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We accept the reality of the world with which we’re presented. It’s as simple as that.
The Truman Show



Abstract

In this project, black holes in an environment of positive cosmological constant
will be investigated, emphasizing the thermodynamic characteristics of the system.
Specifically, we are interested in the Vaidya-de Sitter solution, which represents a
generalization of Schwarzschild-de Sitter with accretion or emission of radiation. A
thermodynamic analysis for both spacetimes will be conducted, where the formalism
proposed by Hayward et al. will be employed. For this reason, the Hayward black-hole
thermodynamics is going to be studied in details. This method is suitable for the
investigation of spherically symmetric dynamical geometries which possess trapping
horizons. Once the characterization of the relevant spacetimes is performed, the results
obtained will be applied in a model of a primordial black hole. A function for the mass
parameter is assumed and, then, it is measured how important thermodynamic quantities
evolve according to the cosmic time.

Keywords: black-hole thermodynamics, Hayward thermodynamics, Schwarzschild-
de Sitter spacetime, Vaidya-de Sitter spacetime, primordial black holes.



Resumo

Neste projeto, serão investigados buracos negros em um ambiente de constante
cosmológica positiva, enfatizando as características termodinâmicas do sistema. Es-
pecificamente, estamos interessados na solução de Vaidya-de Sitter, que representa
uma generalização de Schwarzschild-de Sitter com acreção ou emissão de radiação.
Será realizada uma análise termodinâmica para ambos os espaços-tempos, onde será
empregado o formalismo proposto por Hayward et al.. Por esse motivo, a termodinâmica
de Hayward para buracos negros será estudada em detalhes. Este método é adequado
para a investigação de geometrias dinâmicas e esfericamente simétricas que possuem
trapping horizons. Uma vez realizada a caracterização dos espaços-tempos de interesse,
os resultados obtidos serão aplicados em um modelo de um buraco negro primordial.
Uma função para o parâmetro de massa é assumida e, então, será acompanhado como
grandezas termodinâmicas importantes evoluem de acordo com o tempo cósmico.

Palavras-chave: termodinâmica de buracos negros, termodinâmica de Hayward,
espaço-tempo Schwarzschild-de Sitter, espaço-tempo Vaidya-de Sitter, buracos negros
primordiais.
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Chapter 1

Introduction

The proposal that black holes present a thermodynamic behavior was not an immediate
result but, instead, it was an idea developted during the 1970s. Along those years, laws
of black-hole mechanics in an apparent analogy to those from classical thermodynamics
were discovered. The first one to be derived is known as the Area Theorem (or the Second
Law) and was proved by S. Hawking in 1972. It showed that, under physically reasonable
assumptions, the area of the event horizon could not decrease [25]. The resemblance
with the second law of classical thermodynamics was pointed out by J. Bekenstein who
proposed that this area should measure, somehow, the entropy contained in the black hole
[7].

In 1974, J. Bardeen, B. Carter and S. Hawking presented the other three laws of black-
hole mechanics in [16] and their apparent similarity to the laws of classical thermodynam-
ics were mentioned. The missing connection that made possible the reinterpretation of
these laws as thermodynamic ones came when Hawking showed, one year latter, that a
black hole is evaporating as particles in a thermal spectrum are emitted from the event
horizon [26]. Then, the apparent result that a black hole has zero temperature is, in fact,
not true.

It is known that classical thermodynamics is a description of macroscopic effects caused
by a large set of interacting small particles. For instance, the entropy assigned for a ther-
modynamic system is directly related to the number of accessible states for the constituent
particles. Therefore, a lot of the interest behind the study of black-hole thermodynamics
is explained by the expectation that it is an effective theory of an unknown quantum
gravity theory and, hence, it could lead to the discovery of new physics.

The laws of the Bekenstein-Hawking black-hole thermodynamics developted during
the 1970s are remarkable results. On the other hand, one of its limitations is that it
is only applicable to stationary geometries. It was motivated to extend their work to
dynamical spacetimes that S. Hayward published in 1994 and 1998 the generalized laws
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of black-hole mechanics [28, 30].

Dynamical solutions in General Relativity usually behave in a distinctive way when
compared to the stationary ones. Some quantities that are defined for the latter geometries
are particular for time-symmetric and asymptotically flat spacetimes, therefore, they do
not exist in more general scenarios. Thus, one of S. Hayward’s challenges was to find the
right counterparts for objects in the Bekenstein-Hawking theory in order to develop his
generalized work. One of this changes is a key point in Hayward’s theory: the role of the
event horizon in the usual black-hole thermodynamics is now played by trapping horizons.
Unlike the usual definition for the boundary of a black-hole, trapping horizons are quasi-
local structures in the sense that can be defined based on the information available in
limited regions of the spacetime. Therefore, it is, in principle, possible to locate a black
hole given a finite set of observers.

Although Hayward’s work is limited to spherically symmetric spacetimes, it supports
solutions that are not time-symmetric. For instance, it can be used in order to study the
thermodynamics of a black hole rapidly evaporating via the Hawking Radiation. Other
scenarios in which the Hayward black-hole thermodynamics are useful are those where
there is a black hole immersed in a dynamical cosmological background. An important ex-
ample of such solution for the Einstein Equation is the Schwarzschild-de Sitter spacetime,
which considers a static and compact spherical object in an environment of accelerated
cosmic expansion. An even more interesting situation is when the black hole itself is
dynamical, evaporating and/or accreting radiation, in the same background. In this case,
the geometry is known as Vaidya-de Sitter.

There is one class of black holes that are subjected to the dynamics of the universe
since its early times. These primordial black holes, as they are called, are understood as
those who could have been formed before the first stars. They are hypothetical and their
existence have been considered since the the 1960s due to the works of I. Novikov and Y.
Zel’dovich [66] and, also, S. Hawking [24]. There are proposals in which primordial black
holes come in a large variety of mass intervals [13]. Those small enough would be under a
strong evaporation process and, therefore, Hayward’s work should be an adequate theory
in order to study their thermodynamics.

Although de Sitter is a possible asymptotic geometry for our universe in the far fu-
ture according to the FLRW cosmological model, treating the black hole in a de Sitter
background may lead to interesting results as it accounts for the expansion of the space-
time. Furthermore, considering the cosmological environment in which the black hole is
immersed could lead to a procedure that can be generalized to take into account the other
contents present in the universe.

In this work, we propose to study the Hayward black-hole thermodynamics and to
apply it to a dynamical black hole in a universe filled with a positive cosmological constant,
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that is, the Vaidya-de Sitter spacetime. This work is intended to be self-contained as much
as possible so that not only Hayward’s formalism and its application is presented in details
but also that it can be useful as a possible reference in the subject. In order for this goal
to be fully accomplished, the content of this work is divided in five chapters.

Chapter 2 (Geometry and General Relativity) is a brief collection of the main defi-
nitions and results of differential geometry and General Relativity. It is intended to be
written in the right balance between concise and clearness so that it can be useful as a
review for the mathematics and physical interpretations of Einstein’s theory. Next, in
Chapter 3 (Spherically symmetric solutions) we start to develop a groundwork for this
dissertation. Symmetries related to the intrinsic geometry of a spacetime are defined and
a special focus is given to the spherical one. This is justified by the fact that, as already
pointed out, it is only in spherical symmetric spacetimes that Hayward’s work is applica-
ble. Then, three geometries which represent limit cases for Vaidya-de Sitter are studied
separately. These are the de Sitter, Schwarzschild and Vaidya solutions.

It is in Chapter 4 (Black-hole thermodynamics) where the Bekenstein-Hawking and
the Hayward theories are presented. However, before each theory is properly discussed,
the characterization of horizons in General Relativity is given in details. Event and
trapping horizons are defined and their main distinctions pointed out. Then, the black-
hole thermodynamics are introduced starting, as it should be, with the one developted
during the 1970s. For both theories, the focus is given towards presenting and proving
the usual and the generalized laws of black-hole mechanics. How the transition for a true
thermodynamics is given via the Hawking Radiation is also discussed.

In Chapter 5 (Applications of the Hayward thermodynamics), it will be studied, for
the Schwarzschild-de Sitter and Vaidya-de Sitter geometries, the thermodynamics of the
trapping horizons either relative to the presence of a black hole or defining a cosmological
horizon due to the expansion of the spacetime. The relevant thermodynamic quantities
are calculated and interpreted for a general mass parameter and cosmological constant,
also, when possible, compared with their counterparts from the Bekenstein-Hawking the-
ory. It is derived that, given the definition for the energy of a black hole used in the
Hayward thermodynamics [29] (and assuming further conditions), no phase transition oc-
curs for these geometries. Another interesting result shown is that defining a total energy,
according to the same description, and a total entropy, the Hawking Radiation takes the
system to a state where these quantities are, respectively, minimized and maximized, as
it is expected for an isolated system in classical thermodynamics.

Once the thermodynamic characterization of these geometries is well understood, the
next goal is to apply the results in more concrete physical cases. This is what is done in
Chapter 6 (Primordial black holes), where the specific scenario chosen is the primordial
black holes. For that, we propose a simplified model for the dynamics of a black hole
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immersed in an environment of positive cosmological constant and study how it evolves
according to the cosmological time. Similarly to the work of W. Hiscock [35], the region
outside the black hole is taken as a Vaidya-de Sitter spacetime with massless particles
being emitted from its trapping horizon. One of the main challenges in this proposal is
to find how the dynamics in this model can be measured as a function of the time used
in cosmology, with respect to which the chronology of the universe is studied.

The physical constants c, G, kB and ~ are set equal to one unless otherwise stated.
The signature for the metric is (− + + +) and the tensor notation followed is the same as
the one used in [17].
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Chapter 2

Geometry and General Relativity

We intend with this chapter to present a collection of the main definitions in Differ-
ential Geometry and General Relativity in a direct but clear manner. The goals are to
make this work self-contained as much as possible and also that the reader can return
here whenever necessary to recall some definition. Section 2.1 treats of smooth manifolds,
which is the background structure of spacetimes, and tensor fields, that are coordinate
independent objects defined on the manifold used to express the laws of physics in Gen-
eral Relativity. In Section 2.2, it is added a metric tensor to the manifold so that it
becomes a spacetime. A way to differentiate tensors and some physical interpretations of
the spacetime are also discussed. Lastly, in Section 2.3 the curvature tensor is presented
as well as the Einstein Equation, which relates the curvature of the spacetime with its
energy-momentum content.

2.1 Manifolds and tensors

An n-dimensional smooth manifold (to be called just manifold) M is a topological
space such that for each point p ∈ M there is an open set Uα containing p and a home-
omorphism ϕα : Uα → Rn, such that the transition functions (change of coordinates)
ϕα ◦ϕ−1

β are diffeomorphisms. The combination (Uα, ϕα) is called a chart and ϕα a chart
function. This one can be seen as n real functions xµ : Uα → R called the coordinate
functions.

In General Relativity, the spacetime is taken as a smooth manifold. This assumption
assures that any function and curve defined on the geometry can be continuously differ-
entiated as many times as it is needed. It is also expected to hold at large enough scales
and to break down at quantum distances, in which the spacetime itself could be quantized
[33].

A map f : V ⊂ M → R is said to be a smooth function, C∞(M), if for any
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Uα ∩ V 6= 0, f ◦ ϕ−1
α : Rn → R is smooth. This definition of smooth functions on a

manifold transforms the chart functions into diffeomorphisms.

A vector field v on M is a map v : C∞(M) → C∞(M) which is linear and satisfies
the Leibniz law:

v(αf + βg) = αv(f) + βv(g),

v(fg) = v(f)g + fv(g),
(2.1)

where f, g ∈ C∞(M) and α, β ∈ R. The vector space of all vector fields on M is denoted
by TM and is called the vector bundle.

From this definition, partial derivatives ∂µ : C∞(Rn) → C∞(Rn) are vector fields on
Rn. It is an important theorem that partial derivatives form a basis [8] and, therefore,
any vector field on Rn can be written as a linear combination of them:

v = vµ∂µ, (2.2)

where vµ are smooth functions on Rn. Therefore, when working on a chart of the manifold,
that is, on an open set Oα ⊂ Rn such that ϕα(Uα) = Oα, we can use (2.2).

Given a point p ∈ M , a vector field gives a function vp : C∞(M) → R defined by
vp(f) =

[
v(f)

]
(p). The function vp is called a tangent vector at p and vector space of

all tangent vectors at this point is called the tangent space at p, TpM .

An 1-form θ is a map θ : TM → C∞(M), which is linear over smooth functions:

θ(fv + gw) = fθ(v) + gθ(w). (2.3)

An 1-form defines a covariant vector at each point through θp(vp) =
[
θ(v)

]
(p). The

vector space of 1-forms over M are denoted T ∗M and is called the cotangent bundle and
the vector field of cotangent vectors on a point p is denoted T ∗pM. As the 1-form is a
function of vector fields, we can invert the definition so that v : T ∗M → C∞(M) and
v(θ) = θ(v).

From the definition of 1-forms and defining the differential of f , df , by df(v) = v(f),
which is also an 1-form, the differentials dxµ : TRn → C∞(Rn) form a basis [8] and any
1-form on Rn can be written as

θ = θµdx
µ, (2.4)

where θµ ∈ C∞(Rn). Then, when working on the charts of a manifold, we can use (2.4).

Vector fields and 1-forms are special types of tensor fields. A (r, s) tensor bundle is the
tensor product of r copies of TM and s copies of T ∗M . An element of this tensor bundle
is called a tensor field of rank (r, s) and, by definition, scalar fields are (0, 0) tensors.

13



A tensor field T is, then, a C∞-multilinear function T :
⊗r T ∗M ⊗ ⊗s TM → C∞(M).

When working in a chart,

T = T µ1...µr
ν1...νs∂µ1 ⊗ ...⊗ ∂µr ⊗ dxν1 ⊗ ...⊗ dxνs , (2.5)

where T µ1...µr
ν1...νs ∈ C∞(Rn) are the components of T .

It is a principle in general relativity that the laws of physics should be written in
coordinate-invariant equations as there is no preferable coordinate system (observer) to
describe nature. This is known as General Covariance. Since tensors are independent of
a particular chart, they are appropriate objects to write equations in Einstein’s theory.

2.2 Semi-Riemannian geometry and spacetime

A semi-Riemannian metric (which will be called just metric) is a tensor field of
rank (0,2), that is, a C∞-bilinear map g : TM ⊗ TM → C∞ which is symmetric and
nondegenerate:

g(v, w) = g(w, v),

g(v, w) = 0 for all w =⇒ v = 0.
(2.6)

Given a metric, we can always a construct at each point of M an orthonormal basis
(also called as tetrad basis), {nµ}. If g(nα, nα) = 1 for p vectors in this basis and there
are q vectors such that g(nβ, nβ) = −1, then it is said that the signature of the metric is
(p, q).

A metric is added to the spacetime in order for observers to be able to compute
distances, time intervals and angles between vectors. Moreover, in Einstein’s theory the
spacetime is a 4-dimensional semi-Riemannian manifold, that is a manifold equipped with
a metric tensor of signature (3,1).

If g(v, v) > 0, then the tangent vectors of v (and v itself) are called spacelike.
If g(v, v) < 0, then they are called timelike. And if g(v, v) = 0, they are null. In
General Relativity particles can only travel along curves1 whose tangent vectors are all
timelike (or null for massless particles)2. These are called timelike (or null) curves and
similarly are defined the spacelike curves. The elapsed proper time τ of a timelike curve
γ(t) : [a, b] ⊂ R→M is

τ =

∫ a

b

√
−g(γ′, γ′)dt, (2.7)

1A curve is a map γ : U ⊂ R→M whose tangent vector is given by γ′(f) = d
dt (f ◦γ) for any smooth

function f.
2In Chapter 4, it will be seen how causal relations between events of a spacetime are determined by

the metric tensor.

14



which is the time measured by the clock of an observer following this curve on the space-
time.

The metric tensor also defines an isomorphism between TM and T ∗M :

g : v 7→ g(v, ), (2.8)

and, for that reason, we can define in a chart, unambiguously, vµ ≡ gµνv
ν . This procedure

is called lowering the index (similarly, we can define the raising of an index with the inverse
of the metric tensor, gµν).

A connection D on a manifold is a map

D :
r⊗
T ∗M ⊗

s+1⊗
TM −→

r⊗
T ∗M ⊗

s⊗
TM (2.9)

satisfying, by definition,

Dv(T1 + T2) = DvT1 +DvT2,

Dv(fT ) = v(f)T + fDvT,

Dfv1+v2T = fDv1T +Dv2T,

Dv(T1 ⊗ T2) = Dv(T1)⊗ T2 + T1 ⊗Dv(T2),

C(DvT ) = Dv

[
C(T )

]
,

(2.10)

where v, v1, v2 ∈ TM , f ∈ C∞(M) and C(T ) is the contraction of (sum over) a covariant
and a contravariant index. Notice that the connection is only C∞-linear in its argument
that has v (or v1 + v2) as its input and, therefore, D could not be turned into a tensor.

For a manifold representing spacetime, there is a preferable type of connection, usually
denoted ∇, known as the Levi-Civita connection, which is metric compatible and
torsion free. That is

u
[
g(v, w)

]
= g(∇uv, w) + g(v,∇uw),

[v, w] = ∇vw −∇wv,
(2.11)

where v, w, u ∈ TM .

These properties together imply that, when working on a chart, the action of ∇v on
the bases {∂µ} and {dxµ} is uniquely given by

∇v∂µ = vνΓσνµ∂σ,

∇vdx
µ = −vνΓµνσdxσ,

(2.12)
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where we have Christoffel symbols

Γσνµ =
1

2
gσρ(∂νgµρ + ∂µgνρ − ∂ρgνµ). (2.13)

Since the action of ∇ is determined by how it acts on the basis, we conclude that the
Levi-Civita connection is unique. For instance, if T is of rank (1,1) the components of
∇µT ≡ ∇∂µT are

(
∇σT

)µ
ν
≡ ∇σT

µ
ν = ∂σT

µ
ν + ΓµσρT

ρ
ν − ΓρσνT

µ
ρ . (2.14)

Although a connection is not itself a tensor field, given a tensor T of rank (r, s), we
can define a tensor field of rank (r, s + 1), called the covariant derivative of T . In a
chart, this is given by

∇T = dxµ ⊗∇µT. (2.15)

We know how this tensor acts since the components of ∇µT are uniquely defined due to
the previous discussion. Moreover, as it is apparent in (2.14), the covariant derivative of T
on the direction of v, that is, ∇vT , is a generalization of the usual directional derivative for
a semi-Riemannian manifold in an arbitrary coordinate system (the Christoffel symbols
are needed to tell how the basis changes from point to point).

Given a curve γ : R→M , it is said that a tensor is parallel transported along γ if

∇γ′T = 0. (2.16)

One important class of curves are the geodesics, which are the ones whose tangent vectors
are parallel transported along their integral curves3:

∇γ′γ
′ = 0. (2.17)

The geodesic equation is given in a chart by

d2γµ

dt2
+ Γµνλ

dγν

dt

dγλ

dt
= 0, (2.18)

where γµ ≡ xµ◦γ. Geodesics are the analogous of straight lines for curved geometries and
in General Relativity they are the (timelike or null) paths followed by free-falling (that
is, unaccelerated) particles.

When working in a chart, the properties that define the Levi-Civita connection (2.11)

3Equation (2.17) is, actually, only true if γ(t) is affinely-parametrized. Other parametrizations
yield ∇γ′γ′ = αγ′, where α is a function on the curve.
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assume the form

∇ρgµν = 0,

Γρµν = Γρνµ,
(2.19)

from where the geometric interpretation about the metric compatibility is straightforward:
parallel transport preserves lengths and angles.

2.3 Curvature and the Einstein Equation

The curvature F of a connection D is a map F :
⊗3 TM → TM which is C∞-linear

in all its slots and defined by

F (v, w)u = DvDwu−DwDvu−D[v,w]u. (2.20)

If the connection is the Levi-Civita one, then it is called the Riemann curvature and
denoted by R. It can also be seen as a tensor of rank (1,3) F :

⊗3 TM ⊗T ∗M → C∞(M)

defined such that
R(θ, v, w, u) = θ

[
R(v, w)u

]
. (2.21)

And, for that reason, it is called the Riemann curvature tensor.

The components of the Riemann tensor, which, by definition

Rα
βγδ ≡ dxα

[
R(∂β, ∂γ)∂δ

]
, (2.22)

are calculated from the Christoffel symbols (which depend only on the metric tensor):

Rα
βγδ = ∂βΓαγδ − ∂γΓαβδ + ΓσγδΓ

α
βσ − ΓσβδΓ

α
γσ. (2.23)

Other tensors are obtained contracting the Riemann tensor:

Ricci tensor: Rβδ ≡ Rα
βαδ, (2.24)

Ricci scalar or curvature scalar: R ≡ Rα
α. (2.25)

The Einstein Equation relates the “matter” in the spacetime to the curvature it
produces:

Rµν −
1

2
Rgµν + Λgµν = 8πTµν , (2.26)

The validity of (2.26) has been proved by a large number of experiments until the
current days. Three of them, called the classical tests of General Relativity were proposed
by Einstein himself. These are the deflection of light as it passes near to a massive compact
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object, the precession of perihelia in Mercury’s orbit and the gravitational redshift [17].

Equation (2.26) can also be written as

Rµν = 8π

(
Tµν −

1

2
Tgµν

)
+ Λgµν . (2.27)

Tµν is the energy-momentum tensor (T ≡ T µµ), which is symmetric and corresponds
to the content present in the spacetime, and Λ is a scalar called the cosmological constant.

The tensor Gµν ≡ Rµν − 1
2
Rgµν is known as the Einstein tensor and it is symmetric

of zero divergence
∇µGµν = 0. (2.28)

From (2.26), the divergence of Tµν also vanishes and this is the local conservation of energy-
momentum of General Relativity. The physical (local) interpretation for the components
of the energy-momentum tensor are

T 00 = energy density,

T 0i = energy flux across a surface of constant spatial coordinate xi,

T i0 = density of momentum in the direction of ∂i,

T ij = flux of momentum in the direction of ∂i across a surface of

constant spatial coordinate xj.

(2.29)

These can be summarized as: T µν corresponds locally to the flux of energy-momentum in
the direction of ∂µ across a surface of constant xν . If there is a coordinate system (chart)
where T 0i = T i0 and T ij (for i 6= j) are equal to zero, then it is said, respectively, that
this fluid has no heat conduction and no viscosity. From the Einstein Equation, there are
only geometrical constraints on the possible fluids. Thus, in order to restrict the possible
energy-momentum tensors, it is usually imposed energy conditions which seem to be in
accordance to classical physics [17]. There are several of these constraints and we are not
going to present them here, instead, they will be cited along this work whenever any of
them is important.

From the Einstein Equation, a spacetime is characterized by its metric tensor in Gen-
eral Relativity. Then, two models for the spacetime are considered locally equivalent if
they are isometric in these regions (as defined in Section 3.1) and, for this reason, it
is said that the General Relativity is an isometric invariant theory. Furthermore, it is
only physically important to consider spacetime as a connected manifold, but, when solv-
ing the Einstein Equation (that is, finding a metric tensor given an energy-momentum
tensor), it is not rare to find disconnected regions. So, they shall be consider different
spacetimes unless it can be found a larger geometry with submanifolds isometric to the
previous disconnected components. If this happens, it is said the spacetime has been
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extended. The importance of extending a spacetime is to make sure that is not possible
for any geodesic, defined for all values of its affine parameter, to end at an event, unless
this event represents a curvature singularity. If this is the case, then it is said that the
spacetime is maximally extended. Such geometries are recurrent in the studies of causal
relations in a spacetime as it will be seen in this work.
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Chapter 3

Spherically symmetric solutions

The aim of this work is to study the thermodynamics of the Vaidya-de Sitter spacetime
through the theory developted by S. Hayward. The present chapter is the first step towards
this goal. We are going to introduce the de Sitter spacetime, representing a universe of
positive cosmological constant in vacuum, which is studied in details in Section 3.2. Then,
the Schwarzschild geometry, a solution for a spherical object (possibly a black hole) of
constant mass in empty space, is presented in Section 3.3. After that, a generalization
of this solution for a dynamical mass, the Vaidya spacetime, is analyzed in Section 3.4.
In this way, we study each geometry separately so that, latter in this work, they are
combined as Schwarzschild-de Sitter and, more importantly, Vaidya-de Sitter.

One major feature of all the spacetimes cited above is that they are spherically sym-
metric. Such geometries are the only ones in which Hayward’s theory is applicable and,
therefore, this chapter starts, in Section 3.1, discussing the symmetries related to the
metric, focusing on the spherical symmetry.

3.1 Symmetries

In order to talk about symmetries on a spacetime we must be able to compare ten-
sors on different points of a manifold. Specifically, if the symmetry is from the intrinsic
geometry and also continuous, we need to compare the metric on points arbitrarily close.
Defining a rigorous way to do this is where we start in this section.

Let φ : M → N be a smooth map between two manifolds1. Then, the pushforward
of a vector field w ∈ TM defines a vector field, denoted φ∗w, in TN :

φ∗w(f) ≡ w(f ◦ φ), (3.1)

1A map φ between two manifolds M and N is smooth if, for any charts ϕα in M and ψβ in N , the
map ψβ ◦ φ ◦ ϕ−1

α : Rn → Rn is C∞.
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where f is any smooth real function in N. And the pullback of a 1-form θ ∈ T ∗N defines
a 1-form, denoted φ∗θ, in T ∗M :

φ∗θ(u) ≡ θ(φ∗u), (3.2)

where u is any vector field in TM.

Moreover, if φ is a diffeomorphism, we can define the pullback of general tensor fields.
In order to see how it works, let T be a tensor field of rank (1, 1) over a manifold N , v a
vector field on TM and ω a 1-form on T ∗M . Then, the pullback of T is defined by

φ∗T (v, ω) ≡ T
[
φ∗v, (φ

−1)∗ω
]
. (3.3)

From this definition, a generalization for tensor fields of arbitrary rank is straightforward.

A diffeormorphism allow us to compare a tensor on a point p ∈ M to another tensor
on φ(p) ∈ N . If this tensor is the metric, then we can already define isometric manifolds
as those which are connected by a diffeomorphism φ : M → N , called an isometry, such
that φ∗gN(v, w) = gM(v, w), where gN and gM are the metric tensors on the manifolds M
and N and v, w ∈ TM are arbitrary.

If the diffeomorphism takes a point on a manifold to another point on the same man-
ifold, that is, φ : M → M , then this gives a way to compare tensors of distinct points
on the same geometry. Therefore, we are able to define two other symmetries which are
specially important in cosmology. The first one is homogeneity, which is the property
that every point is equivalent. In mathematical rigour, given any two points p and q,
there is an isometry φ : M → M such that φ(p) = q. And the second one is isotropy,
which is the property that every direction is equivalent. Formally, for any point p and
tangent vectors vp, wp ∈ TpM , there is an isometry φ : M →M such that φ∗vp is parallel
to wp [17].

Moreover, if there is a way to compare tensors arbitrarily close, then this would give
us a way of differentiation. In the following, it is presented how this derivative can be
defined.

A vector field in an open set O of a manifolds M generates a congruence of integral
curves parametrized, by definition, by λ: φλ. Through any point p ∈ O passes an unique
curve φλ(p) which can always be reparametrized such that φ0(p) = p. In this way, φλ can
be interpreted as a function φλ : R × M → M which, when specified a point, defines
a curve through it or, when specified a real value for the parameter, defines a function
(actually, a diffeomorphism) which takes each point to another one, over the same curve,
with a parametric distance of λ.

Given a one-parameter family of diffeomorphisms, such as defined above, we can take

21



the limit λ → 0 and compare two arbitrarily close tensors on points of the same curve.
Then, if φλ is generated by a vector field K, this defines the Lie derivative of a tensor
T on the direction of K at a point p :

LKT (p) ≡ lim
λ→0

φ∗λT
[
φλ(p)

]
− T (p)

λ
. (3.4)

If there is a connection in the manifold, then the Lie derivative can be written in terms
of covariant derivatives [17]. For our purposes in this work, it is enough to write how it
acts on arbitrary real function f and vector field v. These are, respectively,

LKf = K(f), (3.5)

LKv = [v,K]. (3.6)

Moreover, the Lie derivative of the metric tensor is also important for us. From the
compatibility of gµν with the metric, we have

(LKg)µν ≡ LKgµν = 2∇(µKν). (3.7)

If the derivative vanishes, LKgµν = 0, which implies in

∇(µKν) = 0, (3.8)

then it is said that K, called a Killing vector field, is the generator of continuous
isometries in M and (3.8) is known as the Killing equation.

One important property is that if K is a Killing vector field, then there is always
a coordinate system such that it assumes the form of a coordinate vector ∂

∂x∗
and no

component of the metric will be a function of x∗. And the converse is also true. This
gives a practical way to identify Killing fields given a metric as will be seen when we study
specific solutions for the Einstein Equation.

The existence of Killing vector fields is used to classify spacetimes. For instance, if a
region of a spacetime has a timelike Killing vector field, denoted χµ, than this region is
called stationary [17]. Moreover, if these timelike Killing fields are orthogonal to a family
of spacelike hypersurfaces, that is, if χ[µ∇νχσ] = 0 [17], this region is called static. Many
times, when the Killing vector field is timelike in infinity, it is said that the spacetime
itself is stationary (or static).

Killing vectors define a surface that is recurrent in the study of black holes and specially
important for the Bekenstein-Hawking thermodynamics: the Killing horizon. That is
a null hypersurface such that the normal null vector field is of Killing-type. Since the
Killing horizon is characterized for being the 3-dimensional surface where KµKµ = 0, in
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which Kµ is the orthogonal Killing vector field, the vector field ∇µ(KνKν) is also normal
to the horizon and we can write

∇µ(KνKν)
h
= −2κKµ (3.9)

(only on the horizon and, therefore, we use the symbol h
=) for some function κ, whose

actual value depends on the normalization of the Killing vector field. For static and
asymptotically flat spacetimes, it is usually taken a normalization such that at infinity
KµKµ = −1. However, in this work we are going to work with the de Sitter geometry,
which has an asymptotic structure different than the one from Minkowski (as we shall see
in Section 3.2). Therefore, we will always talk about a κ for a previously specified Killing
vector field and will only ask for its normalization to be such that κ is positive. Then,
this function is called surface gravity2.

The surface gravity is greatly important in the Bekenstein-Hawking thermodynamics
for black holes. Therefore, we will derive an equation from where κ can be straightfor-
wardly computed from. In order to do this, we use the Killing equation ∇(µKν) = 0 and
the condition for a vector field to be normal to a hypersurface K[µ∇νKσ] = 0. These two
equations together give a condition for the Killing vector field on the Killing horizon:

Kσ∇µKν +Kµ∇νKσ +Kν∇σKµ
h
= 0. (3.10)

We know from (3.9) Kν∇µKν
h
= −κKµ, which suggests contracting the previous equation

with ∇µKν :

(∇µKν)Kσ∇µKν + (∇µKν)Kµ∇νKσ + (∇µKν)Kν∇σKµ

h
= Kσ(∇µKν)∇µKν + κKν∇νKσ − κKµ∇σKµ

h
= Kσ(∇µKν)∇µKν − 2κKν∇σKν

h
= Kσ(∇µKν)∇µKν + 2κ2Kσ

h
= 0.

(3.11)

And we have:
κ2 = −1

2
(∇µKν)∇µKν . (3.12)

As the existence of timelike Killing vector fields are used in order to classify the space-
times which possess time translation symmetry, geometries with other kinds of Killing
fields will be symmetric in other ways. The symmetry which is mostly important in this
work is the spherical one since the Hayward black-hole thermodynamics is exclusive for

2The name surface gravity is due to the fact that for a static black hole in an asymptotically flat
spacetime, and choosing the normalization KµKµ = −1 at infinity, κ is the acceleration of a static
observer near the Killing horizon that is measured by an observer at infinity [63].
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the spacetimes in which it is present. So, in the rest of this section we are going to
properly introduce the spherical symmetry.

A spacetime M is said to be spherically symmetric if it has three spacelike Killing
vector fields, K1, K2 and K3, that satisfy the Lie Algebra of SO(3) [55]:

[Ki, Kj] = −εijk3Kk, (3.13)

and such that the set of integral curves generated by them determine 2-dimensional sur-
faces (or isolated points).

This definition implies that if a spacetime is spherically symmetric, then each point is
contained in a submanifold isometric to the 2-sphere and, therefore, the metric of M can
be described in a coordinate system such that this isometry is made explicit [55, 63]:

ds2 = habdx
adxb + r2dΩ2, (3.14)

where r is a function of the non-angular coordinates and

dΩ2 ≡ dθ2 + sin2 θdφ2. (3.15)

Further comments are necessary about the function r, which is called areal radius for
reasons we shall now clarify. For a 2-sphere embedded4 in R3 the radius is the distance,
measured with the metric of euclidean space, from any point of the surface to its center.
However, the lesson of differential geometry is that in order to study manifolds they do not
need to be embedded on a higher dimension and, thus, the radius loses its usual meaning.
Nonetheless, we can intrinsically measure the area of the sphere and the result is still
A = 4πr2. Therefore, the physical meaning of r comes from the area of the sphere and,
for this reason, it is usually called areal radius. Then, a spherically symmetric spacetime
can be seen as a 2-dimensional surface (to be called bidimensional effective surface)
such that on each point there is a 2-sphere of areal radius r.

In the present work, it will be useful to consider the line element of a static and

3The Levi-Civita symbol is defined as

εijk =


+1 for an even permutation of (1,2,3),
−1 for an odd permutation of (1,2,3),
0 otherwise.

4A manifold S is said to be embedded in another manifold M if there is a diffeomorphism such as
φ : S → φ

[
S
]
⊂M. The embedding is said to be isometric if φ is also an isometry. By an embedding we

will always mean an isometric embedding.
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spherically symmetric spacetime written in a form similar to

ds2 = −A(r)dw2 ± 2

√
A(r)

B(r)
dwdr + r2dΩ2. (3.16)

Therefore, we present a condition that assures a surface in a geometry described by the
metric above to be a Killing horizon for the Killing vector field ∂w (which we know it is
indeed a Killing field since the components of the metric tensor are all independent of the
coordinate w). For that, it should be noticed that

(∂w)µ = gµν(∂w)ν = gµw = gww∂µw + grw∂µr. (3.17)

Then, the 1-form (∂w)µ is orthogonal to surfaces of constant radius rK if

gww(rK) = A(rK) = 0 (3.18)

and
lim
r→rK

A(r)

B(r)
converges to a non-zero value. (3.19)

So, as long as
A(r)B(r) > 0 for all r in some neighborhood of rK , (3.20)

and (3.18 - 3.19) are true, the 2-sphere of radius rK is a Killing horizon for the Killing
vector field ∂w.

3.2 de Sitter spacetime

The de Sitter spacetime is a solution for the Einstein Equation which is completely
homogeneous and isotropic with constant positive curvature. Both these properties to-
gether imply that the spacetime is maximally symmetric [17]. This name refers to
the fact that a maximally symmetric space, by definition, has the maximum number of
linear independent Killing vector fields, which is n(n + 1)/2, where n is the dimension
of the manifold. And this kind of spacetimes are characterized for having the Riemann
curvature tensor satisfying [17]

Rρσµν =
R

n(n− 1)
(gρµgσν − gρνgσµ). (3.21)

And contracting ρ and µ (for n = 4), the Ricci tensor satisfies

Rσν =
1

4
Rgσν . (3.22)
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From the metric compatibility (2.19), we have ∇ρRµν = 1
4
(∂ρR)gµν . Which becomes

∇νRµν = 1
4
(∂νR)gµν , when a contraction is made. However, the Einstein tensor is

divergence-free (2.28), which implies ∇νRµν = 1
2
(∂νR)gµν . Comparing the previous two

results, it is straightforward to conclude ∂µR = 0. Therefore, a feature of a maximally
symmetric geometry is that it has constant curvature. The converse, on the other hand,
is not true. For the Schwarzschild spacetime, for instance, the Ricci scalar is zero every-
where.

If we rewrite equation (3.22) as

Rµν −
1

2
Rgµν +

1

4
Rgµν = 0, (3.23)

it becomes clear that the maximally symmetric spacetime gives a metric tensor which
solves the vacuum Einstein equation (2.26) for a cosmological constant satisfying Λ = R

4
.

Moreover, this is the value of the cosmological constant for any solution of the Einstein
equation with an energy-momentum tensor of vanishing trace. Then, maximally sym-
metric spacetimes can be classified according to the sign of the Ricci scalar. If R = 0

we have Minkowski space, for R < 0 the space is called anti-de Sitter and R > 0 is the
de Sitter spacetime.

In this work, we are going to be interested in the de Sitter geometry, which, as it
has been seen above, can be defined as the (vacuum) maximally symmetric geometry of
positive cosmological constant. In the rest of this section, the metric tensor of de Sitter
is going to be presented in different coordinate systems, each serving a specific purpose.
We start with the ones that gives the best geometrical view for it, in which the de Sitter
spacetime is defined as the hyperboloid [23]

− v2 + w2 + x2 + y2 + z2 = a2, (3.24)

(where a ≡
√

3/Λ) embedded in a flat five-dimensional Minkowski space

ds2 = −dv2 + dw2 + dx2 + dy2 + dz2. (3.25)

If the embedding is made by a function such that, in local coordinates,

v = a sinh
τ

a
, w = a cosh

τ

a
cosχ,

x = a cosh
τ

a
sinχ cos θ, y = a cosh

τ

a
sinχ sin θ cosφ, (3.26)

z = a cosh
τ

a
sinχ sin θ sinφ,
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then the induced metric on the hyperboloid in (t, χ, θ, φ) coordinates is

ds2 = −dτ 2 + a2 cosh2 τ

a
[dχ2 + sin2 χ(dθ2 + sin2 θdφ2)], (3.27)

with ranges

−∞ < τ <∞, 0 < χ < π,

0 < θ < π, 0 < φ < 2π.
(3.28)

We recognize inside brackets in (3.27) the line element of a 3-sphere and, therefore, the de
Sitter spacetime can be given the topology of R×S3. At the time coordinate τ = 0, the 3-
sphere has its minimum size, with a radius of a, and, as the time coordinate increases, the
3-sphere expands. So, we can physically interpret this metric of being from an expanding
universe starting from τ = 0 5.

Another coordinate system in which the de Sitter geometry is commonly presented in
the literature comes from taking the following functions for the embedding [23]:

v =
√
a2 − r2 sinh

t

a
, w =

√
a2 − r2 cosh

t

a
,

x = r cos θ, y = r sin θ cosφ, (3.29)

z = r sin θ sinφ.

In the (t, r, θ, φ) coordinates, the line element becomes

ds2 = −
(

1− Λ

3
r2

)
dt2 +

(
1− Λ

3
r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (3.30)

with ranges

−∞ < t <∞, 0 < r < a,

0 < θ < π, 0 < φ < 2π.
(3.31)

It is possible to obtain the same metric (3.30), but the range of the radial coordinate
being the interval a < r <∞, if we consider the embedding made via

v =
√
r2 − a2 cosh

t

a
, w =

√
r2 − a2 sinh

t

a
,

x = r cos θ, y = r sin θ cosφ, (3.32)

z = r sin θ sinφ.

5The effect of the cosmological constant causing the expansion of the spacetime is intuitive when we
see that de Sitter is a special case for the FLRW geometries (this is discussed in Chapter 6) in which the
only fluid is the dark energy, having a positive energy density ρ and negative pressure p = −ρ [17].
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In what follows we are going to show that these are the line elements of distinct regions
of the same extended geometry.

One interesting feature for this coordinate system6 is that it covers only a static patch
of the de Sitter spacetime. This is due to the fact that, in the submanifold covered, ∂t
is a timelike Killing vector field. Furthermore, it can be seen that there is a coordinate
singularity for r = a =

√
3/Λ and, in order to extend the manifold, we are going to follow

an approach which was first done for the Schwarzschild spacetime. We start going to the
tortoise coordinates, defined by:

dr∗
dr

=
1

1− Λ
3
r2
. (3.33)

In terms of the coordinates (t, r∗, θ, φ), the de Sitter metric becomes

ds2 = −
(

1− Λ

3
r2

)
(dt2 + dr2

∗) + r2dΩ2. (3.34)

After this change of coordinates, the spacetime appears to be no longer singular as
the coordinate singularity is taken to infinity. Then, the next step is to define coordinates
adapted to null radial geodesics:

du = dt− dr∗ = dt− dr

1− Λ
3
r2
, (3.35)

dv = dt+ dr∗ = dt+
dr

1− Λ
3
r2
. (3.36)

For instance, the line element of de Sitter in the coordinates (u, r, θ, φ)7 becomes

ds2 = −
(

1− Λ

3
r2

)
du2 − 2dudr + r2dΩ2, (3.37)

with ranges

−∞ < u <∞, 0 < r <∞,

0 < θ < π, 0 < φ < 2π.
(3.38)

The patch of the de Sitter spacetime covered by the (t, r, θ, φ) coordinates is isometric
to the geometry covered by the (u, r, θ, φ) coordinates restricted to 0 < r <

√
3/Λ. And,

if we also consider the region of de Sitter covered by (t, r, θ, φ) for r >
√

3/Λ, this is
isometric to the new manifold also for r >

√
3/Λ. Therefore, we have found an extension

6Any diagonal metric similar to (3.30) is going to be said to be written in Schwarzschild-like coordi-
nates since it is in this form that the Schwarzschild spacetime is usually presented.

7Any metric in the form of (3.37) is going to be said to be written in outgoing Eddington-Finkelstein-
like coordinates. Similarly, the coordinates (v, r, θ, φ) are going to be called ingoing Eddington-Finkelstein-
like coordinates.
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which is not singular at r =
√

3/Λ.

Since we have a coordinate system that covers the previous coordinate singularity,
we can now make computations on this hypersurface. We notice that the coordinates of
(3.37) are similar to the ones of (3.16) and, thus, from the discussion in the end of Section
3.1, the 2-sphere of radius

√
3/Λ defines a Killing horizon for the timelike Killing vector

field ∂u.

Equation (3.12) gives a direct way to compute κ, however, for some cases, it is actually
easier to use the definition (3.9) in order to calculate the surface gravity. Below we use this
method to find the surface gravity relative to the timelike Killing vector field (∂u)

µ ≡ χµ

for the metric (3.37):

−2κχµ
h
= ∂µ(χνχν)

h
= gµρ∂ρguu

h
= −gµr∂r

(
1− Λ

3
r2

)
(3.39)

h
= gµr

2Λ

3
r

h
= −δµu

2Λ

3
r
h
= −2κχµ.

This is only true on the horizon, where r =
√

3/Λ. Thus,

κ =

√
Λ

3
. (3.40)

Although extensions were found through the Killing horizon, the (u, r, θ, φ) coordinates
and also the (v, r, θ, φ) ones do not cover all of the de Sitter spacetime. For this task and
in order to study the causal structure of de Sitter, consider the coordinate transformation
from (3.27) via [17]

cosh
τ

a
=

1

cos t′
. (3.41)

Then the metric becomes

ds2 =
a2

cos2 t′
(−dt′2 + dχ2 + sin2 χdΩ2), (3.42)

with ranges

−π
2
< t′ <

π

2
, 0 < χ < π, (3.43)

0 < θ < π, 0 < φ < 2π. (3.44)

The metric term inside parenthesis in (3.42) is said to be the line element of the
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Einstein static universe. And, because the de Sitter geometry relates to it as gµν = ω2g̃µν ,
where ω is a function of the coordinates, it is said the de Sitter spacetime is conformally
related to the Einstein static universe. These conformal relations are specially useful to
analyse the causal structure of the spacetime via the Penrose (or conformal) diagrams
since the type of a vector (that is, whether it is timelike, null or spacelike) is invariant
under these transformations. Furthermore, angles between vectors also do not change
and, because the Einstein static universe is conformally related to Minkowski [13], curves
at 45o are null in the conformal diagram of de Sitter.

χ = π

t′ = π/2

χ = 0
t′ = −π/2

I−

I+
t =
∞
r
=
a

r
=

0

t =
−∞

r
=
a

t = 0

Figure 3.1: First figure is the Penrose diagram for the de Sitter spacetime written in
(t′, χ, θ, φ) coordinates. The second figure is the region of the diagram covered by the
(t, r, θ, φ) coordinates.

In Figure 3.1, we have the Penrose diagram for the de Sitter spacetime covered by the
(t′, χ, θ, φ) coordinates on the left side and the region which is covered by the (t, r, θ, φ)
coordinates on the right side [23]. Below it is being pointed out some characteristics of
the diagram:

◦ Past and future infinities (I−, I+) are spacelike.

◦ Given an observer O at a point p, there will be causal curves, which originate at I−,
that do not intersect the past light cone of p. These causal curves are said to be on
the particle horizon of O at this event. In Minkowski, on the other hand, there is no
particle horizon.

◦ The boundary of the union of all past light cones ofO along its world-line is called future
event horizon. Similarly for the future light cone, it is called past event horizon.

◦ The Killing horizons (at r = a =
√

3/Λ) are also said to be cosmological horizon8.
This means that an observer can cross this hypersurface in one direction but cannot
comeback. The existence of a cosmological horizon may be seen as a direct consequence

8A formal definition for cosmological horizons will be given in Section 4.1
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of the fast expansion and fast contraction of the de Sitter spacetime.

3.3 Schwarzschild spacetime

The Schwarzschild spacetime is the geometry generated by a spherical object of
constant mass parameter M in vacuum. It is usually written in the diagonal coordinates

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (3.45)

from where it is evident its static configuration. The ranges assumed by each coordinate
are

−∞ < t <∞, 2M < r <∞,

0 < θ < π, 0 < φ < 2π.
(3.46)

As it happened for de Sitter at the cosmological horizon when used the coordinate
system of (3.30), the Schwarzschild spacetime has a coordinate singularity at r = 2M when
written as (3.45). Following the steps done for de Sitter of defining the tortoise coordinates
and then making transformations similar to (3.35− 3.36), we define coordinates adapted
to null radial geodesics in order to extend the manifold for values of areal radius smaller
than 2M .

With the ingoing Eddington-Finkelstein coordinates, the line element of Schwarzschild
becomes

ds2 = −
(

1− 2M

r

)
dv2 + dvdr + r2dΩ2, (3.47)

with ranges

−∞ < v <∞, 0 < r <∞,

0 < θ < π, 0 < φ < 2π.
(3.48)

In order to understand the causal structure of this geometry, we shall analyse the
behavior of the outgoing and ingoing radial null vector fields9. These are, respectively:

lµ = ∂v +
1

2

(
1− 2M

r

)
∂r, (3.49)

nµ = −∂r. (3.50)

9This nomenclature does not correspond to the actual behavior for these vector fields on all spacetime
as discussed in the next paragraph. However, since it agrees with the expectations from the region covered
by the usual Schwarzschild coordinates (3.45), the names are kept to all the geometry.
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For r > 2M , the outgoing vectors point towards increasing radius. Therefore, observers
following timelike paths close enough of lµ are able to escape to infinity. In the usual
coordinates (3.45), since only the region 2M < r <∞ is covered, this corresponds to all
observers. On the other hand, for r < 2M , the vectors of the same vector field are now
pointing towards decreasing radius. As the other radial null vector field, nµ, is in ingoing
direction, it is impossible to any observer and even for light-speed particles to escape.
Following what is usually done in the literature, we present the qualitative behavior of
the null radial vector fields in Figure 3.2.

The region from where lµ also becomes ingoing such as nµ, r = 2M , is a null hyper-
surface and is called the (future) event horizon and the region r < 2M corresponds to a
black hole10. In r = 0, there is a singularity, in this case not due to the bad behavior of
the coordinate system used, but from the spacetime itself. This can be checked from the
computation of the, coordinate independent, curvature scalar RµνρσRµνρσ, which diverges
as r → 0 [17]. Physically, we interpret it as an infinite density point.

v

u

r

r

r = 2M

lµ

nµ

lµ
nµ

Figure 3.2: Light cones showing the behavior of the ingoing and outgoing null radial
vector fields for the regions covered by the ingoing and outgoing Eddington-Finkelstein
coordinates.

Since the components of (3.47) are all independent of v, ∂v is a Killing vector field
which, from the discussion on the end of Section 3.1, generates the Killing horizon at
r = 2M. The computation of the surface gravity relative to (∂v)

µ ≡ χµ follows from steps
similar to the ones made for the de Sitter geometry that led to (3.40):

−2κχµ
h
= −gµr∂r

(
1− 2M

r

)
h
= −δµv

2M

r2
,

(3.51)

10Proper definitions of event horizons and black holes will be given in Section 4.1.
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which is evaluated at the horizon, where r = 2M , and thus

κ =
1

4M
. (3.52)

There is also the coordinate system adapted to the outgoing radial vector fields, that
is, the outgoing Eddington-Finkelstein coordinates:

ds2 = −
(

1− 2M

r

)
du2 − dudr + r2dΩ2 (3.53)

with the ranges assuming the values of

−∞ < u <∞, 0 < r <∞,

0 < θ < π, 0 < φ < 2π.
(3.54)

Similarly, we analyze the outgoing and ingoing radial null vector fields in this region:

lµ = ∂r, (3.55)

nµ = ∂u −
1

2

(
1− 2M

r

)
∂r. (3.56)

For r > 2M , the ingoing vectors of nµ point towards direction of decreasing the areal
radius. Therefore, observers in this region can travel close enough to the integral curves
of nµ so that they go towards zero radius. However, for r < 2M both lµ and nµ are now
in outgoing direction, meaning that any observer, even if in light-speed, must go towards
regions of larger radius. It is said that at r = 2M is located a (past) event horizon and
at r < 2M there is white hole (see Figure 3.2). For the same previous reason, there is a
curvature singularity at r = 0.

Although we have presented two extensions for the Schwarzschild spacetime, even
a combination of them on the region where they are isometric, 0 < r < 2M , does not
correspond to the maximal extension of this geometry. In Figure 3.3, the Penrose diagram
for the maximally extended Schwarzschild spacetime11 is presented and it is being pointed
out some of its important features [23]:

11There is a coordinate system named after M. Kruskal which covers all the maximally extended
solution. However, such coordinates will not be present here since we are not going to work with its
generalization for the spacetimes we are mostly interested, that is, Vaidya and Vaidya-de Sitter.
It is important to cite that Birkhoff’s Theorem states that any spherically symmetric solution of the

Einstein Equation in vacuum is isometric to a region of the maximally extended Schwarzschild spacetime
[27].
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◦ Past and future infinities (I−, I+) are null. This is the same asymptotic structure of
Minkowski and it is said that Schwarzschild is asymptotically flat.

◦ The (future and past) event horizons at r = 2M are also Killing horizons for the Killing
vector fields ∂v and ∂u.

◦ Regions I and II, which can be covered by the usual Schwarzschild coordinates, are
causally disconnected.

◦ Curvature singularities at r = 0 are behind the horizons of black and white holes (BH
and WH).

III

BH

WH

I
+

I −

r
=

2M I +

I
−

r
=

2M

r = 0

r = 0

Figure 3.3: Penrose diagram for the maximally extended Schwarzschild spacetime.

3.4 Vaidya spacetime

The Vaidya spacetime is a generalization of the Schwarzschild solution which may
include the radiation or accretion of massless particles of radial trajectory. This geometry
is named after P. Vaidya who published it in 1951 in Schwarzschild-like coordinates [58]:

ds2 = − Ṁ
2

M ′2
1

f(t, r)
dt2 +

1

f(t, r)
dr2 + r2(dθ2 + sin2 θdφ2), (3.57)

where M(t, r) is the mass of the spherical object, M ′ and Ṁ are the derivatives with
respect to the r and t coordinates respectively, and

f(t, r) ≡ 1− 2M(t, r)

r
. (3.58)

However, this is not the coordinate system in which the Vaidya spacetime is more
commonly presented. The most usual ones are the Eddington-Finkelstein-like coordi-
nates, in which the Vaidya solution was first written by Vaidya himself only two years
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latter, in 1953 [59]. In these coordinates, this metric shows itself, straightforwardly, as a
generalization of Schwarzschild for a time-varying mass. First we present it in the ingoing
Eddington-Finkelstein-like one:

ds2 = −f(v, r)dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2), (3.59)

where
f(v, r) ≡ 1− 2M(v)

r
, (3.60)

with ranges

−∞ < v <∞, 0 < r <∞,

0 < θ < π, 0 < φ < 2π.
(3.61)

We know that the Schwarzschild metric when written as (3.45) has a coordinate singu-
larity at r = 2M and, after changing to Eddington-Finkestein coordinates, it is discovered
that this hypersurface is, actually, an event horizon. In order to study the causal structure
of the Vaidya spacetime, we need to generalize this treatment for a time changing mass.
First we take the hypersurface where r = 2M(v), which is equivalent to take f(v, r) = 0.

Then, after evaluating the norm of ∂µf(v, r) at f(v, r) = 0, we find out that it will be zero
only if dM

dv
= 0, which is the Schwarzschild situation. Therefore, this hypersurface, for

more general mass parameter functions, is not null and, thus, cannot be an event horizon.

Nonetheless, similarly to the Schwarzschild case, this is still an interesting surface
since it delimits the region, r < 2M(v), where future-pointing radial light rays must
follow paths of increasing r coordinate, to the other region, r > 2M(v), where there is
no such restriction. This statement can be checked looking at the outgoing and ingoing
radial null vector fields [9]:

lµ = ∂v +
1

2
f(v, r)∂r, (3.62)

nµ = −∂r. (3.63)

In this chapter, we are not going to further explore the causal structure of Vaidya. This is
going to be done in Chapter 4 for a generalization which includes a positive cosmological
constant, that is the Vaidya-de Sitter spacetime. In Appendix B, it is checked (setting
Λ = 0) that the above vector fields are indeed null and satisfy some important properties,
for instance, they are generators of geodesics.

We have briefly discussed some of the geometrical structures of the Vaidya spacetime.
Now, we must answer for what kind of energy-momentum tensor the metric (3.59) is a
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solution of the Einstein Equation. This is [37]

T µν =
1

4πr2

dM(v)

dv
nµnν , (3.64)

which is the energy-momentum tensor of a pure radiation field [23]. In order to understand
the physical content behind (3.64), we must define the simplest type of fluid in General
Relativity: the dust. This is characterized by the energy-momentum tensor

T µν = ρ uµuν , (3.65)

where uµ is the 4-velocity of the particles that constitute this fluid and ρ is the energy
density measured by observers with also a 4-velocity of uµ.

Comparing (3.64) with (3.65), we can interpret the energy-momentum tensor of the
Vaidya metric in outgoing Eddington-Finkelstein-like coordinates as the one from a “null-
dust”. This is regarded as the asymptotic case in which the velocities of the particles of
the dust tend to the speed of light, that is, a dust with 4-velocity of nµ.

Furthermore, the energy density measured in the frame of the fluid (3.64) is

1

4πr2

dM(v)

dv
(3.66)

and imposing the null energy condition, Tµνkµkν ≥ 0, where kµ is a null vector field, we
must have

dM(v)

dv
≥ 0. (3.67)

Therefore, unless the mass parameter is constant, the Vaidya spacetime (3.59) represents
a spherically symmetric object increasing its mass due to the accretion of light-speed
particles (of radial trajectory).

There is also a Vaidya spacetime with an opposite behavior and, as one could expect,
this is written in outgoing Eddington-Finkelstein-like coordinates:

ds2 = −f(u, r)du2 − 2dudr + r2(dθ2 + sin2 θdφ2), (3.68)

where
f(u, r) ≡ 1− 2M(u)

r
, (3.69)

with ranges

−∞ < u <∞, 0 < r <∞,

0 < θ < π, 0 < φ < 2π.
(3.70)

For completeness, we present the outgoing and ingoing radial null vector fields for this
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spacetime

lµ = ∂r, (3.71)

nµ = ∂u −
1

2
f(u, r)∂r, (3.72)

which are going to be generalized for Vaidya-de Sitter in the next chapter, where their
physical attributes are going to be studied in details.

The energy-momentum tensor for this metric is

T µν = − 1

4πr2

dM(u)

du
lµlν (3.73)

and, following the same physical interpretation comparing with the “null-dust” fluid and
assuming that the null energy condition holds, which implies

dM(u)

du
≤ 0, (3.74)

we conclude that this solution represents a spherically symmetric object losing its mass
through the radiation of massless particles (of radial trajectory).

II I

WH

BH

r =
2M

r =
2M

r = 0

r = 0

I
+

I −
I
−

I +

Figure 3.4: Penrose diagram for a maximally extended Vaidya spacetime. The arrows
represent the directions of the flux of radiation.

We finish this section (and this chapter) presenting the Penrose diagram for a max-
imally extended Vaidya spacetime in Figure 3.4 [23]. Most of its features are similar
to the ones from the Schwarzschild diagram and below it is pointed out the important
differences:

◦ The union of the regions WH and I is the Vaidya geometry covered by the outgoing
coordinates and the union of II and BH is the Vaidya spacetime covered by the ingoing
ones. These spacetimes do not overlap as it happened in the Schwarzschild extension.
The arrows represent the directions of the flux of massless radiation of radial trajectory.
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◦ The curved line of r = 2M is not null and do not coincide with the event horizons.
The actual shape of this curve depends on how the mass parameters evolve in time and,
therefore, it shall be interpreted only as an illustration in the diagram.
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Chapter 4

Black-hole thermodynamics

In this chapter, we introduce two different approaches for the thermodynamic de-
scription of black holes. The first, which is frequently presented in General Relativity
textbooks, is the Bekenstein-Hawking thermodynamics. In a work published in 1972, S.
Hawking showed that under physically reasonable assumptions the area of the event hori-
zon of a black hole should never decrease [25]. On the next year, based on S. Hawking’s
work, J. Bekenstein proposed that the area of the event horizon should be a measure of the
entropy contained in the black hole [7]. And around the same time, J. Bardeen, B. Carter
and S. Hawking presented the four laws of black-hole mechanics, which among them is the
Area Theorem proved by S. Hawking, highlighting their apparent similarity to the laws
of classical thermodynamics [16]. In 1975, S. Hawking showed that, for stationary black
holes, the event horizon emits particles in a thermal spectrum [26]. Therefore, a temper-
ature could be assigned to the black hole. This is the so-called Hawking radiation and it
was due to its discovery that the laws of black-hole mechanics could be reinterpreted as
thermodynamic laws.

The other black-hole thermodynamic theory that is considered in this chapter was
developted by S. Hayward [28]. He published in 1994 the generalized laws for black hole
mechanics [28], which was developted taking as a background not an event horizon, but a
trapping horizon. Hayward’s work generalizes the Bekenstein-Hawking thermodynamics
for spherically symmetric dynamic spacetimes, which means we are no longer restricted to
the stationary ones. For this reason, we are able to apply the Hayward thermodynamics
to systems where the mass of the black hole varies rapidly, as it may be the case for the
Vaidya spacetime of our interest.

Before we get into the discussion of each black-hole thermodynamic theory, it is neces-
sary to rigorously define the terminology involved. For instance, the concepts of event and
trapping horizons. This is what it is done in the first section of this chapter, Section 4.1.
The Bekenstein-Hawking and the Hayward thermodynamics for black holes are studied
in Section 4.2 and Section 4.3, respectively.
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4.1 Black holes and the characterization of horizons

Loosely speaking, keeping contact with our physical intuition, a black hole is a region
from where nothing can escape to infinity. Of course, in order to do physics, we need
a rigorous definition of what a black hole really is. The idea of “escaping to infinity” is
related to causal relations between events in the spacetime, therefore, we shall start by
introducing a rigorous terminology to talk about how two points may or may not interact
with each other. Then, we will be able to formally define a black hole as the absence of
causal relation to the “future infinity”, which also must be defined.

Two points p and q in a given spacetimeM are causally connected if they both lie on
a timelike (or null) curve. If this curve is future-directed1 from p to q, then the point q is
in the causal future of p, J+(p), that is, the set of all points inM which can be achieved
from p following a future-directed curve. The causal past, J−, is defined in a similar
way. We can also generalize these definitions to talk about the causal future (or past) of
a set of points in the spacetime. For instance, this set may be the future null infinity,
which will soon appear in the definition of the black hole. The future null infinity, I+,
is the null hypersurface contained in the boundary of a compactified spacetime where all
the null curves end. The future null infinity is not present in all spacetimes, but only in
the ones that share the same asymptotic structure of Minkowski space, that is, with some
simplification, only in the asymptotically-flat geometries [63].

We, then, have introduced the necessary terminology in order to define a black hole,
B, as the complement of the causal past of the future null infinity, B = M − J−(I+).
That is, the set of all points which cannot be causally connected to infinity through future-
directed curves. The event horizon, H, is defined as the boundary of the black hole2,
H = ∂(B) = ∂(J−(I+)).

It is a theorem, due to B. Carter, that if the spacetime is static, then the event horizon
must also be a Killing horizon for a vector field χµ which is timelike at infinity [62]. This
theorem, for instance, is applicable to Schwarzschild. Furthermore, if the spacetime is
stationary and has a Killing vector field Rµ related to an axial symmetry (and further
geometric conditions are assumed but which shall not be stated here since this work will
not be concerned with such spacetimes), then the event horizon is also a Killing horizon
for the Killing vector field Kµ = χµ + ΩHR

µ, where ΩH is a scalar interpreted as the
angular velocity of the event horizon.

One important feature of the previous definition of a black hole is that, in order to
locate an event horizon, it is necessary to know the behavior of every single null geodesic
of the spacetime for all of their parameters. This property makes an event horizon a

1A curve is future-directed if at each point its tangent vector lies in the future-half of the light cone
on the tangent space. Similarly a past-directed curve can be defined.

2The event horizon, as a causal boundary, is necessarily a null hypersurface [47].
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global concept. And it is due to this teleological character that the usual definition of a
black hole in terms of the event horizon is, in many circumstances, not a practical one.
For this reason, alternative quasi-local definitions are useful, in which by “quasi-local” we
mean the property of a quantity or an object to be detected by a set of observers in a
finite interval of their proper-time.

In order to make clear the distinction between the nature of an event horizon and a
quasi-local horizon, let us consider a spherically symmetric spacetime, which is also the
geometry relevant for the Hayward black-hole thermodynamics3. If the spacetime has
spherical symmetry, there are radial null geodesics in direction of increasing radius, lµ,
which are said to be outgoing, and in direction of decreasing radius, nµ, called ingoing4.
As both vector fields are radial, the cross-sectional 2-surfaces they define (A.4) are 2-
spheres. And since the expansion scalars will measure the rate of change of these spheres
(A.13), what we may intuitively expect is that the event horizon is the region where the
expansion scalar in outgoing direction is null: θl = 0. However, this is, in fact, not always
true.

As it is shown in [47] for the Vaidya spacetime, for example, the condition of vanishing
θl is satisfied by the spheres of radius 2M(v) at each value of time-coordinate v. On the
other hand, if we consider the hypersurface defined by the union of all spheres of radius
2M(v), for all values of v, the author of [47] shows that this hypersurface is only null if
the mass parameter, M(v), is constant. That is, only for the Schwarzschild spacetime the
event horizon will have θl = 0. Nonetheless, the condition of having null expansion scalar
is still a very interesting one and it is the main feature of the, to be defined, trapping
horizons.

In order to get to the trapping horizons, we start defining their building block: a
marginal surface. This is a closed 2-surface with θl = 0 or θn = 0. An important
hypersurface that can already be defined, but that it will not be cited too much on this
work, is the apparent horizon. This is the outermost 3-surface foliated by marginal
surfaces.

It is important to highlight that the definitions of apparent horizons do not coincide in
many references. In [63], for example, an apparent horizon is the boundary of the closure
of the union of all trapped surfaces (which shall be soon properly defined) and, given
further assumptions about its structure, it is proven it has vanishing expansion scalar.
The one we are choosing to follow here, as briefly discussed in [10], is usually easier to
work with. The existence of different non-equivalent definitions is also recurrent in the
theory of trapping horizons. In the present work, we are mostly following Hayward’s

3The content that follows in this section is heavily dependent on Appendix A, where a study about
congruence of null geodesics is introduced and, for instance, the expansion scalar is defined.

4It is important to notice that this nomenclature corresponds to the intuitive meaning of the terms
only outside the event horizon. However, we will keep the names even in the region inside the black hole.
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article [28], but we will also extend the definitions in order to talk about other surfaces
which are not considered in his paper.

Before we consider the trapping horizons, we shall talk about trapped surfaces, which
capture the intuitive idea of a surface from where nothing can escape from. The usual
way to imagine such surfaces is to picture a sphere in Minkowski space. If at each point
on the sphere a light ray is simultaneously (relative to some coordinate system) emitted
in the direction of increasing radius, then, for each fixed latter time, a larger sphere
is produced. The opposite effect happens if the light rays are emitted in direction of
decreasing radius. This, seemingly obvious, behavior is also true outside the black hole
in the Schwarzschild spacetime, for example. However, inside a black hole, even the light
rays that were supposed to follow paths of increasing radius, actually, goes to smaller ones.
Such spheres inside a black hole are the called trapped surfaces. The formal definition is: a
future trapped surface is a closed and spatial 2-surface such that the expansion scalars
in directions of surface-normal outgoing and ingoing null geodesics are both negative,
θl, θn < 0.

When a marginal surface was defined, we did not impose any condition on the non-
vanishing expansion scalar, that is, if θl = 0, we have said nothing about the behavior of θn
(and vice-versa). Then, now we begin to classify the different types of marginal surfaces.
If a marginal surface has θn < 0, it is said to be a marginally future trapped surface.
A 3-surface foliated by marginally future trapped surfaces is called a marginally future
trapped tube. This hypersurface represents a limit of some spacetime from where it
is impossible to follow paths of increasing radius, but the ingoing paths maintain their
natural behavior. Finally, we can define the trapping horizons according to [28].

A future outer trapping horizon is a marginally future trapped tube such that in
each slice Lnθl < 0. This kind of trapping horizon is typical of black holes as it separates
an exterior region where θl is positive and it is possible to follow paths of increasing
radius from an interior region where θl is negative and even the “outgoing” paths are
radius-decreasing. Due to this feature, a new and quasi-local definition of a black hole
arises, in which the event horizon is replaced by the future outer trapping horizon.

Similarly, a future inner trapping horizon is a marginally trapped tube where in
each slice Lnθl > 0. This one is related to contracting universes as it represents a boundary
from an exterior region, where θl is negative, to an interior (lower-radius) region, where θl
is positive and have its usual behavior. Therefore, a future inner trapping horizon can be
used as a definition of a cosmological horizon and physically represents the impossibility
of going to furthest regions of the spacetime due to its accelerated contraction rate.

Up to this point, we have been considering the marginal surfaces with non-vanishing
θn. Therefore, we finish the classification of trapping surfaces dealing with the case of
past marginal surfaces, in which θn = 0. We shall omit some of the details since the new
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definitions are natural extensions of what we had above. A past trapped surface is
defined as a close and spatial 2-surface such that both θn, θl > 0. A marginal surface on
which θl > 0 is going to be called a marginally past trapped surface and a 3-surface
foliated by marginally past trapped surfaces is a marginally past trapped tube. If the
marginally past trapped tube is such that Llθn < 0, then it is a past outer trapping
horizon. Meanwhile, if Llθn > 0, then it is a past inner trapping horizon. As it
can be expected, these trapping horizons have opposite behavior to the ones previously
defined. Therefore, the past outer one is typical of a white hole and the past inner one is
the cosmological horizon of an expanding cosmology.

Since the characterization of trapping horizons is greatly important in this work, we
summarize the definitions in Table 4.1.

Table 4.1

Future trapping horizon Past trapping horizon

Outer Inner Outer Inner

θl Zero Zero Positive Positive

θn Negative Negative Zero Zero

Lnθl Negative Positive - -

Llθn - - Negative Positive

In Section 3.1, we have seen another horizon characterization that is recurrent in the
study of black holes and a key piece in the Bekenstein-Hawking thermodynamics: the
Killing horizon. Moreover, in Section 4.2 we are going to see that the relevant space-
times for the Bekenstein-Hawking thermodynamics are those stationary. And, on the
other hand, the Hayward black-hole thermodynamics can only be applied to spherically-
symmetric geometries, whether these are stationary or not. Since Hayward’s work is a
generalization of the usual black-hole thermodynamics, the spacetimes where both theo-
ries coincide are the static and spherically symmetric ones. And it is due to this reason
that it is interesting to have an useful condition in order to find trapping horizons for this
kind of geometries and see how we can relate them to Killing horizons. As already seen,
in this situation we can always write the line element in Schwarzschid-like coordinates
[55]:

ds2 = −A(r)dt2 +
1

B(r)
dr2 + r2dΩ2. (4.1)
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Or we can work in ingoing Eddington-Finkelstein-like coordinates5:

ds2 = −A(r)dv2 + 2

√
A(r)

B(r)
dvdr + r2dΩ2, (4.2)

as long as we be restricted to the region where A(r)B(r) > 0.

If we want to find the trapping horizons for this family of spacetimes, due to the
spherical symmetry, we should look for 2-spheres, which have surface-normal radial null
vectors

nµ = −∂r, (4.3)

lµ =

√
B(r)

A(r)

[
∂v +

1

2

√
A(r)B(r)∂r

]
, (4.4)

that satisfy lµnµ = −1. The metric tensor on the cross sectional space (A.4) defined by
the previous vector fields is, as it can be checked, indeed a 2-sphere:

ds2 = r2dθ2 + r2 sin2 θdφ2. (4.5)

And the expansion scalars in ingoing and outgoing directions can be computed via (A.13):

θn = −2

r
, (4.6)

θl =
B(r)

r
. (4.7)

From (4.7), it seems like the 3-surfaces foliated by 2-spheres of constant radius rH
such that B(rH) = 0 are trapping horizons. However, we must be careful here since the
surface where B(r) = 0 is a coordinate singularity as a component of the line element
(4.2) diverges. Therefore, in order to avoid further difficulties, we impose the condition:

lim
r→rH

A(r)

B(r)
converges to a non-zero value. (4.8)

Then, as long as

A(r)B(r) > 0 for all r in some neighborhood of rH , (4.9)

the 2-sphere of radius rH such that B(rH) = 0 is a trapping horizon.

Furthermore, we have seen in the end of Section 3.1 that if (4.8) holds and A(rH) = 0,
then this surface is a Killing horizon for the Killing vector field ∂v (3.18). Therefore, under

5For outgoing Eddington-Finkelstein-like coordinates, the results we derive can be found with similar
calculations.
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the assumption of B(r) not diverging at rH , (4.8) forces B(rH) to vanish and, thus, this
Killing horizon is also a trapping horizon.

This section was focused on characterizing all the horizons that appear in the black-
hole thermodynamics we are going to consider. Understanding all these definitions may
be cumbersome but it is an important task so that we can start developing each theory.
Then, the first to be studied is the Bekenstein-Hawking black-hole thermodynamics.

4.2 Bekenstein-Hawking thermodynamics

In order to present the Bekenstein-Hawking thermodynamics and explore some of its
most interesting properties, we have divided this section in three subsections which follow
the chronological order of the development of the theory. Subsection 4.2.1 treats about
the laws of black-hole mechanics while Subsection 4.2.2 presents the semi-classical result
of Hawking radiation, which will imply in the Bekenstein-Hawking black-hole thermody-
namics discussed in details in Subsection 4.2.3.

4.2.1 The laws of black-hole mechanics

The laws of black-hole mechanics were published6 in 1973 by J. Bardeen, B. Carter
and S. Hawking [6]. Already in this article the authors drew attention to analogies
between their work and the classical thermodynamic laws, specially relating the surface
gravity and the area of the event horizon to, respectively, the temperature and the
entropy7 of a thermodynamic system. In what follows we are going to state the four laws
of black-hole mechanics and also comment about their proofs.

The Zeroth Law asserts that under the conditions:
> The spacetime is stationary and asymptotically flat,
> The dominant energy condition holds, that is, for a timelike (or null) vector field
V µ and an energy-momentum tensor which satisfies the Einstein equation T µν , then
−V µTµν is future-directed and also timelike (or null),
then the surface gravity κ of an event horizon H is constant.

Proof. Let Kµ be the null Killing vector field which generates the event horizon. First,
we show that κ is constant along the Killing vector field Kµ on the horizon. For that, we

6The Second Law had already been published by S. Hawking in 1971 [25].
7J. Bekenstein had already highlighted the relation between the Area Theorem published by S. Hawk-

ing [25] and the entropy of a thermodynamic system [7].
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take the Lie derivative LK on both sides of (3.9). In components,

[K,∇(KνKν)]
µ h

= Kσ∂σ∇µ(KνKν)−∇σ(KνKν)∂σK
µ

h
= Kσ∂σ(−2κKµ) + 2κKσ∂σK

µ

h
= −2Kσ[(∂σκ)Kµ + κ(∂σK

µ)] + 2κKσ∂σK
µ

h
= −2KσKµ∂σk

h
= 0,

(4.10)

and we find
LKκ = 0. (4.11)

Then, it is proved that along Kµ the surface gravity κ is constant. Therefore, it is left
to be proven that this result also holds in the direction of any other vector field defined
on the event horizon H. In order to do that, we need two results which are presented,
respectively, in [63] and [18]:

∇̂µKν ≡ B̂νµ
h
= 0 =⇒ RµνK

µKν h
= 0 =⇒ TµνK

µKν h
= 0, (4.12)

LV κ
h
= −RµνK

µV ν h
= −8πTµνK

µV ν , (4.13)

both holding on the event horizon and V µ being a spacelike vector field on H. The
“hat” notation that appears in (4.12) means a projection on a 2-surface contained in the
horizon and it is explained in details in Appendix A. The result (4.12) is derived from
Raychaudhuri’s equation (A.14) and (4.13) comes from Einstein equation. It is important
to notice that because the event horizon is a null surface, all the tangent vector fields on
it are spacelike or Kµ itself.

The result (4.12) tells us that, on the event horizon, TµνKµ is a spacelike vector field
or it is proportional to Kν . On the other hand, due to the dominant energy condition, and
the Einstein equation being valid, we know that −TµνKµ cannot be spacelike. Therefore,
it must be null and proportional to Kµ. Now, because of (4.13) and VµKµ = 0, we have

LV κ = 0, (4.14)

which shows that the surface gravity κ is also constant in the direction of any tangent
vector on H other than Kµ.
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The First Law of black-hole mechanics has two formulations, which, following
Wald’s nomenclature given at [61], are

Physical Process Version: Take a black hole in a vacuum stationary spacetime
with mass M , angular momentum J and event-horizon area A. Disturb it by throwing
a small amount of matter across its event horizon and consider that a latter time the
black hole sets down to a new stationary configuration given by M + δM , J + δJ and
A+ δA. Then, the small variations are related by

δM =
κ

8π
δA+ ΩHδJ, (4.15)

where κ is the surface gravity and ΩH the angular velocity of the event horizon.

Equilibrium State Version: Take two slightly distinct black holes, each one in a
different empty stationary spacetime, such that their mass, angular momentum and
event-horizon area differ by δM , δJ and δA. Then, the small variations are also related
by (4.15).

The first law of black-hole mechanics was first published in [6], where the equilibrium
state version was derived in the presence of matter. Therefore, a more general version
of (4.15) was constructed. In the absence of matter and for a chargeless black hole, the
first law can be readily checked for the Kerr metric, which is the unique generalization of
Schwarzschild including a rotating black hole. For instance, can be found in [17, 63].

In what follows, we derive the physical process version of the first law of black-hole
mechanics following what is done in [47, 61].

Proof. We start by taking a small amount of matter, represented by Tµν , with mass and
angular momentum given by

δM = −
∫
H
Tµνξ

µdΣν , (4.16)

δJ =

∫
H
Tµνϕ

µdΣν , (4.17)

where ξµ and ϕµ are, respectively, the timelike and the rotational Killing vector fields.
And we also have the volume element of the event horizon H is [47]

dΣν = −√gS KνdλdS, (4.18)

Kν being the normal null Killing vector field, λ is the parameter of the curves generated
by Kµ and √gS dS is the volume element of the spatial 2-surface of vectors orthogonal
to Kµ.
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We consider that this matter produces an (also small) change in the metric. We saw in
(4.12), from [63], that the expansion scalar and the shear and rotation tensors all vanish
on the event horizon. Therefore, since the metric is under a small perturbation, at first
order we can neglect the squared terms in Raychaudhuri’s equation:

Kµ∇µθ = κθ − 8πTµνK
µKν . (4.19)

We recall that it is a theorem that for stationary spacetimes the event horizon is a Killing
horizon for the Killing vector field Kµ = ξµ + ΩHϕ

µ. Using this fact together with (4.19),
we have:

δM − ΩHδJ =

∫ ∞
−∞

dλ

∫
S

dS
√
gS TµνK

µKν

= − 1

8π

∫ ∞
−∞

dλ

∫
S

dS
√
gS
[
Kµ∇µθ − κθ

]
= − 1

8π

∫ ∞
−∞

dλ

∫
S

dS
√
gS

[
dθ

dλ
− κθ

]
.

(4.20)

In order to continue, it is important to recall that

θ =
LK
√
gS√

gS
, (4.21)

where gS is the determinant of the metric induced on S. Then,

δM − ΩHδJ = − 1

8π

∫
S

dS
[√
gS θ

]∞
−∞ +

1

8π

∫ ∞
−∞

dλ

∫
S

dS
d
√
gS

dλ
θ

+
κ

8π

∫ ∞
−∞

dλ

∫
S

dS
d
√
gS

dλ

=
κ

8π

∫ ∞
−∞

dλ

∫
S

dS
d
√
gS

dλ

=
κ

8π

∫
S

dS
√
gS
∣∣∞
−∞

=
κ

8π

[
A(v →∞)− A(v → −∞)

]
≡ κ

8π
δA.

(4.22)

The first equality of (4.22) was obtained via integration by parts. In order to get the
second one, it was used the assumption that the black hole evolves to a stationary state
for large values of λ and the fact that LK

√
gS θ is of order θ2, which is being neglected.

Then we have found the differential relation:

δM =
κ

8π
δA+ ΩHδJ, (4.23)
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which is the First Law of black-hole mechanics.

The Second Law states that, under some assumptions regarding the spacetime (to
be discussed in the following proof), the spatial area of a black hole cannot decrease,
that is, δA ≥ 0 [25].

Due to S. Hawking in 1972 [25], the Second Law, also called the Area Theorem for black
holes, was already known before the four laws of black-hole mechanics were published by
J. Bardeen, B. Carter and himself in 1973 [6]. Differently from the previous two, the
Second Law is more general since it is not restricted to stationary spacetimes. The formal
proof for this theorem is beyond the purpose of this work and, therefore, we will only
sketch it here.

Proof (sketch). So, in order to give some idea about the proof of the Second Law, first we
shall analyze the behavior of an event horizon through Raychaudhuri’s equation:

Kµ∇µθ = −θ
2

2
− σ̂µν σ̂µν −RµνK

µKν , (4.24)

where Kµ is the generator of the horizon and ω̂µν = 0 on a hypersurface if and only if Kµ

is normal to it (as it is with respect to the event horizon).

If the null-energy condition holds, that is, RµνK
µKν ≥ 0, and, because σ̂µν is a

spatial tensor, we have that Kµ∇µθ ≤ 0. It can be further proven that if in any moment
θ < 0, then it must diverge to negative infinity for a finite parameter, this is the Focusing
Theorem [47]. This statement is useful for us because the expansion scalar relative to
the null geodesics which generate the event horizon cannot diverge in any point of H
[61]. Therefore, for the event horizon we must always have a non-negative θ. Therefore,
the straightforward conclusion is that δA ≥ 0. It should still be proven that if new
null geodesics enter on H, becoming also generators of the horizon, then, as it could be
expected, they would actually contribute to the growth of the spacelike area of the event
horizon [27].

Originally, the Third Law of black-hole mechanics was presented in [6] as the follow-
ing statement: “it is impossible by any procedure, no matter how idealized, to reduce
the surface gravity to zero by a finite sequence of operations”.

In opposition to the other laws, these one was not given a proper proof at the time.
Actually, not even what exactly was meant by “finite number of operations” was clear in
[6], as it was pointed out by W. Israel. A proper proof for the third law was given by
him in [36] thirteen years latter of the work of J. Bardeen, B. Carter and S. Hawking.
Omitting some technical conditions that escape this work, the third law formulated by
Israel states that: if the energy-momentum tensor satisfies the weak energy condition, no
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continuum process can make the surface gravity vanish for a finite time measured by a
set of observers crossing the event horizon.

4.2.2 Hawking radiation

At this point, it is apparent the resemblance between the laws of black-hole mechanics
and the laws of classical thermodynamics. The constancy of the surface gravity for a
stationary black hole is analogous to the constancy of temperature for a system in thermal
equilibrium. The first law of black-hole mechanics tells what is the differential of the mass
of a black hole as a function of the spatial area and angular momentum of its event horizon
(latter on the electric charge will be considered). But mass is associated to energy and,
therefore, this equation is comparable to the first law of thermodynamics. Lastly, probably
the most suggestive parallel is between the impossibility of the area of an event horizon
to ever decrease and the non-reduction of entropy during an isolated thermodynamic
processes.

The comparison between the third law of black-hole mechanics to the third law of
classical thermodynamics requires an extra attention. This is due to the fact that this
law has different and not equivalent formulations. The most common one, due to M.
Planck, states that as the temperature of a thermodynamic system approximates to zero,
the entropy also goes to zero. There is no equivalent law for black-hole thermodynamics
as a simple counterexample proves: the extreme Kerr black hole (J = M2), whose surface
gravity is null but the event horizon has a non-vanishing area. However, there is also the
Nernst’s formulation of the third law of thermodynamics, which states that the temper-
ature of a thermodynamic system cannot be reduced to zero through a finite number of
processes. And this one has some considerable resemblance to the third law given by W.
Israel [36].

From the similarities between the Zeroth and Third Laws of black-hole mechanics
and the respective ones of classical thermodynamics, two connections are suggested: first
between the surface gravity of an event horizon with a thermodynamic temperature and
also between the spatial area of the event horizon and the entropy of the black hole.
However, classically this is no more than an analogy since a black hole cannot emit any
radiation. Thus, its temperature must be zero.

Despite all the interesting similarities between black holes and classical thermody-
namics discussed, there was no physical connection between them at the time the laws of
black-hole mechanics were first proposed. However, in 1975, S. Hawking coupled Quan-
tum Field Theory to a classical Schwarzschild background and showed that an observer
far away from the black hole would perceive a thermal radiation being emitted from its
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event horizon [26]. And the value of the temperature found is

T =
κ

2π
, (4.25)

where κ is the surface gravity of the event horizon. Therefore, in the work of Hawking, it
was found only a few years after the publication of the four laws of black-hole mechanics
that the surface gravity is indeed the temperature of the black hole. Thus, it is due to
this result that a true black-hole thermodynamic theory can be elaborated, where, from
(4.25), we are led to the black-hole entropy:

S =
A

4
. (4.26)

4.2.3 Bekenstein-Hawking black-hole thermodynamics

A fundamental idea in classical thermodynamics is the concept of thermodynamic
equilibrium, in which a system is completely characterized by a set of extensive pa-
rameters: typically (for gases) internal energy U , entropy S, volume V and number of
particles N . Therefore, in order for us to be able to build a black-hole thermodynamics,
the first step is to ask what can be used to define an equilibrium state for a black hole.
The answer to this question comes from the following conjecture [63]:

Black holes have no hair: Black holes in a stationary and asymptotically flat
spacetime are completely characterized by three parameters: its mass M , angular
momentum J and charge Q.

Furthermore, it is believed that, given enough time, a black hole formed by gravita-
tional collapse should settle down to a stationary configuration. This is not a proved result
but it is widely accepted. The idea is that after a gravitational collapse the deviations
from stability are radiated away in the form of gravitational waves until the black hole
reaches stationarity. A brief discussion about this process and how recent works support
this idea can be found in [64]. Furthermore, if all the matter near the black hole falls
inside its event horizon, such that any other matter can be considered to be infinitely far
away from it, then by the uniqueness theorem of stationary black holes on vacuum, the
black hole must be the Kerr-Newman one [61, 49].

We are led to take a stationary black hole as a equilibrium state equivalent (to a cer-
tain extent) to the thermodynamic equilibrium. However, it is still important to notice
the difference between this definition of equilibrium and the one from classical thermody-
namics. As it will be seen latter, the parameters which are used to describe a stationary
black-hole, which comes from the No-hair theorem, are not extensive. Therefore, the
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usual definition of the thermodynamic equilibrium as the state where a set of extensive
and intensive parameters are constant is a different notion of equilibrium compared to the
stationarity configuration of a black hole. This turns out to be have great importance.
As it is presented in [40] by P. Landsberg, if the entropy is not extensive with respect to
a set of variables and it is superadditive8, then it will not be a concave function. What
this means is that the entropy cannot be maximized, as it is asked for the equilibrium
state in classical thermodynamics.

The differences between taking a stationary configuration for a black hole and the
usual thermodynamic equilibrium can be further explored looking at the heat capacity,
C, of the Schwarzschild black hole:

C ≡ ∂Q

∂T
, (4.27)

where Q (not to be confused with the charge of the black hole) is the heat flowing into
or out to the thermodynamic system and T its temperature. The calculation is straight-
forward, we recall that for a quasi-equilibrium process dQ = TdS and make use of the
following two results: the surface gravity of the Schwarzschild black hole is given by (3.52)
and its mass relates to the area of the event horizon by [53]

M2 =
A

16π
. (4.28)

Then, the heat capacity is

C =
∂M

∂T
= −8πM2. (4.29)

The fact that the heat capacity of the Schwarzschild black hole (4.29) is negative
has some important implications towards its behavior. We now present two of them.
First, because the Hawking Radiation makes the black hole slowly decrease its mass [63],
an isolated black hole shall be completely evaporated after some (long) time since its
formation. Therefore, it cannot reach a final state whether it is of equilibrium or not.
However, the process is usually slow enough so that for each instant the black hole can
be considered to be quasi-stationary [5].

Second, it is possible to put the black hole in thermal equilibrium with an (infinite)
heat bath [5], however, the equilibrium is going to be unstable, which is in opposition
to the usual cases of classical thermodynamics. In order to perceive this instability,
we imagine that a slightly higher amount of radiation enters the black hole, making its
mass increase. Then, from (4.29) we see that its temperature decreases, making the
radiation which enters the black hole from the thermal bath bigger than the one it is
radiated away from the Hawking process. The process follows indefinitely, making the
black hole to grow endless. The opposite phenomenon is seen considering a slightly lower

8That is, f(x+ y) ≥ f(x) + f(y).
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amount of radiation entering the black hole that is not enough to compensate the Hawking
Radiation. Therefore, its mass decreases. Then the negative heat capacity tells us that
the temperature of the black hole gets higher, making the Hawking Radiation stronger.
Again, this process never stops and the black hole eventually vanishes.

After this discussion about the nature of the equilibrium state for the black-hole ther-
modynamics, we finish recalling another set of important quantities used in the thermody-
namic description of a typical system: the intensive parameters: temperature T , pressure
N and chemical potential µ. They can be obtained from the extensive parameters, and
therefore, from this perspective, they are not as fundamental as these ones. Equivalently,
the counterparts in the black-hole thermodynamics are: surface gravity κ, angular velocity
ΩH and electric potential ΦH.

Of course an equilibrium state by itself is not very interesting. If we want to talk about
thermodynamic processes, which shall be quasi-static in the sense that the intensive pa-
rameters are all well-defined for any moment, a fundamental equation is convenient. This
will describe the evolution of a thermodynamic parameter as another set of parameters
that characterizes the system evolves. Therefore, the fundamental equation contains all
the information about the system under consideration. It will then take an extensive pa-
rameter, for instance the energy, and write it as a function of the others: U = U(S, V,N).
In the black-hole thermodynamics, we want the mass of the black hole to be a a function
of its area, angular momentum and charge: M = M(A, J,Q). In a differential form, this
is just the first law of black-hole mechanics:

dM =
1

8π
κdA+ ΩHdJ + ΦHdQ, (4.30)

where we can associate

∂M

∂A
=

1

8π
κ(A, J,Q), (4.31)

∂M

∂J
= ΩH(A, J,Q), (4.32)

∂M

∂Q
= ΦH(A, J,Q). (4.33)

From (4.31) to (4.33) we have the equations of state, which relate a thermodynamic
parameter as a function of others. Each equation of state contains only a partial infor-
mation about our system. However, the knowledge of all of them is equivalent to having
the fundamental thermodynamic equation.

The exact form of the fundamental equation depends on which stationary spacetime
we are working with, that is, what is the energy-momentum tensor that enters the Einstein
equation. For instance, in the case of vacuum, which we know it must be a (charged)
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Kerr spacetime, the fundamental black-hole thermodynamic equation is given by [54]:

M = M(A, J,Q) =

√
A

16π
+

4πJ2

A
+
Q2

2
+
πQ4

A
. (4.34)

From (4.34), it is clear that the black-hole mass is not an extensive parameter of the
area, angular momentum and charge. By that, we mean that M is not an homogeneous
function of first degree of A, J and Q. Although in some references these parameters
are still called extensive, we shall not do it here. By taking partial derivatives of (4.34),
it can be found that the surface gravity, angular velocity and electric potential are not
homogeneous functions of zeroth degree of A, J, and Q. Thus, we also shall not call them
intensive parameters.

In order to continue the presentation of the usual black-hole thermodynamics, let us
turn our attentions back to where we started: the Hawking Radiation. We have seen
how Hawking’s discovery made it possible to develop the thermodynamics of black holes
by proving that the surface gravity on the event horizon is really the temperature of the
black hole. However, what we have not discussed yet is that the Hawking Radiation also
saves the day for the entropy. This is so because, if matter crosses the event horizon, the
entropy of the outside universe decreases. Although, one could argue, the total entropy of
the universe, including what is inside the horizon, still should increase, for observational
purposes this is not what we would want since this information is missed. However, due
to (4.26), we can define a generalized entropy SG such that the information of the entropy
inside a black hole can be perceived by us [7]:

SG ≡ S +
A

4
, (4.35)

where S is the entropy of the matter outside of the horizon. This works because when
matter crosses the horizon, decreasing the entropy of the outside, the gain in mass of the
black hole increases the area of the event horizon. On the other hand, if through the
Hawking Radiation the black hole shrinks (which is actually what happens [63]), then its
entropy decreases and for the outside universe it increases. This is the balance contained
in (4.35) that is consistent with the Second Law.

From classical statistical mechanics, we know that the entropy is a measure of the
number of accessible microscopic states for a given configuration of the system. In the case
of black-hole thermodynamics, we saw that the configuration is completely determined
by the mass, angular momentum and charge of the black hole. On the other hand, it
is still not clear how to count the number of microscopic states of a given black hole.
Furthermore, classically there is no real reason for the association of the area of the
event horizon with the entropy since this connection was only possible due to quantum
field effects discovered by Hawking. Therefore, the black-hole thermodynamics can be
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regarded as an effective theory for an unknown quantum gravity (statistical) theory.

Following what is usually done in the literature, we present the Table 4.2 where
important aspects of the black-hole thermodynamics are compared to their classical-
thermodynamic counterparts.

Table 4.2

Thermodynamics

Black Holes Classical

Notion of equilibrium Stationary spacetime Thermodynamic equilibrium

Parameters needed to
describe the equilib-
rium state

Comes from the No-hair theorem
M,J,Q

Extensive parameters
U, V,N

Energy /
Temperature /
Entropy

M / κ
2π /

A
4 U / T / S

Zeroth Law
Surface gravity κ is constant on
the event horizon for a stationary
black hole

Temperature is constant for a
system in thermodynamic equi-
librium

First Law dM = 1
8πκdA+ ΩHdJ + ΦHdQ dU = TdS − PdV + µdN

Second Law
(mechanics law)

δSG ≥ 0 (δA ≥ 0) δS ≥ 0

Third Law
No continuum process can make
the surface gravity vanish for a
finite interval of advanced time

No finite quantity of processes
can make the temperature of a
thermodynamic system vanish

4.3 Hayward thermodynamics

In order to understand why Hayward’s work is interesting, let us recall the limitations
on the Bekenstein-Hawking thermodynamics. First of all, the thermodynamic quantities
are defined based on an event horizon, which, due to the global nature of its definition,
cannot be exactly located in a realistic experiment. Moreover, the usual definition of a
black hole requires an asymptotically flat spacetime, which may not be the case for our
universe. Second, the black hole must be stationary or, at most, quasi-stationary and,
therefore, the thermodynamics of dynamical processes is not covered.

Motivated to expand the applicability of a thermodynamic theory for black holes, S.
Hayward in 1994 and in 1998 [28, 30] proposed new laws for the black-hole mechanics,
called “generalized laws”. In his work, the event horizon is no longer the central notion,
but the trapping horizons of spherically symmetric spacetimes, which, as we already know,
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are quasi-locally defined. Since there is no timelike Killing vector unless the spacetime
is stationary, S. Hayward employed the Kodama vector in order to define the geometric
surface gravity in replace of the usual surface gravity. These subjects are studied, respec-
tively, in Subsection 4.3.1 and in Subsection 4.3.2. In general, there are many different
definitions for the energy contained in the black hole, for instance, the most common ones
used in the Bekenstein-Hawking thermodynamics are the ADM mass and the Komar mass
[63]. In spherically symmetric spacetimes there is a quasi-local definition for the energy
known as the Misner-Sharp mass, why is this so and how it is defined is in Subsection
4.3.3. Also, in these geometries a preferable notion of volume exists and will appear in
the generalized Hayward First Law, Section 4.3.4.

Quantities associated to the energy-momentum tensor are presented in Subsection
4.3.5. All these objects must be motivated and defined in careful ways. For this reason
and because they do not appear in most General Relativity textbooks, this section is
organized in many subsections so that we give the proper attention to each quantity. The
generalized laws of black-hole mechanics are then presented in Subsection 4.3.6. Finally,
then, we get to the Hayward thermodynamics, considered in Subsection 4.3.7

4.3.1 The Kodama vector

The generalized laws of black-hole mechanics developted by S. Hayward in the 1990s
[28, 30] are only applicable to spherical symmetric spacetimes. Such geometries were
already studied in Section 3.1, but it is worth recalling that in this situation there is
always a coordinate system such that the line element can be written in the form

ds2 = habdx
adxb + r2dΩ2. (4.36)

The areal radius r is a function of the non-angular coordinates and hab is the metric tensor
on the bidimensional effective surface.

As already stated, the Bekenstein-Hawking thermodynamics is only valid for station-
ary spacetimes, which are characterized by the existence of a timelike Killing vector field
ξµ. On the other hand, S. Hayward’s theory also works for trapping horizons of dynam-
ical spacetimes, such as Vaidya. For this reason Hayward even compared his work as a
transition from classical thermostatics to the thermodynamics [30].

If we want to construct a thermodynamics applicable to dynamical geometries, we
need a vector field that plays similar functions of ξµ so that we can define an analogous
quantity for the surface gravity. Such vector is known for spherical geometries and is
called the Kodama vector field [39]. Its components are defined for a metric of the
form (4.36) as

Ka ≡ εab∇br (4.37)

56



and Kθ = 0 = Kφ. The object εab is the inverse Levi-Civita tensor9 with respect to the
2-dimensional metric hab.

In order to explore in which way the Kodama vector generalizes the timelike Killing
vector, let us work in a static spacetime, for which the metric can be written in
Schwarzschild-like coordinates:

ds2 = −|gtt|dt2 + grrdr
2 + r2dΩ2. (4.38)

In this coordinate system, the only non-vanishing component of the Kodama vector field,
as it can be computed via (4.37), is

Kt =
1√
−gttgrr

. (4.39)

This shows that, for a static spacetime, at each point the Kodama vector is propor-
tional to the timelike Killing vector (∂t)

µ. The condition for both vector fields to coincide
(4.39) is gttgrr = −1, which is satisfied, for instance, in the Reissner-Nordströng (charged
Schwarzschild) spacetime.

In the Hayward thermodynamics that we shall introduce latter, the trapping horizons
play the role of event horizons in the usual black-hole thermodynamics. For this reason,
we will now present how to characterize trapped surfaces with respect to the norm of the
Kodama vector. For that, it is convenient to change the coordinate system and work with
the double null coordinates (ξ−, ξ+):

ds2 = −2e−fdξ−dξ+ + r2dΩ2, (4.40)

where f and r are functions of the null coordinates. We define ∂− ≡ ∂ξ− and ∂+ ≡ ∂ξ+ to
represent the future-directed null vector fields pointing toward, respectively, decreasing
and increasing areal radius.

In this coordinate system (4.40), the components of the Kodama vector are

K+ = −ef∂−r,

K− = ef∂+r,
(4.41)

and the others vanish. We compute the norm of the Kodama vector Kµ

gµνK
µKν = 2g+−K

+K− = 2ef
[
∂+r ∂−r

]
. (4.42)

9The Levi-Civita tensor, εµν , also called the volume element, is ε =
√
h dx1 ∧ ...∧ dxn, where h is the

absolute value of the determinant of the metric and {x1, ..., xn} are the coordinates of the surface. The
wedge product ∧ of two 1-forms, ω and σ, is defined to be ω ∧ σ = ω ⊗ σ − σ ⊗ ω.
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In order to relate (4.42) to a trapped surface, the following relation found in [29] is useful:

θ± =
2

r
∂±r. (4.43)

Hence we find
gµνK

µKν =
r2

2
efθ+θ−. (4.44)

It follows that the Kodama vector field is spacelike, null or timelike for, respectively, a
trapped, marginal or untrapped surface. This result is consistent, for instance, with the
Schwarzschild spacetime since we know the Kodama and the Killing vector fields coincide
and inside the event horizon ∂t becomes spacelike.

4.3.2 Geometric surface gravity

The surface gravity is greatly important in the Bekenstein-Hawking black-hole ther-
modynamics as it gives the temperature of the black hole. Since in the Hayward thermo-
dynamics the trapping horizons play the role of event horizons, we present now how we
to construct a (geometric) surface gravity defined of these hypersurfaces as a generaliza-
tion, to some extent, of the usual surface gravity. As it was made clear in our previous
discussion, in order to accomplish this goal the Kodama vector fields are going to replace
of the timelike Killing vector fields.

We begin remembering that the usual surface gravity κ on an event horizon is indirectly
defined via (3.9)

1

2
χµ(∇µχν −∇νχµ)

h
= κχν . (4.45)

Let us, then, consider the left hand side of (4.45) replacing the timelike Killing vector for
the Kodama one, Kµ. In what follows, we make the calculations explicit in order to make
clear how concepts that we already understand are connected with the new theory we are
developing. Working in the coordinate system of (4.40), we expand the terms that appear
inside parenthesis10:

∇µKν = gνρ∇µK
ρ

= gνρε
ρδ∇µ∇δr

= gνρε
ρδ(∂µ∂δr − Γ+

µδ∂+r − Γ−µδ∂−r)

= gνρ
[
ερ+(∂µ∂+r − Γ+

µ+∂+r) + ερ−(∂µ∂−r − Γ−µ−∂−r)
]

= −gν+e
f (∂µ∂−r − Γ−µ−∂−r) + gν−e

f (∂µ∂+r − Γ+
µ+∂+r).

(4.46)

10We will use the fact that the only non-vanishing Christoffel symbols involving the null coordinates
are Γ+

++ and Γ−−−. Also, the orientation is chosen such that ε = e−f (dξ− ⊗ dξ+ − dξ+ ⊗ dξ−).
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And then, Kµ(∇µKν −∇νKµ) equals to

K+
[
(−gν+e

f∂+∂−r + gν−e
f∂+∂+r − gν−efΓ+

++∂+r)

− (−g++e
f∂ν∂−r + g+−e

f∂ν∂+r − g+−e
fΓ+

ν+∂+r)
]

+K−
[
(−gν+e

f∂−∂−r + gν+e
fΓ−−−∂−r + gν−e

f∂−∂+r)

− (−g−+e
f∂ν∂−r + g−+e

fΓ−ν−∂−r + g−−e
f∂ν∂+r)

]
.

(4.47)

Despite of the long expression, when studying each each component separately we
observe a simplification (also making use of (4.41)):

Kµ(∇µK+ −∇+Kµ) = K−
[
2g+−e

f∂+∂−r
]

= −2ef∂+r∂+∂−r, (4.48)

Kµ(∇µK− −∇−Kµ) = K+
[
− 2g−+e

f∂+∂−r
]

= −2ef∂−r∂+∂−r. (4.49)

This is valid on all spacetime, but we are interested in what happens on a future trapping
horizon since this one is related to black holes. By definition, the expansion tensor in
outgoing direction vanishes: θ+ = 0. And as a result, from (4.43), ∂+r

h
= 0 :

Kµ(∇µK+ −∇+Kµ)
h
= 0, (4.50)

Kµ(∇µK− −∇−Kµ)
h
= −2ef∂−r∂+∂−r. (4.51)

Furthermore, notice that on a trapping horizon Kµ = gµνK
ν h

= gµ+K
+. The only

non-null component being

K−
h
= −g−+e

f∂−r
h
= ∂−r. (4.52)

Therefore, we finally see that, working on the double null coordinate system, on a trapping
horizon we have the following relation

1

2
Kµ(∇µKν −∇νKµ)

h
= −ef∂+∂−rKν . (4.53)

Comparing (4.53) with (4.45) we are led to define the geometric surface gravity
κG on trapping horizons indirectly via

1

2
gµνKρ

(
∇ρKµ −∇µKρ

) h
= κGK

ν . (4.54)

And if the Killing and the Kodama vector fields coincide, for instance in the Reissner-
Nordströng spacetime, the usual surface gravity and the geometric surface gravity are the
same. Therefore, in this situations, the generalized surface gravity is indeed a generaliza-
tion of the usual one when considering spherically symmetric geometries.
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Equation (4.54) does not give a practical way to calculate the geometric surface gravity.
An equivalent, but more direct and useful definition of κG is [21]:

κG = ∇a∇ar =
1

2
√
h
∂a
(√

hhab∂br
)
, (4.55)

with hab being the metric on the 2-dimensional effective surface defined on (4.36).

One interesting feature of the geometric surface gravity is that it can be used to
classify trapping horizons. To show that, we compute the geometric surface gravity using
the metric in the coordinate system of (4.40):

κG = −e
f

2

[
∂+(e−fef∂−r) + ∂−(e−fef∂+r)

]
= −ef∂+∂−r. (4.56)

But from (4.43):

κG = −1

2
ef∂−(rθ+) = −1

2
ef
[
(∂−r)θ+ + r∂−θ+

]
= −1

2
ef
(

1

2
rθ−θ+ + rL−θ+

)
. (4.57)

Then, on a future trapping horizon, recalling that θ+ = 0, we have

κG = −1

2
refL−θ+. (4.58)

Alternatively, we could write κG = −1
2
ef∂+(rθ−) and evaluate it on a past trapping

horizon, where θ− vanishes, finding

κG = −1

2
refL+θ−. (4.59)

From the sign of the derivatives L−θ+ and L+θ− in (4.58) and (4.59), we can classify
each kind of trapping horizon according to the sign of the geometric surface gravity. The
result is presented in the Table 4.3.

Table 4.3

Future trapping horizon Past trapping horizon

Outer Inner Outer Inner

Geometric surface
gravity κG

Positive Negative Positive Negative
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4.3.3 Misner-Sharp mass

In General Relativity there are distinct and non-equivalent ways to define the mass
of a compact object. The most common ones are the Kodama and ADM masses, which
both involve an integration on spatial infinity in order to be defined [47]. As it has
been discussed, the Hayward thermodynamics is defined on trapping horizons, which are
quasi-local objects. For this reason, it is natural to seek a quasi-local definition for the
mass of the black hole. The one which is used in the Hayward thermodynamics is the
Misner-Sharp mass:

MMS ≡
r

2
(1−∇µr∇µr), (4.60)

from where we see that it depends only on the value of the areal radius and its neighbor-
hood to be defined.

The physical meaning of the Misner-Sharp mass is still not clear just from its definition
(4.60) and our next task is to clarify its physical interpretation (it will be seen that
it is in close relation with the Kodama vector field). In order to do that, following
the presentation given by Hayward in [29], we will work with the spherically symmetric
spacetime in the following coordinate system:

ds2 = −dτ 2 + eλdζ2 + r2dΩ2, (4.61)

where r and λ are functions of τ and ζ only.

In this coordinate system the components of the Kodama vector field are [29]

Kτ = e−
λ
2 ∂ζr, (4.62)

Kζ = −e−
λ
2 ∂τr, (4.63)

the others vanishing. And for reasons that will soon become clear, it is also defined
the vector field Jµ ≡ T µνKν , where T µν is the energy-momentum tensor. The non-zero
components are

Jτ =
e−

λ
2

4πr2
∂ζMMS, (4.64)

Jζ = − e
−λ

2

4πr2
∂τMMS. (4.65)

Furthermore, it can be shown that the divergent of Kµ and Jµ are null [3]:

∇µK
µ = 0, (4.66)

∇µJ
µ = ∇µ(KνT

µν) = 0. (4.67)

61



As in Electrodynamics, equations (4.66) and (4.67) imply that both Kµ and Jµ are
conserved currents. Then, from Stokes’s theorem, each of them will generate a conserved
charge. In other words, the quantities ∫

Σ

εΣ nµK
µ, (4.68)∫

Σ

εΣ nµJ
µ, (4.69)

where nµ is the unit normal vector field orthogonal to Σ, are independent of the spacelike
hypersurface Σ chosen.

In the next subsection, where the notion of black-hole volume will be discussed, the
implications of (4.68) are going to be presented. For now, we will focus on (4.69) since
this is the one related to the Misner-Sharp mass.

We calculate the integral over the hypersurface Σ of constant time-coordinate τ and
areal radius between zero and a fixed value r:

−
∫

Σ

εΣ Jµ(∂τ )µ = −
∫

Σ

εΣ Jµgµτ =

∫
Σ

e
λ
2 dζdΩ

e−
λ
2

4πr2
∂ζMMS =

∫ ζ

ζ0

dζ ∂ζMMS

= MMS,

(4.70)

where we have used that ζ0 represents the coordinate ζ at zero areal radius, where we
assume MMS = 011. From (4.70) we have the physical interpretation of the Misner-Sharp
mass as an amount of the conserved charge (4.69) within a region of some fixed radius at
a given instant of time.

In Subsection 4.3.1 we saw that the norm of the Kodama vector and the sign of the
geometric surface gravity could be used to characterize surfaces in a spherically symmetric
spacetime. It turns out that we can also use the Misner-Sharp mass in order to give a
condition for a 2-surface to be trapped, marginal or untrapped. For this task, we use the
double-null coordinate system (4.40):

MMS =
1

2
r(1−∇µr∇µr) =

1

2
r(1− 2g+−∂+r∂−r) =

r

2
+
efr3θ+θ−

4
. (4.71)

Then, we can classify if a 2-sphere of radius r is a trapped, marginal or untrapped surface
according to the value of the Misner-Sharp mass contained inside this surface. In Table
4.4 this description is presented, along with the classification according to the norm of
the Kodama vector field.

11More generally, we have ∆MMS for (4.70)
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Table 4.4

Trapped surface Marginal surface Untrapped surface

Kodama vector Spacelike Null Timelike

Misner-Sharp
mass MMS

2MMS > r 2MMS = r 2MMS < r

4.3.4 Black-hole volume

In classical thermodynamics, one of the extensive parameters that is frequently used to
characterize a system is its volume. Such term, or a relativistic analogue, is not present
in the Bekenstein-Hawking thermodynamics but will appear in the Hayward’s theory.
However, how to define a spatial volume in a spacetime in an unambiguous form is usually
not clear. And for this reason, before we get into Hayward’s definition of volume, it is
woth seeing in some details why it is not trivial to define a spatial volume in a Lorentzian
geometry.

Minkowski space provides the first and most clear example to our discussion. A set
of observers O with no motion with respect to each other could define a spatial volume
V according to a fixed time on their synchronized clocks. Now we suppose that another
set of observers O′ travels with a velocity u with respect to O. In their perspective,
they can also define a spatial volume V ′ following the same procedure of O. Then, how
V and V ′ are related to each other? This is a simple question from special relativity.
The answer is that they are related by a Lorentz contraction on the direction of motion.
Therefore, each set of observers perceives the volume defined by the other set of observers
contracted by an amount of

√
1− u2. This conclusion could also be stated in terms of

coordinate systems. If two coordinate systems are distinct by a Lorentz transformation,
then the respective spatial volumes also differ by a Lorentz transformation. Therefore,
the definition of spatial volume is ambiguous in the sense that it is dependent on the
choice of a coordinate system.

For the case of a general Lorentzian geometry, a coordinate transformation will not
keep a 3-volume invariant in general. Thus, for each foliation taken, that is, for a fixed
time coordinate, the 3-volume may be different. Hence, the ambiguity is present. For
instance, the paper [19] shows that for a Schwarzschild black hole its spatial volume,
defined by fixing a time coordinate and integrating the areal radius from the singularity
to the event horizon (and integrating on the angular coordinates), has different values
depending on the coordinate system chosen.

After this prelude, we consider how the spatial volume is going to be defined in the
Hayward thermodynamics. We recall that the divergence of the Kodama vector field Kµ
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is zero (4.66) and from Stokes’s theorem a conserved charge would be generated, which
means that the integral (4.68) is independent of the spacelike hypersurface of integration,
Σ. We did not explore this fact in details when defining the Misner-Sharp mass, however,
we will do it here and also show how it is related to the spatial volume.

First we prove that (4.68) is indeed a conserved charge. So, we want to integrate
∇µK

µ and use Stokes’s theorem to analyse the fluxes on the hypersurfaces of contant
time. What we are going to do is integrate inside a region of fixed radius r (this is the
region N in Figure 4.1) whose boundary is the union of Σp, Σf and C. Therefore, we have∫

N

εN∇µK
µ =

∫
Σf

εΣf (∂τ )µK
µ −

∫
Σp

εΣp(∂τ )µK
µ +

∫
C

εC
∇µr√
∇νr∇νr

Kµ. (4.72)

The minus sign before the second term on the right hand side is due to the fact that
on the hypersurface Σp the normal vector field points on the opposite direction of (∂τ )

µ.
However,

∇µrK
µ = εµν∇νr∇µr = 0 (4.73)

since we are contracting the indices of a symmetric tensor with the indices of an anti-
symmetric one. Then, because ∇µK

µ = 0:∫
Σf

εΣf (∂τ )µK
µ =

∫
Σp

εΣp(∂τ )µK
µ, (4.74)

which shows that the quantity ∫
Σ

εΣ (∂τ )µK
µ (4.75)

is independent of the hypersurface Σ of constant time-coordinate τ and of areal radius
limited to r.

r →∞ r

C

Σf

Σp

N (∂τ )µ

Figure 4.1: Representation of the region being integrated between two surfaces of constant
τ . The boundary of N is composed by the future and past hypersurfaces, respectively,
Σf and Σp and the cylinder C of constant radius r. On the right side we have an arrow
representing the direction of the vector field (∂τ )

µ.
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We now show that the conserved charge (4.69) defines a spatial volume. For that,
consider the coordinate system of (4.61) and take a hypersurface Σ of constant coordinate
τ and areal radius going from zero to r :

−
∫
εΣ (∂τ )µK

µ = −
∫
εΣ gµτK

µ =

∫
e
λ
2 dζdΩ e−

λ
2 ∂ζr = 4π

∫ ζ

ζ0

dζ r2∂ζr

=
4πr3

3
.

(4.76)

What we are showing is that (4.68) defines not only a global conserved charge, but a
quasi-local one. This is physically reasonable as we expect that for any time the region
inside a fixed areal radius gives the same spatial volume.

4.3.5 Quantities associated to the energy-momentum tensor

It was seen how the Kodama vector replaces the Killing one and how it defines a
geometric surface gravity analogue to the usual surface gravity. The definitions presented
in Hayward’s work of energy and volume for spherically symmetric spacetimes were also
discussed in formal ways but keeping physical intuition close. In order to finally get to
the Hayward thermodynamics, it is left for us to discuss about two quantities which are
associated with the energy-momentum tensor. These are two invariants of the bidimen-
sional effective surface and are called the work-density scalar and the energy-flux vector
field.

Since they will be needed in the rest of this subsection, we already write the Einstein
field equations for a spherically symmetric spacetime in double null coordinates [30]:

∂±∂±r − ∂± ln(−g+−)∂±r = −4πrT±±,

r∂+∂−r + ∂+r∂−r −
1

2
g+− = 4πr2T+−,

r2∂+∂− ln(−g+−)− 2∂+r∂−r + g+− = 8πr2(g+−T
θ
θ − T+−).

(4.77)

An appropriate manner to introduce the work-density scalar and the energy-flux vector
field is to show where they come from. So, we will use the double null coordinates
to evaluate the rate of change of the Misner-Sharp mass on the bidimensional effective
surface in terms of the energy-momentum Tensor [30]:

∂±MMS = −Ag+−(T+−∂±r − T±±∂∓r). (4.78)

Now, it is defined the energy-flux vector field ψµ and the work-density scalar
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w, whose physical interpretation will be soon discussed, as:

ψµ ≡ T µν∇νr + w∇µr, (4.79)

w ≡ −1

2
habT

ab, (4.80)

which in the double-null coordinate system read:

ψ+ = T++g
+−∂−r, ψ− − T−−g+−∂+r, (4.81)

w = −g+−T+−. (4.82)

From the definitions (4.79) and (4.80), we can write the rate of change of the Misner-Sharp
mass of (4.78) as

∂±MMS = Aψ± + w∂±V. (4.83)

Or in a covariant form:
∇µMMS = Aψµ + w∇µV. (4.84)

The above equation (4.84) is of enormous importance as it will lead directly to the
Hayward First Law of black-hole mechanics. Moreover, the expression gives some insights
toward the physical meaning of the quantities just defined. Comparing with the left
hand size of (4.84), the work-density scalar, w, clearly represents some energy density
as it appears together with the derivative of the spatial volume. Further investigation,
for instance analysing a spherically symmetric electromagnetic field tensor [30] and the
FLRW cosmology [20] shows that this scalar indeed behaves as expected for a work term.
For the energy-flux vector, since it is accompanied with only the spatial area, we can infer
that it does represent some kind of energy flux. Furthermore, in analogy to the first law of
classical thermodynamics, it seems natural that the change in energy can be separated in
work plus energy-flux terms. Therefore, we have justified the names of the new quantities
and why separate the derivative of the Misner-Sharp mass in this form.

4.3.6 The generalized laws of black-hole mechanics

In this subsection the generalized laws of black-hole mechanics, published by S.
Hayward in 1994 [28] and in 1998 [30], are presented followed by their proof or, at least, a
comment about it. Comparing his laws with the Bekenstein-Hawking thermodynamics or
with classical thermodynamics suggests a reinterpretation of his work as thermodynamic
laws. However, only in the next subsection this subject is going to be explored.

The Hayward Zeroth Law for black-hole mechanics states that for an equilibrium
state, regarded as the stationarity configuration of the spacetime, the geometric surface
gravity is constant on the trapping horizon.
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Proof. In a static and spherically symmetric spacetime, we can write the line element in
Schwarzschild-like coordinates (4.38) such that no component of the metric tensor depends
on the time nor the angular coordinates. Therefore, since the trapping horizon must be
the union of 2-spheres for all values of time due to the spherical symmetry, we see from
(4.55) that the derivatives of the geometric surface gravity with respect to the time or the
angular coordinates must be zero. Therefore, κG is constant on the trapping horizon.

The Hayward First Law of the Hayward black-hole mechanics gives the rate of
change of the Misner-Sharp mass of the black hole along its trapping horizon in the
form:

M ′
MS =

κGA
′

8π
+ wV ′, (4.85)

where f ′ denotes the derivative of the scalar f in any direction zµ tangent to the
trapping horizon: f ′ ≡ zµ∇µf .

Proof. The second term on the right hand side of (4.85) comes directly from (4.84). We
are left to prove that

Azµψµ =
κG
8π
zµ∇µA. (4.86)

In order to do that, we will work on double null coordinates following the steps suggested
in [30]. First we want to show the last equality of the following equation is true:

0 = (∇+r)
′ = zµ∇µ∂+r = z+∂+∂+r + z−∂−∂+r = g+−κGz

− − 4πrT++z
+. (4.87)

The term with the z+ component comes directly from the first equation of (4.77) evaluated
at a future trapping horizon, where ∂+r = 0. For the other term, with z−, we use the
second equation of (4.77). For that, we must notice that

T+− = − w

g+− = −wg+−, (4.88)

g+−

2r
=
MMS

r2
g+−. (4.89)

Then, we find the relation

∂+∂−r = g+−
(MMS

r2
− 4πrw

)
= g+−κG

12. (4.90)

And this completes the proof of (4.87).

12As it can be checked writing the geometric surface gravity, the work-density scalar and the Misner-
Sharp mass in double-null coordinates, the second Einstein equation of (4.77) can also be written as
κG = MMS

r2 − 4πrw.
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Now we have all the ingredients needed to prove the First Law (4.85):

Azµψµ = Azµ(Tµ+g
+−∂−r + w∂µr) = Az+T++g

+−∂−r = rκGz
−∂−r = rκGr

′

=
κGA

′

8π
,

(4.91)

where in the third equality we used (4.87) and in order to get the final result we have
used that, as it can be readily verified, A′ = 8πrr′. Therefore, we have finally proven the
First Law of the Hayward black-hole mechanics (4.85).

The Hayward Second Law was published four years before the other two in 1994
[28] and states that, given that the null-energy condition is true, the area of the trapping
horizon H is
> non-decreasing if H is future outer or past inner,
> non-increasing if H is future inner or past outer.
The cases in which the area is constant all happening when H is a null hypersurface.
Some aspects of the proof for the Hayward Second Law are too specific and we shall

not present it here. However, the main idea is intuitive: we must find out the sign of the
rate of change of the area element in a direction tangent to H and normal to the foliation
of marginal surfaces.

We now recall the physical interpretation of each kind of trapping horizons. We have
seen that a future outer trapping horizon is typical of black holes. In some cases it may
even coincide with its event horizon. Therefore, the fact that its area is non-decreasing
is what we would expect for an analogous of the usual Second Law of the Bekenstein-
Hawking black-hole mechanics. On the other hand, a past outer trapping horizon is
related to white holes, for which, not surprisingly, has an opposite dynamics. It was also
previously seen that future and past inner trapping horizons can be taken as the definition
of the cosmological horizon for a contracting and an expanding cosmology, respectively.
Then, it is clear that the Second Law gives the expected behavior for the trapping horizon
given these physical scenarios.

A third law for black-hole mechanics was not proposed by S. Hayward in his works
[28, 30] and nor it is presented in most texts in the literature about this subject. Therefore,
we end here the generalized laws of black-hole mechanics and in the next section we study
how they can be reinterpreted as thermodynamic laws.

4.3.7 Hayward black-hole thermodynamics

At this point, we are in a similar situation after presenting the Bekenstein-Hawking
black-hole mechanics. We have some laws which show interesting similarities with the laws
of classical thermodynamics, but we have not even talked about temperature, entropy or

68



any other characteristic parameter of a thermodynamic theory yet. Therefore, our current
task is to define these quantities.

We begin recalling that in the usual black hole mechanics, the thermodynamics had its
validation in S. Hawking’s work, which showed that the surface gravity of the event horizon
of a stationary black hole is the temperature it emits through, what is nowadays called,
the Hawking radiation. Again, we are not going to enter in the details of how to precisely
connect the geometric surface gravity to the temperature of a trapping horizon because
it requires a semi-classical treatment beyond the purpose of this work. When Hayward
published his Laws of black-hole mechanics, there were no formal proofs connecting the
geometric surface gravity with the temperature of a trapping horizon (as he made clear
in [30]). Since then, some effort were put in the attempt of filling this gap and researchers
found success in applying a technique developted by Parikh and Wilczek [45] in which
the Hawking Radiation is seen as a tunneling process. For instance, S. Hayward et al.
used this method for the case of future outer trapping horizons in spherically symmetric
spacetimes [32]. A brief review about how this method is applied can be found in [34]. In
what follows, we summarize some of its main conclusions.

The geometric surface gravity κG is positive for outer trapping horizons and negative
for inner ones. The temperature obtained via the Hawking Radiation as a tunneling
effect [34] is proportional to κG

2π
for future trapping horizons and proportional to −κG

2π
for

past ones (with the constant of proportionality being positive in both cases and given by
universal constants). Therefore, it is concluded that future outer and past inner trapping
horizons present a positive temperature and we can expect to be able to apply the Hayward
thermodynamics in a physically reasonable way. However, according to these results, past
outer and future inner ones would present a negative temperature. Such horizons will not
be considered in this work and this odd result may be caused by different reasons. For
instance, it may be that the method for obtaining the Hawking Radiation as a tunneling
effect is failed for such cases for unknown reasons, or past outer and future inner trapping
horizons may be physically impossible [34]. Other possibilities could exist, for instance,
maybe we should consider only the absolute value of the temperature found. However,
we will not go any further in this subject and in this work we will be interested in future
outer and past inner trapping horizons, which are the ones related, respectively, to black
holes and expanding cosmologies.

Given a connection between the geometric surface gravity and the temperature of a
trapping horizon, we are led to interpret the laws of the Hayward black-hole mechanics as
thermodynamic laws. Doing so, the entropy of the trapping horizon is given by A

4
, where

A is the area of the trapping horizon and, again, we have a similar relation with the usual
black-hole thermodynamics.

Despite the similarities of the Hayward black-hole thermodynamics with the
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Bekenstein-Hawking approach, they are very different in two important ways. For in-
stance, the Hayward construction is quasi-local. We recall that, in opposition to an event
horizon, whose definition requires a global knowledge of the spacetime, a trapping horizon
depends only on its position (its areal radius in spherically symmetric spacetimes) and its
neighborhood in order to be defined. Also, we have a thermodynamics of non-equilibrium.
By that we mean that the temperature of our system is defined for arbitrary dynamical
spherically symmetric spacetimes with trapping horizons and not only for stationary or
quasi-stationary configurations, as it is the case of the Bekenstein-Hawking black-hole
thermodynamics.

Nevertheless, in Hayward thermodynamics we are restricted to spherically symmet-
ric spacetimes, where we can define the Kodama vector field. On the other hand, we
are able to deal with dynamical spacetimes. Examples of systems where the Hayward
thermodynamics can be applied include: the future outer trapping and cosmological hori-
zons of the Vaidya and Vaidya-de Sitter spacetimes, this one being topic of the present
work. Of course, we can also apply Hayward thermodynamics to the situations where the
mass parameter is constant in the previous geometries. That is, the event horizon of the
Schwarzschild and Schwarzschild-de Sitter spacetimes, where the Kodama vector and the
geometric surface gravity coincide with the Killing vector and the usual surface gravity
and, thus, we recover the results of Bekenstein-Hawking black-hole thermodynamics. One
last interesting example we give is the FLRW cosmology. It was showed in [4] that the
First Law of the Hayward thermodynamics can be written in a differential form as it is
the case for the usual black-hole thermodynamics. This was accomplished by considering
an ensemble of FLRW cosmologies with the same temperature and pressure but slightly
different (Misner-Sharp) mass, volume and entropy. Then, taking the differential form of
the Friedmann equation, they were able to find the relation dM = TdS + wdV , where w
is the work-density scalar.

We finish this section comparing the main features of Bekenstein-Hawking black-hole
thermodynamics to the ones of the Hayward theory in Table 4.5.
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Table 4.5

Black-Hole Thermodynamics

Bekenstein-Hawking Hayward

Background
Event horizon of a stationary geom-
etry

Future outer and past inner trap-
ping horizons of a spherically sym-
metric spacetime

Construction Global Quasi-local

Energy /
Temperature /
Entropy

Komar or ADM / κ
2π /

A
4 Misner-Sharp / κG

2π / A
4

Zeroth Law
Surface gravity κ is constant on the
event horizon for a stationary black
hole

Geometric surface gravity κG is con-
stant on the trapping horizon for a
stationary black hole

First Law dM = κ
8πdA+ ΩHdJ + ΦHdQ M ′ = κA′

8π + wV ′

Second Law
(mechanics law)

δSG ≥ 0 (δA ≥ 0) ∆SG ≥ 0 (A′ ≥ 0)
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Chapter 5

Applications of Hayward
thermodynamics

The goal of this chapter is to apply the Hayward thermodynamics to concrete scenarios.
We are mainly interested in the Vaidya-de Sitter spacetime which models a dynamical
black hole whose mass changes in time and it is immersed in a not asymptotically-flat
cosmological background. This geometry is not compatible with the Bekenstein-Hawking
treatment. On the other hand, by S. Hayward’s theory we will be able to study the
thermodynamics of the future outer trapping horizon due to the presence of the black
hole and also of the past inner trapping horizon due to the expansion of the background
cosmology.

However, before we get into the Vaidya-de Sitter spacetime itself, the static case, in
which the mass of the black hole is constant, that is, the Schwarzschild-de Sitter spacetime,
will be first studied. That way we first get familiar to a simpler scenario so that we then
generalize it.

In order to investigate the thermodynamics of each of these environments, we will
discuss individually both spacetimes highlighting the important features. For this reason,
this chapter is organized in the following way: Section 5.1 is about the Schwarzschild-
de Sitter spacetime and in Section 5.2 the thermodynamics of the Schwarzschild black
hole and of the cosmological horizon are studied. Similarly, in Section 5.3 we present
the Vaidya-de Sitter spacetime in details and then, in Section 5.4, Hayward’s black-hole
thermodynamics is applied.

5.1 The Schwarzschild-de Sitter spacetime

The Schwarzschild-de Sitter spacetime, as the name suggests, describes a
Schwarzschild object in a de Sitter space. That is, a stationary and spherically sym-
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metric object of mass M immersed in a vacuum cosmological background with positive
cosmological constant Λ.

The metric tensor for this geometry can be written in diagonal Shwarzschild-like co-
ordinates [23]:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2, (5.1)

such that
f(r) ≡ 1− 2M

r
− Λr2

3
, (5.2)

with ranges

−∞ < t <∞, 0 < θ < π, 0 < φ < 2π,

for the radius coordinate, r, it depends on the roots of f(r).
(5.3)

The causal structure of this spacetime depends on the zeros of f(r), which rely on the
values of the parameters Λ and M. In order to study the different cases, first we write

gtt =
1

r

(
Λr3

3
− r + 2M

)
(5.4)

and take the derivative of what is inside parenthesis to find the local maximums and
minimums. It is straightforward to see they will be located at r = ±

√
1/Λ. From the

asymptotic behavior of this function
(
r → ±∞ =⇒ Λr3

3
− r + 2M → ±∞

)
, the positive

r must be a local minimum and the negative one a local maximum. And, to discover how
many positive roots there are, we substitute r =

√
1
Λ
at

Λr3

3
− r + 2M (5.5)

to find
−2

3
√

Λ
+ 2M. (5.6)

Thus, defining the extreme cosmological constant Λext ≡ 1
9M2 , we have three different

cases (Figure 5.1 shows the behavior of f(r) for each situation analysed):

◦ 0 < Λ < Λext : the function f(r) has two positive roots rH and rC , with rH < rC ,
and a negative root r− = −(rH + rC). This is the case of non-extreme Schwarzschild-de
Sitter spacetime, where the spherical object produces a horizon at r = rH and the de
Sitter universe produces a cosmological horizon at r = rC . It can be shown that rH and
rC satisfy the following limits

Λ −→ 0 =⇒ rH −→ 2M, rC −→∞, (5.7)
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Λ −→ 1

9M2
= Λext =⇒ rH , rC −→ 3M. (5.8)

Therefore,
2M < rH < 3M < rC (5.9)

for the non-extreme Shwarzschild-de Sitter spacetime. Unless otherwise specified, this
situation will be assumed.

◦ Λ = Λext : the function f(r) has one positive root. This is the extreme case, where both
horizons coincide at the same radius on this coordinate system, rH = rC .

◦ Λ > Λext : the function f(r) has no positive root. There is no black-hole, but a naked
singularity.

Λ < Λext

Λ = Λext

Λ > Λext

0

r

f(r) = 1 - 2M

r

- Λr2

3

0

Figure 5.1: Each line represents the qualitative behavior of f(r) for: (gray) non-extreme
Λ < Λext, (blue) extreme Λ = Λext and (red) Λ > Λext.

Considering the non-extreme case, since no component of (5.1) is a function of the
time coordinate, ∂t is a Killing vector field and it is timelike between horizons. Hence, the
Schwarzschild-de Sitter is a stationary geometry and we can compute the surface gravity
on the horizon, κH , and on the cosmological horizon, κC . In order to do that, we can
generalize the calculations that led to (3.40) so that

κi =
1

2

∣∣∂rf(ri)
∣∣. (5.10)

For latter calculations purposes, it is useful to express f(r) in terms of the position of
the horizons [23]:

f(r) =
1

a2r
(rC − r)(r − rH)(r + rH + rC), a2 =

3

Λ
. (5.11)
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Then,

f(r) =
1

a2r
[−r3 + r(r2

C + rHrC + r2
H)− rHrC(rH + rC)], (5.12)

from which, comparing with (5.2), we can read the parameters a and M as functions of
rH and rC :

a2 = r2
H + rHrC + r2

C , 2Ma2 = rHrC(rH + rC). (5.13)

We can also determine an expression of the surface gravity in terms of rH and rC . For
that, we use (5.10) in (5.11) in order to find

κi =
1

2a2r2
i

∣∣− 2r3
i + rHrC(rH + rC)

∣∣. (5.14)

The surface gravities on both horizons are given by:

κH =

∣∣(rC − rH)(2rH + rC)
∣∣

2a2rH
=

1− Λr2
H

2rH
, (5.15)

κC =

∣∣(rH − rC)(2rC + rH)
∣∣

2a2rC
=

Λr2
C − 1

2rC
. (5.16)

The coordinate system we are using to describe the Schwarzschild-de Sitter spacetime
does not cover the entire manifold. One possible extension of (5.1) is, again, the tortoise
coordinates, defined by dr∗

dr
= 1

f(r)
. We could also perform a Eddington-Finskeltein-like

transformation, defining the new coordinates u = t − r∗ and v = t + r∗. However, for a
maximal extension of the spacetime, which means all geodesics being defined for all the
values of the affine parameter, from −∞ to ∞, unless it ends on a curvature singularity
[63], it is necessary to glue together an infinite amount of Schwarzschild-de Sitter space-
times described in these coordinates. In Figure 5.2 we present the Penrose diagram for
the maximally extended Schwarzschild-de Sitter spacetime [23] and below we point out
its main features.

◦ Curvature singularities at r = 0 are behind the horizon of black and white holes (BH
and WH).

◦ The asymptotic structure, is the same one of the de Sitter spacetime, that is, conformal
infinities are space-like (I− and I+). Such surfaces are asymptotic boundaries of, respec-
tively, the cosmological past and cosmological future (Cp and Cf).

◦ Regions between horizons (I and II) are causally disconnected.
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III

BH

WH

I II

Cf

Cp

Cf

Cp

r
=
rC

r
=
r
H r

=
rH

r
=
r
Cr

=
rH

r
=
r
C

I+

r =∞

I−
r =∞

r = 0

r = 0

I+

r =∞

r
=
rC

I−
r =∞

Figure 5.2: Penrose diagram for the maximally extended non-extreme Schwarzschild-de
Sitter spacetime.

Despite the Schwarzschild-like coordinates being the most common ones to describe
the geometry of the Schwarzschild-de Sitter spacetime, they are not well behaved at the
horizons. When we change to Eddington-Finkelstein-like coordinates, it will become clear
that at rH it is located a future horizon due to a black hole or a past horizon due to a
white hole. Similarly, the cosmological horizon at rC can be relative to an expanding or a
contracting spacetime. Such distinctions are not clear in the coordinate system we worked
so far and it gives rise to ambiguities on the classification of the trapping horizons.

What we going to do, then, is to make use of outgoing and ingoing Eddington-
Finkelstein-like coordinates in order to classify some surfaces and hypersurfaces of the
Schwarzschild-de Sitter spacetime according to the terminology of trapped surfaces. Each
one of the coordinate systems will cover a region in the maximally extended Schwarzschild-
de Sitter spacetime and we shall analyse their distinctions and what they physically rep-
resent. Then, we will locate the trapping horizons so that we can apply the Hayward
black-hole thermodynamics.

We start our analysis with the Schwarzschild-de Sitter spacetime in ingoing Eddington-
Finkestein-like coordinates, in which the line element is written in the form

ds2 = −f(r)dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2), (5.17)

with f(r) defined as (5.2) and ranges

−∞ < v <∞, 0 < r <∞,

0 < θ < π, 0 < φ < 2π.
(5.18)

We can find the radial null curves setting the line element of (5.17) equal to zero and
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not allowing any angular variation. Then, we are left with the equation

2dvdr = f(r)dv2, (5.19)

which has two solutions: a curve of constant time coordinate v and the solution of the
differential equation:

dt

dr
=
f−1(r)

2
. (5.20)

This gives the ingoing and outgoing null vector fields:

nµ = −∂r, (5.21)

lµ = ∂v +
1

2

(
1− 2M

r
− Λ

3
r2

)
∂r. (5.22)

These vector fields are also generators of geodesics and satisfy lµnµ = −1. They can
be used to find the cross-sectional metric tensor hµν on the surface orthogonal to both lµ

and nµ (A.4). The line element obtained for hµν is

ds2 = r2dθ2 + r2 sin2 θdφ2, (5.23)

which, as expected, characterizes a 2-sphere and has an area element equal to r2 sin θ.

Then, we can use calculate the expansion scalars in outgoing and ingoing directions
via (A.13):

θl =
1

r

(
1− 2M

r
− Λ

3
r2

)
=

1

r
f(r), (5.24)

θn = −2

r
, (5.25)

from where we see that θn is always negative and θl is positive between horizons and
negative otherwise. And in order to classify the trapping horizons, we also calculate the
rate of change of θl along nµ:

Lnθl =
1

r2
f(r)− 1

r

(
2M

r2
− 2Λ

3
r

)
. (5.26)

And evaluating at a marginal surface characterized by θl = 0:

Lnθl
∣∣
θl=0

= −
[

2

r3

(
M − Λ

3
r3

)]
θl=0

. (5.27)

However
θl = 0 =⇒ f(r) = 0 =⇒ −Λr3

3
= 2M − r, (5.28)
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which can be used to write the previous expression as

Lnθl
∣∣
θl=0

= −
[

2

r3
(3M − r)

]
θl=0

. (5.29)

Due to (5.9), we conclude that

Lnθl
∣∣
rH
< 0, (5.30)

Lnθl
∣∣
rC
> 0. (5.31)

In what follows, we have the classification of surfaces for the non-extreme
Schwarzschild-de Sitter spacetime according to the terminology of trapped surfaces and
trapping horizons. In Figure 5.3 it is presented the maximally extended non-extreme
Schwarzschild-de Sitter spacetime, where it is highlighted in blue the region covered by
the ingoing Eddington-Finkelstein-like coordinates. It gives a helpful way to visualize the
surfaces that we are going to discuss and also the behavior of the ingoing and outgoing
radial null vector fields. Important features are:

◦ For a fixed time coordinate v, any 2-sphere of radius between 0 < r < rH or rC < r <∞
is a future trapped surface.

◦ For a fixed time coordinate v, the 2-spheres of radius rH and rC are marginally future
trapped surfaces.

◦ The union of all marginally future trapped surfaces, that is, for all time v, are marginally
future trapped tubes: ∪vrH and ∪vrC .

◦ The marginally trapped tube at rH is a future outer trapping horizon, which is in agree-
ment to our previous statement that a future outer trapping horizon is typical of black
holes. The marginally trapped tube at rC is a future inner trapping horizon. And as we
know, this hypersurface is the cosmological horizon of a contracting spacetime.
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Figure 5.3: The region highlighted in blue on the Penrose diagram for the maximally ex-
tended non-extreme Schwarzschild-de Sitter spacetime represents the submanifold covered
by the ingoing Eddington-Finkelstein-like coordinates.

Now we are going to work with the non-extreme Schwarzschild-de Sitter spacetime in
outgoing Eddington-Finkestein-like coordinates. Our approach is the same as it was done
for the ingoing coordinates. For this reason, we will be more direct in our treatment since
most ideas remain the same. In the outgoing coordinates, the metric tensor reads

ds2 = −f(r)du2 − 2dudr + r2(dθ2 + sin2 θdφ2). (5.32)

In order to characterize the causal structure for this spacetime through trapped sur-
faces, first we write the outgoing and ingoing radial null vector fields:

lµ = ∂r, (5.33)

nµ = ∂u −
1

2

(
1− 2M(u)

r
− Λ

3
r2

)
∂r, (5.34)

which satisfy lµnµ = −1 and are geodesic generators.

The metric tensor defined for the cross sectional surface is again that of a 2-sphere
(5.23). The expansion scalars can then be calculated:

θl =
2

r
, (5.35)

θn = −1

r

(
1− 2M(u)

r
− Λ

3
r2

)
= −1

r
f(r). (5.36)

We will also need the Lie derivative of θn in the outgoing direction:

Llθn
∣∣
θn=0

= −
[

2

r3
(3M − r)

]
θn=0

. (5.37)

Similarly to what was previously done, we present the classification of surfaces of this
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patch of the Schwarzschild-de Sitter spacetime according to the terminology of trapped
surfaces and trapping horizons (Figure 5.4 highlights in red the region covered by the
outgoing Eddington-Finkelstein-like coordinates in the maximally extended spacetime):

◦ For a fixed time coordinate u, any 2-sphere of radius between 0 < r < rH or rC < r <∞
is an past trapped surface.

◦ For a fixed time coordinate u, the 2-spheres of radius rH and rC are marginally past
trapped surfaces.

◦ The union of all marginally past trapped surfaces, that is, for all time u, are marginally
past trapped tubes: ∪urH and ∪urC .

◦ The marginally trapped tube at rH is a past outer trapping horizon, which agrees to
our assertion that a past outer trapping horizon is typical of white holes. The marginally
trapped tube at rC is a past inner trapping horizon. This is the cosmological horizon of
an expanding cosmology.
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Figure 5.4: The region highlighted in red on the Penrose diagram for the maximally ex-
tended non-extreme Schwarzschild-de Sitter spacetime represents the submanifold covered
by the outgoing Eddington-Finkelstein-like coordinates.

5.2 Thermodynamics of Schwarzschild-de Sitter

In this section Hayward thermodynamics is applied to the Schwarzschild-de Sitter
spacetime. The study will always start with the ingoing Eddington-Finkelstein-like coor-
dinates and, then, be finished with the outgoing ones. The goal is to calculate and analyse
the relevant thermodynamic quantities.
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5.2.1 Misner-Sharp mass

The Misner-Sharp mass for Schwarzschild-de Sitter evaluated at a fixed radius is given
by (4.60):

MSdS
MS =

r

2
(1− gµν∂νr∂µr) =

r

2
(1− grr) =

r

2

[
1−

(
1− 2M

r
− Λ

3
r2

)]
= M +

Λ

6
r3.

(5.38)

It is noticed that the Misner-Sharp mass for this spacetime is the sum of a term due
to the energy of the central spherical object and a term associated to the cosmological
constant. These are also, respectively, the Misner-Sharp masses for the Schwarzschild and
de Sitter spacetimes. In order to physically understand the contribution that comes from
Λ, we analyse the acceleration of a static observer in the static region. First, we recall
that in Schwarzschild a static observer has a velocity and an acceleration of (working in
Schwarzschild-like coordinates), respectively,

Uµ
S =

(∂t)
µ√

1− 2M
r

, aνS ≡ Uµ
S∇µU

ν
S =

M

r2

(
1− 2M

r

)(∂r)
ν . (5.39)

Similarly, in de Sitter the velocity and the acceleration of the static observer are

Uµ
dS =

(∂t)
µ√

1− Λr2

3

, aµdS = − Λr

3

(
1− Λr2

3

)(∂r)
µ. (5.40)

The acceleration can be written in terms of the Misner-Sharp energy in de Sitter, MdS
MS,

as
aµdS = − 2MdS

MS

r2

(
1− 2MdS

MS
r

)(∂r)
µ. (5.41)

Then, it is in a similar form to the acceleration of the static observer in Schwarzschild.

However, there are still two differences between (5.41) and (5.39). The first one is
the minus sign which is present in de Sitter as the cosmological constant has a negative
pressure and acts to expand the spacetime. The second one is that the absolute value
of the acceleration is twice bigger the one which would be felt by a static observer at
a fixed radius r in a Schwarzschild spacetime that has a mass parameter equal to the
Misner-Sharp mass of de Sitter evaluated at the same r. This result is explained due to
the fact that each observer experiences the other one accelerating away as the spacetime
expands. So, in order to account for both effects, it is reasonable that a static observer
must maintain an acceleration two times bigger.
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5.2.2 Work-density and energy-flux

For the purpose of obtaining the quantities associated to the energy-momentum tensor,
we will need the components of the Einstein tensor, which are zero with exception of

Gvv = Λ

(
1− 2M

r
− Λ

3
r2

)
= Λf(r), (5.42)

Gvr = Grv = −Λ, (5.43)

Gθθ = −Λr2, (5.44)

Gφφ = −Λr2 sin2 θ. (5.45)

The work-density scalar can be calculated from (4.80):

w = −1

2
hab

Gab

8π
= − 1

16π
(hvvGvv + 2hvrGvr + hrrGrr) = − 1

8π
hvrGvr =

Λ

8π
, (5.46)

and the energy-flux vector field from (4.79):

ψµ =
Gµν

8π
gνρ∂ρr + w∂µr =

Gµν

8π
gνr + w∂µr =

Gµv

8π
gvr +

Gµr

8π
grr + w∂µr

=
Gµv

8π
+
Gµr

8π
f(r) + w∂µr.

(5.47)

The angular components of the energy-flux vector are zero. It turns out that the other
two components also vanish:

ψt =
Λ

8π
f(r)− Λ

8π
f(r) = 0, (5.48)

ψr = − Λ

8π
+

Λ

8π
= 0. (5.49)

Before we proceed, it is worth considering the physical interpretation of the previous
results. We have found that in the Schwarzschild-de Sitter there is no energy flux, which
is expected for a static spacetime. For the work-density scalar, it can be used in order to
write (5.38) as

MSdS
MS = M +

4πr3

3
w, (5.50)

which supports the physical interpretation of w as an energy density quantity. Further-
more, the cosmological constant is responsible for the expansion of the spacetime. Then,
it is natural for it to be interpreted as a work quantity.

In the outgoing Eddington-Finkelstein-like coordinates, we need the new components
of the Einstein tensor. They are equal to those ones from ingoing coordinates, with the
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exception of Gur and Gru:

Guu = Λ

(
1− 2M

r
− Λ

3
r2

)
= Λf(r), (5.51)

Gur = Gru = Λ, (5.52)

Gθθ = −Λr2, (5.53)

Gφφ = −Λr2 sin2 θ. (5.54)

Because the components hur and hru of the metric in the outgoing coordinates also have
a reverse sign with respect to hvr and hrv, it can be checked that the calculations we have
previously made for the quantities associated to the energy-momentum tensor give the
same results.

5.2.3 Temperature and entropy

In order to define the temperature at the trapping horizons, our first task is to calculate
the geometric surface gravity from (4.55):

κG =
1

2
√
h
∂a(
√
hhab∂br) =

1

2
∂rh

rr =
1

2
∂r

(
1− 2M

r
− Λ

3
r2

)
=

1

2
∂rf(r), (5.55)

where hab is the metric in the 2-dimensional effective surface as defined in (4.36). As
expected, the result coincides with the usual surface gravity (up to a sign), which is given
by (5.10). Therefore, the geometric surface gravity on the future outer trapping horizon
is positive and equal to (5.15). And for the future inner trapping horizon the geometric
surface gravity is negative and equal to minus (5.16). Because for a future trapping
horizon the temperature is κG

2π
, we have that a physically reasonable temperature can be

associated to the future outer trapping horizon:

Temperature for the future outer trapping horizon =
1− Λr2

H

4πrH
. (5.56)

The temperature associated to this trapping horizon is clearly constant, which is in ac-
cordance with the Zeroth Law of black hole thermodynamics.

Given a temperature for the future outer trapping horizon, we can also associate an
entropy to the black hole as one fourth of its surface area:

Entropy for the future outer trapping horizon = πr2
H . (5.57)

Classically, this is a non-decreasing entropy as it should be (we recall that if we take into
account the Hawking Radiation, then it is the generalized entropy that is non-decreasing).
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Actually, the entropy is constant as it is expected from what says the Hayward Second
Law for a null trapping horizon.

We, then, turn our attentions to the outgoing Eddington-Finkelstein-like coordinates.
We give only a summary of the results since the calculations are a lot similar to the
ones in ingoing coordinates. First, it is straightforward to find that the geometric surface
gravity is again given by (5.55). Therefore, the geometric surface gravity on the past
outer trapping horizon is positive and equal to (5.15). And for the past inner trapping
horizon the geometric surface gravity is negative and equal to minus (5.16). As for a past
trapping horizon the temperature is −κG

2π
, we can associate a meaningful temperature to

the latter hypersurface:

Temperature for the past inner trapping horizon =
Λr2

C − 1

4πrC
. (5.58)

And given a temperature for the past inner trapping horizon, we can also associate an
entropy to the cosmological horizon as one fourth of its surface area:

Entropy for the past inner trapping horizon = πr2
C . (5.59)

5.3 The Vaidya-de Sitter spacetime

As the Vaidya spacetime generalizes Schwarzschild for a dynamical spherical object,
the Vaidya-de Sitter spacetime is an analogous generalization of Schwarzschild-de
Sitter. Its discovery is due to R. Mallet in 1985 [42]. In his paper, the line element for
the Vaidya-de Sitter geometry was written in Schwarzschild-like coordinates as

ds2 =
Ṁ2

M ′2
1

g(t, r)
dt2 − 1

g(t, r)
dr2 + r2(dθ2 + sin2 dφ2), (5.60)

where
g(t, r) ≡ 1− 2M(t, r)

r
− Λr2

3
, (5.61)

M(t, r) being interpreted as the mass of the spherical object and Λ a positive cosmo-
logical constant. The dot (·) and the apostrophe (′) above M mean, respectively, the
derivatives with respect to the time and the radius coordinates. And the ranges taken for
the coordinates are

0 < θ < π, 0 < φ < 2π,

for t and r, it depends on the roots of g(t, r).
(5.62)

Since the Vaidya-de Sitter is a dynamical geometry, there is no timelike Killing vector
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field and, therefore, the usual surface gravity cannot be defined. For this reason, in
order to analyse the thermodynamics of this geometry, the Bekenstein-Hawking theory is
not suitable. On the other hand, (5.60) gives a relevant example of a spacetime where
Hayward’s work is useful and the study of the thermodynamics of the trapping horizons
on Vaidya-de Sitter is the topic of study in the next section.

Despite being the first coordinate system used to describe the Vaidya-de Sitter space-
time, the Schwarzschild-like coordinates are not the ones in which this geometry is usually
presented in the literature. The most common ones are the Eddington-Finkelstein-like
coordinates and, as it will be seen, the physical interpretation for this spacetime is a
lot clearer in the latter coordinates. Moreover, following the same approach done for
Schwarzschild-de Sitter, before considering the thermodynamics, we must locate the trap-
ping horizons, which will be covered in these coordinates.

After R. Mallet’s discovery of the Vaidya-de Sitter geometry, in the same year D. Vick
presented this metric in outgoing Eddington-Finkelstein-like coordinates [60]:

ds2 = −f(u, r)du2 − 2dudr + r2(dθ2 + sin2 θdφ2), (5.63)

where
f(u, r) = 1− 2M(u)

r
− Λr2

3
, (5.64)

with ranges

−∞ < u <∞, 0 < r <∞,

0 < θ < π, 0 < φ < 2π.
(5.65)

The energy-momentum tensor for the Vaidya-de Sitter spacetime in outgoing Edding-
ton-Finkelstein-like coordinates coincides with the one for Vaidya in the same coordinates
[37], that is,

T µν = − 1

4πr2

dM(u)

du
(∂r)

µ(∂r)
ν , (5.66)

which leads to an equivalent physical interpretation we have already discussed in details
in Section 3.4. That is, the line element (5.63) represents a spherically symmetric object,
immersed in a de Sitter universe, losing its mass due to the radiation of light-speed
particles of radial trajectory.

The causal structure of this spacetime depends on the zeros of the function f(u, r).

However, differently from the Schwarzschild-de Sitter spacetime, the mass parameter is
now a function of the time coordinate u. As a consequence, it may happen that the mass
of the spherical object reaches a specific value such that the spacetime has its causal
structure changed. Therefore, in order to study the different situations, it makes more
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sense now to define an extreme mass parameter

Mext ≡
1

3
√

Λ
(5.67)

and analyse each case for a given value of the cosmological constant Λ.

◦ 0 < M(u) < Mext: the function f(u, r) has two positive roots rH(u) and rC(u), defined
such that rH(u) < rC(u), and a negative root r−(u) = −

[
rH(u)+rC(u)

]
. This is the case of

non-extreme Vaidya-de Sitter spacetime, where there is a radiating spherical object with
with a horizon at rH(u) immersed in a de Sitter universe with a cosmological horizon at
r(u) = rC(u). We have the following relation for the horizons:

2M(u) < rH(u) < 3M(u) < rC(u) for the non-extreme case. (5.68)

Unless otherwise stated, this is the situation considered when we refer to the Vaidya-de
Sitter spacetime in outgoing Eddington-Finkelstein-like coordinates.

◦ M(u) = Mext: the function f(u, r) has only one positive root and the horizons coincide
at the same radius. This is the extreme case.

◦ M(u) > Mext: no positive root for f(u, r). There is a naked singularity.

In order to study this spacetime through the terminology of trapped surfaces, we
follow the same approach done for Schwarzschild-de Sitter. First, we need the outgoing
and ingoing null vector fields:

lµ = ∂r, (5.69)

nµ = ∂u −
1

2

(
1− 2M(u)

r
− Λ

3
r2

)
∂r, (5.70)

which satisfy lµnµ = −1 and are generators of radial geodesics.

Again and as expected from the spherical symmetry, the cross-sectional metric on the
surface ortoghonal to lµ and nµ is the one of a 2-sphere (5.23). The expansion scalars in
outgoing and ingoing directions can, then, be calculated via (A.13):

θl =
2

r
, (5.71)

θn = −1

r

(
1− 2M(u)

r
− Λ

3
r2

)
= −1

r
f(u, r). (5.72)

In order to classify the trapping horizons, we must also calculate the derivative of θn
in the outgoing direction and evaluate it on the hypersurface of vanishing θn. Since this
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is a generalization of the calculation from Section 5.1, we just present the result:

Llθn
∣∣
θn=0

= −
[

2

r3

[
3M(u)− r

]]
θn=0

. (5.73)

Then, we have the following classification for the surfaces and hypersurfaces of our
interest:

◦ For a fixed time coordinate u, any 2-sphere of radius between 0 < r(u) < rH(u) or
rC(u) < r(u) <∞ is a past trapped surface.

◦ For a fixed time coordinate u, the 2-spheres of radius rH(u) and rC(u) are marginally
past trapped surfaces.

◦ The union of all marginally past trapped surfaces, that is, for all time u, are marginally
past trapped tubes: ∪urH(u) and ∪urC(u).

◦ The marginally trapped tube at rH(u), due to the presence of a radiating white hole, is a
past outer trapping horizon. The marginally trapped tube at rC(u) is a past inner trapping
horizon. This is defined as the cosmological horizon due to the expanding spacetime.

Now we change our attentions to the Vaidya-de Sitter spacetime in ingoing Eddington-
Finkestein-like coordinates, which line element is written as

ds2 = −f(v, r)dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2), (5.74)

with
f(v, r) ≡ 1− 2M(v)

r
− Λ

3
r, (5.75)

and ranges

−∞ < v <∞, 0 < r <∞,

0 < θ < π, 0 < φ < 2π.
(5.76)

The energy-momentum tensor for the Vaidya-de Sitter spacetime in ingoing
Eddington-Finkelstein-like coordinates also coincides with the one for Vaidya in these
coordinates:

T µν =
1

4πr2

dM(v)

dv
(∂r)

µ(∂r)
ν , (5.77)

leading to the same physical interpretation discussed in details in Section 3.4, that is, the
metric (5.74) represents a spherically symmetric object, immersed in a de Sitter universe,
increasing its mass due to the accretion of light-speed particles of radial trajectory.
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As we know, the causal structure of this spacetime depends on the zeros of the function
f(v, r). Since this is only a replacement of the previous time coordinate u for the new
time coordinate v, we have the same situations previoulsy described. That is, the non-
extreme case 0 < M(v) < Mext, the extreme case M(v) = Mext and the case in which
M(v) > Mext. The difference here, however, is that at rH(v) is the horizon of an accreting
spherical object.

Since the process to find the trapping horizons and to classify other surfaces according
to the terminology of trapped surfaces was done many times by now, we are going to be
more straightforward this time.

The outgoing and ingoing radial null vector fields are

lµ = ∂v +
1

2

(
1− 2M(v)

r
− Λ

3
r2

)
∂r, (5.78)

nµ = −∂r, (5.79)

which give the expansions:

θl =
1

r

(
1− 2M(v)

r
− Λ

3
r2

)
=

1

r
f(v, r), (5.80)

θn = −2

r
, (5.81)

and the rate of change of θn along l on the trapping horizon of vanishing θl is

Lnθl
∣∣
θl=0

= −
[

2

r3

[
3M(v)− r

]]
θl=0

. (5.82)

Some features of the Vaidya-de Sitter geometry are presented in the following:

◦ For a fixed time coordinate v, any 2-sphere of radius between 0 < r(v) < rH(v) or
rC(v) < r(v) <∞ is a future trapped surface.

◦ For a fixed time coordinate v, the 2-spheres of radius rH(v) and rC(v) are marginally
future trapped surfaces.

◦ The union of all marginally future trapped surfaces, that is, for all time v, are marginally
future trapped tubes: ∪vrH(v) and ∪vrC(v).

◦ The marginally trapped tube at rH(v), due to the presence of an accreting black hole, is
a future outer trapping horizon. The marginally trapped tube at rC(v) is a future inner
trapping horizon. This is the cosmological horizon due to the contracting spacetime.
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5.4 Thermodynamics of Vaidya-de Sitter

In the previous section, we have presented the trapped surfaces for the Vaidya-de Sitter
spacetime and have also located the trapping horizons. Now, we study the thermodynam-
ics on the future outer and past inner trapping horizons. As we will work with a general
mass parameter function, this spacetime is not under the Bekenstein-Hawking theory ap-
plicability and, therefore, it opens the way for the Hayward black-hole thermodynamics.
Furthermore, a realistic black hole may undergo a strong accretion process or quickly
radiate away before vanishing in the final period of its lifetime. Both of these processes,
for instance, could be expected to be too dynamical such that they cannot be considered
quasi-stationary and, hence, Hayward’s work presents itself as a viable alternative in order
to study the thermodynamics of these systems.

Table 5.1

Vaidya-de Sitter Thermodynamics

Ingoing coordinates Outgoing coordinates

Metric tensor ds2 = −f(v, r) + 2dvdr + r2dΩ2 ds2 = −f(u, r)− 2dudr + r2dΩ2

Einstein tensor Gµν
(non-zero components)

Gvv = Λf(v, r) +
2

r2

dM(v)

dv

Gvr = Grv = −Λ

Gθθ = −Λr2

Gφφ = −Λr2 sin2 θ

Guu = Λf(u, r)− 2

r2

dM(u)

du

Gur = Gru = Λ

Gθθ = −Λr2

Gφφ = −Λr2 sin2 θ

Work-density scalar
w

Λ
8π

Λ
8π

Energy-flux covector
ψµ

(non-zero components)
ψv = 1

4πr2 ∂vM(v) ψu = 1
4πr2 ∂uM(u)

Misner-Sharp mass
MMS

M(v) + Λr3

6 M(u) + Λr3

6

Geometric surface
gravity κG

at a trapping horizon
M(v)
r2i (v)

− Λri(v)
3

at a trapping horizon
M(u)
r2i (u)

− Λri(u)
3

Temperature
at the future outer trapping horizon

M(v)
2πr2H(v)

− ΛrH(v)
6π =

1−Λr2H(v)
4πrH(v)

at the inner past trapping horizon

− M(u)
2πr2C(u)

+ ΛrC(u)
6π =

Λr2C(u)−1
4πrC(u)

Entropy at the future outer trapping horizon
πr2
H(v)

at the inner past trapping horizon
πr2
C(u)
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All the relevant quantities for Hayward’s theory are presented in advance in Table 5.1
and, in the subsections that follow, important results are derived for the thermodynamics
of the Vaidya-de Sitter spacetime. The calculations that lead to the values that appear in
Table 5.1 can be found in Appendix C, where we work with a even more general situation
since the whole f function that appears in the Eddington-Finkelstein-like coordinates is
considered arbitrary.

5.4.1 Misner-Sharp mass, work-density and energy-flux

From Table 5.1, we see that the work-density scalar, as it was the case for the
Schwarzschild-de Sitter spacetime, is essentially the cosmological constant. This result
corroborates with the physical interpretation given to this quantity (4.80) since it is the
cosmological constant which is responsible for the expansion of the spacetime.

Moreover, the energy-flux vector field is no longer zero for the Vaidya-de Sitter geome-
try as it was for its static configuration. In both coordinate systems, the time-component
for the energy-flux at a position r is the rate of change of the mass parameter with respect
to the time coordinate over the area of a 2-sphere of radius r. This is a expected result
for a flux of energy in a spacetime in which the dynamics is dictated by how the mass of
a spherical object changes in time. Furthermore, accordingly to what was presented in
Section 3.4, by the null energy condition

∂M(v)

∂v
≥ 0, (5.83)

∂M(u)

∂u
≤ 0. (5.84)

And, therefore, a positive energy-flux refers to energy entering the black hole, while a
negative energy-flux refers to energy leaving the white hole.

5.4.2 Temperature

In this section we analyse the temperature on the future outer and past inner trapping
horizons as well as some of their most interesting features. We notice from Table 5.1 that
the geometric surface gravity assumes the same form for all kinds of horizons, not only
on those where a temperature is defined, and for both coordinate systems. On the other
hand, the temperature on the inner past trapping horizon has an opposite sign with
respect to the one from the future trapping horizon. As already discussed, this is due to
the fact that the geometric surface gravity is negative in the former horizon.

When S. Hayward published his generalized laws of black-hole mechanics in the 1990s
[28, 30], he highlighted that at the time there was no proof of a connection between
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the geometric surface gravity and a temperature emitted from the trapping horizon. As
commented in the introduction of the this chapter, this missing connection would be solved
latter applying a method for deriving the Hawking Radiation as a tunneling phenomenon
developted by M. Parikh and F. Wilczek in 2000 [45]. From this method, S. Hayward et
al. showed in 2009 that the particle production by a dynamical black hole takes a thermal
spectrum for a temperature of κG(rH)

2π
at the future outer trapping horizon [32]. However,

according to this work, the actual temperature that is measured by observers following
integral curves generated by the Kodama vector field is actually

T =
κG(rH)

2π
√

1− 2M(v)
r

, (5.85)

at first order near the horizon. When r → 2M(v), that is, for an observer as near
as possible from the trapping horizon, the temperate measured diverges and, then, S.
Hayward et al. argued that we can interpret κG(rH)

2π
as a renormalized temperature which

is finite as r → 2M(v).

For the Schwarzschild black hole, (5.85) agrees to what was already derived for the
Hawking Radiation. The square root on the denominator is a red-shift correction for
an observer that is not located infinitely far away from the horizon and, although for a
dynamic black hole this term appears for the same reason, in [32] is not clear whether an
observer at infinity would measure a temperature of κG(rH)

2π
.

Until here we have talked about the temperature defined on the future outer trapping
horizon. Then, it is left to give the physical interpretation for the temperature defined
for the past inner trapping horizons. If we consider the de Sitter space only, Hayward
thermodynamics coincides with the Bekenstein-Hawking approach and, therefore, the
temperature κG(rC)

2π
is measured by an observer moving along a timelike geodesic as derived

by G. Gibbons and S. Hawking in 1976 [22].

The semi-classical derivation for the temperature for a dynamic black hole in a de
Sitter cosmology follows the work of M. Parikh and F. Wilczek [38]. However, the physical
interpretation in terms of what is measured by observers is not discussed in this paper.

An interesting feature is that the temperature of the future outer trapping horizon is
always bigger than that of the past inner one. In order to show this, we recall that the
position of the cosmological horizon can be written with respect to rH via (5.13)

r2
C + rHrC + r2

H − a2 = 0, a2 =
3

Λ
, (5.86)

giving

rC =
−rH +

√
4a2 − 3r2

H

2
. (5.87)
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Then, we evaluate the difference between the temperatures of the horizons, which can be
found in Table 5.1:

1− Λr2
H

2rH
− Λr2

C − 1

2rC
, (5.88)

making use of (5.87). It is found that the function (5.88) is always positive for any value
of rH between zero and

√
3
Λ
. Nonetheless, because the physical value for the position

of the future outer trapping horizon, rH , is actually between zero and 1√
Λ
, we conclude

that the temperature on the trapping horizon due to the black hole is indeed always
bigger than the one of the cosmological horizon. There is, however, a situation where the
temperatures tend to coincide and that happens when rH → rC , which is approaching
to the extreme Schwarzschild-de Sitter spacetime. This represents an almost thermal
equilibrium situation and it is further investigated in Subsection 5.4.5.

5.4.3 Entropy

After discussing the temperatures, we change our attentions to the entropy of each
trapping horizon, which, as it is presented in Table 5.1, is one fourth of the area of the
respective horizon. Since the Hayward Second Law of black-hole mechanics is the only
one which we have not presented the formal and general proof of it, in what follows, we
prove that it indeed holds for the Vaidya-de Sitter spacetime.

A necessary condition for a horizon at some radius ri, where ri stands for rH or rC , is

f(M) = 1− 2M

ri
− Λr2

i

3
= 0. (5.89)

Since this is true for any value of the mass parameter M , which may change in time,
∂f
∂M

= 0. We must be careful taking this derivative since the position of the horizon is also
a function M . But, from these two expressions, we find

∂ri
∂M

=
ri

3M − ri
. (5.90)

Furthermore, we recall that the positions for the horizons satisfy

2M < rH < 3M < rC (5.91)

and if the null energy condition holds thenM(v) never decreases andM(u) never increases
(5.83 - 5.84). Therefore, from (5.90) the area for the future outer trapping horizon can
only increase, while the area for the past inner trapping horizon can only decrease. This
is in accordance with the Second Law of the Hayward black-hole mechanics presented
in Subsection 4.3.6. However, we recall that this is a law for the black-hole mechanics
and in the thermodynamics, when the semi-classical treatment is fundamental, it is the
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generalized entropy that is non-decreasing.

5.4.4 Heat capacity and no phase transition

All quantities relevant for the Hayward black-hole thermodynamics have already been
discussed for the Vaidya-de Sitter spacetime. Also, all three of Hayward’s laws were
checked for this geometry. In the rest of this chapter, we shall present two interesting
behaviors for the horizons as the mass parameter varies. The first one is that, given some
assumptions about howM changes in time, we can show that no phase transition will occur
during the process. The second one is that a connection between the thermodynamics
and the Hawking radiation can be proposed analysing the total entropy and total energy
for this spacetime.

By a (first order) phase transitions, we will be considering a divergence in the heat
capacity, which measures the rate of change of the internal energy of the system with
respect to its temperature. In the Vaidya-de Sitter spacetime, the energy is given by the
Misner-Sharp mass evaluated at each horizon and the heat capacity, C, is given by

Heat capacity for the future outer trapping horizon = 2π
∂MMS

∂M

∂M

∂κG
(rH), (5.92)

Heat capacity for the past inner trapping horizon = −2π
∂MMS

∂M

∂M

∂κG
(rC). (5.93)

When taking the derivative, it is important to be careful since the position of the
horizon, ri, varies with the value of the mass parameter M. We will also consider that the
inverse function theorem applies to ∂M

∂κG
, meaning thatM , as a function of the temperature,

is at least of class C1 and its derivative exists and does not vanish in any point. Then,
we start calculating each term:

∂MMS

∂M
= 1 +

Λr2
i

2

∂ri
∂M

, (5.94)

∂κG
∂M

=
1

r2
i

− 2M

r3
i

∂ri
∂M
− Λ

3

∂ri
∂M

. (5.95)

Since we are interested in evaluating those quantities at the horizons, we use the value
of the derivative of ri with respect to M already calculated (5.90):

∂MMS

∂M
=

2(3M − ri) + Λr3
i

2(3M − ri)
, (5.96)

∂κG
∂M

=
3(3M − ri)− 6M − Λr3

i

3r2
i (3M − ri)

. (5.97)
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Furthermore, at the horizons necessarily Λr3
i = 3(ri − 2M):

∂MMS

∂M
=

ri
2(3M − ri)

, (5.98)

∂κG
∂M

=
3M − 2ri
r2
i (3M − ri)

. (5.99)

Due to (5.91), the numerator of (5.99) is always negative, which means that these
derivatives have opposite signs as both have the same sign in the denominator. We
conclude that (5.92) is always negative for the future outer trapping horizon, which is a
generalization of the result already found in Subsection 4.2.3 for Schwarzschild. On the
other hand, the heat capacity for the past inner trapping horizon is always positive (5.93).
We also see that given our assumptions and definitions, no phase transition occurs:

Heat capacity for the future outer trapping horizon =
πr3

H

3M − 2rH
, (5.100)

Heat capacity for the past inner trapping horizon =
πr3

C

2rC − 3M
. (5.101)

One important point to highlight here is that, as already stated, in other thermody-
namic theories the energies associated to the black hole and to the cosmological horizon
may not be equivalent to the Misner-Sharp ones. For instance, in the work [57] from 2002,
the internal energies considered for each of these horizons are, respectively, M and −M .
From this consideration, the heat capacities are analysed and it is found that they are
both negative. A more recent example is [41] from 2017, where it is considered a unique
effective temperature, which is a function of both horizons, and the single heat capacity
for the whole spacetime is found to be always positive. Despite the differences, no phase
transition is found.

5.4.5 Unstable equilibrium

When discussing the entropy of a horizon, we were careful in distinguishing the black-
hole mechanics law, in which the null energy condition is supposed to hold, and the
black-hole thermodynamics law, where, due to the Hawking Radiation, it is a generalized
entropy that is non-decreasing. However, on a multiple-horizon spacetime, we could
wonder if it is possible to define a total entropy which (only) takes into account the
entropy of each horizon and such that it does not decrease as the black hole evaporates.
It turns out that if the entropies of both horizons in the Vaidya-de Sitter spacetime are
combined, then the resulted quantity possess this kind of behavior. When defining this
total entropy, we are conjecturing a possible extension of Hayward’s approach which gives
a single thermodynamics for geometries with multiple horizons. Similar treatments are
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already known for different thermodynamics [67].

The calculations are straightforward but they lead to the interesting assumption that
the near-extreme Schwarzschild-de Sitter spacetime represents an unstable equilibrium
and that the Hawking Radiation makes the dynamics of the Vaidya-de Sitter spacetime
tend to a configuration of maximum total entropy and minimum total energy. First, we
define what is meant by “total entropy”:

ST = SH + SC = π(r2
H + r2

C), (5.102)

and, in order to find the maximums and minimums, we take its derivative making use of
(5.13) to write rC in terms of rH :

rC =
−rH +

√
4a2 − 3r2

H

2
. (5.103)

Then, it is found that:

the total entropy is minimized for rH →
1√
Λ

and rC → rH , (5.104)

the total entropy is maximized for rH → 0 and rC →
√

3

Λ
. (5.105)

These are, respectively, the extreme Schwarzschild-de Sitter and the de Sitter spacetimes.
Then, one conclusion is that the total entropy, defined as the sum of the entropy of both
horizons, is non-decreasing for a black hole that shrinks due to the Hawking Radiation.

Since in the limit of the extreme situation the temperatures of both trapping horizons
coincide and we have just found that the entropy is minimized, we are led to similarly
analyse the behavior of the total energy of the system. This is defined as the sum of the
Misner-Sharp masses evaluated at each horizon:

MT
MS = M +

Λr3
H

6
+M +

Λr3
C

6
, (5.106)

and we take its derivative, where (5.13) can be used to write the mass parameter as a
function of the position of the horizons:

M =
rHrC(rH + rC)

2a2
. (5.107)

It is found an opposite behavior:

the total Misner-Sharp mass is maximized for rH →
1√
Λ

and rC → rH , (5.108)

the total Misner-Sharp mass is minimized for rH → 0 and rC →
√

3

Λ
. (5.109)
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The way the total entropy (5.102) and the total energy (5.106) behaves as functions
of the positions of the trapping horizons are represented in Figure 5.5. From it and
as just described, we have that, at the limit of a near-extreme Schwarzschild-de Sitter
spacetime, the horizons tend to thermal equilibrium, the total entropy is minimized and
the total energy is maximized. This might suggest that such situation represents an
unstable equilibrium configuration. Moreover, this conclusion seems to be in accordance
with a semi-classical result derived by R. Bousso and S. Hawking in 1998 in which the
near-extreme Schwarzschild-de Sitter spacetime (called the Nariai solution in their paper)
is unstable due to quantum perturbations that disturb this equilibrium [11].

Furthermore, it is interesting that the Hawking Radiation acts to increase the total
entropy and to decrease the total energy of the Vaidya-de Sitter spacetime, driving the
geometry away from the extreme situation and towards the configuration of maximum
total entropy and minimum total energy as it would be expected from a classical ther-
modynamic system. In order to further explore a possible connection between Hayward
thermodynamics and semi-classical effects, it would be necessary a treatment according to
quantum field theory in curved geometries, which is beyond the study developted during
the production of this work.

MMS

Entropy

0 1Λ 3Λ

rH| - - - - | - - - - |rC

0

Figure 5.5: The blue and red lines represent, respectively, the qualitative behavior of the
total entropy and total energy as functions of the position of the horizons.
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Chapter 6

Primordial black holes

In this chapter, we propose the application of the Hayward black-hole thermodynamics
in the modelling of primordial black holes. Since these hypothetical black holes should be
originated during the early stages of the universe, such objects would be interfering in their
environment since the radiation dominated era. For instance, a tiny black hole, around
an asteroid mass, that undergoes a relative strong evaporation via the Hawking Radiation
could change abruptly its mass due to an accretion process. It was the possibility of such
a strong accretion on the radiation dominated era studied by Y. Zel’dovich and I. Novikov
in 1967, for instance, that drew attention to the possible existence of primordial black
holes [66]. It is due to this importance of the background cosmology that in the first
section of this chapter, Section 6.1, the most relevant elements of the ΛCDM model are
briefly reviewed.

Even though the existence of primordial black holes is still debatable since no con-
clusive evidence has yet been observed, the merger of two black holes detected via grav-
itational waves by the LIGO-Virgo collaboration in 2015 [2], known as the GW150914
event, has recently risen the research in such objects. Two of the reasons that justify this
increased interest in primordial black holes are the unexpectedly large mass of the black
holes detected in 2015 [1, 52] and the agreement of the merger rate estimated by LIGO
with models in which primordial black holes constitute part of the dark matter [51].

If primordial black holes do exist, than it is hoped that some of their interactions
with the environment could be detected. On the other hand, the lack of observations
would represent constraints on the amount of primordial blacks in the universe. Many
recent works investigate how the current observations of the universe constraints the ratio
of which primordial black can represent the dark matter. The discussion presented here
is mainly based on [13], which compiles some of the up models of constraints, but also
looking at [14, 15] that we give an overview of the current understanding of primordial
black holes in Section 6.2. After understanding what primordial black holes are and
reviewing some of the important up-to-date developments, in Section 6.3 we propose a
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model representing the dynamics of a black hole in a de Sitter universe.

6.1 Elements of the ΛCDM cosmological model

The ΛCDM cosmological model is a widely-accepted proposal emerged in the 1990s
to explain cosmological phenomenons such as, among many others, the present stage of
accelerated expansion of the universe and the cosmic microwave background. In the theory
and with the current known data, the universe is not a static spacetime, but it is actually
dynamical, transitioning through different configurations in which the responsible factor
to describe its evolution are the parametrized contents in the universe, which currently
the main contributions comes from the dark energy (cosmological constant, Λ) and the
cold dark matter (CDM).

One of the assumptions of the ΛCDM model, known as the cosmological principle, is
that on large scales our universe should look the same for all observers. More precisely,
this means that it can be foliated by homogeneous and isotropic spacelike hypersurfaces.
Such solutions for the Einstein Equation are known as the FLRW spacetimes and can be
classified according to their close (κ̃ = 1), open (κ̃ = −1) and flatness (κ̃ = 0) [23]:

ds2 = −dt2 +R2(t)dω2, (6.1)

where R(t) is a scale factor with dimensions of spacetime and

dω2 =
dr̃2

1− κ̃r̃2
+ r̃2dΩ2. (6.2)

The ranges taken for the coordinates are:

−∞ < t <∞, 0 < θ < π, 0 < φ < 2π,

for r̃, it depends on the value of κ̃.
(6.3)

A coordinate system in which the line element is written with a −1 component in
the dt2 term and no time-space cross terms, such as (6.1), is known as comoving and the
observers who follow the integral curves of ∂t are said to be comoving observers. These
are the ones who perceive the cosmology as isotropic and homogeneous and, moreover,
measure a proper time interval of ∆t, with respect to which the age of the universe is
referred to.

This coordinate system is one of the most used in order to write the FLRW spacetimes.
Nonetheless, the geometric intuition to justify the previous classification in terms of the
values of κ̃ is hidden and it can be favored performing coordinate transformations such
that each situation is written apart:
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◦ κ̃ = 1 : The metric tensor on the spacelike hypersurface is that of a 3-sphere:

dω2 = dχ2 + sin2 χdΩ2, 0 < χ < π. (6.4)

◦ κ̃ = −1 : The metric tensor on the spacelike hypersurface is that of a hyperbolic 3-space:

dω2 = dχ2 + sinh2 χdΩ2, 0 < χ <∞. (6.5)

◦ κ̃ = 0 : The metric tensor on the spacelike hypersurface is that of Euclidean space:

dω2 = dχ2 + χ2dΩ2, 0 < χ <∞. (6.6)

Many coordinate systems were already presented and each of them serves a specific
purpose. However, the one we will work with comes from a slightly modification in (6.1)
so that the new scale factor, a(t), is dimensionless:

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dΩ2

)
, (6.7)

and κ̃ is replaced by κ ≡ κ̃
R2(0)

, which can take any real value.

The energy-momentum tensor for which the FLRW metric (6.7) is a solution of the
Einstein Equation is that of a perfect fluid:

Tµν = (ρ+ p)UµUν + p gµν , (6.8)

which represents a fluid whose particles travel with a 4-velocity Uµ with no heat conduc-
tion (T i0 = T 0i = 0 for any spatial index), no viscosity (T ij = 0), density ρ and pressure
p.

There are only two non-trivial and non-distinct Einstein equations which are then
called Friedmann equations and describe the dynamics of the scale parameter when given
a certain perfect fluid, that is, specifying its density and pressure [17]:

H2 =
8πρ

3
− κ

a2
, (6.9)

ä

a
= −4π

3
(ρ+ 3p), (6.10)

where it was defined the Hubble parameter

H ≡ ȧ

a
. (6.11)
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It is also common to define the density parameter, Ω, and the critical density, ρcrit, as

Ω ≡ 8πρ

3H2
≡ ρ

ρcrit
. (6.12)

Hence, the Friedmann equation (6.9) is written as

Ω− 1 =
κ

H2a2
, (6.13)

from where it can be seen that if the fluid in the cosmology has its density exactly equal to
the critical density, then the spacetime is spatially flat. Moreover, if the density is bigger
or lower than the critical density, then the spacetime is, respectively, closed or open.

However, it is expected that the content of the universe is constituted by a set of
perfect fluids such that the total density energy can be decomposed as the sum of each
constituent,

ρ =
∑

ρi, (6.14)

and, therefore, so it can be the density parameter:

Ω =
∑

Ωi. (6.15)

In order to simplify (6.13), it is usual to treat the curvature term in the same way as a
fluid so that we define a curvature density

ρcurv = − 3κ

8πa2
(6.16)

and similarly a curvature density parameter Ωcurv. Therefore, (6.13) is simply written as∑
i

Ωi = 1. (6.17)

Until this point, we have discussed the FLRW spacetimes and how the Friedmann
equation can be written in the simple form (6.17), where the curvature and each fluid
present in the universe gives some contribution to the dynamics of the scalar factor.
In order for the ΛCDM cosmological model to provide predictions in accordance with
our universe, we must know the fluids that will enter (6.17) and in which percentage
they contribute. According to recent observations, the content of the universe is divided
between radiation, baryonic matter, cold dark matter and dark energy (cosmological
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constant) in the current following proportion [56]:

ΩR 0 ∼ 10−5,

ΩBM 0 ∼ 0.05,

ΩCDM 0 ∼ 0.26,

ΩΛ 0 ∼ 0.69.

(6.18)

Moreover, the observable universe is close to being spatially flat [56]:

Ωcurv 0 ∼ −0.005. (6.19)

The density and, hence, the density parameter of each of the contents is a function
of the scale factor. The matter density decreases with volume ρM ∝ a−3, the radiation
density decreases with ρR ∝ a−4 due to the change in volume plus the change in wavelength
and the density of the dark matter is not altered by the scalar factor ρΛ ∝ a0. Knowing
the current contribution of each content of the universe and how it evolves in time, the
description of the universe for all times is a matter of solving a differential equation. This
is a calculation that is not going to be presented here, but in the rest of this section we
comment some of the main results.

It is found out that there is a time in the past when our universe becomes singular.
Thus, it is said that our universe has a beginning, that is, a big bang. When the universe
was small enough, it can be seen from the discussion in the previous paragraph that the
main contribution for the total density comes from the radiation. For that reason, it
is said that in the first 47 Ka1 the universe was in the radiation dominated era. After
this period, the most relevant contribution becomes the baryonic and the dark matter
until 9.8 Ga and this is known as the matter dominated era. During this epoch, the
expansion of the universe stops to slow down and it begins to accelerate. The discovery
of the accelerated expansion of the universe comes from the late 1990s and it was a
surprising result since there was no known content present in the universe capable to such
consequences. At the present time, it is believable that this acceleration comes from a
positive cosmological constant which might be a result of some form of “dark energy”.
After the matter dominated era, passing through the current age of the universe of 13.8
Ga, the universe is in the dark energy dominated era and, asymptotically in the future,
when the only contribution comes from Λ, the universe tends to the de Sitter spacetime.

We gave a brief review about the chronology of our universe and in order to end this
section about the ΛCDM, it is worth mentioning that there is one addition to the model,
which is called inflation. It is a brief period after the big bang, around only 10−32s, when
it is believed that the universe expanded at an enormous accelerated rate. The point in

1The term Ka stands for kilo-annum, that is, 106 years. Similarly, Ga is giga-annum, or, 109 years.
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making this addition to the model is to solve known cosmological problems. For instance,
the universe seems to be currently flat although for a universe dominated by radiation
or matter it is expected that the cosmology evolves away from flatness. Therefore, the
universe must have been almost perfectly flat just after the big bang. The other problem
that inflation proposes to solve is called the horizon problem. The point is that, in the
ΛCDM model alone, there are causally disconnected regions of the observable universe
that appear to have been in thermal equilibrium at some point in the past [17]. Our goal
is not to present how inflation solves each of these problems, but to motivate why this
proposal is added to the model discussed.

In this section we talked about some of the most important elements of the ΛCDM
cosmological model. As it will be seen, there is a class of black holes that may exist during
all the different epochs of the universe and, therefore, would be subjected to their distinct
characteristics. After giving an overview about these black holes, this work is finished
with a thermodynamic model for primordial black holes.

6.2 An overview of primordial black holes

Black holes are called primordial given that they are hypothesized to be originated
during the early universe (sometimes taken as the first one second after the big bang [15])
at the inflationary period or, more commonly, at the radiation dominated epoch. There is
still no conclusive evidence for their existence, nevertheless, the interest on such objects
started more than fifty years ago when Y. Zel’dovich and I. Novikov showed in 1967 that
a black hole could go through an extreme accretion of radiation at the early stages of the
universe [66]. However, a theoretical suggestion for the existence of such black holes came
only a few years latter, in 1971, when S. Hawking proposed a model for their creation
with a mass range starting at only 10−5g [24].

In the literature, the formation of primordial black holes is proposed in a variety of
ways during inflation or the radiation dominated era [13]. The main perspective is the
existence of an inhomogeneity able to stop the natural expansion of an overdense region
and to make it collapse. In 1974, B. Carr and S. Hawking showed that for an early universe
during the radiation dominated era, when the energy density satisfies ρ ∼ G−1t−2 (where
t is the cosmological time such that the big bang happens when t = 0), the gravitational
collapse happens on a spherically symmetric region of radius equal to ct (that is, the size
of the particle horizon) [16]. Thus, the primordial black hole originated at an early time
t has its initial mass of order [13]

M ∼ c3t

G
∼ 1015

(
t

10−23 s

)
g. (6.20)
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And given further details about the nature of the formation of the black hole, the ex-
pression (6.20) can be made more accurate [13]. From (6.20), we immediately see that
primordial black holes can, in principle, come in an enormous range of masses. For in-
stance, for those originated just at the end of inflation, 10−32s, the black hole would have
an initial mass of only 106g and, on the other hand, those originated at 1s would have a
mass of 1038g, which corresponds to 105 solar masses.

A lot of the current interest in primordial black holes comes from the detection of
gravitational waves originated by a binary black hole merger [2] in 2015. What drew
the attention of researchers is the fact that both black holes were about 30 times heavier
than the sun and black holes that big were not known to form via stellar collapses. For
instance, as it was made clear by the own LIGO-Virgo collaborators in a latter paper [1],
this was the best evidence, until that time, of the existence of such a heavy stellar-mass
black hole. In the same article, an explanation for the origin the black holes observed is
proposed and other hypothesis about their origin are rejected. However, the idea that
those objects are in fact primordial black holes were discussed in many subsequent papers,
for instance [51, 48].

One reason why primordial black holes are so interesting is that they are natural
candidates for dark matter. For a long time, the existence of unknown weakly interacting
massive particles, abbreviated to WIMPs, is a strong candidate as a solution to the
question: what is the dark matter? Another possible solution for the same question
resides on the massive compact halo objects, MACHOs. These are astronomical bodies
present in galaxy halos with few or negligible radiation emission. Then, it is proposed
by some researchers that the primordial black holes could be the hypothesized MACHOs
needed in order to explain at least part of the dark matter [13]. However, as it is just about
to be commented, the eventual fraction of dark matter in the form of primordial black
holes is heavily constrained due to the lack of observations. This turns this objects far
from being an unanimous idea in explaining the lack of matter perceived in the universe.

If an observation is expected for primordial black holes having some mass but they
are not detected, this represents a constraint on their existence at this circumstance. An
up-to-date review on the current known constraints on primordial black holes is [13] and
other useful references in the subject include [14, 15]. The former paper is also being used
in order to produce the rest of this section where we review some of, what we consider,
its most interesting results.

For primordial black holes generated with a mass less than 1015g, which are those that
have been already completely evaporated or are on the verge of vanishing, one of the main
constraints comes from the analysis of the cosmic microwave background. For instance,
for a mass of 1015g, this constraint says that the primordial black holes could correspond
only a fraction of 10−8 of the dark matter. The cosmic microwave background is also the
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main constraint on those black holes which have not yet evaporated and whose initial
mass is less than 1017g [13].

Another kind of constraint for non-evaporated primordial black holes that has gained
a lot of attention lately are those from the detection of gravitational waves. For instance,
the merger rate of binary systems of black holes obtained by LIGO is compared to the
expected one given that primordial black holes provide some fraction of the dark matter.
For the still existing primordial black holes, we have a large number of different constraints
such that between 1015g and 1055g most mass ranges could represent, at most (and usually
a lot less), ten per cent of the dark matter. Some of the interesting mass intervals in the
study of primordial black holes are the 1015g, which is highly constrained but would make
the Hawking radiation relevant in observations, the asteroid range, that is, the interval
1017 to 1023g, which is still not constrained, and the interval of 10 to 102 solar masses,
which, despite being also highly constrained, is in agreement with the GW150914 event
[13].

6.3 A model for the thermodynamics of primordial

black holes

As pointed out, the topic of primordial black holes is one of the subjects of most
interest among physicists in recent years. Moreover, we have already seen that there are
proposals of primordial black holes being formed at a large spectrum of masses and those
of order 1015 g would be close to vanish by now. For these black holes, the temperature
is high and the Hawking Radiation strong enough so that a dynamical approach, in order
to study their thermodynamics, should be preferable to the Bekenstein-Hawking theory.

If a primordial black hole is originated at the radiation dominated era and, if it is
massive enough, it will exist during the matter dominated era and will spend most of its
lifetime during the dark energy epoch until it completely evaporates. Therefore, a more
interesting model for the thermodynamics for this kind of black hole should take into
account its cosmological environment. In this work, we propose a dynamical black-hole
model in a de Sitter background, that is, the Vaidya-de Sitter spacetime. In the ΛCDM,
de Sitter is the asymptotic geometry for our universe in the far future and, therefore, our
model will be more realistic for latter times. It is also expected that a primordial black
hole undergoes accretion processes during its lifetime and its dynamics would not only be
due to its evaporation via Hawking Radiation. Thus, in the proposed scenario it is chosen
a function for the mass parameter and compare the results with a black hole that is only
submitted to evaporation.

The construction of the model is based on the work of W. Hiscock of 1981 [35] (also
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adapted latter by Hayward [31]) where the geometry of the evaporating black hole can be
described outside and inside the future outer trapping horizon by, respectively, the portion
of the Vaidya geometry in outgoing and ingoing coordinates such that, at the horizon,
M(u) = M(v) (see Figure 6.1). For this reason and because the past inner trapping
horizon describing the cosmological horizon of an expanding spacetime is covered by the
outgoing coordinates, we work in this coordinate system.

Out

In
TH

EH

r
=

0

r = 0

r
=

0

Figure 6.1: Penrose diagram for the formation and evaporation of a black hole in vacuum.
The blue and red region are submanifolds of the Vaidya spacetime and they are covered,
respectively by ingoing and outgoing Eddington-Finkelstein-like coordinates. The dotted
line represents the event horizon, while the curved line represents part of the future outer
trapping horizon.

We propose a simple model for the study of the thermodynamics of dynamical pri-
mordial black holes. The idea is not to consider a very realistic scenario, but, instead, to
obtain some experience and knowledge on how to study the thermodynamics, via Hay-
ward’s theory, of such systems so that more detailed models could be explored latter. The
dynamics for the mass parameter proposed is

M(u) =
Mf −Mi

π
arctan

(
u

λ

)
+
Mf +Mi

2
. (6.21)

In (6.21), there are three parameters we must choose. They are not entirely free as
there are constraints from the theory. Neither the initial mass parameter Mi nor the
final mass parameter, Mf , can match or exceed 1

3
√

Λ
in order for the spacetime to remain

non-extreme. Furthermore, we ask for Mi > Mf to represent a situation in which the
black hole is evaporating.
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The last parameter, λ, dictates how fast M(u) changes in time. Since the evaporation
is only due to the Hawking Radiation, it makes no physical sense to set its value so that it
makes the black hole to evaporate faster than expected from this phenomenon. Therefore,
in order to have a base parameter, we will look at the Hawking Radiation of black hole
in vacuum2, for which the rate of change of the mass parameter is estimated as [46]

dM

du
= − ~c4

15360πG2M2
. (6.22)

It can be calculated that choosing a value for λ greater than around 1018s makes the
mass parameter of our model decrease faster than what is given by the Hawking Radiation
at u = 0. Therefore, we have the following constraint: λ ≥ 1018s.

In Table 6.1 are summarized the constraints that the free parameters must satisfy
and, moreover, the chosen values they will assume. The reasons that explain the chosen
values shall now be justified. First, we set Mf = 0 in order for the mass parameter to
approximate to zero as much as possible. We want a black hole small enough so that
its evaporation is too fast and, thus, its configuration should not be considered quasi-
stationary. Therefore, with this intention we choose Mi to be 5 × 1011 kg, which is
a primordial black hole nearly to be completely evaporated by now. As discussed in
Section 6.2, primordial black holes of this mass are not the most likely ones to exist
according to the current constraints. However, they are small enough to make their
evaporation sufficiently strong so that the Hayward black-hole thermodynamics is more
appropriate than the Bekenstein-Hawking one. Moreover, there dynamics can be studied
on a timescale compatible with the current age of the universe. Lastly, we are going to set
λ = 1018s so that at u = 0 the mass parameter in our model changes in the same rate as
given by (6.22). This can be interpreted as meaning that when the black hole is formed
its dynamics is only driven by the Hawking Radiation emission, but it begins to accrete
matter and, then, its evaporation is slowed down (see Figure 6.5).

Table 6.1

Mi Mf λ

Constraint > Mf < 1
3
√

Λ
≥ 1018s

Chosen value 5× 1011kg 0 1018s

As we want our model to describe the dynamics of a primordial black hole, it is
important to be able to measure the evolution of the mass parameter (and also of the

2This is a reasonable approximation for the rate of evaporation of a Vaidya-de Sitter black hole if
the cosmological constant given that the cosmological constant and the black hole mass are small enough
[65].
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relevant thermodynamic quantities) with respect to the time coordinate used in cosmol-
ogy. That means, it is necessary to compare the u time coordinate of the outgoing
Eddington-Finkelstein-like coordinates with the cosmological time, which is measured by
the observers that are comoving with the expansion of the universe.

In order to find such coordinate change, first consider that far enough from the black
hole (to be quantified latter) the spacetime is approximately de Sitter. Than, our task is to
make a transition from the comoving coordinates to the outgoing ones. This can be done
first making use of (3.29), (3.32) and (3.26) to find the coordinate change from comoving
to Schwarzschild-like coordinates in both disconnected regions, that is, 0 < r < a and
a < r <∞. Then, we can find the transformation to the outgoing Eddington-Finkelstein-
like coordinates via (3.35).

Setting θ = 0 and χ and φ to be constant, we have the following relation between the
cosmological time, τ , and u:

for 0 < r < a u = a arcsinh
(

a√
a2 − r2

sinh
τ

a

)
− a

2
ln

∣∣∣∣r + a

r − a

∣∣∣∣+ C, (6.23)

for a < r <∞ u = a arccosh
(

a√
r2 − a2

sinh
τ

a

)
− a

2
ln

∣∣∣∣r + a

r − a

∣∣∣∣+ C, (6.24)

where

r = a cosh
τ

a
sinχ, a =

√
3

Λ
, (6.25)

and C is a constant that we set to be

C ≡ a

2
ln

∣∣∣∣a sinχ+ a

a sinχ− a

∣∣∣∣, (6.26)

so that u = 0 when τ = 0.

χ = π

τ =∞

χ = 0
τ = −∞

τ = 0

u = uf

u = 0

I−

I+

O

Figure 6.2: Representation of a comoving observer (dashed green line), O, in the Penrose
diagram of the de Sitter geometry. The dashed red lines represent the time of the outgoing
coordinates, u, at τ = 0 and τ →∞.
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As commented, we expect the Vaidya-de Sitter spacetime, for a small enough mass
parameter, to be nearly de Sitter for large values of radius, r. From (6.25) and considering
that the universe has a beginning at τ = 0, we must have χ not too far from π

2
. Therefore,

we are interested in an observer O that has a world line similar to the one of Figure 6.2.

In this work, we are going to choose χ = 4
5
π
2
. Then, (6.23) and (6.24) relate the

time u, which is used in the model for the dynamics of the mass parameter, and the
cosmological time τ , which is measured by this comoving observer. In Figure 6.3 and
Figure 6.4 are, respectively, the plots of u with respect to τ around the point when the
observer crosses the cosmological horizon and near to the current age of the universe
(approximately 4× 1017s).

1024 5 × 10241025 5 × 10251026 5 × 1026 1027

coordinate time u (s)

cosmological time τ (s)

5 × 1024

1025

5 × 1025

1026

5 × 1026

1027

Figure 6.3: Graph of coordinate time u of outgoing coordinates as a function of the
cosmological time τ for χ = 4π

10
, θ = 0 and φ constant. The blue line comes from (6.23)

and the red line from (6.24).
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Figure 6.4: Graph of coordinate time u of outgoing coordinates as a function of the
cosmological time τ for χ = 4π

10
, θ = 0 and φ constant. The curve comes from (6.23).

Knowing how to relate the time u with the cosmological time τ , we calculate the
dynamics of some of the relevant quantities in the Hayward black-hole thermodynamics
and present the results as functions of both time coordinates. For that, we shall use SI
units:
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c = 1 −→ 3× 108 m s−1,

~ = 1 −→ 1.05× 10−34 m2 kg s−1,

G = 1 −→ 6.67× 10−11 m3 kg−1 s−2,

kB = 1 −→ 1.38× 10−23 m2 kg s−2 K−1.

(6.27)

The value for the cosmological constant, Λ, is also needed, which is of order [56]

Λ = 10−52 m−2. (6.28)

First, in Figure 6.5 the evolution of the mass parameter is represented for (6.21) in
the color red as function of u and τ in a timescale compatible with the current age of
the universe. In the same figure, the evolution of the mass parameter of a black hole
submitted only to the Hawking Radiation in vacuum (6.22) is represented in blue. The
colors in the background are a reminder that the primordial black hole exists during
different cosmological epochs. We consider it is originated at the radiation dominated
era (qualitatively in purple color) just after the big bang, it goes through the matter
dominated era (gray color) and it transitions to the dark energy dominated era (light
blue color), where it exists during most of its lifetime. Since our model only contemplates
the de Sitter background, it should be more accurate in the latter region.
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Figure 6.5: Graphs of the mass parameter as a function of, both, the coordinate time in
outgoing coordinates and the cosmological time for (red) the simplified model of a dynamic
primordial black hole in a de Sitter cosmology (6.21) and for (blue) an evaporating black
hole in vacuum (6.22). The purple color in the background represents, qualitatively, the
radiation dominated era and the gray and light blue colors represent the transition from
matter to dark energy dominated era.

We also want to analyse the behavior of the horizons, which are necessary in order to
compute the evolution of the thermodynamic quantities of interest. For that, the position
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of the horizons, which are the zeros of (5.2) for a time-changing mass parameter, is written
as a function of the time coordinate [53]:

rH(u) =
2√
Λ

cos

(
π + ψ(u)

3

)
, (6.29)

rC(u) =
2√
Λ

cos

(
π − ψ(u)

3

)
, (6.30)

where ψ(u) = arccos
[
3M(u)

√
Λ
]
and we take the mass parameter function of our simpli-

fied model (6.21) with the free parameters assuming the values discussed.

In Figure 6.6a, the dynamics of each horizon is presented following the same previous
definitions for the colors. It can be noticed that the size of the black hole horizon is tiny,
even (a bit) smaller than the radius of the nucleus of a hydrogen atom. Furthermore,
it is seen that the variations on the position of the horizons are both of order 10−16m.
Although the fluctuation is quite small and we should not take them too seriously due
to uncertainties in the values we are assuming for the constants, it is enough to see that
the black hole horizon contracts a bit more than the cosmological horizon expands. This
difference is small, but relevant for the thermodynamic quantities to behave as studied in
Section 5.4.

The temperature, Misner-Sharp mass and entropy evaluated at both horizons are
also presented in, respectively, Figures 6.6b, 6.6c and 6.6d. As can be observed from
Table 5.1, they are all dynamic for being functions of the coordinate time u. For such
a small cosmological constant, as it is the case of our universe, taking into account Λ

in the calculations result in a tiny correction for the thermodynamic quantities when
considering the black hole in vacuum. For instance, the correction in the temperature,
which is more relevant for larger black holes, is of order 10−27 percent for a black hole one
billion times heavier than the sun. One notable result that can be seen from Figure 6.6b
is that the temperature for the black hole horizon is a lot greater than the one for the
cosmological horizon. This could be expected since we already knew that the area of the
former horizon is a lot smaller than the area of the latter one. Furthermore, it justifies
our earlier assertion that a black hole that small has a strong Hawking Radiation and,
hence, should be treated as a dynamical system.
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Figure 6.6: In red is the curve for the simplified model of a dynamic primordial black hole
in a de Sitter cosmology (6.21) for Mf = 0, Mi = 5 × 1011kg and λ = 1018s. In blue is
the curve for an evaporating black hole in vacuum (6.22). In order to relate the distinct
time coordinates, it is assumed χ = 4π

10
, θ = 0 and φ constant.
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Chapter 7

Conclusion

In the present work, we studied the thermodynamics of Vaidya-de Sitter via the Hay-
ward black-hole thermodynamics for general mass functions and also for a more concrete
scenario. An important part was the detailed presentation of Hayward’s approach. In
order for the generalized mechanics laws to be stated and proved, we have explored how
important quantities used to develop the theory replace their respective counterpart from
the Bekenstein-Hawking thermodynamics. The Kodama vector field, which reduced to
the timelike Killing vector field for a class spherically symmetric spacetimes, defined a
geometric surface gravity on trapping horizons. This is in a role equivalent to the one
assumed by the usual surface gravity on event horizons. It was commented that it is also
from the Kodama vector that energy (Misner-Sharp mass) and volume, contained within
a trapping horizon, are defined as conserved charges in Hayward’s description

Quantities associated to the energy-momentum tensor appeared when defining the
generalized Hayward First Law. The rate of change of the Misner-Sharp mass was de-
composed as the sum of a term containing the work-density scalar and another with the
energy-flux vector field. The other two generalized laws of black-hole mechanics presented
were: the Hayward Zeroth Law, which states that the geometric surface gravity is con-
stant on a trapping horizon, and the Hayward Second Law, asserting that the behavior
(that is, whether it is non-decreasing, non-increasing or constant) of a given trapping
horizon is predicted by its classification (future/past and outer/inner).

The transition to a proper thermodynamics was possible due to the existence of the
Hawking Radiation, which associates a physical temperature for the black hole. The
semi-classical treatment was not a part of this work, but it was commented that instead
of S. Hawking’s derivation for the phenomenon on event horizons, it is based on a work of
M. Parikh and F. Wilczek that it is shown that the radiation can be seen as a tunneling
process on a trapping horizon. It is also interesting that a positive temperature is only
derived from this method to future outer and past inner trapping horizons. These being
the ones related to a black hole and to a cosmological horizon of an expanding spacetime.
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How to interpret the negative “temperatures” is not clear as it was commented in this
work and also in [34]. Given a temperature, the entropy of the black hole was defined as
one fourth of the area of the trapping horizon.

After studying the Hayward black-hole thermodynamics, the theory was applied to
Schwarzschild-de Sitter and Vaidya-de Sitter. First, the trapping horizons for these ge-
ometries were found and classified. Then, the thermodynamic quantities were evaluated
at the horizons where a positive temperature is defined. Comments were made about
the physical interpretation of such quantities. Moreover, two results are relevant to be
summarized. From the calculation of the heat capacity, and assuming further conditions,
it was proved that no phase transition occurs. This result was derived in the context of
Hayward’s work and, therefore, the Misner-Sharp mass is understood as the energy of
the system. However, the absence of a phase transition is also obtained when considering
other thermodynamics and, therefore, different energy definitions [41, 57].

It was also shown that the Hawking Radiation takes the Vaidya-de Sitter spacetime
to a configuration of minimum energy and maximum entropy, as it would be expected
from a classical thermodynamic system. Furthermore, it is found that the limit of the
near-extreme configuration would represent an unstable equilibrium. This result seems
to be in accordance to studies where the complete evaporation of black holes, even if it
starts in the quasi-extreme Vaidya-de Sitter geometry, is predicted considering quantum
effects [11, 12]. This also opens up a possible extension for the present work. We have
not studied the semi-classical treatment of Hawking Radiation, but only cited well-known
results. Therefore, we can hope that, in an analysis of quantum effects in the Vaidya-
de Sitter spacetime, we would be able to explore in more details the interesting relation
between the thermodynamic behavior of this geometry and quantum phenomenons related
to the evaporation of the black hole.

This work was concluded applying the results obtained for Vaidya-de Sitter to a simple
model for the dynamics of a primordial black hole. Furthermore, it was found a way to
relate the time used in the model, which is written in outgoing Eddington-Finkelstein-like
coordinates, to the cosmological time, that is measured by observers that are comoving
with the expansion of the spacetime and with respect to which the chronology of the
universe is studied.

The goal of our simplified model was not to represent a realistic situation but, actually,
to learn how Hayward’s theory can be used to study the thermodynamics of such concrete
scenarios. This also indicates another possible extension of our work. There are proposals
for the dynamics of primordial black holes specifying the conditions of its formation and
which kinds of particles it accretes. For instance, this is done in [50], where it is used
a McVittie solution to study the black hole in a cosmological background. Such geom-
etry is also spherically symmetric, contains trapping horizons and, therefore, Hayward’s
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formalism could be employed. Another example is the model presented in [44], which
is a lot simpler and also closer to what we have considered. It models the dynamics of
the black hole via a Vaidya solution which accretes radiation from the cosmic microwave
background. Our work could also be complemented by taking into account the other
constituents of the universe. Then, the cosmological environment would not be described
by a de Sitter solution, but we would also consider how radiation and matter affects the
thermodynamic quantities in the periods they have dominated the universe.
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Appendix A

Congruence of null geodesics

If a family of curves fills a region O of the spacetime, in the sense that on each point
of O one (and only one) curve passes through it, then this family is called a congruence
in O. In the theory of black-holes, congruences of null curves play a crucial role in the
study of the evolution of event-horizons and in the proof of singularity theorems.

Consider we have a congruence of null geodesics generated by the vector field nµ.
Moreover, let us take a one-parameter family of geodesics which is a subset of the congru-
ence such that each curve is designated by a parameter s (in a smooth way) and affinely
parametrized by t along its path. If we have a local coordinate system xµ, then we define
the deviation vector from one curve to another by

ξµ ≡ ∂xµ

∂s
. (A.1)

As it is shown in [63], we can always affinely reparametrize the congruence in such a
way that the deviation vector is ortoghonal to the curves. Therefore, we may consider
ξµnµ = 0. And because partial derivatives commute: ∂tξν = ∂sn

µ, which can be written
in an explicit covariant form as

nµ∇µξ
ν = ξµ∇µn

ν . (A.2)

From (A.2) we see that the rate of change of the deviation vector ξµ is dictated by

∇µn
ν ≡ Bν

µ. (A.3)

We can also say that Bν
µ measures, in some sense, the failure of ξν to be parallel-

transported. Since this can be done for any subset of one-parameter family of geodesics
of the congruence, it is natural to expect that the tensor Bν

µ contains information about
how the congruence behaves. In the rest of this appendix we show this is indeed the case.
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Besides the null congruence generated by nµ, let us take another congruence of null
curves, of tangent vector field lµ, such that they are parallel transported, nµ∇µl

ν = 0, and
the new congruence is parametrized so that nµlµ = −1. Then, we can use these vector
fields to build a metric tensor hµν , also called the projection tensor, which acts on the
vector space spanned by tangent vectors orthogonal to lµ and nµ [17]:

hµν = gµν + lµnν + nµlν . (A.4)

In order to understand how (A.4) works, apply it to multiple-scalar vectors of lµ (or
nµ) and to vectors vµ and wµ orthogonal to both lµ and nµ:

hµνl
µvν = gµνl

µvν − lνvν = gµνl
µvν = 0,

hµνv
µwν = gµνv

µwν . (A.5)

Then we see that when acting on vector fields on the space orthogonal to both lµ and nµ,
the metric hµν works just as gµν , but when applied to a tangent vector proportional to lµ

or nµ, it gives zero. There is another property that confirms the projection behavior of
hµν :

hµνh
ν
ρ = (δµν + lµnν + nµlν)(δ

ν
ρ + lνnρ + nνlρ)

= δµρ + lµnρ + nµlρ + lµnρ − lµnρ + nµlρ − nµlρ = hµρ . (A.6)

If we return to (A.2), but considering a deviation vector in the projected space, ξµ = ξ̂µ,
it turns out that we only need the projection of Bν

µ on the cross sectional surface defined
by (A.4),

B̂ν
µ ≡ hναh

β
µB

α
β, (A.7)

in order to measure the rate of change of the deviation vector along nµ :

nµ∇µξ̂
ν = nµ∇µξ

ν = nµ∇µh
ν
αξ

α

= hναn
µ∇µξ

α

= hναξ
µ∇µn

α

= hναξ
µBα

µ

= hναh
µ
ρξ

ρBα
µ

= B̂ν
µξ

µ = B̂ν
µξ̂

µ. (A.8)

Inspired by fluid kinematics [47], we decompose B̂µν as

B̂µν =
1

2
θhµν + σ̂µν + ω̂µν , (A.9)
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where

θ ≡ B̂µ
µ, (A.10)

σ̂µν ≡ B̂(µν) −
1

2
θhµν =

B̂µν + B̂νµ

2
− 1

2
θhµν , (A.11)

ω̂µν ≡ B̂[µν] =
B̂µν − B̂νµ

2
, (A.12)

are, respectively, the expansion scalar and the shear and rotation tensors.

In our study of black holes, we will be mostly interested in the behavior of the expan-
sion scalars as they are used to find trapped surfaces and trapping horizons. Therefore,
it is important to have a physical interpretation for θ and this comes from the following
result [47]:

θ =
1√
h
Ln
√
h. (A.13)

Then, we see that the expansion scalar is directly related to the rate of change of the
cross sectional area along the null geodesic congruence and (A.13) gives an easy way to
compute it.

We can also calculate the rate of change of the expansion scalar along one (affinely-
parametrized) congruence:

nµ∇µθ = nµ∇µB̂
ν
ν

= nµ∇µB
ν
ν

= nµ∇µ∇νn
ν

= nµ∇ν∇µn
ν +Rν

σµνn
σnµ

= −(∇νn
µ)(∇µn

ν)−Rσµn
σnµ

= −Bµ
νB

ν
µ −Rµνn

µnν

= −B̂µ
νB̂

ν
µ −Rµνn

µnν

= −1

2
θ2 − σ̂µν σ̂µν + ω̂µνω̂µν −Rµνn

µnν . (A.14)

In order to find the previous equation we have used B̂ν
ν = Bν

ν and B̂µ
νB̂

ν
µ = Bµ

νB
ν
µ

[9]. The result (A.14) is known as Raychaudhuri’s equation.

If the null geodesic congruence is not affinely-parametrized,

nµ∇µn
ν = κnn

ν , (A.15)

then we have [9]

B̂µ
µ = Bµ

µ + κn (A.16)
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B̂µ
νB̂

ν
µ = Bµ

νB
ν
µ + κ2

n. (A.17)

Therefore, applying the necessary changes on the derivation of (A.14), Raychaudhuri’s
equation becomes

nµ∇µθ = −1

2
θ2 − σ̂µν σ̂µν + ω̂µνω̂µν −Rµνn

µnν + κnθ. (A.18)
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Appendix B

Radial null geodesics in Vaidya-de
Sitter

In Chapter 5, we have frequently used the outgoing and ingoing null vector fields
in order to study the behavior of the expansion scalars in the cross-sectional surface.
However, it was said but never proven that the presented vector fields, nµ and lµ, indeed
satisfies the normalization nµlµ = −1 and are geodesic generators. The present appendix
aims to fill this gap.

Since the Vaidya-de Sitter spacetime is a generalization of all spacetimes we have
also worked with, we restrict ourselves to show that the remarked features for the radial
outgoing and ingoing null vector fields are true in this geometry. Furthermore, as the
calculations are similar in ingoing and outgoing Eddington-Finkelstein-like coordinates,
we are going to consider here only latter ones.

We recall that the line element for the Vaidya-de Sitter spacetime in Eddington-
Finkelstein-like coordinates is (5.74)

ds2 = −f(v, r)du2 + 2dvdr + r2(dθ2 + sin2 θdφ2), (B.1)

where
f(v, r) = 1− 2M(v)

r
− Λr2

3
. (B.2)

And also that the outgoing and ingoing radial null vector fields are (5.78 - 5.79)

lµ = ∂v +
1

2

(
1− 2M(v)

r
− Λ

3
r2

)
∂r, (B.3)

nµ = −∂r, (B.4)
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First, it is straightforward to show that lµnµ = −1 :

gµνl
µnν = −gνrlν = −gvrlv − grrlr = −grvlv = −1. (B.5)

In order to show that both vector fields generate geodesics, we need the Christoffel
symbols. They can be found in [43] and the non-zero ones are

Γvvv =
M(v)

r2
− Λr

3
, Γvθθ = −r, Γvφφ = −r sin2 θ,

Γrvv = f(v, r)

(
M(v)

r2
− Λr

3

)
+

1

r

dM(v)

dv
, Γrrv = −

(
M(v)

r2
− Λr

3

)
,

Γrθθ = −rf(v, r), Γrφφ = −r sin2 θf(v, r),

Γθrθ =
1

r
, Γθφφ = − cos θ sin θ,

Γφrφ =
1

r
, Γφθφ = cot θ.

(B.6)

Since this coordinate system is adapted to the ingoing vector field nµ, it is not hard
to show that this vector is tangent to geodesics:

nµ∇µn
ν = nµ

(
∂µn

ν + Γνµρn
ρ
)

= Γνrr = 0. (B.7)

However, to show that the outgoing vector field is also tangent to geodesics requires
some calculations:

lµ∇µl
ν = lv∇vl

ν + lr∇rl
ν

= Γνvρl
ρ + ∂vl

ν +
1

2
f(v, r)

(
Γνrρl

ρ + ∂rl
ν
)

= Γνvv +
1

2
f(v, r)Γνvr + ∂vl

ν

+
1

2
f(v, r)

(
Γνrv +

1

2
f(v, r)Γνrr + ∂rl

ν

)
,

(B.8)

if ν = v = Γvvv +
1

2
f(v, r)Γvvr + ∂vl

v +
1

2
f(v, r)

(
Γvrv +

1

2
f(v, r)Γvrr + ∂rl

ν

)
= Γvvv

=
M

r2
− Λr

3
,
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if ν = r = Γrvv +
1

2
f(v, r)Γrvr + ∂vl

r +
1

2
f(v, r)

(
Γrrv +

1

2
f(v, r)Γrrr + ∂rl

r

)
= f(v, r)

(
M

r2
− Λr

3

)
+

1

r

dM

dv
− 1

2
f(v, r)

(
M

r2
− Λr

3

)
− 1

r

dM

dv

+
1

2
f(v, r)

[
Λr

3
− M

r2
+

1

2

(
2M

r2
− 2Λr

3

)]
=

1

2
f(v, r)

(
M

r2
− Λr

3

)
,

if ν = θ = 0,

if ν = φ = 0.

Substituting all the components calculated in (B.8) we find

lµ∇µl
ν =

(
M

r2
− Λr

3

)
lν . (B.9)

Therefore, it is proven that nµ and lµ are indeed generators of geodesics, such that,
the first one is affinely-parametrized but the second one is not.
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Appendix C

Thermodynamics for a general metric
function in Vaidya-de Sitter

The purpose of this appendix is to generalize the results presented in Table 5.1 for
a general f function in the Eddington-Finkelstein-like coordinates. Moreover, some im-
portant quantities that appear in the Hayward black-hole thermodynamics in the ingoing
coordinates1 are calculated in some details so that the results given in Table 5.1 and in
Table C.1 can be checked.

The metric tensor we are considering is

ds2 = −f(v, r)dv2 + dvdr + r2dΩ2, (C.1)

where f(v, r) is an arbitrary smooth function of v and r. In what follows, we present all
the calculations in a straightforward manner.

◦ Work-density scalar:

w = −1

2
hab

Gab

8π
= − 1

8π
hvrGvr =

1− f(v, r)− r∂rf(v, r)

8πr2
. (C.2)

◦ Energy-flux vector field:

ψµ =
Gµν

8π
gνρ∂ρr + w∂µr =

Gµν

8π
+
Gµr

8π
f(v, r) + w∂µr, (C.3)

with non-zero components:

ψv = −∂vf(v, r)

8πr
, (C.4)

ψr = 0. (C.5)

1The calculations are similar for the outgoing Eddington-Finkelstein-like coordinates.
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◦ Misner-Sharp mass:

MMS =
r

2
(1− gµν∂µr∂νr) =

r

2

[
1− f(v, r)

]
. (C.6)

◦ Geometric surface gravity (at a possible trapping horizon at ri):

κG =
1

2
√
h
∂a(
√
hhab∂br) =

1

2
∂rh

rr =
1

2
∂rf(v, ri). (C.7)

Table C.1

Ingoing coordinates Outgoing coordinates

Metric tensor ds2 = −f(v, r) + 2dvdr + r2dΩ2 ds2 = −f(u, r)− 2dudr + r2dΩ2

Einstein
tensor Gµν

(non-zero
components)

Gvv =
1

r2

[
− f2(v, r) + f(v, r)

×
[
1− r∂rf(v, r)

]
− r∂vf(v, r)

]
Gvr = Grv =

f(v, r) + r∂rf(v, r)− 1

r2

Gθθ = r

[
∂rf(v, r) +

r

2
∂r∂rf(v, r)

]
Gφφ = r sin2 θ

[
∂rf(v, r) +

r

2
∂r∂rf(v, r)

]

Guu =
1

r2

[
− f2(u, r) + f(u, r)

×
[
1− r∂rf(u, r)

]
+ r∂uf(u, r)

]
Gur = Gru =

−f(u, r) +−r∂rf(u, r) + 1

r2

Gθθ = r

[
∂rf(u, r) +

r

2
∂r∂rf(u, r)

]
Gφφ = r sin2 θ

[
∂rf(u, r) +

r

2
∂r∂rf(u, r)

]

Work-density
scalar w

Λ
8π

Λ
8π

Energy-flux
covector ψµ
(non-zero
components)

ψv = − 1
8πr

∂vf(v, r) ψu = − 1
8πr

∂uf(u, r)

Misner-Sharp
mass MMS

r
2

[
1− f(v, r)

]
r
2

[
1− f(u, r)

]
Geometric
surface gravity
κG

1
2
∂rf(v, r) 1

2
∂rf(u, r)
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