in the linear regime. The model
proposed by Cattaneo, generalized to the relativistic case, introduces a relaxation-like
equation for the dissipative part of the stress-energy tensor, i.e. πµν and Π are now dy-
namical variables with the following equations of motion

τπDπµν + πµν = −ησµν , τΠDΠ + Π = −ζ(∇λ
⊥uλ). (4.16)

After Cattaneo, it was time for Muller [275], Israel and Stewart [276,277], to formulate
the so-called Muller-Israel-Stewart (MIS) theory, in which a linearly causal and stable
theory is derived by imposing positiveness of the local entropy production. Interestingly
enough, in the same spirit of Eqs. (4.16), the MIS theory also leads to relaxation-like
equations for πµν and Π. More recently, an extension of the MIS theory was developed,
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namely, the resummed BRSSS (rBRSSS)theory5 [177]. Roughly speaking, the rBRSSS
theory is obtained by considering the minimal substitutions σµν → −πµν/η and ∇⊥µuµ →
−Π/ζ to obtain a relaxation-like equation that is shown to be equivalent to a theory in
which an infinite number of terms of the gradient expansion is resummed [177]6.

Furthermore, it is possible to derive dissipative relativistic fluid dynamics from a more
fundamental microscopic theory. On the one hand, using relativistic kinetic theory, which
is an approach valid for weakly coupled dilute systems, it is possible to derive a linearly
causal theory of dissipative fluid dynamics in flat space-time known as DNMR (Denicol-
Niemi-Molnar-Rischke) theory [278]7. On the other hand, for strongly coupled systems, it
is possible to use the AdS/CFT duality to formulate a fluid/gravity paradigm and then
derive a theory for viscous fluids as shown in Ref. [176]. However, the drawback of the
fluid/gravity paradigm is that it does not deliver a causal and stable theory yet since it
leads to the BRSSS theory [280,281].

In the absence of conserved charges such as baryon number, second order dissipative
hydrodynamics has 17 transport coefficients as indicated by Eqs. (4.14) and (4.15). As
remarked in the Introduction 1, one of the great open problems in QCD is to compute non-
perburbatively these coefficients where a real-time formalism is needed [35]. In this dearth
of trustful results for quantities that require real-time dynamics, AdS/CFT comes at the
right time to offer some answers. Indeed, recently, a study in a bottom-up holographic
model that emulates some properties of QCD thermodynamics computed the second order
coefficients form Eqs. (4.14) and (4.15) [122]8. Furthermore, in recent years, there has been
an increasing effort towards a comprehensive Bayesian analysis of all the free parameters
that are envolved in the theoretical description of a heavy ion collision to help constrain the
transport properties of the QGP [105,196]; in this Bayesian approach, the values extracted
for the shear and bulk viscosity generally agree with holographic calculations [207].

As a final remark on this conundrum concerning the compution of transport coefficients
of the QGP, the situation seems even worse at finite chemical potential where all the
transport coefficients must be functions of the pair (T, µB) [109]. Additionally, near the
critical point one expects a small divergence of the shear viscosity [288], which would

5If one sets κ = κ? = τ?π = ξ1,2,3,4,5,6 = λ1,3,4 = 0 in Eqs. (4.14)-(4.15), then one recovers the MIS
theory from the rBRSSS theory.

6One of the main criticisms that the rBRSSS theory receives, as remarked on footnote 38 of Ref.
[122], is that their method is ambiguous since very different differential equations can lead to the same
asymptotic behavior. Nonetheless, such “UV completion” problem might be irrelevant in the regime where
hydrodynamics is applicable.

7Before the introduction of the method of moments in kinetic theory performed in Ref. [278], the
so-called Chapman-Enskog gradient expansion [279] was used to derive the relativistic Burnett theory of
fluid dynamics, which is acausal and unstable [122].

8In addition, if one breaks spatial symmetry and/or includes a magnetic field, more coefficients are
needed to describe the plasma [121,282–287].
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indicate a need to formulate a hydrodynamic theory valid in that region [255]. Fortunately,
the analysis done in this Chapter for the hydrodynamics near the critical point is not
affected by divergences of the shear viscosity because the holographic model used here
belongs to the dynamical universality class of type B [203].

Nowadays, perhaps the next challenge concerning relativistic viscous hydrodynamics
is the proper modeling of binary neutron stars mergers [289]. Recent results concerning
viscous hydrodynamics in the strong gravitational regime can be found in Ref. [290].
This is a very interesting area since several properties of neutron stars and QCD might
be inferred from the detection of the signals of gravitational waves emitted from binary
mergers that happened billions of years ago [291].

Now that we have reviewed some of the basics aspects of dissipative relativistic hydro-
dynamics, let us review Bjorken flow dynamics, the simplest approach to obtain a flow
that emulates the situation encountered in heavy ion collisions.

4.1.1 Bjorken flow

Before we embark on the numerical calculations of the 1RCBH holographic model, we
discuss some important aspects of Bjorken flow [145], which is the simplest analytic model
for the fast expansion experienced by the QGP in heavy ion collisions. In the context of
holography, we indicate Refs. [184,292–296] for more discussions.

The Bjorken model can be considered the first approximation of a heavy ion collision
in the sense that it is the simplest flow in which the fluid is expanding. The arguments
needed to derive Bjorken flow, as well as any other relativistic analytic flow solution
[236,238,297], rely on symmetry considerations. For the specific case at hand, the flow is
assumed to be rotational invariant around the beam direction, translational invariant in
the transverse plane of the collision, while possessing also boost invariance along the beam
direction. Regarding boost invariance, which belongs to the isometry group SO(1, 1),it is
a reasonable assumption around the mid rapidity region for very energetic collisions. The
transverse invariance along the plane orthogonal do the beam direction, which leads to a
Poincaré ISO(2) symmetry, is also an oversimplification of the problem since it does not
account for finite size effects and the transverse expansion as well. Altogether, Bjorken
flow is characterized by the direct product of these three isometry groups, SO(1, 1) ×
ISO(2)× Z2, where Z2 accounts for the parity symmetry of the spacetime rapidity9.

The key observation that facilitates calculations in the context of a boost invariant
flow is to switch from cartesian coordinates (t, x, y, z) to the so-called Milne coordinates

9It is possible to substitute the isometry group ISO(2) by the SO(3) isometry group in order to
include a radial expansion as well. This solution is known as Gubser flow [236, 237], but it is valid only
for conformal theories.
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(τ, ξ, y, x), i.e.
t = τ cosh ξ, and z = τ sinh ξ, (4.17)

where
τ =
√
t2 − z2, and ξ = tanh−1

(
z

t

)
= 1

2 ln
(
t+ z

t− z

)
, (4.18)

and τ denotes the proper time, and ξ represents the spacetime rapidity. In Milne coordi-
nates, the line element of the four dimensional Minkowski space becomes

ds2 = −dτ 2 + τ 2dξ2 + dx2 + dy2, (4.19)

which covers only the future wedge of R1,3 as shown in Fig. 4.1. Although a change of
coordinates does not alter the curvature of the space, i.e. we still have a flat spacetime,
the non-triviality of the line element (4.19) produces non-zero Christoffel symbols,

Γτξξ = τ, Γξξτ = 1
τ
. (4.20)

Figure 4.1: Illustration of the coordinate transformation (4.17), and how the line element (4.19)
only comprises the future wedge of R1,3. The instant of the collision between the two nuclei is
represented by the point (t, z) = (0, 0).

Boost invariance and reflection symmetry ξ → −ξ imply that the four-velocity uµ in
Milne coordinates is given by uµ = (1, 0, 0, 0), with uµu

µ = −1. However, how exact is
this boost invariance symmetry in heavy ion collisions? To answer this question, we show
Fig. 4.2 in which one can see that the particle distribution is more or less independent of
the rapidity in the mid-rapidity region.

Now, we want to show that the reconstruction of the stress-energy tensor of the Bjorken
model in a conformal fluid depends only of a single variable [292]. To achieve this goal, one
has to use the traceless condition T µµ = 0 along with the conservation law∇µT

µν = 0. The
symmetries of the problem tell us that Tµν is diagonal and has three different components,
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Figure 4.2: Charged particle (pions) multiplicity distributions in heavy ion collisions for several
energy setups as function of the spacetime rapidity. Figure adapted from Ref. [298].

i.e.
Tµν = diag{Tττ , Txx, Txx, Tξξ} = diag{ε(τ), pT (τ), pT (τ), τ 2pL(τ)} (4.21)

where pT and pL are the transverse and longitudinal pressures, respectively. Hence, the
traceless condition for conformal theories and the energy-momentum conservation gives
us the following set of equations

−Tττ + 1
τ 2Tξξ + 2Txx = 0 (4.22)

τ
d

dτ
Tττ + Tττ + 1

τ 2Tξξ = 0. (4.23)

After some algebra, one arrives at the following expressions for both pressures

pT (τ) = −ε(τ)− τ∂τε(τ), pL(τ) = ε(τ) + 1
2τ∂τε(τ), (4.24)

which are valid relations for any instant of time and for any type of hydrodynamic theory.
As an application, let us inspect what is the behavior of the energy density assuming

ideal hydrodynamics. Notice that the symmetries of the Bjorken flow already fixed uµ =
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(1, 0, 0, 0), thus, we only have to use the first equation in Eq. (4.5), which is reduced to

∂τε+ ε+ p

τ
= 0. (4.25)

The solution, if one assumes a relativistic gas with EoS p = c2
sε, is given by

ε(τ)
ε(τ0) =

(
τ0

τ

)1+c2
s

, (4.26)

where τ0 is an integration constant. Additionally, if the quantum field theory is conformal,
which is the case of the 1RCBH holographic model, one has 3p = ε, i.e. c2

s = 1/3.
In Sec. 4.3 we will present the NS solution of the 1RCBH theory, while below, in Sec.

4.2, it is presented how the holographic Bjorken flow in the vicinity of a critical point can
be constructed using the 1RCBH model.

4.2 Modeling the holographic Bjorken flow near a
critical point

The gravitational EMD Lagrangian of the 1RCBH model was given in Sec. 3.1. Ba-
sically, the difference between the homogeneous isotropization explored in Chap. 3 and
the Bjorken flow are the boundary conditions. Indeed, the Ansatz for the EMD fields in
the holographic Bjorken flow, using in-falling Eddington-Finkelstein coordinates, is given
by [183]

ds2 = 2dτ [dr − A(τ, r)dτ ] + Σ(τ, r)2
[
e−2B(τ,r)dξ2

+eB(τ,r)(dx2 + dy2)
]
, φ = φ(τ, r), A = Φ(τ, r)dτ, (4.27)

where τ becomes the usual propertime of Bjorken flow at the boundary, r is the radial
coordinate of the asymptotically AdS spacetime whose boundary is at r →∞, ξ denotes
the spacetime rapidity, and (x, y) are the transverse spatial directions to the longitudinal
flow direction.

The numerical solutions of the EMD equations accounting for the holographic Bjorken
flow in the 1RCBH model are discussed in Sec. 4.4. From these solutions one can extract
the energy density (ε), transverse pressure (pT ), longitudinal pressure (pL), charge density
(ρ), and the scalar condensate (〈Oφ〉). Also, due to Bjorken symmetry, all of these quan-
tities depend solely on the propertime τ . Because we have a conformal setup, it suffices
to look at the energy density and its time derivative to probe the hydrodynamization
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properties of the system since

∆p
ε
≡ pT − pL

ε
= 2 + 3

2 τ
∂τε

ε
. (4.28)

4.3 Viscous relativistic hydrodynamics with a chem-
ical potential

Now we briefly review the hydrodynamics of a Bjorken expanding fluid with nonzero
conserved charge [299,300], which describes the late time behavior of our numerical grav-
ity simulations. We restrict ourselves to first order hydrodynamics corresponding to the
relativistic Navier-Stokes equations [261]. Higher order derivative corrections to hydro-
dynamics [177, 264] could be implemented once the corresponding transport coefficients
(such as the shear viscosity relaxation time) become available for the system under con-
sideration. The improvement in the hydrodynamic description of this system due to the
inclusion of higher order gradient corrections, and the subsequent question about the
convergence of the series at strong coupling [180,186], is left to a future study.

Due to conformal invariance and the underlying symmetries of Bjorken flow, to first
order in the gradient expansion the only contribution to the viscous evolution comes from
the shear stress tensor of the system, πµν = −ησµν , where the shear tensor is diagonal
with σµν ∼ 1/τ . Since the flow velocity is uµ = (−1, 0, 0, 0) and πµν is given in terms of
the hydrodynamic variables, the NS equations for Bjorken flow with a U(1) global charge
reduce to a single equation for the energy density

∂τε+ 4
3
ε

τ
= 4

3
η

τ 2 , (4.29)

while charge conservation imposes that the charge density associated with the R-charge
of the black hole is ρ(τ) = ρ0/τ ; thus, the charge density is known once one specifies its
initial value ρ0.

Using that η/s = 1/(4π) and the well-known thermodynamic relation for conformal
theories, 4ε = Ts+ µρ, Eq. (4.29) reduces to

∂τε+ 4
3
ε

τ
= 1

3πτ 2

( 4ε
3T −

µρ

T

)
. (4.30)

To proceed, we need the equilibrium equation of state of the 1RCBH model [137,146,
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203],

ε = κ−2
5 j(µ/T )T 4 ⇒ T = κ

1/2
5 j−1/4ε1/4, (4.31)

ρ = κ−2
5 h(µ/T )T 3 ⇒ ρ = κ

−1/2
5 hj−3/4ε3/4, (4.32)

where,

j(µ/T ) = 3π4

32

3−

√√√√1−
(
µ/T

π/
√

2

)2


3

×

1 +

√√√√1−
(
µ/T

π/
√

2

)2
 , (4.33)

h(µ/T ) = π2

4
µ

T

3−

√√√√1−
(
µ/T

π/
√

2

)2


2

. (4.34)

Substituting the above results into Eq. (4.30), and keeping fixed the dimensionless
ratio µ/T ≡ x, it follows that

∂τε+ 4
3
ε

τ
= ε3/4

3κ1/2
5 πτ 2

(
4j1/4

3 − x h

j3/4

)
. (4.35)

Using ε̂ ≡ κ2
5ε and multiplying by τ/ε̂ one obtains

τ
∂τ ε̂

ε̂
= −4

3 + 4j − 3xh
9j3/4πw(ε) , (4.36)

where we defined the dimensionless time flow w(ε) ≡ ε̂1/4τ . Eq. (4.36) is needed to evaluate
the pressure anisotropy in the hydrodynamical regime, according to Eq. (4.28) (which
holds also far-from-equilibrium).

Although the definition of w using the energy density seems more natural, as explained
below in Sec. 4.4, it is possible to use another energy scale Λ, which is reminiscent from the
asymptotic temperature Tasym(τ) = Λ/ (Λτ)1/3 [183], to compose another dimensionless
time flow, i.e. w(Λ) ≡ Tasym(τ)τ = (Λτ)2/3. In practice, we use the late time solution of
Eq. (4.36) for the energy density to extract Λ for each solution, i.e.

ε̂(τ) = 3π4Λ8/3

2τ 4/3 −
π2Λ2(4j − 3xh)
27/4 31/4 τ 2j3/4 . (4.37)

Hence, using also w(Λ) to probe the hydrodynamization time will give us confidence that
our analysis is not a peculiarity associated to a particular choice for w.
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The applicability of hydrodynamics in the late time dynamics of planar shockwave
collisions in SYM was first investigated in [301] (see [181] for a comprehensive discussion
of this problem). Recently, hydrodynamization was also studied in detail in non-conformal
shockwave collisions in Ref. [185]. In the case of Bjorken flow, we follow the same con-
vention of previous works [184, 258] and estimate the hydrodynamization time w(ε/Λ)

hydro as
the timescale after which a given far-from-equilibrium numerical solution becomes well
described by NS hydrodynamics, satisfying∣∣∣∣∣∣

(
∆p
ε

)
numerical

−
(

∆p
ε

)
hydro

∣∣∣∣∣∣ ≤ tol

(
∆p
ε

)
hydro

, (4.38)

where tol is the tolerance threshold for the difference in the above inequality. In particular,
we choose tol = 0.01 and tol = 0.1 to verify how robust our results are.

4.4 Technical details
This section is devoted to clarify the details of the numerical procedure we employed

to evaluate the Bjorken flow dynamics of the 1RCBH model. We stress that the steps
followed here are similar to the ones described in Chapter 3 which considered the case
of homogeneous isotropization [137]. The resulting EMD equations of motion for Bjorken
flow constitute a set of coupled partial differential equations (PDE’s) given by

1
6Σ

(
3 (B′)2 + (φ′)2)+ Σ′′ = 0, (4.39a)

(d+Σ)′ + 2Σ′
Σ d+Σ + 1

12Σ
(
fE2 + 2V

)
= 0, (4.39b)

Σ (d+B)′ + 3Σ′
2 d+B + 3d+Σ

2 B′ = 0, (4.39c)

4Σ(d+φ)′ + 6φ′d+Σ
+6Σ′d+φ+ Σ∂φfE2 − 2Σ∂φV = 0, (4.39d)

A′′ + 1
12

(
18B′d+B −

72Σ′d+Σ
Σ2

+6φ′d+φ− 7fE2 − 2V
)

= 0, (4.39e)
(∂φf)φ′

f
+ 3Σ′

Σ + E
′

E
= 0 (4.39f)

where ′ ≡ ∂r, E ≡ −∂rΦ, and d+ ≡ ∂τ + A(τ, r)∂r. From Eq. (3.14b), one obtains,

E(τ, r) = 2Φ2(τ)Σ(τ, r)−3e2
√

2
3φ(τ,r), (4.40)
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where Φ2 is a time-dependent coefficient following from the near-boundary expansion of
Φ.

To perform the near-boundary expansion of the bulk EMD fields, which is needed to
fix the boundary conditions corresponding to the Bjorken symmetry and obtain the one-
point functions of the field theory undergoing Bjorken expansion at the boundary, we set
as the boundary condition for the metric field the usual expression for the line element in
Bjorken flow using Milne coordinates

ds2 = −dτ 2 + τ 2dξ2 + dx2 + dy2. (4.41)

Hence, by imposing that at the boundary the bulk metric field in Eq. (4.27) is conformally
equivalent to Eq. (4.41), while the dilaton vanishes and the Maxwell field reduces to
the chemical potential of the field theory, one works out the following near-boundary
expansions

A(τ, r) = 1
2(r + λ(τ))2 − ∂τλ(τ) +

∞∑
n=2

an(τ)
rn

, (4.42a)

Σ(τ, r) = τ 1/3r + 1 + 3τλ(τ)
3τ 2/3 − 1

9rτ 5/3 + 5 + 9τλ(τ)
81r2τ 8/3

+
∞∑
n=3

σn(τ)
rn

, (4.42b)

B(τ, r) = − 2
3rτ −

2 log(τ)
3 + 1 + 2τλ(τ)

3r2τ 2

− 2 + 6τλ(τ) + 6τ 2λ(τ)2

9r3τ 3 +
∞∑
n=4

bn(τ)
rn

, , (4.42c)

φ(τ, r) =
∞∑
n=2

φn(τ)
rn

, (4.42d)

Φ(τ, r) = Φ0(τ) +
∞∑
n=2

Φn(τ)
rn

, (4.42e)

where Φ0(τ → ∞) = µ is the gauge theory chemical potential and λ(τ) is an arbitrary
function. This function is associated with the residual diffeomorphism invariance of the
line element (4.27) under radial shifts of the form r → r + λ(τ) [59].

The relevant observables used to probe the hydrodynamization properties of the sys-
tem, i.e. the energy-momentum tensor 〈Tµν〉, the U(1) four-current 〈Jµ〉, and the scalar
condensate 〈Oφ〉 are obtained from the one-point functions via holographic renormaliza-
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tion. Their formulas for the 1RCBH model are [137]

κ2
5〈Tττ 〉 = −3a2 −

1
6φ

2
2, (4.43)

κ2
5〈Txx〉 = −3a2 −

1
6φ

2
2 −

3
2τ∂τa2 −

1
6φ2∂τφ2, (4.44)

τ−2κ2
5〈Tξξ〉 = 3a2 + 1

6φ
2
2 + 3

2τ∂τa2 + 1
6φ2∂τφ2, (4.45)

κ2
5〈J t〉 = Φ2(τ) = ρ0

τ
, (4.46)

κ2
5〈Oφ〉 = φ2, (4.47)

where ρ0 is an input corresponding to the initial charge density. The near-boundary coeffi-
cients a2 and φ2 are dynamical quantities and they can be determined once the equations
of motion are solved. The energy density, the parallel and longitudinal pressures, and the
charge density are, respectively,

ε ≡ 〈Tττ 〉, pT ≡ 〈T xx〉, pL ≡ 〈T ξξ〉, ρ ≡ 〈J t〉. (4.48)

To solve numerically the PDE’s (4.39a) — (4.39f), we first redefine the radial domain
in such a way that the new domain is finite, i.e., u ≡ 1/r, which means that in this new
radial coordinate the boundary lies at u = 0.

The next step is to define subtracted fields Xs by removing the trivial information
encoded in the leading order terms of the near-boundary expansions of the bulk fields
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X,10

u2As = A− 1
2

(1
u

+ λ
)2

+ ∂τλ, (4.49)

u3Σs = Σ− τ 1/3 1
u
− 1 + 3τλ

3τ 2/3 + u

9τ 5/3

− 5 + 9τλ
81τ 8/3 u

2, (4.50)

u4Bs = B(τ, u) + 2u
3τ + 2 log(τ)

3 − 1 + 2τλ
3τ 2 u2

+ 2 + 6τλ+ 6τ 2λ2

9τ 3 u3, (4.51)

u2φs = φ, (4.52)

u3 (d+B)s = d+B + 1
3τ −

u

3τ 2 + u2(τλ+ 1)
3τ 3 , (4.53)

u2 (d+Σ)s = d+Σ− 10u
81τ 8/3 −

τ 1/3

2u2

− (1 + τλ)(−1 + 3τλ)
6τ 5/3 − 1 + 3τλ

3uτ 2/3 , (4.54)

u (d+φ)s = d+φ, (4.55)
Es = E . (4.56)

We then rewrite Eqs. (4.39a) — (4.39f) in terms of the variables
{As,Σs, Bs, φs, (d+B)s, (d+Σ)s, (d+φ)s, Es}. We do not write them explicitly here because
the expressions are lengthy and not particularly enlightening.

Since we solve the radial problem using the pseudospectral method [230], the radial
u−grid is given by the Chebyshev-Gauss-Lobatto grid

uk = u?
2

(
1 + cos

(
kπ

N − 1

))
, k = 0, . . . , N − 1, (4.57)

where N is the number of grid points, also known as collocant points. Here, u? defines the
infrared (IR) limit of the radial grid. The IR limit of the radial u−grid must be chosen in
such a way that it covers the entire portion of the bulk geometry causally connected to
the boundary, which means that the locus of the event horizon is a good place to set the
IR limit. Commonly, this is done by tracking the apparent horizon uh,

d+Σ|u=uh = 0, (4.58)

and then using λ(τ) to fix the position of uh in the course of the simulation. In our
10Notice that (d+X)s 6= d+(Xs), where X ∈ {Σ, B, φ}.
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numerical algorithm, we approximated the above condition by using the following relation

d+Σ|u=u? = δ, (4.59)

where δ is a small negative number, typically of the order O(10−3). Since d+Σ is a mono-
tonically decreasing function for increasing values of u, Eq. (4.59) tells us that u? is a
little bit behind the apparent horizon uh; consequently, if the radial grid spans u ∈ [0, u?],
we ensure that it covers the whole portion of the bulk geometry causally connected to
the boundary. For the initial conditions considered in this work, which are given at the
end of this section, one can start with a radial grid u ∈ [0, 1] with λ(τ0) = 0, where τ0 is
the initial time used in the simulation, and in all the cases we considered, the condition
(4.59) could be found after the following steps: i) one starts with d+Σ(τ, u = 1), which
is generally equal to some negative number (and, therefore, we know that at this point
we are behind the horizon, since at the apparent horizon Eq. (4.58) holds, and beyond it
d+Σ > 0); ii) as the simulation proceeds and we march towards the boundary, the value
of d+Σ begins to increase and when the condition (4.59) is met, the corresponding value
of u? has been found; iii) in order to keep this value of u? fixed through the numerical
simulation for a given initial condition, we impose that ∂u?/∂τ = 0. Bearing this condition
in mind, and manipulating the field equations (3.14f) — (3.14b) at u = u?, the following
relation is found

A = 2Σ ((3(d+B)2 + (d+φ)2) Σ + 6u2
?A
′δ)

(2V + fE2)Σ2 − 24u2
?Σ′δ

, (4.60)

where all the functions in this expression are assumed to be evaluated at u = u?. In the
limit where δ → 0 we recover the usual expression for the stationary apparent horizon [59].
Expressing A in terms of the subtracted field As in the LHS of Eq. (4.60), one obtains
the following expression for ∂τλ

∂τλ = u2
?As + λ2

2 + 1
2u2

?

+ λ

u?

+ 2Σ ((3(d+B)2 + (d+φ)2) Σ + 6u2
?A
′δ)

(2V + fE2)Σ2 − 24u2
?Σ′δ

. (4.61)

Thus, the condition ∂u?/∂τ = 0 provides an expression for ∂τλ, which is used to update
the value of λ(τ) through the simulation keeping fixed the position of the approximated
apparent horizon u?.

To solve the radial problem using the pseudospectral method, one needs the boundary
conditions that are derived using the near-boundary expansion of the subtracted bulk
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fields

Σ(τ, u = 0)s = 0, (4.62)

(d+Σ(τ, u = 0))s = a2τ
1/3 − 5(6λτ + 5)

243τ 11/3

+ 1
12τ

1/3φ2
2, (4.63)

(d+B(τ, u = 0))s = 2a2 + 3τ∂τa2

2 + λ2

3τ 2 + 2λ
3τ 3 + 1

3τ 4

τφ2∂τφ2

6 + φ2
2

9 , (4.64)

(d+φ(τ, u = 0))s = −φ2, (4.65)
A(τ, u = 0)s = a2, (4.66)

∂uA(τ, u = 0)s = ∂τa2

2 − 2λa2. (4.67)

Thus, in order to solve the radial problem at a given time τ , one has to know11

{B(τ, u), φ(τ, u), a2(τ),Φ2(τ), λ(τ)}. Evidently, the initial state that we define must con-
template this set as well.

To perform the time evolution of the system one has to use d+ ≡ ∂τ +A(τ, r)∂r to ex-
tract {∂τBs, ∂τφs} from {(d+B)s, (d+φ)s}; ∂τa2 from the coefficient b4(τ) of the expansion
(3.20); and ∂τλ from Eq. (4.61). By doing so, one can evolve in time the fields necessary
to start the cascade solution of the nested set of PDE’s

B(τ + ∆τ, u)s = B(τ, u)s + ∆τ(∂τBs), (4.69)
φ(τ + ∆τ, u)s = φ(τ, u)s + ∆τ(∂τφs), (4.70)
a2(τ + ∆τ) = a2(τ) + ∆τ(∂τa2), (4.71)
λ(τ + ∆τ) = λ(τ) + ∆τ(∂τλ), (4.72)

where ∆τ is the time step. There are several ways to do the time evolution. In this work,
we choose a fourth-order Adams-Bashforth method to evolve in time.

11If we know B(τ, u) and a2(τ), then we know ∂τa2. This is because the term b4(τ) is proportional to
a2(τ) and ∂τa2:

b4(τ) = a2(τ) + 3
4τ∂τa2(τ)− 1

6τ4 −
2λ(τ)
3τ3 −

λ(τ)2

τ2 − 2λ(τ)3

3τ
+ 1

18φ2(τ)2 + 1
12φ2(τ)∂τφ2(τ). (4.68)
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Regarding the initial conditions used in the present work, they were chosen as follows

B(τ0, u)s = f(u) + α

u4

[
−2

3 log (u+ τ0)

−
(
−2

3 log (τ0)− 2u3

9τ 3
0

+ u2

3τ 2
0
− 2u

3τ0

)]
, (4.73)

a2(τ0) = −20/3, (4.74)
φ(τ0, u)s = 0, (4.75)

Φ2(τ0) = ρ0

τ0
, (4.76)

λ(τ0) = 0, (4.77)
τ0 = 0.2, (4.78)

where
f(u) =

5∑
i=0

βiu
i. (4.79)

Thus, different values for the set {α, βi, ρ0} will produce different evolutions and, conse-
quently, different results for the hydrodynamization time (4.38). In particular, to generate
the results presented in this work, we have randomly selected values for {α, βi, ρ0} in the
range,

1 ≤ α ≤ 1.05, −0.5 ≤ βi ≤ 0.5 and 0 ≤ ρ0 . 3.7. (4.80)

The fact that ρ0 does not have a clear upper bound, i.e. ρ0 . 3.7, is because some initial
conditions do not have a well-behaved evolution for e.g. ρ0 = 3.7. The reason is because
some initial profiles tend to reach the vicinity of the critical point with a smaller value
of ρ0. Indeed, one cannot predict the final value of µ/T by just looking at the initial
conditions since this is an equilibrium quantity which is only determined by the late time
evolution of the system, constituting, therefore, a posteriori analysis of the numerical
data.

Regarding our first definition of the dimensionless time flow, w(ε) ≡ ε̂(τ)1/4τ , which
was used to probe the hydrodynamization time and employed in the plots of the main
text instead of an alternative definition such as w ≡ T (τ)τ , this is justified based on the
following facts. First, the energy density is a physically well defined observable at all times
along the evolution of the system while the temperature is a quantity which rigorously only
makes sense in or at least close to thermal equilibrium. Therefore, one should track the far-
from-equilibrium time evolution of the system by using an observable which is physically
well defined regardless whether the system is in equilibrium or not and this is the case
for the energy density, but not for the temperature. Second, if one insists in defining
w ≡ T (τ)τ in the present setup, one immediately finds an ambiguity in such definition. In
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fact, by looking at the equilibrium equation of state given by Eqs. (4.31) and (4.32), one
can extract the relations T = j−1/4ε̂1/4 and T = h−1/3ρ̂1/3, which agree with each other
in equilibrium. By naively trying to define and “out-of-equilibrium temperature” T (τ)
by extrapolating these equilibrium relations to the far-from-equilibrium regime, T (τ) =
j−1/4ε̂1/4(τ) and T (τ) = h−1/3ρ̂1/3(τ), one is left with an ambiguity in the definition of
such “out-of-equilibrium temperature”, since these two expressions are generally different
from each other and only agree in equilibrium. Such an ambiguity is a clear manifestation
of the fact that one should not use equilibrium relations when the system is far-from-
equilibrium. Nonetheless, the simulations do coalesce to a near equilibrium state and the
ideal fluid limit is recovered for asymptotic times τ →∞, in which the temperature has a
well defined profile in the Bjorken flow Tasym(τ) = Λ/ (Λτ)1/3 [183], where Λ is an energy
scale that depends on the initial conditions. Therefore, although it is not possible to define
T (τ) throughout the whole evolution, one can analyze the near equilibrium stage of the
evolution to define a second dimensionless time flow, i.e. w(Λ) ≡ Tasym(τ)τ = (Λτ)2/3.

Furthermore, just as in the homogeneous isotropization case [137], we also had to use a
filter to avoid spurious growth of hard modes [230]. This is done by accessing the spectral
coefficients {ai} and damping the high frequency modes using an exponential map of the
type ai → e−(n1/N)n2ai. Typical values for the pair (n1, n2) used in our work are in the
ballpark of (16, 18).

To check the numerical consistency of our results, besides standard tests such as the
variation of number of collocant points N and the size of the time step ∆τ , we have also
analyzed the late time convergence of the numerical solutions to the analytical NS solution
(4.36); we were also able to reproduce the results of Wilke van der Schee’s code12 valid
for µ/T = 0. Another non-trivial consistency check is the observation that the value of δ
as defined in Eq. (4.59) does not change in the course of the simulation. Our code that
solves the Bjorken expanding far-from-equilibrium 1RCBH model was initially developed
in Mathematica, and later translated to C++ using the Eigen linear algebra package [302]
and OpenMP to parallelize the code.

4.5 Results
After presenting all the technical details in the previous section, now we present our

results for the far-from-equilibrium Bjorken flow in the holographic 1RCBH model. In
Fig. 4.3 we show the time evolution of the relevant observables characterizing the Bjorken
expansion for a sample of numerical solutions with many different initial conditions and
four different equilibrium values of µ/T . Subfigures (a) and (b) are the most important

12https://sites.google.com/site/wilkevanderschee/ads-numerics.

https://sites.google.com/site/wilkevanderschee/ads-numerics
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ones, as they show the evolution of the pressure anisotropy along with the coalescence
to hydrodynamics at late times, with the dashed lines indicating the analytical NS result
associated with (4.36). It is clear from subfigures (a) and (b) that, as the value of µ/T
increases and approaches the critical point, the numerical solution takes longer to coalesce
to hydrodynamics. Subfigures (c) and (d) show the evolution of the charge density ρ̂ ≡
κ2

5ρ, whose asymptotic behavior is used to extract the equilibrium value of µ/T in each
simulation. Finally, subfigures (e) and (f) show the evolution of the scalar condensate
(4.47), which similarly to the equilibrium solution [137], increases with increasing values
of the charge density.

Regarding the hydrodynamization time defined in Eq. (4.38), we plot in Fig. 4.4 the
results for its relative variation (as a function of µ/T ) with respect to the SYM result at
vanishing chemical potential

∆w(ε/Λ)
hydro ≡

w
(ε/Λ)
hydro(µ/T )− w(ε/Λ)

hydro(0)
w

(ε/Λ)
hydro(0)

. (4.81)

Fig. 4.4 emphasizes, in a very clear way, the main result of Fig. 4.3 and of this work:
the onset of hydrodynamics is significantly delayed as the chemical potential is increased
towards its value at the critical point of the phase diagram, with ∆w(Λ)

hydro being even larger
than ∆w(ε)

hydro. Furthermore, subfigures (a) and (b) show that this qualitative effect is also
robust against variations of the tolerance tol in Eq. (4.38).

4.6 Conclusions of the chapter
In the present chapter we presented a first principles holographic calculation of the

full nonlinear evolution of a hot and dense (i.e., µ 6= 0) far-from-equilibrium strongly cou-
pled relativistic fluid with a critical point. We investigated how the top-down holographic
construction corresponding to the 1RCBH model, which describes a superconformal non-
Abelian plasma with a chemical potential, evolves in space and time undergoing Bjorken
flow. We found that increasing µ/T towards its critical value considerably delays the emer-
gence of hydrodynamic behavior, as defined by the relativistic Navier-Stokes equations.
This feature of the 1RCBH model, if also applicable to QCD, could imply in important
differences for correlation functions calculated in and out of equilibrium, with direct im-
pact on the experimental searches for the QCD critical point, since the main signatures of
the critical point are usually considered to be the cumulants of fluctuations of conserved
charges [247,248,252].

Regarding the far-from-equilibrium properties of the 1RCBH model, it would also be
interesting to investigate the presence of hydrodynamic attractor behavior in Bjorken
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flow [95–101] and understand how the critical point affects the properties of such an
attractor. Previous studies in the case of SYM at µ = 0 and Gauss-Bonnet holography
were already done in [99] and [101], respectively.

We stress that the 1RCBH model has important differences with respect to the QGP.
For instance, the 1RCBH model is conformal, while the QGP is highly non-conformal in
the crossover region. Moreover, the dynamic universality classes [303] are different: while
QCD is expected to be in the type H dynamic universality class [288], the 1RCBH system
is of type B [203]. The fact that the dynamic universality class of the 1RCBH model is of
type B is interesting because in this case η/s is finite at the critical point, which means
that viscous hydrodynamics is, in principle, well defined everywhere in the phase diagram.
Nonetheless, it is also important to stress that phenomenologically realistic non-conformal
holographic settings at finite temperature and chemical potential with a critical point may
be constructed using the class of bottom-up holographic models first proposed in Ref.
[202], which was recently investigated in [70] and [304]. Therefore, the results presented
here may be seen as the first steps towards a more realistic holographic description of the
far-from-equilibrium hot and dense QGP produced in heavy ion collisions.
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Figure 4.3: Holographic results for the Bjorken flow evolution of far-from-equilibrium 1RCBH
backgrounds as functions of w(ε) and w(Λ)(xc ≡ (µ/T )c = π/

√
2 is the critical point [137, 146,

203]). (a)-(b) Pressure anisotropy divided by energy density (dashed curves are the corresponding
Navier-Stokes results).(c)-(d) Charge density. (e)-(f) Scalar condensate.
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Figure 4.4: Variation of the hydrodynamization time with respect to the vanishing chemical
potential case, as defined in Eq. (4.81) (the vertical asymptote indicates the location of the
critical point, xc ≡ (µ/T )c = π/

√
2). Results using a tolerance tol of (a) 1% and (b) 10% in Eq.

(4.38).



Chapter 5

Conclusion and outlook

In this thesis, holography is employed to present for the first time first principle cal-
culations of far-from-equilibrium dynamics of non-Abelian strongly coupled plasmas near
a critical point. The motivation, as explained at length in the Introduction, is to unveil
possible properties of the non-equilibrium QGP and eventually the QGP dopped with
baryon charge that will be probed in future research programs [80, 88–90]. To be more
specific, motivated by possible non-equilibrium effects probed in heavy ion collisions, we
wanted to investigate the effects of the conjectured critical point in the properties of the
far-from-equilibrium dynamics of the QGP.

In Chapter 2, after a brief revision of the original AdS/CFT conjecture, we introduced
the holographic renormalization procedure that eliminates the divergences of the classical
EMD holographic on-shell action [165–167]. This part is essential because it gave us the
formulas for the one-point functions that were extensively used throughout Chapters 3
and 4.

In Chapter 3, once we reviewed the 1RCBH model, we started this enterprise by
studying the homogeneous isotropization of a strongly coupled plasma near a critical
point. In this homogeneous setup, where energy is conserved and there is no flow, we
begin with anisotropic states far-from-equilibrium and evolve the system in time using
numerical techniques of general relativity. The results, displayed in Sec. 3.5, show that
the isotropization time that comes from pressure anisotropy always occurs before the true
thermalization of the system, which is encompassed also by the relaxation of the scalar
condensate. It is interesting to note also that the late time behavior of the time evolution
is described by the QNM’s extracted from a linear analysis, which were calculated in
Appendix A. Moreover, the effect of the critical point in the dynamics is mild. The little
sensitivity of the critical point might be a consequence that only non-hydrodynamic modes
are probed in this system with the slow hydrodynamic modes being absent (as expected
in a homogeneous isotropization problem).
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Passing now to Chapter 4, we showed how to implement holographic Bjorken flow
in the 1RCBH holographic model. This situation is more interesting than the previous
homogeneous isotropization example because now there is nontrivial flow, i.e. hydrody-
namics is applicable to late time solution. Accordingly, the purpose of the work done in
that Chapter was to investigate the interplay between the critical point of the theory and
the time that it takes for the system to display hydrodynamic behavior (hydrodynamiza-
tion). The principal result, summarized in Fig. 4.4, tells us that the hydrodynamization
time substantially increases near the critical point, a phenomenon similar to the critical
slowing-down found in critical phenomena.

Altogether, the studies related above embody the very first steps towards understand-
ing the formation of the QCD phase diagram that might be probed in future experiments
of heavy ion collisons. Concomitant with holographic efforts, other research groups are
also using different methods, such as the Functional Renormalization Group (FRG) ap-
proach [305, 306], to study non-equilibrium properties of the baryon rich QGP [307]. For
instance, there is an interesting overlap of results obtained using different methods, e.g.:
according to Ref. [307], time-dependent fluctuations have a peak on the thermalization
scale near the critical point, wich is a result in consonance with what was found in Chap-
ter 4 for the hydrodynamization time. For the future, one can expect further progress
towards understanding the non-equlibrium dynamics of the QGP, either using only holog-
raphy [308], or a mixture of holography and perturbative methods [309].



Appendix A

Quasinormal modes of the 1RCBH
model

In this appendix we give a detailed analysis of the non-hydrodynamic QNM’s of the
1RCBH. The introduction of this appendix, and Sections A.1 and A.2 are based on
Ref. [146], whilst Sec. A.3 is based on the appendix of Ref. [137].

QNM’s are exponentially damped collective excitations [310,311] that define the char-
acteristic behavior of fluctuations of black holes and black branes (for reviews, see [136,
235,312,313]). The spectra of QNM’s collectively describe the linear part of the decaying
fluctuations of a disturbed black hole, a phenomenon known as “quasinormal ringing”,
which is analogous to the decaying sound emitted by a brass bell when struck by a mal-
let [314]. For this reason, QNM’s are of great interest to astrophysical and cosmological
observations since they describe the ringdown of possible black hole remnants of binary
stars and black hole mergers, which were pivotal to the direct detection of gravitational
waves earlier this year [315,316].

In the context of the holographic gauge/gravity duality [54, 113–115], the QNM’s of
asymptotically AdS spacetimes carry wealthy information about the near equilibrium
behavior of the dual strongly interacting QFT. In fact, the QNM’s associated with the
fluctuations of a given bulk field are related to the poles of the retarded Green’s function
of the dual operator in the QFT [179,317]. These poles describe hydrodynamic and non-
hydrodynamic dispersion relations with which one can not only compute hydrodynamic
transport coefficients but also derive upper bounds for characteristic equilibration times
of the dual QFT plasma [178]. Additionally, non-hydrodynamic modes play an important
role in determining the applicability of the hydrodynamic gradient series, as demonstrated
by studies in holography [180,186] and also in kinetic theory [187,188,318].

Previous works [319–321] have dealt with QNM’s in bottom-up Einstein-dilaton con-
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structions [68,69,122,201] exhibiting different kinds of phase transitions at zero chemical
potential. Additionally, Ref. [322] investigated the QNM’s associated with scalar opera-
tors in a top-down N = 2∗ non-conformal plasma also at zero chemical potential. On
the other hand, in [204] it was investigated how the QNM’s of an external scalar per-
turbation and, in particular, the equilibration time associated with the imaginary part
of the lowest non-hydrodynamical quasinormal frequency, depends on the temperature
and baryon chemical potential in a bottom-up, QCD-like Einstein-Maxwell-dilaton model
at finite baryon density [205]. In general, through the holographic correspondence, any
question regarding the thermalization process in a given strongly coupled gauge theory
necessarily involves a study of the QNM’s of its gravity dual. These modes describe dif-
ferent timescales in the gauge theory and, close to a critical point, one may expect that
the QNM’s of the corresponding gravity dual display critical behavior.

Near a critical point, thermodynamical quantities typically display fast variations
which enable the definition of critical exponents. Static properties such as single time
correlation functions and linear response coefficients to time-independent perturbations
display critical behavior which are determined by the underlying equilibrium distribution.
However, anomalous behavior is also observed in many dynamical quantities such as the
transport coefficients, which depend on the properties of multi-time correlations functions
and are not determined by the information contained in the equilibrium distribution. In
fact, while static thermodynamical properties of several different physical systems may be
grouped into a few different (static) universality classes, dynamical properties associated
with slowly varying hydrodynamical fluctuations of a system near criticality do not fit
into this static classification scheme, as discussed in detail in [323] nearly 40 years ago.
As a matter of fact, the dynamic universality classes reviewed in [323] require the study
of hydrodynamic modes, i.e., collective excitations whose frequency vanishes in the case
of homogeneous disturbances. While these modes dominate the long time behavior of the
system (since they are associated with conserved currents) and can be used to study how
transport coefficients (such as the shear viscosity) behave near a critical point, it is con-
ceivable that there is more information about dynamical critical phenomena in multi-time
correlation functions that cannot be obtained from their zero frequency limit.

In this Appendix, based on Ref. [146], we investigate the critical behavior displayed
by non-hydrodynamic modes in strongly coupled gauge theories with gravity duals, i.e.,
QNM’s corresponding to collective excitations in the dual plasma whose frequency does
not vanish in the zero wavenumber limit. This novel type of critical phenomena deter-
mines the behavior of different characteristic equilibration times of the system at zero
wavenumber and, since these QNM’s are not directly associated with conserved currents,
their behavior at criticality does not follow from the analysis made in Ref. [323]. As the
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first study in this new arena, we compute QNM’s for an external scalar perturbation and
also for the diffusion channel associated with a vector perturbation in the so-called 1RCBH
model [138–143] studied throughout this thesis. As mentioned in previous sections, this
theory is conformal and its phase diagram is a function of a single dimensionless ratio
µ/T , where µ and T are the U(1) R-charge chemical potential and temperature of the
black brane background, respectively. The model has a very simple phase diagram with
a critical point at µ/T = π/

√
2 and its static critical exponents were computed in [324]

and [325]. Also, the fact that the R-charge conductivity remains finite at the critical
point [324] shows that this model belongs to the type B dynamical universality class [323]
and the anomalous static critical exponent was found to vanish in [325]. Thus, this model
is of mean-field type [325], which was later argued [326] to be a general consequence of
the underlying large Nc approximation. This simple model provides a useful arena for in-
vestigating dynamical phenomena in a strongly coupled plasma at finite temperature and
density, even though it does not possess the full set of physical properties (such as chiral
symmetry) displayed by the real world quark-gluon plasma (QGP) [223]. In fact, such a
model may be useful for discovering new dynamical phenomena associated with critical
endpoints in strongly coupled non-Abelian plasmas which could be further investigated
in more realistic models of the QGP such as [204,205] , with a view towards applications
to the ongoing beam energy scan program at RHIC. Other studies of critical phenomena
in holography include Refs. [202,327–330].

As we are going to show in the next sections, the real and imaginary parts of non-
hydrodynamical modes in the external scalar and vector diffusion channels display an
infinite slope at the critical point of the phase diagram of the 1RCBH model. This holds
true also for higher order QNM’s, showing that high frequency modes are also sensitive
to the presence of the critical point. In particular, from the imaginary part of the QNM’s
it is possible to extract the behavior of different characteristic equilibration times in the
finite density plasma at criticality (at zero wavenumber) and define a dynamical critical
exponent associated with their derivatives with respect to the dimensionless ratio µ/T .
We find the same critical exponent 1/2 for all the equilibration times investigated in the
different channels. Except close to the critical point, we observe that by increasing the
chemical potential one generally increases the damping of the quasinormal black brane
oscillations which, consequently, leads to a reduction of the characteristic equilibration
times of the dual plasma. However, as one approaches the critical point these equilibration
times are enhanced (though they remain finite) and they acquire an infinite slope. We
also find a purely imaginary, non-hydrodynamical mode in the vector diffusion channel
at nonzero chemical potential and zero wavenumber which dictates the critical behavior
of the equilibration time in this channel (this mode was also found in Ref. [331] in the



QNM’S FOR AN EXTERNAL SCALAR FLUCTUATION 117

context of a (4 + 1)-dimensional Einstein-Maxwell model).

A.1 QNM’s for an external scalar fluctuation

A.1.1 Equation of motion

We now analyze near-equilibrium properties of the system encoded in its quasinor-
mal modes. In this section we calculate the QNM’s for an external scalar perturbation ϕ
on top of the 1RCBH backgrounds, which is described by the bulk action,

S = 1
2κ2

5

∫
d5x
√
−g

[
−1

2(∂ϕ)2
]
. (A.1)

The equation of motion following from this action is just the massless Klein-Gordon
equation on top of the solution given by Eq. (3.34). We take a plane-wave Ansatz for the
Fourier modes of the perturbation, ϕ = e−iωt+i~k·~xϕ̃(ω,~k, r), which for brevity we write
simply as ϕ̃(ω,~k, r) ≡ ϕ̃(r). The resulting equation of motion then only depends on the
frequency ω, the magnitude of the spatial 3-momentum k ≡ |~k|, and the background
control parameter y given by

y2 +
(
µ

T

)2
= 1, y ∈ [−1, 1] . (A.2)

In what follows we employ the in-falling EF “time” coordinate defined by,

dv = dt+
√
−grr
gtt
dr = dt+ eB−A

h
dr, (A.3)

in terms of which the metric (3.34) becomes

ds2 = e2A
(
−hdv2 + d~x2

)
+ 2eA+Bdvdr. (A.4)

One of the main advantages of the EF coordinates is that the in-falling wave condition at
the horizon, which is associated with the retarded Green’s function, becomes automati-
cally satisfied by just requiring regularity of the solutions there. In these coordinates, the
equation of motion for ϕ̃ becomes,

ϕ̃′′ +
(

4A′ −B′ + h′

h

)
ϕ̃′ − iω eB−A

h
(2ϕ̃′ + 3A′ϕ̃)− k2 e2(B−A)

h
ϕ̃ = 0. (A.5)

We map the radial coordinate r, defined on the interval rH ≤ r <∞, to a new dimension-
less radial coordinate u = rH/r, defined on the interval 0 ≤ u ≤ 1, which is more suitable
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to be used in the pseudospectral method [230]. In these new coordinates, the equation of
motion for the external scalar perturbation becomes,

ϕ̃′′ − (u4(3− y) + 2u2(1− y)− 3(1 + y)) ϕ̃′
u (1− u2) (u2(3− y) + 1 + y) +

− 2i(ω/T )
π (1− u2)

√
3− y (u2(3− y) + 1 + y)

(4u2(1− y) + 3(y + 1)) ϕ̃
u
√

2u2(1− y) + 1 + y
+

+ 2
√

2u2(1− y) + 1 + y ϕ̃′

− 4(k/T )2ϕ̃

π2 (1− u2) (3− y) (u2(3− y) + 1 + y) = 0, (A.6)

where the primes now denote derivatives with respect to the new radial coordinate u.
From the discussion above, and from the definition of the background control parameter
y in Eq. (A.2), one concludes that the dimensionless quasinormal eigenfrequencies, ω/T ,
will depend only on the dimensionless ratios µ/T and k/T .

To completely specify the eigenvalue problem to be solved in order to find the QNM
spectra associated to this external scalar perturbation, we still need to impose a Dirichlet
boundary condition. From the fact that ϕ̃ is a scalar field defined on an asymptotically
AdS5 background, it follows that asymptotically close to the boundary it may be written
as ϕ̃(u) = G(u) + u4F (u), with the leading, non-normalizable mode G(u→ 0) = J(ω,~k)
being the source for the QFT operator Ô dual to the (external) scalar field ϕ, and the
subleading, normalizable mode F (u → 0) = 〈Ô(ω,~k)〉 being its expectation value. Ac-
cording to the real time holographic dictionary [160], the retarded propagator of the QFT
operator Ô is given the ratio between the normalizable and non-normalizable modes,
GR
ÔÔ

(ω,~k) = −〈Ô(ω,~k)〉/J(ω,~k), therefore, if we impose as a Dirichlet boundary condi-
tion the selection of the normalizable mode by setting G(0) = 0 with F (0) 6= 0, we are
left with an eigenvalue problem whose eigenfrequencies correspond to dispersion relations
ω/T = ω(k/T ;µ/T )/T describing the poles of GR

ÔÔ
, which are the QNM’s we are looking

for. Then, we set ϕ̃(u) = u4F (u), with F (0) 6= 0, from which it follows that,

16u
(

1− 2
u2(3− y) + 1 + y

)
F +

(
u2
(

9− 8
u2(3− y) + 1 + y

)
− 5

)
F ′+

− u
(
1− u2

)
F ′′ + 2i(ω/T )

π
√

3− y (u2(3− y) + 1 + y)

−(12u2(1− y) + 5(1 + y))F√
2u2(1− y) + 1 + y

+

+ 2u
√

2u2(1− y) + 1 + y F ′

+ 4(k/T )2uF

π2(3− y) (u2(3− y) + 1 + y) = 0. (A.7)

We now have a Generalized Eigenvalue Problem (GEP) for the eigenfunction F (u) and
the quasinormal eigenfrequency ω/T , which may be solved as functions of k/T and µ/T .
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In this work we use the pseudospectral method.
Note that Eq. (A.7) also reveals one of the greatest virtues of the EF coordinates,

namely, the fact that it reduces the QNM eigenvalue problem from a Quadratic Eigenvalue
Problem [332] in the standard set of spacetime coordinates to a GEP, which requires far
less computational cost when numerically evaluating the QNM spectra.

A.1.2 QNM spectra and equilibration time

In Fig. A.1 we show the evolution of the external scalar QNM spectra for the first
26 poles as we evolve k/T from 0 to 100, both for the AdS5-Schwarzschild background
at µ/T = 0 and the critical geometry at µ/T = π/

√
2. We observe the usual non-

hydrodynamical QNM structure for the external scalar channel with an infinite series
of QNM pairs with Imω < 0 and Reω 6= 0 symmetrically distributed with respect to
the imaginary axis [179]. When k/T = 0, by increasing the µ/T ratio one increases
the magnitude of the imaginary part of the QNM’s, which becomes more appreciable
for higher order, faster varying modes. On the other hand, an increase in k/T enhances
(suppresses) the magnitude of the real (imaginary) part of the poles. We see that by
increasing the chemical potential one generally increases the damping of the quasinormal
black hole oscillations, which qualitatively agrees with the result found previously in [204]
for a non-conformal, QCD-like bottom-up EMD model describing the physics of the QGP
at finite baryon density.

Also, we note that the non-hydrodynamic modes in Fig. A.1 remain finite when eval-
uated at the critical point, even when k = 0. Thus, one can see that the timescales
contained in the non-hydrodynamic modes are different than the usual relaxation time
quantity τrel ∼ ξz, where ξ is the correlation length (which diverges at the critical point)
and z is the dynamical critical exponent, which becomes infinitely large at criticality
describing the well-known phenomenon of critical slowing down. Nevertheless, in this
strongly coupled model the microscopic scales defined by the non-hydrodynamic QNM’s
still display some critical behavior, as we show below.

In Figs. A.2 and A.3 we display the imaginary and real parts of the first 4 QNM’s as
functions of µ/T , for both stable and unstable branches, at k/T = 0 and k/T = 1. We
see that at the critical point all the QNM’s develop an infinite slope. Moreover, we also
note that the effects on the non-hydrodynamic modes due to finite momentum are small
for k/T ∼ 1 (especially for the imaginary part), being more pronounced for the lowest
QNM’s, which seems to be a general holographic property of the dispersion relation of
non-hydrodynamics QNM’s known as “ultralocality” [333,334].

Following [178], one may define an upper bound for the equilibration time of the
plasma, τeq, using the inverse of minus the imaginary part of the lowest non-hydrodynamical
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Figure A.1: First 26 QNM’s trajectories in the external scalar channel evolved within the
interval 0 ≤ k/T ≤ 100 for µ/T = 0 (beginning with a black dot for k = 0 and evolving into
solid gray lines for k > 0) and for the critical point µ/T = π/

√
2 (beginning with a red square

for k = 0 and evolving into dashed pink lines for k > 0).

QNM evaluated at zero momentum. This is shown in Fig. A.4 (a), from which one can see
that far from the critical point the equilibration time of the finite U(1) R-charge density
SYM plasma decreases with increasing chemical potential, again in qualitative agreement
with what was previously found in [204] in the context of a phenomenologically realistic
holographic model for the QGP at finite baryon chemical potential. However, for larger
chemical potentials, as one approaches the critical point of the model, this behavior is
modified and the equilibration time starts to increase, acquiring an infinite slope at the
critical point.

We may associate a new critical exponent with the derivative of the equilibration time,
d(Tτeq)/d(µ/T ), since it diverges at the critical point, as shown in Fig. A.4 (b). Close to
the critical point,

d(Tτeq)
d (µ/T ) ∼

(
π√
2
− µ

T

)−θ
, (A.8)

where θ is the dynamical critical exponent which we want to calculate. We performed
numerical fits of Eq. (A.8) to the data shown in Fig. A.4 (b) for different sets of intervals
in µ/T increasingly closer to the critical point at µ/T = π/

√
2. The final result gives a

critical exponent compatible with θ = 1/2.
More generally, one may consider different characteristic equilibration times of the

medium associated with the different non-hydrodynamic QNM’s, where equilibration
times associated with higher order modes should be understood as estimates for how fast
the system relaxes to equilibrium depending on how rapidly varying are the perturbations
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Figure A.2: Imaginary part of the first 4 QNM’s in the external scalar channel for k/T = 0
and k/T = 1, as a function µ/T , for both stable and unstable branches.

to which it is subjected. Operationally, this amounts for computing the inverse of minus
the imaginary part of the different non-hydrodynamic QNM’s. By doing so, we obtain the
same dynamical critical exponent θ = 1/2 associated with all the different characteristic
equilibration times of the plasma in the external scalar channel at zero wavenumber.

A.2 QNM’s in the vector diffusion channel

A.2.1 Equation of motion

In this section we compute the QNM’s of the vector diffusion channel in the long
wavelength limit. Differently from what was done in the last section where we considered
an external scalar perturbation on top of the 1RCBH background, now we need to consider
fluctuations of the Maxwell field Aµ which is already nonzero in the background and,
therefore, we also need to consider disturbances in the background metric gµν and dilaton
field φ. At zero spatial momentum the different channels for these fluctuations, at the
linearized level, are classified by different representations of the SO(3) rotation group
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Figure A.3: Absolute value of the real part of the first 4 QNM’s in the external scalar channel
for k/T = 0 and k/T = 1, as a function µ/T , for both stable and unstable branches.

[203].1 By taking the fluctuation of the gauge field along the z direction one finds that
at the linearized level it only mixes with the fluctuation of gzt . Taking now the long
wavelength limit, i.e. k = 0, we write down for the Fourier modes of these fluctuations,

δAz = a(r)e−iωt, δgzt = s(r)e−iωt. (A.9)
1At nonzero k such classification is no longer valid and the corresponding fluctuations are organized

in a more complicated way under a smaller SO(2) symmetry group. We are not going to pursue the
investigation of this more involved case in the present work.
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Figure A.4: Equilibration time (a) and its normalized derivative (b) in the external scalar
channel as functions of µ/T at zero wavenumber.

Then, the linearized Maxwell’s equations, ∇µ (f(φ)F µν) = 0, expressed in Eddington-
Finkelstein coordinates read,

−Φ′′ +
(
−2A′ +B′ − f ′(φ)φ′

f(φ)

)
Φ′ = 0,

(A.10)

a′′ +
(

2A′ −B′ + h′

h
− 2iω eA−B

h
+ f ′(φ)φ′

f(φ)

)
a′ − iωeB−Af(φ)A′ + f ′(φ)φ′

f(φ)h a+

+ Φ′
2h′ s

′ +
f ′(φ)φ′Φ′ + f(φ)

(
(2A′ −B′)Φ′ + Φ′′

)
2f(φ)h

 s = 0,

(A.11)

where the first equation is the equation of motion for the background Maxwell field, Φ(r),
while the second equation is the equation of motion for the Maxwell perturbation, a(r).
We may decouple the perturbations a(r) and s(r) by using Einstein’s equations for the
metric field,

Rµν −
gµν
3

(
V (φ)− f(φ)

4 F 2
αβ

)
− f(φ)

2 FµαF
α
ν −

1
2∂µφ∂νφ = 0. (A.12)

By taking the vz-component minus the rz-component of the above equation of motion,
one obtains the constraint,

s′ = −f(φ)Φ′e−2Aa. (A.13)

By using the zeroth order Eq. (A.10) to eliminate the s(r) term from Eq. (A.11) and
substituting (A.13) into (A.11), one obtains a decoupled equation of motion for the radial
profile of the vector field perturbation, which is associated with the diffusion of the U(1)
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R-charge [179,203],

a′′ +
[
2A′ −B′ + h′

h
+ f ′(φ)φ′

f
− 2iω eB−A

h

]
a′+

−e−2A

h

[
iωeA+B

(
A′ + φ′

f ′(φ)
f(φ)

)
+ f(φ)Φ′2

]
a = 0. (A.14)

Once again we apply the radial coordinate transformation r → rH/u, which yields,

a′′ +
(
−10u6(y − 3)(y − 1)− 3u4(5(y − 2)y + 1) + 4u2 (y2 − 1) + (y + 1)2

u (u2 − 1) (u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2 +

−
4i(ω/T )

√
(3− y) (−2u2(y − 1) + y + 1)

π (u2 − 1) (y − 3) (u2(y − 3)− y − 1)

 a′+
+
(
− 8u4(y − 3)(y − 1)(y + 1)

(u2 − 1) (u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2 +

− 2i(ω/T ) (4u2(y − 1) + y + 1)
π (u2 − 1)u (u2(y − 3)− y − 1)

√
(y − 3) (2u2(y − 1)− y − 1)

 a = 0. (A.15)

For the vector perturbation the normalizable mode at the boundary corresponds to set
a(u) = u2F (u), with F (0) 6= 0, from which one finally obtains,

F ′′ +
[
−18u6(y − 3)(y − 1)− 7u4(5(y − 2)y + 1) + 20u2 (y2 − 1)− 3(y + 1)2

(u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1) +

−
4iu(ω/T )

√
(3− y) (−2u2(y − 1) + y + 1)

π(y − 3) (u2(y − 3)− y − 1)

 1
u(u2 − 1)F

′+

+ 1
u(u2 − 1)

[
8u (6u6(y − 3)(y − 1)2 − 2u4(y(7(y − 3)y + 9) + 5))

(u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2

+8u (u2(y + 1)(3y − 5)(3y − 1)− 2(y − 1)(y + 1)2)
(u2(y − 3)− y − 1) (−2u2(y − 1) + y + 1)2

− 6i(ω/T ) (4u2(y − 1)− y − 1)
π (u2(y − 3)− y − 1)

√
(y − 3) (2u2(y − 1)− y − 1)

F = 0. (A.16)

A.2.2 QNM spectra and equilibration time

With the QNM eigenvalue problem completely specified as discussed above, we
can now apply the pseudospectral method to numerically solve it. In Fig. A.5 we display
the QNM spectra for the first 30 symmetric poles in the vector diffusion channel in the
limiting cases of µ/T = 0 (AdS5-Schwarzschild) and µ/T = π/

√
2 (critical point). In

Figs. A.6 and A.7 we show the imaginary and real parts of the first 4 complex QNM’s as
functions of µ/T , for both stable and unstable branches. We see that also in the vector
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Figure A.5: QNM spectra of the first 30 symmetric poles in the vector diffusion channel for
µ/T = 0 (black circles) and µ/T = π/

√
2 (red squares) at k/T = 0. The hydrodynamical diffusive

pole is depicted by the blue diamond. Note also the emergence of a new purely imaginary, non-
hydrodynamical mode which comes from −i∞ at µ/T = 0 and remains at a finite distance from
the origin at the critical point µ/T = π/

√
2.

diffusion channel both the real and imaginary parts of the QNM’s develop an infinite slope
at the critical point.

We remind the reader that at k = µ = 0 the QNM spectra in the vector diffusion
channel may be analytically calculated [179],

ω

T
= 2πn(1− i), n ∈ N at µ = 0. (A.17)

Our numerical calculations at µ/T = 0 agree with this analytical result. The standard
hydrodynamical mode ω(k/T = 0)/T = 0 is depicted by the blue diamond in Fig. A.5.
Since this is a hydrodynamical pole, it does not evolve with the chemical potential if
we keep k = 0. This mode determines the R-charge conductivity of the model and the
zero frequency limit of this transport coefficient was found in [203] to remain finite at
the critical point, as expected for a type B dynamic universality class. However, it was
noticed in [203] that the derivative of this quantity near the critical point has infinite slope
described by an exponent equal to 1/2, which matches the exponent found in the previous
section in the study of non-hydrodynamic modes of different nature corresponding to
external scalar perturbations.

On the other hand, the main effect of the chemical potential on the symmetric non-
hydrodynamical modes is to increase the magnitude of both the imaginary and real parts
of these poles. Therefore, also in the vector diffusion channel one sees that the inclusion of a
chemical potential leads to additional damping for the quasinormal black hole oscillations.
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Figure A.6: Imaginary part of the first 4 QNM’s in the vector diffusion channel for k/T = 0,
as a function of µ/T , for both stable and unstable branches.

A novel feature we observe in Fig. A.5 is the emergence of a new purely imaginary,
non-hydrodynamical pole at finite chemical potential, which comes from ω/T → −i∞ at
µ/T = 0 and lies at ω/T ≈ −7.315i at the critical point µ/T = π/

√
2. For µ/T & 2,

this new purely imaginary pole becomes the lowest non-hydrodynamical mode, while
for lower values of the chemical potential the lowest non-hydrodynamical mode is given
by any of the first two symmetric poles with respect to the imaginary axis. Therefore,
this new non-hydrodynamical imaginary mode plays a crucial role in the description of
the equilibration time of the system in the vector diffusion channel when the chemical
potential is large, specially at criticality, when it dominates the physics of the slowest
varying perturbations. The appearance of such a purely imaginary mode is an interesting
feature of this model that shows that the distinction between transient phenomena at
weak and strong coupling, currently understood in terms of their different pattern of
non-hydrodynamic modes at zero wavenumber [335] (see also [336]) corresponding to
fluctuations around global equilibrium, can become more complicated near a critical point.

We define the upper bound for the equilibration time of the system in the vector
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Figure A.7: Absolute value of the real part of the first 4 QNM’s in the vector diffusion channel
for k/T = 0, as a function µ/T , for both stable and unstable branches.

diffusion channel as before by taking the inverse of minus the imaginary part of the
lowest non-hydrodynamical QNM. The result is shown in Fig. A.8 (a). The kink observed
in the equilibration time at µ/T ≈ 2 is due to the shift from the regime dominated by the
first symmetric poles to the regime dominated by the new purely imaginary mode. This
also causes a discontinuity in the derivative of the equilibration time, as seen in Fig. A.8
(b). As before, one can calculate the critical exponent associated with this derivative at
the critical point and the result is once again compatible with θ = 1/2. This shows that
in this model both the hydrodynamic and the non-hydrodynamic modes in this vector
diffusion channel have the same critical exponents.
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Figure A.8: Equilibration time (a) and its normalized derivative (b) in the vector diffusion
channel as functions of µ/T .

A.3 QNM’s for the dilaton channel

A.3.1 Equation of motion

Now, we obtain the QNMs of the 1RCBH model for the SO(3) singlet (dilaton) channel
in the homogeneous, zero wavenumber limit complementing the study carried out in Ref.
[146] where the SO(3) quintuplet (external scalar) and triplet (vector diffusion) channels
have been analyzed in detail.

As discussed in Ref. [203], at zero wavenumber the EMD system features a rotational
SO(3) symmetry under which the gauge and diffeomorphism invariant perturbations of the
system are organized into a quintuplet channel corresponding to the five traceless spatial
components of the perturbation of the metric field hij, a triplet channel corresponding to
the three spatial components of the perturbation of the Maxwell field ai, and a singlet
channel corresponding to a combination involving the dilaton perturbation ϕ and the
trace of the spatial part of the perturbation of the metric field, namely,

S = ϕ− φ′

2A′
1
3 (hxx + hyy + hzz) , (A.18)

where one sees that the background dilaton field φ couples the dilaton fluctuation with the
spatial trace of the graviton. This S-perturbation is analogous to the Z2-mode of the so-
called “non-conformal channel” discussed in Ref. [321].2 This was called a non-conformal
channel because this mode is intrinsically associated with the background dilaton field,
which in the Einstein-dilaton models analyzed in Ref. [321] was responsible for breaking

2Note, however, that in Ref. [321] an SO(2) group was associated with the residual rotational sym-
metry of the system in the spatial plane orthogonal to the direction of the nontrivial wavenumber of the
perturbations.
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conformal symmetry. However, the dilaton field may also preserve conformal symmetry
when in the presence of other fields, as in the case of the 1RCBH model studied here.
Therefore, more generally, one could say that this S-perturbation defines the “dilaton
channel”. This nomenclature is also adequate due to the fact that this mode shares the
same near-boundary asymptotics of the background dilaton field [203,321].

The linearized equation of motion for the S-perturbation derived in Ref. [203] trans-
lates as follows to the modified EF coordinates (3.34),3

S ′′ +

(
h (4A′ −B′)− 2iωeB−A + h′

)
h

S ′ + e−2A

18fh (A′)2

(
−18 (A′)2 (∂φf)2 (Φ′)2 +

f
(
3 (A′)2 (−6e2(A+B)∂2

φV + 8e2Ah (φ′)2 + 3∂2
φf (Φ′)2)+ 6A′φ′

(
e2A

(
h′φ′ − 2e2B∂φV

)
+

∂φf (Φ′)2)− 54iωeA+B (A′)3 − e2Ah (φ′)4))
S = 0, (A.19)

where ω is the frequency of the plane-wave Ansatz for the S-perturbation, which shall give
the QNM’s of the dilaton channel under appropriate boundary conditions to be discussed
below.

In order to solve the eigenvalue problem to be derived next for the quasinormal fre-
quencies of the system we make use of the pseudospectral method as done in Ref. [146].
For this, we begin by mapping the radial coordinate r̃ ∈ [r̃h,∞) into a new radial coordi-
nate r̃h/r̃ =: ũ ∈ [0, 1]. By doing so and substituting the equilibrium 1RCBH backgrounds
(3.34) — (3.39) into the equation of motion (A.19), one is left with a linear differential
equation for the perturbation S(ũ) on top of the equilibrium 1RCBH backgrounds. In gen-
eral, the near-boundary, ultraviolet asymptotic behavior of the S-perturbation is given
by, S(ũ) ∼ ũ4−∆G(ũ) + ũ∆Y (ũ) + · · · , as ũ → 0. Since in the 1RCBH model ∆ = 2,
we have two degenerate exponents equal to two. As discussed in detail in Ref. [146], the
correct eigenvalue problem for the QNM’s is obtained by working with the subleading,
normalizable mode of the relevant perturbation (in the dilaton channel considered here,
the normalizable mode is associated with the expectation value of the boundary operator
dual to the dilaton field, 〈Oφ〉), which in the present case corresponds to set the Dirichlet
boundary condition G(0) = 0 with Y (0) 6= 0. Then, by substituting S(ũ) =: ũ2Y (ũ) into
the equation of motion for S(ũ) and defining the dimensionless quasinormal frequency

3In order to go from the domain-wall coordinates used in Ref. [203] to the modified EF coordinates
(3.34), one simply uses that d/dr̃ = (∂v/∂r̃)∂v + ∂r̃ and d/dt = (∂v/∂t)∂v, where ∂v/∂r̃ =

√
−gr̃r̃/gtt =

eB−A/h and ∂v/∂t = 1.
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ω̄ ≡ ω/T , one obtains the following differential equation for Y (ũ),

ũ
(
1− ũ2

)Y ′′ (ũ) + Y ′ (ũ)

− iω̄r̃h (2r̃2
h +Q2)

√
Q2ũ2

r̃2
h

+ 1

π (ũ2 − 1)
√
r̃2
h +Q2 (ũ2 (r̃2

h +Q2) + r̃2
h)

+

2ũ
(

r̃2
h +Q2

ũ2 (r̃2
h +Q2) + r̃2

h

+ 1
ũ2 − 1

)
+ 1
ũ

)
+

Y (ũ)
(

4 (4Q4 (ũ4 + 6ũ2 − 2) ũ2r̃2
h + 3Q2 (8ũ4 + 3ũ2 − 2) r̃4

h + 9ũ2r̃6
h + 4Q6ũ6)

(ũ2 − 1) (3r̃2
h + 2Q2ũ2) 2 (ũ2 (r̃2

h +Q2) + r̃2
h)

−

iω̄ (2r̃2
h +Q2) (r̃2

h + 2Q2ũ2)

2πũ (ũ2 − 1) r̃h
√
r̃2
h +Q2

√
Q2ũ2

r̃2
h

+ 1 (ũ2 (r̃2
h +Q2) + r̃2

h)


 = 0, (A.20)

which defines the relevant generalized eigenvalue problem (GEP) to be solved in order to
find the QNM’s ω̄(µ/T ) of the dilaton channel of the 1RCBH model in the zero wavenum-
ber limit.4

A.3.2 QNM spectra and equilibration time

The numerical routine used to solve the GEP equation (A.20) for the QNM’s ω̄(µ/T )
employed the pseudospectral method and it follows the same general steps discussed in
Ref. [146] and we refer the interested reader to consult it for technical details. In Figs. A.9
and A.10 we show the behavior of the QNM’s of the dilaton channel as a function of µ/T . In
Fig. A.11 we show how the characteristic “equilibration time” associated with the inverse
of minus the imaginary part of the lowest non-hydrodynamic QNM of the dilaton channel
behaves as a function of µ/T . Remarkably, one notes that this characteristic equilibration
time is qualitatively different from the equilibration times obtained in Ref. [146] for the
external scalar and vector diffusion channels, since the latter are reduced as one increases
µ/T far from the CP while increasing close to the CP. In the dilaton channel, however,
the equilibration time always increases with increasing µ/T , in agreement with the late
time behavior of the scalar condensate as we have discussed in Subsection 3.5.7.

4Note that in the EF coordinates the infalling wave condition at the horizon is imposed by just
requiring regularity of the solutions there. This is one of the main reasons why the EF coordinates
are very convenient to deal with the calculation of QNM’s. Another reason is that in the domain-wall
coordinates one would obtain instead of the GEP (A.20) a quadratic eigenvalue problem (QEP) for ω̄,
which is far more demanding in terms of computational costs. Note also what the QNM’s ω̄ are only
functions of the dimensionless combination µ/T controlled by the background parameters r̃h and Q (here
we restrict our analysis to the QNM’s evaluated on the stable branch of black hole solutions).
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Figure A.9: First 22 non-hydrodynamic QNM’s of the dilaton channel evaluated at µ/T = 0
and µ/T = π/

√
2 (critical point).
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Figure A.10: (a) Real and (b) imaginary parts of the first four non-hydrodynamic QNM’s of
the dilaton channel as functions of µ/T .
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Figure A.11: Characteristic “equilibration time” of the dilaton channel as a function of µ/T .
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