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Abstract

The electroweak hierarchy problem is one of the most important puzzles of particle physics

that remains without conclusive answer nowadays. One of the most recent new class of

solutions to this problem is presented in this thesis, i.e., the cosmological relaxation of

the electroweak scale. In this framework, we postulate the existence of a new particle, the

relaxion, which drives the Higgs mass to values much smaller than the cutoff of the theory

during inflation. As tools to develop this subject, this work presents a resume of chiral

perturbation theory, the strong CP problem, axions and the η′ particle. Finally, we will

describe the most simple model of cosmological relaxation of the electroweak scale and

the non-QCD model, where a new strong group SU(N) forms a condensate that interacts

with the relaxion.

Keywords: Particle Physics. Hierarchy Problem. Cosmological Relaxation of

the Electroweak Scale. Relaxion. Chiral Perturbation Theory. Axion. η′ .





Resumo

O problema da hierarquia eletrofraco é um dos enigmas mais importantes da f́ısica de

part́ıculas que continua sem uma solução conclusiva hoje em dia. Uma nova classe de

soluções, dentre as mais recentes, para este problema é apresentado nessa dissertação,

i.e., o relaxamento cosmológico da escala eletrofraca. Neste quadro, nós postulamos a

existência de uma nova part́ıcula, o relaxion, que conduz a massa do bóson de Higgs para

valores muito menores que o cutoff da teoria durante a inflação. Como ferramentas para

desenvolver este assunto, este trabalho apresenta um resumo de teoria de perturbação

quiral, o problema CP forte, axions e a part́ıcula η′. Finalmente, iremos descrever o

modelo mais simples de relaxamento cosmológico da escala eletrofraca e o modelo sem-

QCD, onde um novo grupo de interação forte SU(N) forma um condensado que interage

com o relaxion.

Palavras-Chave: F́ısica de Part́ıculas. Problema da Hierarquia. Relaxamento

Cosmológico da Escala Eletrofraca. Relaxion. Teoria de Perturbação Quiral.

Axion. η′ .





Contents

1 Introduction 1

1.1 Naturalness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The hierarchy problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 The fermion loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Fine tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Structure of this dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Chiral Perturbation Theory 10

2.1 Running of αs and ΛQCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Effective field theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 How to treat the mesons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 CCWZ construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Separating the NGBs . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Finding the Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 CCWZ in ChPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Explicit chiral breaking and gauge interactions . . . . . . . . . . . . . . . . 21

3 Axions and the η′ meson 25

3.1 The θ angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Effects of the winding number in the functional integral . . . . . . . 25

3.1.2 Consequences of Lθ . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 The vacuum energy as a function of θ̄ . . . . . . . . . . . . . . . . . 28

3.1.4 The neutron electric dipole moment . . . . . . . . . . . . . . . . . . 30

3.2 The axion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



CONTENTS

3.2.1 Peccei-Quinn symmetry . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Axion interactions at low energies . . . . . . . . . . . . . . . . . . . 40

3.3 The η′ meson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 The chiral Lagrangian including the U(1)A anomaly . . . . . . . . . 43

3.3.2 The η′ mass and its interactions . . . . . . . . . . . . . . . . . . . . 46

4 The relaxation of the electroweak scale 49

4.1 The Minimal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 The central idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Constraints on the parameter space . . . . . . . . . . . . . . . . . . 51

4.2 Non-QCD Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.1 A new strong group . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2.2 ChPT of the non-QCD model . . . . . . . . . . . . . . . . . . . . . 56

4.2.3 Constraints on the parameter space in the non-QCD model . . . . . 59

Conclusions 63

A 65

A.1 FRW metric and the Friedmann equations . . . . . . . . . . . . . . . . . . 65

A.2 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.2.1 Definition of inflation . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.2.2 The inflaton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2.3 The amount of inflation . . . . . . . . . . . . . . . . . . . . . . . . 69

A.2.4 Quantum fluctuations during inflation . . . . . . . . . . . . . . . . 69

B 71

B.1 Fermion loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.2 Fine tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References 75



Chapter 1

Introduction

The Standard Model of particle physics (SM), as developed in the 1960’s after the work of

Glashow, Weinberg and Salam [1][2], is an extremely successful theory, whose predictions

have been experimentally confirmed to the permil level. As we are going to explain,

however, the presence of a fundamental scalar particle makes the theory unstable under

radiative corrections, introducing in principle a huge tuning to explain the lightness of the

Higgs mass. This “fine tuning” (or naturalness) problem has been the focus of most of the

theoretical activities over the past decades. The attempts to solve it include compositeness

for the Higgs, supersymmetry, extra-dimensions, quantum gravity at the electroweak scale

and anthropics. Since the last one assumes the existence of a multiverse, while the others

have collider and indirect constraints that force these models into fine-tuned regions of

their parameter spaces, we are still lacking a concrete and conclusive solution. In this

thesis we will study a new class of solutions, the so-called relaxion framework, one of

the most recent proposals for the solution of the hierarchy problem of particle physics.

As we will see, in this proposal an axion-like particle will scan the Higgs mass during

inflation, making the Higgs mass technically natural, solving the hierarchy problem with

no multiverse assumption or fine-tuned regions on the parameter space.

This thesis is organized as follows: in the remainder of the introduction we will discuss

in detail the hierarchy problem of the SM. Since, as already mentioned, the relaxion is an

axion-like particle (ALP), in Chapters 2 and 3 we will study the QCD axion and chiral

perturbation theory. The results of these chapters will then be used in Chapter 4 to discuss

the minimal relaxion framework as well as a simple alternative dubbed “non-QCD” model.

1



2 CHAPTER 1.

1.1 Naturalness

Naturalness, roughly speaking, is the idea that all parameters of a fundamental theory

should be of order one. The most primitive way of defining naturalness is due to Dirac,

and states that for an operator A in the Lagrangian we must have that the corresponding

Wilson coefficient cA has the form

cA = O(1)× Λ4−∆A , (1.1)

where Λ is the fundamental scale of the theory and ∆A is the dimension of the operator

A.

Another possibility, that takes into account the notion that in addition to scales and

interactions in QFT there are also symmetries, is the so called ’t Hooft criterium for

technical naturalness. It states that if the theory has an enhanced symmetry when a

parameter is zero, then the quantum corrections of the parameter will be proportional to

the parameter itself. Thus, if the parameter is small, it will remain small after radiative

corrections are considered, and we say that the parameter is “protected” by the symmetry.

As an example we consider the electron mass. The self-energy graph, given by the

diagram in Figure 1.1, is

Figure 1.1: Diagram of electron self-energy.

iΣ2(/p) = −i e
2

8π2

∫ 1

0

dx(2me − x/p)
(

2

ε
+ log

µ̃2

(1− x)(m2
e − p2x) + xm2

γ

)
, (1.2)

where e is the electron charge, me is the electron mass, µ̃ ≡ 4πe−γEµ, µ is the arbitrary

parameter of dimension 1 of dimensional regularization, and mγ is a fictitious photon

mass used for the regularization (that will be set to zero at the end of the computation).

Notice that, from Eq. (1.2), the QED correction is proportional to the electron mass
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at the pole Σ2(/p = me). This happens because the electron mass is protected by the chiral

symmetry, which is a global symmetry where right-handed and left-handed electrons have

opposite charges ψL → e−iαψL and ψR → eiαψR. This transformation can be written as

ψ → eiαγ5ψ,

and leaves the QED kinetic term invariant

ψ̄ /Dψ → ψ†e−iαγ
†
5γ0 /De

iαγ5ψ = ψ̄ /Dψ,

where in the last equation we used γ†5 = γ5 and [γ5, γ0γµ] = 0. Similarly one can show

that the QED interaction term is also invariant. The mass term however is not invariant:

meψ̄ψ → meψ̄e
2iαγ5ψ 6= meψ̄ψ.

This shows that we have the chiral symmetry as an exact symmetry only if we set me = 0,

and in this case me will stay 0 to all orders in perturbation theory. For me 6= 0 we treat

the mass as an interaction term in such a way that every diagram that violates chiral

symmetry, including corrections to the mass itself and the diagram of Figure 1.1, must be

proportional to me. Notice however that even if a small parameter is technically natural

it is still not Dirac-natural.

We now investigate examples of parameters that are not protected by any symmetry.

Problems of non-naturalness fall in the class of problems that consist of a conflict between

the theoretical expectations for the size of the parameters and the actual size of parameters

we see in nature. Examples of such problems are the strong CP problem (that will be

considered in Chapter 3), the cosmological constant problem and the hierarchy problem

that we will now explain. The present discussion follow Refs. [3] and [4].

1.2 The hierarchy problem

The hierarchy problem is often described as the problem related to the fact that radia-

tive corrections to the Higgs boson mass are quadratically divergent when one applies

regularization by a sharp momentum cutoff. But this is not the best way to define the
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naturalness problem for two reasons:

First, the physics must never depend on the regularization procedure chosen to avoid

the infinities in the loop integrals that will be absorbed by the counterterms, and the

quadratic dependence on the cutoff only appears in sharp momentum cutoff regularization.

When one uses dimensional regularization for the radiative loop correction (see below)

this quadratic dependence disappears and another kind of divergence arises. Second, a

fermion loop on the photon self-energy radiative correction is also quadratically divergent,

but there is no naturalness problem for the vanishing mass of the photon.

1.2.1 Statement of the problem

A more profound statement of the problem is that the mass of a scalar particle, which

is not protected by any symmetry, receives, from any particle or interaction, radiative

corrections of the order of the energy scale of this particle or interaction. So the scalar mass

is not Dirac natural (because of the large radiative corrections) and not even technically

natural.

Now, we have several reasons to believe that the Standard Model (SM) is not the

ultimate theory of Nature, among which:

1. Gravity is not described in the SM and it becomes important at the Planck mass

scale MPl ∼ 1019 GeV;

2. We have no candidate for a dark matter particle in the SM;

3. When we simulate QED in the lattice above the Landau pole (at 10286 GeV), we find

that the only consistent non-perturbative theory obtained has a vanishing coupling

constant (e = 0), which is a contradiction since we are at a large coupling regime.

Since the SM has a gauge SU(3)c × SU(2)L × U(1)Y symmetry, even if we ignore

gravity at MPl, we have to consider the same Landau pole problem of item 3 above for

the g′ coupling of U(1)Y symmetry, so we expect the SM to be an effective theory. Beyond

that we must consider gravity at MPl, so anyway, either at MPl or above the Landau pole

we expect New Physics (NP), i.e., new degrees of freedom. If the Higgs boson of the

SM is an elementary scalar, we expect it to be sensitive to NP either via the graviton or,

since it has a hypercharge, via the boson Bµ. In both ways, the scalar mass which has
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no symmetry protecting it, will receive huge radiative corrections of order of at least the

Planck mass scale, which makes very difficult to understand why the Higgs mass is only

of 125 GeV, 16 orders of magnitude smaller of MPl (see Figure 1.2).

Figure 1.2: Hierarchy between the scales.

1.2.2 The fermion loop

As an example, we will show that the radiative corrections to the Higgs boson mass from

a fermion with a large mass will be proportional to the mass of the fermion. We will do

the computation in dimensional regularization to show that the main problem does not

depend on the quadratic dependence of cutoff regularization.

First, we add to the Lagrangian a Yukawa coupling with the new heavy fermion f
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LY = −yhf̄LfR + h.c.,

where y is the Yukawa coupling, h is the scalar field Higgs boson and fL/R are the left/right

handed fermion fields.

Figure 1.3: Fermion contribution to the Higgs self-energy.

The one-loop contribution from the fermion to the Higgs boson self-energy from the

diagram of Figure 1.3, gives

iA = −µ4−d(−iy)2

∫
ddp

(2π)d
Tr

[
i

/k + /p−M
· i

/p−M

]
, (1.3)

where µ is the arbitrary parameter of dimension 1 of dimensional regularization, k is the

momentum of the incoming and outgoing Higgs boson, k + p and p are the momenta of

the virtual fermions in the loop and M is the mass of the heavy fermion.

By computing (see Appendix B) the amplitude of Eq. (1.3) we get

iA = − iy
2

4π2

∫ 1

0

dx3(−xk2+x2k2+M2)

(
2

ε
− γ + log

(
µ2

M2 − x(1− x)k2

)
+ · · ·

)
. (1.4)

It is opportune now to compare Eq. (1.4) with Eq.(1.2). We notice that in Eq.(1.2) the

electron self-energy is proportional to the electron mass, while in Eq. (1.4) the self-energy

of the Higgs boson is not proportional to its own mass but rather it has a dominant

contribution from M2. This is a direct consequence of the fact that electron mass is

technically natural, while the Higgs boson mass is not. Also, since the amplitude depends

quadratically on the fermion mass, there is a large ultraviolet (UV) sensitivity.

We obtain the renormalization group equation (RGE) for the Higgs mass squared (see

Eq. (B.13))

µ
dm2

h

dµ
= −3y2M2

2π2
+ · · · (1.5)
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where the · · · represents the possible contribution from other loops that are not shown.

For a fermion mass, the RGE is always proportional to itself because it is protected

by the chiral symmetry. That is not the case for Eq.(1.5), instead the RGE of the Higgs

mass is proportional to the large fermion mass. This shows that the running of the Higgs

mass takes contributions from any fermion it couples to. This is an example of how the

naturalness problem appears.

1.2.3 Fine tuning

Now suppose that, as we already stressed, we have good reasons to believe that the SM

is a low energy theory of a more complete one. If this more complete theory has a input

scale Λin where its parameters are generated, the hierarchy problem will demand a high

precision tuning for specifying the value of m2
h(Λin) and run it down to find the right

value of m2
h(ΛSM). This can be seen if we change m2

h(Λin) by a small value ε and see how

it affects m2
h(ΛSM). This can be expressed in the following way:

m2
h(Λin)→ (1 + ε)m2

h(Λin)⇒ m2
h(ΛSM)→ (1 + ∆ε)m2

h(ΛSM)

where ∆ is the low energy effect of the change ε at high energy.

After calling m′h
2(Λin) = (1 + ε)m2

h(Λin) and m′h
2(ΛSM) = (1 + ∆ε)m2

h(ΛSM) and

demanding m′2h (Λin) −m2
h(Λin) = δm2

h(Λin) = εm2
h(Λin), while m′2h (ΛSM) −m2

h(ΛSM) =

δm2
h(ΛSM) = ∆εm2

h(ΛSM), and finally eliminating ε, we and obtain (see Appendix B)

∆ =
d logm2

h(ΛSM)

d logm2
h(Λin)

. (1.6)

Notice that from Eq. (1.5) we obtain

m2
h(ΛSM) ' m2

h(Λin) +
3y2

2π2
M2 log

(
Λin

ΛSM

)
, (1.7)

from which we already see that we need a very large fine tuning so that the cancellation

of the right hand side of Eq. (1.7) gives a small number for m2
h(ΛSM). From Eq. (1.6) we

obtain

∆ =
m2
h(Λin)

m2
h(ΛSM)

dm2
h(ΛSM)

dm2
h(Λin)

≈
m2
h(ΛSM)− 3y2

2π2M
2 log

(
Λin

ΛSM

)
m2
h(ΛSM)

∼ − M2

m2
h(ΛSM)

, (1.8)
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where we used that
dm2

h(ΛSM )

dm2
h(Λin)

= 1 from Eq. (1.7). Identifying M ∼ Λin we have

∆ ∼ − Λ2
in

m2
h(ΛSM)

. (1.9)

Now, in order to obtain the value of mh(ΛSM) ∼ 102 GeV with an input scale of order

of at least the Planck scale Λin ∼ 1019 GeV we obtain ∆ ∼ −1034. This means that a

small deviation of order 1 at high energy causes a deviation of order 1034 at low energies,

requiring a very precise tuning of the high energy parameter m2
h(Λin) in order to reproduce

the right value of m2
h(ΛSM) at low energy. One can argue that this is in fact just an

aesthetic problem, since it is not a problem of prediction of the theory, and it is, in fact,

an aesthetic problem but one that challenges our intuition since we expect from effective

theories that the theory would depend very mildly on the UV.

1.3 Structure of this dissertation

After this presentation of the hierarchy problem we shall study chiral perturbation theory

in Chapter 2, which is an effective field theory used for the study of mesons. This theory

will be used in Chapter 3 for the computation of the neutron electric dipole moment and

will be the basis for the treatment of the non-QCD model of the relaxion mechanism,

where we have a condensate of fermions just like the condensate of quarks that form the

mesons.

In Chapter 3 we will begin describing the θ angle in the QCD Lagrangian, then we will

compute the neutron electric dipole moment culminating in the definition of the strong

CP problem. We will present the most studied solution of the strong CP problem which

is the axion, which will be essential for the definition of the relaxion (the relaxion is an

axion-like particle) and will motivate the relaxion mechanism in the sense that both (axion

and relaxion) solve the strong CP problem and the hierarchy problem, respectively, by

means of a dynamical mechanism. At the end of Chapter 3 we will study the η′ particle

which will have an analogue in the fermion condensate in the non-QCD relaxion model.

Finally in Chapter 4 we will introduce the relaxion mechanism by first describing the

minimal model where the relaxion is simply the axion coupled with the Higgs during

inflation and then describing the non-QCD model which will solve the hierarchy problem

without spoiling the solution to the strong CP problem. Appendix A is a brief summary
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of inflation used to apply the constraints on the parameter space of the relaxion and the

Appendix B is devoted to the computations of Chapter 1.



Chapter 2

Chiral Perturbation Theory

We shall study the theory of mesons, which are condensates of pairs of quarks and anti-

quarks. This is important for the present work because the relaxion will interact with

condensates of fermions, and these fermions will form condensates just like the condensates

of quarks that we will study now.

2.1 Running of αs and ΛQCD

At low energy, QCD becomes non-perturbative, because the coupling of the theory be-

comes small at high energies and large at low energies due to the negative sign of the QCD

beta function. This can be calculated by using the Callan-Symanzik equation and using

the counterterms for the gauge boson self energy, fermion self energy and fermions-gauge

boson vertex, for any non-belian gauge theory. This is done in [5] and gives, at 1-loop,

the result

β(g) = − g3

(4π)2
[
11

3
C2(G)− 4

3
nfC(r)], (2.1)

where g is the coupling constant, C2(G) is the quadratic Casimir operator of the non-

abelian group G, C(r) is the Casimir operator of the representation r and nf is the number

of species of fermions. The beta function is defined as

β(g) ≡ µ
∂g

∂µ
,

where µ is the energy scale where g is fixed.

Going to QCD case, we have G = SU(3)c, C2(G) = 3 and C(r) = 1/2, so (2.1) is of

10
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the form

µ
d

dµ
αs = −α

2
s

2π
(11− 2nf

3
),

where αs = g2

4π
. The above equation means that, unless there are more then 16 flavours

of quarks (there are six), the beta function is negative. Solving this equation and using

nf = 6, we have

αs(µ) =
2π

7

1

ln µ
ΛQCD

, (2.2)

where ΛQCD is the Landau pole of QCD, i.e., the location where the coupling blows up,

and can be found by measuring αs at any scale, giving the result ΛQCD = 218± 24 MeV.

Equation (2.2) makes clear that the coupling grows as µ becomes smaller, and it is valid

only at µ > ΛQCD, since under this scale the coupling becomes too strong and undefined

so that confinement happens. The plot of Equation (2.2) is given in Figure 2.1.

Figure 2.1: Running of QCD’s coupling constant αQCD.

This means that usual perturbation theory is unreliable at low energy in QCD, mo-

tivating us to construct an effective field theory at low energies trying to describe the

behavior of the degrees of freedom we observe, namely, mesons and baryons. This theory

is called Chiral Perturbation Theory (ChPT).

After confinement happens we don’t observe anymore free quarks q and gluons Gµ

states, but rather condensates which are the nucleons εabcqaqbqc and the mesons q̄q. In

the present work we will study only the theory of mesons, the theory of nucleons can be
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found on [6]. To do this, we shall first describe a little bit what is and how to write an

effective field theory.

2.2 Effective field theories

The basic idea of constructing Effective Field Theories (EFT) is to demand that the

parameters of our model don’t depend on the parameters that belong to scales much dif-

ferent than the scale that we are working on. In Quantum Field Theory we can construct

models starting from this heuristic fact.

This can be done in two ways. First, if we have a general and full theory, but we

want a simpler and more “effective” theory to calculate observables at lower energy. This

can be done by fixing a scale Λ that separates between light fields li, with mass mli < Λ,

and heavy fields hj, with mass mhj > Λ, and integrate out the heavy fields solving their

equations of motion. This will leave us with an effective lagrangian that will only depend

of the light degrees of freedom. In other words

L(li, hj)→ Leff (li). (2.3)

The new effective lagrangian has a tower of operators suppressed by increasing powers of

mhj and it must agree in the IR with the full theory. This “top-down” way of writing an

EFT has some examples as Non Relativistic QED, Non Relativistic QCD and Effective

Theory for Heavy Quarks.

In the second way, dubbed as the “bottom up”, we do not know the general and full

theory to be used, so we follow the path of equation (2.3) by writing down the most general

possible operators/interactions consistent with all symmetries of the full theory we want.

The couplings can be fit by experiment. This follows the “Weinberg’s conjecture” that

“Quantum Field Theory has no content besides unitarity, analyticity, cluster decom-

position and symmetries.” [7].

It is needed to say that this conjecture is also valid to the first “top down” case. Some

examples of the second way of constructing EFT is the Standard Model itself and Chiral

Perturbation Theory.
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2.3 How to treat the mesons

Since we do not know how to compute the QCD Green’s functions at low energies, we

must follow the second way described above, and try to write a theory with the same

symmetries as QCD. To do so, we must look closely to the QCD’s lagrangian and study

its symmetries.

By decomposing the quark fields in chiral components, we have

q =
1

2
(1− γ5)q +

1

2
(1 + γ5)q = PLq + PRq = qL + qR,

where q =


u

d

s

 and qL/R =


uL/R

dL/R

sL/R

 and we integrate out the heaviest quarks, consid-

ering only the lightest quarks at low energies.

The QCD lagrangian is then

L = iq̄ /Dq − q̄Mq − 1

4
Ga
µνG

µν,a = iq̄L /DqL + iq̄R /DqR − q̄LMqR − q̄RM †qL −
1

4
Ga
µνG

µν,a,

where M is the quark mass matrix, Ga
µν is the gluon field strength and /D is the QCD

covariant derivative.

In the limit

M → 0 (2.4)

the QCD lagrangian will be invariant under the chiral symmetry U(3)L × U(3)R, so that

(qL, qR) 7→ (LqL, RqR), L,R ∈ U(3)L/R.

The limit (2.4) is called chiral limit, and it is a good low energy approximation because

mu,d ∼ 1 MeV and ms ∼ 100 MeV, which are much lighter than ΛQCD. Thus, the chiral

symmetry is explicitly broken when the quarks mass terms are different than 0, and the

chiral limit is just a first order approximation.

We can rewrite the symmetry as

U(3)L × U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)A, (2.5)
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where V = L + R are the vector and A = L − R are the axial-vector transformations.

For the moment, we are going to forget the U(1)V × U(1)A of the symmetry, and only

consider SU(3)L × SU(3)R as the full chiral symmetry. The reasons will become clear

later, in chapter 3.

Now, we must remember that, at low energies when a condensation forms, such that

〈q̄q〉 6= 0, we have a spontaneous symmetry breaking of the chiral symmetry, because if

(qL, qR)→ (ULqL, URqR), UL/R ∈ SU(3)L/R,

then

〈q̄q〉 → 〈q̄LU †LURqR + h.c.〉,

and

〈q̄LU †LURqR + h.c.〉 = 〈q̄LqR + h.c.〉 = 〈q̄q〉 ⇔ UL = UR ⇔ SU(3)L = SU(3)R = SU(3)V ,

where SU(3)V is a vectorial SU(3).

We have then that the quark condensate spontaneously breaks

SU(3)L × SU(3)R → SU(3)V , (2.6)

which gives us 8 NGBs in our theory. The central idea of ChPT is to treat the mesons

as Pseudo Nambu Goldstone Bosons (PNGBs) (pseudo because the chiral symmetry is

explicitly broken by the quark mass terms). To construct such theory with NGBs and in-

variant lagrangian, we must use the Coleman-Callan-Wess-Zumino (CCWZ) construction

[8].

2.4 CCWZ construction

We should start by considering a set of fields Φ transforming under a group G. Now

suppose the fields acquire a non-zero expectation value in the vacuum | Ω〉, such that

〈Ω | Φ | Ω〉 = F . If this vacuum configuration is left invariant by a subgroup H ⊂ G we

have the Spontaneous Symmetry Breaking (SSB) G → H.
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2.4.1 Separating the NGBs

To find the NGBs we can use the ansatz

Φ(x) = exp
(i√2

F0

θA(x)TA
)
F, (2.7)

where TA are the generators of G, θA(x) are scalar fields, and F0 is a dimensionful constant

such that [F0] = 1. And we defined in such a way that 〈Ω | θA(x) | Ω〉 = 0.

Now, note we can expand every element g ∈ G as [8]

g = exp(iαAT
A) = exp(ifâ[α]T̂ â) exp(ifa[α]T a), (2.8)

where fâ[α] = αâ + O(α2), fa[α] = αa + O(α2), T a are the generators of H ⊂ G (called

unbroken), while T̂ â are the remaining generators of G (called broken).

Using (2.8) in (2.7), and remembering that the invariance of F under H implies that

T aF = 0, we have

Φ(x) = exp
(i√2

F0

θA(x)TA
)
F = exp

(i√2

F0

ΠâT̂
â
)

exp(iξ(x)aT
a)F

= exp
(i√2

F0

ΠâT̂
â
)
F, (2.9)

where the Πâ are now identified as the NGBs (one for each broken generator).

As a consequence, (2.9) implies that

Φ(x) = U [Π]F, (2.10)

where U [Π] = exp
(
i
√

2
F0

ΠâT̂
â
)

.

Making use of equation (2.8), i.e., decomposing a generic group element into broken

and unbroken generators dependent part, we can study the action of an element g of the

group G on Φ(x), such that

gU [Π] = exp(iαAT
A) exp

(
i
√

2

F0

ΠâT̂
â

)
≡ U [Π(g)]h[Π, g],

where U [Π(g)] is the broken generators dependent part and h[Π, g] is the unbroken gener-
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ator dependent part of exp(iαAT
A) exp

(
i
√

2
F0

ΠâT̂
â
)

. So we obtain

gΦ(x) = gU [Π]F = U [Π(g)]h[Π, g]F = U [Π(g)]F,

where in the last equation we used that h[Π, g]F = F because h[Π, g] ∈ H. So we have

gU [Π] = U [Π(g)]h[Π, g]⇒ U [Π(g)] = gU [Π]h−1[Π, g].

But, by equation (2.8), we have that h[Π, g] is hermitian, so h−1[Π, g] = h†[Π, g], and then

U [Π]→ gU [Π]h†[Π, g]. (2.11)

2.4.2 Finding the Lagrangian

Let us now try to write down a Lagrangian invariant under the group G. To do so, we

can construct an object that transforms covariantly under H, which is

− iU †[Π]∂µU [Π] ≡ dµ + eµ, (2.12)

where dµ ≡ dâµT̂
â and eµ ≡ eaµT

a.

Now, noting that, calling c =
√

2/F0 and expanding U in c, we have

−iU †∂µU =− i(1− icΠâT̂
â + · · · )∂µ(1 + icΠâT̂

â + · · · ) = −i(1− icΠâT̂
â + · · · )(ic∂µΠâT̂

â + · · · )

=c∂µΠâT̂
â + · · · ,

where the · · · means O(c2) or T a dependent terms. So we identify

dâµ =

√
2

F0

∂µΠâ + · · · . (2.13)

By noting that h† depends on Π(x), we have that, using Eq. (2.11)

−iU †∂µU → −ihU †g†∂µ(gUh†) =− ihU †g†(g(∂µU)h† + gU(∂µh
†))

=− ihU †(∂µU)h† − ih(∂µh
†). (2.14)
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Writing (2.14) in terms of dµ and eµ, by Eq. (2.12)

dµ + eµ →h(dµ + eµ)h† − ih∂µh† = hdµh
† + h(eµ − i∂µ)h†

⇒ dµ →h[Π, g]dµh
†[Π, g] (2.15)

⇒ eµ →h[Π, g](eµ − i∂µ)h†[Π, g]. (2.16)

Where we let the derivative term be associated with eµ and not with dµ because we want

the unbroken part to behave like a gauge field. Let us observe that eµ transforms just like

a gauge field, while with dµ we can easily construct an invariant kinetic term

L =
F 2

0

4
Tr[dµd

µ], (2.17)

because it transforms like

Tr[dµd
µ]→ Tr[hdµh

†hdµh†] = Tr[hdµd
µh†] = Tr[dµd

µh†h] = Tr[dµd
µ].

The factor F 2
0 ensures the correct dimensions, while the factor 1

4
is a convenient normal-

ization.

Using (2.13) in (2.17) gives

L(2) =
F 2

0

4
Tr[dµd

µ] =
1

2
(∂µΠâ)(∂

µΠâ) + · · · . (2.18)

As we have just shown, the CCWZ procedure allows us not only to identify the NGBs

with the broken generators, but gives also a procedure to write down an invariant La-

grangian. We will now see how to proceed in the case of non-simple groups, as the one

use in ChPT.

2.4.3 CCWZ in ChPT

In QCD we have that the group G is non-simple, SU(3)L×SU(3)R. So we must generalize

the CCWZ procedure for groups where G1 × G2 × · · · × GN → H. In order to do so, we

proceed as follows:
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1. For each Gk we define a matrix σk such that

σk → gkσkh
†; (2.19)

2. From the matrix σk, we construct covariant derivatives according to

αkµ = −iσ†k∂µσk. (2.20)

This covariant derivative transforms as

αkµ → hαkµh
† − ih∂µh†; (2.21)

3. We now construct derivative operators that transform as in (2.15), allowing us to

write down the invariant kinetic term. To do that, we construct the differences

αkjµ = αkµ − αjµ, (2.22)

which transform like

αkjµ → hαkjµ h
†, (2.23)

having N − 1 independent αkjµ ;

4. We build invariants as in (2.17), i.e., Tr[αkjµ α
kj
µ ] for each independent αkjµ ;

5. Now, thinking on SU(3)L × SU(3)R, we can separate an element g ∈ G in g =

(R,L), R/L ∈ SU(3)R/L. Thus we can rewrite

g = (R,L) = (I, LR†)(R,R),

since (R,R) ∈ H. The equation above is very similar to (2.9), so we can recognize

LR† = U as the unitary matrix made of the NGBs along the broken directions.

Taking now R̃ ∈ SU(3)R and L̃ ∈ SU(3)L, the transformation of U under a generic

element g = (R̃, L̃) ∈ G is

(R̃, L̃)(I, U)F = (I, L̃UR̃†)(R̃, R̃)F = (I, L̃UR̃†)F,
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or

U → LUR†. (2.24)

Let us now make contact with the formalism developed for the case of non-simple

groups. To this end, let us consider two matrices UL and UR (each analog to σk of

Eq.(2.19))

UL →LULh†,

UR →RURh†,

where L,R ∈ SU(3)L/R. Equation (2.24) then demands U to be of the form

U = ULU
†
R. (2.25)

Finally, all the discussion leads us to identify the objects that describe the NGBs as

Ukj ≡ σkσ
†
j . (2.26)

That transforms, under a element of G1 × · · · × GN , as

Ukj → gkσkh
†hσ†jg

†
j = gkσkσ

†
jg
†
j = gkU

kjg†j , (2.27)

where gk/j ∈ Gk/j. Note that equations (2.26) and (2.25) are the same, as well as

(2.27) and (2.24).

6. Remembering the invariant Tr[αkjµ α
kj
µ ] of item 4, we shall now relate it to Ukj. To

do this, we must first compute

∂µU
kj = (∂µσk)σ

†
j + σk(∂µσ

†
j),

multiply it by σ†k from the left and by σj from the right, obtaining

σ†k∂µU
kjσj =σ†k((∂µσk)σ

†
j + σk(∂µσ

†
j))σj = σ†k(∂µσk) + (∂µσ

†
j)σj

=σ†k∂µσk − σ
†
j∂µσj = iαkjµ ,
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where in the third equality we used ∂µ(σ†jσj) = 0, and in the last one we used

equation (2.20). Using last equation, we can write the invariant as

Tr[αkjµ α
kj
µ ] =− Tr[σ†k∂µU

kjσjσ
†
k∂µU

kjσj] = −Tr[σjσ†k∂µU
kjσjσ

†
k∂µU

kj]

=− Tr[(Ukj)†∂µU
kj(Ukj)†∂µU

kj] = Tr[(dkjµ )2], (2.28)

where in the last equality we used the definition

dkjµ ≡ −i(Ukj)†∂µU
kj. (2.29)

Equation (2.28) shows that we can construct an invariant object Tr[(dkjµ )2], made

out of dkjµ , which is like the covariant derivative of Ukj.

Finally we can use the above list to construct the ChPT for mesons. The invariant

lagrangian describing the NGBs encoded on the matrix U transforming like

U → LUR†, (2.30)

is

L =
f 2

4
Tr[dµdµ], (2.31)

where

dµ = −iU †∂µU, (2.32)

f is the pion decay constant≈ 92.4 MeV [6].

Now, since U is made of NGBs, it can be written as exp
(
i
√

2
f

ΠâT̂
â
)

, just like in

equation (2.10), where Πâ are the NGBs and T̂ â are the broken generators. A full SU(3)

symmetry was broken, so the broken generators can be chosen as the Gell-Mann matrices.

Explicitly, we can write

U = ei
√

2
f

Φ̂, (2.33)

where

Φ̂ =


π0
√

2
+ η√

6
π+ K+

π− − π0
√

2
+ η√

6
K0

K− K̄0 − 2η√
6

 . (2.34)

Here π0 is the neutral pion, π± are the chaged pions, K0, K̄0 are the neutral and anti-
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neutral kaons, K± are the charged kaons and η is the eta particle.

Inserting Eqs. (2.33) and (2.34) in Eq. (2.31) we obtain the Lagrangian for massless

mesons. Expanding U in powers of Φ̂ we can get the interactions between mesons. But

in the real world the quarks have masses, breaking explicitly chiral symmetry and giving

masses to the mesons. We need complete the theory to encompass this correction, and

we also need to describe the gauge interactions to the mesons.

2.5 Explicit chiral breaking and gauge interactions

As already mentioned, the light quarks masses break the SU(3)L × SU(3)R symmetry

explicitly. This is because the quark mass term in the Lagrangian has the form

LMq = q̄LMqqR + h.c., (2.35)

where q =


u

d

s

 and Mq is the mass matrix Mq =


mu 0 0

0 md 0

0 0 ms

. Under a SU(3)L ×

SU(3)R transformation we have

qL →gLqL,

qL →gRqR,

where gL,R ∈ SU(3)L,R, and this transformations clearly do not leave the lagrangian (2.35)

invariant.

To properly include the mass effects in the low energy theory we use the spurion

technique, which consists in noting that LMq would be invariant under SU(3)L×SU(3)R

if

Mq → gLMqg
†
R.

The idea now is to include Mq as a new degree of freedom of the low energy theory, con-

struct invariants using it, and then fix its numerical value to the experimentally observed

one.
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The simplest invariant we can construct out of U and Mq is

Tr[UM †
q + h.c.]→ Tr[gLUg

†
RgRM

†
q g
†
L + h.c.] = Tr[UM †

q + h.c.].

Thus we can write the Lagrangian

L =
f 2

4
Tr[dµdµ] +

1

2
f 2µTr[UM †

q + h.c.] (2.36)

where µ is a mass scale that must be fixed to reproduce the mesons mass, which may be

defined as µ = cf , where c is some dimensionless constant. It is important to notice that

µ was defined in this particular way by historical reasons.

Since experimentally we mesure interactions between the photon and the mesons, we

need to include these interactions in our low energy theory. The way to do this is by

considering part of the SU(3)L×SU(3)R as a local symmetry, and couple it to the gauge

fields. We first suppose that in some part of the lagrangian of the high energy theory we

have gauge couplings described like

L ⊃ q̄Lγ
µLµqL + q̄Rγ

µRµqR, (2.37)

where Lµ and Rµ are gauge fields and transform like

Lµ →gLLµg†L − i(∂µgL)g†L,

Rµ →gRRµg
†
R − i(∂µgR)g†R,

where gL,R ∈ SU(3)L,R.

Since

U → gLUg
†
R (2.38)

we can construct compensators VL(y, x) and VR(y, x) such that

VL(y, x)→gL(y)VL(y, x)g†L(x),

VR(y, x)→gR(y)VR(y, x)g†R(x).
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using this with (2.38) we obtain

VL(y, x)U(x)V †R(y, x)→gL(y)VL(y, x)g†L(x)gL(x)U(x)g†R(x)gR(x)V †R(y, x)g†R(y)

=gL(y)VL(y, x)U(x)V †R(y, x)g†R(y).

The last expression allows us to construct a covariant derivative Dµ, such that

nµDµU(x) = lim
ε→ 0

1

ε
[U(x+ εn)− VL(x+ εn, x)UV †R(x+ εn, x)]

= lim
ε→ 0

1

ε
[U(x+ εn)− (I + iεnµLµ)U(x)(I− iεnµRµ)]

=nµ∂µU(x)− inµLµU(x) + inµU(x)Rµ

=nµ(∂µU(x)− iLµU(x) + iU(x)Rµ) (2.39)

where nµ is the vector that points the direction of the derivative and in the second equality

we expand VL(x+ εn, x) = I + iεnµLµ +O(ε2) and VR(x+ εn, x) = I + iεnµRµ +O(ε2).

As an example, let us look at the part of the initial lagrangian concerning to the

photon interaction

Lq = eq̄Lγ
µAµQqL + eq̄Rγ

µAµQqR,

with

Q =


2/3 0 0

0 −1/3 0

0 0 −1/3

 .

Comparing the above lagrangian with (2.37) we find that Lµ and Rµ are equal to

Lµ = eQAµ, Rµ = eQAµ.

Making use of equation (2.39), the covariant derivative is

DµU = ∂µU − ieAµQU + ieAµUQ = ∂µU − ieAµ[Q,U ]. (2.40)

Exchanging the partial derivative by the covariant derivative Dµ in dµ, we insert the gauge

interactions in our theory. We have also to add to our lagrangian the kinetic term of our



24 CHAPTER 2. CHIRAL PERTURBATION THEORY

new degree of freedom Aµ to make it dynamical. Then, the lagrangian takes the form

L =
f 2

4
Tr[dµdµ] +

1

2
f 2µTr[UM †

q + h.c.]− 1

4
F µνFµν

where F µν is the field strength of the photon and now dµ = −iU †DµU .

At the end we have a theory that describe the dynamics and interaction of the mesons,

include the chiral breaking which gives mass to them, and describe their interactions it

with the gauge bosons at low energy. The only ingredient still missing, the physics of the

η′ meson, will be described in the next chapter.



Chapter 3

Axions and the η′ meson

This chapter will be dedicated to the study of the strong CP problem, the axion particle

and the η′ particle. The same procedure will be used after in the construction of relaxion

models. In such models we will work with a very similar particle to the η′. But before

introducing the axion, we must show what the θ angle and the Strong CP Problem are.

3.1 The θ angle

3.1.1 Effects of the winding number in the functional integral

When we impose boundary conditions to extended field configurations, such fields acquire

topological configurations that can’t be changed. These are described by the winding

number ν, which is an integer, with one value for each topological configuration. In a

Yang-Mills theory, this number is given by [9]

ν = − 1

64π2

∫
d4xFA

µνF̃
µνA, (3.1)

where FA
µν is the field strength for the gauge boson A (for every gauge boson within the

theory), F̃ µνA = εµνρσFA
ρσ is the dual field strength and εµνρσ is the Levi-Civita tensor.

The effects of these topological configurations must be included on the path integral

due to instantons [9][10]. To compute these effects, we may be very general and consider

that the ν ′s affect the observable with a weight factor of f(ν). In this way the mean value

of an observable O in a Minkowski space Ω is

25
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〈
O
〉

Ω
=

∑
ν f(ν)

∫
ν
[dφ]eiSΩ[φ]O[φ]∑

ν f(ν)
∫
ν
[dφ]eiSΩ[φ]

, (3.2)

where φ represents all the fields of the theory,
∫
ν
[dφ] indicates that we are integrating

only over the fields with field configurations that have winding a number ν, and SΩ[φ]

represents the action in all space Ω.

If we now divide Ω in two parts, Ω1 and Ω2, with O in volume Ω1, we have that the

integral
∫
ν
[dφ] may be divided as the integral over all fields with winding number ν1 in

Ω1 and ν2 in Ω2, with ν = ν1 + ν2, so that (3.2) becomes

〈
O
〉

Ω
=

∑
ν1,ν2

f(ν1 + ν2)
∫
ν1

[dφ]eiSΩ1
[φ]O[φ]

∫
ν2

[dφ]eiSΩ2
[φ]∑

ν1,ν2
f(ν1 + ν2)

∫
ν1

[dφ]eiSΩ1
[φ]
∫
ν2

[dφ]eiSΩ2
[φ]

.

But locality implies that
〈
O
〉

Ω
should be independent of Ω2, i.e.

〈
O
〉

Ω
=

∑
ν1
f(ν1)

∫
ν1

[dφ]eiSΩ1
[φ]O[φ]∑

ν1
f(ν1)

∫
ν1

[dφ]eiSΩ1
[φ]

.

This is possible only if we can factorize the weight function as

f(ν1 + ν2) = f(ν1)f(ν2).

This implies

f(ν) = eiθν , (3.3)

where θ is an arbitrary variable.

Using this form of f(ν) in equation (3.2), we see that the non trivial topological

configurations can be accounted by adding a term θν in the action SΩ. Using (3.1) we

have

Lθ = −
θFA

µνF̃
µνA

64π2
, (3.4)

where Lθ is the new term, θ dependent, in the Lagrangian.

3.1.2 Consequences of Lθ

One important consequence is that Lθ is not invariant under P and CP transformations,

unlike what happens in QCD, where P and CP are exact symmetries. To see this, note
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that for the electromagnetic case, εµνρσFµνFρσ ∼ ~E · ~B with, ~E → − ~E, ~B → ~B when P is

applied and ~E → ~E, ~B → − ~B when CP is applied. This makes ~E · ~B not invariant under

P and CP.

Let us now show an interesting connection between chiral transformations and Lθ.

Applying to the fermions of the theory a chiral rotation

ψf → eiγ5αfψf , (3.5)

where f stands for different flavours, we have a change in the jacobian of the functional

integral. This is called chiral anomaly, and the change is given by [9]

[dψ][dψ̄]→ e−
i

32π2

∫
d4xεµνρσFAµνF

A
ρσ

∑
f αf [dψ][dψ̄]. (3.6)

This amounts to a shift of the Lagrangian by

L → L− 1

32π2
FA
µνF̃

µνA
∑
f

αf ,

and, comparing with Eq. (3.4) we see that the shift amounts to change θ by

θ → θ + 2
∑
f

αf . (3.7)

Now, since this is just a field redefinition, it cannot affect physics, so the θ angle per-se

can not be physical. But note that this transformation also changes the mass term, as

can be seen looking directly to the terms

LM = −
∑
f

Mf ψ̄fLψfR −
∑
f

M∗
f ψ̄fRψfL.

and noting that, under the transformation in (3.5),

ψfL → e−iαfψfL and ψfR → eiαfψfR,

we have that the mass term transforms like

Mf → e2iαfMf . (3.8)
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Since LM can be written as

LM = −ψLMψR + h.c.

where ψL = (ψ1L, · · · , ψfL, · · · )T , ψR = (ψ1R, · · · , ψfR, · · · )T andM = diag(M1, · · · ,Mf , · · · ),

we can see that, using (3.8), we have

detM → detMei2
∑
f αf . (3.9)

Comparing Eqs. (3.7) and (3.9) we see that the combination det[M ]e−iθ is invariant under

chiral transformations. Alternatively, we can define an effective angle

θ̄ ≡ θ − arg[detM ], (3.10)

which is now invariant and can have physical interpretation. This physical effect will be

seen in the neutron electric dipole moment. At first sight, it seems that the breaking of

CP due to the term in Eq. (3.4) is not physical, since this term can be eliminated from

the Lagrangian using a chiral transformation. However, also complex masses break the

CP invariance in L, in such a way that the explicit breaking of CP is physical, as we are

now going to see.

3.1.3 The vacuum energy as a function of θ̄

We shall study the potential

V (U) = −1

2
f 2µTr(UM † + h.c.), (3.11)

and its θ̄ dependence at the minimum.

The first interesting information is that we can get µ from expanding U = ei
√

2
f
φ̂ in

second order (with φ̂ given by Equation (2.34)), then

L =
1

2
f 2µTr[M(1 + i

√
2

f
φ̂− 1

2
i2

2

f 2
φ̂2 + · · · ) +M(1 + i

√
2

f
φ̂+

1

2
i2

2

f 2
φ̂2 + · · · )], (3.12)

and, evaluating the terms quadratic in φ, we obtain the masses of the mesons. Doing this,
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and focusing only at the quadratic π0 terms, we now obtain

L ⊃ −µ(
(π0)2

2
md +

(π0)2

2
mu + · · · ) + · · · = −µ(mu +md)

2
(π0)2 + · · · ,

this gives us a π0 mass of m2
π0 = µ(md + mu) and, fixing the experimental value of

mπ0 ≈ 135MeV, we get µ =
m2
π0

mu+md
.

Now, as explained earlier, we can eliminate completely the θ term from the Lagrangian,

via a chiral transformation. This gives a phase to the mass matrix in such a way that

M =

mu 0

0 md

 e−i
θ̄
2 . (3.13)

This way, from now on, all the information about θ̄ is carried by the phase of the mass

matrix M .

If we have the minimum of Eq. (3.11) at U = U0 (note that we could have the

minimum at U = I but it is not possible since θ̄ 6= 0), we demand that U0 is diagonal,

to minimize with M which is also diagonal, and that has unit determinant because U is

generated by elements that belong to a special group. Then, the most general form for

U0 is

U0 =

eiφ 0

0 e−iφ

 .

The potential becomes

V (U0) = −f 2µ
[
mu cos

(
φ− 1

2
θ̄
)

+md cos
(
φ+

1

2
θ̄
)]
, (3.14)

which, after using the value of µ and some factorization, becomes

V (U0) = −m2
πf

2

√
1− 4mumd

(mu +md)2
sin2

( θ̄
2

)
cos(φ− φ̄) (3.15)

where

tan φ̄ =
mu −md

mu +md

tan
(1

2
θ̄
)
.
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3.1.4 The neutron electric dipole moment

The strongest effect of the CP violating θ̄ term is seen in the measurements of the elec-

tric dipole moment of the neutron. To calculate this quantity, we must first use chiral

perturbation theory to study the coupling of the pions to the nucleons.

This can be done using the chiral techniques of the previous chapter, but instead

of having the breaking of the chiral symmetry SU(3)L × SU(3)R → SU(3)V , we will

construct a simpler model using only q =

u
d

, integrating out the s quark. Now we

have the breaking SU(2)L× SU(2)R → SU(2)V and the main change in the construction

of the previous chapter is that this time we have 3 PNGBs (3 pions) and the broken

generators of Eq. (2.9) are no longer Gell-Man matrices but are the Pauli matrices (the

standard generators of SU(2)).

With these considerations, we now introduce the nucleon as a isospin doublet N =p
n

 of SU(2)V such that

N → V N (3.16)

where V ∈ SU(2)V .

In the last chapter we built our ChPT in terms of U which transform like U → gLUg
†
R

under SU(2)L × SU(2)R and it was constructed via CCWZ from

uL → gLuLV
†

uR → gRuRV
†

⇒ U ≡ uLu
†
R → gLUg

†
R.

Now, because there is a parity mapping gL generators to gR generators we have uL = u†R

[11]. This way we can call

u = uL = u†R → gLuV
† = V ug†R, (3.17)

u† = uR = u†L → gRu
†V † = V u†g†L, (3.18)

⇒ U = u2. (3.19)

Since N transforms via V while U transforms via gL, gR, we can use u to construct
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the invariant Lagrangian terms for the nucleon field. We shall construct such terms with

the spurions under SU(2)L × SU(2)R which are in the original QCD Lagrangian as

L ⊃ q̄LMqqR + h.c. + q̄Lγ
µLµqL + q̄Rγ

µRµqR,

where

Mq → gLMqg
†
R, (3.20)

Lµ → gLLµg
†
L − i(∂µgL)g†L, (3.21)

Rµ → gRRµg
†
R − i(∂µgR)g†R. (3.22)

We can include the vector spurions promoting

gL → gL(x); gR → gR(x),

and promoting the derivative to a covariant derivative

∂µu
† → (∂µ − iRµ)u†.

We can check how it transforms by using (3.18) and (3.22)

∂µu
† → (∂µgR)u†V † + gR∂µ(u†V †),

−iRµu
† → −i(gRRµg

†
R − i(∂µgR)g†R)gRu

†V † = −igRRµu
†V † − (∂µgR)u†V †,

⇒ (∂µ − iRµ)u→ gR[∂µ(u†V †)− iRµu
†V †] = gR(∂µ − iRµ)u†V † + gRu

†∂µV
†,

applying u from the left, we have from (3.17)

u(∂µ − iRµ)u† →V ug†R[gR(∂µ − iRµ)u†V † + gRu
†∂µV

†]

=V [u(∂µ − iRµ)u†]V † + V ∂µV
†, (3.23)

in a similar way

u†(∂µ − iLµ)u→ V [u†(∂µ − iLµ)u]V † + V ∂µV
†. (3.24)
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At this moment it is convenient to define

aµ ≡i[u†(∂µ − iLµ)u− u(∂µ − iRµ)u†],

vµ ≡
u†(∂µ − iLµ)u+ u(∂µ − iRµ)u†

2
,

that due to (3.23) and (3.24) transform as

aµ →V aµV †, (3.25)

vµ →V vµV † + V ∂µV
†. (3.26)

These equations closely remember Eq. (2.12), but they are now written in terms of u

and not of U .

Now we can construct invariant kinetic terms using these objects. Using that N → V N

and (3.26) we get

(∂µ + vµ)N →(∂µ + V vµV
† + V ∂µV

†)V N

=(∂µV )N + V ∂µN + V vµN + V (∂µV
†)V N

=V (∂µ + vµ)N + (∂µV + V (∂µV
†)V )N = V (∂µ + vµ)N, (3.27)

where in the last step we used V V † = 1⇒ (∂µV )V †+V ∂µV
† = 0⇒ V (∂µV

†)V = −∂µV .

From (3.27) we can construct an invariant kinetic term

Lkin = N̄iγµ(∂µ + vµ)N, (3.28)

which effectively acts like a covariant derivative.

Now, we should also be able to construct a term involving aµ and the nucleon field.

A term like

N̄γµaµN → N̄γµV †V aµV
†V N = N̄γµaµN, (3.29)

is invariant under SU(2)L × SU(2)R but is not invariant under CP. In fact under CP

aµ → −aµ. This happens because u is made on pseudoscalar mesons, such that

u = eiπ
aTa/(2f), (3.30)
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and under CP πa → −πa ⇒ u→ u†. Using this fact we have that under CP

aµ =i[u†(∂µ − iLµ)u− u(∂µ − iRµ)u†]→ i[u(∂µ − iRµ)u† − u † (∂µ − iLµ)u] = −aµ and

(3.31)

vµ =
u†(∂µ − iLµ)u+ u(∂µ − iRµ)u†

2
→ u(∂µ − iRµ)u† + u†(∂µ − iLµ)u

2
= vµ. (3.32)

This means that we have to couple the term in (3.29) with a CP odd term, and this term

is

N̄γµγ5N
CP−−→ −N̄γµγ5N,

and thus we can construct the Lagrangian

L = N̄γµ[i(∂µ + vµ)− gAaµγ5]N (3.33)

where gA = 1.27 is the axial vector coupling, determined by the neutron decay rate via

weak interaction [10].

Now we are going to construct mass terms. To do that we need to “dress” the mass

spurion term M → gLMg†R with u to obtain an object that transforms under SU(2)V .

There are two possibilities, the first one is

u†Mu† → V u†g†LgLMg†RgRu
†V † = V u†Mu†V †, (3.34)

and the second is

uM †u→ V ug†RgRM
†g†LgLuV

† = V uM †uV †. (3.35)

By noting that if there is a θ term the mass matrix becomes complex and under CP

θ
CP−−→ −θ we conclude that M

CP−−→ M †. This way we have two possible combinations to

construct the Lagrangian:

u†Mu† + uM †u,

which is hermitian and CP invariant, and the combination

u†Mu† − uM †u,

which is antihermitian. In addition, this term is CP-odd, in such a way that it must be
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coupled with N̄γ5N . Thus, the mass Lagrangian is

LM = c+N̄(u†Mu† + uM †u)N + ic−N̄(u†Mu† − uM †u)γ5N, (3.36)

where c+ and c− are constants.

We can also create terms involving the spurion M by multiplying some invariant by

N̄N or N̄γ5N , which are also invariant. The candidates are

Tr[u†Mu†] = Tr[MU †],

Tr[uM †u] = Tr[M †U ],

making two possible combinations as before, and leaving the Lagrangian as

LM =c+N̄(u†Mu† + uM †u)N + ic−N̄(u†Mu† − uM †u)γ5N

c1 Tr[MU † +M †U ]N̄N + ic2 Tr[MU † −M †U ]N̄γ5N, (3.37)

where c1 and c2 are constants.

Using now that Tr(U − U †) is 0 for two light flavors, and Equation (3.37), we get the

θ dependent terms in the Lagrangian to be

Lθ = −iθ̄m̃[−1

2
c+N̄(U − U †)N +

1

2
c−N̄(U + U †)γ5N + c2 Tr(U + U †)N̄γ5N ],

where m̃ = mumd
mu+md

. Expanding in powers of πa we have

Lθ = −iθ̄m̃(c− + 4c2)N̄γ5N − (θ̄c+m̃/f)πaN̄σaN + · · · . (3.38)

By making a field redefinition of the form N → e−iαγ5N we can eliminate the first term in

(3.38). This creates new terms in (3.37), but we can safely neglect these terms due their

dependence on, at least, two factors of quark masses. The second term in (3.38) creates

a pion-nucleon coupling that breaks P and CP. We can estimate the value of c+ by the

difference of masses of baryons, which yields c+ = 1.7 [10].

The strongest interaction between pion and nucleon conserving P and CP is the last
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term of Equation (3.33), and is equal to

LπN̄N = (gA/f)∂µπ
aN̄σaγµγ5N. (3.39)

Integrating by parts, putting the derivative on N and using the Dirac equation (be-

cause the nucleons are on-shell) we have

LπN̄N = −i(gAmN/f)πaN̄σaγ5N. (3.40)

Figure 3.1: Diagrams that contribute to the electric dipole moment of the neutron.

We finally compute the electric dipole moment of the neutron, whose contributions

come from the diagrams of Figure 3.1, where the vertex that violates CP is denoted with

a cross.

The amplitude associated with the diagrams of Figure 3.1 is given by

T = −2iD(q2)ε∗µ(q)ūs′(p
′)σµνqνiγ5us(p) (3.41)

where p′ is the outgoing momentum of the nucleons, p is the incoming momentum and

q = p′− p is the momentum of the photon. In the limit q → 0, D(0) is the electric dipole

moment of the neutron dn.

By using

πaσa =

 π0
√

2π+

√
2π− −π0

 ,
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expanding N in function of n and p and using (3.38) and (3.40), we have the useful vertices

LπN̄N = −i
√

2(gAmN/f)(π+p̄γ5n+ π−n̄γ5p),

Lθ̄πN̄N = −
√

2(θ̄c+m̃/f)(π+p̄n+ π−n̄p).

Figure 3.2: Momentum flow for the diagrams of Figure 3.1.

Using the Feynman rules coming from these Lagrangians, we get the amplitude for

the Feynman diagram of Figure 3.2

iT =(
1

i
)3(ie)(

√
2gAmN/f)(−i

√
2θ̄c+m̃/f)ε∗µ

∫ Λ

0

d4l

(2π)4

×
(2lµ)ū′[(−/l − /p+mN)γ5 + γ5(−/l − /p+mN)]u

((l + p̄)2 +m2
N)((l + 1

2
q)2 +m2

π)((l − 1
2
q)2 +m2π)

,

where l is the internal momentum, Λ ∼ 4πf is the cutoff of the effective theory and

p̄ = 1
2
(p′ + p). Using {γµ, γ5} = 0 we obtain that the spinor part of the numerator is

2mN ū′γ5u. Using p� l we get (l + p)2 +m2
N ≈ 2p · l, and the amplitude simplifies

T = 4(eθ̄gAc+m̃m
2
N/f

2)ε∗µ

∫ Λ

0

d4l

(2π)4

2lµū′γ5u

(2p · l)(l2 +m2
π)2

.

We now make the replacement lµ

p·l →
pµ

p2 = − pµ

m2
N

in the integral, and use the Gordon

identity pµū′γ5u = ū′σµνqνiγ5u+O(q2) [12]. This way, the amplitude becomes

T = −4(eθ̄gAc+m̃/f
2)ε∗µū

′σµνqνiγ5u

∫ Λ

0

d4l

(2π)4

1

(l2 +m2
π)2

,
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where the integral gives (i/16π2) ln Λ2/m2
π, so

T = −i
(eθ̄gAc+m̃/f

2)ε∗µū
′σµνqνiγ5u

4π2
ln(Λ2/m2

π). (3.42)

Comparing (3.42) with (3.41) gives

dn =
eθ̄gAc+m̃

8π2f 2
ln Λ2/m2

π.

Using the numerical values gA = 1.27, c+ = 1.7, f = 94.2MeV, m̃ = 1.2MeV and mπ =

139.5MeV, we have

dn = 3.2× 10−16θ̄ecm.

Since experimental measurements give the upper bound | dn |< 6.3 × 10−26 [10], we

finally get

| θ̄ |< 2× 10−10.

The fact that the θ̄ term is so close to 0 is called strong CP problem.

Notice that θ̄ is technically natural due to the fact that the theory obtain CP symmetry

when θ̄ → 0, this explains why θ̄ is so small. But the difficulty lies in explaining the fine

tuning between θ and arg[detM ] so that θ̄ = θ − arg[detM ] be so close to 0.

Now that we know that the θ̄ angle must be extremely small to be phenomenologically

viable, we must search for explanations for such smallness. One possible idea is to note

that the invariant physical term is e−iθ det[M ], that implies that if at least one quark

has vanishing mass, this invariant term would be 0 and we would have no CP breaking.

Unfortunately, there is evidence that all six quark flavours have non-vanishing masses,

making this solution unviable [13]. Another possibility would be spontaneous CP break-

ing, which postulates that in the original underlying theory CP is conserved, and CP

violation arises spontaneously. The available models are somewhat contrived, and we will

not study them here. We will instead focus on the more popular solution of the Strong

CP Problem, the axion.



38 CHAPTER 3. AXIONS AND THE η′ MESON

3.2 The axion

As we saw, the strong CP problem can be solved in various ways. In this section we will

focus on the most studied solution, the axion, in which the parameter θ̄ is made dynamical

and relaxed to zero via dynamics.

3.2.1 Peccei-Quinn symmetry

A way to make θ̄ dynamical is to construct a global symmetry that is spontaneously

broken and whose NGB couple to the anomaly. We can do this by considering adding

to the Standard Model a massless quark, given by the pair of Weyl fermions QL and Q†R

in the 3 and 3̄ representations of SU(3), respectively. We also add a complex scalar Φ

in the singlet representation of SU(3). Then we assume that these fields have a Yukawa

interaction

LY = yΦQLQ
†
R + h.c.

where y is the Yukawa coupling constant.

Since we need a new NGB to appear in our theory, we define a new global symmetry

that acts only on QL, QR and Φ

QL → eiαQL,

Q†R → eiαQ†R,

Φ→ e−2iαΦ, (3.43)

that leaves LY invariant. This symmetry is called Peccei-Quinn (PQ) symmetry [14], and

is denoted by U(1)PQ.

Figure 3.3: Triangle diagram from the anomaly.
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From the diagram of Figure 3.3 we obtain the anomaly coefficient

2 Tr[{T a, T b}XPQ] = Tr[{T a, T b}] = Tr

[{
2dabcT

c +
4

3
δabI
}]
6= 0,

where T a,b are the Gell-Man matrix correspondent to the gluons Ga, Gb and XPQ = I3 is

the Peccei-Quinn generator. The fact that the anomaly coefficient is not 0 shows that the

PQ symmetry is an anomalous symmetry.

Since the PQ symmetry is anomalous, and acts like a chiral transformation on the

new quarks Q, we know from the discussion around Eq. (3.6) that L is not invariant, but

it rather shifts as

− α

32π2
εµνρσFA

µνF
A
ρσ. (3.44)

Suppose now that the PQ is spontaneously broken by 〈Φ〉 = F/
√

2 with F � f . Using

the polar parametrization Φ = 1√
2
(F + ρ)eia/F we clearly see that the effect of a PQ

transformation is to shift the NGB a according to a
F
→ a

F
− 2α. Once we integrate QL,

QR and ρ out, we can include the effect of the anomalous PQ transformation writing a

Lagrangian

L = LSM +
θ̄

64π2
εµνρσFA

µνF
A
ρσ +

1

2
(∂µa)2 + Lint +

a

F

1

64π2
εµνρσFA

µνF
A
ρσ. (3.45)

Notice that the last term is exactly what is needed to reproduce the anomalous transfor-

mation (3.44).

The a field is the axion, and it substitutes θ̄ by θ̄ + a
F

in the Lagrangian. This way

we can say that we made θ̄ dynamical. By noting that the potential in (3.15) has its

minimum when φ = φ̄ and substituting θ̄ by θ̄ + a
F

we get

V (a) = −m2
πf

2

√
1− 4mumd

(mu +md)2
sin2

( θ̄ + a
F

2

)
. (3.46)

This potential is minimized when a = −θ̄F . Expanding a around the minimum

a = −θ̄F + ã we see that the θ dependence in the Lagrangian completely vanishes, solving

the Strong CP Problem, leaving only the interaction term

L ⊃ −
ãεµνρσFA

µνF
A
ρσ

F64π2
.
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For convenience we will drop the tilde and simply denote by a the physical axion field

from now on.

Now the potential (3.46) becomes

V (a) = −m2
πf

2

√
1− 4mumd

(mu +md)2
sin2

( a

2F

)
, (3.47)

which is the axion potential. Expanding up to quadratic order we get the axion mass

m2
a =

mumd

(mu +md)2

m2
πf

2

F 2
.

3.2.2 Axion interactions at low energies

Depending on the specific model, other interactions involving the axion and Standard

Model fields can appear in the Lagrangian in addition to Eq. (3.45). Since the axion is

the NGB of the Peccei-Quinn symmetry, it shifts by a→ a−2Fα under a transformation

(3.43). So, if we want interactions invariant under this shift, we must couple the derivative

of the axion to gauge invariant operators. We can also have anomalous couplings to GG̃,

WW̃ and Y Ỹ where G is the field strength of SU(3)c, W is the field strength of SU(2),

Y is the field strength of U(1)Y and F̃ = εµνρσFρσ is the dual field strength such that

FF̃ = 1/2εµνρσFµνFρσ.

With these types of interactions, we construct the more general Lagrangian [15] that

above the weak scale is

La =
1

2
∂µa∂µa+

∂µa

F
(xHH

†i
←→
D µH +

∑
ψ

ψ̄LγµXψψL)

− a

F
[
g2

3

32π2
GG̃+ CaWW

g2
2

32π2
WW̃ + CaY Y

g2
1

32π2
Y Ỹ ], (3.48)

where H is the Higgs doublet, ψ are the five types of left handed fermions: the quark

doublets q, the charge −2
3

antiquarks uc, the charge 1
3

antiquarks dc, the lepton doublets

L and the charge +1 antileptons l. Each one of these is a triplet in flavor space and so

the different Xψ are 3 × 3 matrices in flavor space,
←→
D ≡ (DµH)†H − H†(DµH) is the

SU(2) × U(1)Y gauge covariant derivative and g1, g2 and g3 are the U(1)Y , SU(2) and

SU(3)c gauge couplings, respectively.

We now go down in energy. The first important effect to be taken into account is



3.2. THE AXION 41

electroweak symmetry breaking, i.e. the scale at wich H gets its vacuum expectation

value (vev). At this scale we can integrate out the physical Higgs particle (and the top

quark). Then the first derivative term in (3.48) gets an interaction between the axion and

the NGB eaten by the Z. To avoid this problem, we make an axion dependent U(1)Y

rotation where

H → e2ixHaY/FH and ψL → e2ixHaY/FψL,

where Y are the Higgs and fermions hypercharge, respectively. These transformations

change the values of xH and Xψ by

xH → xH − 2xHYH = 0, since YH = 1/2,

Xψ → Xψ − 2xHYH (3.49)

where the Xψ changes because of the contribution due to kinetic terms.

Going to scales below the electroweak scale, we can integrate out the W and Z bosons,

so that we have only the photon surviving as gauge field, and the anomalous term becomes

L ⊃ − a
F

e2

32π2
(CaWW + CaY Y )FF̃ − a

F

g2
3

32π2
GG̃, (3.50)

where F is the photon field strength.

The next relevant scale is ΛQCD, where the coupling g3 becomes large and quarks and

gluons are no longer the relevant degrees of freedom. We eliminate the gluon coupling in

(3.50) by a chiral rotation, putting all the axion dependence on the quark mass matrix.

We shall make the most general transformation as follows

q → e−i
a
F

(QV +QAγ5)q, with Tr[QA] = 1/2, (3.51)

where q =


u

d

s

, QA and QV are 3×3 matrices and we made the restriction Tr[QA] = 1/2

because QA appears quadratically in the Lagrangian. The lagrangian now takes the form

L =
1

2
∂µa∂µa− q̄ReiaQA/FMeiaQA/F qL + h.c.+

∂µa

F
q̄γµ[(XV +QV ) + (XA +QA)γ5]q

− a

F

e2

32π2
CaγγFF̃ + leptonic terms (3.52)
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where the new terms involving the derivative coupling come from contributions of the

kinetic term after transformation (3.51) and the terms XV and XA come from the X term

in Eq. (3.48). The term Caγγ ≡ CaWW + CaY Y − Tr[QAQEQE], where QE is the electric

charge matrix of the quarks, appears to take into account the electromagnetic anomaly

that transformation (3.51) causes.

Finally we translate Eq. (3.52) and write the corresponding ChPT, using the tools

developed in chapter 2. The chiral lagrangian is given by (see Eq. (2.36))

L =
f 2

4
Tr[DµUDµU

†] +
1

2
f 2µTr[MU † + h.c.] (3.53)

where Dµ is given in Equation (2.40) and M is the spurion mass, that according to

Equation (3.52) must be replaced by

M → eiaQA/FMeiaQA/F . (3.54)

Notice that ∂µa in Eq. (3.52) can be interpreted as the interaction between the axion

and an hadronic current, and we thus search for a meson current with the same transfor-

mation properties. It happens that those currents are

jµV a = i
1

2
f 2 Tr[Ta(UD

µU † + U †DµU)],

jµAa = i
1

2
f 2 Tr[Ta(UD

µU † − U †DµU)],

where A stands for axial, V stands for vectorial, Ta are the Gell-Mann matrices and the

index a goes from 1 to 8.

Putting all together we obtain the Lagrangian

L =− a

F

e2

32π2
CaγγFF̃ + 2

∂µa

F

8∑
a=1

{
jµV a Tr[Ta(XV +QV )] + jµAa Tr[Ta(XA +QA)]

}
1

2
f 2µ
[
i
a

F
Tr[{M,QA}U ]− (

a

F
)2 Tr[{{M,QA}, QA}U ] +O[(

a

F
)3] + h.c.

]
Note that in the second line of the above Lagrangian the term proportional to a

generates a mass mixing between the axion and the mesons. In order to eliminate this

mass mixing we demand that Tr[{M,QA}U ] a
F

= Tr
[
{M,QA}

(
I + iπ

aλa√
2f

+ · · ·
)]

a
F

has

the mass mixing term equal to 0. We solve this by demanding {M,QA} to be proportional
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to identity. A simple solution is QA = 1
2
M−1, and to make QA dimensionless, we divide

by Tr[M−1] obtaining

QA =
1

2

M−1

Tr[M−1]
. (3.55)

The final Lagrangian is

L =− a

F

e2

32π2
CaγγFF̃ + 2

∂µa

F

8∑
a=1

{
jµV a Tr[Ta(XV +QV )] + jµAa Tr[Ta(XA +

1

2

M−1

Tr[M−1]
)]
}

1

2
f 2µ
[
− (

a

F
)2 Tr[M−1U ]

Tr[M−1]2
+O[(

a

F
)3] + h.c.

]
(3.56)

This Lagrangian provides interactions between mesons and the axion.

3.3 The η′ meson

In writing the chiral theory we have until now considered the breaking SU(3)L×SU(3)R →

SU(3)V . But, as we stressed in chapter 2, the full symmetry group is actually U(3)L ×

U(3)R = SU(3)L × SU(3)R × U(1)V × U(1)A spontaneously broken to SU(3)V × U(1)V

where SU(3)V stands for vectorial SU(3) and U(1)V is identified as the Baryon number.

What happens to the degree of freedom associated with the U(1)A that is also broken,

should not it be a Goldstone boson? Phenomenologically we know that while pions and

kaons have masses well below the GeV, this is not true for the 9th pseudoscalar meson, η′,

which has a mass of mη′ = 958 MeV [13]. The absence of the ninth pseudoscalar meson

has been dubbed “U(1)A” problem.

The solution of the problem resides in the fact that U(1)A is an anomalous symmetry,

with no associated NGB. We will now see how to include the anomaly, and the η′, in our

Lagrangian.

3.3.1 The chiral Lagrangian including the U(1)A anomaly

In order to properly include the anomaly effects and the η′ in the Lagrangian we need

a result from large-N QCD [16]: the coefficient of the U(1)A anomaly in the Lagrangian

vanishes as 1/N as the number of colors N gets large. This means that in the N →

∞ QCD with L light flavours undergoes the spontaneous symmetry breaking pattern

U(L)L × U(L)R → U(L)V , and we can describe the NGB’s considering an L× L matrix
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U containing L2 pseudoscalar mesons. In this section, we will follow the analysis of [17].

Being U(1)A anomalous, once we perform an axial transformation the action gets

shifted by ∫
d4xLQCD(x)→

∫
d4xLQCD(x) + Lα

∫
d4xq(x), (3.57)

where

q(x) =
g2

64π2
εµνρσF

a
µνF

a
ρσ =

1

4
εµνρσFµνρσ,

Fµνρσ = ∂µAνρσ − ∂σAµνρ + ∂ρAσµν − ∂νAρσµ,

Aνρσ =
g2

96π2
[Aaµ
←→
∂ ρA

a
σ − Aaρ

←→
∂ νA

a
σ − Aaν

←→
∂ σA

a
ρ + 2fabcA

a
νA

b
ρA

c
σ],

and α is the parameter of the chiral transformation, Aaµ are the gauge fields (each a for

one generator of SU(N)), fabc are the structure constants of SU(N), Aνρσ is an abelian

totally antisymmetric gauge field and Fµνρσ is a gauge invariant field tensor [17].

At low energy we cannot have quarks and gluons degrees of freedom in our Lagrangian,

so we have only the dependence of Fµνρσ and Aνρσ. We start by constructing the following

kinetic term for the field Aνρσ

Lkin = −cFµνρσF µνρσ, (3.58)

where c is a positive constant.

Now, we need also the Lagrangian to reproduce the shift in the action given by Eq.

(3.57). To construct such part in the Lagrangian we must note that, under a U(1) axial

rotation, the U field transforms as

U → Ue−iα,

which means that

logU → logU − iα,

where α is the parameter of the chiral transformation. This way, the Lagrangian term

that reproduces (3.57) is given by

i

2
qTr(logU − logU †)→ i

2
qTr(logU − logU †) + Lαq.
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This implies that, in order to correctly reproduce the U(1)A anomaly, we need to add to

the Lagrangian a term

Lanomaly =
1

8
εµνρσF

µνρσiTr(logU − logU †). (3.59)

Considering that Fµνρσ is gauge invariant and εµνρσF
µνρσ is SU(L)×SU(L) invariant,

and taking into account the large-N power counting according to Ref. [17], the final

Lagrangian is

L =L0 +
1

8
εµνρσF

µνρσiTr(logU − logU †)

− cFµνρσF µνρσ − θ1

4
εµνρσF

µνρσ. (3.60)

Now we may use the field q(x) = 1
4
εµνρσFµνρσ as relevant degree of freedom, since it is

the only gluon dependence in the Lagrangian and acts as a scalar. Also adding to the

Lagrangian the chiral mass term like in chapter 2, we obtain

L =L0 +
1

2
iq(x) Tr[logU − logU †]

N

af 2
q2(x)− θ̄q(x) +

f 2µ

2
Tr[UM † +MU †], (3.61)

where the q2(x) term comes from the kinetic term, a is conveniently defined associated

with c of Eq. (3.60) and Mij = mqiδij is the quark mass matrix. We also make a chiral

transformation such that arg detM = 0.

Now, we can see from the Lagrangian that the q(x) field does not have dynamics. This

way, we can integrate it out using its equations of motion

δL
δq

= 0⇒ q =
af 2

2N

(
θ̄ − 1

2
iTr[logU − logU †]

)
,

and using Eq(3.61) the Lagrangian becomes

L = L0 +
f 2µ

2
Tr[UM † +MU †]− af 2

4N

[
θ̄ − 1

2
iTr[logU − logU †]

]2

. (3.62)
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3.3.2 The η′ mass and its interactions

Equation (3.62) is interesting because it shows how the vacuum energy is modified by the

inclusion of the η′ particle. We will now repeat the analysis of Section 3.1.3 in order to

find the vacuum energy and, ultimately, the η′ mass. From the fact that U is unitary, we

have that the most general 〈U〉 is

〈Uij〉 = δije
−iφi . (3.63)

By analyzing the Lagrangian of Eq. (3.62) we note that the enegy density is

E = −f
2µ

2
Tr[UM † +MU †] +

af 2

4N

[
θ̄ − 1

2
iTr[logU − logU †]

]2

. (3.64)

Using equation (3.63) in (3.64) we find

E =− f 2µ

2
Tr
[
diag(mq1 , · · · ,mqL)diag(e−iφ1 , · · · , e−iφL) + h.c.

]
+
af 2

4N

[
θ̄ − 1

2
iTr

[
log(diag(e−iφ1 , · · · , e−iφL))− log(diag(eiφ1 , · · · , eiφL))

]]2

= −f
2µ

2

L∑
i=1

mqi(e
−iφi + eiφi) +

af 2

4N

[
θ̄ − 1

2
i

L∑
i=1

(−2iφi)
]2

= −f 2µ

L∑
i=1

mqi cosφi +
af 2

4N

[
θ̄ −

L∑
i=1

φi

]2

,

and minimizing as a function of φj

∂E

∂φj
= 0, for each j ⇒ µmqj sinφj =

a

2N

(
θ̄ −

L∑
i=1

φi

)
. (3.65)

We now redefine the field U using a U(L)× U(L) transformation according to

V = AUB†, where Aαβ = B†αβ = δαβe
iφα/2. (3.66)

The new dynamical field V has 〈V 〉 = I and includes the effect of the non-trivial vacuum

phases.

By noticing that U = A†V B = diag(e−iφ1/2, · · · , e−iφL/2)V diag(e−iφ1/2, · · · , e−iφL/2)
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and using it in the Lagrangian of (3.62), we have

L =L0(V ) +
f 2µ

2
Tr[diag(mq1 , · · · ,mqL)diag(e−iφ1/2, · · · , e−iφL/2)V diag(e−iφ1/2, · · · , e−iφL/2)

+ diag(mq1 , · · · ,mqL)diag(eiφ1/2, · · · , eiφL/2)V †diag(eiφ1/2, · · · , eiφL/2)]

− af 2

4N

[
θ̄ − 1

2
i
(
− 2

∑
j

φj + Tr[logV − logV †
)]2

=L0(V ) +
f 2µ

2
Tr[diag(mq1e

−iφ1 , · · · ,mqLe
−iφL)V + diag(mq1e

iφ1 , · · · ,mqLe
iφL)V †]

− af 2

4N

[
const.− 2θ̄

1

2
i
(

const. + Tr[log V − log V †]
)
− 1

4

(
− 2

∑
j

φj + Tr[log V − log V †]
)2]

,

and using the Euler formula for complex exponential

L =L0(V ) +
f 2µ

2
Tr[mqi(cosφi − i sinφi)δijVjk +mqi(cosφi + i sinφi)δijV

†
jk]

− af 2

4N

(
− θ̄iTr[log V − log V †] + const.− 1

4

(
− 4

∑
j

φj Tr[log V − log V †]

+ (Tr[log V − log V †])2
))

=L0(V ) +
af 2

16N
(Tr[log V − log V †])2 +

f 2

2
Tr[M(θ)(V + V †)]

f 2

4

ia

N

(
θ̄ −

L∑
j=1

φj

)
[−Tr[V − V †] + Tr[log V − log V †]] + const.,

where in the last equation we used Eq.(3.65) and defined Mij(θ) = µmqi cosφiδij. By

summing and subtracting a constant in the Lagrangian we finally have

L =L0(V ) +
af 2

16N
(Tr[log V − log V †])2 +

f 2

2
Tr[M(θ)(V + V †)]

f 2

4

ia

N

(
θ̄ −

L∑
j=1

φj

)
[−Tr[V − V †] + Tr[log V − log V †]]. (3.67)

Now that we have our physical field V and the Lagrangian described as a function of

it, we can use the CCWZ construction on V , in such a way that

V = e
i
√

2
f

Φ, (3.68)

where Φ = πiT i+S/
√
L, πi are the respective pions fields, T i are the generators of SU(L)

and S is the field of the pion corresponding to the U(1) axial symmetry (notice that this
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symmetry has the identity matrix as generator and we are considering that this particle

may be a Goldstone boson).

Applying Eq. (3.68) in (3.67) we get

L =
f 2

4
Tr[∂µV

†∂µV ]− a

2N
(Tr[Φ])2 + f 2 Tr

[
M(θ) cos

(√2

f
Φ
)]

+
a

2N
f 2
(
θ̄ −

∑
j

φj
)

Tr
[

sin
(√2

f
Φ
)
−
√

2

f
Φ
]
, (3.69)

this Lagrangian gives us quadratic, cubic and higher-order terms for the field Φ. By

expanding cos(Φ) = 1− Φ2

2!
+ Φ4

4!
+ · · · we get the second order terms

L2 =
1

2
Tr[∂µΦ∂µΦ]− a

2N
(Tr Φ)2 − Tr[M(θ)Φ2],

and we search for the mass of S, by looking at

LMass =− a

2N
(Tr Φ)2 − 1

2
Tr[M(θ)Φ2]

=− a

2N

(
· · ·+ L

S√
L

)2 − Tr
[
diag(µmq1 cosφ1, · · · , µmqL cosφL)

(
· · ·+ (· · · ) S√

L
+
S2

L

)]
=− aL

2N
S2 − 1

L

∑
i

µmqi cosφiS
2 + · · · ,

so we find that

m2
S =

La

N
+

2

L

∑
i

µmqi cosφi, (3.70)

where mS is the mass of the S particle.

From Eq. (3.70) we can conclude that at the chiral limit (massless quark) and large N

limit we have that the S particle, associated to the U(1) axial symmetry, is massless, being

a true Goldstone boson. But in the real QCD we have N = 3, L = 3 and m2
S = a 6= 0

(at the chiral limit), this particle S is actually the η′, which is not a Goldstone boson and

has the mass fixed only by the parameter a (to be defined experimentally), which permits

the mass of this particle to be larger than the mass of any other meson. Associating S

with the η′ we can get the η′ interaction with the other mesons by Eq.(3.69) and, by

using the methods of Section 2.5 and promoting the derivative of Eq.(3.69) to a covariant

derivative, we can add the gauge fields interactions to the η′.



Chapter 4

The relaxation of the electroweak

scale

In this chapter we will describe the physics behind the “relaxation of the electroweak scale”

and we will apply the machinery introduced in the previous chapter to this scenario. As

already mentioned, the relaxation of the EW scale consists in making the Higgs squared

mass parameter dynamical (very much like the θ term is made dynamical by the axion

field), and to use the evolution in the early universe to break the electroweak symmetry

and obtain a small EW scale [18]. These models make the weak scale technically natural

and we can judge the effectiveness of the model by how much they naturally raise the

cutoff of the Higgs.

4.1 The Minimal Model

4.1.1 The central idea

The simplest model of relaxion is the one where we consider the relaxion as simply the

QCD axion coupled with the Higgs in such a way that the Lagrangian has the terms

L ⊃ −(−M2 + gφ) | H |2 −V (gφ)− φGµνG̃
µν

64π2F
, (4.1)

where H is the Higgs doublet, g is a dimensionful coupling, M is the cutoff of the theory,

Gµν is the QCD field strength, φ is the axion (now relaxion) field and F is the scale where

the Peccei-Quinn symmetry breaks. The relaxion has a very large field range, can assume

49
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values much larger than F , and we see from Eq.(4.1) that the effective mass squared of

the Higgs, m2
H = −M2 + gφ, depends on the evolution of the relaxion and has thus be

promoted to a dynamical quantity.

Notice that when we set g → 0 the Lagrangian in Eq. (4.1) acquires a shift symmetry

φ → φ + 4πF . In this way small values of g are technically natural. Going to energies

below the QCD scale, we get the axion potential just like in Eq. (3.47). Approximating

such potential as Λ4 cos
(
φ

2F

)
with the overall scale Λ given in terms of the up and down

Yukawa couplings yu,d and the Higgs vev as

Λ4 ∼ m2
πf

2 ∼ v(yd + yu)µf
2, (4.2)

we obtain the total potential

V (H) = (−M2 + gφ) | H |2 +(gM2φ+ g2φ2 + · · · ) + Λ4 cos
( φ

2F

)
, (4.3)

where the ellipsis represents the higher order terms in gφ/M2. Notice that the term with

g breaks explicitly the shift symmetry and we must add an UV explanation for such term.

Now, if we take the initial value of φ such that the Higgs squared mass parameter m2
H

is positive, during the evolution of the universe the field φ starts to roll over the potential

and scans m2
H , decreasing its value, because of the slope of (gM2φ + g2φ2 + · · · ). At a

certain point, φ ≈ M2/g, the mass squared of the Higgs turns negative, and the Higgs

acquires a vev. This makes the height of the bumps Λ4 in the last term of (4.3) grow, in

principle building up potential barriers that make φ stop rolling when m2
H ≈ m2

EW �M2,

solving the Hierarchy Problem (see Figure 4.1).

In order for the relaxion evolution to stop to small values of the Higgs vev and avoid

overshooting the electroweak range vacua, we demand the process to happen during in-

flation so that the field φ slow-rolls with the Hubble friction given by (see Eq.(A.23))

3HI φ̇ = −∂V
∂φ

, (4.4)

where HI is the Hubble scale during inflation.

We are now going to analyze under which conditions the relaxation of the EW scale

is a viable solution of the hierarchy problem.
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Figure 4.1: A characterization of the φ′s potential where the Higgs gets a vev and the barriers
starts to grow.

4.1.2 Constraints on the parameter space

In order to provide a natural solution to the Hierarchy Problem, i.e., to dynamically

provide a stable separation between the weak scale and the high energy scale M , we need

to impose the following requirements on the relaxion mechanism:

1. The Higgs field must be the only one responsible for stopping φ from sliding any

longer. At the minimum of the potential we have ∂V/∂φ = 0, which implies

gM2 ∼ Λ4

F
⇒ gM2F ∼ Λ4. (4.5)

From here we also see that since Λ4 ∼ v(yu + yd)µf
2, the Higgs vev scales like

v ∼ gM2F/[(yu + yd)µf
2] in such a way that small technically natural values of g

make also v technically natural.

2. Inflation is independent of φ evolution. We thus demand that the typical energy

density carried by φ, namely M4, remain smaller then the inflation scale. Using

Eq.(A.5) this means that

H2
I

G
> M4 ⇒ HI > M2

√
G ∼ M2

MPl

⇒ HI >
M2

MPl

, (4.6)

where G is the Newton gravitational constant and MPl is the reduced Planck mass.

3. Assuming that the cosmological evolution of φ is dominated by classical physics, it

is essential that quantum fluctuations, of order of HI (see Eqs.(A.31) and (A.33)),
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remain smaller than the classical field displacements in one Hubble time

HI < ∆φ ∼ ∆T
dφ

dt
∼ H−1

I

dφ

dt
.

Using Eq.(4.4) we have

H−1
I

dφ

dt
∼ H−2

I

dV

dφ
⇒ HI <

gM2

H2
I

⇒ HI < (gM2)1/3. (4.7)

4. Inflation must last long enough for φ to scan the entire range. We require then that

during inflation ∆φ ≥M2/g where M2/g is an O(1) fraction of the full range. Now,

from the definition of e-folds that we have in the Appendix A, we obtain

N =

∫
HIdt =

∫
HI

φ̇
dφ ∼ ∆φ

HI

φ̇
⇒ ∆φ ∼ Nφ̇

HI

,

and using Eq. (4.4) we get

∆φ ∼
V ′φ
H2
I

N ∼ gM2

H2
I

N ≥ M2

g
⇒ N ≥ H2

I

g2
. (4.8)

5. In order for the barrier to form, we must have that the Hubble scale during inflation

is lower than the QCD scale

HI < ΛQCD. (4.9)

Putting together Eqs. (4.5), (4.6) and (4.7) we get

M <
(Λ4M3

Pl

F

) 1
6 ∼ 107 GeV×

(109GeV

F

) 1
6
, (4.10)

where we approximate ΛQCD ∼ Λ. Scaling F by its lower bound of 109 GeV [19], we get

M < 107 GeV, and we obtain a constraint on the cutoff M .

We have also, from Eqs. (4.6) and (4.9), a finite range for the Hubble scale of

ΛQCD > HI >
M2

MPl

.
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Going now back to the expression of the Higgs vev and writing g = εM , we obtain

v

102GeV
∼
( ε

10−26

)( M

107GeV

)3(
F

109GeV

)
.

This last equation tells us that, in order to obtain a Higgs vev of order of 100 GeV and

having M ∼ 107 GeV and F ∼ 109 GeV, we must have an extremely small value for ε,

ε ∼ 10−26.

We are now in a position to estimate the number of e-folds that our inflation needs in

order to provide the separation between the weak scale and the cutoff M . We begin by

noticing that if we approximate the potential to the dominating term, V (φ) ≈ gM2φ, we

have the number of e-folds (see Eq.(A.30))

N ≈ − 1

M2
Pl

∫ φf

φi

gM2φ

gM2
dφ =

φ2
i

2M2
Pl

−
φ2
f

2M2
Pl

, (4.11)

where for finding φf we impose that εV (φf ) = 1 at the end of inflation, which implies that

(see Eq. (A.25))

εV (φf ) =
M2

Pl

2

(
gM2

gM2φf

)2

= 1⇒ φf =
MPl√

2
,

and for φi we suppose φi ∼ M2

g
so that the Higgs starts with positive mass squared, then

we obtain, from Eq. (4.11)

N ≈ M4

2g2M2
Pl

− 1

4
,

where replacing g = εM , ε ∼ 10−26, M ∼ 107 GeV and MPl ∼ 1018 GeV, we have

N ∼ 1030.

This means that in order for the relaxation of the EW scale to work as a solution to the

hierarchy problem we need an extremely small parameter, ε ∼ 10−26, and a very long

period of inflation, N ∼ 1030.

The Minimal Model is discarded by the Strong CP Problem because Eq. (4.5) predicts

that the local minimum of φ is displaced from the minimum of QCD part of the potential

by O(F ). Remembering that if φ is the QCD axion its vev is given by 〈a〉 = −θ̄F then a

displacement from the minimum of O(F ) means θ̄ ∼ 1.
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4.2 Non-QCD Model

We concluded the previous section showing that the relaxion does not solve the strong

CP problem.

One way to avoid this is to consider that the potential barriers for φ arise from a

new strong group, different from QCD. Instead of creating the potential barriers with the

axion, we will postulate another strong sector whose purpose is to generate the barrier

with an Higgs vev dependence.

4.2.1 A new strong group

Let us now consider the new fermions that will couple to the new strong group to be

doublets under SU(2)L with hypercharge −1
2
: LL =

N1L

EL

 and LR =

N1R

ER

, and

singlets under SU(2)L with hypercharge 0: N2L and N2R. All of them are singlets under

SU(3)c and transform under the fundamental representation of SU(N), which is the new

strong group. We call this model of L+N, or 2+1.

The most general Lagrangian is

L =iL̄L /DLL + iL̄R /DLR + iN̄2L /DN2L + iN̄2R /DN2R −mL(L̄LLR + h.c.)−mN(N̄2LN2R + h.c.)

− (yεabN̄2RH
aLbL + h.c.)− (ỹεabN̄2LH

aLbR + h.c.), (4.12)

where the covariant derivatives are such that

L̄L /DLL = L̄L(/∂−ig /W a
τa−ig′YL /B−ig′′ /G

a
T aF )LL and N̄2L /DN2L = N̄2L(/∂−ig′′ /Ga

T aF )N2L,

defined similarly for the L̄R /DLR and N̄2R /DN2R. Here τa are the generators of SU(2)L,

YL is the hypercharge generator and T aF are the generators of SU(N).

Separating the mass dependent part of the Lagrangian in (4.12), we have

Lm =−mL(L̄LLR + h.c.)−mN(N̄2LN2R + h.c.)− yεabN̄2RH
aLbL

− y∗εabL̄bLH†aN2R − ỹεabN̄2LH
aLbR − ỹ∗εabL̄bRH†aN2L. (4.13)
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Expanding the Higgs around the vev H =

 0

h+v√
2

, we have that (4.13) takes the form

Lm =−mL(N̄1LN1R + ĒLER + h.c.)−mN(N̄2LN2R + h.c.) +
yv√

2
N̄2RN1L

+
y∗v√

2
N̄1LN2R +

ỹv√
2
N̄2LN1R +

ỹ∗v√
2
N̄1RN2L, (4.14)

which can be written in a more compact form as

Lm = −Ψ̄LMΨR + h.c., (4.15)

where ΨR =


N1R

N2R

ER

, ΨL =


N1L

N2L

EL

 and M =


mL −y∗v√

2
0

− ỹv√
2

mN 0

0 0 mL

.

The mass matrix M can be diagonalized noting that MM † is hermitian, so that there

is a unitary operator U such that

MM † = UM2
dU
†, (4.16)

with M2
d the diagonal matrix made of the eigenvalues of MM †. This is equivalent of

saying that there is a unitary matrix K such that

M = UMdK
†, (4.17)

and we get Md as the diagonalized mass matrix, whose diagonal elements are the masses

of the fermions in the mass basis.

By using this procedure we obtain the diagonal elements of Md as

m1 = mL,

m2 =
(1

2
m2
L +

1

2
m2
N +

1

4
ỹ2v2 +

1

4
y2v2 − 1

4

(
(−2m2

L − 2m2
N − ỹ2v2 − y2v2)2

− 4(4m2
Lm

2
N − 2mLmN ỹ

∗yv2 − 2mLmN ỹy
∗v2 + ỹ2y2v4)

)1/2)1/2

,

m3 =
(1

2
m2
L +

1

2
m2
N +

1

4
ỹ2v2 +

1

4
y2v2 +

1

4

(
(−2m2

L − 2m2
N − ỹ2v2 − y2v2)2

− 4(4m2
Lm

2
N − 2mLmN ỹ

∗yv2 − 2mLmN ỹy
∗v2 + ỹ2y2v4)

)1/2)1/2

. (4.18)
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4.2.2 ChPT of the non-QCD model

Collider and other constraints require mL to be greater than the weak scale [20], but no

such constraint exists on mN , so we integrate out the heaviest particles, i.e., EL, ER, N1L

and N1R by solving the equations of motion at the Lagrangian in (4.14), and we get

L2 =

(
y∗ỹ

2mL

(v + h)2 −mN

)
N̄2LN2R + h.c. (4.19)

The same result can be obtained from Eq. (4.18) in the mL →∞ limit.

Notice that, from the Lagrangian of Eq. (4.19) we obtain a new double Higgs interac-

tion with the light fermion y∗ỹ
2mL

h2N̄2LN2R+h.c. and a complex mass for the light fermion,

which we can parameterize as

MN ≡
y∗ỹv2

2mL

−mN =|MN | eiθN , (4.20)

where | MN | is the modulus of MN and will be now the physical mass and θN will be a

phase.

We will now repeat the same kind of reasoning we applied in Section 3.3, now using the

new interacting strong group SU(N) in place of large-N QCD and with one light flavor

which is the fermion N2 that condensates in N̄2N2. The spontaneous symmetry breaking

pattern is U(1)L × U(1)R → U(1)V . The matrix U now will contain only one meson, the

dark analog of the η′, since the broken symmetry is the anomalous U(1)A.

Following the steps of Subsection 3.3.1 we obtain a Lagrangian analogous to Eq. (3.62)

L = L0 +
f ′2µ′

2
Tr[UM †

N +MNU
†]− a′f ′2

4N

[
θ̄′ − 1

2
iTr[logU − logU †]

]2

,

where f ′ is the chiral symmetry breaking scale of the new strong group, µ′ is the dark

analogous of µ from ChPT, a′ is the dark analogous of a from Subsection 3.3.1 and θ̄′ is

the dark theta angle from the new strong group.

The procedure of Subsection 3.3.2 allows us to find the vacuum energy, and we obtain

E = −f ′2µ′ |MN | cos(ξ − θN) +
a′f ′2

4N
[θ̄′ − ξ]2,
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where ξ is the vev of the dark meson, given by

µ′ |MN | sin(ξ − θN) =
a′

2N
(θ̄′ − ξ). (4.21)

Redefining the field U to the dynamical field V which includes the effect of the non trivial

vacuum phase, V = eiξ/2Ueiξ/2, and using the CCWZ construction such that

V = e
i
√

2
f ′ η

′
, (4.22)

where η′ is the dark meson, we obtain the Lagrangian analogous to the Eq. (3.69)

L =
f ′2

4
Tr[∂µV

†∂µV ]− a′

2N
η′2 + f ′2µ′ |MN | cos(ξ − θN) cos

(√
2

f ′
η′

)

+
a′

2N
f ′2(θ̄′ − ξ)

[
sin

(√
2

f ′
η′

)
−
√

2

f ′
η′

]
.

Now, since the relaxion will be the correspondent axion of the new strong group,

we can make the substitution θ̄′ → θ̄′ + φ
F ′

, where φ is the relaxion and F ′ is the dark

analogous of F from Peccei-Quinn and we must have that F ′ is at least of order of the

cutoff M . This modifies the above Lagrangian and Eq. (4.21) in such a way that the ξ

angle has a relaxion dependence

ξ = −2N

a′
µ′ |MN | sin(ξ − θN) + θ̄′ +

φ

F ′
,

and the Lagrangian becomes

L =
f ′2

4
Tr[∂µV

†∂µV ]− a′

2N
η′2 + f ′2µ′ |MN | cos

(
− 2N

a′
µ′ |MN | sin(ξ − θN) + θ̄′

+
φ

F ′
− θN

)
cos

(√
2

f ′
η′

)
+

a′

2N
f ′2
(
θ̄′ +

φ

F ′
− ξ
)(
−(2)3/2

3!
η′3 +

(2)5/2

5!
η′5 + · · ·

)
.

(4.23)

This Lagrangian contains the dynamics of the dark η′ and interactions between the re-

laxion and the dark η′, and it will also give the quadratic terms and thus the mass

of the dark η′. Notice that from the third term of the Lagrangian, from expanding

cos
(√

2
f ′
η′
)

= 1 − 1
2!

(√
2
f ′
η′
)2

+ 1
4!

(√
2
f ′
η′
)4

+ · · · , we obtain the relaxion dependent peri-
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odic potential

V (φ) = −f ′2µ′ |MN | cos

(
φ

F ′
+ α(φ)

)
(4.24)

where α(φ) = −2N
a′
µ′ |MN | sin(ξ − θN) + θ̄′ − θN .

The potential has the height of the bump defined by

Λ4 = f ′2µ′ |MN |, (4.25)

which shows that the periodic barriers grow as the Higgs vev grows, since |MN | depends

on the vev by Eq. (4.20).

From following the same steps as the end of Subsection 3.3.2 we obtain

Lmass = − a′

2N
η′2 − µ′ |MN | cos(ξ − θN)η′2,

in first order approximation we have φ = 0 which implies

m2
η′ =

a′

N
+ 2µ′ |MN | cos(ξ′ − θN), (4.26)

where this ξ′ satisfies

ξ′ = −2N

a′
µ′ |MN | sin(ξ′ − θN) + θ̄′.

This completes our treatment of the condensation of the light fermions in the L+N

model of the new strong group. We have found the mass of the degree of freedom that

arises at low energies after the condensate of N̄2N2 in Eq. (4.26), and the interactions

of this degree of freedom with the relaxion given in the Lagrangian of Eq. (4.23) which

causes a periodic potential barrier (see Eq.(4.25)) that depends on the Higgs vev and stops

the rolling of the relaxion at the correct weak scale in the same way as in the Minimal

Model, solving the hierarchy problem without jepardizing the solution of the strong CP

problem.

Now, depending of the NP at the F ′ scale, we may have operators such as in the

Lagrangian of Eq (3.48) of Subsection 3.2.2 interacting with the relaxion instead of the

axion. All the reasoning outlined in that Subsection may be repeated for the case of the

relaxion.
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4.2.3 Constraints on the parameter space in the non-QCD model

As already mentioned, this model solves the hierarchy problem with the same idea as the

minimal model, but now with an essential participation of MN in the generation of the

barriers that stop the rolling of the relaxion. For this mechanism to work we need again

to apply constraints on the parameter space, starting with constraints on the radiative

corrections on the mass of N2.

Figure 4.2: Feynman diagram contributing for the radiative corrections ofmN from the Yukawa
couplings.

Notice that we have radiative corrections for the light fermion mass coming from the

diagram of Figure 4.2, whose vertices comes from the Yukawa coupling of the Lagrangian

from Eq. (4.13), that gives the amplitude

iAN2hN1 =
iyiỹ

2

∫
d4k

(2π)4

i(/k +mL)

k2 −m2
L

i

(p− k)2 −m2
L

=
yỹ

2

∫
d4k

(2π)4

∫ 1

0

dx
/k +mL

[x((p− k)2 −m2
h) + (1− x)(k2 −m2

L)]2

=
yỹ

2

∫ 1

0

dx

∫ M

0

d4l

(2π)4

x/p+mL

[l2 − a2]2
,

where a = x2p2−xp2 +m2
L+x(m2

h−m2
L), mh is the Higgs boson mass, p is the momentum

of the incoming and outgoing fermion N2, k is the momentum of the virtual fermion N1

and in the last equation we made the substitution k → l + xp. Now, computing the last

integral with sharp cutoff regularization using the cutoff of the theory M , we obtain

iAN2hN1 =
yỹ

2

∫ 1

0

dx
i(x/p+mL)

(4π)2

(
log

(
M2 + a2

a2

)
+

a2

M2 + a2
− 1

)
∼ i

yỹ

32π2
mL log

(
M2

m2
L

)
,

(4.27)

where in the last step we used that we expect mL � mh, mL � p and M � mL.

Similarly we have the radiative corrections coming from the Higgs loop whose vertex
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Figure 4.3: Feynman diagram contributing for the radiative corrections of mN from the Higgs
loop.

come from the new interaction in the effective Lagrangian in Eq. (4.19) (see Figure 4.3),

this gives the amplitude

iAN2h2N2
=
iy∗ỹ

2mL

∫ 4πf ′

0

d4k

(2π)4

i

k2 −m2
h

∼ i
yỹ

2mL

(4πf ′)2

(4π)2
, (4.28)

where we evaluate this integral with sharp cutoff regularization where we used the cutoff

of the effective theory as 4πf ′.

Now, we want these quantum corrections not to spoil our mechanism, i.e., we require

these terms not to be too large so the relaxion does not stop rolling long before the Higgs

reaches its correct expectation value. This implies that we want our radiative corrections

to be smaller than | MN |∼ yỹ
2mL

v2 (notice that this cannot be done for the case where

v = 0, for which |MN |= mN , this can cause troubles in the potential before EWSB and

is considered in [21]). Then, imposing this in the radiative corrections of Eqs. (4.27) and

(4.28) we obtain

mL ≤
4πv√

log(M2/m2
L)

and f ′ ≤ v.

By applying the same constraints listed in Subsection 4.1.2 for the minimal model plus

the constraints over the radiative corrections, we obtain the following constraints:

1. The Higgs field must be the only one responsible for stopping φ from sliding any

longer. This implies

gM2F ′ ∼ Λ4, (4.29)

where now Λ4 is given by Eq. (4.25);
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2. Inflation is independent of φ evolution, implying

HI >
M2

MPl

; (4.30)

3. Assume that the cosmological evolution of φ is dominated by classical physics results

in

HI < (gM2)1/3; (4.31)

4. Inflation must last long enough for φ to scan the entire range, so we have

N ≥ H2
I

g2
; (4.32)

5. In order for the barrier to form, we must have that the Hubble scale during inflation

is lower than the new strong group scale

HI < 4πf ′; (4.33)

6. The constraints over the radiative corrections, as explained above

mL ≤
4πv√

log(M2/m2
L)

and f ′ ≤ v. (4.34)

Using the list above we guarantee a stable separation between the weak scale and the

cutoff of the theory in the non-QCD model.

Now, using Eqs. (4.29), (4.30) and (4.31) we obtain

M2 < MPl

(
Λ4

F ′

)1/3

≤MPl

(
Λ4

M

)1/3

,

where in the last step we used that F ′ ≥M . This implies

M < 109 GeV

(
Λ

103 GeV

)4/7

. (4.35)

With the estimates | MN |∼ yỹ
2mL

v2, µ′ ∼ 4πf ′ and y, ỹ of O(1), we will have that

Λ4 ∼ 4πf ′3 v2

mL
. Using the constraints of Eq. (4.34) we will have that Λ < 103 GeV. In

this way, Eq. (4.35) tells us that we have an upper bound of 109 GeV for M in non-QCD
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model.

Notice that from Eq. (4.29) we obtain

gM2F ′ ∼ f ′2µ′
yỹ

2mL

v2 ⇒ v ∼

√
g
M2F ′mL

f ′2µ′yỹ
, (4.36)

so that technically natural values of g turn v technically natural.



Conclusions

Although the SM is an extremely successful theory, it cannot be the final theory of particle

physics. After the discovery of the Higgs boson in 2012 [22][23], one of the problems of

the SM - the so-called hierarchy problem - has become even more acute. The hierarchy

problem stems from the observation that, whenever a fundamental scalar is present in a

theory (like the Higgs boson in the SM), any heavy particle interacting with such scalar

will generate a quadratic sensitivity of the scalar mass on its threshold. This undermines

our idea of effective field theory, and introduces a huge tuning in the theory. Classical

solutions to this problem are supersymmetry, models with a composite Higgs, technicolor

or anthropics, which are either untestable (anthropics), experimentally excluded (techni-

color in its simpler form) or cornered by experiments in tuned regions of parameter space

(supersymmetry and composite Higgs models).

Recently, a new class of solutions have been proposed, involving the dynamical re-

laxation of the EW scale. The framework consists in making the Higgs mass parameter

dynamical coupling the Higgs boson to an axion-like particle (the relaxion). During in-

flation, the Higgs mass parameter is scanned by the evolving relaxion field, until EWSB

occurs and the evolution is stopped by a Higgs-vev-dependent barrier.

In this thesis we focused on the study of the relaxion frameworks, paying attention

to the preliminary knowledge (chiral perturbation theory, strong CP problem and axion

physics) needed to correctly write a relaxion theory. More specifically, we have first studied

the theory of mesons and chiral Lagrangians in Chapter 2. We have then focused on the

strong CP problem and one of its solutions, the axion, studying in detail its physics and

its natural connections with the theory of mesons. Finally, at the end of Chapter 3 we

have focused on the U(1)A problem and the η′ meson.

All the techniques developed in Chapters 2 and 3 have been used in Chapter 4 to

construct the relaxion Lagrangian in two cases: (i) when the relaxion is the QCD axion,
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a case in which we lose the solution to the strong CP problem, and (ii) a non-QCD model

in which the Higgs-vev-dependent barriers that stop the relaxion evolution are generated

by a new strongly interacting group. In the last case, we considered the so-called L+N

model and write down the correct Lagrangian for the dark analog of the η′ meson, which

was the original computation of this work.

The work done in theis thesis can be extended in several directions: (i) considering

non-QCD models other than the L+N possibility; (ii) writing a UV complete relaxion

model; (iii) considering in detail what happens varying the scale of condensation of the

new strongly interacting group; (iv) studying in detail the phenomenology of such models,

along the lines of references [21],[24] and [20].



Appendix A

This Appendix will be devoted to a brief study of Inflation. We shall start by showing
the classic Big Bang theory. The discussion is based on [25].

A.1 FRW metric and the Friedmann equations

If we assume the homogeneity and isotropy of the universe at large scales, we are led to
the Friedmann-Robertson-Walker (FRW) metric for the universe [26]

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

)
, (A.1)

where a(t) is the scale factor that characterizes the relative size of spacelike hypersurfaces
Ω and is the only time dependent parameter at the spatial part of the metric and k is the
curvature parameter which is +1 for positively curved Ω, 0 for flat Ω and -1 for negatively
curved Ω.

The dynamics of the universe is given by the Einstein field equation

Gµν = 8πGTµν , (A.2)

where Gµν is the Einstein tensor, G is the Newton gravitational constant and Tµν is
the energy-momentum tensor of the universe. Now, solving the Einstein equation by
assuming that matter behaves as a perfect fluid in the energy-momentum tensor and
using the FRW metric we obtain the following differential equations for the scale factor a
(that now characterize the dynamics of the universe) [26]:

H2
I +

k

a2
=

8πG

3
ρ (A.3)

and

ḢI +H2
I =

ä

a
= −4πG

3
(ρ+ 3p), (A.4)

where ρ is the energy density, p is the pressure and HI ≡ ȧ
a

is the Hubble parameter
which is very important since it sets the Hubble time, t ∼ H−1

I which is the characteristic
time-scale of the homogeneous universe, and sets the Hubble distance d ∼ H−1

I which sets
the size of the observable universe. Eqs. (A.3) and (A.4) are the Friedmann equations,
and determine the evolution of a(t) given the the relation between ρ and p.
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One can define the critical density ρc such that Eq. (A.3) takes the form

H2
I =

8πG

3
ρc, (A.5)

which is very useful because we can write ρ = Ωρc where Ω is a parameter that depends
on time and is equal to 1 when the universe is flat. We will have that Ω = 1 for the case
of the inflaton (see section A.2).

Now, combining the two Friedmann equations we can obtain the continuity equation
[26]

dρ

dt
+ 3HI(ρ+ p) = 0. (A.6)

Defining the equation of state parameter

w ≡ p

ρ
, (A.7)

we obtain
d log ρ

d log a
= −3(1 + w),

which may be integrated to give
ρ ∼ a−3(1+w), (A.8)

which, together with Eq. (A.3) gives the time evolution of the scale factor

a(t) ∼ t2/3(1+w) for w 6= −1 and a(t) ∼ eHI t for w = −1. (A.9)

These results can be used to characterize the dynamics of the universe in case of a flat
universe dominated by non-relativistic matter (w = 0) which gives a(t) ∼ t2/3, radiation
or relativistic matter (w = 1/3) which gives a(t) ∼ t1/2 and a cosmological constant
(w = −1) which gives a(t) ∼ eHI t.

A.2 Inflation

A.2.1 Definition of inflation

In the above section we described the standard Big Bang theory. This theory carries
serious fine tuning problems in its initial conditions. Examples of such problems are the
horizon problem, the flatness problem and the monopole problem [27]. These problems
arise essentialy from the fact that, in the standard Big Bang Theory, the comoving Hubble
radius, (aHI)

−1, is strictly increasing [25]. The natural solution to this problem is to state
that the comoving Hubble radius should shrink.

For this reason we define inflation as the regime where the universe behaves respecting
the following equation

d

dt

(
1

aHI

)
< 0. (A.10)

Now, from the relation
d

dt
(aHI)

−1 =
−ä

(aHI)2
,
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we conclude that Eq. (A.10) is equivalent to

d2a

dt2
> 0, (A.11)

which means an accelerated expansion of the universe.

If we use Eq. (A.11) in Eq. (A.4) we must conclude that

p < −1

3
ρ, (A.12)

which means that negative pressure is the responsible for the accelerated expansion. As
a summary, we write the definition of inflation as

d

dt

(
1

aHI

)
< 0⇔ ä > 0⇔ w < −1

3
. (A.13)

Even though these conditions seem unnatural, this can be done if we postulate a scalar
field responsible for it, i.e., the inflaton.

A.2.2 The inflaton

In General Relativity the gravity plus matter action is given by [26]

S =

∫
d4x
√
−g
(
− R

16πG
+ Lm

)
, (A.14)

where g is the determinant of the metric tensor, Lm is the lagrangian for any matter field
and R is the Ricci scalar. The Euler-Lagrange equation from the action of Eq. (A.14)
gives the Einstein field equation (A.2) if the stress-energy tensor is

T µν = −2
∂Lm
∂gµν

− gµνLm. (A.15)

We will not specify the nature of the scalar field inflaton, φ, we will use it as an order
parameter to parametrize the time-evolution of the inflationary energy density and set its
Lagrangian as a minimally-coupled scalar field so that

Lm = Lφ =
1

2
gµ
′ν′∂µ′φ∂ν′φ− V (φ). (A.16)

Using Eq. (A.16) in Eq. (A.15) and using the identity [27]

∂gµ
′ν′

∂gµν
= −gνν′gµµ′ ,

we obtain

T µν = gµρ∂ρφ∂νφ− δµν
(

1

2
∂ρφ∂

ρφ− V (φ)

)
. (A.17)

The density and pressure can be obtained for an isotropic and homogeneous universe
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from ρ = T 0
0 and T ij = −Pδij. For a homogeneous field, Eq.(A.16) becomes

Lφ =
1

2
φ̇2 − V (φ). (A.18)

Using Eq. (A.18) in Eq. (A.17) we obtain

ρφ =
1

2
φ̇2 + V (φ)

Pφ =
1

2
φ̇2 − V (φ), (A.19)

which implies

wφ =
1
2
φ̇2 − V

1
2
φ̇2 + V

. (A.20)

Eq. (A.20) shows us that in order to satisfy the conditions of Eq. (A.13) (creating negative
pressure and accelerating expansion) all the inflaton needs is that the potential energy
dominates V over the kinetic energy 1

2
φ̇2, so that wφ < −1/3.

Now, by solving the Euler-Lagrange equation for the action of Eq. (A.14) with Lm =
Lφ given by Eq. (A.18) we find [26] again the Friedmann equations plus the couple
Klein-Gordon equation for the scalar field:

H2
I =

1

3M2
Pl

(
1

2
φ̇2 + V (φ)

)
, Ḣ =

1

MPl

(
−1

2
φ̇2

)
(A.21)

and

φ̈+ 3HI φ̇ = −dV (φ)

dφ
, (A.22)

where MPl is the reduced Planck mass MPl = mP/
√

8π = 1
√

8πG.

In Eq. (A.22) we have an acceleration term, φ̈, a friction term proportional to HI and

a force given by −dV (φ)
dφ

. If we imagine our field as a ball rolling down a potential hill
with a friction, we can impose that this ball rolls slowly and its acceleration is small in
comparison with the other terms in the equation. This makes Eq. (A.22) turn into

3HI φ̇ ≈ −
dV (φ)

dφ
, (A.23)

and the Friedmann equations to

H2
I ≈

1

3M2
Pl

V (φ) and H ≈ const.. (A.24)

The above approximations are called slow-roll approximations.

It is useful to define the slow-roll parameter

εV (φ) ≡ M2
Pl

2

(
V,φ
V

)2

, (A.25)

where ,φ represents a derivative with respect to φ. Using Eqs. (A.23), (A.24) and (A.25)
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we have

φ̇2 ≈
V 2
,φ

9H2
I

≈M2
Pl

V 2
,φ

3V
≈ 2

3
εV V, (A.26)

which, in first order in εV gives

P =

(
2

3
εV − 1

)
ρ. (A.27)

Eq. (A.27) means that we can exchange our condition wφ < −1/3 by εV < 1 so that
inflation ends at εV = 1.

A.2.3 The amount of inflation

The amount of inflation is given by the number of e-foldings N which is defined as

a(tf )

a(ti)
= eN , (A.28)

where tf is the time at the end of inflation and ti is the time at the beginning of inflation.

By noticing that

d log a =
1

a

da

dt
dt = HIdt,

we have

N =

∫ a(tf )

a(ti)

d log a =

∫ tf

ti

HIdt. (A.29)

Using Eqs. (A.23) and (A.24) we find

HIdt = HI
dt

dφ
dφ = HI

dφ

φ̇
= −3H2

I dφ

V,φ
= − 1

M2
Pl

V

V,φ
dφ,

so that we obtain

N = − 1

M2
Pl

∫ φf

φi

V

V,φ
dφ. (A.30)

A.2.4 Quantum fluctuations during inflation

Besides solving the horizon, the flatness and the monopole problem, inflation can explain
the primordial fluctuations that are the seeds for the large scale structure of the universe
and also the anisotropies in the CMB.

These fluctuations can be calculated by expanding the action of the inflaton to second
order in the fluctuations (on all length scales, i.e. with a spectrum of wave numbers k) in
terms of the gauge-invariant curvature perturbation, R, derive the equations of motion
from it and show that this has the form of a harmonic oscillator, make various approximate
solutions valid during slow-roll, promote the field R to a quantum operator and quantize
it, define the vacuum state by matching the solutions to the Minkowski vacuum when the
mode is deep inside the horizon (Hubble radius k � aHI) and finally compute the power
spectrum of the curvature fluctuations at horizon crossing (k = aHI). This is done in [25]
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and in [27] (where it was done using spatially-flat gauge), giving

| w(k) |2=
H2
I

2k3
, (A.31)

where w is the amplitude of the oscillation of the inflaton, δφ, and k is the wave number.
The power spectrum of a field χ(~x, t) is defined so that

〈χ(~k, t)χ(~k′, t)〉 =
2π2

k3
Pχ(k, t)δ(~k + ~k′), (A.32)

where | ~k |= k and Pχ is the power spectrum of χ(~x, t). With this definition one can show
that the power spectrum of δφ is

Pδφ(k) ≈
(
HI

2π

)2

. (A.33)



Appendix B

In this Appendix we will show more details on the computations of Chapter 1.

B.1 Fermion loop

Let us start with the computation of the amplitude in Eq. (1.3).

We begin by noticing that

Tr

[
i

/k + /p−M
· i

/p−M

]
= Tr

[
(/k + /p+M)

(k + p)2 −M2
·

(/p+M)

p2 −M2

]
. (B.1)

The trace of the spinor structures in the numerator is

Tr[(/k + /p+M)(/p+M)] = Tr[/k/p+ /p/p+M/k + 2M/p+M2]

= (kµpν + pµpν) Tr[γµγν ] + 4M2 = 4(kµp
µ + pµp

ν +M2), (B.2)

where we used in the second equation that Tr[1] = 4 and Tr[γµ] = 0, and in the last
equation we used Tr[γµγν ] = 4gµν .

Substituting Eq. (B.2) in Eq.(B.1) and using the Feynman parameterization we obtain

Tr

[
i

/k + /p−M
· i

/p−M

]
=

∫ 1

0

dx4(k · p+ p2 +M2)

[x((k + p)2 −M2) + (1− x)(p2 −M2)]2

=

∫ 1

0

dx4(k · p+ p2 +M2)

[xk2 + 2xk · p+ p2 −M2]2
=

∫ 1

0

dx4(k · (l − kx) + l2 − 2xk · l + x2k2 +M2)

[xk2 − x2k2 + l2 −M2]2

(B.3)

where we redefine l = p + xk which implies p2 = l2 − 2xk · l + x2k2 in the last equation.
Now using Eq. (B.3) in Eq. (1.3) and dropping the linear terms in l we get

iA = µ4−d(−iy)24

∫ 1

0

dx

∫
ddl

(2π)d
l2 − xk2 + x2k2 +M2

(l2 − a2)2
, (B.4)

where we defined a2 = M2 − x(1− x)k2. Now, making a Wick rotation with l0 = il4 and
l2E = −l2, we obtain

71
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iA = iµ4−d(−iy)24

∫ 1

0

dx

∫
Ωd

∫ ∞
0

dlE
(2π)d

ld−1
E (−l2E − xk2 + x2k2 +M2)

(l2E + a2)2

= iµ4−d(−iy)24

∫ 1

0

dx

∫
Ωd

(∫ ∞
0

dlE
(2π)d

ld−1
E (−xk2 + x2k2 +M2)

(l2E + a2)2
−
∫ ∞

0

dlE
(2π)d

ld+1
E

(l2E + a2)2

)
= iµ4−d(−iy)24

1

2

∫ 1

0

dx

∫
Ωd

(∫ ∞
0

dl2E
(2π)d

(l2E)
d
2
−1(−xk2 + x2k2 +M2)

(l2E + a2)2
−
∫ ∞

0

dl2E
(2π)d

(l2E)
d
2

(l2E + a2)2

)
(B.5)

where
∫

Ωd is the d-dimensional solid angle and has the value
∫

Ωd = 2πd/2

Γ( d2)
and Γ(n) is

the Gamma function of n. Using this value of the solid angle and the identity [5]∫ ∞
0

dt tm−1

(t+ a2)n
=

1

(a2)n−m
Γ(m)Γ(n−m)

Γ(n)
,

we get

iA =− iµ4−d4y2

(2π)d
πd/2

Γ
(
d
2

) 1

2

∫ 1

0

dx
( 1

(a2)2− d
2

Γ
(
d
2

)
Γ
(
2− d

2

)
Γ (2)

(−xk2 + x2k2 +M2)

− 1

(a2)1− d
2

Γ
(
d
2

+ 1
)

Γ
(
1− d

2

)
Γ (2)

)
= −iµ

4−d4y2

(2π)d
πd/2

Γ
(
d
2

) 1

2

∫ 1

0

dx
( 1

(a2)2− d
2

Γ

(
2− d

2

)
(−xk2 + x2k2 +M2)

− a2

(a2)2− d
2

d

2(1− d/2)
Γ

(
2− d

2

))
(B.6)

where in the last equation we used Γ(n+ 1) = nΓ(n).

Now letting d = 4 − ε, where ε → 0 and using 1
(a2)ε/2

≈ 1 − ε
2

log a2 + O(ε) and

Γ
(
ε
2

)
≈ 2

ε
− γ +O(ε) we finally obtain

iA = − iy
2

4π2

∫ 1

0

dx3(−xk2+x2k2+M2)

(
2

ε
− γ + log

(
µ2

M2 − x(1− x)k2

)
+ · · ·

)
. (B.7)

Let us now compute the RGE shown in Eq. (1.5). Let h0 be the bare Higgs field, h the
renormalized Higgs field, m2

h0 the bare Higgs mass and m2
h the renormalized Higgs mass,

such that h0 = Z
1/2
1 h with Z1 = 1 + δZ1 and m2

h0Z1 = m2
h + δm2

h where δZ1 and δm2
h are

the counterterms. Using the minimal subtraction (MS) scheme [12], we have that

δZ1 = − y2

24π2

2

ε
and δm2

h = −3y2M2

4π2

2

ε
. (B.8)

Finally we obtain the counterterms for the radiative corrections from the fermions
loops contributing to the self-energy of the Higgs boson. Now we can use it to find the
renormalization group equation (RGE) for the running of the Higgs mass parameter.

To obtain the RGE we can start by noticing that the bare mass, by definition, doesn’t
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depend on the free parameter µ, so we have

µ
dm2

h0

dµ
= µ

dm2
h

dµ
+ µ

dδm2
h

dµ
= 0,

which using Eq.(B.8) implies

µ
dm2

h

dµ
= −µdδm

2
h

dµ
= µ

d

dµ

(
3y2M2

4π2

2

ε

)
. (B.9)

Now, notice that if we define the bare Yukawa coupling constant as y0, it will have
dimension [y0] = 4−d

2
in dimensional regularization, so if we want a dimensionless renor-

malized coupling y we must rescale it by

y =
1

Zy
µ
d−4

2 y0,

where µ is again the arbitrary scale of dimensional regularization and Zy includes the
counterterms of the Yukawa coupling. Using again that the bare parameter doesn’t depend
on the parameter µ and making ε = 4− d we have

µ
dy0

dµ
= µ

d

dµ
(Zyµ

ε/2y) = µ

(
dZy
dµ

+
ε

2
Zyµ

ε
2
−1 + Zyµ

ε
2
dy

dµ

)
⇒ µ

dy

dµ
= − ε

2
y, (B.10)

where in the last step we used that Zy = 1 at leading order. Similarly we can define the
bare mass of the fermion M0 which has dimension 1 and thus the renormalized fermion
mass must be M = 1

ZM
M0 and we have that

µ
dM0

dµ
= µ

dM

dµ
+ µ

dZM
dµ

= 0⇒ µ
dM

dµ
= 0, (B.11)

where we used that ZM = 1 at leading order.

From Eq. (B.9) we have

µ
dm2

h

dµ
= µ

(
2yM2

8π2

2

ε

dy

dµ
+ y22M

dM

dµ

2

ε

)
, (B.12)

and using Eqs. (B.10) and (B.11) in (B.12) we finally obtain

µ
dm2

h

dµ
= −3y2M2

2π2
, (B.13)

which is the RGE used in Chapter 1.

B.2 Fine tuning

We now elaborate on the definition of the fine-tuning measure given in Eq. (1.6).

If we call m′2h (Λin) = (1 + ε)m2
h(Λin) and m′2h (ΛSM) = (1 + ∆ε)m2

h(ΛSM) we have

m′2h (Λin)−m2
h(Λin) = δm2

h(Λin) = εm2
h(Λin), (B.14)
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while
m′2h (ΛSM)−m2

h(ΛSM) = δm2
h(ΛSM) = ∆εm2

h(ΛSM). (B.15)

From Eqs. (B.14) and (B.15) we get

∆ε =
δm2

h(ΛSM)

m2
h(ΛSM)

and ε =
δm2

h(Λin)

m2
h(Λin)

,

and mixing these two equations together and eliminating the ε we obtain

∆ =
δm2

h(ΛSM)/m2
h(ΛSM)

δm2
h(Λin)/m2

h(Λin)

which, when we take the infinitesimal limit, becomes

∆ =
d logm2

h(ΛSM)

d logm2
h(Λin)

, (B.16)

which is the expression for ∆ used in Chapter 1.
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