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Resumo

Esta dissertação apresenta uma breve revisão introdutória de alguns
aspectos importantes de astrofísica nuclear e da fenomenologia do plasma

de quarks e glúons a baixas temperaturas. Acredita-se que tal estado da
matéria existe no núcleo de estrelas de nêutron e possivelmente de outros
objetos compactos em astrofísica. Uma equação de estado para tal sistema
é derivada incluindo as influências dos condensados de glúon e do campo

magnético que também é uma característica importante das estrelas de
nêutron. Finalmente, essa equação de estado é aplicada para o estudo de
estrutura estelar de estrelas compactas e alguns resultados importantes,

publicados em [1], são discutidos.

Palavras-Chave: Estrela de Neutron, Cromodinâmica Quântica, Campo
Magnético

Abstract

This dissertation presents a brief introductory overview of some key
aspects of nuclear astrophysics and of the phenomenology of the quark
gluon plasma at cold temperatures which is believed to exist inside the

core of neutron stars and possible other compact astrophysical objects. An
equation of state for this state of matter is derived incluing the influence of

gluon condensates and the magnetic field which is also an important
characteristic of neutron stars. And finally this equation of state is applied

to the study of compact stellar structure and some important results,
published in [1], are discussed.

Keywords: Neutron Star, Quantum Chromodynmics, Magnetic Field
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Chapter 1

Introduction

Four forces are known to this day to exist governing the physical universe.
Gravitational, Electromagnetic, Weak and Strong forces. Particularly the
latter is one of the most puzzling. The strong force, ruled by the theory of
Quantum Chromodynamics (QCD) tries to explain how quarks bind them-
selves together in hadrons such as protons and neutrons, how those hadrons
behave and bind together to form a nucleus. It should also explain some
other features of our universe such as the early stages of the evolution of
our cosmos and other extreme states of matter formed at very high temper-
ature or density [2].

QCD has already proven many times to be the fundamental theory of
the strong interactions between particles. Its perturbative regime at high
temperatures has been tested in heavy ion colliders such as LHC and RHIC.
And with the help of Lattice simulations, QCD has given us many accurate
predictions and results, such as the masses of hadrons.

However not all of the physical situations believed to be described by
QCD, are well understood. The fact that quarks (fundamental constituents
of QCD) at low energies are confined into colourless hadrons is yet to be
mathematically proven. High density systems with low temperature such
as those believed to be found inside compact stars, and even the lowest
energy state of the theory (the QCD Vacuum) are yet to be completely un-
derstood.

In figure 1.1 we have what is believed to be the QCD phase diagram.
Although many of those regions are not fully understood, with some theo-
retical assumptions we can perform calculations and predictions for exper-
iments.
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FIGURE 1.1: QCD phase diagram [3]

1.1 Cold Quark Matter

The Quark-Gluon Plasma is a state of QCD matter where quarks and gluons
are deconfined. In figure 1.2 we can see a pictorial representation of the
proton, which is constituted of three quarks, two up quarks and one down.
Much like ice that melts when heated or pressurized, QCD has a similar
melted state. If one heats or pressurizes enough a system of hadrons they
will suffer a phase transition to a deconfined phase, that is what we call a
Quark-Gluon Plasma (QGP). If you heat a nuclear system up to a critical
temperature of Tc ≈ 150MeV at very low chemical potential, you will start
to see effects of a deconfined phase which interacts very strongly with itself.

Experimentally we believe that we can produce this state of matter by
colliding two heavy nuclei. Heavy ions (of Lead for instance) colliding with
one another with high enough energy will penetrate each other, their nu-
cleons will penetrate each other, and in the process will create a super hot
state involving the constituents of those hadrons, the quarks and gluons,
and many more other particles will be created during the collision.

This state, pictured in figure 1.3, is the hot QGP. This would be the analo-
gous of heating the matter to create an ionized plasma of electrons, protons
and neutrons. We also believe that a QGP can be formed in other systems



1.1. Cold Quark Matter 3

FIGURE 1.2: Proton structure of two quarks "up" and one
"down"

FIGURE 1.3: Illustration of Heavy Ion Collision. Image by
Henning Weber / CERN

such as compact stars. However, inside a neutron star or a quark star the
determinant factor creating the QGP is the pressure, not the temperature.
That is why the state of matter inside the neutron star is commonly referred
to as cold QGP (or cold quark matter). Figure 1.4 attempts to show the dif-
ferent ways of transitioning to a deconfined state. Heating the system will
"melt the boundaries" of the hadrons, making the quarks and gluons decon-
fined, and pressurizing the system will make the boundaries overlap with
each other and therefore the quarks will be able to move freely inside the
plasma.

A very simple calculation, based on geometrical arguments, can be made
to estimate at what density will the hadrons touch each other and therefore
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what is the critical density for this phase transition. Assuming that a nu-
cleon is a sphere of rN ≈ 1fm, its volume is

4πr3N
3

If the whole system has N nucleons and its total volume is approximately
just the sum of the nucleon volumes, i.e.

N × 4πr3N
3

,

the number density of the system is

N × 3

4πr3N ×N

which simplifies to
3

4πr3N
≈ 0.24fm−3 = 1.5ρ0

where ρ0 is the density of standard nuclear matter. Therefore, when the
density reaches a value of around ρc = 0.24fm−3 we may expect that a QGP
phase is about to be formed.

Temperat
ure

Density

FIGURE 1.4: Deconfining quarks by increasing temperature or
pressure

Until recently we believed that the QGP would be like a gas of partons
(the particles that constitute a Hadron, i.e. quarks and gluons) in which
the constituents barely interact with each other. However after many ex-
periments colliding heavy ions we found out not only that the plasma has
a surprisingly small viscosity but also that the plasma constituents interact
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very strongly with each other. Therefore this state known as the sQGP or
strongly interacting QGP.

That is what we hope to find inside a neutron star core, or a quark star, a
strongly interacting cold system made of gluons and quarks. The folowing
dissertation exposes one particular model for the cold sQGP and its aplica-
tions to the astrophysics of compact objects.

1.2 Neutron Stars

As is shown in figure 1.1 there is a region of low temperature and high den-
sity (which is particularly higher than the expected critical density of phase
transition) labeled neutron stars. According to our theoretical expectations
the temperatures and densities of neutron stars are in that region.

Stelar Evolution

The formation of a star begins with a large gas dusty cloud in outer space,
the nebulae, filled mostly with hydrogen. As the gravitational force pulls
the cloud together and the density increases a stellar nursery filled with
proto-stars is formed. Eventually the collapsing cloud will become denser
and hotter and will start to fuse its hydrogen into helium. A full star is now
combusting its hydrogen fuel into helium and emitting EM radiation. If the
star is massive enough, other elements will be formed in a process called
stellar nucleosynthesis. See ref. [4].

A dynamical equilibrium between the gravitational force, trying to pull
the star together, and the thermal forces, trying to expand it, will take place.
After a long enough time one of those forces dominates the other.

In the case of an average star the thermal force expands the star, cooling
it and transforming it into a Red Giant. As the star cools the thermal forces
weaken and the gravitational force once again pulls the star together. A long
process will shed most of the star’s mass to the surrounding space, leaving
in the core a white dwarf (for more details see [4]).

In the case of a super massive star the cooling and expanding process
will transform it into a Super Red Giant. However, when the gravitational
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forces crushes it back together, it will be a much more energetic event, in a
much shorter time. This event is what is called a Supernova.

In a Supernova, the outer layer of the star is spilled over to outer space
and its core becomes a neutron star, an extremely dense star, with masses of
up to 2 solar masses but with the diameter of only a few kilometres.

If the initial star was massive enough the result of the supernova might
not be a neutron star but rather a black hole.

If a neutron star is too dense, the neutrons will get squeezed against each
other so strongly that they could break down into their constituents, the
quarks and gluons predicted by QCD. Some theorists believe that a third
type of compact stellar object (remainders of a stars collapse) might exist,
the so called exotic stars or quark stars which are constituted of nothing but
deconfined quarks.

Either in a quark star or a hybrid star core (a star with a deconfined
quark phase in its core and a hadronic outer layer) we believe that a state
of free quarks and gluons, the Quark Gluon Plasma, will exist, making the
compact stars another laboratory for understanding QCD.

1.3 Properties of Neutron Stars

Neutron stars are part of the group of compact astrophysical objects. Those
include white dwarfs, black holes, and of course neutron stars. Some objects
that have not yet been proven to exist would also fit into this group such as
quark stars, hybrid stars and strange stars (stable quark stars that contain
the flavour s).

With radius of just tens of kilometers and masses of up to two solar
masses, these objects can reach very high densities.

One very important characteristic of neutron stars is the magnetic field
which in the center of the star is believed to reach values of around 1018G

and maybe even higher. Amongst neutron stars with high magnetic fields
many behave as pulsars. They usually have very high spins, sometimes
reaching periods of rotation of the order of milliseconds. That spin com-
bined with the unaligned magnetic field and the cloud of charged particles
existing around the neutron star is what makes the star "pulsate", as an ob-
server on Earth would see it. When the axes of the magnetic field points
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towards the observer a large amount of radiation is propagated and the star
"blinks".

FIGURE 1.5: Pulsar illustration [5]

1.3.1 Equilibrium & Stability

There are also some special conditions to the neutron star physical parame-
ters. For instance, they are believed to be charge neutral. Since quarks are
electrically charged and a small number of electrons is also present in the
star, the abundance of these particles must be in charge equilibrium. I.e.

2

3
ρu =

1

3
ρd +

1

3
ρs + ρe (1.1)

Where ρ represents the number densities of quarks u,d and s and electrons.
It is also believed to be in chemical equilibrium regarding all the possible

decays and reactions of the quarks [6, 7]:

u+ e− → d+ νe, u+ e− → s+ νe,

d→ u+ e−+ ν̄e, s→ u+ e−+ ν̄e, and s+u→ d+u. (1.2)

The equilibrium provides the relations between the chemical potentials of
the quarks up νu, down νd, strange νu and electrons νe:

νd = νs and νu + µe = νs (1.3)
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Finally we must be sure that the physical parameters of the star are such
that they properly describe a deconfined system. The energy per barionic
number must not be too low so that the quarks would confine back into
hadrons and it must not be high enough so that the system could produce
new particles. The energy per baryonic number of the system with only
quarks u and d must not be lower than the lowest energy per barionic num-
ber found in nuclei, which is 930MeV for iron. However, the presence of
strange quarks corrects this value to 934MeV [6].

For the system with all three quark flavors, the energy must be lower
than the nucleon mass as shown in [6] or else, the system could hadronize.
This value is also corrected to 934MeV [6].

This leads to the condition

ε

ρB

∣∣∣∣
(3 -flavor)

≤ 934 MeV ≤ ε

ρB

∣∣∣∣
(2 -flavor)

(1.4)

1.3.2 Mass, Radius

The most important parameters regarding neutron stars are the mass and
the radius. Both are challengingly difficult to measure experimentally, but
they provide very significant information regarding the interior of the star.

The first attempt to estimate the mass of such stars was made by Op-
penheimer and Volkof [8]. They used an equation of state of a neutron gas
and predicted a maximum mass of 0.7M�. That calculation later became
known as the Oppenheimer-Volkof limit. However, several neutron stars
were determined experimentally to have masses much larger than that. Re-
cent examples are the pulsars PSR J1614-2230, with (1.97 ± 0.04)M� [9] or
the pulsar PSR J0348+0432, with (2.01± 0.04)M� [10] and perhaps the black
widow pulsar PSR B1957+20, with a possible mass around (2.4 ± 0.12)M�

[11].
The larger the masses and densities we measure the more reasons we

have to believe that a QGP phase must be present in the core of the star.
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TABLE 1.1: Different EOSs proposed. [12]

Authors Composition
Pand e Smith (1976) n, π0

Friedman e Pandharipande(1981) n, p

Muller, Prakash e Ainsworth (1987) n, p

Wiringa, Fiks e Fabrocine (1988) n, p

Prakash et al. (1988) n, p

Glendenning e Moszkowski (1991) n, p,H

Prakash, Cooke e Lattimer(1995) n, p,H,Q

Prakash et al.(1995) Q

Engvik et al.(1996) n, p

Muller e Serot(1996) n, p

Akmal e Pandharipande(1997) n, p

Glendenning e Schaffner-Bielich(1999) n, p,K

The figure 1.6 shows a number of measured masses and radii of neutron
stars. It is not simple to make a theoretical model to explain these measure-
ments. In order to predict the mass and radius one has to know the equation
of state (EOS) of the internal constituents of the star. The theoretical com-
munity has provided several different possible equations of state to describe
the system, some of them include only quarks, some include also neutrons,
hyperons, kaons, pions etc. A very illustrative table was depicted in [12]
showing different equations of state. One reproduction of the same table is
shown in Table 1.1.

Nowadays, after the measurement of the pulsars PSR J1614-2230 and
PSR J0348+0432, every EOS has to predict stars with masses of at least two
solar masses. In figure 1.7 we can see that several EOSs do cross the lines
of those measurements. However, models with strange quark mater (SQM)
yield EOSs that are usually too "soft" to support such high masses (this is not
the case for every model, the color flavor locked model is one exception).
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1.3.3 Magnetic Field & Rotation

Both magnetic field and rotation introduce an explicit symmetry breaking
in an otherwise perfectly spherically symmetric and isotropic system. These
aspects are, however, of huge importance to the system. First of all, there
is a reasonable difference on the mass prediction of a theoretical model that
includes the magnetic field and one that does not. The magnetic field seems
to help the system to support significantly higher masses. This is a welcome
feature as we can deduce from the discussions in the preceding section. Fig-
ure 1.8 shows the different types of neutron stars in a surface magnetic field
vs period diagram. Although the magnetic field in the core of the star is
much higher than the surface field, the figure illustrates well the big pic-
ture. Magnetars are of particular interest as they have very high magnetic
fields. Figure 1.9 shows the stars in a P × Ṗ diagram (P is the period and Ṗ
is the time derivative of the period).

The magnetic field inside the core of a Magnetar is expected to be much
higher than that of the average neutron star, reaching values of up to 1018G.
Many studies were already made discussing the magnetic field and rotation
effects on the stars [15, 16, 17, 18, 19, 20, 21].

1.3.4 Stellar Structure

For non-compact stars the effects of general relativity on their internal struc-
ture are usually small. However, the study of the stellar structure of com-
pact astrophysical objects has to be done in the relativistic framework. The
equation governing the structure of a relativistic star are known as the Tolman-
Oppenheimer-Volkof equations. They are one dimensional equations that
describe the mass and pressure of the star as functions of only the radial
variable (see [22] for equations involving angular variables as well):

dP (r)

dr
= − 1

r2
(ε(r) + P (r))

(
M(r) + 4πr3P (r)

)(
1− 2M(r)

r

)−1
(1.5)

dM(r)

dr
= 4πr2ε(r). (1.6)
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where M(r), P (r) and ε(r) are respectively the mass, pressure and en-
ergy density as functions of r.

These are the most simple equations to model the system. They are
spherical, statical and isotropic. However, there are ways of studying more
complex systems using these equations. One of this ways will be presented
in Chapter 3. A full derivation of this equation is presented in Appendix A.

1.4 Mean Field EOS with Magnetic Field

As mentioned in section 1.3.2 several different equations of state have been
proposed to explain the behavior of neutron stars and quark stars. One of
these equatios was derived in [23] and is based on a technique called mean
field approximation. We will refer to this equation of state as mean field QCD
(mQCD).

The main purpose of this work is to include the magnetic field and red-
erive a similar EOS. The results presented in this dissertations were pub-
lished in Ref. [1]. In this text we will discuss in detail the results of Ref.
[1].
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FIGURE 1.6: Measured NS masses [13]
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FIGURE 1.7: Different EOSs predictions for the Mass×Radius
diagram of neutron stars [9]
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FIGURE 1.8: Different types of neutron star [14]. INS: Iso-
lated Neutron Star. MSP: Millisecond Pulsars. L(H)MXB:
Low (High) mass x-ray binaries. CCO: Compact central ob-

jects.

FIGURE 1.9: P × Ṗ diagram [14]
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Chapter 2

Effective Lagrangian and Equation
of State

In this chapter we derive the equation of state (EOS) of the QCD mean-field-
theory model (mQCD). First, we perform the derivation of the EOS without
the presence of the magnetic field and later we include it.

2.1 QCD

All the basics of QCD can be found in Ref.[2]. The QCD Lagrangian density
is given by:

LQCD = −1

4
F a
µνF

aµν +
Nf∑
q=1

ψ̄qi
[
iγµ(δij∂µ − igT aijGa

µ)− δijm
]
ψqj (2.1)

where the sum in q is performed over the quark flavors Nf . The Yang-Mills
field tensor is given by:

F aµν = ∂µGaν − ∂νGaµ + gfabcGbµGcν = ∂µGaν − ∂νGaµ + g[Gbµ, Gcν ] (2.2)

and the generators of SU(3) T a are given by:

T a =
λa

2
a = 1, 2, . . . , 8 (2.3)
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where the matrices “λ” are the Gell-Mann matrices:

λ1 =


0 1 0

1 0 0

0 0 0

 λ2 =


0 −i 0

i 0 0

0 0 0

 λ3 =


1 0 0

0 −1 0

0 0 0



λ4 =


0 0 1

0 0 0

1 0 0

 λ5 =


0 0 −i
0 0 0

i 0 0

 λ6 =


0 0 0

0 0 1

0 1 0



λ7 =


0 0 0

0 0 −i
0 i 0

 λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 (2.4)

and fabc the anti-symmetrical structure constants of the SU(3) group.

f bac = facb = −fabc

defined by the commutators:

[λa, λb] = 2ifabcλc (2.5)

As each color index goes from 1 to 8, the only non zero structure constants
are the following:

f 123 = 1 f 147 = f 246 = f 257 = f 345 = f 516 = f 637 = 1/2

f 458 = f 678 =
√

3/2 (2.6)

and consequently we get the following relations for SU(N) which will be
useful:

fabcfabc = N(N2 − 1)
(N=3)−→ fabcfabc = 24 and

facdf bcd = Nδab
(N=3)−→ facdf bcd = 3δab (2.7)
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2.2 Gluon Field Decomposition

According to [24, 25] the decomposition of the gluon fields is given by:

Gaµ(k) = Aaµ(k) + αaµ(k) (2.8)

where Aaµ is the component of the field with only low momentum gluons
(soft gluons) and αaµ is the component of high momentum gluons (hard
gluons).

Considering (2.8) in the configuration space we have:

Gaµ(x) = Aaµ(x) + αaµ(x) (2.9)

where we note that Aaµ(x), which is the low momenta component, has very
large wavelengths, therefore ∂νAaµ(x) ∼= 0. This is better understood from
the Fourier Transform of Aaµ(k):

Aaµ(x) =
∫
d4k Aaµ(k) eikx

which makes its derivative:

∂νAaµ(x) =
∫
d4k ikν Aaµ(k) eikx

Since Aaµ(k) is the low momenta component, we may assume that kν ∼= 0,
and then the above expression is:

∂νAaµ(x) ∼= 0

2.3 Gluon Condensates

We assume that, as in the case of the hot QGP produced in heavy ion col-
lisions, the cold and deconfined quark matter is still in a strong coupling
regime and therefore we can expect that gluon condensates will survive,
even if with a reduced strength.

The contribution of the gluon condensates which is included in the model
is one of the aspects that makes it different from the MIT Bag model. Ac-
counting for the colourlessness of the vacuum we only consider condensates



18 Chapter 2. Effective Lagrangian and Equation of State

of dimension 2 and 4.
Here we adopt the notation for expected values over the QGP simply as

〈QGP T=0|Y |QGP T=0〉 ≡ 〈Y 〉

2.3.1 Properties of the Condensates

The important properties of this expectation values are:

• The colourlessness of the vacuum, which imposes:

〈Aaµ〉 = 0 (2.10)

〈AaµAbνAcρ〉 = 0 (2.11)

• As calculated in [24, 25] we have:

〈AaµAbν〉 = −δ
ab

8

gµν

4
µ0

2 = −δ
abgµν

32
µ0

2 (2.12)

where the factor of "8" is caused by the colour indices as they go from
1 to 8 and the factor of "4" is due to the 4-dimensions of Minkowsky
space. As a consequence:

〈AaµAbµ〉 = 〈AaµAbνgνµ〉 = 〈AaµAbν〉gνµ =

−δ
ab

32
gµνg

ν
µµ0

2 = −δ
ab

32
4× µ0

2 = −δ
ab

8
µ0

2 (2.13)

• From [25]:

〈AaµAbνAcρAdη〉 =
φ0

4

(32)(34)

[
gµνg

ρηδabδcd + gµ
ρgν

ηδacδbd + gµ
ηgν

ρδadδbc
]

(2.14)
and the factor “(32)(34)” in the denominator appears when we take
µ = ν, ρ = η, a = b e c = d:

〈AaµAaµAcρAcρ〉 = φ0
4
[
gµµg

ρρδaaδcc + gµ
ρgµ

ρδacδac + gµ
ρgµ

ρδacδac
]

= φ0
4
[
16δaaδcc + 4δacδac + 4δacδac

]
= φ0

4
[
16× 8× 8 + 4× 8 + 4× 8

]
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= φ0
4
[
4× 4× 8× 8 + 2× 4× 8] = φ0

4(4× 8)(4× 8 + 2) = φ0
4(32)(34)

Also from [24, 25] we can define a dynamically generated gluon mass
mG and the constant b as:

mG
2 ≡

(
9

2

)(
1

16

)
g2µ0

2 (2.15)

and
b ≡ 9

(4)(34)
g2 (2.16)

Those proprieties will be used in the derivations.

2.4 Effective Lagrangian

It is instructive to first derive a simplified version of the theory to get the
basic results. Here we consider a non-magnetic plasma with two other sim-
plifications: (i) the mass of the quarks u, d, s will be the same m for now.
Later the sum over different quark masses will be considered, and (ii) the
sum over the flavor indices will be ignored and later added again inside
the degeneracy factor γQ as a multiplicative factor 3. This makes our initial
Lagrangian the following:

LQCD = −1

4
F a
µνF

aµν + ψ̄i
[
iγµ(δij∂µ − igT aijGa

µ)− δijm
]
ψj (2.17)

First we apply the gluon decomposition using (2.9) in (2.29) and in (2.2),
and ∂νAaµ(x) = 0:

LQCD(Gaµ = Aaµ + αaµ, ψ) = L′QCD

L′QCD = −1

4
F ′aµνF

′aµν + ψ̄i
{
iγµ

[
δij∂µ − igT aij(Aaµ + αaµ)

]
− δijm

}
ψj (2.18)

where F ′aµν = F aµν(Gaµ = Aaµ + αaµ):

F ′aµν = gfabcAbµAcν + (∂µαaν − ∂ναaµ + gfabcαbµαcν)

+gfabcAbµαcν + gfabcαbµAcν (2.19)
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next we carry out the distributive multiplications that turn the lagrangian
into:

L′QCD = −1

4
ΓaµνΓ

aµν − gfabc

2
Γaµν(A

bµαcν + αbµAcν + AbµAcν)

−g
2 fabcfade

4

[
AbµA

c
νA

dµAeν

+AbµA
c
νA

dµαeν + AbµA
c
να

dµAeν + Abµα
c
νA

dµAeν + αbµA
c
νA

dµAeν

+Abµα
c
να

dµAeν + Abµα
c
νA

dµαeν + αbµA
c
νA

dµαeν + αbµA
c
ν α

dµAeν
]

+ψ̄i
{
iγµ[δij∂µ − igT aij(Aaµ + αaµ)]− δijm

}
ψj (2.20)

where

Γaµν = ∂µαaν − ∂ναaµ + gfabcαbµαcν (2.21)

We now, substitute the terms involving soft gluons by their expectation
values:

L′QCD = −1

4
ΓaµνΓ

aµν − gfabc

2
Γaµν

(
〈Abµ〉αcν + αbµ〈Acν〉+ 〈AbµAcν〉

)

−g
2 fabcfade

4

[
〈AbµAcνAdµAeν〉

+〈AbµAcνAdµαeν〉+ 〈AbµAcναdµAeν〉+ 〈AbµαcνAdµAeν〉+ 〈αbµAcνAdµAeν〉

+〈AbµαcναdµAeν〉+ 〈AbµαcνAdµαeν〉+ 〈αbµAcνAdµαeν〉+ 〈αbµAcν αdµAeν〉
]

+ψ̄i
{
iγµ[δij∂µ − igT aij(〈Aaµ〉+ αaµ)]− δijm

}
ψj (2.22)

And using the condensate (2.10 to 2.14) we get:

L′QCD = −1

4
ΓaµνΓ

aµν +
gfabb

2
Γaµν

gµν

32
µ0

2

−g
2

4

φ0
4

(32)(34)

[
gµνg

µνfabbfadd + gµ
µgν

νfabcfabc + gµ
νgν

µfabcfacb
]

+
g2 facbfaed

4
αcν

(
δbegµ

ν

32
µ0

2

)
αdµ − g2 facbfade

4
αcν

(
δbd

8
µ0

2

)
αeν
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+
g2 fabcfade

4
αbµ

(
δcdgν

µ

32
µ0

2

)
αeν − g2 fabcfaed

4
αbµ

(
δce

8
µ0

2

)
αdµ

+ψ̄i
[
iγµ(δij∂µ − igT aijαaµ)− δijm

]
ψj

Contracting the metric tensors and using the anti-symmetry of the structure
factors we get:

L′QCD = −1

4
ΓaµνΓ

aµν − g2

4

φ0
4

(32)(34)
[16fabcfabc + 4fabcfacb]

+
g2 facbfabd

4
αcνα

dν µ0
2

32
− g2 facbfabe

4
αcνα

eν µ0
2

8

+
g2 fabcface

4
αbµα

eµµ0
2

32
− g2 fabcfacd

4
αbµα

dµµ0
2

8

+ψ̄i
[
iγµ(δij∂µ − igT aijαaµ)− δijm

]
ψj

Using (2.7) and opening the term −1
4
ΓaµνΓ

aµν we end up with the follow-
ing Lagrangian:

L′QCD = −1

2

[
(∂µα

a
ν)∂

µαaν − (∂να
a
µ)∂µαaν

]
− 1

4

[
(∂µα

a
ν − ∂ναaµ)gfabcαbµαcν

+gfabcαbµα
c
ν(∂

µαaν − ∂ναaµ)
]
− g2fabcfade

4
αbµα

c
να

dµαeν

− 9

(4)(34)
g2φ0

4 +
(

9

4

)(
1

16

)
g2µ0

2αaνα
aν

+ψ̄i
[
iγµ(δij∂µ − igT aijαaµ)− δijm

]
ψj (2.23)

Looking closely to the action of this theory we see that one surface term is
canceled.

The action is:
S ′QCD =

∫
d4x L′QCD

and the contribution of the first term in (2.23) when integrated is:

−1

2

∫
d4x

[
(∂µα

a
ν)∂

µαaν − (∂να
a
µ)∂µαaν

]

= −1

2

[
αaν(∂

µαaν)− αaµ(∂µαaν)
]∣∣∣+∞
−∞

+
1

2

∫
d4x

[
αaν(∂µ∂

µαaν)− αaµ(∂ν∂
µαaν)

]
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=
1

2

∫
d4x

[
αaν(∂µ∂

µαaν)− αaµ(∂ν∂
µαaν)

]
(2.24)

where the surface term is zero due to the fact that we will not consider ex-
tended field configurations. Then, rewriting (2.23) we get

L′QCD =
1

2

[
αaν(∂µ∂

µαaν)− αaµ(∂ν∂
µαaν)

]
− 1

4

[
(∂µα

a
ν − ∂ναaµ)gfabcαbµαcν

+gfabcαbµα
c
ν(∂

µαaν − ∂ναaµ)
]
− g2fabcfade

4
αbµα

c
να

dµαeν

− 9

(4)(34)
g2φ0

4 +
(

9

4

)(
1

16

)
g2µ0

2αaνα
aν

+ψ̄i
[
iγµ(δij∂µ − igT aijαaµ)− δijm

]
ψj (2.25)

·

Here we apply the mean field approximation to the hard gluon fields.
Assuming the occupation number of the hard gluons is large (because the
quark sources have high density and the coupling is not small) and the
gluon field can be assumed to be a classical field, a Walecka-like approxi-
mation is done [26, 27] as already applied to QCD in [28, 29]:

αaµ = αa0δµ0 (2.26)

where αa0 = αa0(~x, t) is a classical field.

The Lagrangian (2.25) becomes then:

L0 =
1

2

[
αa0(∂µ∂

µαa0)− αa0(∂0∂
0αa0)

]

−1

4

[
(∂0α

a
0 − ∂0αa0)gfabcαb0α

c
0 + gfabcαb0α

c
0(∂

0αa0 − ∂0αa0)
]
− g2fabcfade

4
αb0α

c
0α

d
0α

e
0

− 9

(4)(34)
g2φ0

4 +
(

9

4

)(
1

16

)
g2µ0

2αa0α
a
0

+ψ̄i
[
iγµ(δij∂µ − igT aijαa0δµ0)− δijm

]
ψj

Since fabcfade and αb0α
c
0α

d
0α

e
0 are anti-symmetric and symmetric tensors

respectively, the multiplication results in zero. Also using the definitions
(2.15) and (2.16) we are left with the final lagrangian:
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L0 = −1

2
αa0(~∇2αa0)+

mG
2

2
αa0α

a
0−bφ0

4+ψ̄i
(
iδijγ

µ∂µ+gγ0T aijα
a
0−δijm

)
ψj (2.27)

We also usually take, for simplicity, the hard gluon field as a constant
field αa0 = const. For our purposes the terms involving non-homogeneity
aspects of the field are not relevant. This was relevant in the study of wave
propagations through the plasma [30, 31].

And as we can see not much was done with the quark term, so to re-
turn to the case of different quark masses we can just perform the sum over
flavors and add an index in the mass term.

The final Lagrangian is:

L0 =
mG

2

2
αa0α

a
0 − bφ0

4 +
∑

f=u,d,s

ψ̄fi
(
iδijγ

µ∂µ + gγ0T aijα
a
0 − δijmf

)
ψfj (2.28)

2.5 Effective Lagrangian with Magnetic Field

Now that we have derived the mQCD Lagrangian we can more easily derive
the more complicated version of the model. This version consists on adding
the following parameters to our system:

1. A classic magnetic field, constant in magnitude and direction. B = Bẑ,
i.e. Aµ = (0, yB, 0, 0)

2. Another spinorial field representing the electrons whose eletrical charges
will later be necessary to guarantee the neutrality of charge in our
compact stars.

The new Lagrangian is:

L = −1

4
F a
µνF

aµν +
d,s∑
f=u

ψ̄fi
[
iγµ(δij∂µ + iδijQfAµ − igT aijGa

µ)− δijmf

]
ψfj

− 1

16π
FµνF

µν + ψ̄ei
[
iγµ(δij∂µ + iδijQeAµ)− δijme

]
ψej (2.29)
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where Qf , Qe, andme are the f flavored quark charge, the electron charge
and the electron mass respectively.

We do not need to do the derivations again. Note that since the gluon
field does not couple to the electromagnetic field, the same series of approx-
imations on this field will eventually end up in the same contribution to the
Lagrangian

mG
2

2
αa0α

a
0 − bφ0

4

Moreover, the influence of the magnetic field on the quark term of the La-
grangian will be simply:

∑
f=u,d,s

ψ̄fi
(
iγµ [δij∂µ + iδijQfAµ] + gγ0T aijα

a
0 − δijmf

)
ψfj

Also, since no approximations will be done in the electric term in the final
approximate Lagrangian this term will have suffered no change from the
initial Lagrangian. So all we have to calculate to find the approximate La-
grangian with the magnetic field is the magnetic term − 1

16π
FµνF

µν . This is
just the total energy contribution which we get from the most basic classical
electrodynamics:

− 1

16π
FµνF

µν = −B
2

8π

The transition to the magnetic case is then just a matter of adding this
term and the vector potential influence on the spinorial fields:

L0 =
mG

2

2
αa0α

a
0 − bφ0

4 − B2

8π
+ ψ̄ei

[
iγµ(δij∂µ + iδijQeAµ)− δijme

]
ψej

+
d,s∑
f=u

ψ̄fi
{
iγµ

[
δij∂µ + iδijQfAµ

]
+ ghγ

0T aijα
a
0 − δijmf

}
ψfj (2.30)

We can recover the first, non-magnetic Lagrangian, just by taking the
vector potential and the magnetic field to be zero.
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2.5.1 Equations of Motion

Although our main goal is to obtain the energy-momentum tensor and from
that the EOS, the equations of motion have some interesting properties that
we should look into before going further.

The Euler-Lagrange equations are

∂L
∂ϕi
− ∂µ

∂L
∂(∂µϕi)

= 0 (2.31)

So for each respective field (electrons, quarks, gluons and EM) we have
the following equations of motion:

[
iγµ

(
∂µ + iQfAµ

)
+ ghγ

0T aαa0 −mf

]
ψf = 0 (2.32)[

iγµ
(
∂µ + iQeAµ

)
−me

]
ψe = 0 (2.33)

mG
2αa0 = −gh

d,s∑
f=u

ρaf = −ghρa (2.34)

∂µF
µν =

d,s∑
f=u

Qf (ψ̄
fγνψf ) +Qe(ψ̄

eγνψe) (2.35)

where ρa is the charge density of color a. It is given by the temporal compo-
nent of the color density current:

ja0 = ρa =
d,s∑
f=u

ψ̄fi γ
0T aijψ

f
j =

d,s∑
f=u

ψ†i
f
T aijψ

f
j (2.36)

2.5.2 Landau Levels

The most important feature of the equations of motion is the existence of
Landau levels. There is now a quantum number associated to the magnetic
field relation with the charged particle orbits.

Exact Solution

Let us consider the electronic equation (2.33) omitting the electronic indices
for now. If we multiply it by γ0 from the left we can use the relation γ0γ0 = 1
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and write it in a usual eigenfunction form (see [32])

i∂tψ = HDiracψ

where HDirac = σi(−i∂i −QeAi) + γ0me, and σiis justγ0γi. From now on we
will choose these σ matrices as the Pauli matrices and γ0 = diag(1, 1,−1,−1).
So, its functional form is clearly

ψ = e−iEt

 φ

ξ

 (2.37)

where the spinor is divided into two components of two components.
The equations for them are:

(E −m)φ = σi(−i∇i − eQAi)ξ (2.38)

(E +m)ξ = σi(−i∇i − eQAi)φ (2.39)

and we can isolate one component, e.g.

(E2 −m2)φ = (σi[−i∇i − eQAi])2φ (2.40)

Substituting the vector potential, we obtain:

(E2 −m2)φ = (−∇2 + [eQB]2y2 − eQB[2iy∂x + σ3])φ

The absence of x and z components except through derivatives suggests
a functional form for the result:

φ = eik·Xf(y)

where f(y) is a two component function and X is the spatial vector. Two
linear independent solutions appear

f+ =

 F+(y)

0

 and f− =

 0

F−(y)


We want these f functions to be eigenfunctions of σ3 with eigenvalues s

and hence:
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∂2yFs = (qQBy + kx)
2Fs − (E2 −m2 − k2z + eQBs)Fs

which is in fact a Hermite equation. If we changes the variables as

χ =
√
e|Q|B

(
y +

kx
eQB

)

we get the equation (∂2χ − χ2 + as)Fs = 0 with

as =
E2 −m2 − k2z + eQBs

e|Q|B

Finally we obtain the energy eigenvalues

E2
ν = m2 + k2z + (2ν + 1)e|Q|B − eQBs (2.41)

Quarks

We could do everything again for the quarks but if we notice that the dif-
ference between the two equations of motion (2.33) and (2.32) is just a new
constant term in the Hamiltonian H → H + H ′(Cte) we can just use the
eigenvalue properly E → E + E ′.

The only major diference between the two equations is that the quark
spinor has a color index accounted by a cj matrix multiplying eq (2.37)
where cicj = δij so all is resolved multiplying equations (2.38) by a cj matrix
from the left. If we redefine the energy variable according to

Ẽf
ν ≡ Ef

ν + ghA (2.42)

Where A = c†iT
a
ijcjα

a
0 we are left with the usual eigenvalues for the Dirac

equation in the presence of a constant magnetic field. So we isolate the
energy as usual and the solution of (2.32) gives us the energy eigenvalues:

(
Ef
ν + ghA

)2

= m2
f + k2z + (2ν + 1)|Qf |B −QfBs (2.43)

where the Hermite number is ν = 0, 1, 2, 3, . . . and the spin is s = ±1. Isolat-
ing the energy, the above equation becomes
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(
Ẽf
ν

)2
= m2

f + k2z +
[
2ν + 1− s× sign(Qf )

]
|Qf |B (2.44)

and redefining the quantum number we have

Ẽf(±)
n = ±

√
m2
f + k2z + 2n|Qf |B (2.45)

where the Landau quantum number is 2n = 2ν + 1− s× sign(Qf ).
We find the same expression for the electron

Ee(±)
n = ±

√
m2
e + k2z + 2n|Qe|B (2.46)

2.6 Equation of State

In this section we derive the equation of state (EOS). In order to do it in its
general form we must include the temperature and then we can obtain the
zero temperature case taking T → 0 in all that we are about to derive.

In order to add the temperature in our half-classical and half-quantum
theory we have to find the partition function as if it were all quantum:

Z = Tr
{
exp

[
− (Ĥ − µeN̂e −

d,s∑
f=u

µfN̂f

)
/T
]}

(2.47)

We can already guess the classical part.

Zclassical = exp

[
V

{
− mG

2

2
αa0α

a
0 + bφ0

4 +
B2

8π

}
1

T

]

Nevertheless, the fermions are fully quantum and we to have use the
formalism of finite temperature quantum field theory. All of this is done in
Appendix B. The result for the full partition function is

Z = exp

[
V

{
− mG

2

2
αa0α

a
0 + bφ0

4 +
B2

8π

}
1

T

]

×
∏
~k,s,n

{
1 + exp

[
− (Een − µe)/T

]}{
1 + exp

[
− (Een + µe)/T

]}
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×
d,s∏
f=u

∏
~k,s,n

{
1 + exp

[
− (Efn − νf )/T

]}{
1 + exp

[
− (Efn + νf )/T

]}
(2.48)

where the energies are:

Een =
√
m2
e + k2z + 2n|Qe|B (2.49)

Efn =
√
m2
f + k2z + 2n|Qf |B (2.50)

µe is the electron chemical potential and we must redefine the f ∈ {u, d, s}
quark chemical potential as:

νf ≡ µf + gh(c
†
iT

a
ijcj)α

a
0 (2.51)

We see that the partition function exhibits the usual fermionic terms.

Energy, Entropy and Pressure

In order to find all of the usual thermodynamic quantities, we start by find-
ing the thermodynamic potential and from that we go to other quantities
very easily. This potential is given by

Ω = −T lnZ.

We want to express the thermodynamic quantities as a function of the
usual fermion and anti-fermion distributions:

di ≡
1

1 + e(Ei−νi)/T
d̄i ≡

1

1 + e(Ei+νi)/T
(2.52)

We have:

Ω =

[
− mG

2

2
αa0α

a
0 + bφ0

4 +
B2

8π

]
V

−T
∑
~k,s,n

{
ln
[
1 + e−(E

e
n−µe)/T

]
+ ln

[
1 + e−(E

e
n+µe)/T

]}

−T
d,s∑
f=u

∑
~k,s,n

{
ln
[
1 + e−(E

f
n−νf )/T

]
+ ln

[
1 + e−(E

f
n+νf )/T

]}
. (2.53)
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The pressure parallel to direction of the magnetic field is given by [33,
34, 35]

p‖ = −Ω

V

i.e.

p‖ =
mG

2

2
αa0α

a
0 − bφ0

4 − B2

8π

+
T

V

∑
~k,s,n

{
ln
[
1 + e−(E

e
n−µe)/T

]
+ ln

[
1 + e−(E

e
n+µe)/T

]}

+
d,s∑
f=u

T

V

∑
~k,s,n

{
ln
[
1 + e−(E

f
n−νf )/T

]
+ ln

[
1 + e−(E

f
n+νf )/T

]}
(2.54)

We must take a continuum limit on the sums over momentum. The Lan-
dau orbits are helices so their projection on the z plane is circular. According
to [36, 37, 38, 39] the discrete transverse momentum for the Landau levels is

k2⊥ = 2ν|Q|B

So an integral in momentum becomes

∫
d3k → |Q|B

(2π2)

∑
n

∫ ∞
−∞

dkz

Since our sums are also over spin we will have a degeneracy factor that
depends on the Landau level and our continuum limit is

1

V

∑
~k,s,n

−→ 1

(2π)3
∑
n

γi(n)
∫
d3k =

|Qi|B
(2π)2

∑
n

γi(n)
∫ ∞
−∞

dkz (2.55)

for the electron γe(n) = (2 − δn0) and for each quark f we have γf (n) =

3(2− δn0), where the factor "3" accounts for color, and the "2" for spin.
Applying all that to the parallel pressure we have

p‖ =
3gh

2

2NmG
2
ρ2 − bφ0

4 − B2

8π



2.6. Equation of State 31

−T |Qe|B
2π2

∑
n

(2− δn0)
∫ ∞
0

dkz

[
ln(1− de) + ln(1− d̄e)

]

−T
d,s∑
f=u

|Qf |B
2π2

∑
n

3(2− δn0)
∫ ∞
0

dkz

[
ln(1− df ) + ln(1− d̄f )

]
(2.56)

where we have also used equation (2.36) to find ρaρa = 3
N
ρ2 where ρ =

ρu + ρd + ρs and the gluon equation of motion (2.34) to express the pressure
as a function of the quark density. A final manipulation of the integrals will
give us the final expression:

p‖ =
3gh

2

2NmG
2
ρ2 − bφ0

4 − B2

8π
+
|Qe|B
2π2

∑
n

(2− δn0)
∫ ∞
0

dkz
kz

2

Een

(
de + d̄e

)

+
d,s∑
f=u

|Qf |B
2π2

∑
n

3(2− δn0)
∫ ∞
0

dkz
kz

2

Efn

(
df + d̄f

)
(2.57)

The next several thermodynamic quantities we will need are obtained
mostly by algebraic manipulation so most of the details will be omitted and
some will be dealt with in Appendix B. The magnetization is

M = − 1

V

∂Ω

∂B
.
=
∂p‖
∂B

so using (2.57) we have

M = − B
4π
− T |Qe|

2π2

∑
n
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∫ ∞
0

dkz

[
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]

−T
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|Qf |
2π2

∑
n
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0

dkz
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]

−|Qe|B
2π2

∑
n
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∫ ∞
0

dkz

[
de n|Qe|
Een

+
d̄e n|Qe|
Een

]

−
d,s∑
f=u

|Qf |B
2π2

∑
n

3(2− δn0)
∫ ∞
0

dkz

[
df n|Qf |
Efn

+
d̄f n|Qf |
Efn

]
(2.58)

The perpendicular pressure, p⊥, given by [33]



32 Chapter 2. Effective Lagrangian and Equation of State

p⊥ = p‖ −MB (2.59)

is:

p⊥ =
3gh

2

2NmG
2
ρ2−bφ0

4 +
B2

8π
+
|Qe|B2

2π2

∑
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∫ ∞
0

dkz

[
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+
d,s∑
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|Qf |B2

2π2
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3(2− δn0)
∫ ∞
0

dkz

[
df n|Qf |
Efn

+
d̄f n|Qf |
Efn

]
(2.60)

The quark density is ρ =
∂p‖
∂µf

, so

ρ =
d,s∑
f=u

|Qf |B
2π2

∑
n

3(2− δn0)
∫ ∞
0

dkz
(
df − d̄f

)
(2.61)

The entropy s =
∂p‖
∂T

, i.e.

s = −|Qe|B
2π2

∑
n

(2− δn0)
∫ ∞
0

dkz

{
de ln(de) + (1− de) ln(1− de)

+d̄e ln(d̄e) + (1− d̄e) ln(1− d̄e)
}

−
d,s∑
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|Qf |B
2π2

∑
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3(2− δn0)
∫ ∞
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dkz

{
df ln(df ) + (1− df ) ln(1− df )

+d̄f ln(d̄f ) + (1− d̄f ) ln(1− d̄f )
}

(2.62)

and finally the energy is calculated with the Gibbs relation

ε = −p‖ + Ts+ µeρe +
∑
f

µfρf

which too requires algebraic manipulation and results in

ε =
3gh

2

2NmG
2
ρ2 + bφ0

4 +
B2

8π
+
|Qe|B
2π2

∑
n

(2− δn0)
∫ ∞
0

dkz Een(de + d̄e)
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+
d,s∑
f=u

|Qf |B
2π2

∑
n

3(2− δn0)
∫ ∞
0

dkz Efn (df + d̄f ) (2.63)

Zero Temperature Limit

Here, we treat the interesting case of zero temperature, which was exten-
sively discussed [40, 36, 37, 38, 39].

The main feature of this limit is that the distribution functions become

di = Θ(νi − E in) and d̄i = 0 (2.64)

and also that [40]:

lim
T→0

T ln
(
1− di

)
= (E in − νi) and lim

T→0
T ln

(
1− d̄i

)
= 0 (2.65)

The quark density will thus become

ρ =
d,s∑
f=u

|Qf |B
(2π)2

nfmax∑
n=0

3(2− δn0)
∫ ∞
−∞

dkz Θ(νf − Efn )
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|Qf |B
2π2
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0
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d,s∑
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|Qf |B
2π2
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n=0

3(2− δn0) kfz,F (n)

(2.66)
The distributions (2.64) imply that

√
m2
f + kfz,F

2
+ 2n|Qf |B = νf =⇒ kfz,F =

√
νf 2 −m2

f − 2n|Qf |B

which implies a maximum Landau number. Given that the momentum
must be positive

n ≤ nfmax =
νf

2 −m2
f

2|Qf |B
. (2.67)

and the same goes for the electrons

ρe =
|Qe|B
2π2

nemax∑
n=0

(2− δn0) kez,F (n) (2.68)
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kez,F =
√
µe2 −m2

e − 2n|Qe|B (2.69)

n ≤ nemax =
µe

2 −m2
e

2|Qe|B
(2.70)

Finally the energy and pressures will be

ε =
3gh

2

2NmG
2
ρ2+bφ0
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(2.72)

Defining the perpendicular pressure as 2.59 we have:

p⊥ =
3gh

2

2NmG
2
ρ2−bφ0

4+
B2

8π
+
|Qe|2B2

2π2

nemax∑
n=0

(2−δn0)n
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m2
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f + k2z + 2n|Qf |B

(2.73)

These equations for pressure, entropy and energy are what define the
EOS. In the following chapter we will apply this EOS to the study of quark
stars.
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Chapter 3

Stellar Structure with a Magnetic
Equation Of State

One of the possible applications of the equations of state described in Chap-
ter 2 is the study of the structure of compact stars. In 1939 both Tolman,
Oppenheimer and Volkoff derived a differential equation based only on Ein-
stein gravitational theory for the structure of compact astrophysical objects.
The final equation receives as an input the EOS in the form ε = ε(p) and
returns a curve on the Mass×Radius plane describing possible stars with
those values of mass and radius. The derivation is presented in Appendix
A.

The TOV equations read:

dP (r)

dr
= − 1

r2
(ε(r) + P (r))

(
M(r) + 4πr3P (r)

)(
1− 2M(r)

r

)−1
(3.1)

where G, the gravitational constant and c, the speed of light, are both set to
1, and the mass is given by the continuity equation.

dM(r)

dr
= 4πr2ε(r). (3.2)

The two main assumptions taken on deriving this equation, as shown in
the Appendix A, are isotropy and spherical symmetry. None of those two
characteristics are present in our equations of state, particularly in (2.71,2.72,2.73)
the presence of a constant magnetic field in the ẑ direction breaks explicitly
both the isotropy and the spherical symmetry. However, as we can see in
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figure 3.1 the difference between the parallel and perpendicular pressures
is roughly zero until a certain critical point where it starts to grow very fast.
Given this behavior we decided [1] to utilize the TOV equations (Tolman-
Oppenheimer-Volkof) and to present our results and predictions for the stel-
lar structure using both the parallel and perpendicular pressure respectively
as an inner and outer limit. That assumption is well explained in figure 3.2.
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FIGURE 3.1: The splitting between the paralell and perpen-
dicular pressures for mQCD and for the MIT bag model as a

function of the magnetic field, where ξ .
= gh/mG

The difference between both results is evaluated as a theoretical error on
the Mass×Radius diagram. As we will show, the maximum magnetic field
for this approach to be valid is 5 × 1017G. For fields higher than this value
the difference between the parallel and perpendicular pressures is much too
large and grows quickly with increasing magnetic fields, see Figure 3.1

Also, note that in figure 3.1 the mQCD EOS is always stiffer than the MIT
bag model (the MIT bag model and mQCD coincide for ξ .

= gh/mG = 0, see
equations 2.71,2.72,2.73). The pressures of both EOSs split in exactly the
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Outer 
Spherical Limit

Deformed Star 
Shape

Inner 
Spherical Limit

FIGURE 3.2: Inner and Outer spherical limits

same point, therefore, everything that can be said of the mQCD EOS re-
garding the applicability of the TOV can also be said of the MIT bag model.
That makes it very easy to compare both equations of state.

3.1 Stability Conditions

As already discussed in the introduction, in order to apply the model to
the study of compact stars we have to make sure some conditions hold. A
realistic model of a compact stars would have to conserve the baryonic den-
sity, be neutrally charged, allow beta decay to be in chemical equilibrium
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and make sure that the physical parameters are set to values for which the
plasma would not hadronize.

Here we model only pure quark stars but it is possible to model neutron
stars as a hybrid system where its core is made of a cold QGP and its outer
layer is made of hadrons. For some studies on hybrid stars see [41, 42, 43].

As explained in the Introduction, the weak processes involving quarks

u+ e− → d+ νe (3.3)

u+ e− → s+ νe (3.4)

u+ s→ d+ u (3.5)

s→ u+ νe + ν̄e (3.6)

d→ u+ νe + ν̄e (3.7)

will impose the conditions

νd = νs = νu + µe. (3.8)

The conservation of baryonic density (ρB) and charge neutrality respec-
tively yield the conditions

3ρB = ρu + ρd + ρs (3.9)
2

3
ρu =

1

3
ρd +

1

3
ρs + ρe. (3.10)

At last we must impose, as demonstrated in [6], that the energy per bary-
onic number density be lower than the energy necessary for the system to
start producing hadrons on its reactions and that the energy per baryonic
density of the system with only two quark flavors (u and d) be higher than
the minimum energy required to unbind the quarks u and d. I.e. the lower
limit guarantees that the energy is enough to dissolve the nucleons and the
upper limit guarantees that the system will not react and produce hadrons.
Therefore, we make sure that the system is in a QGP state.

These restrictions translate to
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ε

ρB

∣∣∣∣
(3 -flavor)

≤ 934 MeV ≤ ε

ρB

∣∣∣∣
(2 -flavor)

(3.11)

Stability Window

Conditions 3.8 to 3.9 are just a matter of choosing the right set of values for
the chemical potentials. We need values for which the condition 3.8 and
also (once the densities are calculated using 2.66 and 2.68) the conditions
3.10 and 3.9 are satisfied.

Satisfying condition 3.11 is not that simple. Once the chemical potentials
and densities are set, the energy will have to be inside this stability interval.
The energy is

ε =
3gh

2

2NmG
2
ρ2+bφ0

4+
B2

8π
+
|Qe|B
2π2

nemax∑
n=0

(2−δn0)
∫ kez,F

0
dkz

√
m2
e + k2z + 2n|Qe|B

+
d,s∑
f=u

|Qf |B
2π2

nfmax∑
n=0

3(2− δn0)
∫ kfz,F

0
dkz

√
m2
f + k2z + 2n|Qf |B

which for simplicity we will call

ε =
3ξ2

2N
ρ2 +BQCD +

B2

8π
+ Ifermions

Where Ifermions denotes the integrals involving fermions, we identify the
4-dimensional gluon condensate as a Bag-like term bφ0

4 → BQCD, and re-
name ξ = gh

mG
.

In this form we see that once the chemical potentials are fixed, so are the
densities and two parameters remain to be chosen. The so called BQCD and
ξ. Using conditions 3.11 we find a domain where these values are such that
a strange star is stable. This is what we will call stability sindow (see, for
instance, figure 3.3).

In [1], we chose some particular values of densities, relative to the nu-
clear density, ρB

ρ0
and plotted two of this windows in figure 3.3 always using

quark masses as mu = 5 MeV,md = 7 MeV,and ms = 150 MeV.
Therefore, in order to have a stable set of parameters for the star we must

choose BQCD and ξ inside the region delimited by these curves. However,
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FIGURE 3.3: Stability windows defined by the conditions (1.3)
to (1.4).

finding the window for the other parameters of the system, such as the den-
sity and the magnetic field, is hardly as simple. Eventually a certain set
of parameters will render the window completely negative and therefore
totally excluding the possibility of a stable star.

On figure 3.4 we show separately the regions where it is possible to find
chemically balanced stars (light shaded), the region where the stability win-
dow still presents positive solutions for a pair (BQCD, ξ), i.e. 3.7 < ρB/ρ0 <

1.5, and their intersection is the region where we can find perfectly stable
quark stars (dark shaded). This figure is exactly the same for the MIT bag
model EOS (with minor differences of negligible orders of magnitude) and
so is all of this study regarding the stability.

In what follows, all values were chosen inside the intersection region.
Note also that this part of the study, regarding the stability, does not

concern the functional form of the parallel and perpendicular pressures.
Although we have restrained our study to stars with magnetic fields lower
than 5×1017G and therefore we did not perform any simulations with larger
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FIGURE 3.4: Stability diagram: baryon density ratio as func-
tion of the magnetic field. The points in the light gray area
satisfy the conditions (1.3), (1.1) and (3.9). Points in the dark

gray area satisfy also the condition (1.4).

values, the study regarding their stability is valid for every value of the mag-
netic field. The prediction that we will not find any stable stars with fields
higher than 5× 1018G is perfectly valid.

3.2 Mass-Radius Results

As interesting as it can be investigating the darker corners of the stability
conditions for the star, we are mainly interested in the consequences of this
particular EOS to the structure of these stars.

We solved numerically the TOV equations, using only stable parameters,
and using pressure and energy given by the two EOSs, the MIT bag model
and mQCD. That allows us to obtain the Mass×Radius diagrams for the
models and see if they match the available experimental data.
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Integrating the TOV equations from inside to outside, the initial condi-
tions for the center of the star (r = 0) are always given by M(r = 0) = 0,
P (r = 0) = p where p is the calculated pressure using the appropriate EOS
and ε(r = 0) = ε where ε is also calculated using the EOS.

We then stop the integration when the pressure reaches zero, indicating
the surface of the star. The total mass and the radius R where P (R) = 0 are
respectively the mass and radius of the star. That calculation gives us one
single value of mass and one single value of radius. However, in order to
chech if the result is reliable, we perform the same procedure for an interval
of several values of pressure centered in p, i.e. we solve for every pressure
in [p− δ, p+ δ]. If the solution presents the usual spirally curved shape (see
figure 1.7 for SQM) that means that the solution is stable (or more specif-
ically, its fundamental radial mode of oscillation is stable, see [7]) and the
maximum mass of this curve is the mass limit for a star with these parame-
ters.

The Figure 3.5 shows the different Mass×Radius diagrams for mQCD
and the MIT bag model with magnetic field values of zero and 5 × 1016G.
Up to this values of magnetic fields the equations of state of quark matter
suffer little or no change. They are insensitive to fields lower than this value.

However, we can see that mQCD already presents higher values of al-
lowed masses.

Nonetheless, in Figures 3.6(a) and 3.6(b) the influence of the magnetic
field is much more pronounced. We can see the behavior of the system with
the mQCD parameters, the ξ and BQCD.

Increasing BQCD, which is an external pressure that the star feels from
the vacuum, always diminishes the maximum values of mass and radius.
Increasing ξ, however, increases the strength of the EOS and therefore yields
larger values of mass and radius.

Finally, we do this for several values of magnetic field and plot the max-
imum mass as a function of the magnetic field in figure 3.7. Limiting our
analysis to fields of 5 × 1017G we see that the difference between the up-
per and lower limit results are of around 10% of the value without magnetic
field. Therefore, we conclude that up to that value of magnetic field the TOV
equation can be used as a simplistic approximation if we take into account
this theoretical error.
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FIGURE 3.5: Mass-radius diagrams. Two values of the mag-
netic fields with BQCD and ξ allowed by the stability condi-
tions at central density ρB = 2.6 ρ0. The largest masses are
2.05 (mQCD) and 1.89 (MIT). In these cases p‖ = p⊥ which

permits the use of TOV.

We also see that, as expected, the mQCD EOS is always stiffer than the
MIT bag model and yields larger masses.
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FIGURE 3.6: Mass-radius diagram for a fixed value of the mag-
netic field and baryon density with.

(a) Fixing ξ and varying BQCD: For BQCD = 53MeV/fm3 the
higher masses are 2.22 and 2.04 (dotted lines). Whereas for
BQCD = 61MeV/fm3 masses are of up to 2.06 and 1.93 (solid

lines).
(b) Fixing BQCD and varying ξ: For ξ = 0.0015MeV −1 the
largest masses are 2.20 and 2.06(dotted lines). Whereas for
MIT (ξ = 0MeV −1) the largest masses are 2.08 and 1.92 (solid

lines).
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FIGURE 3.7: Effects of the splitting of parallel and perpendic-
ular pressures on the maximum masses calculated with the
chemical potentials obeying the stability conditions (1.3), (1.1)
and (3.9)), given by νu = 300MeV , νd = νs = 316.5MeV and

µe = 16.5MeV .





47

Chapter 4

Conclusion

In Chapter 2 we have derived a new form of the mQCD EOS for very high
densities and low temperatures, where the quark matter suposed to exist in-
side neutron stars is described, directly from the QCD Lagrangian including
the influence of the magnetic field. Having performed those calculations
with these approximations, we were able to recover the MIT bag model
as a theoretical limit when ξ → 0 (and also the Stefan-Boltzman limit for
BQCD = ξ → 0).

Furthermore, we performed simulations and determine that this EOS is
compatible with the experimental results given in [10, 9]. Stars with mag-
netic fields ofB = 5×1017G can support masses of up to 2.22M� and 2.20M�

for different stable values of ξ and BQCD and radius of 12km at most which
is compatible with theoretical expectations.

Regarding the stability of the star we determine well defined values and
ranges of parameters guaranteeing the chemical equilibrium and stability
for mQCD and for the MIT bag model. We have also observed that by in-
creasing the magnitude of the magnetic field the stability window starts to
shrink and vanishes completely at B = 5 × 1018G. Since this calculation is
exactly the same for the MIT bag model we have determined that for both
EOSs, no stable star of pure quark matter can exist with such values of mag-
netic field. The same goes for any EOS that has the same expression for
densities and that has values of energy density comparable to those of the
MIT bag model. The functional form of parallel and perpendicular pres-
sures changes nothing to this result.

We calculated the Mass×Radius diagrams for a range of values of mag-
netic fields (figure 3.7). In this particular model the different mass curves,
one calculated with the parallel pressure and the other with perpendicular
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pressure, start to split around B = 1017G and this difference increases up to
the value that we decide that this approximation starts to lose its validity,
B = 5× 1017G, where the difference between the curves is 10% of the value
without magnetic field, where they agree completely. The same goes for the
MIT bag model.

Although it is still unclear what is the full effect of the magnetic field, one
thing can be said for sure, the reliability of every study made with this type
of models for strange quark matter that did not account for the influence of
the magnetic field is now possible to estimate. For fields below the threshold
of our study B < 1018G the theoretical error is of 10% at most.

Summarizing: the presented equations of state are completely insensi-
tive to low values of the magnetic field, B < 1016G. For fields with mag-
nitude such that 1016G < B < 5 × 1017G the theoretical error is estimated
to be 10% at most. The inclusion of the magnetic field, in the mQCD, does
not change the fact that the model is compatible with recent experimental
observations of pulsar masses, i.e. MMAX > 2.22M� for every calculation.
And no stable strange star can be found, both in chemical equilibrium and
fulfilling the condition 3.11 of stability, with fields larger thanB ≈ 5×1018G,
assuming the uniform magnetic field.
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Appendix A

Derivation of the TOV equation

To model a compact star with General Relativity (GR) we have to make
some theoretical assumptions. Here we assume that the star is spherically
symmetrical, isotropic, and composed of an ideal fluid. Those are all suf-
ficiently reasonable approximations to model neutron stars. Of course that
if one wishes to account for the deforming effects of rotation and magnetic
field one will have to perform much more delicate calculations leading to a
more realistic mode.

Assuming that the system is spherically symmetric, the metric of space-
time is the usual Schwarzschild metric (with c = G = 1):

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin θdφ2 (A.1)

Where ν and λ are metric functions to be determined.
And assuming also that the system is composed of an isotropic pres-

sured ideal fluid, i.e.

T 00 = ε(r) (A.2)

and

T ij = −P (r)δij (A.3)

where ε is the energy density and P is the pressure.
We now solve the Einstein field equations:
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8πT µν = Gµν whereGµν ≡ Rµν− 1
2
Rgµν (A.4)

From the Schwarzschild metric we can determine the Ricci tensor Rµν

and the metric elements gµν .
Considering the first element of the equation we have:

8πε(r)eν(r) =
eν(r)

r2

(
1− d

dr
re−λ(r)

)
(A.5)

Which integrated gives

e−λ(r) = 1− 2M(r)

r
(A.6)

And therefore determines the first metric function as a function of a
physical parameter, the mass.

Now consider, for instance, the element (1,1):

−8πP (r)eλ(r) =
−rν̇(r) + eλ(r) − 1

r2
(A.7)

which using equation A.6 simplifies to

dν(r)

dr
=

1

r

(
2M(r)

r
+ 8πr2P (r)

)(
1− 2M(r)

r

)−1
(A.8)

Using the continuity equation ∇µT
µ
ν = 0, a static and isotropic system

(vanishing all time and angular derivatives of ε and P ) we have

∇µT
µ
1 = −dP (r)

dr
− 1

2
(P + ε)

dν(r)

dr
= 0 (A.9)
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Putting equations A.8 and A.9 together we have the so called Tolman-
Oppenheimer-Volkof equations (TOV)

dP (r)

dr
= − 1

r2
(ε(r) + P (r))

(
M(r) + 4πr3P (r)

)(
1− 2M(r)

r

)−1
(A.10)

And the mass is given by the continuity equation

dM(r)

dr
= 4πr2ε(r). (A.11)
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Appendix B

Finite Temperature Fermion Field

In finite temperature we will have both particles and antiparticles due to
Fermi’s Sea. The calculations below are done as on the references [40, 31,
36].

We start by the definition of the partition function:

Z = Tr
{
exp

[
− (Ĥ − µeN̂e −

d,s∑
f=u

µfN̂f

)
/T
]}

(B.1)

in which Ĥ is the Hamiltonian and the N̂type operators are the number
operators for a certain particle type.

Opening the partition function:

Z = Tr
{
exp

[
− (Ĥ − µeN̂e −

d,s∑
f=u

µfN̂f

)
/T
]}

=

∑
n1,n2,...,n∞

〈n1, n2, . . . , n∞
∣∣∣exp[− (Ĥ − µeN̂e −

d,s∑
f=u

µfN̂f

)
/T
]∣∣∣n1, n2, . . . , n∞〉

(B.2)
Since the states are eigenstates of this operators we can just use their

eigenvalues

Z =
∑

n1,n2,...,n∞

〈n1, n2, . . . , n∞
∣∣∣exp[(− ∞∑

i=1

Eini + µe
∞∑
i=1

ni

+
d,s∑
f=u

µf
∞∑
i=1

ni
)
/T
]∣∣∣n1, n2, . . . , n∞〉

=
∑
n1

〈n1

∣∣∣exp[(− E1n1 + µen1 +
d,s∑
f=u

µfn1

)
/T
]∣∣∣n1〉×
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×
∑
n2

〈n2

∣∣∣exp[(− E2n2 + µen2 +
d,s∑
f=u

µfn2

)
/T
]∣∣∣n2〉 . . .

. . .
∑
n∞

〈n∞
∣∣∣exp[(− E∞n∞ + µen∞ +

d,s∑
f=u

µfn∞
)
/T
]∣∣∣n∞〉

=
∞∏
i=1

Tri

{
exp

[
(µe +

d,s∑
f=u

µf − Ei)ni/T
]}

(B.3)

Fermionic fields can have only the occupation numbers 0 and 1 as a con-
sequence of the anti-commutation relations, therefore

Z =
∞∏
i=1

1∑
n=0

{
exp

[
(µe +

d,s∑
f=u

µf − Ei)n/T
]}

=
∞∏
i=1

{
1 + exp

[
(µe +

d,s∑
f=u

µf − Ei)/T
]}

(B.4)

To go on we must calculate
N̂e, N̂f and Ĥ . Starting with N̂e:

N̂e = N̂e − 〈0|N̂e|0〉 (B.5)

where:
〈0|(expression with operators)|0〉 ≡

≡ 〈0|(terms containing operators of the expression)|0〉

as in [40]. Analogously for the quarks :

N̂f = N̂f − 〈0|N̂f |0〉 (B.6)

where f = u, d, s. The hamiltonian Ĥ is:

Ĥ = Ĥ − 〈0|Ĥ|0〉 (B.7)

In (B.5), (B.6) e (B.7) we have to compute the principal operators:

N̂e =
∫
d3x ψ̄eγ0ψe (B.8)
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N̂f =
∫
d3x ψ̄fγ0ψf (B.9)

and

Ĥ =
∫
d3x

{ d,s∑
f=u

∂L0

∂(∂0ψf )
(∂0ψf ) +

∂L0

∂(∂0ψe)
(∂0ψe)− g00L0

}
(B.10)

The fermionic fields in terms of operators are the following. For quarks:

ψfi = ci
1√
V

∑
~k,s,n

[
Af~k,s,n U

f (~k, s, n) ei
~k·~x−iEf(+)

n t

+B† f~k,s,n V
f (~k, s, n) e−i

~k·~x−iEf(−)
n t

]
(B.11)

where ci are the color matrices. For electrons:

ψe =
1√
V

∑
~k,s,n

[
Ae~k,s,n U

e(~k, s, n) ei
~k·~x−iEe(+)

n t

+B† e~k,s,n V
e(~k, s, n) e−i

~k·~x−iEe(−)
n t

]
(B.12)

where the spinors satisfy:

U †i(~k′ , s′, n′)U i(~k, s, n) = V†i(~k′ , s′, n′)V i(~k, s, n) = δ~k′~kδs′sδn′n (B.13)

and
U †i(~k′ , s′, n′)V i(~k, s, n) = V†i(~k′ , s′, n′)U i(~k, s, n) = 0 (B.14)

The creation annihilation operators:

{Ai, A†i} = {Bi, B†
i} = 1 (B.15)

and also
{Ai, Bi} = {A†i, B†i} = 0 (B.16)

From (B.13) to (B.16) we have i = e and i = f = u, d, s .
Substituting (B.12) and (B.14) in (B.8) we get:

N̂e =
1

V

∫
d3x

∑
~k′ ,s′,n′

∑
~k,s,n

{
A† e~k′ ,s′,n′U

† e(~k
′
, s′, n′)Ae~k,s,nU

e(~k, s, n)e−i(
~k
′−~k)·~x×



56 Appendix B. Finite Temperature Fermion Field

ei(E
e(+)

n′ −E
e(+)
n )t +Be

~k′ ,s′,n′
V† e(~k′ , s′, n′)B† e~k,s,nV

e(~k, s, n)ei(
~k
′−~k)·~xei(E

e(−)

n′ −E
e(−)
n )t

}
and using (B.13) we find:

N̂e =
1

V

∫
d3x

∑
~k,s,n

{
A† e~k,s,nA

e
~k,s,n

+Be
~k,s,n

B† e~k,s,n

}
(B.17)

Applying normal ordering to the operators of antiparticles, i.e., using
(B.15) in (B.17):

N̂e =
1

V

∫
d3x

∑
~k,s,n

{
A† e~k,s,nA

e
~k,s,n
−B† e~k,s,nB

e
~k,s,n

+ 1
}

(B.18)

Calculating (B.5) using (B.18) we have:

N̂e =
1

V

∫
d3x

∑
~k,s,n

{
A† e~k,s,nA

e
~k,s,n
−B† e~k,s,nB

e
~k,s,n

}
+

1

V

∫
d3x

∑
~k,s,n

1

−〈0| 1
V

∫
d3x

∑
~k,s,n

A† e~k,s,nA
e
~k,s,n
|0〉+ 〈0| 1

V

∫
d3x

∑
~k,s,n

B† e~k,s,nB
e
~k,s,n
|0〉

−〈0| 1
V

∫
d3x

∑
~k,s,n

1|0〉 (B.19)

resulting in:

N̂e =
1

V

∫
d3x

∑
~k,s,n

{
A† e~k,s,nA

e
~k,s,n
−B† e~k,s,nB

e
~k,s,n

}
(B.20)

Analogously for the quarks, effecting the sum in i and j:

c†iδijcj = c†1c1 + c†2c2 + c†3c3 = 3 (B.21)

But here we will make this as an average and return the color contributions
in the degeneracy factor in the end, its equivalent.

c†iδijcj →
c†iδijcj

(number of quark colors)
=
c†1c1 + c†2c2 + c†3c3

3
= 1 (B.22)
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So we found (B.6) in the form:

N̂f =
1

V

∫
d3x

∑
~k,s,n

{
A† f~k,s,nA

f
~k,s,n
−B† f~k,s,nB

f
~k,s,n

}
(B.23)

Before calculating the Hamiltonian from (B.7) and (B.10), we need some
results. Doing ψ̄f×(2.32) with (B.11) and (B.14) we get:

1

V

∑
~k,s,n,~k′ ,s′,n′

{
A† f~k′ ,s′,n′ U

† f (~k
′
, s′, n′) e−i

~k
′ ·~x+iEf(+)

n′ t

+Bf
~k′ ,s′,n′ V

† f (~k
′
, s′, n′) ei

~k
′ ·~x+iEf(−)

n′ t
}
c†i
[
iδij∂0 + iδij~α · ~∇+ ghT

a
ijα

a
0

−δijγ0(mf +Qfγ
µAµ)

]
cj

{
Af~k,s,n U

f (~k, s, n) ei
~k·~x−iEf(+)

n t

+B† f~k,s,n V
f (~k, s, n) e−i

~k·~x−iEf(−)
n t

}
= 0

therefore:

1

V

∑
~k,s,n,~k′ ,s′,n′

c†i
[
iδij(−iEf(+)

n ) + iδij~α · (i~k) + ghT
a
ijα

a
0 − δijγ0(mf +Qfγ

µAµ)
]
cj

{
A† f~k′ ,s′,n′U

† f (~k
′
, s′, n′)Af~k,s,nU

f (~k, s, n) e−i(
~k
′−~k)·~x+i[Ef(+)

n′ −E
f(+)
n ]t

}

+
1

V

∑
~k,s,n,~k′ ,s′,n′

c†i
[
iδij(−iEf(−)

n )+iδij~α·(−i~k)+ghT
a
ijα

a
0−δijγ0(mf +Qfγ

µAµ)
]
cj

{
Bf
~k′ ,s′,n′

V† f (~k′ , s′, n′)B† f~k,s,nV
f (~k, s, n) ei(

~k
′−~k)·~x+i[Ef(−)

n′ −E
f(−)
n ]t

}
= 0

and using (B.13) and (B.22) we find:

1

V

∑
~k,s,n

[
Ef(+)
n − ~α · ~k + ghA− γ0(mf +Qfγ

µAµ)
]
A† f~k,s,nA

f
~k,s,n

+
1

V

∑
~k,s,n

[
Ef(−)
n + ~α · ~k + ghA− γ0(mf +Qfγ

µAµ)
]
Bf
~k,s,n

B† f~k,s,n = 0 (B.24)

since c†iT aijcjαa0 = A
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From the expression (B.24) we get the energies:

Ef(+)
n + ghA = ~α · ~k + γ0(mf +Qfγ

µAµ) (B.25)

and
Ef(−)
n + ghA = −~α · ~k + γ0(mf +Qfγ

µAµ) (B.26)

Using (2.42) in (2.45) we find:

Ẽf(±)
n ≡ Ef(±)

n + ghA = ±
√
m2
f + k2z + 2n|Qf |B (B.27)

Comparing (B.25) and (B.26) with (B.27):

~α · ~k + γ0(mf +Qfγ
µAµ) −→

√
m2
f + k2z + 2n|Qf |B (B.28)

~α · ~k − γ0(mf +Qfγ
µAµ) −→

√
m2
f + k2z + 2n|Qf |B (B.29)

And the same goes for the electrons, without the average on colour factors
and interaction with gluon terms. This is:

~α · ~k + γ0(me +Qeγ
µAµ) −→

√
m2
e + k2z + 2n|Qe|B (B.30)

~α · ~k − γ0(me +Qeγ
µAµ) −→

√
m2
e + k2z + 2n|Qe|B (B.31)

Proceeding with (B.10), we have:

Ĥ =
∫
d3x

{ d,s∑
f=u

i ψ†i
f
δij(∂0ψ

f
j ) + i ψ†i

e
δij(∂0ψ

e
j )

}

+
∫
d3x

{
− mG

2

2
αa0α

a
0 + bφ0

4 +
B2

8π

}

+
∫
d3x

{
− ψ̄ei

[
iγµ(δij∂µ + iδijQeAµ)− δijme

]
ψej

}

+
∫
d3x

{
−

d,s∑
f=u

ψ̄fi
{
iγµ

[
δij∂µ + iδijQfAµ

]
+ ghγ

0T aijα
a
0 − δijmf

}
ψfj

}
(B.32)
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Note that naturally the temporal derivative terms of the fermions are can-
celled and (B.32) is now:

Ĥ =
∫
d3x

{
− mG

2

2
αa0α

a
0 + bφ0

4 +
B2

8π

}

+
∫
d3x

{
− ψ†i

e[
iδij(~α · ~∇)− γ0δij(me +Qeγ

µAµ)
]
ψej

}

+
∫
d3x

{
−

d,s∑
f=u

ψ†i
f[
iδij(~α · ~∇)− γ0δij(mf +Qfγ

µAµ)
]
ψfj −

d,s∑
f=u

ghψ
†
i

f
T aijα

a
0ψ

f
j

}
(B.33)

Substituting (B.11), (B.12), (B.22) and the results (B.28) to (B.31) in (B.33),
we find:

Ĥ =
∫
d3x

{
− mG

2

2
αa0α

a
0 + bφ0

4 +
B2

8π

}

+
∫
d3x

{
1

V

∑
~k,s,n

√
m2
e + k2z + 2n|Qe|B

[
A† e~k,s,nA

e
~k,s,n
−Be

~k,s,n
B† e~k,s,n

]}

+
∫
d3x

{
1

V

d,s∑
f=u

∑
~k,s,n

√
m2
f + k2z + 2n|Qf |B

[
A† f~k,s,nA

f
~k,s,n
−Bf

~k,s,n
B† f~k,s,n

]}

−
∫
d3x

{
1

V

d,s∑
f=u

∑
~k,s,n

gh(c
†
iT

a
ijcj)α

a
0

[
A† f~k,s,nA

f
~k,s,n

+Bf
~k,s,n

B† f~k,s,n

]}
(B.34)

Again, normal ordering of (B.15) we get:

Ĥ =
∫
d3x

{
− mG

2

2
αa0α

a
0 + bφ0

4 +
B2

8π

}

+
∫
d3x

{
1

V

∑
~k,s,n

√
m2
e + k2z + 2n|Qe|B

[
A† e~k,s,nA

e
~k,s,n

+B† e~k,s,nB
e
~k,s,n

]}

−
∫
d3x

1

V

∑
~k,s,n

(√
m2
e + k2z + 2n|Qe|B

)
1

+
∫
d3x

{
1

V

d,s∑
f=u

∑
~k,s,n

√
m2
f + k2z + 2n|Qf |B

[
A† f~k,s,nA

f
~k,s,n

+B† f~k,s,nB
f
~k,s,n

]}

−
∫
d3x

1

V

d,s∑
f=u

∑
~k,s,n

(√
m2
f + k2z + 2n|Qf |B

)
1
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−
∫
d3x

{
1

V

d,s∑
f=u

∑
~k,s,n

gh(c
†
iT

a
ijcj)α

a
0

[
A† f~k,s,nA

f
~k,s,n
−B† f~k,s,nB

f
~k,s,n

]}

−
∫
d3x

1

V

d,s∑
f=u

∑
~k,s,n

[
gh(c

†
iT

a
ijcj)α

a
0

]
1 (B.35)

which is the operator described in (B.10). Now we can find the Hamiltonian
(B.7) using (B.35):

Ĥ = Ĥ − 〈0|Ĥ|0〉 =
∫
d3x

{
− mG

2

2
αa0α

a
0 + bφ0

4 +
B2

8π

}

+
∫
d3x

{
1

V

∑
~k,s,n

√
m2
e + k2z + 2n|Qe|B

[
A† e~k,s,nA

e
~k,s,n

+B† e~k,s,nB
e
~k,s,n

]}

−
∫
d3x

1

V

∑
~k,s,n

(√
m2
e + k2z + 2n|Qe|B

)
1

+
∫
d3x

{
1

V

d,s∑
f=u

∑
~k,s,n

√
m2
f + k2z + 2n|Qf |B

[
A† f~k,s,nA

f
~k,s,n

+B† f~k,s,nB
f
~k,s,n

]}

−
∫
d3x

1

V

d,s∑
f=u

∑
~k,s,n

(√
m2
f + k2z + 2n|Qf |B

)
1

−
∫
d3x

{
1

V

d,s∑
f=u

∑
~k,s,n

gh(c
†
iT

a
ijcj)α

a
0

[
A† f~k,s,nA

f
~k,s,n
−B† f~k,s,nB

f
~k,s,n

]}

−
∫
d3x

1

V

d,s∑
f=u

∑
~k,s,n

[
gh(c

†
iT

a
ijcj)α

a
0

]
1

−〈0|
∫
d3x

{
1

V

∑
~k,s,n

√
m2
e + k2z + 2n|Qe|B

[
A† e~k,s,nA

e
~k,s,n
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Which results in:
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Substituting (B.23) in the last term of (B.36) we arrive at:
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Now returning to the calculus of the partition function. Inserting (B.20),
(B.23) and (B.37) in (B.2) we get:
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and therefore:
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Following the steps in (B.3) we have (B.38):
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where
∑
ni =

∑
~k,s,n for the state

∣∣∣ni〉 to i = 1, 2, . . . ,∞. The number ni
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refers to the actuation of the operators A† j~k,s,nA
j
~k,s,n

and n∗i to the operators

B† j~k,s,nB
j
~k,s,n

for fermions j = e, u, d, s .
Carrying on the calculations that result in (B.4) for the fermions we rewrite

(B.39) as:
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(B.40)

where the energies are:

Een =
√
m2
e + k2z + 2n|Qe|B (B.41)

Efn =
√
m2
f + k2z + 2n|Qf |B (B.42)

and the quark f chemical potential is given by:

νf ≡ µf + gh(c
†
iT

a
ijcj)α

a
0 (B.43)
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