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“In my opinion, one who intends to write a book ought to consider carefully the subject
about which he wishes to write. Nor would it be inappropriate for him to acquaint
himself as far as possible with what has already been written on the subject. If on his
way he should meet an individual who has dealt exhaustively and satisfactorily with one
or another aspect of that subject, he would do well to rejoice as does the bridegroom’s
friend who stands by and rejoices greatly as he hears the bridegroom’s voice. When he
has done this in complete silence and with the enthusiasm of a love that ever seeks
solitude, nothing more is needed; then he will carefully write his book as spontaneously

as a bird sings its song, and if someone derives benefit or joy from it, so much the better.”
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Resumo

Nesta tese estudamos alguns aspectos da correspondéncia AdS/CFT. Em particular aque-
les que involvem quantidades que podem ser calculadas exatamente, como os lacos de
Wilson. A correspondéncia calibre/gravidade ou AdS/CFT nos permite interpretar duas
teorias diferentes com as mesmas simetrias globais como descrigdes complementares da
“mesma fisica”. Os valores de expectacdao dos lacos de Wilson em vérias representacoes
podem ser calculados em ambos lados da dualidade usando modelos de matrizes na teoria
de calibre e cordas e branas no lado da gravidade. Do ponto de vista hologréfico, a re-
ceita geral nos diz que devemos minimizar a folhamundo das cordas ou volumemundo das
branas com limite no laco. Essas técnicas, ja aplicadas aos casos das representacdes fun-
damental e (anti)simétrica do laco de Wilson, podem ser extendidas a representagdes mais
complicadas cujo dual sdo branas coincidentes e geometrias ’bubbling”. Um fendomeno
interessante também € aquele que ocorre quando consideramos dois lagos, o que na teoria
de gravidade se traduz como a solucdo conectada tipo catenoide. A existéncia de super-
ficies conectadas entre dois lacos de Wilson depende do valor de varios parametros que
descrevem a geometria e posicao relativa dos lacos. Aqui, devido a esses parametros,
existe uma transicdo de fase chamado de Gross-Ooguri, onde a solu¢do conectada nao é
“energéticamente favoravel” com respeito a solu¢do desconectada, i.e. dois lacos inde-
pendentes. Muito mais interessante e rico € o caso de lacos de Wilson na presenca de
defeitos, i.e. regides de interfase devidas a presencga, no caso estudado aqui, de uma D5

brana. Estudamos também o correlador entre dois lacos neste caso.

Palavras chave Correspondéncia AdS/CFT; lacos de Wilson; acdo DBI naoabeliana;

transi¢do de Gross-Ooguri.
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Abstract

In this thesis we study some aspects of the AAS/CFT correspondence. In particular those
involving observables that can be computed exactly, as Wilson loops. The gauge/gravity
correspondence or AdS/CFT allows us to interpret two different theories with the same
global symmetries as complementary descriptions of the ”same physics”. The expectation
values of Wilson loops in several representations can be calculated on both sides of the
duality by using localization in the gauge theory and strings and branes on the gravity side.
From the holographic point of view, the general recipe tells us that we have to minimize
the string worldsheet or brane worldvolume with the loop as boundary. These techniques,
already applied to the fundamental and (anti)symmetric reprentations of the Wilson loops,
can be extended to more complicated reprentations whose duals are coincident branes and
bubbling geometries. An interesting phenomenom also is that in which we consider two
loops, that on the gravity side translate into the connected catenoid-like solution. The
existence of connected solutions between two loops depends on the values of several
parameters that describe the geometry and relative position between the loops. Here, due
to these parameters, exists a transition knows as Gross-Ooguri, in which the connceted
solution becomes energetically non-favorable with respect to the disconnected solution,
i.e. two independent loops. Much more interesting and rich is the case of two Wilson
loops in the presence of defects, i.e. interfase regions due to the presence of, in this case,

a D5 brane. We also study the correlator of two Wilson loops in this case.

Keywords AdS/CFT correspondence; Wilson loops; nonabelian DBI; Gross-Ooguri

phase transition.
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Chapter 1

Introduction and Overview

String theory [|1,2] is one of its most fascinating attempts to formulate a consistent theory
of everything. One of the most captivating features of string theory is that it contains
gravity, having a graviton as an state of its spectrum. In order to be, mathematically, con-
sistent, string theory must be defined in ten-dimensional backgrounds making it necess-
sary to understand mechanisms to compactify the extra dimensions and making contact
with the real world. More than forty years after its discovery, there are still many people
trying to make progress in it. Not only theoretical physicists but also mathematicians and
even philosophers are working hard to understand the fundamentals of this theory and to
clarify some aspects of its formulation.

It was at the end of the nineties that a new avenue of research originated from string
theory appeared: the gauge/gravity (also known as gauge/string, in general, or simply
AdS/CFT) duality, that establishes that string theory in a certain background can be de-
scribed by (or as) a gauge theory [3H7]. The main point of this duality is that there must
exist one-to-one relations between observables on both sides. This is what we know as
the dictionary, or more precisely a bijection, of the duality. Both sides of the duality have
parameters such as coupling constant, central charge and radii of curvature which are re-
lated in simple ways. In particular, string theory is dual to a quantum field theory, but
depending on which regime of parameters one considers that either the stringy behavior
or the particle behavior of the theory is manifest. Also, string and quantum field theory
are complementary, i.e when it is hard to work with one of them then it is easier to work

with the other. This is called weak/strong coupling correspondence. In this sense we say
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that the correspondence ensures that we can look at a quantum field theory from a differ-
ent perspective, in which it looks like a string theory. We actually are not changing the
“nature” only its description. This means that, in the strong statement, all the physics of
one description can be mapped onto all the physics of the other. And, since string theory
contains gravity, this means that a theory of quantum gravity could be mapped to a quan-
tum field theory without it. It is also said that the duality is holographic: information of
the bulk is encoded at its boundary. In this case, information about strings is encoded at
the boundary of some space as a gauge theory [8,9]. It was first studied the duality be-
tween Type IIB superstrings in AdS5 x S5 and N =4 D = 4 SU(N) gauge theory [10]],
being the simplest and best understood case until now since the gauge dual theory has the
largest supersymmetry in four dimensions and it is also a conformal field theory, i.e a the-
ory that does not depend on scales. In this case, it is assumed that the field theory “lives”
on the stack of D3 branes that source the ten-dimensional background. A lot of cases
were implemented thenceforth by trying to get evidence of the duality between string the-
ory in certain backgrounds and (supersymmetric) gauge theories. A particular example
is the duality between M theory/Type IIA string theory in AdS, x S7/AdS, x C'Ps and
N = 6 D = 3 Chern-Simons theory, the most supersymmetric gauge theory in three
dimensions [11]. Another case that appeared almost at the same time that the first case
was the Klebanov-Witten background in which the S° part was replaced by a singular
Calabi-Yau space T'!. The dual field theory of string in this background corresponds to
N =1SU(N) x SU(N) gauge theory [12] (see also [13,/14]). Other cases include brane
intersections that, on the gauge side, generate new degrees of freedom, or defects that act
as boundaries in the field theory [15,16] (see also [17]). Also, results in a gauge (or string)
theory that inicially do not have their corresponding results in a string (or gauge) theory
serve as predictions and as a guide to pursue them, e.g non-commutative gauge theories
and deformed string backgrounds [18,/19] (see also [20] and references therein). Lots of
results have been obtained since the original statement of the conjecture, that allow us to
say that the duality is indeed true, so it appears as a new striking and useful theoretical
tool to make calculations and, principally, predictions. In particular, this could help to
explore quantum field theory in the non-perturbative regime.

There are now techniques to test the duality exactly, i.e. to have results that can be
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compared at the same regime, large /V and large coupling constant: localization [21H24]].
In particular, a largely studied observable in gauge theory is the Wilson operator [25,26]:
a non-local gauge invariant operator that describes the path of a heavy “quark”, an ob-
ject in the fundamental representation, in the (supersymmetric) field theory. It is known
as Wilson loop if the path is closed and circular Wilson loop if that closed path is a cir-
cle. Their expectation value in N' = 4 gauge theory was computed perturbatively and
exactly [27-29]. In the gauge/gravity duality, the (fundamental) Wilson loop expecta-
tion value was first calculated by finding the area of the string worldsheet, given by the
string action, in the string background whose boundary is the loop itself [30-36]. Wil-
son loops in higher representations, which describe systems of “quarks” or a generalized
“quark”, were studied by generalizing the latter idea: by placing higher dimensional ob-
jects of string theory, branes, as probes in these backgrounds with the loop as a boundary,
and minimizing the action that describe them [37,38]. As mentioned, there are meth-
ods in gauge theory that can produce exact results that include the regime in which the
gauge theory is more easily described by string theory. The calculation of the expected
value of Wilson loops in arbitrary representations was largely studied by using local-
ization techniques [39-42], because it was shown that when calculating the expectation
value of Wilson loops, Feynman diagrams involving loop corrections and vertices cancel
each other at each order in their expansion due to supersymmetry, resulting in a single
counting problem that can be expressed as a matrix model. This also worked for arbitrary
representations [43-45].

If instead of the expectation value of a single Wilson loop, one wanted to compute
the correlator between two loops, the relevant string worldsheet surface would be the
one connecting the two different contours [46-49]]. This is similar to the Plateau’s prob-
lem (mentioned in [50]), in which one has to determine the shape of a thin soap film
stretched between two rings lying on parallel planes. Modifying the geometry of these
two rings introduces a phase structure: there are critical values for the parameters that
separate the ‘catenoid’ (connected or continuous) solution and the ‘Goldschmidt’ (dis-
connected or discontinuous) solution [51]. When the two rings are separated beyond a
certain critical value, the catenoid solution becomes unstable and breaks into the Gold-

schmidt one. Similarly, in the case of the Wilson loop, the string worldsheet describes a
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catenoid-like solution until, at certain values of the radii of the loops and the distance, it
becomes energetically unfavored with respect to the Goldschmidt-like solution. This is
called a Gross-Ooguri phase transition [48,|52,|53]], and can be understood as transition
due to the string breaking that connects the two loops. This behavior is difficult to obtain
in the field theory but it can be studied in a certain limit of Feynman diagrams called lad-
der/rainbows [29,54-59]]. The discontinuous (broken) solution corresponds, in this case,
to two minimized surfaces in AdS, each attached to a different loop, i.e two separated
Wilson loops. These minimal surfaces are the usual onshell regularized actions with each
loop as boundary.

An interesting setup that has received recent attention in AdS/CFT is the one in which
a defect is introduced in the gauge theory and its corresponding string dual [[15}(16,|60].
This defect is typically obtained by considering systems of intersecting branes (see also
[61,62]). In particular, intersecting D3 and D5 branes along three of the four worldvolume
directions allows to construct three-dimensional defects inside the A" = 4 worldvolume
of the N D3 branes. The end result is that there are two different gauge groups on each
side of the defect brane. This is because n D3 branes now end on the D5 defect, so on
one side we have the usual SU(/NV) and on the other side we have SU(N — n). On the
string theory side, the solution corresponding to a single D5 wall inside AdS5 x S° was
computed by considering that the D5 brane introduces a “magnetic” two-form flux that
couples with the four-form of the D3 branes [60]. The expectation value of a single Wilson
loop in this case was calculated in [[63,64]. In this work, the minimal worldsheet surface
is attached to the loop and ends on the defect. The presence of the defect introduces
then new boundary conditions for the string: the usual ones along the loop and the ones
that ensure that the worldsheet surface end on the defect. Here, we compute the Wilson
loop correlator in the presence of a D5 defect from holography. We, later, study the
Gross-Ooguri phase transition in this geometry, investigating in detail how this transition
depends on the (numerous) parameters of the setting. We compare this case with the
case without any defect and observe that the presence of the defect modifies the critical
values of the parameters for the transition. In this case we have to consider the radii and
separation of the loops, the relative distance to the defect and its inclination with respect

to the axis that connects the loops.
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Since the latter is studied by considering the connected solution of a single worldsheet
attached to two loops and its transition into two separated minimal worldsheet surfaces,
the gauge dual of this correlator will correspond to the expectation value of two Wilson
loops in the fundamental representations. As we mentioned above, the duality was tested
also for higher representations, which, on the string side, correspond to putting probe
branes in the string background. Thus, for A" = 4 SYM theory, it was found that a Wilson
loop in the symmetric representations corresponds to a D3 probe in AdS5 x S° [50] and
that the antisymmetric representation case to a D5 probe instead, both with the loop as
boundary [|65]. It is still object of study to find corrections to the expectation value of
the corresponding matrix model for those cases [66-70]. In general, for an arbitrarily
high representation, the dual string description is in terms of bubbling geometries [[71-
74]]. Here, the string background is strongly deformed by a large number of branes in
it. Even the simplest case of two probe (non-backreacting) branes, which corresponds
to a rectangular representation, resulted to be very difficult to study in the gravitatinal
prescription because it requires an action for more than one probe branes [75-77]. This
case is going to be mentioned too.

The Wilson loop correlator in its string theory description was studied in the funda-
mental representation (only a string probe in the geometry). If we consider one of the
string attached to the loop as before but the other one attached now to a D3 brane, this is
the case of a Wilson loop correlator for mixed representations; in particular, the symmet-
ric/fundamental correlator. The antisymmetric/fundamental case, involving a DS brane
as boundary of one end of the string was studied before [78./79]. In general, on both the
string and gauge sides, the D5 (antisymmetric) case seems to be easier to deal with.

This work is organized as follows. In we review th basics of the AdS/CFT
correspondence. There we make brief stops about string theory and supergravity. Next,
we focus on the simplest, and firstly studied, but still rich case of supergravity in AdS; X
S5 and N' = 4 SU(N) gauge theory in order to motivate the correspondence. There
we say some words about brane dynamics and what means to have a theory “living on
branes. Reader surely will find more complete details in the references we give. In
and continuing with the review, we start studying Wilson loops both perturbatively

and exactly by using localization methods. We give a very short mention about local-
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ization, a powerful technique that precisely allows to get exact results even for higher
representations. In we develop the idea of holographic Wilson loops, i.e. a
configuration in a string background that gives the same result as in the gauge theory. We
review how important are the boundary conditions we must impose and how a certain
Legendre transform eliminates the divergence when calculating the area of the corre-
sponding string worldsheet attached to the loop. In we continue in the gravity
(string) side but now for higher representations. There we explain our attempt to extend
some known results about Wilson loops in higher representations, in particular the case of
“rectangular” representations both symmetric and antisymmetric without going to the so-
called bubbling case. In the gravity dual these cases correspond to D-branes probing the
background but equally attached to a loop as in the fundamental case, which correspond
to a single string. In we study a very interesting phenomenom: the Gross-
Ooguri phase transition of two connected Wilson loops into two separated ones. At the
same time, we consider the case of those Wilson loops in the presence of a D5 defect. The
situation becomes interesting and rich in parameters, which include the distance between

loops and with respect to the defect, the ratio of the radii and inclination of the defect.



Chapter 2

Basics on the AdS/CFT correspondence

As usual in all works about/involving the AdS/CFT correspondence, in this first chapter,
we start with a quick, and not very self-contained, review. E]

In 1997, J. Maldecena conjectured that the large N limit of superconformal field theo-
ries with U (V) gauge symmetry in D dimensions is governed by supergravity (and, in the
strong case, string theory) on a high dimensional AdS space [8,/10]]. This correspondence
is “holographic” in the sense that “information” of the theory within some volume can be
described in terms of a different theory on its boundary (see [3]]). This is the “holographic
principle”.

In his seminal paper [10] Maldacena focused on the case of ' = 4 D = 4 SU(N)
gauge theory, which is conjecturally equivalent to type IIB superstring theory on AdSs X
Ss. So, let us understand some details about this identification, making first some com-

ments about the constructions of each side, and later motivating the duality.

2.1 Superstring and supergravity: quick review

String theory was born out of attempts to understand the strong interactions (see the clas-
sic GSW textbook [1]] for a short and understandable historical introduction). But soon it

became one of the most successful theoretical descriptions that include gravity in a nat-

'One of the most known reviews about AdS/CFT is [3]]( the so-called MAGOO review). Some others
reviews are, for example, [2l/4]; also textbooks [6l/7]] include the basics and recent applications. Even more,

philosophical (purely conceptual) works were written, for example, [80-83]].
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ural way. String theory began as a theory involving one-dimensional extended bosonic
objects (closed and open) which move in a 26-dimensional spacetime. Later, bosonic
strings showed a number of drawbacks; principally, its spectrum contains tachyons and no
fermionic states. Supersymmetry can be implemented in three ways: the Ramond-Neveu-
Schwarz and the Green-Schwarz, which differ in where the supersymmetry is manifested,
either on the worldsheet or on the spacetime; and also the Pure Spinor formalism by
Berkovits, which mixed features of the last two descriptions. The critical dimension of
spacetime in the supersymmetric string theory, which can be obtained by canceling the
central charge for an anomaly-free theory (see the Polchinski textbooks, |84, for detailed
calculations), is 10.

In particular, the so-called type II superstring theory contains two Majorana-Weyl
spinors and combinations of the R (fermionic) and NS (bosonic) sectors: R-R (bosonic),
NS-NS (bosonic), R-NS (fermionic) and N-SR (fermionic). These sectors correspond to
two ways to impose periodicity on the two-component worldsheet spinor. Since we have
two fermionic degrees of freedom, our theory is N/ = 2 (type II). We can choose the
chirality of the spinor: for the same chirality, this is known as type II A, for opposite
chirality, this is known as type I1B.

For our purposes, type IIB superstring theory will be the central matter. In general,
spectra of states in string theory is go like M? ~ 1/a’, so when o/ — 0, massive states
become non-propagating leaving only the massless states as propagating. For type IIB we
have in the RR sector (bosonic) a scalar Cj, a two-form gauge field, C'5, and a four-form,
Cy. In the NS-NS sector (bosonic): we have a dilaton, ¢, an antisymmetric two-form,
Bs; and the graviton, g,y (or the metric). And, in the fermionic sector we have the
dilatino and the gravitino. This is the field content of type IIB supergravity, the low
energy (massless) limit of type IIB superstring. In particular, as we will see below, the C'y
RR (gauge) field is sourced by three-dimensional objects, D3 branes, where open strings
end. In the next section we will see that on those branes, due to the fact that the endpoints

of open strings describe gauge fields, we can define gauge theories.
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2.2 D3-branes in type IIB, the AdS5; x S° geometry

It was pointed out by Polchinski [85] that D-branes are the same as p-branes, classical
(solitonic) solutions to supergravity with mass and Ramond-Ramond charge, by calculat-
ing the tension and charges of the D-branes from the string theory and matching with the
p-brane solutions of supergravity.

As we reviewed before, in type IIB theory there are massive charged objects which
act as sources for the RR gauge fields. Specializing to D3 branes, the action in the string

frame reads P

5= —(2;)7[8 /dmﬂfv —G (6‘2¢ (R + 4(99)%) — %Fé)) , 2.1)

where F(5) is the field strength of the four-form potential, C4) (sourced by the D3 brane),
where Fs) = dC(4), with ]

N=[ Fs 2.2)
S5

units of RR charge. A general p-brane solution can be found in [3] (and references

therein), where the mass and charge, in the p = 3 case, are related byﬂ

N
M > oA (2.3)

The solution whose mass is at the lower bound of the last inequality is called an extremal

3-brane. The solution - metric, dilaton and five-form - in this case is

1 4
ds® = ) (—dt® + dz®) + /H(r) (dr® +r°dQ3) , H(r)=1+ %, (2.4)
T T
e = g,, (2.5)
F = (14 #)dt Adxy ANdxs ANdzg Ad (H™) (2.6)

where R* = 47g,NI2F| In the near horizon region, when 7 — 0 (r < R), we can

approximate
R4
H(r)~— (2.7)

rd’

2Some constants could be different depending on which review or conventions one is using. As usual,

you can always “absorbe” them into the solution fields.
3This is just a generalized form of electromagnetism.
“This is a relation between mass and charge.
>Some authors use L instead of R as the AdS radius.
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The geometry becomes
ds* = ﬁn,wdx“dx” + R—QdTQ + RQdﬁg, (2.8)
R2 r2
which is the metric of AdSs x S (see [3}5]] for references about this space and its prop-
erties). When 7 is large (r > R), the metric becomes Minkowski in ten dimensions. In
this description, branes are considered to be dissolved into the closed string sector. This
means that their effects remain and are taken into account in the geometry. Isometries of
this background are: SO(2,4) = SU(2,2) of AdSs and SO(6) = SU(4) of S°. As we
will se later, these are going to be also symmetries of a gauge theory; in particular, the
first one due to conformal symmetry, and the second due to R-symmetry of " = 4 super
Yang-Mills in D = 4.
We are dealing with the low energy limit of string theory, when energies are smaller

than the string energy scale 1/1, i.e

1

So we can take o/ — 0 to take the string energy scale to infinity. An important property

of the metric (2.4)) is its so-called non-constant redshift factor coming from the ggo term,

R4 —1/4
goo = (1 + —4) : (2.10)
T

which goes to 1 at large 7, and to 7/ R when r — 0. The energy E,, of a particle measured
by an observer at constant position r differs from the energy, E;, of the same particle as

measured by an observer at infinity as

R4 -1/4
B = (1 + F) E,. @2.11)

When the particle approaches the throat of AdSs x S° at r — 0, it appears to have lower
and lower energy to the observer at infinity. This gives another notion of the low energy
regime.

Then, we have to distinguish two kinds of low energy excitations (as seen from infin-

ity):

e particles approaching the throat with any energy that will be at low-energy as

viewed from infinity, and
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e massless particles (gravitons) propagating in the bulk (away from r = 0).

These modes decouple since the bulk massless particles have large wavelengths that do
not “see” the throat, and excitations living in the throat cannot escape from it due to the
gravitational potential. So, we have free bulk closed string modes (free gravity) in flat
space and supergravity (and in general, superstrings) in the AdSs x S° region.

It is also important to mention that we can trust the supergravity solution when R* >
[4. This corresponds to say that o/ — 0, the supergravity limit of superstrings. On the
other hand, this requirement translates into

4

T =4mgN>1 = gN> 1. (2.12)

2.3 D3-branes in type IIB, the N = 4 theory

Since there are lots of very good reviews and books about these introductory topics, we
will not enter into details, only giving some quick arguments. D-branes are objects where
open strings end. This is because the endpoints of these strings can satisfy two types of
boundary conditions: Dirichlet and Neumann. The first one means that the endpoints are
fixed, and the second one means that they are free, and moving at speed of light. So, if
we choose p + 1 coordinates satisfying Neumann boundary conditions for p spatial coor-
dinates and time, the endpoints move freely on a p + 1 dimensional “wall” in spacetime:
the worldvolume of a D-brane, or more precisely, a Dp-brane (see [86] for an extensive
review about D-branes).

In [87] proved that Dp-branes are actually dynamical, so we can write an action for
them by minimizing their worldvolume just like we write the action for the particle by
minimizing its worldline. So, if we consider that the transverse coordinates are dynamical

scalars on the worldvolume, the action for a single brane will be

Slx] = -T, / d’t¢\/—deth,, where h,, =0,2M0,2"Gyn(z), (2.13)
where T}, is the tension of the brane

(2.14)
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which has units of energy per length. Since in string theory the background metric G
appears together with the B-field and the dilaton at the massless level of closed strings,

the action must also contain these fields]

Spsr = =1, / dp+1ge—¢\/ —det by + o' By + &'F), By, = 0,2"0,2" By (),

(2.15)
where ji, v are coordinates on the worldvolume, and M, N are coordinates of the tar-
get space, the spacetime. Notice that we have also included a gauge field £, coming
from the fact that massless open string endpoints with Neumann boundary conditions
produce gauge fields living on the brane. The presence of the B-field is also required to
have charge conservation, since it carries the string charge that must go somewhere when
the string ends. This is the Dirac-Born-Infeld action, which at first order in o/ contains
Maxwell theory and the action for the scalar coordinate fields. The action for the brane
needs another terms, the so-called Wess-Zumino term that describes the coupling to the
corresponding antisymmetric tensor field, the Ramond-Ramond field C',, ), that appears
in the superstring theory, and is sourced by the Dp-brane in the same way the electromag-
netic vector is sourced by the charged point particle. This terms is the generalization of

the electromagnetic case in which the electromagnetic field couples to the worldline of

the point particle,
Swz = C]/A (2.16)
to
Swz = / P [Ciprn)] (2.17)
where /i, is the brane charge, P [- - - | is the pullback on the worldvolume, and p, ~ 7.

Moreover, one can consider more than one brane, say N D-branes, and add labels to the
endpoints of the open string ending on the brane, |i), with i going from 1 to N, also
called Chan-Patton factors. For coincident branes the endpoints have /V possible labels,
and then the gauge fields living on this stack of branes are U (V) gauge fields. This is
the origin of the U(N) theory “living” on N D3 branes. But here a problem arises: there
is no a well-defined action describing N coincident branes; this is because in the non-

abelian case the scalars in the adjoint representation of U(/N) become matrices, so their

%Up to some conventions in front of the fields.
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interpretation as position of the branes will not be valid, or clear. Moreover, in order to
have gauge symmetry, we need to trace the square rooted expression of the action, and
produces more problems. There is until now no complete expression for the action of this
non-abelian DBI action| but we expect that it should contain the non-abelian action for
U(N) (when o/ — 0) in the same way the U(1) theoryf| appear from the DBI action for

one single brane,

SN D3 ~ /d4§Tr (—4;SF§VF“W + - ) . (2.18)
In the superstring theory, the D-branes are supersymmetric, and live in ten dimensions,
so we expect that the gauge theory on them be also supersymmetric. One thing to notice
is that by comparing this action with the analogous term coming from the expansion of
the DBI action, one finds that
T, ~ % = i (2.19)
The relation g> = g,, where g2 is the YM coupling and g, is the string coupling, is
because we need two open strings with coupling g to be able to form one closed string with
coupling gs. This result also allows us to say that Dp-branes are indeed non-perturbative
objects, since they become heavy at weak coupling. Let us focus on the theory on D3
branes whose worldvolume is 341 dimensional, or simply in D = 4. The gauge theory on
them has gauge fields A7, in general, wherea = 1,--- | N 2 is the adjoint index of U (N);
with two on-shell degrees of freedom (polarizations), and six scalars ®; corresponding
to the six transverse coordinates to the D3 brane, giving a total of eight bosonic on-shell
degrees of freedom. Since we are working with supersymmetric theories, we need the
fermionic partners of these eight bosonic fields. A minimal spinor in four dimensions
has two on-shell degrees of freedom, so we will need four of them, leading to a N = 4
gauge theory, with U (V) gauge group. Also, the field content we just found has a global
SU(4) symmetry, the R-symmetry, which rotates the supercharges in the theory. Under
this symmetry, the vector field is a singlet, it changes only by a phase, the spinors are in
the fundamental representation and the scalar rotates in the adjoint representation. This

SU(4) = SO(6) symmetry coincides, as we will mention and expand later, with the

isometry of the S® part of the background of AdSs x S°.

"There is a well studied and detailed attempt for this by Myers [75477].
8This is the usual electromagnetism theory.
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2.3.1 A short pit stop on N' =4 D = 4 U(N) gauge theory.

We have just seen quickly how a nonabelian gauge theory emerges as the worldvolume
theory of the stack of V D3 branes. But it was difficult to extract the dynamics by studying
the nonabelian DBI action of them. Luckily, N' = 4 D = 4 super Yang-Mills was already
studied separately. In the context of AdS/CFT, we review [3,5]], a pair of well known and
very good references.

Supersymmetric field theories are nice since they are more constrained than usual field
theories. In them bosonic and fermionic corrections cancel, as we will see, and lead to
finite results. Even if they are not realized in Nature, they serve as “toy models” from
which we can extract analytic results that could serve as a guide to guess the behavior
of more realistic theories. In supersymmetry, Poincaré and internal (gauge) symmetries
are mixed in a nontrivial way by adding N fermionic generators resulting in a general
Lie algebra called superalgebra. The N' = 4 D = 4 case is even more special. The
Poincaré (bosonic) group of symmetry can be enlarged to include scale invariance; this,
in general, allows us to expand the Poincaré group to the full conformal group (bosonic),
which includes scale invariance and Poincaré. Thus, we can extend not only the Poncaré
group but the full conformal group to a supergroup: the superconformal group. This is
the most symmetric (constrained) group we can have and this is precisely the symmetry
group of N' = 4 D = 4 SYM: PSU (2,2|4). The bosonic part of this superconformal
group is SO (2,4) x SU(4). The U(N) gauge symmetry rotates each field and is going
to be present as a trace in front of the lagrangian and composite operators.

The action of N' =4 D = 4 U(N) gauge theory is [5]

1 0 . -
4 2 N — 2
2
+g CA[®, \] + CA[®, A] + ‘%[CD,CD]Q}, (2.20)

where the trace is over gauge indices, and we have hidden the space indices. As known
in supersymmetry, the scalar potential must vanish in the supersymmetric ground state,
so [, ] = 0. We have two options: {®} = 0, or at least one & # 0. The first one is
called the superconformal phase and the second one is called the spontaneously broken

or Coulomb phase. Explicitly, the field content is (A A\, ol ) where = 0,---,3,

123 )
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a=1---,4, a0 ==xand I = 1,---,6. In particular, notice the six scalars; they are
precisely those matrix “coordinates” of the stack of /N D3 branes we mentioned above.

N = 4 SYM has another symmetry, most easily espressed by first combining ¢ and 6 as

0 471
= — 4+ —. 2.21
T o * g? 2.21)
The theory is invariant under SL(2,Z), i.e,
b
T i —be=1 abedel (2.22)
cT+d

2.3.2 The large N limit for any gauge theory

One of the first hints that gauge theory could be described in terms of string theory comes
from the behavior of gauge theories at large /N limit, where it was observed by 't Hooft
that gauge theories simplify [88].

Before starting the analysis, it is important to mention that the U (V) group can be
written as

U(N)=SU(N) x U(1). (2.23)

Here the non-diagonal part, SU(NN), correspond to excitations connecting the branes; and
the U(1) term is related to the center of mass motion of all the branes. Then, we can
consider that the stack of branes is located close the origin of space, this is the low energy
limit, and then the gauge theory is actually SU(N), not U(N).

Instead of focusing on the N' = 4 SU(N) SYM theory, let us describe a general

SU(N) theory in four dimensions whose Lagrangian schematically looks like
1 a 7\ 2 7\3 N4
L’Z?Tr<(<b)+(<1>)+(<b)>, (2.24)
where ®! are fields in the adjoint representation of SU (), so

ol = (@“)ij (T*Y. , witha=1,--- ,N>—landi=1,--- N, j=1,-- N, (225)
and N and N represents fundamental and antifundmental indices, respectively. So, we
can work with (<I>I a)ij = ¢! (T“)i i and the so-called double-line notation, in which the

adjoint field we wrote before is represented by a direct product of a fundamental and an

antifundmental field, (CIDI a)ij. The “gluon” propagator can be written as

(@7, ") o (525@ — %5351,{) : (2.26)
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Atlarge N the second term can be neglected, so the propagator for the adjoint fields is the
same of the fundamental-antifundmental pair. Thus, Feynman diagrams involving ¢ may
be viewed as a network of double lines involving fundamental/antifundmental fields.

Also, it is important to understand the behavior of the coupling g as we take N large
in the asymptotically pure SU (V) Yang-Mills theory. There, the beta function is

d 11 ¢
g_ Uyyg

A 5

which is not well-behaved at large N. Let us rescale the coupling constant as g — g/ VN,
then the las expression does not depend on N. More precisely, one can define the "t Hooft
coupling as

X = g°N. (2.28)

Back to our general lagrangian, this definition leads to

L= %Tr ((0®4)* + % + @%). (2.29)

Then, in the Feynman diagrams: vertices (V) scale as N/, propagators (E) as A/, and
the loops (F) (sum over the indices in the trace) contributes with a factor of N. Hence, we

can write

diagram(V, E, F) ~ NV FFENEZV — NX)\E=V (2.30)

where y = V —E/+F'is the Euler characteristic of the surface (plane graph) corresponding
to the diagram. For closed oriented surfaces, the Euler characteristic can be computed
from its genus, g, as

X =2 — 23. 2.31)

At large NV, and fixed ), diagrams will be dominated by the surfaces of maximal y (or
minimal genus), which means that the dominant topology will be the sphere (or a plane).
We can conclude that these diagrams, called planar diagrams, will give a contribution of
order N2. This result will be valid, in particular, for the N' = 4 SU(N) gauge theory,
and also important to motivate the AdS/CFT correspondence since it is related to the
expansion in g, the closed string coupling in string theory.

Let us say some words about our new coupling. Since we have N D3 branes on top

of each other, the effective loop expansion parameter for the open strings ending on them
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is gs /N rather than g, since each open string comes with the Chan-Paton factor /N. Thus,
expansions are valid when g,N < 1. As we saw above, g, = g2, so we can conclude that
in the field theory “side*

A= ¢’N < 1. (2.32)

As we mentioned, these D3 branes were put on a flat ten-dimensional target where we
have open strings, that is why we have branes, and closed strings. At low energy, only the

massless states can be excited, so we can write the following schematic effective action
S = Sbulk + Sbrane + Sint~ (233)

Here Sy, describes the massless closed string modes, ten-dimensional supergravity, plus
corrections coming from the integration of the massive modes. The brane action Spne
when o/ — 01is the N' = 4 U(N) theory we saw above, plus higher derivative corrections.
Sine describes the interaction between the brane (open string) modes and the bulk (closed
string) modes. When o — 0, the bulk part reduces to free closed strings (free gravity)

and interactions are suppressed.

2.4 Motivating the AdS/CFT duality

In this section we will present the usual two heuristic arguments suggesting that there ex-
ists a correspondence (or duality or equivalence) between string theory and gauge theory:
the low energy descriptions and global symmetries.

As we said before, the dynamics of N D3 branes in the low energy regime, when
o/ — 0, can be described by the excitations of the open string endpoints on the D-branes:
gauge fields, parallel to the branes, and scalar fields, transversal to them. This gives
a field theory that lives on the four-dimensional worldvolume of the D3 branes: N = 4
SU(N) superconformal gauge theory in four dimensions with coupling A = ¢? N < 1 (or
gsN < 1), plus decoupled massless closed string modes (supergravity) in the Minkowski
bulk spacetime. On the other hand, branes can in fact be also seen as solitonic solutions
of type IIB supergravity (the low energy, o’ — 0, limit of superstring theory) with mass
M and N units of RR gauge field. The solution metric, in this case is AdSs x S° where

we have type IIB supergravity modes plus decoupled supergravity in flat space. This
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description is valid when g;N > 1, contrary to the condition for the open string (field

theory) side. These are the “two faces” of the D-branes.
N =4 D =4 SU(N) gauge theory = Type IIB superstring theory in AdS5 x S°

The complementarity of regimes where we can reliably perform calculations makes the
AdS/CFT correspondence useful, but also hard to prove. To close this heuristic “deriva-
tion®, let us notice some interesting facts coming from the symmetries of spacetime in the
gravity side and the symmetries in the field theory. As we mentioned, the isometries of
AdSs and S® are SO(2,4) and SO(6) respectively; but SO(2, 4) is the conformal group
in four dimensions, the conformal symmetry of N = 4 SU(N) SYM. Moreover, the
SO(6) = SU(4) correspond to the R-symmetry of our field theory. Besides of theses
symmetries, both sides have a SL(2,7Z), called S-duality.

2.4.1 Holographic duality
The AdSs metric is
ds® = o ik dztdx” + Ldv” , (2.34)
(0 (0

here the coordinates z* may be thought of as the coordinates along the worldvolume of
the brane and can be identified with the gauge theory coordinates. The coordinate U,
together with those of S°, describes the transverse directions to the brane. As U — oo,
we approach to the so-called boundary of AdSs. Moreover, as we know, N' = 4 SYM is
a CFT, so z — Az is a symmetry of the theory. At the same time, in the gravity side, this
transformation is also a symmetry, the rescalings U — U/A and U — Ax leave the metric
invariant. Now, when A < 1, in the gauge theory, we get physics at large distances, i.e.,
at small energies (IR). In the gravity side, the U coordinate goes to zero, the near horizon
limit. Whereas, when A > 1 we have physics at short distances in the gauge theory,
which means high energies (UV). In this case, U — oo, the boundary of AdSs5. Thus, U

can be identified with the renormalization group scale in the gauge theory
E~U. (2.35)

This allows us to say that the field theory is not defined only on the boundary of AdSs5,

where we have its UV limit (and thus, the IR limit in the gravity side); the field theory
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describes all the physics inside the AdS5 bulk. Because of the energy scale in the gravity
side is related directly to the radial coordinate of AdS5, we say that different regions

(slices of constant UV) correspond to different energy scales in the field theory.

2.4.2 The dictionary

Since it was conjectured, the equivalence between two different theories, we must mention
the statement in a more “’precise* way by showing the explicit translation of objects of one
side into its dual side. This is known as “dictionary”. [’

Let us explain some details about the correspondence between operators in the gauge
theory and fields in the gravity side. As a conformal theory, N' = 4 SYM does not allow
us to define asymptotic states, since it does not make sense to construct states separated
by large distances. So, we will work instead with the collection of all local, and also the
non-local, gauge invariant, operators O(x) that are polynomials in the fields of the theory.
As we know, the physical quantities in a field theory are correlation functions of these
operators. This is the way we measure in theory,

N

(O)Oe2) -+ Olen)) = 5 ey 5T

, (2.36)
J=0

In Zcpr

where
Zopr|J] = <eXp (—/dx£J> > , Ly=L+ Z Ji(x)O;(z). (2.37)

Gauge invariant operators are defined as the trace of polynomial functions of the scalar
fields of the gauge theory. The conformal dimension of the operators is A. In the gravity

side, the AdS;5 space can be written in the following way

dy? + da?
ds? = R T (2.38)
Yy
where we set ¥ = R?/y. In this metric, the boundary is located at y = 0. As we

mentioned before, the boundary of AdS5 corresponds to the UV limit of the gauge theory.
By solving the Klein-Gordon equation for a single scalar field, ¢(z,y), we obtain the

following solution near the boundary

d(z,y) = (Oa(z))y™ + J(z)y* 2. (2.39)

°Since we are dealing with a conjectured equivalence the word dictionary is also not exact.
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where
(Oa(x)) = liII(l) y’Agb(x, y), and J(z) = lin% yA’4gz5(x, ). (2.40)
y— y—

With this solution we can find an interesting relation for the mass of the scalar and A:
m’R? = A(A —4). (2.41)

In order to see that the functions in front of each term in the solution for the scalar, ¢(z, y),
correspond precisely to the expected value of the operator O (z) and to the source J(z)
on the boundary, we must establish the equivalence between partition functions in both

sides (see [8,,9] for details)

Zorwrla(@)] = (exp (= [ @450(0170)) ) = Zusos [1> 000, ] 242

The complete correspondence between the representations of SU (2, 2|4) on both sides of
the duality is given in [5]].

In the next chapter we will study one of the most important gauge invariant opera-
tors: Wilson loops, or in this case supersymmetric Wilson loops. These operators can
be calculated exactly for arbitrary values of g; and [V, so it is possible to compare with

supergravity results, and test the correspondence.



Chapter 3

Wilson loops, perturbative and exact

results

In this chapter we study Wilson loops in the N' = 4 SU(NN) gauge theory, the supersym-
metric extension of the Wilson loops in gauge theory. These operators, since they can also
be calculated exactly, will provide a strong verification of the AdS/CFT correspondence.

Since Wilson loops are the central topic in this work, here we will give some important
and almost self-contained details about them. First, we start with the usual definitions in
quantum field theory and later, we move on to the supersymmetric case which we are

going to develop even more in the next chapter.

3.1 (Supersymmetric) Wilson loops

A Wilson loops is a non-local gauge invarian operator which is associated with the phase
acquired by a heavy particle in the fundamental representation of the gauge group around

a path C (see the textbook [25]] for details). It is defined as

dz*

1
We = NTrP exp (z’fédsAuE) , (3.1

where C denotes a closed loop in spacetime parametrized as z* = x*(s), and the trace

is over the fundamental representation of the gauge group We say that this operator

'We need to close the path and take the trace in order to have gauge invariance.
2In general this trace is taken over some representation.

21
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is non-local because it depends on a curve, not on some particular point of spacetime.
Moreover, formally the Wilson loop defined in this way is the trace of the holonomy of
the gauge connection A around the curve C. If we consider the loop contour is a rectangle
C = L x T, where T (euclidean “time”) is large, the expectation value of the Wilson loop

contains the potential between two charges (quark-antiquark) separated by a distance L
(We) = e TV, (3.2)

If we assume that V(L) o L (confining phase, i.e. an increasing force against separation),
the exponent in describes the area of C: the area law. This result is usual in QCD,
which is known to be confining [26}[89]. On the other hand, for QED ] we have V (L) o
1/L, which is known as Coulomb phase (non-confining, i.e less force with separation).
Theories in this case are scale invariant and, in general, conformal. Hence, the Wilson
loop plays the role of order parameter.

In the supersymmetric case, and in particular, in the N = 4 U(NN) case (instead of
SU(N)), as we saw before, the field content of A/ = 4 theory consists of the gauge field
A, four Weyl fermions \2, 5\2‘ (a=1,---,4,a,& = 1,2), which leads to have sixteen
supercharges, and six scalar fields ®/ (I = 1,---,6) being all of them in the adjoint
representation of the gauge group U(N). But we do not have massive quarks (particles
in the fundamental representation) in N’ = 4, so we need to perform a setup in which
something with the same behavior appears. To do this, let us consider the breaking of
U(N +1)toU(N) x U(1) by giving some expectation value to the scalar fields, which
will parametrize a point in S° in the dual case as we will see in The phase factor
associated in this case to the trajectory of this “W-boson” (vector gauge field that become
massive by eating the scalar fields) gives to the (Maldacena-) Wilson loop operator the

following form in Euclidean space [27,32-34] E],
1 . .
We := NTrP exp [7{ dr (1A, (1)" + @' (1)y") |, (3.3)
c

where x*(7) parametrizes the loop. Notice that this definition does not represent a pure

phase as the pure gauge case. It is in Minkowski space that the definition of Wilson loop

3There exists confining for QED in the strong coupling regime. See for example [90,91].
“The case of the pure gauge Wilson loop (with no scalar coupling), and its dual, was studied in [92/{95]].
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is written as a pure phase, i.e with an 7 in front of the integral [30,31]

We = %Tr?’ exp [i?é:dT (AM(T):'E“ + CID’(T)yZ) . (3.4)

These two versions of the Wilson loops are related by a Wick rotation of the six “internal”
coordinates, 3° — iy’ [32].
The supersymmetry transformations in the ten-dimensional representation of the fields
[36]] are
6A, =Vl ,e, 5.0 = Ul', (3.5)
where € is a ten-dimensional Majorana-Weyl spinor. By requiring invariance of the Eu-
clidean We (3.3), the last transformations lead to the conditions:
(iT,i" 4+ Ty ) e = 0. (3.6)
If the last condition results to be nilpotent, then
(iT,i" + Tig) e = (% — %) e = 0, (3.7)
SO
P2 -y =0 (3.8)
which is solved by making
§'(7) = |#(7)16"(7), (3.9)

where {60} labels a point on the unit S°. From (3.9) we see that if we set o — iz,

|$|:i\/x§—$%—x§—x§, i -2 — a3 —2i>0 (3.10)
i.e. a timelike Wilson loop in Minkowski space is a total phase. Back to Euclidean space,
nilpotency of the supersymmetry condition leads to > = 7? which breaks half of su-
persymmetries to eight, so the loop will be called 1/2 BPS [27,32]. Now, in general
supersymmetry will be local, since (3.9)) depends on 7. In order to have global supersym-
metry, we must fix a point over S°, i.e. 6" = ¢} and also set || to be a constant, so the
path will be actually either a line or a circle.
Notice that, even though we wrote the supersymmetric extension of the Wilson loop
given in (3.I)), there are no fermionic coordinates in (3.3). The reason of not having
fermionic fields in the supersymmetric Wilson loop is that they are descendants of the

operator above [3,38]] (see [96], a good textbook on conformal field theory)E]

3See [35] for a complete definition of the supersymmetric Wilson loop.
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In general, for arbitrary representations, the supersymmetric Wilson loop in N = 4 is

1

We=GnRr

Trr P exp % dr (iAu(T)" + @' (1)y') (3.11)
C

which reduces to (3.3) when R = O sodimd = N.

3.1.1 Wilson loops in perturbation theory

Let us compute the expectation value of the Wilson loop in the fundamental representation

of SU(N) by expanding (3.3) as

n=0 n=0
Then,
(We) =1+C4
=14+ I /dﬁ /dTQTI' (—x‘fx%(Au(xl)Ay(xg)) + |x1||x2|9’19%(¢>1(x1)<1>7(x2)>)
4 (3.13)

By remembering the fact that the fields are in the adjoint representation, A, = AfT“ and

& = T the second term can be written as

|21 — 29?
:1+§3/ﬁﬁ/ﬁwmﬁm%ﬂﬁw2+~w (3.14)
™ Tr1 — T2

where we have considered the propagators in Feynman gaugef]

2 Y . A 2§
W@ A ) = s (@@ ) = LGt 31s)

Let us analyze the last term when x; — z5. Notice that even though N = 4 is UV finite,
we can see that there exists a UV divergence when 71 = 25[|so when 1/|z; —25|* = 1/€?

(e = 0) we get [33]

A ||| — &y - @™ 22T A , i’
@/dTl/dTg |x1 —x2’2 = 47T2€/dT1’.1’(7'1)| 1-; . (316)

These propagator actually contain also a O (1/N) term that vanishes at large V.

7Just like other composite operators in N = 4.
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As we mentioned, supersymmetry imposes (3.8)
P =7 =0 (3.17)

which leads to the cancellation of the divergence. One important thing to notice is that
the cancellation does not occur between bosonic and fermionic contribution, but only
bosonic parts. Then we can say that supersymmetry imposed a constraint to cancel the
divergencesﬂ Does it happen with the other terms in the expansion? It was proven in
[27,136] that UV divergences cancel each other also at order A\2. This is supposed to
happen at each order in the A\ expansion because of conformal symmetry. It was argued
in [27] that part of the singular parts at order A? survive to compensate loop correction to
the propagators. In general, it was mentioned in [32] that at order A", the linear divergence

has the following general form
P ;2
— [ dnf(n)|Gn (y—Q) : (3.18)
€ x

where G, (z) is a polynomial, and as we saw before, G,,(1) = 0. AdS/CFT will allow us
to see that there is no divergence in the expansion.

On the other hand, we can calculate the expected value of the Wilson loop, in the
1/2 BPS case for the line and the circle, which is related to the line by a conformal

transformation.

e The straight line, which can be parametrized by
x(1) = (7,0,0,0), —o0 <7 < 00, (3.19)

which leads to cancel the first contribution in A. Then, the value of the Wilson line
is

(Wiine) = 1. (3.20)
This result is also valid at strong coupling. The symmetries preserved by the line
are SO(1,2) x SO(3) (translations and inversion in one dimension plus rotations

in three spatial dimensions) in spacetime and SO(5) C SO(6) (the fixed point in

S%) because we fixed one §° = 6.

8This happens only for smooth loops, cusped loops does not show cancellation due to supersymmetry.
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e The circle can be parametrized by

(1) = (cos7,sin7,0,0), 0<7 <2m, (3.21)
which produces
A
(Weirele) = 1+ TR (3.22)

It is worth to notice that the line and the circle are related by a conformal transformation
(inversion),
H
at — —. (3.23)
]
One could have thought that the results should be the same due to conformal symme-
try. The reason of this discrepancy is that the circular Wilson loop is determined by the
conformal anomaly that emerges when we perform this kind of transformations. Another
reason to expect different results is the fact that the (special) conformal transformation
line-circle, is not a symmetry of R?* but of S*, since it brings a point at infinity to a point
at a finite distance. It was shown in [|34] the difference between the Wilson line and the

Wilson loop comes from the divergence in the gauge transformation that appears in the

gauge propagator under conformal transformation.

3.1.2 Summing planar graphs

As we have seen in (2.30), for large N and fixed A, only planar diagrams are relevant.
This is a huge simplification, but actually these diagrams are composed by ladder (for the
case of the circular loop) or rainbow (for the case of the line) diagrams, which are those
who do not have any interaction, and also loop and vertex diagrams. It was proved in [27]]
that the \? contributions of the one-loop correction and the internal three-vertex cancel
each other for the circle and the line and was conjectured that the same occurs at each
level in A. In that paper it was then assumed that only ladder or rainbow diagrams are

involved in calculations. Let us consider the 2n-th order term in the Taylor expansion of

the loop in (3.12)

1 2 T1 2n—1
an =— / dTl / dTQ cee / dTQn X
N 0 0 0
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where A; = A(7) and ®; = ®(7y). The factor 1/(2n)! cancels with the (2n)! factor

coming from the particular ordering we choose. To construct the general term, let us

consider
2 . . . . 2
caa - . a - oAb - . b . g |[E1||[E2|—l’1'$2_ g 1 ab
(o i 0) 5+ 508 0) = 5 P e
(3.25)
which is constant. Wick contractions in (2.30) lead to a product of n two-point functions,
and then
1 A\
Con="—— 1|1 An 3.26
7 (2n)! ( 4 ) (3:26)
Then, we can calculate the number of planar diagrams with n internal propagators, A,,,
(2n)!
n=-—" 3.27
(n+1)n! (3-27)

So we can sum all the planar ladder diagrams as [27],

<WC>ladders = 2% (Tf)—\i-/—zgrn' = %Il (\/X> ) (3.28)

where [, <\/X> is a generalized Bessel function. At large A,
<WC>ladders ~ eﬁ' (329)

As was also mentioned in [27], the fact that (3.25) is independent of the coordinates,
and that (We)jagders involves a sum the ladder diagrams, maps the problems to a zero-

dimensional matrix model. In the next section we will review the matrix model theory.

3.2 A brief introduction to matrix models and localiza-
tion

As was mentioned above, the fact that the sum of the scalar and vector contributions is
constant, and that the sum of all ladder diagrams reduces to the counting of diagrams,
allowed Erickson et al in [27] to conjecture that the number of planar ladders can be
calculated from the infinite N limit of a matrix model. In this section, we are going to
present some basic results about matrix models in order to understand the connection with

large N gauge theory and then to understand the Erickson-Semenoff-Zarembo idea.
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At large N, we learned that the perturbative expansion is dominated by planar dia-

grams, which were represented schematically by (2.30),
diagram(V, B, F) ~ NV ¥ = NX| (3.30)

where Y is the Euler characteristic of the surface associated to the diagram. This, in turn,

can be connected with the results given by the following model [23]],

1 1 1
—S(M) = —TeM* + — 3 P1eare, (3.31)
Js 295 Js >3 p

where we can assume that g; = ¢ is the string (or Yang-Mills) coupling and g, is new
coupling depending on p, and the field is a N x N hermitian matrix, M, with constant
entries. We can impose also U(N) symmetry, which rotates the matrices. This is a ma-
trix model which was used to understand the internal geometry of a 2D surface that can
be discretized as a sum over randomly triangulated surfaces in 2D gravity [97]. Under

rescaling of the matrix field, M — M VN , the action lb can be written as

1 1 1
~S(M)=N ( TeM? + — @TrMP> , (3.32)
s 295 s D

p>3

which produces the same behavior

NV-EFE — NX (3.33)

For small g (or large V), i.e the planar limit, we can write the partition function for the

matrix model,
— —TrM 2
/ DMe 29s : (3.34)

the Gaussian version of the model, where we have rescaled back the matrix M — M/ V/N.

vol

As usual in quantum field theory, we compute

1

6_2 s
(r (ay = 2SO e 7

[DMe 295

TrM?

(3.35)

TrM?

Due to the matrix indices, propagators can be represented by the double-line notation ,or

“fatgraphs” (see again [23]]), presented above for the large /N expansion in gauge theories.
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The vol (U(N)) factor is the volume factor of the “gauge” group needs after fixing a

gauge. The measure dM in the “path” integral is the so-called Haar measure

N N
DM = [ dM; | [ dRe(M;;)d Im(M;;). (3.36)

i<j
Since we have gauge invariance, we can fix it to write the theory in terms of diagonal
matrices

M —UMU"=D (3.37)

where D is diagonal with elements {m;}. So, we now have N parameters instead of N2,
We can perform the Faddeev-Popov method to compute the gauge fixed partition function.

After some calculations, following [23]], we can arrive to

N
11 , 1 ,
Z = NI @) /gdmiA (m) exp (—2—9222ij> , (3.38)
or
1 [ (dm N ,
7= = G ) A2 s 2 .
N!/E(2”> (m) exp 2)\;7711 (3.39)
where
I mg m? - mi!
1 my mi --- my?
Amy=| = 7 = I tmi-my (3.40)
Do L : 1<i<j<N
1 my m% --- my?

is called the Vandermonde derteminant; and A = g>/N. But why do we worry about this?
As was conjectured by Erickson, Semenoff and Zarembo in [27], the number of planar

ladder diagrams with n propagators can be calculated by

A, = <%trM”>, (3.41)

by following the arguments in [98,99]], in which a zero-dimensional field theory, i.e. a
theory without spacetime in which fields are constants, was considered. Given the form

of the general term in the expansion of the Wilson loop (3.26), one can say that

1
<WC>ladders — <Ntr 6]\/j> 3 (342)

which was the result that Drukker and Gross conjectured in [28], by arguing that the

circular and line Wilson operators differ by the contribution of the point at infinity that
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must be added under conformal transformation from the line to the circle. So, since the
result only comes from a point, there is no spacetime to be considered, and as we saw
above, calculations reduce to counting diagrams: a zero-dimensional field theory, i.e. a
matrix model.

In the following, we shall review some details about the solution of the model, which

we can be obtained with two methos:
e Saddle-point analysis, and

e Orthogonal polynomials.

3.2.1 The saddle point method

The partition function defined before in (3.39) can be rewritten as

= = / H (dml) NS (3.43)

1
Set =~ 1y i —+—Zln|ml m;l. (3.44)

1<J

where

The first term in the action is a sum over the square of the eigenvalues, \;, which gives a
factor of V. Then, it is of order N which cancels the 1/N factor and leaves the quadratic
part being of order O(1). The second term of the action can be thought of as a repulsive
potential for the eigenvalues, there 1/N? plays the role of 1. So, we can imagine that large
N translates into 2 — 0, the classical limit of the action: the saddle point.

Varying the action with respect to \;,

, 1 1 .
0Ser =0 — 2AV(mz)_]\[;W_mj, i,j=1,--+,N, (3.45)

where V (m;) = Y, m?/2. Also, we can define the eigenvalue distribution as
1
=% Z 5(€ —my). (3.46)
J
From (3.44)), we can define an effective potential

22
Ver = V(my) — <= > In|m; —myl, (3.47)

1<j



CHAPTER 3. WILSON LOOPS, PERTURBATIVE AND EXACT RESULTS 31

with a minimum in m;. When A (the 't Hooft coupling) is small, the quadratic term
dominates and eigenvalues tend to be in the minimum, a single value m;; when X starts
to grow, the repulsive part of the potential dominates and separates the eigenvalues from

each other over a curve C. At large N, we can treat {m;} as a continuum &, so

1
N s [emei = [ =1, (348)
and the action (3.44)
1
Sw==3 [ €€ +2 [ 1ne ~ €lp©n(ecd (3.49)
So we can rewrite the saddle point equation (3.45)) as
Loy & [ p(€)d€
SV =12 _]é = (3.50)

It is possible to invert this expression to find that [22]]

1
p(§) = 5 V4ar =&, (3.51)
2T
where ¢ € [—2v/\, 2v/)], or rescaled to

! VA— 22, —VA<a <V (3.52)

p(x)= i\
This is the Wigner semi-circle distribution. The integral in (3.49) is dominated by the p

which minimizes S.¢, and in particular it becomes zero. Thus, we can calculate

<%TrMn> = (%ZmTL) — /déé”p(é). (3.53)
Hence

<%TreM> _ %11 (V3). (3.54)

The last result coincides with (3.28)). It is worth to notice that this method is valid only
for large N but for all \.

3.2.2 Orthogonal polynomials

Another way to solve matrix models is by using orthogonal polynomials, which was used
by Drukker and Gross in [28]] (see also [100] for an old reference) to calculate the expec-

tation value of the circular loop for any value of N, since the technique does not depend
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on N, neither on \. Let us consider the rescaled partition (3.39),

N
- / gdmi A% (m) exp (—? Zi:mZ?) , (3.55)

Thus, we write,

< —Tre > / Hdml A2 (m exp( ZA?) %Zexp)\k. (3.56)
i k

or, rescaling again and absorbmg all extra factors into Z,

[ A
dm; A* (m — —
< —Tre > /H m; exp( Zm) d exp( 2Nmk>

(3.57)

The Vandermonde determinant in (3.40) can be written as
A(mi) = [[(mj —mi) = det [md™'],  ij=1,--- N, (3.58)

i<j

where the element 7/ " represents m, to the (j — 1)-th. We can also get the same result

if instead we use

A (m) = det [P (my)] (3.59)
where
j—2
Pi(mi) =2’ + ) aa®,  dij=1-- N (3.60)
k=0

is a general polynomial that can be chosen to our convenience. Thus,

<%TreM> 1/1_[dmZ (det [P;_1(\;) exp( Zm)%;e}(p<
3.61)

The last integral contains a sum that can be extracted from the whole expression,

1 A
< —Tre > NZ /Hdml (det [Pj_1(m;)]) exp( Zm > exp( 2Nmk>
(3.62)
The appropriate polynomial we can use are proportional to the Hermite polynomials,
orthonormalized with respect to dm; exp (—m?). From the last expression (3.62)) we see

that we can integrate for ¢ # k by using orthogonality. We end up withﬂ

2
< 1 —Tre > Z /de exp — (m— 8%) exp <8%) , (3.63)

9See a detailed computation in [27]], and also in the master’s thesis [101]. A good recommendation for

integration is [[102].
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1 1 A A
<NTI'€M> = NLJIV*l <—m> exXp <8—N> s (364)

where L (x) is a generalized Laguerre polynomial. This method does not depend on

and finally,

making N large, so the last result includes also non-planar corrections. For large N we

<%TIQM> _ %]1 (Va) +0 (%) | (3.65)

We stress that the matrix model that was considered above is quadratic in the field M.

can prove that

Erickson, Semenoff and Zarembo suggested that the Wilson loops could be calculated by
a matrix model, since was the only thing that mattered at large N. Later, Drukker and
Gross used the quadratic model to do the calculations and get an expression valid for any
N, that reduces to the result obtained by Erickson et all at large /V. But, they did not know
if one can produce the same result at large N from a non-Gaussian matrix model. They
argued that a Gaussian matrix model is the correct model to be considered since the results
coincide with those coming from the AdS/CFT correspondence, at large N and large .
It was Pestun in 2007 who showed that the matrix model must be Gaussian by using a

technique called localization. In the next section we will review briefly his method.

3.2.3 Supersymmetric localization

Localization is a powerful technique that allows to calculate supersymmetric path inte-
grals explicitly. It is based on having a continuum symmetry that acts on the space, it is
possible to express integrals over that space as sums of contributions coming from points
that are invariant under the symmetry. If the symmetry is the one that mixes fermionic and
bosonic fields, i.e. supersymmetry, the reduction of the path integral to a finite integral
over moduli space (classical values of the fields) is called supersymmetric localization.
It was Pestun [39] who used the localization principle to compute path integrals involv-
ing supersymmetric operators, in particular the Wilson loop. Let us see how it works,
schematically [40].

Let Q be the supersymmetric transformation (fermionic), so (? is a bosonic symmetry.
Its effect over the action is

QS[X] =0 (3.66)
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Now consider the partition function corresponding to the previous action but perturbed by

a (Q-exact term
= / DX e~ SEIHRVIXD Oy [X] > 0, (3.67)
for an arbitrary real parameter ¢, and the fermionic functional V' such that Q*V [X] = 0.

We can see that,

/DX QV ]) S[X]+tQV[X]) /DX Q —(S[X] thQV[X])) O,
(3.68)
since it is a total derivative. H So Z does not depend on the deformation parameter and it

can be computed at, for example, ¢ — oo without any problem. Similary, for the Wilson

loop,
d(W)
<d— _ ——/DXQ Xle~ [X]+tQV[XDW) =0, (3.69)
for supersymmetric Wilson operators, with QW = 0. Thus,
1
(W) = Z /DX S — }EEO—/DX e~ (SXIHQVIXD 11/, (3.70)

The only non-vanishing contributions to the expected value are field configurations (mod-
uli) satisfying
QVI[X] =0, (3.71)

because we take ¢ — oo for tQV[X] being finite. Then, this “localized set of (bosonic)
fields leads to a finite-dimensional integral. For a nice choice of V'[X] the integral can
be computed by evaluating the action at Q1 = 0. In Pestun’s paper, who focused on the
N = 4 SYM theory on S 4 this condition leads to a quadratic constant action (see [39],
and also the collection [42], for details)
1
S[®y = M] ox Tr (M?), (3.72)
g
for the unique non-zero scalar in the localized configuration, ®,. And since the scalars are
in the adjoint representation, they are actually matrices. So the localized theory is indeed

made of constant matrices with a quadratic action. This proves that the matrix model that

Erickson et al used to calculate the circular Wilson loop in A = 4 was correct.

10Since supersymmetry transformation can be thought as translations in the superspace, () can be written

as a differential operator.
"Localization can be extended to non-compact spaces as well (see for example [103]))
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In we will extend briefly the matrix model to the case of Wilson loops in
higher representations. We will also try to study subleading corrections of the exact re-
sults. But before that, let us see in the next chapter how the correspondence alllows us to

get the same results from a configuration of strings in ten dimensions.



Chapter 4

Holographic Wilson loops

In this chapter let us try to reproduce the field theory results from the gravity side because
this is how the duality works: comparing and matching results. In particular, for Wilson
loopsin N =4 D = 4 SU(N) gauge theory at large N E]and large A, we will understand
how to obtain the expectation value of a Wilson loop in type IIB supergravity in AdSs x
S5,

According to the Maldacena prescription [3L/8], we can calculate the expectation value
of an operator in the gauge theory at large )\ by evaluating the string action whose world-

sheets in AdS5 x S° satisfy boundary conditions [30]
<WC> = /DX G_S[X] - Zstrings )\_)—OO> €xXp (_Sonshell) . (41)
c

The string partition in the r.h.s. of the last equation defines a complicated two-dimensional
sigma model which cannot be solved explicitlyE] But simplifications occur at large A: here
the sigma model becomes weakly coupled, and the path integral is dominated by the sad-
dle point because stringy fluctuations are suppressed (since & — 0). The resulting action
in this limit is the Nambu-Goto action or, equivalently, the Polyakov action, whose solu-
tion describes the minimal area of the worldsheet [36] (see [34] for a complete analysis
of the string action in this background),

1
S[X]:=Syg=T / drdov/det guy,  gap = Gun0,Z2M0, 2N, T = P 4.2)
b

e’

'Remember that in the large N regime U(N) and SU () can be harmessly exchanged.
’Integrability techniques allows us to say that the model is indeed fully solvable without solving it.

36
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or
VA Moo N L?
S[X} = SNG = 2— dea\/det Gab Gab = GMNaaZ 8bZ \/_ = E (43)
T Js

where we simply extracted the dimensional part of the induced metric. So,

VA
Sonshell = %A[C] (44)

We can see that o/ — 0 means large string tension, so the string (classically imagined)
does not “vibrate”; and also o’ — 0 means large A. So, in this limit, the resulting action
must give only the area described by the string worldsheet attached to the loop. But
this dual expression is not going to give us the correct answer. If we naively compute
the onshell action, i.e. the minimal area described by the string, we expect it diverges;
that leads to (W) = 0. This is because we are not considering subtle details about the
boundary conditions we impose. Another way to see this is to consider the case of N + 1
D3 branes instead. Thus, their resultant worldvolume theory is going to be U (N +1). Let
us separate one single brane from the stack and connect them by a string. This translates

into a breaking of U(N + 1) to U(N) x U(1), as we said in This means that

oL =0 0
(I)[U(N-',-l) = v 4.5)
0 CI){V-H = (I)(I)
The string state connecting the branes will have a mass
M = ! (4.6)
C 2l '

If we see this string connect as a straight line connecting the position of the stack at the
boundary of space, with the separated brane, ¢ is going to be along the radial coordinate
of AdSs. So, an infinitely separated brane will produce a infinite massive string state
connecting the branes. This, in turn, will produce massive fundamental states on the
worldvolume theory: “quarks”. In order to eliminate from the action this infinite mass,
we explicitly write

QA[C]fML[C])

(We) ~ lim 67(2” , 4.7)

M—o0

where L [C] is the length of the loop.
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4.1 Boundary conditions

Branes are higher-dimensional surfaces where open strings can end. If we attach a string
to them we need to specify the behavior of its endpoints on that “plane*: free to move on
the plane and attached to it. The worldvolume of the field theory living on the brane is
four-dimensional; so if we define a 1/2 BPS Wilson loop there, we established that the

condition on the loop variables, (z*(7),4'(7)), is
i? = g2 (4.8)

This condition can be obtained in the gravity side by giving boundary conditions to the
worldsheet of a string stretched between a probe D3 brane and the /N D3 branes.

At large ), the N D3 branes become geometry of AdSs x S5. The string, which is
massive due to the separation of the branes, resembles the W-boson and each of their
endpoints behaves as “quarks”. From the worldsheet point of view, the gauge field, A,,
generated by the endpoint of the string and the scalar field, which can be understood as
transversal coordinates, couple at the boundary to the string worldsheet as [33]]

H .
f dr {Au a;( + @%Pl] , (4.9)
T

o=0

where A, couples only to X* and the scalar fields are precisely the transversal coordinates
as viewed by the worldsheet, so that they couple only to the (transversal) momentum
P [32,33]] associated to Y along o.

Let us review this in a slightly more general way. Remember the Nambu-Goto action

in (@.3)
2

(4.10)

DR
O[/

A L
Sng = \2/—7: / Po\/G,  ga = Gun0aZM0,ZN VA=
s
where ZM = {X* Y}, a,b = 7,0 and Gyn = {G,, Gi;}. Varying the Nambu-Goto

action we get

VA

(SSNG = o deO'aa (\/Eg“babZ‘]GJléZI)
— \25 / dr [\/99 0,27 G 116277 (4.11)
e =00

where we used the fact that the fields vanish at 7 = £oo0. We identify the momentum

along o conjugate to Z7 as

5 __ \/X\/Eg%abZ‘]GU. (4.12)

Priro) = 5571 = o
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At the boundary we need that
XH(1,00) = 2(7T)
Py (7,00) = /99 0,Y (1, 00) = §'(7), (4.13)

where we assumed that at o = 0 the string ends at the boundary and the loop is parametrized
by 7. Four directions along the brane are fixed, so they are now Dirichlet, while for the
six other transverse directions the string momentum is fixed, so we have six Neumann
boundary conditions. Consequently, the Wilson loop in the worldvolume theory imposes
“complementary“ boundary conditions on the string worldsheet. We say complementary
because a free open string on the D3 brane obeys four Neumann, since it is free to move
on the brane, and six Dirichlet boundary conditions, since the endpoints have fixed trans-
verse positions. Now, due to the loop on the stack of branes, the string endpoints cannot
leave the branes and go with them in their transverse space. Another way to arrive at
this is by starting from the ten-dimensional gauge theory from which we can reduce into
four-dimensional gauge theory by T-duality [32]: a Wilson loop in ten-dimensions is a
worldsheet disc bounded by the loop, so all boundary conditions we have are Dirichlet
and without the loop the string endpoints are free to move on the space-filling D9-branes.
When going to the four-dimensional gauge theory, with the loop, we perform T-duality
along six directions turning Dirichlet conditions into Neumann’s.

Now, let us follow [32] and see how the 1/2 BPS condition of the Wilson loop we
imposed in the field theory side is translated into the gravity side. Let us consider AdS5 X
S®,

ds? R B A 9 o

Tz = G dX"dX" + G;;dX'dX7 = V2 (Z dX'dX" + Z dYZdYZ> . (414

=0 i=4
The Hamilton-Jacobi equation for the minimal surface on a Riemannian manifold, i.e our

worldsheet, i| [32,/104]

68 0S5
GIJ (ﬁ) (67) == GIJ(?lZIalZJ. (416)

3This equation comes from the fact that % = 0 for reparametrization invariant metric like ours. We can
find an equivalent result by starting from the Polyakov action instead of the Nambu-Goto one. In this case
‘H = 0 becomes

hayPEPYGTY = 0. (4.15)
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In the case of interest at Y = 0 in AdS5 x S°, this becomes (3.8)
-9 =0, 4.17)

at the boundary, which means that the minimal surface, which is unique [33]], ending at
the boundary of AdSs x S° requires &2 = g2, which is nothing else than the 1/2 BPS
condition of the Wilson loop.

Moreover, this condition allows us to reinterpret the six Neumann boundary conditions

give above as Dirichlet ones [32]. By redefinition
> 00 =1, (4.18)

So {#'} are coordinates of the S°, which are fixed. Hence, the supersymmetric Wilson
loop lies at the boundary of AdSs and at a fixed point on S°, and it is precisely its super-

symmetry condition that is translated into the minimal area condition.

4.2 Legendre transform and the elimination of the diver-

gence

We saw above that the area of the worldsheet with boundary in C is infinite because the
string stretches from the boundary of AdS; x S°. The second term in contains
the divergent part when M — oo, so we took it off by hand. We can understand this
cancellation by another method. The Nambu-Goto action depends on X* and Y,
and it would be nice to define the area if those coordinates satisfy full Dirichlet boundary
conditions. Since this is not the case, we perform a Legendre transform to put the action
in terms of X* and P, which, as bounded dynamical variables, can be thought as having
Dirichlet boundary conditions [32,33]] (also see [29]). Let us vary a general string action

with Y to get

oL o cx il O=01
0S = /deU@a (aaaYi) = j{dT [PZ oY LZUO , (4.19)

which results to be a functional of Y. Let us define

=9 — f{ dr [PPY']°"", (4.20)

0'0'0
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such that

05 = — f{ dr [P7Y']7"", (4.21)

o=00
which is now a functional of the momentum FP;, not Y. In this case, assuming that 0 = o,

is at the boundary,

5S VY
P, = —=. 4.22
(7,00) = 00,Y" 21 y? (4.22)
Then, at y = ¢, the divergent part of the Legendre transformed action is
S=8-— %dTPiYZ =5 = j{d7|y| (4.23)
c
The onshell action is divergent and proportlonal to the length of the loop, so
S = 2—/d7‘(|x| — 9l - (4.24)
e
Thus, the divergence cancels when the constrain |&:| = |y| is satisfied. These results

lead us to say that the minimal surface located at the boundary of AdSs x S° is given
by the Legendre transform of the Nambu-Goto action for the bosonic string when the

supersymmetric condition is satisfied.

4.3 Three examples

In this section we review three holographic results for (1W). Henceforth, let us consider

the AdSs x S® space as parametrized by

LQ
ds* = 7 (dy® + dxf + dai + dzy + dal) + L? (d6? + sin® 0ds%a) , L* = Vad
(4.25)

Wilson line

For the line along Euclidean time, we can write the parametrization 2* = (7,0, 0,0) and

y = 0. The Nambu-Goto action reduces to

+°° +°° 1 vV A
Car [Tan =22 [arlal - YA )
02 e 2me

S =

Notice that M — oo as € — 0. The regularized minimal action can be calculated by

5= dr (J&| —[9]) = 0 (4.27)

27re
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Thus the expectation value of the Wilson loop is then
(wicp =1, (4.28)

which coincides with the field theory result in (3.20)) and is also valid at strong coupling.

Circular loop

The circular case was computed in [49]. We can calculate the minimal surface by us-
ing two method: (a) solving the equation of motion and, (b) making use of conformal
symmetry. We choose that the worldsheet lives at a fixed point on S°, so the 6"’s are
constants.
Let us see review the first method. We need a surface that ends on a circle of radius a
at Y = 0, so can write the ansatz for the AdS5 metric [36,49]
X" = (R(c)cosT,R(0)sinT,0,0), 0<7 <2,

Y =o0. (4.29)

The Nambu-Goto action becomes

S = Q/deai\/RQ (R2+1). (4.30)
s o2

The corresponding equation of motion solves as
R(o) =Va? — o2, (4.31)

which goes to zero at o = (0. We can find this as solution of the quadratic equation for the
hemisphere

2
x4+ a5 +yt =ad*, xf%—x%z( a2—y2> . (4.32)
Back to the action,

€

szﬁ/eada%:\/}@—Q. (4.33)

which clearly has a divergent part. The regularization term is

1
drli| = VA2, (4.34)
€

2me Jo
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Thus, S = —+v/\, which is independent of the radius « of the loop, as required by confor-
mal invariance. Finally,

W) =¥, (4.35)

which coincides with our last result in (3.29).
Now let us analyze the result by using conformal symmetry in the Euclidean case. The
parametrization of the line at the boundary, y = 0 is z = (7,0,0,0), where —o0 < 7 <

00, then the transformation
- x; + bi$2
T = )
1+2b-x+ b2x2

where b; = (0,0,0,0) is a constant vector in R*, maps the line into a circle with finite

(4.36)

radius a* — 1/b? (when 7 — 00). So (Z1)? 4 (Z2)? = a®. If we want to move this circle
into the bulk, we can do

(71)* + (72)* = a® — 3, (4.37)

which leads to the same parametrization in with R(y) = m. So, we wrote
the same solution for the minimal surface without solving the equation of motion.

Here we saw that it is possible to map the infinite line into a circle. But, again, why
does (W (circle)) # (W (line))? Since expectations values are different for conformally
equivalent paths, the conformal invariance has been violated. This violation comes from
the fact that we have regularized the area.

The fact that for the Wilson line (') = 1 independently of ) tells us that it is protected
by supersymmetry as a global BPS object [28]]. In the gravity side, even though the
conformal symmetry is broken, the result is as expected. It means that the cutoff did
not break superconformal symmetry and the BPS nature is preserved. Now, since in the
circular case the result is different as we saw also in the field theory, we say that the cutoff
broke conformal invariance leading to a conformal anomaly which contributed to the \-
dependent expectation value. So quantum corrections are possible for the circular Wilson

loop [29].

Rectangular loop: quark-antiquark potential

Let us consider two parallel Wilson lines. This was studied by Maldacena [30] and by Rey

and Yee [31]. In this case, let us consider a string connecting two lines, whose endpoints



CHAPTER 4. HOLOGRAPHIC WILSON LOOPS 44

will describe a “quark” and an “antiquark”™ in the field theory. The string state can be
considered as a infinitely massive W-boson.

We choose the lines to point in the zy (Euclidean ’time”) direction, and we put the
endpoints in the z; direction, at —L /2 and +L/2, so they are separated by a distance L.

The lines are then parametrized by

o = (+71,4+L/2,0,0),

xy = (—-71,—L/2,0,0), (4.38)

with 7 € [-T'/2,+T7/2]. So we are interested in the minimal area spanned by the string
worldsheet attached to a rectangular loop at the boundary of AdSs and fixed at a point in
S5,

The AdSs x S° metric can be written as

U? L?dU? L?
2 2 2 2 2 2
ds® = of o (dX§ + dX7 + dX5 + dX3) + 7 T dQz |, (4.39)

as we did in|subsection 2.4.1] The boundary, in this case, is at U — oco. In AdSs x S° we

can set

Xt = (1,0,0,0), (4.40)
U = Ulo), (4.41)

with 7 € [-T/2,+T /2] and ¢ € [-L/2,+L/2]. At the boundary,
U (£L/2) — oo. (4.42)

In the Nambu-Goto action all this becomes

1 +L/2 — _
Sy = _T/ d(;\/(a(,U)2 + UYL, [P =L%)a = VA (4.43)
2 J Ly

Since the action does not depend explicitly on o, there is a constant of motion:
U4 /E4
V(@,0) + ULt

= constant. 4.44)

Defining U to be the minimum value of U, which by symmetry occurs at o = 0, we can

check that B
L2 U/U() dy

- Nt y = U/U, (4.45)
1 —

g
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which gives o = o (U, U). Then, by inverting, U = U (o, Uy). U, can be determined by

remembering that [30] (see also [7]),

L_f?/oo dy _fNiQ V232 (4.46)
2 Ui 2/ =1 Uol(1/4)* '
From (4.45)),
do—frr— U (@)2 _ U (U* = Uy) (4.47)
NN ic) ~ T o) |
So, back to the action, this becomes
Svo=2 L [Tar U —TUO/OOd v (4.48)
Y TV 7 b YT |
This integral does not converge, so we must consider a cutoff:
. TU, [Ym y? TUy (Unax /7L (3/4)
Syg = 1 — d = - . 4.49
NG ymwl(r—l;loo 7T 1 yw /y4 —_ 1 7T UO F(1/4> ( )
We have isolated the divergence,
2TY]max
, (4.50)
2T

in which we recognize the length of the loop, 27" and the “W-boson” mass, Up.x/27. We,

them simply substract this term and write the finite regularized action as

~ I'3/4 4mr? 1
G UG8 o dwvA

VD (1/4) T T(1/4)'L

where we used li the definition of U,. We see that the action has the form S NG =

(4.51)

—TV (L), where V (L)  1/L due to conformal invariance, as expected. An important
detail is that the latter results shows that the potential goes as \/X ie. S NG X —TV\ /L,
i.e. a polynomial in )\, as opposed to S o« —T'\/L which is a perturbative result (see, for
example, [27,30]). This indicates some screening of the charges, as mentioned in [30]].
Until now we have reviewed how Wilson loops are useful to check the AdS/CFT cor-
respondence, but we have focused only on the case of the fundamental representation of
U(N), for which we only need to consider the minimal worldsheet surface attached to that
loop. We will see in the next chapter how this idea is extended to higher representations,
and how the string dynamics is not very useful to describe higher representations, i.e. lots

of strings or, equivalently, lots of “quarks”.



Chapter 5

Branes as Wilson loops

We learned that on the worldvolume of /V coincident D3 branes lives a U (V) (or SU(N),
see [3]) N' = 4 gauge theory. A Wilson loop in the fundamental representation can be
constructed from U(N + 1) and breaking it into U(1) x U(N) by choosing a nonzero
(large) vacuum expectation for the scalar fields, which in turn fixes a point on the unit
S5. A U(1) vector field appears which “eats” the scalar by Higgs mechanism to become
(very) massive, and transforms in the fundamental representation of U (V) [30]. Then, a
Wilson loop represents the phase along a path of the corresponding massive quark in the
fundamental representation of U(V), which is produced by decaying of the vector field,
and it was defined in (3.3). In the gravity side, we saw that massive quarks and the Wilson
loop itself can be obtained by considering N + 1 D3-branes and separating one of them,
a single string links the “probe” brane to the other NV branes. On the worldvolume of the
N branes, a vector and scalar field can be defined since the endpoints of the string carry
Chan-Paton factors and pull the branes towards the probe. The correspondence says that
at large N and large A, the field theory results when we “measure” the Wilson loop must
coincide with the evaluation of the minimal area described by the worldsheet of a single
string, which in this case stretches from the boundary of the AdSs x S® space to some
finite position. The Gaussian matrix model helped to calculate the expectation value of
the Wilson loop in the field theory side and the Nambu-Goto action, which defines the
area of the worldsheet, allowed to compute this expectation value in the gravity side for
the case of the linear and the circular paths.

We could extend these results and expect that the correspondence works when we

46
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consider “more quarks” in the fundamental representation of U(N) (or SU(N))), arranged
into a tensor product, which translates into having more strings stretching between the
N D3 branes and the probe D3 brane. Let us consider n quarks in the fundamental

representation of U(N),

OeOg---00=) R, (5.1)

which can be also seen as a single composed “quark”. These tensor product forms a
reducible representation, which can be reduced into irreducible representations charac-
terized by a partition R; = {ny,ns, -+ ,ny}, where ny > ny > --- > ny. and

n = ny +ng + --- + ny. As a diagram, the partition can be expressed by a Young

tableau,

, (5.2)

where we put n; boxes (quarks) in the first row, ny boxes in the second row and so on.

For a given irreducible representation R of U(N), we write the Wilson loop as we did in

[43]

1 , A
Wr[C] = dimRTrRP exp b{ dr (iA,(7)i" + @' (1)) | - (5.3)

In this chapter we will focus on two cases: the k-symmetric and the k-antisymmetric

representations,

Se=L L [ L1 ] A=t (5.4)

which correspond to a single row and a single column with & boxes, respectively.
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5.1 Wilson loops in £-symmetric and £-antisymmetric rep-

resentations

In principle, to compute the expectation value of the Wilson loop we must calculate the

path integral
W _ /DX MR

where X denotes the fields of U(/N) SYM theory. As we saw before, Erickson, Semenoff

(5.5)

and Zarembo [27]], Drukker and Gross [28]] proposed and proved, respectively, that the
expectation value of the Wilson loop in fundamental representation can be exactly calcu-
lated by summing ladder diagrams, and that this can be represented by a matrix model.
The matrix model was proved to be Gaussian by Pestun [39].

Since the matrix model is independent of the representation of U (N), we consider

= /DM exp (—%TrMﬁ , (5.6)

where M is a N x N Hermitian matrix which transforms in the R representation of U (V)
(see [43,45], two important references). In the eigenvalue basis, M = diag (A1, Ao, - -+, Ax),

the partition function is (3.55)

/Hd/\ [T = )2 exp (——ZA2> (5.7)
1<j

The expectation value of the Wilson loop is (see (3.42))

(W) = 35— R (Tre™) (5.8)

where we replace dim[LJ = N — dimR, in general. After diagonalization we can write

dimR <Tr€M> dlmR <SR ( 76/\2, T 76/\N)>7 (59)

where Sg (e, e*2,--- e*V) is the Schur polynomial associated to the representation

R [24]] (see [[105]] for details). Thus,

d/\ )\—)\)S( €2 M) exp< A2)
~ dim RZ/H o Z

(5.10)

(Wr)

For the symmetric and antisymmetric cases (5.4)) with k-boxes, the Schur polynomials are

the following [[106L/107]:
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e k-symmetric
Ss, (e’\l,e)‘Q, e ,e)‘N) = hy, (eAl, et ... ,e’\N) , (5.11)

where hy, is the k™ complete symmetric polynomial, the sum of all monomials of

total degree k in {exp \;},

hi = exp ;. (5.12)
i=k
The generating function for Ay, is
A 1
H(t) =) ht" = = = Fy(t 5.13
(¥ Z g H (1 —teri)  det (1 —teM) s(t), (>.13)
k>0 i=1
which can be inverted as
1 Fs(1)
hy =— ¢ dt 5.14
" omi 7{ tht1 ©-19)
where t € C.
e k-antisymmetric
Sa, (e>‘1, e ... ,e/\N) = e (e>‘1, e ... ,e/\N) , (5.15)

where ey, is the k™ elementary symmetric polynomial, the sum of all products of k

distinct variables exp \;,

er = > exp (i, + Aiy + 00+ Ay ) - (5.16)

1<) <ia<--<ip <N

The generating function for ey is

N
E(t) =) ext" =] (1+te). (5.17)
k>0 i=1
We can redefine E(t) as [45]
1 N
Fu(t)=t"E (;) = at"r = H (t+eM) =det (t+e),  (5.18)
k>0 i=1
which can be inverted as
1 Fu(t)

(5.19)

ep = — — .
2711 N —k+1
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The strategy in [43]] was to compute the expectation value of the generating function

instead of the Wilson loop’s

(Fas(t) /HdA I ¢

1<i<j<N

(A — \;)?Fsalt eXp( Zv) (5.20)

The expectation value of the Wilson loop can be then calculated by

1

1 dt T for Sg

= ——— @ —(Fg gt . 21

(Ws.a) dim[S,A]f?m‘< salth) x4 ] (5:21)
INFFT or Sy

The dimensions of the rank £ symmetric and antisymmetric representations are, respec-

tively,
. (N +k—1)! , N!
d =-———  dimA4| = ——. 5.22
mlS) =y =y A= G (5-22)
The path integral can be rewritten as
N
(Fsa(®) =+ [ TLdAexp (~Ssa [{A}) (5.23)
S,A 7 11 7 S,A % ) .

N | +log (1 —teM) for Sg

SS,A_ ZV D log(hi =N+ . (5.29)

i<j i=1 | —log (t + e’\i) for Sy

The first two terms are of order N? and the last one is of order NV, so at large N the first

two terms will dominate. So the expectation value for the generating functions will be

+VA
(Fs(t)) = (exp (Trlog [t + €M])) — exp <—N/_ﬁ dx p(x)log (1 — te:”)) , (5.25)

and

+VA

(Fa(t)) = (exp (—~Trlog [1 — te™])) — exp <N/

dx p(z)log (t + ex)> . (5.26)
V3

where p (x) was defined in (3.51)) in|subsection 3.2.1|

Atlarge N, the circular Wilson loop is given by (5.8)), where

e k-symmetric

+VA
(Trg, M) = 7{27” T © <—N /—ﬁ dx p(z)log (1 —tex)) : (5.27)
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e k-antisymmetric
+VA

(Tra.e™) = 7{2 G © (N/_ﬁ dx p(x) 108?(1"‘75696))7 (5.28)

where we absorbed the factor ¢~ into the exponent and changed ¢ — 1/t

Therefore, we can write both results as

o dt 1 +VA
(Trg, a,e™) = ]{—_—exp :FN/f dx p(z)log (1 F te®) | . (5.29)
VA

27 thtl

where the — sign corresponds to the symmetric representation, and the + one to the
antisymmetric. Notice that this is the saddle point approximation we reviewed in

5.1.1 Thelarge N ~ k limit
We have already considered the large /V limit, which reduced (5.10) to computing residues

in (5.29). It is interesting to take also the limit when the number of boxes, the number of

”, is large. Let us define,

“quarks”,
(5.30)

which is kept fixed, and change
(5.31)

to write (5.29) as
A 2 +1
O S e SN

(5.32)

Now ¢ = 0 is mapped to z — —o0, and t — o0 to 2 — o0
In the large NV limit, the integral is dominated by the saddle point, whose equation is

+1 /1 _
2/ dl—inf:O, (5.33)

T J-1

which is an equation in z. In order to compare with the supergravity result, we need to

take A — oo.
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Let us review the corresponding results for the symmetric and antisymmetric cases. At
large N, (5.32) can be evaluated using the saddle point method when we choose the upper
sign (see [43.,/108]] and also [41])

)

(Ws) = exp [QN (m/m + sinh™! H)} L k=T (5.34)

which is the expectation value of a Wilson loop in the symmetric representation.

It was computed also in [43,/108] that, in the antisymmetric representation, the Wilson

loop is
(W4) = exp (é—]:\/X sin® 9k> , (5.35)
where 0, satisfies
f =0, — %sin 20;.. (5.36)

1/N corrections were studied in [66,/109}/110].

Let us see next how these results appear in the corresponding gravity context.

5.2 D-branes and holography

We saw that the expectation value of a Wilson loops in the fundamental representation
of U(N) (or SU(N)) corresponds to calculating the minimal area of the worldsheet of
an open string ending on a D3 brane probing N D3 branes. For higher representations,
one could think that the expectation value of the Wilson loop should correspond to having
more (fundamental) strings attached to the boundary of AdS. But calculating the minimal
area of coincident worldsheets is a daunting task due to the complicated geometry.

It was found, for first time, in [111] that a bunch of fundamental strings ending on
branes are described better by another brane! This was later confirmed in [37,38,|50,
65]]. To be precise, let us consider k£ fundamental strings. Calculating the minimal area
would involve the evaluation of the string action containing string corrections since the &
worldsheets could interact and develop conical singularities and branch cuts. A horrible
collective worldsheet! Each string carries a unit of “electric flux” which is communicated
to the brane through the B-field (see [[86}/112] for the basics). Now, k& fundamental strings

will insert £ units of electric field to the probe D3 brane. Following [111]], we can consider
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instead a “string-equivalent* D-brane carrying £ units of electric field on its worldvolume.
The dynamics of this brane is given by the Dirac-Born-Infeld action.

In [37,38] it was proved that 1/2 BPS Wilson loops of N' = 4 SYM in symmetric
and antisymmetric representations of SU(N) can be described by D3 and D5 branes,
respectively, carrying & units of fundamental string charge, which in their worldvolume
action means to insert a Chern-Simons term.

As we know, a circular or straight line Wilson operator breaks one-half of the super-
conformal symmetries of N/ = 4 SYM. Just for recalling: in order for the Wilson loop
to be supersymmetric, each point in the loop must preserves supersymmetry, it leads to
the condition & = 0. This is satisfied by the straight line loop and, by conformal trans-
formation, by the circular loop. The line, or the circle, breaks the SO(4,2) x SO(6)
(bosonic) isometry of N' = 4 into SO(2,1) x SO(3) x SO(5): conformal transforma-
tions along the line and rotations. For higher representations, since, in spacetime, the

loops is the same as in the fundamental case, the symmetries that must be preserved are

still SO(2,1) x SO(3) x SO(5) or SU(1, 1) x SU(2) x SO(5).

5.2.1 DS5;-brane and the £-antisymmetric representation

Let us consider a D5 brane probing /N D3 branes in flat space. The configuration in flat

space can be expressed as (see [37,38]] and [86])

0O 1 2 3 4 5 6 7 8 9
D3 X X X X
D5 X X X X X X

The effect of the D5 brane on the four-dimensional worldvolume theory of N D3 branes is
to insert a codimension three defect. This perturbations correspond to the (3,5) and (5, 3)
string states, i.e. strings connecting the D5 with the D3. These new degrees of freedom
are localized in the defect. The (5,5) strings are not dynamical, but they are important
to identify the D5 brane with the Wilson loop in the antisymmetric representation. As
explained in [37,|38]], the D5 branes inserts a defect term in the partition function of
N = 4 theory that includes fermionic fields due to the endpoints of the (3,5) and (5, 3)

strings, transforming in the fundamental representation of U(N). Also, since the D5 is
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charged, a Chern-Simons term must be included, which brings the electric charge of the
D5 into the D3 worldvolume as well as the interaction between it and the defect fields.
As better explained in the references, integrating out those defect states from the partition
function has the effect of inserting into the A’ = 4 path integral a Wilson loop in the
k-antisymmetric representation, for £ < N. It results that the charge of the D5 we add
corresponds to the number of strings endpoints or fermionic states on the D3 branes.
Here, we will follow some details of the calculations in [65]] and [113] (reviewed in
[41]), where it was computed and proved that indeed D5 branes can be used to compute
the circular Wilson loop in the antisymmetric representation. Let us consider the AdS; x
S® space as a fibration of two-dimensional space with AdS, x S? x S* fiber, in which the

SU(1,1) x SU(2) x SO(5) isometry is explicit.
ds® = cosh? udsidsz—l—duQ%—sinhZ uds?gz +dh*+sin? Gin, 0<u,0<6<m (5.37)
with
dshys, = d€° +sinh®Ed®,  dste = d* + sin®J d¢?, (5.38)

where the worldvolume coordinates of the D5 brane are taken to be {&, 4,0y, 04}
(static gauge). The Wilson loop is located at u = 0, £ — o0; sou = u (5)[] The action

for the D5 brane in this background is given by

Sps = ﬂ/d%/det (G+ F) —iTy / FACy. (5.39)

Let us consider that the D5 brane wraps S, so the 6 angles are fixed § = 6. The C,

background field is
u 1 3 . 1.
Cyi=14 (g ~ 3 sinh 4u) volags, A volgz — <§9 — sin 260 + 3 sin 49> volga. (5.40)

Taking the ansatz v = 0 and 6 = 6, constant, and F' = Fydi A d€, the action for the D5

brane is

2N 472 F?

Sps = ==V [ d¢ sinh¢sin® Oy )1 + ——25

s 37T \/—/ g Sin €SIH \/ + )\ Sinh2£
4iN 1

+ZT df ng (gtgk — sin 29k + g sin 49k) s (541)

'Notice that ¢ is the radial coordinate of the internal Ad.Ss space.
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where Tps = N+v/A/87% and volgs = 872/3. Since the worldvolume gauge field, Ae,
does not appear explicitly in the action, its corresponding conjugate momentum :II is

conserved (constant and equal to the electric charge),

1 6L 2N Esin*6, 2N /3 1
I=-f——-—=—— 4+ — | =0, —sin 20 —sindl, | =k 542
niF 3 i B + o <2 k —sin20; + 2 sin k) (542
with
27Ti ng
= —— . 5.43
V) sinh & (5:43)

We set [I = k because of the fundamental string charge goes into the brane as electric

charge. If E' = cos 6y, then Fy¢ = iv/Asinh € cos 0 /2,
) k
Qk—smekcos&gzwﬁgw = k<N. (5.44)

The boundary contribution which takes into account the effect of the boundary of AdS can

be computed [32]/65]113]]. Plugging the solution back to (5.41)) and adding the boundary

ter we get

2N
Sps + Shay,a = —3—\/Xsin3 0. (5.45)
T

The expectation value of the Wilson loop in the antisymmetric representation is
2N
(Wy,) = exp 3—\/X sin® 0y, (5.46)
7

the same result obtained by Hartnoll and Kumar we wrote in (5.35). Now, when k£ < N

the angle 6}, is small, so we can approximate 07 = 37k/2N and
2N
(Wa,) = exp— VA = "V, (5.47)
T

or

(Wa,) ~ (Wa)*. (5.48)

Which is the expected result, representing k independent fundamental strings attached to
the D3 brane.

There is also an interesting detail with our result, the k-antisymmetric and (N — k)-
antisymmetric representations, where £ < N, are related by the change 6, — 7™ — 0,
which means F,e — —Fy¢, the complex conjugation of the electric field. Under this

change, the Wilson loop is invariant.

2This boundary term must be at &, since this is the radial coordinate.
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5.2.2 D3j-brane and the k-symmetric representation

It was shown also in [37,38]] that the configuration for a D3 brane probing N D3 branes
corresponding to the k-symmetric representation of U (V) can be obtained by bosoniza-
tion of the fermionic field x in the defect theory. This partition function inserts a Wilson
loop in the k-symmetric representation in ' = 4 SYM theory, so we expect that duality
allows us to compute the expected value also in the gravity side in the D3 brane descrip-
tion. Actually, the derivation of the symmetric representation was re-shown in [38]] by
following the same method in [37] for the D5 brane. k£, again, represents the number of
string ending on the D3 stack. An important difference from the D5 case is that, in this
case, the electric charge is arbitrary, so k£ can take any value, even & > N.

In order to see how the D3 brane description actually works, we will follow [41},50] to
calculate the circular Wilson loop in the symmetric representation. The AdSs x S® space

can be written as
1
ds? = 7 (dy® + dr} + rid® + dry + r3d¢?) + dQ3. (5.49)

The circular loop is located at r; = a,72 = 0 and z — 0. In order to exhibit the

SU(1,1) x SU(2) x SO(5) symmetry, we change variables,

acosmn asinh 7 sin @ asinmn

1

- cosh p — sinh pcos @’ 2= cosh p — sinh pcos @’ v= cosh p — sinh pcos )’
(5.50)

such that the metric becomes

ds® =

sin®n

(dn? + cos® ndy?® + dp* + sinh® p (d6? + sin® 0 d¢?) ) + dQ2,  (5.51)

where 0 < p, 0 < 0 < mand 0 < n < 7/2. In this metric the Wilson loop is located at
n = p = 0. We go to static gauge in which the worldvolume coordinates are {v, p, 0, ¢},
and the brane sits at a fixed point {©’} on S°. The remaining coordinate, 1, will be seen
as a worldvolume scalar field = n(p). There is also a gauge field, which is chosen to be

only electric, F,. The four-form potential is, in terms of the old metric (5.49),
172
04 = —4dT1 A d@/] N d?”g AN d¢, (552)
Y

and can be written in the new coordinates (5.50). Dynamics of the D3 brane is given by
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the DBI action and the corresponding Wess-Zumino term.

sin @ sinh?
Spy = 2N/dpd9L4np\/cos2n(l+?7’2)+(27ra’)23in4nF$p

S

—2N/d decosnsm@smh p (cosn-l—??’sinnsmhp_COShpCOS@),

sintn cosh p — sinh pcos @

(5.53)

Solutions to the equations of motion are

kA
SinT] = :‘i_l Sinhp, pr = m, (554)
where
1 6C AN
M= i =" (5.55)
2 5F¢p \/X

is the constant conjugate momentum associated to A, (p), the electric field, i.e. the electric
charge or fundamental string charge dissolved on the D3 brane. By plugging this solution

back into the action we can calculate the on-shell action,
Goushell _ 9 7 (/m/l T2 — sinh™! /@) , (5.56)

which is exactly finite. Even though we found a non-divergent action and naively we
computed the expectation value of the circular Wilson loop, we need to do the Legendre

transform as required and hope it does not produce a divergence. There are two boundary

terms
1 5,5 ANk
S =lim —— [ d =— 5.57
and
) i ANK
Sbdy,4 = lim —— [ dydpllF, = —4NkV1 + k2 + . (5.58)
’ no—0 2w Mo
Thus, the regularized action is
S+ Suy + Shiya = 2N (VT R + sinh ™! ) (5.59)
The expectation value of the circular Wilson loop is then
(Ws,) = exp 2N (KJ\/ 1+ K2 + sinh ™ /4) , (5.60)

which is precisely the matrix model result in (5.34). At small k and A < N?, the last
expression reduces to

(Ws,) ~ eV = (Wp)k. (5.61)



CHAPTER 5. BRANES AS WILSON LOOPS 58

The last result coincides with (W4, ) at small k,

lim (W, ) = lim (W, ) = (Wo)F. (5.62)
For example,
(Wm) ~ (W) = (Wo)(Wo), (5.63)

where two fundamental strings produces a circular Wilson loop separately.

But, what happens when £ > N? This is not allowed in the antisymmetric case but
only in the symmetric. In this regime the brane we considered backreacts on the geometry
and deform the AdS5 x S° space, forming the so-called bubbling geometries (see [71-73]]
for details).

As we said before, to consider £ fundamental strings to describe the k-representation
of the circular Wilson loop, would lead to handle complicated and singular geometries.
The k£ ~ N limit, in which we dissolve the £ strings worldsheets into a brane is convenient
because it produces the expected AdS/CFT results, and then it encodes the interactions
between the coincident strings and allows to have all non-planar contributions to the ex-
pectation value of the higher rank Wilson loop.

Two kinds of branes were considered in order to describe, in this case, circular Wil-
son loops in the k-symmetric and k-antisymmetric representations of U(N) (with N
large): D3 and DS branes with £ units of charge. Those brane descriptions satisfied the
SO(2,1) x SO(3) x SO(5) symmetry of the Wilson loop in the gauge theory as an isom-
etry of their induced geometries. Their worldvolumes are: AdS, x S? and AdS, x S4,
for the D3 and the D5. We can see that the D3 branes is entirely embedded into AdS5 but
not the D5 which has its S* part inside S, so it preserves SO(5).

It is important to mention that we have assumed some results from the string world-
sheet results given in the last chapter. Remember that, in order to describe a Wilson loop
at the boundary of AdSs x S°, we minimize the string worldsheet area which, in turn,
yields the BPS condition for the loop as required by supersymmetry. Here we considered
a brane as the “effective* behavior of k& worldsheets, and assume that the minimal area
condition became the onshell regularized action of the brane. It was proved in [|114] that
the worldvolume field on the probe brane attached to the Wilson loop at the AdS boundary

are constrained by the BPS condition, as expected, since the loop does not change.
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5.3 Beyond the leading order

59

The last results correspond to the N — oo and A — oo regime. Let us go back to the

result of [28], in which the circular Wilson loop in the fundamental representation of

U(N) was computed in the matrix model for a