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Resumo

Esta tese de doutorado é devotada a problemas de campos fortes em eletrodinamica e teoria quantica
de campos. Alguns sistemas fisicos bem conhecidos sao estudados sob o formalismo da eletrodinamica
quantica (QED) com campos externos e eletrodinamica nao-linear. Primeiramente estudamos pro-
priedades estatisticas de estados quanticos de Dirac e Klein-Gordon massivos que interagem com
campos elétricos dependentes do tempo que viola a estabilidade do vacuo, primeiro em termos gerais
e em seguida para um campo de fundo especifico. Como ponto de partida, derivamos uma expressao
nao-perturbativa de tais campos. Construimos operadores de densidade reduzidos para subsistemas
de elétrons e positrons e discutimos o efeito de decoeréncia que pode ocorrer no curso de evolucao de-
vido & uma medicao intermediaria. Calculamos a perda de informacao em estados em QED devido a
reducoes parciais e uma possivel decoeréncia por meio da entropia de von Neumann. Em seguida con-
sideramos um campo elétrico especifico, denominado por campo T-constante, como campo de fundo
forte. Este modelo exatamente solivel nos permite calcular, explicitamente, todas propriedades es-
tatisticas de vérios estados quanticos de campos massivos e carregados em consideragao. Utilizamos
uma abordagem nao-perturbativa para a QED com X-degraus elétricos criticos e consideramos dois
exemplos de configuracao de campo de tipo exponencial (campo simétrico que varia lentamente e
campo do tipo pico). Os nameros médios de particulas criadas por essas configuragoes de campo
sao calculados. As condigoes quando espacos "in" e "out" de QED com campos em consideracao
sao unitariamente equivalentes sao obtidos. Entao construimos um operador de densidade geral,
cuja condicao inicial é o vacuo. Tal operador descreve a deformacao de um estado de vacuo inicial
por X-degraus elétricos criticos. Encontramos as reducgoes do estado deformado para subsistemas
de elétrons e positrons e calculamos a perda de informacao destas reducdes. A consideracao geral é
ilustrada por meio de um estudo de estados de vacuo quantico entre duas placas de capacitor. Cal-
culamos as medidas de emaranhamento destes estados reduzidos como entropias de von Neumann.
Por fim, determinamos o campo de uma particula puntiforme em movimento em eletrodinamica local
nao-linear. Utilizamos como um modelo a lagrangiana de Euler-Heisenberg truncada no seu termo
de ordem principal em uma expansao, em série de poténcias, do primeiro invariante de campo eletro-
magnético. Calculamos a energia total do campo produzido por uma particula puntual e mostramos
que a mesma ¢ finita; portanto tornando sua configuracdo de campo como um soéliton. Definimos
o tensor de energia-momento finito para esta configuracao e demonstramos que suas componentes
satisfazem a relacao mecanica padrao de uma particula massiva livre que se move.

Palavras-chave: Eletrodinamica quantica; Operador densidade; Entropia; Emaranhamento; Cri-
acao de particulas; Eletrodinamica nao-linear; Potenciais retardados; Carga movel; Soliton



Abstract

This thesis is devoted to strong field problems in electrodynamics and quantum field theory. Some
well known physical systems are studied in a framework of quantum electrodynamics with external
field and nonlinear electrodynamics. First, the statistical properties of states of quantized charged
massive Dirac and Klein-Gordon fields interacting with a time-dependent background that violates
the vacuum stability, first in general terms and then for a special electromagnetic background. As
a starting point, a nonperturbative expression for the density operators of such fields. The reduced
density operators for electron and positron subsystems are constructed and a decoherence that may
occur in course of the evolution due to an intermediate measurement is discussed. The loss of the
information in QED states due to partial reductions and a possible decoherence is studied by calcu-
lating the von Neumann entropy. Next, the so-called T-constant external electric field as an external
background is considered. This exactly solvable example allows the explicit calculation of all statis-
tical properties for various quantum states of the massive charged fields under consideration. Next,
a nonperturbative approach to QED with x-electric critical potential steps is used. The general
consideration is illustrated by the example of so-called exponential in two different configurations
(slowly varying field and sharp peak field); differential and full mean numbers of particles created
by these field configurations are calculated. The conditions when in- and out- spaces of the QED
under consideration are unitarily equivalent are found. Then, a general density operator with the
vacuum initial condition is constructed. Such an operator describes a deformation of the initial
vacuum state by z-electric critical potential steps. The reductions of the deformed state to electron
and positron subsystems are found, and the loss of the information in these reductions is calculated.
The general consideration is illustrated by studying the deformation of the quantum vacuum be-
tween two capacitor plates. The entanglement measures of these reduced states are calculated as
von Neumann entropies. Third, the field of a moving pointlike charge is determined in nonlinear
local electrodynamics. The Euler-Heisenberg Lagrangian of quantum electrodynamics truncated at
the leading term of its expansion in powers of the first field invariant is used as a model Lagrangian.
The total energy of the field produced by a point charge is calculated and shown to be finite; thereby
making its field configuration a soliton. A finite energy-momentum vector of this field configuration
is defined to demonstrate that its components satisfy the standard mechanical relation characteristic
of a freely moving massive particle.

Keywords: Quantum electrodynamics; Density operator; Entropy; Entanglement; Particle creation;
Nonlinear electrodynamics; Delayed potentials; Moving charge; Soliton
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Introduction

Traditionally it was believed that quantum theory is intended to describe the phenomena of the
microcosm and the macroscopic field strengths are described by the classical theory. However, the
development of quantum field theory led to an understanding of the fact that there are non-trivial
quantum phenomena (such as vacuum polarization, the Klein paradox, the Hawking black-hole ra-
diation, and the creation of electron-positron pairs by external fields from vacuum) that can not be
described classically. Already at the beginning of creation of relativistic quantum mechanics, these
effects caused a number of paradoxes, giving rise to a question of correctness of its direct application
to processes with strong fields. It became clear that quantum effects can, under certain conditions,
change the classical evolution of strong fields due to the backreaction. This fact was noticed by such
giants of theoretical physics as Feynman and Schwinger. The case of homogeneous and constant
electric fields interacting with electrons was examined by Schwinger|1|, who obtained the vacuum-
to-vacuum transition probability using his method of effective action. Such fields admit analytical
solutions of the Dirac equation and were frequently used in various QFT calculations; see Ref. |2]
for a review. It was demonstrated that electron-positron pairs must be observed in electric fields
having the order of the critical field. The Feynman causal propagator approach|3] was generalized
by Nikishov and Narozhny[4, 5, 6] in order to calculate pair creation and pair scattering in the
zero-order approximation with respect to the radiative interaction. Depending on the structure of
external backgrounds, different approaches were proposed to calculate the pair creation effect in the
framework of relativistic quantum mechanics|7, 8, 9, 10].

There are two general ways to account the effects of strong field. On one hand, in quantum
electrodynamics it is possible to account the effects of particle production (or, in other words, vacuum
instability) nonperturbatively|12, 13, 14]. This way of consideration is possible when the exact
solutions of Dirac equation in the presence of the external background are known. On the other
hand, it would be, probably, very beneficial to have a classical description of strong-field problems
for comparison. To achieve that, one can study self-interaction of electric fields in vacuum or taken
against a very strong background. This way implies the use of the nonlinear electrodynamics, that
accounts for the effects of interaction between electromagnetic fields when at least one of them is
large.

The above-mentioned effect of particle creation by strong electromagnetic and gravitational fields
has an essentially quantum nature. It was first considered in the framework of the relativistic
quantum mechanics with understanding that all the questions can be answered only in the framework
of quantum field theory (QFT). QFT with external background is to a certain extent an appropriate
model for such calculations. In the framework of this model, particle creation is closely related to a
violation of vacuum stability with time. Backgrounds (external fields) that violate vacuum stability
are to be electriclike fields that are able to produce nonzero work when interacting with charged
particles. Depending on the structure of such backgrounds, different approaches for calculating the
effect were proposed and realized.



A well-known example of strong-field QFT is the so-called Furry picture of QED, in which the
matter field (Dirac field) is quantized with the help of exact solutions of the Dirac equation in
magnetic fields, such that the Feynman diagrams are calculated exactly with respect to the interaction
with these magnetic fields[15]. The studies [12, 13, 16, 17, 18, 19, 20, 21| proposed a generalization of
the Furry picture to a class of electric-like external backgrounds that violate the vacuum stability (in
other words, they create electron-positron pairs from vacuum). This class of external backgrounds
was restricted by fields switched on and off at the initial and final time instants, respectively. In
the framework of this generalized Furry picture, many general results were obtained|22, 23, 24, 25,
26| and specific quantum effects were calculated; see the review in Ref. [14] and the more recent
studies[27, 28, 29, 30].

By analogy with the original Furry picture, the new formulation was, in fact, based on the
quantization of the Dirac field with the help of some adequate exact solutions of the Dirac equation
with specific uniform asymptotics at ¢ — oco. In fact, the above-mentioned external backgrounds
represent the so-called t-electric potential steps (their exact definition is given below). In case the
Dirac equation with a specific t-electric potential step can be solved, the general formulation|[12,
13, 16, 17, 18, 19, 20, 21] allows one to calculate, nonperturbatively with respect to the external
field, all the QED processes, both without photons (zero-order processes) and with an arbitrary
number of photons. The cases when such solutions can be found explicitly (analytically) are called
exactly solvable, e.g., see a complete collection of exact solutions of relativistic wave equations in Ref.
[31]. In QED with t-electric potential steps, there exist a few exactly solvable cases that have real
physical importance. Those are the Sauter-like (or adiabatic) electric field[5, 28, 32|, the T-constant
electric field (a uniform electric field which effectively acts during a sufficiently large but finite time
interval T')[24, 25, 26, 28, 29, 30, 33, 34], the exponentially decaying electric field[35], and certain
combinations of them.

However, there exist many physically interesting situations where external backgrounds formally
are not switched off at the time infinity, the corresponding backgrounds formally being not t-electric
potential steps. As an example, time-independent nonuniform electric fields that are concentrated
in restricted space areas may be used. The latter fields represent a kind of spatial or, as they
will be called conditionally, x-electric potential steps for charged particles. The x-electric potential
steps can also create particles from the vacuum, the Klein paradox being closely related to this
process|36, 37, 38]. Just after the original Klein’s paper the problem was studied by Sauter, who
considered both the Klein step[37| and a more realistic smoothed potential step, which is called
the Sauter potential[38]. To avoid confusion, the Klein paradox should be distinguished from the
Klein tunneling through the square barrier, e.g., see Ref. |39] and references therein. This tunneling
without an exponential suppression occurs when an electron is incident on a high barrier, even when
it is not high enough to create particles. Approaches elaborated for treating quantum effects in the
t-electric potential steps are not directly applicable to the z-electric potential steps. Some heuristic
calculations of the particle creation by x-electric potential steps in the framework of the relativistic
quantum mechanics were presented by Nikishov in Refs. |6, 40| and later developed by Hansen and
Ravndal in Ref. [41]. One should also mention the Damour work|42], that contributed significantly
in applying semiclassical methods for treating strong field problems in astrophysics. In fact, this
work presents a first step to bridge the gap between approaches to quantum effects in potential
steps developed within relativistic quantum mechanics and QFT. Using Damour’s approach, mean
numbers of pairs created by a strong uniform electric field confined between two capacitor plates
separated by a finite distance was calculated in Ref. [43]. A detailed historical review can be found
in Refs. [39, 41]. Nikishov had tested his way of calculation using the special case of a constant
and uniform electric field, which is possible both for the t-electric potential steps and the x-electric



potential steps, see Refs. [6, 40, 44]. At that time, however, no justification for such calculations
from the QFT point of view was known. In the recent work|76], Gavrilov and Gitman succeeded to
construct a consistent version of QED with the so-called x-electric critical potential steps.

At the present day, the theory of intense fields has a lot of important physical applications in
astrophysics, cosmology, neutrino physics, nuclear physics, as well as in the physics of nanostruc-
tures. Recent progress in laser physics makes it possible to hope that this effect will soon be observed
experimentally in laboratory conditions[45]. Due to synthesization of graphene and other nanoma-
terials, particle creation by external fields has now become an observable effect|46, 47]. The case
of a constant uniform electric field has many similarities with the case of the de Sitter background,
e.g., see Refs. |27, 48] and references therein. In particular, the particle creation effect is crucial for
understanding the conductivity of graphene in the nonlinear regime|[33, 49]. It turned out that, in
a certain area, the physics of such structures is described by a quantum field model with unstable
vacuum, where almost any electrical fields can be considered as strong fields, and methods developed
in quantum electrodynamics (QED) with unstable vacuum allow nonperturbative calculations. All
this makes the theory of intensive fields not only academically interesting, but also really important
and relevant to condensed matter physics. Thus, it can be said that the strong field effects changed
the status of quantum theory, and, along with the problems of quantum entanglement and quantum
information, made it a theory that describes a real macroscopic physics with a solid experimental
basis.

As was said before, the other possible way of studying the problems in question is to use nonlinear
electrodynamics. It is planned to construct the field of a uniformly moving charge in nonlinear elec-
trodynamics, or, in other words, to study a nonlinear extension of the Liénard-Wiechert potentials.
The problem of the field caused by a moving charge, besides belonging to fundamental problems of
electrodynamics, is also of certain practical importance when applied to charged particle beams in
accelerators[50]. Its nonlinear extension may have an effect in small-impact-parameter scattering at
high energies where close vicinities of the charge come into play. Nonlinear electrodynamics models
as a way of describing strong field have been studied for a long time, and have attracted the atten-
tion of many researchers (see, for example, Refs. [51, 52, 53] and the references therein). Probably
the most known model of nonlinear electrodynamics is Born-Infeld model|52|, which first solved the
problem of divergence of a field of a point charge, i.e., reproduced finiteness of the field mass of
the charged particle. This property has been encouraging attempts to attribute the experimental
value of the electron mass to the energy carried by its field, the electromagnetic contribution being
sometimes almost exhausting[53]. However, the nonlinear model[54], which originates from trunca-
tion of quantum electrodynamics at the second power of the field invariant §(z) = %FWF‘“’, may be
thought of as the simplest model among those that result in finiteness of the field energy of a point
charge, because it admits an analytical solution to the field equations. Besides, its Lagrangian does
not possess the disadvantage of being a singular function of the field. It is this quality that led to
presence of a maximum value of electric field, responsible, in the end, for the finiteness of the field
energy in the Born-Infeld|52|, and other|51], [53] models. On the other hand, in the model of Ref.
[54] the field of a point charge is still singular near the charge, but this singularity is suppressed to
the extent sufficient for the convergence of the field-mass integral.

The thesis is organized as follows. In section 1, “QED with external field”, a review of a general
formulation of quantum electrodynamics with external field is given. After, some more important
details of QED with t-dependent external field are stressed; density operators for the system with
external t-electric potential step with different initial conditions are constructed, and their reductions
are calculated. Entropy of the states these density operators describe is found for different initial
conditions, and T-constant electric field is considered as an example. In subsection 1.5 the results



on QED with z-dependent (non-uniform) external field are presented. First, some general theory is
given and illustrated by the example of so-called peak field; in addition, the unitarity of in- and out-
Fock spaces in QED with z-electric potential steps is proven. Second, deformation of initial vacuum
state is considered and the density operator of the system that initially has been in a vacuum state is
constructed. Its reductions are calculated and the corresponding von Neumann entropies are found.
Finally, the so-called L-constant field is used to illustrate the results obtained. Section 2, “Moving
charge as a soliton” is devoted to the problem of a moving charge in nonlinear electrodynamics. The
minimally nonlinear model is discussed, and fields of the moving charge in this model are calculated.
Then, a soliton representation for point-like charge is constructed: the energy-momentum tensor
is found and the particle-like relation between momentum and the rest field mass, along with the
mass finiteness is demonstrated. Appendix 1 contains some explicit calculations, demonstrating the
fact that non-linear expressions for the charged particle satisfy the linear Maxwell equations with
the point-like charge current. Appendix 2 contains basic elements of QED with x-electric critical
potential steps that are nessesary for the understanding of the subsection 1.5.



1 QED with external field

As it was mentioned in the Introduction, detailed formalism of quantum electrodynamics with exter-
nal field was developed by Gitman and others; see Refs. [12, 13, 14]. But it will be useful to outline
the most important points for clarity.

The Lagrangian of this theory is

L:L7+L6+Lin‘m
1 v
L,= _ZLFWF“ , Fu=0,A,—-0A,,

Le = QE (@’yuau - m) 77Z)7 7[) = 77Z)T 07
Lint = _juAu> j“ = 6&7’%7 (11)

where A*(z) are electromagnetic field potentials and ¢(z) is a spinor (Dirac) field. The corresponding
equations of motion are

9, F" — j# = OAF — 9" (9,A%) — j» =0,
(17,0" — ey, A —m)p = 0. (1.2)

This gauge theory has Abelian gauge transformations of the form

A =y AP — AP 4 i€,
v — ) = exp {—iel} 1. (1.3)

When quantizing theories with gauge symmetries, one encounters a number of well-known problems
that can be dealt with in various ways. One method is to pass over from the original gauge-invariant
Lagrangian (1.3) to another Lagrangian which, while defining a physically equivalent theory, is no
longer guage invariant. Accordingly, the following expression
1
L —iA”’”A ARV = 9" A* (1.4)

¥y = )

taken as a Lagrangian for the electromagnetic field will be used. This differs by a four-divergence

from the Lagrangian

1 "y 1 1\ 2
1 w ! — 3 (0,A")7, (1.5)
which correspond to Feynman gauge. The equations of motion in the electromagnetic sector now

change and become
A" — g% =0, (1.6)

whence, in view of the current conservation law 0,j* = 0, it follows that

09, A" = 0. (1.7)

10



In order to consider the Hamiltonian formalism, one defines the general momenta

T = 8_L = — A",
O0AH
oL -, 0, L

pw: M :Z¢7 9 piz - :O (18)
0 [P

There are two primary second-class constraints which, in the present case, exhaust all the constraints
of the theory

py — iy’ =0, pg=0. (1.9)
The Hamiltonian then is formed in a standard way,

H = H7+H6+Hint7
1 .
H, = —/(—7r2 + AMA, ) dx, i =0,1,2;

T2
H= [4(@) (-9 +m) vix.
Hig = / i (2) A (2) dx. (1.10)

The nonzero equal-time commutation relations (the constraints (1.9) having been taken into
account) are

[AN(I)’ Wu(y)]— = 2555 (X - Y) )
[0 (), ¢ ()], =71 (x—y), 2 =1¢". (1.11)

The field operators ¢ (z) in the interaction picture are related to the corresponding operators ¢ (x)
in the Schrodinger picture in the following way:

o (z) = ety (x) e~ ot (1.12)

Taking Hy = H, + H., one can see that in the interaction representation the operators of electro-
magnetic A* () and spinor v (z) field satisfy the free equations of motion. Therefore, the operator
AHr(z) satisfies the equation

OA*(z) = 0. (1.13)
Consequently, it can be represented as
3
Ab(z) = Z/ [en fh(x) + ch,’j*(:E)] dk, n=(k,\), (1.14)
A=0
where f#(x) is the photon wave function,
ik
fia) = PR e ) ko = Kl (115
(27)* 2kq

et (k, \) are four linear-independent polarization vectors, A = 0, 1,2, 3 subject to the relations
eu (k, )\) BM* (k, )\/) = T\,

> e (k, A) e (K, A) = 1, (1.16)
A

11



It follows that the orthonormality conditions for the photon wave functions are

(fmfn) _77)\>\’5 k k/) (fmf’) - ,
(f, g —z/f 80— >g(x)dx. (1.17)

The commutation relations (1.11) for the Schrodinger operators, taking constraint (1.9) into account,
produce the equal-time commutation relations for the operators A*(z) taken in the interaction rep-
resentation

Aul@). Alw)] = inudlox =),

[Au(2), Au(y)] - =0, 2% =4, (1.18)

which imply the commutation relations for cf, ¢,:

|:Cn, CL,i| == —7])\,\/(5<k — k/)7
[Cn, Cnr]_ = [CIL,CH = 0. (1.19)

Operators ¢, are photon annihilation operators, and ¢/ are photon creation operators.
Following the procedure of the second quantization for fields A* (x), one arrives at the represen-
tation in terms of Fock creation and annihilation operators, where

3
=3 i / Focheudk, (1.20)
A=0

and the physical subspace of states is constrained by the condition
(cxo — cx3) |¥) = 0. (1.21)
The spinor field v (z) satisfies the Dirac equation
(iv*0, —m) ¢ (z) = 0. (1.22)

Let +o,(x) be positive (+) and negative (—) energy solutions of the Dirac equation. Quantum
number n includes momentum p and spin s, and solutions 1y, (z) have the form

—ipT

+90n( ) - US(p)7

e vy (p),

w = Vo,

(7" Pu — m) us(p) = (Vupu +m) vs(p) = 0. (1.23)

Spinors us(p) and vs(p) are normalized as

ul(p)ve (p) = 0, (1.24)



and the orthonormality conditions for the solutions (1.23)

/ )\QOL(SE> )\IQOn/(ZL')dX = 6>\/\/5nn’7 Opmr = 555’5(1) - p/) (125)
The completeness relation holds for functions ¢, (),
D aea(@) aghly) =6 (x—y), 2°=1", (1.26)
An

and the integration over p is included in summation over quantum number n.
The spinor field 9 (x) can be decomposed in the solutions (1.23) as

V() = Z [an +on(z) + br—t —@n(x)] . (1.27)

n

The commutation relations (1.11) for the spinor field  (x) imply that a,, af and b,, b} are Fermi
creation and annihilation operators

[ana&;rn}_i_ = [bnab:_n}_,'_ = 5nma

[, am] . = [bn, bm], = 0. (1.28)
The operators a!

T a, can be interpreted as creation and annihilation operators of electrons, and b,
b, as creation and annihilation operators of positrons. Using these operators together with those
of photons (1.19) ¢! and ¢,, one can construct the Fock space, which is understood as the space of
the initial and final states. The general state vector with fixed number of particles in this space is
defined as

bi.ooal el o), (1.29)

n m

where |0) is the corresponding vacuum vector defined by the conditions
cn|0) = a,|0) = b,|0) = 0. (1.30)
The scattering operator, or S-matrix, is defined as

S = tlim exp{iHot}exp{—iH (t —t')} exp {—iHot'}
—00,
t'——o0
. , e -
~Tesp{ i [iu@)atan} . #e) =5 [ @)1 0 0] (131)
where the operators A, (z) and 1 () relate to the interaction representation. The S-matrix elements
between the states (1.29) determine the scattering probability amplitudes of particles. By reduc-
ing the S-matrix to the normal form using Wick’s theorem, one can obtain an expansion of these
amplitudes in a perturbative series in powers of the radiative interaction.
The Lagrangian of QED with an external field is formally obtained from that of QED by the
replacement

Au(z) = Auz) + AT (2), (1.32)

where ASX'(r) is an external electromagnetic field. The quantization procedure described above
can be repeated without modification for this case also. The commutation relations (1.28) do not
change. The Hamiltonian for QED with an external field differs from the Hamiltonian (1.10) by a
term responsible for the interaction with the external field

H=H,+ H, + Hip; + /j“(x)AZXt(x)dx. (1.33)
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1.1 General theory: t-electric potential steps

Here we will briefly consider a special case of QFT with unstable vacuum of quantized Dirac or K-G
field with time dependent electric-like background that is switched on and off at ¢ — +oo. Let us
repeat the most important points of QED with unstable vacuum using as an example the spinor field
() interacting with an external electromagnetic field AS*(x). The Lagrangian of the system is

L =19 (i0, — eA7" () Y — mi, (1.1.1)
and the equation of motion for ¢(z) is the Dirac equation in an external field
D (A% (2)) ¥(z) = 0, D (A% (z)) =" (0, — A% (x)) — m. (1.1.2)

The interaction Hamiltonian and and the commutation relations for the Schr’odinger operators are

f) = / b (@) (—iV + ey A% () + m) () dx

/w* b (x) dx,

=a ( iV — eA™ (2)) + eAF" (z) + mp,
[1/1( ) b)), =1 (x—y). (1.1.3)

The time-dependence of the Hamiltonians is explicitly indicated here in order to stress the possible
dependence on time of the external field. Let us turn to the scattering problem in the system
under consideration. To this end, one must first construct states corresponding to particles in the
initial, #;,, and final, ¢,,, time instants, to be understood in the final expressions as shifted into the
infinitely remote past and future, respectively. The general case, characterized by the fact that the
external field potentials are not switched off at t;,, tou, will be considered here. This situation may
arise even if the external field strengths disappear at ¢, and t,,. For example, the electric field
of the form F, = F, = 0, E, = E cosh™?t vanishes when ¢ — 4o00. Nevertheless, its potentials
Ay=A, =A,=0, A, = —Etanht, chosen in a special gauge, are different from zero and from one
another in the limits ¢ — +o0o0. Therefore, the Hamiltonians H,(t,) and H.(toy) are different. It is
possible to transform them into diagonal form

]f[e(tin) iSOn(X) = ig(tin) igpn(x)a

~

He(tout) i@n(x) = iE(tout) iSOn(X)v (1.1.4)

where se(t,) and Fe(ty;) are the corresponding energies at the moments t, and toy. It is assumed
that the sets of spinors {1¢,(7)} and {T@,(z)} are orthonormalized and complete:

(CSOnaC’ Qpn’) = <<90n7</ Spn’> = 5C§’5nn’7 Cv C/ ==
(0, x) = [ o' (x)x(x)dx,

D con(x) col(y) =D Con(x) ol(y) =d(x—y). (1.1.5)
n¢ ng
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The field 1 (z) can be decomposed in bases {1p,(7)} and {¢,(x)} as
= Z {an(tin) +§0n<x) + b:r@(tin) _QOn(X)} )
Y(r) = Z {an(tout) +90n(x) + b;rz(tout) _@n(x)} . (1.1.6)

n

Next, one can obtain commutation relations for creation and annihilation operators a,(ty), al (ti),
bn(tin), bl (tin) and ap (tous), @l (tout)s bn(tout), bl (fout) from (1.1.3) and (1.1.5):

[an(ti )7ain<tln)}+ = [an(tout)aa;rn(tout)}+ = [bn(tin>7b1n(tin)]+
= [bn(tOUt)’ bjn(tout)}+ = 5nma (1.1.7)

and all the others anticommutators are zero. In terms of these operators, the Hamiltonians H.(t,)
and H.(to,y) are diagonal and have the form

Z{ +€ m tin an<t1n) =+ ‘ - ( 1H)| b;rl(tin)bn<tin>}’
out Z { out out)an(tout) + | _g(tOUt>‘ bjl(tom)b”(tout)} ’ (1'1'8)

In what follows, operators of the observables in the Schrodinger representation will be denoted
with the hat fl, while operators in the Heisenberg representation by the inverted hat A. In the
Schrédinger picture one has: at the initial time instant t;,, a set of creation and annihilation operators
al (tn), an(tim) of electrons, as well as similar operators b (t,), b,(tin) of positrons, such that the
corresponding vacuum at ty, is |0, ¢;,); at the final time instant ¢y, a set of creation and annihilation
operators al (tout), @n(tous), of electrons and similar operators bl (fout), bp(tout) of positrons, such that
the corresponding vacuum at oy i |0, tous),

an(tin)|07 tin> - bn(tm)‘oa tin> - 07 an<t0ut)’07 tout> - bn(tout)|07 tout> =0 Vn.

The probability amplitude for transition from an initial to a final state M;, ., has the following
form in the Schrédinger picture:

Min—)out = <t0ut|U(touta tin)“in)v

where U(t,t') is a unitary evolution operator of the system. The density operator of an initial state
p (tin) is given as an operator-valued function of the creation and annihilation operators of electrons
(positrons) at the initial time instant,

p (tin) = pin (@' (tin), a(tin), 0 (tin), b(tin)) -

The mean value of a physical quantity F' at the final time instant reads

<F(tout>> =tr ﬁ(tout)p(tout)a (119)

where p(t) is the density operator in Schrédinger representation at time instant ¢, and the designation
tr stands for the complete trace,

ﬁ(tout) =U (touta tin) /6 (tin) UT (touta tin) . (]-]-]-0)
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In order to pass to the Heisenberg picture one defines the finite-time evolution operators €24,

Q(-l—) =U (07tin) ) Q(—) =U (Oytout> ) U (touty ) Q Q (+) >

b= 5(0) = 0y (t) ) = Qo (ton) O (L.111)
and a set of creation and annihilation operators af (in), a,(in) of in-electrons, as well as similar
operators b (in), b,(in) of in-positrons, the corresponding in-vacuum |0,in), and a set of creation

and annihilation operators af (out), a,(out), of out-electrons and similar operators b (out), b, (out)
of out-positrons, and the corresponding out-vacuum |0, out),

{CL(in)u T } = Q(-l-) {a’<tin)7 T } Q](L+)7 |07 iIl> = Q(+)|0> 2fin> )

{a(out), -} = Qy{altow), -}, 10,0ut) = Q[0, tou) ,

Min—out = (0, tout] - - - a(tin)QL)QH)aL(tin) -+ |0, tin) = (0, 0ut| - - - a(out)ajl(in) -+ +|0,1in),

co = (0, tout|U (fout, tin) |0, tin) = (0, 0ut|0, in). (1.1.12)

The entire information concerning the processes of particle creation, annihilation and scattering
is contained in the elementary probability amplitudes

w (+|+),,, = c;1<0, out |am(out)afl(in)‘ 0, in),
w(=|=)m = —1(0, out ‘b out)bT in) ‘O,in>,
w0 —+),,, = 0_1(0 out [bf (in)af, (in)| 0,in)
w (+ —10),, . = ¢, (0, out |a,,(out)b,(out)| 0,in) . (1.1.13)

The amplitudes (1.1.13) can be calculated with the help of certain appropriate sets of solutions
of the corresponding relativistic wave equation with an external field (Klein-Gordon, Dirac, and so
on), see Refs. [12, 13, 14]. The most interesting is the case of uniform external field, that does not
mix different quantum modes (solutions with the different sets of quantum numbers n). In this case
the amplitudes (1.1.13) are diagonal in quantum numbers,

w (O| — +)nm = OmpW (0| - +)'rm’

The sets of in- and out-operators are related to each other by a linear canonical transformation|66],
which can be written in terms of the amplitudes (1.1.13)":

atout) = [w (+1+)'] " afin) — ww (+ — [0) w (~|-)] " b} (i)
b (out) = [w (+|+)*]1 w (4 —10)" a(in) + [w (—|=)] " bt (in), (1.1.14)

! Condensed notations are used, for example,

bw (0] — a—wa

n,m
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and by its Hermitian conjugate. As it has been demonstrated [12, 13, 14|), such a relation is given
by an unitary operator V,

V{a(out),---}V'={a(in),---}, 10,in) = V|0, out), (1.1.15)
which has the form V = vyvsv001,

v1 = exp {—rb(out)w (0| — +) a(out)} , vs = exp {a' (out) Inw (+[+) a(out)} ,
v3 = exp { —kb(out) Inw (—|—) b (out) } , vs = exp {—ra'(out)w (+ — |0) b’ (out)} . (1.1.16)

Using this expression for V', one can find

¢, = (0,0ut|V|0,0out) = exp {—rtrlnw (—|—-)} . (1.1.17)

1.2 Density operators

It is convenient to introduce a generating operator R(J) that allows one to construct density oper-
ators p with different initial conditions (different initial states at the initial time instant ¢;,). This
generating operator has the following form [25]:

R(J) = Z7'())R(J), trR(J) = 1, Z(J) = tR(J) ,

R(J)=:exp | Y [af(in) (Jus — 1) an(in) + b (in) (Jo— — 1) by(in)] | :, (1.2.1)
where the variables J,, . are sources for electron (( = +) or positron ({ = —) in-operators, Z is a
normalization factor (the partition function), and : --- : here and in what follows means the normal

form with respect to those creation and annihilation operators that are situated inside the colon
signs.
This operator can be expressed in terms of the out-operators as|25]

(J) = Z71(J) |ev|* det (1 4+ kAB)" R(J),
(J) = :exp [—a'(out) (1 — Dy) a(out) — b'(out) (1 — D_) b(out) — a’(out)C'bf (out) — b(out)Ca(out)] : ,
Dy =w(++) 1+ rAB) " Jow(++H)", DT =w(—|-)'I_(1+&BA) w(=|-), AW)=1,B_,
C=w(—|)I_BA+rAB) " Jow (+14) + sw (+ = 0)", B=rw (0| —+), Jmnc = Omnnc,

(1.2.2)
where k = +1 for Fermi case and k = —1 for Bose case. The normalization factor Z has the form
_exp{mz n (14 KkJpc) ]} H[1+ffJn,<]n~ (1.2.3)
n’C

In what follows, two important cases of the general density operator that correspond to the initial
vacuum state and to the initial thermal state will be considered.

a) Setting J = 0 and using the well-known Berezin’s formula for the vacuum projector[66], one
obtains the density operator p (0) that corresponds to the initial vacuum state

p(0) ::eXp{—Z [af (in) a,(in) + b (in) bn(m)}} : =10,in)(0, in|. (1.2.4)

n
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From Eqs. (1.2.2) this operator can be presented in terms of the out-operators

5(0) = |eo]:exp {— Z [a! (out)a, (out) + b, (out)b, (out)

n

+ral (out)w (+ — |0), bl (out) + by, (out)w (+ — [0)! an(out)] } D (1.2.5)

The differential mean numbers N, ((0]in) of in-electrons and positrons in the state p(0) are zero,
N, (0]in) = trp(0)al (in)a, (in) = 0, N, _(0[in) = trp(0)b! (in)b, (in) = 0,
whereas differential mean numbers N, -(0|out) of out-electrons and positrons in the state p(0)
N, (0Jout) = tr 5(0) al (out)a,(out), N, _(0Jout) = tr 5 (0) b (out)b,(out),
are equal and have the form

w (+ —0),,,

T+ whw (+= [0),,,

N, +(0Jout) = N, _(0Jout) = N,(0lout) , N, (0Jout) = (1.2.6)

b) To obtain the density operator p(3) that corresponds to the thermal initial state, one has to
set Jn7< = ng (/8) s
Jn,§ (6) = eiEn’g En,C = 5 (gn,c - ,UC) 5 (127)

where ¢, ¢ are energies of electrons (¢ = +) or positrons (( = —) with quantum numbers n; p are
the corresponding chemical potentials, and 3 = ©~1, where O is the absolute temperature [25]. Tt
can be checked that an explicit expression for p(f) in terms of the in-operators is

p(B) = Z,," exp [—6 (H -> m)] ,
¢

Zgr = exp [len (1+ Iie_E"’C)] . (1.2.8)

ng

The quantity Z,, is the partition function of grand canonical ensemble, H is the Hamiltonian of the
system (written in terms of in-operators),

H =Y [al(in)enan(in) + 0 (in)en, by (in)]

n

and

Ny =) [af(in)a,(in)], N_=>" [bl(in)b,(in)]

n n
are operators of numbers of in-electrons and in-positrons, respectively.

Let p be the general density matrix for an arbitrary initial state, and N, (- --|in) be differential
mean numbers of in-electrons or positrons in the state p, and N, (- -|out) be differential mean
numbers of out-electrons or positrons in the state p,

Ny (---|in) = tr pal (in)a,(in), N,_(---|in) = trpb] (in)b, (in),
Noi(---Jout) = tr pal (out)a,(out), N, _(---|out) = trpb! (out)b,(out) . (1.2.9)
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Calculating the traces in the in-basis, one can see [25] that

Npc(---lout) = Ny ¢ (- -|in) + N, (Olout) {1 — & [Ny (- - -|in) + Ny, (- - -[in)] } . (1.2.10)
In particular, differential mean numbers N, ((5]in) of in-electrons or positrons in the state p(3) are
the well-known Fermi-Dirac (k = +1) or Bose-Einstein (k = —1) distributions,
Ny (Blin) = tr 5(B)al,(in)an(in) = (5 + k),
N,.._(Blin) = tr p(B)bl (in)b,(in) = (e~ + K)7*. (1.2.11)

Differential mean numbers N,, ((8|out) of out-electrons or positrons in the state p(/5) follow immedi-
ately from (1.2.10).

1.2.1 Reduced density operators for electron and positron subsystems

At any fixed time instant, the complete system of quantum electrons and positrons can be condition-
ally divided into two subsystems: a system of electrons and a system of positrons. Let us suppose
that the external electric field is switched off at some sufficiently large time instant ¢, in such a way
that at £, > t2 no particle creation occurs and both subsystems are spatially separated. Thus, the
particle creation effect by the time-dependent uniform electric field provides a real division of the
complete quantum field system into the two subsystems. One can introduce the so-called reduced
density operators p4 of the electron subsystem and of the positron subsystem. These operators are
defined as follows:

>
H

rp=Y_ Y (M) (0, 0ut|b,,, (out) ... by, (out)|pbl, (out). .. bl (out)[0,out)s,
M*O{m}

Z Z o0, 0ut|@p,,, (out) . .. ay, (out)|plal, (out)... a:an(out)|O, out),,
M=

m

(1.2.12)

where p is the density operator of the complete system, |0, out), and |0, out), are electron and positron
vacua, respectively, (a,,(out)|0,out), = 0, b,,(out)|0,out), = 0, |0,out) = |0,out), ® |0,out),) and
try are the so-called reduced traces. Obviously, the reduced density operators pi describe mixed
states.
The reduced density operators .. can be obtained from the reduced generating operators R (J) which
are defined as:
Ry (J)=trzR(J) . (1.2.13)

In terms of the out-operators these have the form

Ro(J)y=2"(J exp{ Za (out) [1 — K4 (J)],, (out)}:,

R_(J)=2z"'(J exp{ Zb* (out) [1 — K_ (J)], b(m)}:,

Ky (J)=Dy+C1 (1+KJD:TF) C,
ZIN () =271 () |ee? det (1 + kAB)" det (1 4+ kD)™ . (1.2.14)
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The reduced generating operators Ry (J) allow one to obtain the reduced density operators p, for
different initial states of the system. Consider as before two important cases.

a) By setting J = 0 in (1.2.14) one obtains the reduced density operators g; (0) = R (0) for the
both subsystems in the case when the complete system was in the vacuum state at the initial time
instant. Taking into account that

Ky (0) = [w (+ = |0) |* = P(+ = |0) P,
Z:10) = |ey|* = Py, P(+ — [0) = |(0, out |a, (out)b, (out)| 0, in)|*,

where P(+ —|0) and P, are probabilities of pair creation and vacuum-to-vacuum transition, respec-
tively, one obtains explicit expressions for p. (0):

5 (0) = Ry (0) = e/ -exp {— S al(out) [1 = P+~ 0)R; 1], an<out>} 3

p-(0) = R_(0) = |e|” :exp {— Zbil(out) [1-P(+—-|0)P ] bn(out)} D (1.2.15)

It should be noted that reduced density operators (1.2.15) were for the first time obtained in Refs.
[69].

b) By setting the sources J in expression (1.2.14) equal to J,( (5) according to egs. (1.2.7),
one can see that the reduced generating operators (1.2.14) become the reduced density operators
p¢ (B) of the system that was in thermal equilibrium at the initial time instant, Ry (J) = g4 (8) and

Rk_(J) = p- ().

1.2.2 Decoherence in course of the evolution

In the previous sections we considered the case where information loss was due to the averaging
over one of the subsystems of electrons or positrons. However, information loss can also occur
due to the interaction of the quantum system with classical (or semiclassical) objects, or, in other
words, due to decoherence. One can imagine two possible scenarios for this: first, it can happen
during intermediate measurements by a classical tool and, second, as a result of collisions of particles
with some semiclassical objects (for example, impurities in graphene). For the approach under
consideration, there is no difference between which of the mechanisms is implemented, so in what
follows an intermediate measurement by a classical tool as a source of the decoherence will be chosen.

Consider the case when the unitary evolution of the system is interrupted by a single intermediate
measurement. The external field starts to act at the time instant t;,, the system is evolving in a
unitary way from t;, to t;, during the time interval 77, then at ¢; a decoherence takes place, and
then again the unitary evolution proceeds from ¢; to .y during the time interval T5. In this case, if
one considers the Heisenberg picture, the out-set of creation and annihilation operators for electrons
and positrons of interval T} is the in-set of interval T5.

Suppose that during the time interval T} the system is described by density operator p(0), i.e.
the system is in the vacuum state at initial time instant ¢;,. Differential mean numbers of electrons
and positrons at time instant ¢; are the numbers of electrons/positrons created by external field from
vacuum N, (0lout) (1.2.6). It is known from general theory that the electrons and positrons created
in pairs by external field are entangled.

During time interval T, the system is described by a density operator which is denoted as p’. The
latter in terms of in-set of creation-annihilation operators for electrons and positrons must describe
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the system without quantum correlations between the electrons and positrons created (i.e. new
“Initial” state of the system in time interval T; is the state without any entanglement).

Such an operator can be obtained by using von Neumann’s reduction principle ([70]). Let a system
be in a pure state which is described by a state vector [¢), or equivalently by a density operator
p that is in such a case the projector, p = Py = [¢)(¥|. And let R be a self-adjoint observable
of the system. In the simplest case, when this observable has a nondegenerate discrete spectrum

the following spectral decomposition holds R = Yo TaPys,, where r, are possible eigenvalues of

o
the observable, and P, are projectors on to the corresponding eigenvectors |¢a), Po, = |0a)(@al-
When measuring the observable R, one obtains the eigenvalues 7, with the probabilities |(pa|t))|? =
(PalPylea) = (0alpl@a), and just after the measurement the state vector |t) is reduced to the vector
|©a), or the density operator p is reduced to the operator p' = FA’%. A more general case, where the
system is in a mixed state, is described by the density operator p with a simple discrete spectrum,
p=> . APy, Py, = |[tn)(¥n|, A, being statistical weights of corresponding states Py, , and R being
the above mentioned observable.Then the measurement is presented as follows. The eigenvalues r,,
are measured with the following probabilities

Z )‘n|<90a|1/]n>|2 = (YalplPa)

and just after the measurement the density operator p is reduced to the operator /,
P = Z<90a|ﬁ|90a>Pwa .
[

The same, obviously, can be done in Heisenberg picture.
The density operator p(0) is
p(0) = 10,in)(0, in]. (1.2.16)

The in-vacuum |0,in) is connected to the out-vacuum |0,out) by relation (1.1.15). Then density
operator p(0) can be presented as

p(0) = V|0, out)(0, out|VT. (1.2.17)

The case of uniform external field is considered here. This field does not mix different quantum
modes. Thus, amplitudes (1.1.13) are diagonal. Thus, it is possible to factorize V' defined by (1.1.15)
as:

V= H Vna Vn = U4nU3pV2nV1n, (1218)

where

U1, = exp {—kb,(out)w (0] — +),, a,(out)} , v, = exp {al (out) lnw (+|+)],, anlout)}
v3n = exp { —kby(out) [Inw (—|-)],,, bl (out) } , va, = exp {—ral (out)w (+ —|0),,, bl (out) } .

nn "N nn -"n

Making use of the explicit form of V;, and definition (1.1.15) one can write

0,in) = ¢, []D (_7711!)”‘ [kw (+ — |0),,,, af, (out)d, (out)] ™ |0, out), (1.2.19)

and then one can easily calculate c,,

e = [Jlw(=1-),.]7" (1.2.20)

n
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Thus, density operators p(0) (1.2.17) can be represented as

. |—kw (+ — out)b! (ou
ﬁ(O)=|Cv|2H<Z[ (4= Db ulontufond] )

n m=0

[—mu (+— |O)L/n, bn/(out)an/(out)] "

x POH Z — : (1.2.21)

m'=0

where Py = |0, out)(0, out|.

1.2.3 Measurement of differential mean numbers in the system

Suppose that one is going to measure the physical quantity, which is the number of particles, in the

state p(0) of the system under consideration. The operator corresponding to such physical quantity
is N(out),

N (out) Z N,.¢(out) Z [a] (out)a, (out) + bf, (out)b, (out)] . (1.2.22)
Its eigenstates are mutually orthonormal vectors of the following form

|S7 Out> = |{Z, l}Lpa Out>a ® ’{j7 k}KQv 0ut>b>

[ajl (out)] " . [ajp (out)] ZP

i Ip!

|{i,l}Lp,Out>a == |070ut>a7

|0, out)s,

P:1,2,...L, i:il,...,ip, ll+l2++lP:L,
K:0,1,2,..., Q:]_,Q,...K, j:,]la"'7,]Q7 ]C1+]€2++]€Q:K7

such that its eigenvalues are )
N(out)|s,out) = (L + K) |s,out),

where s is the full set of quantum numbers K, L, {i}, {j}, P, @, and |{i,l}1p,0ut), is a state with
L electrons distributed in P groups 41, ...,%p, with [; electrons in the group iy, [ electrons in the
group iy, and so on. Analogously, {7, k}KQ, out), is a state with K positrons distributed in @) groups
Ji,---,Jg, With ki positrons in group ji, ko positrons in group ja, and so on.

According to von Neumann [70], the density operator p(0) is after such measurement reduced to
the operator py of the form

PN = Z(s,out|ﬁ(0)|s7out>]58, P, = |s, out) (s, out|. (1.2.23)

S

Due to the structure of the density operator p(0) given by Eq. (1.2.21), the weights (s, out|s(0)|s, out)
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are non-zero only when the states |s, out) are states with integer number of pairs. Thus, one obtains

pn = ley|? ZWfva Z ZZZ Py = |f,out)(f, out],

M=0Z=1 {m,n}
|2m1...|w( +—10),,0, P, my+ma+ .. 4+ m, =M,

|, out) = [a},, (out)}, (out)]™ [af, (out)df,, (out)]™”

W) = (e~ o)

nini

| o |0, out), (1.2.24)
where f is a complete set of quantum numbers M, Z, {m}, {n}, and |f,out) is a state with total
number of pairs M distributed in Z groups, m; pairs being in the group n;, msy pairs being in the
group ny and so on. Unlike (1.2.21), the latter expression contains only terms diagonal in f. Thus,
the measurement destroy nondiagonal terms of density operator (1.2.21).

Let us now calculate the reduced (in the sense of sect. 1.2.1) operators [fn],:

(o] = trc pv = leo? Y Wy tr¢ Py,

f
. T t mi T t mz )"z £)]m™
tr Pf = [anl (Ou )] o [anz <Ou )} |0; Out>aa<0, Ollt’ [anz (Ou )] .. [anl <Ou )] 7
mI! mzl mZ! m1!
bT t m bT t mz mz mi
tr. P, = [ ny (01]_ )] . [ nZ(OU. )] ‘O 011t>bb<0 out| [an(Out)] o [bm(out)] . (1225)
+ Lf T T ) y ' '
my- my. my! /ml-

On the other hand, one can calculate the reduced density operators p:(0) by taking reduced traces
(1.2.12) of operator (1.2.21) to verify that they have exactly the same form,

[ox]e = pc(0).

1.2.4 Measurements of differential mean numbers in the subsystems

Suppose now that one measures the number of either electrons or positrons. The corresponding
operators of these physical quantities are

+ (out) z:NnJr (out) ZaT (out)a,(out),

_(out) Z N, (out) Z bl (out)b, (out). (1.2.26)

The spectra of operators (1.2.26) are

I Ip

_ [ajl (out)} [ajp (out)}

|sy,out), = |{i,l}p,out), e |0, out),,
L=012..., P=12...L i=iy....ip, h+lo+.. . +Ilp=1L
k1 ko
[b} (out)] [b; (out)]
. 1 Q
|S_, OU_t>b = |{j, k)}KQ, 0ut>b = ce ]O,out>b,
kq! ko!

K=0,1,2,...., Q=12..K, j=j....50 ki+ka+...+ko=K,

N, (out)|sy,out)y = L|s,,out)s, N_(out)|s_,out), = K|s_,out),
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The states |{7,{}p, out), and |[{j, k} kg, out), are defined in the same way as in the previous subsec-
tion.

The density operators after such measurements, which are denoted by gy, and py_, respectively,
have the form

PN, = Z a(S1,out|p(0)|sy,out), Psr, Psy = |sy,0ut)y,(sy,out|, Z ZZZ

s+ L=0 P=1 {3i,l}
PN = Z p(s—,out|p(0)]s_,out)pPs_, Ps_ =|s_,out)y(s_,out|, Z Z Z Z (1.2.27)
5— s— K=0Q=1{j,k}

Let us now calculate the quantities ,(s;,out|p(0)|s;,out),Ps; and ,(s—,out|p(0)|s—, out),Ps—.
Due to the structure of p(0) they are equal and have the form

a{s4,out|p(0)|s4, out), Py, = (s—,out|p(0)[s_, out),Ps_
l lp
[ (+ = 0);,5, al, (out)o, (out) | [k (+ = 10),.,, al, (out)e] (out)]
! I,

[—kaw( ’0)1 , bi, (out)a;, (out)yp [—H’LU( ]O)m1 Zl(out)ail(out)}
1! !

= Jevf? |0, out)

I

x (0, out| (1.2.28)

It is not difficult to see that density operators py, and py_ have exactly the same form as (1.2.24),
namely, they are sums over all possible projectors on to states with integer amount of pairs:

PN+ = PN = PN (1.2.29)

Thus, it should be stressed that measurements of N, N, and N_ produce the same reductions.
The reduced density operators [gn+]. = tr—¢ pv+ and [pn—], = tr_¢ pn are equal to reduced density
operators p¢(0) given in (1.2.15).

1.3 Entropy and entanglement of electron and positron sub-
systems

As was already said in the Introduction, the measure of the information loss in a quantum state p can
be identified with the entropy of such a state, namely with the von Neumann information entropy
S(p) =—kp trplnp . (1.3.1)

Let p (tim) = p(B), where p (/) is given by (1.2.8), then

S(p(B) =kp |InZy + Y EncNoc(Blin) |, (1.3.2)
ng
The corresponding differential mean numbers N, ((f|in) are Fermi-Dirac or Bose-Einstein distribu-
tions, given by (1.2.11). The entropy (1.5.63) can be written in terms of the Bose (Fermi) occupation
number alone, if one takes into account that

efEn,( _ Nn,((ﬂhn)

1= 5Ny e (Bim) (1.3.3)
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Then
S(p(B) =~k Y _{r[l— kNu(Blin)] In[1 — KN, ((Blin)] + Nc(Blin) In N, ((Blin)} . (1.3.4)
ng

This expression has a form similar to expressions for entropy of the grand canonical ensemble for
Fermi- and Bose-particles|71].

Especially interesting information is obtained by calculating the von Neumann information en-
tropy of reduced density operators of both the electron and positron subsystems S (p+),

S (ﬁi) = —kBtri(ﬁi In ﬁi) (135)

According to the general theory they coincide S (p,) = S (p_) and can be treated as a measure of
the quantum entanglement of these subsystems.

It is also known that one can recognize entanglement by evaluating the so-called Schmidt measure,
which is the trace of the squared reduced density operators|74]

S (pe) = —tr [(p2)7] . (1.3.6)

Let us calculate von Neumann entropy for both the electron and positron subsystems in the two
important cases of the vacuum initial state and the thermal initial state, that are described by the
reduced density operators p.(0) and p¢(3).

1.3.1 Vacuum initial state

The entropy for the reduced density operator of the system with initial vacuum state has the form
5 (pc(0)) = —kptre (pc(0) In 4 (0)) - (1.3.7)

The terms In p¢(0) at the right-hand side of (1.3.7) can be written as

Inp,(0) =1In ||eg|* :exp {— Zai(out) (1=P(+—-]0)P") an(out)} :] ,

Inp_(0) =1In ||e,|* :exp {— ZbL(out) (1-P(+—-]0)P1) bn(out)} :] : (1.3.8)

Transforming the normal-form exponents into ordinary exponents with the help of the relation given
in Ref. [25], and recalling that |c,|* = P,, one obtains

Inp(0) =P, + > af(out)In [P(+— |0)P;]  ay(out),

by (out). (1.3.9)

3

Inp_(0) =In Py + Y bl (out) In [P(+ —[0) "],
Taking into account that the matrices P(+ — |0)P, ! are diagonal, one can rewrite (1.3.7) as
S(p(0)) = —kp {ln P, + Ztu (p+(0)al (out)a,(out)) In [P(+ — |O)Pvl]m} ,

S(p_(0)) = —kp {m P+ > tr (p-(0)b](out)by(out)) In [P(+ — |0)Pv1}m} . (1.3.10)
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where try g, (0)al (out)a,(out) = N, (0|out) and tr_ j_(0)b] (out)b,(out) = N, (0]out) are differential
mean numbers of out-electrons and out-positrons, respectively. They obviously coincide. Thus, the
entropy takes the form

S(pc(0)) = —kp {m P, + ZNH(O|out) [In P(+ — |0)P;1]nn} : (1.3.11)

One can use the pair creation probability and the vacuum-to-vacuum probability written in terms
of differential mean numbers (see, for example, [28])

P, N, (0]out)

to obtain
S(pc(0)) = S(pnc(0)),
S(pnc(0)) = ikB [k (1 — kN, (OJout))In (1 — kN, (Olout)) + N, (Olout) In N,, (Oout)].  (1.3.13)
Let us consider the Schmidt entanglement measure (1.3.6),

5(pc(0)) = —tr [ (0)). (1.3.14)

Here

[p4(0)]* = P? {:exp — Zafl(out) (1-P(+—|0)P") an(out)] :} ,

[p—(0)]* = P? {:exp — Zbi(out) (1-P(+—-|0)P1) bn(out)] :} : (1.3.15)

Using the following relation (here D and D are some matrices)

rexp [—a'(out)Da(out)] :: exp [—aT(out)f)a(out)} :=:exp [—aT(Out) (D +D — DD) a(out)] .

(1.3.16)
one obtains
5+ (0)]? = P% exp {Z al (out) [(P(—i— - |0)PV—1)2 B 1] o an(out)} o
[p_(0)]? = P%exp {Z bl (out) [(P(—I— - |0)Pv_1)2 — 1] o bn(out)} D (1.3.17)
Calculating the traces in (1.3.14) with the account of (1.3.12), one finally obtains
S(pc(0)) = — P2 det [1 +r (P(+ — |0)Pv—1)2} )
= — ][] [1 = 26Na(0fout) + (1 + &) (N, (0Jout))*]". (1.3.18)

n
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1.3.2 Thermal initial state

The entropy for the operators p¢(3), which describe the system that has been in thermal equilibrium
at the initial time instant, has the form

S(ppc) = —kptre pe(B) In pe(B)- (1.3.19)

Transforming expressions In p¢ () as

Inpy () = n Ze(Js) + Y al (out) In [K (Jp)],,, an(ont),
Inp_(B) =InZc(Jg) + > _ bl (out) In [K_(Jg)],,, bn(out), (1.3.20)
one can write
S (Psc) = ka {1H Z¢(Js) = Y Nug (Blout) [In KC(Jﬁ)]nn} 7 (1.3.21)

where N, ¢ (Blout) are given by (1.2.10) with N, ¢(---|in) = N, ¢(flin). One can express diagonal
elements of K(.J) in terms of the corresponding occupation numbers N, ¢ (/5|out)

Nn,C (6‘Out)

K:(J, = 1.3.22
and do the same to Z(.Jz) by means of the normalization condition (tr; pg¢ = 1)
Z:(Jg) = exp {—m > I1- F;Nn,dmout)]} : (1.3.23)
to rewrite expression (1.3.21) for the entropy in the form
S(ﬁ((ﬁ)) = _kBZS<:6n,C(6))7 S(ﬁn,ﬁf(ﬁ))
= —kp{r[l — kN, (Blout)|In[1 — KN, ¢ (Blout)] + N, ¢ (Blout) In N,, ¢ (Blout)} . (1.3.24)

Considering expressions (1.3.24), (1.3.13), and (1.3.4) one can see that they all have similar forms.

Next, let us find the Schmidt measure for subsystems of positrons and electrons for the system
with a thermal state at the initial time instant; subsystems of such state are described by the reduced
density operator p¢(3). The entanglement measure of electron and positron subsystem is given by

$(pc(B) = —tr [pc(B), (1.3.25)

where the squares of the operators p¢(3) are

(B = Z72(p)exp |3 al (out) [K2(Jp) — 1], an<out>] 3

n

- (B)) = Z=%(Js): exp Zb);(out) [K?(Jg) — 1 bn(out)] . (1.3.26)

As a result, we get

S(pc(B)) = = T [ {1 — 26N (Blout) + (1 + 5) [N (Blout)]}" . (1.3.27)

n
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1.3.3 Entropy of measurement-reduced density operators

The entropy of a density operator py (1.5.49) has the form
S(ﬁN) = —]{ZB tr ,bN lnﬁN. (1328)

Representation (1.2.4) allows one to factorize the complete vacuum into the product of single-mode
vacua,

|0, out)(0, out| = H |0, out),,,, (0, out|,

a,(out)|0,out),, =0, b,(out)|0,out), = 0. (1.3.29)

Using this fact and the representation for |c,|? from (1.2.20), one can rewrite density operator (1.5.49)
as a product of single-mode density operators:

px = [[pvm: trpxm =1, pnn = lel2d Wil f out)u, (f, out],
n f=0

[af, (out)b], (out)] d
f!

Quantities |c,|2 and |w (+ — |0),,, |* can be expressed via differential numbers N, (0|out) as

’Cv’i = ”LU (_’_)nn ‘_2’{7 me, = ”LU (+ - |0)nn ‘2f’ |f7 0ut>n =

|0, out),. (1.3.30)

N,,(0]out)

o|5 = (1= kN, (0]out))” —10),,, I> = : 1.3.31
e = (1= RN Ofou))" = [0}, 2 = T (13.31)
Due to expression (1.3.30), entropy (1.3.28) can be written as

S([)N) == —]CB Ztr ﬁN,n 111[3]\[7” . (1332)

n

In order to calculate the trace of the operator py, In gy, one can use the formal decomposition

0 00 k
PNn In le,n = PN Z kot (féN,n - 1)k = Z kT Z Cllf(pN,n)Hl(_l)k_lv (1'3'33)
k=1 k=1 =0

where C! are binomial coefficients. Due to the orthonormality of the states |f,out), the density
operators (py,)' 1 have the form

(Bvan) = lee 2D (W) £, out) pn (f, ot (1.3.34)
=0

Substituting (1.3.34) into (1.3.33), one obtains

PN pyn = leeln Y WinIn (Jey[2Wpn) |f, 0ut) (f, out]. (1.3.35)
f=0
Then
tr PN In Py = Ny(Olout) In N, (0jout) + & [1 — KN, (0]out)] In[1 — kN, (0|out)] . (1.3.36)
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Thus, the entropy of density operator (1.5.49) reads

S(pn) = —kp Z {k[1 — kN, (0lout)]In [1 — kN, (0lout)] + N, (0|out) In N,,(Ojout)}.  (1.3.37)

The result has the same form as the entropy S (p¢(0)) given by (1.3.13). Thus, it can be said
that measurement of N, N, or N_ leads to the same information loss as the reduction over one of
subsystems of electrons or positrons.

It was shown in the sect. 1.2.2 that reduction of the density operator py over electrons and
positrons transforms it in [/jN]C = pc(0). This means that if one calculates entropy of density
operator [pn]., one obtains the same expression (1.3.37) again. The conditional entropy [57] Scona =
S(pn) — S([pn];), which is used as a measure of correlations between subsystems, is zero. This fact
means that all quantum correlations between the electrons and positrons are lost due to decoherence,
and there is no entanglement left after the measurement.

1.4 T-constant external electric field

To illustrate some of the above general formulas, let’s consider the so-called T-constant electric field
as an external background. Such a field acts only during a finite time 7" and it is constant within this
time interval. Using this field allows one to avoid troubles with the definition of in- and out-states
inherent to external fields non-switched at t — +oo. Another important point is that this field
produces a finite work in a finite space volume. Let us consider d = (D + 1)-dimensional space, then
the T-constant electric field E is acting during the time interval T' = t,u — tin,

0, —oo<t<tn
E=(0,E(t),0,..,0), E(t)=< E>0, tn<t<tow , (1.4.1)
Oa 7fout §t< oo

Processes of pair creation in such field were studied in Refs. [72, 73, 28, 75|. Similar to these works,
sufficiently long time 7T of the field action will be considered.

Since there is no particle production after the time instant .., differential mean numbers of
particles N, ¢(---Jout) created in a given state n = p,r (p is a D-dimensional vector of momentum
and r is spin) depend only on the time interval. Electric field acting during the sufficiently long time
T creates a considerable number of pairs only in a finite region in the momentum space. Since it is
supposed that T > max{1, E./E}, one needs to consider only the range

IpL| < VeE [@T} 1/2, —T/2 < p/eE <T/2 (1.4.2)

in the momentum space, see [28] for details. Note that for the case d = 2 there are no transversal
components of momentum.

1.4.1 Vacuum initial state

First let us consider the case when the system initially was in the vacuum state. For this case
differential mean numbers in the momentum range (1.4.2) are

N, (OJout) = e ™, X = (p? +m?)/eE . (1.4.3)
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They have the same form as in the case of the constant uniform electric field [69, 65|, and are the
same for bosons and fermions. Entropy (1.3.13) is expressed in terms of N, (OJout) and does not
depend on the spin quantum number r, thus, the summation over the latter results in the factor
Yy = 2l5]-1

First, let’s consider the Dirac case (k = +1):

S(pnc(0)) = —kp[(1 — N, (0Jout)) In(1 — N, (0Jout)) + N,, (0Jout) In N,, (0]out)] . (1.4.4)

For the case of the T-constant electric field the mean number of particles created N, (O|out) can
vary only within the range (0, 1) and depends only on the strength of the external field. Expression
(1.4.4) is symmetric with respect to N, ¢ (Olout). It reaches maximum at N, (Olout) = 1/2 and turns
to zero at N, (OJout) = 1 and N, (OJout) = 0. This fact can be interpreted as follows. In the case
of N, (0jout) = 0 there are no particles created by the external field and the initial vacuum state in
the mode remains unchanged. The case NN, (Ojout) = 1 corresponds to situation when a particle is
created with certainty. The maximum of (1.4.4), corresponding to N, (Olout) = 1/2, is associated
with the state with the maximum amount of uncertainty.

Representing the logarithm in the first term of expression (1.4.4) as the Taylor series in powers
of N, (0Jout), one sees that S(p,¢(0)) is proportional to N, (Olout). The latter plays the role of the
cut-off parameter for the integral over p,[28]. Thus, the summation over the quantum numbers can
be reduced to an integration over momenta that satisfy restrictions (1.4.2),

Ya)V
2~ (2m)7 / P,

where V' is the D-dimensional spatial volume. The mean numbers (1.4.3) do not depend on the
longitudinal component of momentum. Outside of the range (1.4.2), the contribution to the integral
is very small, and this allows us to extend the integration limits of p, to infinity. Integration over
p1 can be performed using the Taylor series. The result of the integration is

%Amm (d, E,/E), (1.4.5)

where the factor TV can be considered as d-dimensional volume. To get finite and correct expressions,
one should use the volume normalization. The factor Ap; . (d, E./E) has the form

S(pc(0)) = vaykn

[e.9]

ADirac (d, EC/E) - Z l_d/2 eXp[—ﬂ'lEc/E]

=1

— Zl_l(l + 1)¥ exp[-m(l+1)E./E] + (7T— + ;) exp (—7E./E)

It is possible to estimate the entropy in strong E./E < 1, critical E./E = 1, and weak E./E > 1
field limits. For example, for a strong field with d = 4 one has Apj.qc (4,0) = 72/6, for the critical
field, one has Ap;pqc (4, 1) = 0,22. In the case of a weak field the entropy has a small value of the order
of (1E./E)exp|—nE./E] for any d. For d = 3 the following estimations hold Ap;.q.(3,0) =~ 0,93,
Apirac (3,1) = 0,2; for d = 2 the factor A(2,0) is a value of order of 1, and A (2,1) = e 7.

Let us consider the K-G case (k = —1). The entropy is given by

S(pn,c(0)) = kg {[1 + N, (0lout)]In[1 + N,, (OJout)] — N, (0Jout) In N,, (Oout)} . (1.4.6)
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Expression (1.4.6) just increases with N, (Olout). After a summation over the quantum numbers,
entropy (1.3.11) takes the form

(eE)? TV

S(pC(O)) = kp (27]_)5171 Ak_c (da EC/E) ) (1‘4‘7)

where

Ag_¢ (d,E/E) = |y 17*(—=1)""" exp[-nlE,/E]

+Zl71(1 + 1)%(_1)171 exp[-n(l+1)E./E] + (W% %) exp (—7E./E)| .

Estimates for different field strengths are the following: Ax_¢ (4,0) = 2,21, Ax_¢(4,1) = 0,22;
Ak ¢(3,0) = 1,78, Ax ¢(3,1) = 0,2; Ax ¢(2,0) = 1, Ax_¢ (2,1) = e ™. In the case of weak field
the entropy is a small value of the order of (7E./E)exp[—nE,./E] for any d again.

It was mentioned before that the entropy of density operator py, given by (1.3.37), is exactly of
the same form as the entropy of p¢(0), given by (1.3.13), hence all the considerations for the case
with the intermediate measurement are the same.

1.4.2 Mixed initial state

It should be noted that entropy (1.3.24) of the system that has been in thermal equilibrium at the
initial time instant is expressed in terms of differential mean numbers N,, . (f|out) (1.2.10) of particles
created by the external field, whereas initial differential numbers of particles are

Ny (Blin) = [exp B(en — p) + 6], €, = \/m2 +p% + (p1 +eET/2)2. (1.4.8)

Let us discuss two cases, the first one being the case of low temperature

6(6J_ —,U) > 17 €1 = \/m2 +p2La

when all the energies of the particles created with a given p are considerably higher than the
temperature, and the second being the case of high temperature feET < 1, when all the energies
of the created particles are much lower than the temperature. It is assumed for simplicity that eET
> p1, and that T is sufficiently large to provide (eET)? > m? + p2.
In the low temperature case, the number of created particles does not depend on the longitudinal
momenta:
Ny (Blin) = exp (—Pe,) = 0, N, (Blout) = N, (0lout).

In this limit entropy S(pn¢(5)) tends to that of the zero temperature case (initial vacuum state).
Then integration over transversal momenta can be done exactly as in the initial vacuum case.
Formal calculations of N, ¢ (8|out) and of the entropy in the case of high temperature, fe ET < 1,
are also quite simple. However, it was shown in Ref. [75] that in the Dirac case under such a condition
the current density is much greater than the current density of particles created from vacuum, due
to the work of the external field performed over the particles (which was denoted as Re(j, (t))§ in
[75]) already existing in the initial state. Therefore in such a case the particle creation effect may be

disregarded.
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1.5 General theory: z-electric potential steps

The general theory of QED with z-electric potential steps was formulated in Ref. [76]. Unlike the
case of QED with a t-depended potential steps, the general theory is formulated in Heisenberg picture
from the beginning. It should also be noted that only the fermion case will be considered in this
section.

It was shown that in the presence of z-electric potential steps the quantized Dirac field can be
described in terms of in and out electrons and positrons. Such particles are characterized by quantum
numbers n that can be divided in five ranges §2;, ¢ = 1, ..., 5. The corresponding quantum numbers
are denoted by n;, so that n; € ;. The manifold of all the quantum numbers n is denoted by 2, so
that Q = QU ---U Q5. Basic elements of QED with unstable vacuum in the presence of x-electric
critical potential steps are given in Appendix 2.

The linear canonical transformation between the in and out sets of creation and annihilation
operators in the Klein zone (a and b operators are related to electrons and positrons, respectively)
can be written in the following form

1

“an(in) = wy, (+]+) 7 [ Tan(out) + w, (+ —(0) 10} (out)],

_bf (in) = w, (—=]—)7" [ 0] (out) — w, (+ — |0) Ta,(out)], (1.5.1)
where
W (+]+) i = ¢, (0,0ut | Ta,s (out) ~al(in)|0,in),
w (=|=),m = ¢, (0, 0ut | by (out) _bf(in)]0,in), (1.5.2)

are relative scattering amplitudes of electrons and positrons, and
w (4 —10),,,, = ¢, (0, 0ut | Ta, (out) b, (out)|0,in),

= CU_I(O,out’ bt (in) ~al, (in)] 0, in) . (1.5.3)

nn

are relative amplitudes for pair creation and pair annihilation, and

cy = ) = Hwn (=)' (1.5.4)

All the amplitudes can be expressed via the coefficients ¢ (C ‘Cl ) which, in turn, are calculated via
corresponding solutions of the Dirac equation with x-electric potential steps.

1.5.1 Peak z-dependent electric field

To illustrate the general formulation, let us consider the example of so-called z-dependent peak
electric field. We consider an external electromagnetic field, placed in (d = D + 1)-dimensional
Minkovsky space, parametrized by the coordinates X = (X* u = 0,1,...,D) = (t,r), X° = ¢,
r=(z,r;), r, = (X2, s 7XD). The potentials for the external electromagnetic field are chosen as
AR(X) = S A (),

AMX)=(A"= Ay (), A*=0, k=1,...D), (1.5.5)

which corresponds to vanishing magnetic field and to the electric field
E(X)=E(x)=(E;(2),0,...,0), E,(t)=—-A,(x)=FE(x) . (1.5.6)
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The electric field (1.5.6) is directed along the z-axis and is homogeneous. The main properties
common to any z-electric potential steps are

|z|—o0

Ag () "25° Ay (£00), E(z) 570, (1.5.7)

where Ag (+o0) are some constant quantities, and the derivative of the potential Af (z) does not
change its sign for any x € R. For definiteness, we suppose that

E(2) = —A, (2) 2 0

Ag (—00) > Ap (+00) (1.5.8)

A (2) 0= {
The electric charge of the electron is ¢ = —e, e > 0. The potential energy of electron in this field
is U(x) = —eAp(x), and the magnitude of the corresponding z-potential steps is

U=Ur— Uy > 0, Ur = —€AQ(—|—OO), U, = —er(—OO). (159)

We are interested in the critical steps, for which U >2m and the vacuum is unstable in the Klein
zone.

The system under consideration consists of a Dirac field (X)) interacting with the so-called peak
electric field. This electric field is composed of independent parts, wherein for each one the Dirac
equation is exactly solvable. The field in consideration grows exponentially from the minus infinity
r = —o00, reaches a maximal amplitude E at z = 0 and decreases exponentially to the infinity
r = 4o00. Its maximum £ > 0 occurring at a very sharp point, say at x = 0, such that the limit

lim E'(z) # lim E' (z), (1.5.10)
z——0 z—+0

is not defined. The latter property implies that a peak at © = 0 is present. We label the exponentially
increasing interval by Sp, = (—o0,0] and the exponentially decreasing interval by Sg = (0, +00),
where the field and its x-electric potential step are

i xe Sy kit E—ekl’”%—l), x €Sy

E("E):E{e—]@l’, QIESR ) AO(:E):E{ICQ_I e_ka_].),IGSR , €E>O, k’l,]{?2>0.

(1.5.11)
It should be noted that, for example, the so-called exponentially decaying electric field, given by
the potential

ed _ 0, xr € Sy
Ay (z) = E{ k:;l (e*’m _ 1) CreSy (1.5.12)

can be considered as a particular case of the peak field, when the peak field switches abruptly on at
x = 0, that is, k; is sufficiently large, k1 — oo.

1.5.2 Dirac equation with x-electric potential step
The Dirac equation for the system under consideration has the following form:
i0p(X) = HY(X), H=1+"(=ir'd; +m)+U(x), j=1,...D, (1.5.13)

where the Dirac field ¢(X) is a 21%/2_component spinor (where [d/2] is integer part of d/2) in d
dimensions, H is the one-particle Hamiltonian, v are 2[%/2l x 2[%/2] gamma-matrices in d dimensions
(see, for example, Ref ([77]):

Y7 =20, " =diag(l,-1,...,-1), p,v=0,1,...,D. (1.5.14)
~—_————
d
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Due to the configuration of the field (1.5.11), the structure of Dirac spinor ¢(X) in directions X" and
X2, ... X" is a simple plane wave, so we consider stationary solutions of the Dirac equation (1.5.13)
of the form

wn(X) = €xXp [_Zp(]t + ipJ_I'J_] ¢n(i€)7 n = (pOa Pi, U) )
Yn(T) = {70 [po — U(x)] + iVIam - W/lpl_ + m} Pn (),
pL=(%....0"), v = 0P), (1.5.15)

where 1, () and ¢, (x) are spinors that depend on x alone. These spinors are stationary states with
the fixed energy py and with definite transversal momenta p, (the index L stands for the spatial
components perpendicular to the electric field, e.g., p. = (pz, o 7pD).). Substituting Eq. (1.5.15)
into Eq. (1.5.13), we obtain the second-order differential equation for ¢, (z):

oU (z)

(#2002 20 = U@ 424 ) 600) = 0. = =i (15,10

Spinning variables are separated by substitution

On(7) = Y (2) = pu(@)vy0, (1.5.17)

where v, , is the set of constant orthonormalized spinors with y = £1, 0 = (01, e ,U[d/g}_1)7 o; = %1,
satisfying the following relations

VY 0y = XVpos VL yUx 0 = OO0 (1.5.18)

The quantum numbers s and o describe a spin polarization and provide parametrization of the
solutions. In d dimensions there are exist only Jgy = 2[4/2=1 different spin states. It was shown in
Ref. [78| that it is sufficient to work with only one value of x. The scalar functions ¢, () have to
obey the second order differential equations

E 2
(—@% — ixeEeM® — [po &= (=™ + 1)1 - ’/Ti) on(r) =0, 7 € S,

2
<_a§ - Z'XeEe*lCQ:E — |:p0 + — (eszzx - 1)1 + Wi) Q0n<33') =0, x € SR, (1519)

where j = 1 for z € Sy, and j = 2 for z € Sy, and 72 = p%? + m?. In each interval we introduce new
variables 7,

0 (D) kg 2e
n, = ihjeVT R hy = - (1.5.20)
j
and represent the scalar functions ¢, (z) as
. : p-
Pula) = e pi(a), =i, pt=[ai -l
1
Pt el
vy = @Z—Q, Pt =y/m = m = po+ (-1 = (1.5.21)
J
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The functions p;(z) satisfy confluent hypergeometrical equation

J

0? 0
(nja_an + o5 — m] o aj) pi(z) =0,
: i?Tj

1
G :2I/j+1, a; = 5(1—X)+(—1)J?+Vj. (1522)

J
A fundamental set of solutions for the equation is composed by two linearly independent confluent
hypergeometric functions:

® (az,¢5;m;) and njlfcje”jé (1—a;,2—c;n),

where functions ® are defined as

(1.5.23)

The general solution in both intervals Sy, and Sg can be presented as their linear combination

() = Ay (my) + Abgb (),
v = e P (ag, 5 )
vy = e (1 ag,2 — ¢y —ny) (1.5.24)

where coefficients A}, A} must be defined by boundary conditions.
The Wronskian of the 3} , (1) functions is

d

d . . 1 — e
W =4 b _ ) J ]
N dnj Yo — Yo d77j W

(1.5.25)
T

It can be seen from Eq. (1.5.11) that there is no electric field at the minus infinity + — —oo and
at the infinity + — +oo. These solutions have the form (1.5.15) with the functions ¢, (z) denoted
as ¢on(x) and S, (), respectively. At these regions, the exact solutions of Dirac equation represent
free particles,

con(z) = C/\/'eigp% if 2= —00, ‘o, (x)= NP if 400, (== (1.5.26)

The solutions (¢, () and ¢y, (z) asymptotically describe particles with given real momenta (p* and
¢p™ along the axis . The factors (N and ‘N are normalization constants with respect to the inner
product (B.1) on z-constant hyperplane:

N = CY, N =¢<Cy, v=W.T) ",

—1/2 —-1/2
(€ = (200" |(m = x¢pM)[] 77, <0 = 200 | (m — x¢PM) )T (1.5.27)
By virtue of these properties, electron (positron) states can be selected as follows:
Lo (@) = Nexp (=i /2)yt, —pn(x) = Nexp(imvi/2)yy, x € Sy;
T, (z) = TN exp (imn/2) s, “wn(z) = “Nexp (—imn/2)y?, =€ Sk. (1.5.28)
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Taking into account the complete set of exact solutions (1.5.24) and mutual decompositions (B.2),
the functions _¢, (z) and *¢, (z) can be presented in the form

(1.5.30)

o (3) = { _Nexp Emul/Q) % xr € S

R[Ten (@) g(Fl-) = “en(@)g(C1-)], z€8r 7

for the whole axis .
The functions _¢, (z) and T, (z) and their derivatives satisfy the following gluing conditions:

fgpn(x)’x:%) = J_rc,pn(yc)}x:+0 . Oy f(pn(x)’gﬁ:%) = 0, fgpn(x)‘x:w . (1.5.31)

Using Eq. (1.5.31) and the Wronskian (1.5.25), one can find each coefficient g (¢|¢') and g (¢|¢/) in
Egs. (1.5.29) and (1.5.30). For example, applying these conditions to the set (1.5.29), the coefficient
g (_|") takes the form

— + xp"| T
f)=ca c="m [ Im 5 (v2 =
9(-1") ’ 2\ R — xR T |2 (2=}

0 0

A = |kihiys——yi + kahoyi =3 1.5.32

[ 1h1y; 8771?/1 + kahoy, 077292 » ( )

The same can be done to Eq. (1.5.30) to obtain
g() =ca, o= me =Xt [_i_ﬂ (v — m)}
) ’ 2\ pRp-Im -+ xp 2 ’
A= klhlyQiyl + kzhzylilf (1.5.33)
187]1 2 287]2 1 o ..

One can easily verify that the symmetry under a simultaneous change ky < ko and m; < —m9 holds,

9(*1-) = —numrg (-7) - (1.5.34)

Using ¢ (—|") given by Eq. (1.5.32), we find that the differential mean number of Dirac particles
created is

NS = N&_ = N&, = (0,in| *a], (out) *a, (out) |0,in) = |g (_*)| ™" = |CA|>. (1.5.35)

It is clear that NC is a function of modulus squared of transversal momentum, p%. Tt follows
from Eq. (1.5.35) that N¢* is invariant under the simultaneous change k; < ke and m; < —me. Then
if k1 = ko, NS™ appears to be an even function of py too.

As follows from Egs. (1.5.32), (1.5.33), if either p® or pU tends to zero, one of the following limits
holds true:

g (1)~ PR =0, |g(12)]7F ~ ph =0, YA#O. (1.5.36)

These properties are essential for the justification of in- and out-particle interpretation in the general
construction [76].
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1.5.3 Scattering and creation of particles

We know that in the ranges €);, © = 1,2, 4,5 the partial vacua are stable. Let us start with discussion
of formulas obtained for these ranges. In the range €25 and €14, a particle is subjected to the total
reflection. In the adjacent ranges, )y and €25, a particle can be reflected and transmitted.

As an example, in the range €2, one can calculate total R and relative R amplitudes of an electron
reflection, and total T and relative T amplitudes of an electron transmission, which can be presented
as the following matrix elements

Ryn=Ry,c;' Ry, =(0,out| _a, (out) af (in)]0,in),
Tyn="Tync;t Tyn=(0,0ut| ta, (out) Lal (in)]0,in),
R_,=R_,c;' R_,=(0,0ut| Fa, (out) ~af (in)|0,in),
T_m = T_,nc;1 T, = (0,out| _a, (out) ~al (in)]0,in), (1.5.37)

where the vacuum state vectors in corresponding Fock space |0,in), |0,out) and the vacuum-to-
vacuum transition amplitude ¢, are defined in Appendix 2.4. The relative reflection ]ch] and
transition |T;,|* amplitudes

o1
Tenl? = 1= |Real®, |Renl’ = [1 + g ()] 2} C(=+. (1.5.38)

Similar expressions can be derived for positron amplitudes in the range €25. In particular, relation
(1.5.38) holds true literally for the positrons in the range Qs. It is clear that |R¢,|* < 1. This result
may be interpreted as QFT justification of the rules of time-independent potential scattering theory
in the ranges €); and €.

The limits (1.5.36) imply that

() |g (_|1)| 7> = 0 in the range €y if n tends to the boundary with the range Q, (p® — 0);

(i) g (_]7)|"* = 0 in the range Qs if n tends to the boundary with the range € (p" — 0).

Thus, in these two cases the relative probabilities of reflection |R<7n|2 tend to unity; i.e. they
are continuous functions of the quantum numbers n on the boundaries. It can be aslo seen that
|Ren)® — 0 as pg — Foo0.

1.5.4 Differential and total quantities

The differential number of pairs N created from the vacuum is given by Eq. (1.5.35). The total
number of pairs N created by the field under consideration can be calculated by summation over
all possible quantum numbers in Klein zone. Calculating this number in the fermionic case, one
has to sum the corresponding differential mean numbers N;* over the spin projections and over the
transversal momenta p; and and energy po. Since the N do not depend on the spin polarization

parameters o, the sum over the spin projections produces only the factor Jig = 2[%]71, where [.. ]
means the integer part. The sum over the momenta and the energy transforms into an integral in
the following way:

V. T
=Y Ne= Y Y Ng s / dpodp. N, (1.5.39)
neQs PLl, po€Q3 o 27T 23

where V| is the spatial volume of the (d — 1) dimensional hypersurface orthogonal to the electric
field direction, x, and 7" is the time duration of the electric field.
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1.5.5 Slowly varying field

The inverse parameters k; ', ky ' represent scales of time duration for increasing and decreasing phases
of the electric field. In particular, we have a slowly varying field at small values of both ki, ky — 0,

obeying the conditions
min (hq, he) > max (1,m”/eE) . (1.5.40)

This case can be considered as a two-parameter regularization for a constant electric field.
Let us analyze how the numbers N depend on the parameters p, and 7. It can be seen from
semiclassical analysis that N;" is exponentially small in the range of very large 7,

7, 2 min (eEk; ', eEky").

Then the range of fixed 7, is of interest, and in the following we assume that condition holds true,
where for the case under consideration any given number K, satisfies the inequality

min (hq, he) > K3 > max (1,m?/eE) . (1.5.41)

In what follows, we additionally assume that

2
T
A< K3, A= —. 1.5.42
By virtue of symmetry properties of NS* discussed above, one can only consider p, either positive
or negative. Then in Klein zone €3, which is, for the field (1.5.11), defined by two inequalities|76]

el el
Ub+7m <py<Ugp—7m;, U =——, Up=

— 1.5.4
0 o (1.5.43)

Let us, for example, consider the interval —% + 7 < po < 0. In this case w9 is negative and large,
while 7 is positive:

E E E
i+ S s > ek, T <m < (1.5.44)
ka k1 3}
It is convinient to rewrite the total range for m; as
2m 2w
hi > —>—. 1.5.45
T ( )

It can be divided in three subranges

(a) hl > 271'1/]{71 > hl

1 (\/h_192> 1} ;

(b) Iy [1 _ <\/h_192>1] > om [k >y (1—¢),
(¢) hy (1 —¢€) > 2m/ky > hi/g1,
(d) /gy > 2k > 2% (1.5.46)

1
where g1, g2, and € are any given numbers satisfying the condition g; > 1, go > 1, and (\/h1gg)_1 <
e < 1. Note that 7y = ihy/c; ~ §|17'l’kll| in the subranges (a), (b), and (¢) and 7, = —ihy/ (2 — ¢3) ~ gﬁr’?‘
in the whole range (1.5.45).
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In these subranges we have for |73|

) 1<7! < {1 + (\/h_QQQ)l} ,

o) [1+ (Viam) | <7t < (1t /i)
)

(C (1 —|—€k52/k’1) < 7'2_1 < [1 + (1 — 1/91) ]{52/1{71] ,
(d) 1+ (1 =1/g) ko/ka] <758 S (1 + ka/ka). (1.5.47)

We see that 3 —1 — 0 and 5 — 1 — 0 in the range (a), while |7 — 1| ~ 1 in the range (c¢), and
|7 — 1| ~ 1 in the ranges (¢) and (d). In the range (b) these quantities vary from their values
in the ranges (a) and (c). In the range (a) we can use the asymptotic expression of the confluent
hypergeometric function given by Eq. (C.1) in Appendix 3. Using Egs. (C.6) and (C.7) obtained in
Appendix 3, we finally find the leading term as

N& =e ™1+ 0 (|Z])], (1.5.48)

where max | 21| < gy .
In the range (c¢), we use the asymptotic expression of the confluent hypergeometric function given
by Eq. (C.9) in Appendix 3. Then we find that

NE=e™[14+0(2)" +0(2.)7"], (1.5.49)

where max | Z;|™" < \/g1/h1 and max |Zo| " < g5 .

Using the asymptotic expression Eq. (C.1) and taking into account Eq. (1.5.48) and (1.5.49), we
can estimate that N& ~ e~™ in the range (b). In the range (d), the confluent hypergeometric
function ® (1 — ag, 2 — ¢o; —ihs) is approximated by Eq. (C.8) and the function ® (ay, c¢i;ihy) is ap-
proximated by Eq. (C.10) given in Appendix 2.4. In this range the differential mean numbers in the
leading-order approximation are

N = sinh (27py, / k1) exp [_k‘i (71 —pL)] sinh [ (my + pr) /k1] " (1.5.50)
1

It is clear that N given by Eqgs. (1.5.50) tends to Eq. (1.5.49), N& — e ™ when 7 > 7.

Consequently, the forms (1.5.50) are valid in the whole range (1.2.20). We find that significant value

of N is in the range 7, < m < eE/k; and it has the form

2
Nr’clr ~ exp |:—k'_ (7'('1 _pL):| . (1551)

1
Considering positive py > 0, we can take into account that exact NS" is invariant under the
simultaneous exchange k1 < ky and m; & —mo. In this case 7 is positive and large, m > eFE/ky,

while 7, is negative,
27TJ_
2
In this range, similarly to the case of the negative py, the differential mean numbers in the leading-
order approximation are

. m . -
N ~ sinh (27pr /[ ko) exp [_k_ (|ma] — pR)} sinh [ (pr — m2) ko] " . (1.5.53)
2
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Assuming m/ko > 1, we find that significant value of N is in the range —eFE/ky < my < —m, and

it has a form

2

Vit exp | <2 (] = )| (1.5.54)

2

Consequently, the quantity N;* is almost constant over the wide range of energies p, for any given
A satisfying Eq. (1.5.42).

The analysis presented above reveals that the dominant contributions for particle creation by a
slowly varying field occurs in the ranges of large kinetic momenta, whose differential quantities have
the asymptotic forms (1.5.51) for py < 0 and (1.5.54) for py > 0. Therefore, one may represent the
total number N as

J
N =V, Tn®, n =0 / dpodp Ly, , Ip, =1V + 1P,
(271') VA<K |
. 0 eE/k1 27T
]I(M) = / dpgN;r =~ / d7T1 exp |:—k— (71'1 —pL)] y
76E/k1+7u_ T 1
) eE/ko—7) eE/ks I
= [T e s [ dimlexn | <3 (ral -] (1:55)
0 T 2
Using the change of the variables
2
Y (m —pr)

and neglecting exponentially small contributions, we represent the quantity II(,lj as

< d
I~ / B pre™™. (1.5.56)
1S
Similarly, using the change of variables

§ = k’g_)\ (|m2| — pr) ,

we represent the quantity ]I(,Zj as

> dS —TAS
115,23%/ ~—Pre As (1.5.57)
1

The leading contributions for both integrals (1.5.56) and (1.5.57) come from the range near s — 1,
where pr, and pr are approximately given by,

el ek

—, PRA —
8k17

pL = sky'

Consequently the leading term in I, (1.5.55) takes the following final form:

ell el * ds 1 1
I, ~—+4-— —eT™ —eF | —+ — ) e ™G (1,1 1.5.58
PL (k1+k2>/1‘ 826 € <k1+k2)e (,'ﬂ_ )7 ( )
where © 4
S —x(s— T
G(a,z) = /1 ot =D — ¢2°T (—a, 2) (1.5.59)
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and I' (—a, ) is the incomplete gamma function. Neglecting the exponentially small contribution,
one can represent the integral over p, in Eq. (1.5.55) (where I, is given by Eq. (1.5.58)) as

/ dpL]pL%/ dpLIpl~
VA<K | VA<oo

Then calculating the Gaussian integral,

2 cE d/2—1
/dpL exp (—WSS—E) = (?> , (1.5.60)

11 d m? Jay (eB)"* 2
ncr — ,,,,CI‘ (k_l + k_Q) G (E)WZL_E> , TCI‘ — Mexp {—ﬂ'm_} . (1561)

we find

1.5.6 Short pulse field

Choosing certain parameters of the peak field, one can obtain electric fields that exist only in a
small area in a vicinity of the origin z = 0. The latter fields switch on and/or switch off “abruptly”
near the point z = 0. Let us consider large parameters ki, ks — oo with a fixed ratio k;/ks.
The corresponding asymptotic potentials, U (+00) = eEk;* and U (—o0) = —eFk; " define finite
increments of the energy AU; and AUs for increasing and decreasing parts, respectively, (from Eq.
(1.5.11))

AU, = U (0) = U (—o0) = eEBk;t, AUs = U (+00) — U (0) = eEk; . (1.5.62)

Such a case corresponds to a very short pulse of the electric field. At the same time this configuration
imitates the Klein step, which is an z-electric rectangular step (see Ref. [78|); and coincides with it
as ki, ko — oo. Thus, these field configurations can be considered as regularizations of rectangular
step. We assume that sufficiently large k; and ks satisfy the following inequalities:

AUl/kl < 1, AUQ/kQ <K 1, max (pL/k'l,pR/kQ) < 1 (1563)

for any given 7, and 75 = py — U (F00). In this case the confluent hypergeometric function can be
approximated by the first two terms in Eq. (1.5.23), which are ® (a, c;n), c12 ~ 1, and a; 5 are small
values of order (pr, — m1) /k1 and pgr/ko, correspondingly. Then we obtain the result

|m1 + pU| (AU + AU; + pr —p)’?
Aprpr [m2 — Y|

N = (1.5.64)

which does not, in fact, depend on k5.

1.5.7 Unitarity in QED with z-electric potential steps

An important question is whether in- and out- spaces in the QED under consideration are unitarily
equivalent? The answer is positive if the linear canonical transformation (1.5.1) (together with its
adjoint transformation) is proper one. In the latter case there exists a unitary operator V, such that

V (a(out),a’(out), b(out), b (out)) V1 = (a(in), a' (in), b(in), b (in)) ,
0,in) = V' |0,0ut), VI =V"1. (1.5.65)
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Let us denote all the out operators via o and all the in operators via 5. Then the linear uniform
canonical transformation between these operators can be written as (only Fermi case is considered
here)

f=da+TVa", ¢OT+ VU =1, VT + UdT = 0. (1.5.66)

According to Refs. |79, 80|, transformation (1.5.66) is proper one if ¥ is a Hilbert-Schmidt operator,
ie., Z |W,nn|® < 00. It is easily to see that Hilbert-Schmidt criterion for the transformation (1.5.1)

reads ) )
3 IM ‘w" Sl 0] [ Y (1.5.67)
- Wn, (+]+) wn (—[-)
As it was shown in Ref. [76],
‘wn )] O LY G (O] (1.5.68)
wn (+|+) " wn (=]-) "

where N¢ and N? are differential mean numbers of electrons and positrons created from the vacuum
by the potential step. Then, the left-hand side of Eq. (1.5.67) is the total number N of particles
created from the vacuum, such that unitarity condition can be written as

> (Ni+N)) =N <. (1.5.69)

n

Note that in- and out-spaces of the scalar QED in the presence of critical potential steps are unitarily
equivalent under the same condition.
For realistic external field limited in space and time this condition is obviously satisfied.
Inequality (1.5.67) derived for QED with z-electric potential steps can be considered as one more
confirmation of the consistency of the latter theory and correct interpretation of in and out particles
there. One should note that qualitatively similar result was established in Ref. [13]| for QED with
time-dependent electric potential steps.

1.5.8 Deformation of initial vacuum state

In this section the deformation of initial vacuum state under the action of a z-electric potential step
is studied. In the Heisenberg picture, the density operator of the system whose initial state is the
vacuum, is given by equation

p =10,in)(0, in|. (1.5.70)

The in and out Fock spaces are related by the unitary operator V', see (1.5.65). Then
p = V10, out)(0, out|VT . (1.5.71)

In QED with z-electric potential steps the operator V' was constructed in [76]. Since it can be
factorized, the density operator (1.5.71) can be factorized as well,

v VO 10,in)® = V0|0, out)®,

Il
e

1

-
Il

V10, 0ut)® © (0, out|VOT. (1.5.72)

ReP
I
E e

1

.
Il
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Due to the specific structure of the operator V¥, i = 1,2, 4,5, one has
V@10, out)® (0, out|VOT =10, out)® @(0, out| =10,in)® (0, in|, i=1,2,4,5.

The latter relation has clear physical meaning — vacuum states in the ranges €2y, {25, 4, and Q5 do
not change with time. There is no particle creation there. Let us use the following notation

P'= ][ 10,0ut)® @0,0ut| = [ 10,in)® ©X0,in],
i=1,2,4,5 i=1,2,4,5
pr = VIO PV P — 10, out) ™) 50, out, (1.5.73)

then
p=Ppg . (1.5.74)

Using the following explicit form of the operator V) = V) derived in Ref. |76,

V(K) — exp —_ Z +CLIL(Out)wn (+ - |0) +bjL(OU't>

neQ g

xexp [— Y by(out) Inw, (=) Lbf (out)

neQg

X exp Z Tal (out) Inw, (+]+) +an(out)]

_nEQK

X exp | — Z +bn(0ut)wn (0| — +) +an(OUt)] )

neQg

one can derive two alternative expressions for the density operator j.
The first one is a normal form exponential with respect to the out operators (denoted by : ... :),

prleo| 2 = exp {— Z [ Tal (out) Ta,(out) + Lb} (out) Lb,(out)

neQ K

+ *af (out)w, (+— [0) Lb (out) + b, (out)w, (+—1[0)" *a,(out)]}: . (1.5.75)

Representation (1.5.75) can be derived in the following way: Using (1.5.73) and the explicit form of
V() one can write

prlco| 2 = exp [— Z *a! (out)w, (+ — |0) +bl(out)]

neQg

Pr exp [— Z 4oy (out)w, (+ —10)" +an(0ut)] : (1.5.76)

neQ K

Making use of well-known Berezin representation [79] for a projection operator Pk on the vacuum
state,

Pg = :exp {— Z [ Tal (out) *a,(out) + Lbf(out) 4+b,(out)] } : (1.5.77)

neQ g
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and taking into account that the left and the right exponents in Eq. (1.5.76) are already normal
ordered, one easily obtains representation (1.5.75).
The second representation reads:

prcled = T [~ *af(out)w, (+ — [0) +b(out)]

nGQK
X Pren [1 = bnont)u, (+— [0)" *ag(out)]
Prc. = |0, 0ut) ) 0 out|. (1.5.78)

Representation (1.5.78) can be derived as follows. Using the fact that operators with different
quantum numbers n commute, and using the relation, see, e.g., Ref. [25],

exp [aTDa] = :exp [aT (eD — 1) a] . (1.5.79)

to transform exponents from V) one expands then the obtained expressions in power series. Since
the out operators in V&) are Fermi type, these series are reduced to finite term expressions. Their
actions on the vacuum |0, out)®) can be easily calculated, and one arrives at Eq. (1.5.78).

Finally, consider the structure of the |0,in) state in terms of out operators. First of all, one has
to use the fact that the state vector under discussion is factorized,

|0,in) = V[0, out) = |0, in)’|0, in) ),
0,in)' =TT 10.im)®, [0,in)") = VU0, out) ). (1.5.80)
i=1,2,4,5

Then using the explicit form V) one obtains

10,in) ) = ¢, T [1 - *af(out)w, (+ - |0) b} (out)] |0, out)™. (1.5.81)

neQ g

In each fixed mode n € Qf, the state vector |0,in) is a linear superposition of two terms — the
vacuum vector in this mode and a state with an electron-positron pair.

1.5.9 Reductions to electron and positron subsystems

It should be stressed that the system under consideration can be considered as a composed from a
subsystem of electrons and a subsystem of positrons. One can introduce the so-called two reduced
density operators: p, of the electron subsystem and p_ of the positron subsystem, averaging com-
plete density operator (1.5.70) over all possible positron states or over all possible electron states,
respectively,

pr=tp=2 > > (M outlp|M, out),”

=3 M {m}e;

po=trep=30% " > V(M outlp|M,out) ).
=1 M {m}eQ;
M, out)y” = (M1)~?b],, (out) ... b, (out)[0, out);”,
M, out)) = (M)~ af, (out)...af, (out)]0,out)l). (1.5.82)
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Vectors |0, out) and |0, out},(f) are the electron and positron vacua in the §2; range, defined by

a'? (out)]0, out)? = 0, bﬁf)(out)|0,out)l(f) =0, (1.5.83)
where a') (out) and by (out) are corresponding annihilation operators of electrons and positrons in
this range, respectively. Of course, these electron and positron vacua can be factorized in quantum
modes, as was mentioned already above. One can see that

10, out)t? = |0, out) {2 H |0, out) (12

TL(I’

ney 2
10, out)*?) = 0, out H |0, out n4b5),
nefdy s
10, out)® =10, out) ™) = |0, out)X) @ |0 out) K,
10, out) ) = H |0, out) ;{?, 0, out H |0, out (1.5.84)
NEQK HGQK

Using Eq. (1.5.74) and representation (1.5.78) for pg, it is easy to calculate traces in Egs. (1.5.82),
and to obtain thus explicit forms of the reduced operators p,:

piles 2 = H 10, out)® (0, out|

1=1,2
@ [ [Pran + lwa (+ = [0) [*al, (out) Py 0.0 " (out)]
neEQ g
p_le,) % = H 10, out)®@ (0, out|
1=4,5
@ [ [Prom + [wn (+—10) > +b](0ut) Pr s bn(out)]
neQ g
Prcan = 10, 0ut)S) 5)(0,0ut], Py, = 10, 0ut)y) (0, out|. (1.5.85)

One can also consider a reduction of density operator (1.5.74), which occurs due to measurement
of a physical quantity by some classical tool, or, in other words, due to decoherence. Suppose that
the number of particles N(out) in the state p of the system under consideration is measured. The
operator corresponding to this physical quantity is N (out) = 2?21 Ni(out), where

A~

N (out) = Z [ *al (out) Ta,(out) + _al (out) _a,(out)],

neQ
> (out) Z a)an, N4 out) Z bt ) 0n
nes nefly
Ns(out) = Z [ Tal (out) Tal (out) + 4b] (out) 1b,(out)],
neN K
Ns(out) = Z [ +bf (out) +b,(out) + ~bl(out) ~b,(out)]. (1.5.86)
nes

According to von Neumann [70], the density operator p after such a measurement is reduced to
the operator py of a form

pn =Y _(s,out|pls,out)P,, P, = |s,out)(s, out, (1.5.87)

s
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where |s, out) are eigenstates of the operator N(out) with the eigenvalues s that represent the total
number of electrons and positrons in the state |s, out),

~

N(out)|s, out) = sls, out),

|5,out> _ H [ +aL(Out)}ln’1 [ _ajl(out)]k"’l H ( aj})lng H ( bjl)l”*‘l

ne nefla ney
X H [ +bil(out)}l"’5 [ _Z7L(011t)]k"’5 H [+a:r1(out)}l"’3 [ +bj1(0ut)]k"’3 |0, out),
nels neQg
s = Z (ln,l + kn,l) + Z (ln,Q) + Z (ln,4) + Z (ln,S + kn,B) + Z (ln,3 + kn,S) .
ned neflo ney nels neQg

Note that l,,;, k,; = (0,1), due to the fact that here one deals with fermions.

Due to the structure of the operator p, the weights (s, out|p|s,out) are nonzero only for pure
states |s,out) with an integer number of pairs in Qf (since the initial state of the system was a
vacuum, and there is no particle creation outside of the Klein zone). Thus, the operator py takes
the form

pnle| 2 =P H [Prc.n +|wn (+—10) | Taf (out) 10! (out)Pr, +b,(out) *a,(out)], (1.5.88)

neQ g

where operators Pk, and P’ were defined in the previous section, see Eq. (1.5.78). Note that the
measurement destroys nondiagonal terms of the density operator (1.5.78).

Since the operator V' is unitary and the initial state of the system under consideration is a pure
state (the vacuum state) the density operator (1.5.74) describes a pure state as well. Therefore its
von Neumann entropy is zero. However, the reduced density operators py (1.2.17) describe already
mixed states and their entropies S(p4) are not zero,

S(ﬁi) = —kBtl"ﬁi lnﬁi. (1589)

It is known that this entropy can be treated as a measure of the quantum entanglement of the electron
and positron subsystems and can be treated as the measure of the information loss.

Using the normalization condition for the reduced density operators, trpL = 1, the relation
(1.5.79), definitions for differential mean numbers of particles N and antiparticles N? created from
vacuum

N = trjp,al (out)a,(out), N° = trp_bl (out)b,(out), (1.5.90)
and the fact that
N = N = NS, (+ = [0)[2 = N (1= N) ™ (1.5.91)
one can calculate traces in Eqs. (1.5.89) and rewrite RHS in these equations as
S(ps) =Y Su Sp=—kp[(1=N")In(1— N)+ NI In N (1.5.92)
TZEQK

The von Neumann-reduced density operator (1.5.88) also describes mixed state; making use of the
fact that the pure states |0, out)glK) and *af (out) bl (out)]0, out}ﬁlK) are orthogonal and normalized,
it is not difficult to show that the von Neumann entropy S(py) of the mixed state (1.5.88) coincides
with the entropies S(p4) of the reduced density operators p..

The differential mean number of fermions created N can vary only within the range (0,1). The

partial entropy S, for given n in Eq. (1.5.92) is symmetric with respect to value of N¢*. It reaches
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maximum at NS* = 1/2 and turns to zero at NJ* = 1 and NS* = 0. This fact can be interpreted as
follows. In the case of N;° = 0 there are no particles created by the external field and the initial
vacuum state in the mode remains unchanged. The case N = 1 corresponds to the situation when
a particle is created with certainty. The maximum of S, corresponding to NS = 1/2, is associated
with the state with the maximum amount of uncertainty.

1.5.10 Deformation of the quantum vacuum between two capacitor plates

It is possible to illustrate the general consideration considering the deformation of the quantum
vacuum between two infinite capacitor plates separated by a finite distance L. Some aspects of
particle creation by the constant electric field between such plates (this field is also called L-constant
electric field) were studied in Ref. [78]. The latter field is a particular case of z-electric potential
step. Thus, let’s consider the L-constant electric field in d = D + 1 dimensions. The field E(x) =

0, z € (—o0,—L/2]
E.(zr)=<¢ E=const >0, z € (—L/2,L/2)
0, z € [L/2,00)

The potential energy of an electron in the L-electric field under consideration is

U,=—eEL/2, z¢€ (—o0,—L/2]
U(z) =< eFux, re(=L/2,L)2) . (1.5.93)
Up=¢eEL/2, x€[L/2,00)

The magnitude of the corresponding x-electric is U = eF L. The most interesting are the critical
steps, for which
U=eEL >2m (1.5.94)

and the vacuum is unstable in the Klein zone.
Consider a particular case with a sufficiently large length L between the capacitor plates,

VeEL > max {1,E,/E} . (1.5.95)

Here E. = m?/e is the critical Schwinger field. In what follows it will be conditionally called as large
work approximation. Such kind of x-electric step represents a regularization for a constant uniform
electric field and is suitable for imitating a small-gradient field.

Tt was shown in Ref. [78] that the main particle production occurs in an inner subrange Qg of
the Klein zone, Qx C Q.

Qx @ |po|/VeE < VeEL)2 — K, A < K2,
_pi+m
N ek

where K and K are any given positive numbers satisfying the condition (1.5.96).
The differential number of particles with quantum numbers n € Qg created from the vacuum
reads

A , VeEL > K > K} > max{1, E./E}. (1.5.96)

N =e ™ [1+0(&7°) + 0 (1&17)],
—eEL/2 — pg _eEL/2—pg

b=——F="" &= Y

N (1.5.97)
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Recall that, in fact, the quantum numbers n that label electron and positron states in general formulas
gather several quantum numbers,

n = (pO;pL;O-), PL = (p?;-”;pD); (1598)

where for an electron pyq is its energy, for a positron —py is its energy, and for an electron p; denotes
its transversal components of the momentum, whereas for a positron —p | denotes its transversal
components of the momentum. For an electron ¢ is its spin polarization and for a positron —o is its
spin polarization. Note that the electron and positron in a pair created by an external field have the
same quantum numbers n.

The quantity (1.5.97) is almost constant over a wide range of energy p, for any given A < K2,
for these quantum numbers one can assume N =~ e~™. In the limiting case of the large work
approximation, veEL — 0o, one obtains the well-known result for particle creation by a constant
uniform electric field N& = e™™ see Refs. [4, 6, 40].

In the approximation under the consideration, the total number of particles created from the
vacuum is given by a sum (integral) over n € Qr,

J(d)TVJ_
N = N =~ Ny = ——— dpodp 1 N, . 1.5.99
Sowre T LN =l |, e (1599

nefdy P, po€QK ©

where Jg) = 2[@/2-1 is a spin summation factor, V| is the (d — 2)-dimensional spatial volume in
hypersurface orthogonal to the electric field direction and 7' is the time duration of the electric field.
The integration over pg results in

JuyTV.LeE .
N = —— d ™ 1.5.100
(2m)d-1 /QK P ( )

Integrating Eq. (1.5.100) over p,, one obtains that the total number of created from the vacuum
particles in the large work approximation has the form

JayTV (eE)%/? E.
(27T)d_1 ’

N = (1.5.101)
where V' = LV, is the volume inside of the capacitor (the volume occupied by the electric field).

It is obvious that N < oo, when the values V' and T are finite or, in other words, when
regularization of the finite volume and finite time of the field action is used. Looking on the condition
(1.5.69), it can be seen that the x-electric potential step, which represents the electric field inside of
the capacitor, does not violate the unitarity in QED.

Let us estimate the information loss of the reduced states of the deformed vacuum, which can be
calculated as entropies (1.5.92) of these states,. Using the same summation rule as in (1.5.99), one
can write

JaTVL

S(ﬁi) = —k’BW

/ dpodp. [N In N + (1 — N In(1 — N°)]. (1.5.102)
Qg

For Fermi particles under the consideration, N < 1. This allows us to expand the logarithm
in the rhs of Eq. (1.5.102) in powers of N¢'. Thus, the term (1 — N&)In(1 — N£) is represented as
follows:

(1= NT)In(1 = N¥) = — (1 — N&) iz—l (N (1.5.103)
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Using (1.5.103) in Eq. (1.5.102), one obtains the following intermediate result

~ J(d),‘z—“/L cr cr cr = -1 cryl
S(p+) = kg 2] /QK dpodp | [—Nn In N% + (1 — N° )Zz (NY | (1.5.104)

As it has been mentioned before, the considerable amount of particles is created only in the
subrange Qx € Qk, where terms proportional to |£; 2| are small and can be neglected, allowing to
use the leading-order approximation N = ¢~™ in the rhs of Eq. (1.5.104). Then,

. J(d)TVGE
S(ps) = kaf

TVeE

dp. [me“ —e™)> Ien “l] if d> 2
=1

S(ps) ~ kg A(2,E.JE) ifd=2,
A(2,B,/E) = {rE./Eexp (—mE./E) — [1 — exp (—1E./E)|In [l — exp (7 E,/E)}.  (1.5.105)

In the dimensions d > 2 the integration over the transversal components of the momentum can
be easily performed. Outside of the subrange €, the integrand is very small, so that one can extend
the integration limits of p, to the infinity. Thus,

J(d)TV(eE)d/2
(QW)dfl

S(py) ~ kp A(d,E,/E) ifd> 2, (1.5.106)

where the factor A (d, E./F) has the form
(d E./E) = (rE./JE+d/2—1)exp(—7E./E)

+Z =Y 7 (1 4+ 1)* D2 exp (—7E./E)] exp (—7lE./E). (1.5.107)

For example, estimations of this factor for strong field E./F < 1 and critical field E./E = 1 with
d=4,3are A(4,0) = 7%/6, A(4,1) ~ 0,22; A(3,0) ~ 0,93, and A (3,1) ~ 0,20. In the case of a
weak field, E./E > 1, the entropy is exponentially small for any d,

A(d,E.JE) ~ (xE,/E + d/2) exp (—7E,/E).

One can note, that the large work approximation (1.5.106) obtained for S(p+) in the case of the
z-electric step under consideration coincides with the same approximation for S(p+) in the case of
the t-electric step with an uniform electric field that is acting during a finite time interval T (the so
called T-constant field) obtained in Ref. [26]. This observation confirms the fact that the T-constant
and L-constant fields produce equal physical effects in the large work approximation (or as 7' — oo
and L — 00), such that it is possible to consider these fields as regularizations of a constant uniform
electric field given by two distinct gauge conditions for electromagnetic potentials. Obviously, exact
expressions for the entropies S(p1) differ in the general case.
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Moving charge as a soliton

The problem of a moving point-like charge is one of the fundamental problems of classical elec-
trodynamics. It is well known that Maxwell electrodynamics when applied to point-like objects is
inconsistent: for example, field mass of a point-like charge in linear theory is infinite. Many nonlinear
models, in particular, Born-Infeld model[52] resolve this problem; however, due to the nonlinearity
it is very difficult to solve corresponding field equations (even in the absence of a charged matter).
Minimally nonlinear model used in Ref. [54], on the other hand, is exactly solvable. The convergence
of the field-mass integral, provided by this model, allows one to construct a soliton-like representation
for the moving charge.

2.1 Minimally nonlinear model

The Lagrangian of a minimally nonlinear electrodynamics is defined as
o
L(z) = =§(2)+5 (§(@)’, (2.1.1)

where §(x) makes up (with the reversed sign) the Lagrangian density of the standard linear Maxwell
electrodynamics, while the second term in (2.1.1) is the quartic in the field-strength addition to it.
The field-strength tensor is related to the four-vector potential A*(x) as F* = O*AY(x) — 0¥ A¥(x),

where O = %. Hence, the first pair of the Maxwell equations, [V x B] = 0 and [V x E]+ 3B = 0,

with the electric and magnetic field strengths E; = F© and B; = €, F7*, remains standard. The
self-coupling constant ¢ is presumably small enough. It has the dimensionality of inverse fourth
power of mass 2. The four-dimensional scalar product is (uz) = ugze — (u-x), 22 = 22 — |x|*. The
Lorentz-Heaviside system of units will be used in this section. If the quartic correction in (2.1.1) is
understood as the lowest term in the expansion of the Heisenberg-Euler Lagrangian in powers of §,
with & = 0, the value [85] of the photon selfcoupling constant is o = e¢*/(457?m?), where e and m
are electron charge and mass, respectively.

The action correspondint to the Lagrangian (2.1.1) includes the selfinteraction of the electromag-
netic field and interaction with a current j”, produced by a moving charge. It is

SlA] = —1 /(114#]'# ~ L(@))d's.

C C

The second pair of Maxwell equations should be calculated in assumption that the trajectory of the
charge is fixed, and that its variation, and, thereby, the variation of the current, are zero. Thus, the

2Here and in what follows we use standard convention about summation over repeated indices; Roman letters 4,
j, k run from 1 to 3, while Greek letters u, v, A run from 0 to 3. The three-dimensional vectors are boldfaced. Their
scalar and vector products are defined, respectively, as (D - C) = D;C;, [D x C], = €;;,D;Cy.
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variation of the action takes the form

1 1
55 = / [Ej“éAM + (1_03(;5))53(1;)} do,
o | G0A, 60A, 0
53 ()= FI0F,, = —s P (S0t = ey = e Zga, (2.1.2)

After integrating by parts and taking into account that there is no field at infinities the latter equation
takes the form

1 1 0
= —_—— _qH _ j22%4
0S . / L] + py (1—0F(z))F ]} 0A,dS) (2.1.3)
As always, variations should vanish for any dA,, and one comes to the nonlinear field equation
s [(1—oF(2)) F*] = L (2.1.4)
D =—J" 1.

2.2 Fields of a moving charge

2.2.1 Current

Here and in what follows only the currents j* that correspond to a pointlike or any other charge,
which is at rest in the origin in a certain Lorentz reference frame (the rest frame) and is distributed
in a spherically symmetric and time-independent way in that frame, will be used. The charge moves
as a whole with the speed —v, v < 1, along axis 1, v; = d;1v, in the inertial frame that moves relative
to the rest frame with the 4-velocity wu,, which is the unit four-vector, u* = 1,with the components

Uy =y, u; =y, where y = (1 — v2/¢*) 2. The four-current is

Ju = upp(z), (2.2.1)

where p(z) is the Lorentz scalar defined as the time-independent charge density in its rest frame.
This implies that under Lorentz boosts and spacial rotations only the argument of p is transformed.

To make sure of the validity of the four-vector representation (2.2.1) let us first define the current
in the rest frame as jj(z') = p(x'), j’(2’) = 0. All quantities relating to that frame are marked with
primes throughout. Applying the Lorentz transformation to this current

. . v . . . (O . . . .
Jo =" (.76 + Eji) , =7 (Ji + EJ(’)) , J2=Jas J3=J3 (2:2.2)

with the account of the vanishing of its spatial component in the rest frame j; = 0, and applying the
inverse transformation to the coordinates

v (Y
o =1 (330 - Eéﬁ) T =7 (zﬁ - Eﬂfo) ) Ty =Ty, Th= s (2.2.3)

one gets for the moving charge (2.2.2) j%(z) = vp((z1—220) 7, 2, 23), j(x) = Yyp((21—L20) 7, T2, T3).
This agrees with Eq. (2.2.1). For the pointlike charge e one has

o) = () = edx),  F@) =0
7%(z) = "}/6(5((561—%$0> Y)d(z2)d(x3) = eé(ml—%xo)é(xg)é(xy,) = ved® (x).
jx) = nyeé ((1’1—%:@’0) 7) 6(x2)0(z3) = %6(5 <1:1 — %x(]) 6(x2)0(z3) = %’}/653<X/). (2.2.4)
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Note that the final expressions for the current components differ by the Lorentz-factor + from the
corresponding expressions in Ref. [82], because the charge density p(x) is defined there as the zero-
component of the four-current, and not as a Lorentz scalar, like here. The both ways are equivalent,
of course.

It will be shown later that the current (2.2.4) is reproduced as the right-hand side of the field
equation (2.1.4) for a moving point charge in nonlinear, as well as linear, electrodynamics, and also
in the weak continuity equation (2.3.6) for the energy-momentum tensor.

2.2.2 Covariant ansatz

Once the motion of the charge is given, there are no other vectors in the problem besides u, and
the four-coordinate of the observation point x,, which is the argument of the differential equations
(2.1.4). Therefore, the potential produced by the charge may onle have the following representation

AP =t fy (zu, 22) + 2" folau, 2°), (2.2.5)

where fiand fy are functions of the indicated scalars. Then the field-strength tensor resulting from

this potential is
F = (uuz, — uyxu)f(:pu,ﬁ) (2.2.6)
with
of _, 0
O(zu) O(x?)
The requirement that in the rest frame the (electric) field Fy; be independent of time xy implies that
f should be a function of the combination

f(zu,z%) = (2.2.7)

W? = (zu)® — 2 (2.2.8)

of its argument. So, by definition, the invariant W is the distance from the observation point to the
charge in the rest frame of the latter W = |x/| = r. (In the rest frame it is evident that Eq. (2.2.8)
defines a positive quantity W = |x/| = r. As long as W? is a Lorentz invariant it remains positive in
any frame.) Therefore, in what follows the representation below will be used

f(zu,2?) = g (W?). (2.2.9)
It can be directly verified that the field tensor resulting from (2.2.6) and (2.2.9)
F. = (uux, —uyz,)g (W2) (2.2.10)
satisfies the first pair of the Maxwell equations (the Bianchi identities)

OF,
Y. - pA —0, 381 (2.2.11)
€T

However, it is easier to see this if one notes that by choosing fo = 0in (2.2.5) and taking f as

AV =5 [ g (W) aw?

one can determine the vector-potential generating the field (2.2.10), (2.2.9)
Au = u,ufl(Wz)
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thus guaranteeing the fulfillment of (2.2.11). In the rest frame this potential is the 3-scalar A =
f1(x?), A’ = 0. Setting fo = 0is not the only way to fix the vector potential generating Eq. (2.2.10).
Another choice of the potential admitted within the gauge arbitrariness may be, for instance,

A, = (u, (ux) —z,) (ux) g(W?).

This potential satisfies the Lorentz-invariant gauge condition (Au) = 0.
We will focus on finding a solution to the second pair of the nonlinear Maxwell equations (2.1.4)
using the form (2.2.10) as an ansatz.

2.2.3 Linear limit

Let us first note that the covariant extension of the Coulomb field produced by a moving point charge
e, which is at rest in the origin in the rest frame, i.e., by the one, whose world line passes through
the point o = z; = 0, is:

(upz, —uyx,) e

7 ywo 3 (2.2.12)

lin _
F;w =

This corresponds to setting
e

lin 2\

in (2.2.10) in the linear limit. In the rest frame u; = 0, up = 1, one has W = |x/| = r, and then the
nonvanishing components of Eq.(2.2.12) constitute the Coulomb electric field of a point-like charge:

(2.2.13)

!
plin — % € 9.2.14
0i r 4mr? ( )

Expression (2.2.12) satisfies, in the moving frame, the linear Maxwell equation
o olin 1 :
0" Flu = —Jv (2.2.15)

with the current (2.2.4) of a point charge. This rather evident statement is explicitly demonstrated
in Appendix 1.

In order to reproduce the standard form of the electric and magnetic field components produced
by a charge moving with the time-independent speed u, = 0 with its worldline X = *To passing
through the origin X = 0 at zero time-moment zo = 0, written in Ref. [82] in the case of linear
Maxwell electrodynamics as

v? | e(x—Y¥x)

Elin — (1 o _2)

Blin— | D 2.2.1
) R v x E™], (2.2.16)

it is sufficient to note that R* defined in [82] (when v has only the first component, v; = §;;v) as

2
R? = (21— ag)? + (23 + 23) <1 — 2—2) (2.2.17)

C

2

is related to the Lorentz scalar W (2.2.8) in the following way R** = (1 - Z—2> W? (Note that R of

Ref. [82] is just our invariant W). With this substitution Eq. (2.2.16) is just what follows for the
electric and magnetic components of (2.2.12).
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The electric and magnetic fields (2.2.16) or (2.2.12) can be written also as functions of the
difference Az, =z, — 7, between the coordinate of the observation point z, and that of the charge
z, as follows

, . Az — u'Ax?)
Ehn A ) — thOz _ € (’LL
(A, ) AT W !

. ~ - e (u;Ax, — upAx;
le'ln(Axwr) — GZ]kF;k = Eijk47TW2( J kW k .7)

(2.2.18)

with
2

2\ —1
W2 = (1 - %) [(Axl—%Axof + (A1) + (Azs)?) (1 - %)} (2.2.19)
As long as the trajectory is fixed, neither (2.2.16), nor (2.2.18) contain the variable 7, explicitly.

In order to write the fields in the Liénard-Wiechert form it is necessary to use the light-cone
condition (Az)® = 0, i.e. (Azs)® + (Azs)® = (Azy)® — (Azy)” in (2.2.18), which tells us that the
charge and the observation point must be separated by a light-like interval for the field produced by
the charge be nonzero in the observation point. Imposing the light-cone condition turns (2.2.19) into

2

W2 — (1 . %2) B (Aazo . %A5E1>2,

and (2.2.18) becomes Eqs. (63,8), (63,9) of Ref. [82] with v = 0 after the identification R = Ay,
In this connection, the following remark is in order. In linear electrodynamics the influence of
a charge propagates with the speed of light in the vacuum ¢, and hence the observation point must
be separated from the four-position of the source by a light-like interval, (Ax)2 = 0, other space-
time points carry no field produced by the source at this position. This is not the case in nonlinear
electrodynamics. It is well known already in QED that the nonlinearity leads[86] to nontrivial
dielectric permeability and magnetic susceptibility of the vacuum in an external field, thereby to
deviation of the speed of propagation from that of light. The role of the external field is in our case
played by the field produced by the charge itself, the propagation speed depending, as a matter of
fact, on its intensity. For this reason it will be not relevant to impose the light-cone condition onto
the nonlinear solution of the next section for getting an analog of the Liénard-Wiechert potential.

2.2.4 Solution to nonlinear field equations
From (2.1.4) one can conclude that its solution may be related to F'"* given by (2.2.12) as
(1 —oF(z))Fr = phiow, (2.2.20)

since (2.2.12) satisfies the linear Maxwell equation (2.2.15) as demonstrated in Appendix 1. Then,
using the ansatz (2.2.10) and taking into account that u? = 1, one gets

(&
(1—0%(z))g= yPsTIER
S(z) = EFWF‘“’ = —%W292. (2.2.21)
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This is a cubic equation for g(W?):

2g 2e
3

— =0. 2.2.22
g+ oW?  AxcW5 ( )

The discriminant of this equation is positive

2 5 e 2
Q= (—30W2) + <4MW5> >0, (2.2.23)

because W?2 > 0, as argued before. The only real Cardano solution for this case is

3 € 3 €
g= \/—4mw5 +/Q+ \/4MW5 -/Q. (2.2.24)

Its asymptotic behavior near the charge

% 1/3
g~ (47‘(’0’W5) as W — 0, (2.2.25)

will provide convergence for the field mass integral (2.4.2) in subsection "Finite field mass", 2.4. In
the rest frame, when substituted into (2.2.10) with ug = 1, u; = 0, W = r this reproduces the result
of Ref. [54]. In the limit of vanishing nonlinearity o — 0 Eq. (2.2.24) becomes g = ;—{, therefore
the solution Eq. (2.2.10) turns into the known expression (2.2.12) for the field of a moving charge in
the linear Maxwell electrodynamics, F,, = F...

Finally, from (2.2.10) for the point charge moving along the trajectory X = 2, with a constant
speed along axis 1, expressions for the electric and magnetic fields F; = F% and B; = €l as
functions of the observation coordinates are
v

E=(1- 0—2)*1/2(x—zx0)g(w2), B=[vxE]. (2.2.26)

In terms of the distance from the charge Az, =z, — , these are
2\ 1?2 v
E= (1 - §> g(W?) (AX - EAx()) :
v U2 —1/2 v ’02 -1/2

c? c?

where W2 is the same as (2.2.19), and g(1W?) is the solution (2.2.24). This is the nonlinear general-
ization of Eqgs. (2.2.16) and (2.2.18).

2.3 Solitonic representation of the point-charge field

2.3.1 Energy-momentum tensor

In this section ¢ = 1 is set. The Noether current corresponding to space-time translations

O OL(x)

— — g
0z, 0 (9A>oz,) 7 Liw),
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calculated using the Lagrange density (2.1.1) with the account of the field equations (2.1.4) is written

as
v v 9
s :—[1—0'3(.];')]}7#)\1:1\—8—1‘)\

[A* (1 — oF(x)) FY] — ¢"" L(x). (2.3.1)

This is the energy-momentum tensor of the electromagnetic field. The requirement that it should be
gauge-invariant makes us omit the potential-dependent second term (that is a full derivative) to be
left with the expression, symmetrical under the permutation of the indices:

™ = —[1 — oF(x)] F*FY — g™ L(x). (2.3.2)

The energy T and the Pointing vector T% densities have the form

T = —F ) (1~ 0§(x)) + §(2) 5 (§(2))°
T° = —F*FY (1 — oF(7)). (2.3.3)
Contravariant components of the tensor (2.3.2) are
TV = —[1 —oF(x)] F* F, — 6" L(x). (2.3.4)
Its trace is different from zero
TP = 20 (F(x))”. (2.3.5)

in the nonlinear case o # 0.

2.3.2 Weak continuity and energy-momentum conservation

The above construction of the energy-momentum tensor does not provide the fulfillment of its conti-
nuity, since the current is meant to be supported by outer forces and therefore the energy-momentum
non-conservation should be admitted. Instead of the continuity equation an equation which may be
referred to as the "partial conservation of the Noether current" is formally obtained in the form

0 ,

To derive this relation, equation of motion (2.1.4) was used together with the Bianchi identities
da?f = —681;‘;” — 8;7”3. This relation is not owing to the nonlinearity and retains its form in the
standard linear theory as well. The right-hand side in (2.3.6) is not vanishing. However the continuity

of the energy-momentum tensor holds in a weak form

w ey (2.3.7)

oxt "
To see this, note that the 4-current of a point charge moving with the constant speed is parallel to its
4-velocity vector. Then the right-hand side of (2.3.6) disappears when contracted with the 4-velocity,
u’F i ~ u’F,u* = 0. The property of weak continuity (2.3.7) will be sufficient for establishing
the conservation of the energy-momentum vector.
Let us define the latter by the integral over a space-like hyperplane that is orthogonal to the
four-velocity and crosses the time axis at xg = sv/1 — v?

P* = /u”Tlf‘5 (uz — s)d*x. (2.3.8)
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Via the Gauss theorem it follows from the vanishing of the 4-divergence (2.3.7) that P* is independent
of s, and thereby of the time of observation xy, because the hyperplane can be shifted as a whole
along the vector u” without affecting the value of the integral, since the fields (2.2.10) decrease at
space-time infinity no less fast as in the linear electrodynamics, the nonlinearity fades away far from
the charge, where its fields are weak. On the contrary, one cannot change to a space-like hyperplane
inclined differently than in (2.3.8) in the definition of the energy-momentum 4-vector due to the lack
of the continuity law analogous to (2.3.7) with the unit vector u” other than the 4-velocity.

When the field F,), on which the energy-momentum tensor 7# depends, is that of a uniformly
moving (or resting) point charge, the integral in (2.3.8) usually diverges and hence makes no sense.
This is not the case in the nonlinear theory under consideration here, as will be shown in the next
subsection. Therefore, the energy-momentum vector (2.3.8) can be taken seriously.

Bearing in mind that s is a Lorentz scalar (moreover, set equal to zero in what follows), and that
T# (2.3.2) is a tensor, the integral (2.3.8) does define a Minkowski vector. It can only be directed
along u", since this is the only external vector in the integrand of (2.3.8). Hence

P* = "M, (2.3.9)

where M; is the field mass.

2.4 Finite field mass

It follows from (2.3.8) that
M¢ = Pu, = /ul,T‘“’uué (ur)de.

From (2.3.2) and (2.2.12) one calculates

M = / [—[1 = 0§ ()] u, F* F{u, — L] 6 (uz)d'z =

W2 2 W2 2 W4 4
= / 1 - oY W2g* + I 499 0 (uz) d*z. (2.4.1)
2 2 8
Thanks to the delta-function one can set W? = —z? in the integrand, the argument of the function

g(W?) included. For any function ®(x?), provided the integrals below converge, the following chain
relation holds

2 2
1 o Uy — U7 2

/@(w2)6 (uz)d*z = — [ ®(—2]2—5— — 23 — 23)dz dzadas.

The above expression is integrated over xy with the help of the delta-function. Performing the change
f02 0,2
of the variable x; uqi’o U — 21v/1— 0% = 2/ and omitting the prime afterwards one finds that this

integral is equal to
/ d(—x?)d*z.

Applying this result to (2.4.1) one gets for the field mass the integral over 3-space

M = / [XQLX?)Q - §ax4g (x2)4] d3z.

2 8

a7



Note that the function g (x?) involved here is just (2.2.24) taken in the rest frame.
With the help of Eqs.(2.2.22) the second term can be expressed as

3 4 24_§ 2 a2 | eg(x?)
gaxg(x)—4<xg(x)+47rlx| .

Then the expression for the mass can be rewritten as

Aﬂ:/l_ﬁwﬁf+3@@&]&$

4 4 4r|x]|

Therefore, to calculate the mass My, one has to calculate two integrals. The first one is

2 2\2 13 3 3 i3
Pr=lelz [ ——— ) ZI
/Xgﬁ) ! k'(%@mg 2

o0 2
I :/yﬁ ({’/\/1+y4+1— {’/\/1+y4—1> dy = 0.885,
0

and the second one is

1
9(X2) 3 3 3 i
B = S
6/ 47 |x| T = lef? 20 (47)? %

[e.o]

2
12_/y—§ <</\/1+y4—|—1—<’/\/1—|—y4—1> dy = 3.984.
0

The final result is

1 1
s/ 3 \i1 3 s/ 3 \1
M = |e|2 ~ (3L, — 21, ) = 2.65|¢|?
f W“(%umg 4@2 20 6“*(%@@9 <o

(2.4.2)

(2.4.3)

(2.4.4)

and it can be seen that this is the same value as the full electrostatic energy of a stationary pointlike

particle found in |54].
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Conclusion

In the framework of QED with unstable vacuum in the presence of t-electric potential steps the
following problems were studied. First, using a general nonperturbative expression for the density
operators (of quantized Dirac or KG fields), their specific forms corresponding to different initial
conditions were derived. Applying a reduction procedure to these specific density operators, we
constructed mixed states of both electron and positron subsystems. Calculating the entropy of such
states, we obtained the loss of information due to the reduction and, at the same time, the entan-
glement of electron and positron subsystems. We paid attention to the fact that any measurement
in the system under consideration implies a decoherence and the corresponding modifications of the
complete and the reduced density operators. We studied the results of such a decoherence and we
related to it the loss of information by calculating the information entropy. To illustrate some of the
obtained general results, we considered the slowly varying T-constant electric field as an external
background. The following conclusions are derived. The entropy of any subsystem (of electrons
or positrons) with the vacuum as the initial state is proportional to the factor (eF)d/2 and to the
number of spin degrees of freedom J(d). It grows linearly with the time of the field action T. The
above behavior remains in the thermal case at low temperatures; in fact, here the entropy does not
depend on the temperature.

In the framework of QED with non-uniform external fields the exponential external field in two
different configurations (slowly varying symmetric field and peak field) was considered; the differential
and full mean numbers of particles created from vacuum were calculated. An important question
about unitarily equivalence of in and out spaces was studied in the framework of QED with x-electric
potential steps. It was shown that the in- and out-Fock spaces are unitarily equivalent, if the linear
canonical transformation (1.5.1) (together with its adjoint transformation) that connects in- and out-
sets of operators of creation and annihilation of particles, is proper one. It was demonstrated that
in the scope of the QED in the presence of critical potential steps the transformation is a proper one
if the total number of particles created from vacuum is finite; for any realistic field limited in space
and time this condition is obviously satisfied. This fact can be considered as one more confirmation
of the consistency of the theory constructed and correct interpretation of in- and out- particles in
said theory. The next step taken was a construction of a general density operator with the vacuum
initial condition. Such an operator describes a deformation of the initial vacuum state by x-electric
critical potential steps. Using the Bogolubov transformation, we managed to derive two different
explicit expressions for this operator in terms of the out-operators (normal-form exponent and the
expression in terms of vector states). Of course, both representations are equivalent. The reductions
of the deformed state to electron and positron subsystems were constructed, and the loss of the
information in these reductions was calculated as the corresponding von Neumann entropies. It is
known that this entropy can also be treated as the entanglement measure of these reduced matrices.
Therefore, the entanglement measure of the electron and positron subsystems was obtained. The
general consideration was illustrated by studying the deformation of the quantum vacuum between
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two capacitor plates, that is, the effect that so-called L-constant field has on initial vacuum state.
It was shown that in this case entropy is proportional to the factor (eE)d/2, to the number of spin
degrees of freedom J(d), and the volume inside the capacitor V' = V| L (volume occupied by electric
field). Tt can be noted that in the leading order the expressions for the case of x-electric step under
consideration and T-constant field coincide.

As it was said before, the other way to consider strong field apart from QED is the nonlinear
local electrodynamics. As a model Lagrangian for the latter we used the one whose nonlinearity is
the Euler-Heisenberg Lagrangian of quantum electrodynamics truncated at the leading term of its
expansion in powers of the first field invariant. It was shown that the total energy of the field produced
by a point charge is finite in that model; thereby its field configuration is a soliton. We defined a
finite energy-momentum vector of this field configuration to demonstrate that its components satisfy
the standard mechanical relation characteristic of a free moving massive particle.
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Appendix 1

In this appendix it is demonstrated that Eq. (2.2.12) satisfies linear equation (2.2.15) with the point-
like charge current (2.2.4). The superscript "lin" is omitted within this Appendix. It is convenient
to rewrite (2.2.12) in terms of coordinates of the coordinate system K’, which moves along the axis
x1 with constant velocity v (rest frame of the moving particle). The corresponding Lorentz boost is

- / v, o / v, /I /o
To =" xo"’g% , T =7 :1:1+E:1:0 , Ty =X, X3 = I3,

and the inverse transformation is given by (2.2.3). The Lorentz transformation reduces the scalar
W? to the form

=2 +aF + x? =72, (A1)
The relations
Oxg| 0 ($0 — %’931) _
6:):0 z 7 8:1:0 Lk
o] 9(x—txo)| v
dxo |, 7 0z e
org| 0 (z0 — 2a1) v
Oz |, 7 0xy e
81”1 8 (.Z'l — yl’o)
=y ———2FC 7| = A2
axl . Fy axl ")/7 ( )

where | designates derivative calculated at constant z, follow from (2.2.3). Then

ol _(, 9] _ 29

omo|. N\ 0xpl,  coxil|,)’

) v 0 5

G I (R , A.
8331 T ( ’Yc 8:66 x/ ” ! axll x’) ( 3)

Now, with the account of (A.1)-(A.3), one can calculate divergency of F},, exploiting the covariant
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form (2.2.12). The zeroth and first components are:

i e |0 (= (@m—ta)\ 9 (w0 [y _
o = - a;ﬁ( e T o\ ) T o e

[0 (==
 4n | Ozl \ 13 ’

m _ ¢ o ([~ (IE1 — %xo) QO [ —7ixy 0 [~y B
0" Fn 47 | Oxg ( W3 + 9%y e + e 773

_vey |0 (o
 cdn [8@ ( '3 )} ’ (A4)

The second and third components are

ppaae Q[0 (1Y wd (1] _em, [0 vo)il
P Fins 4 [(%0 (W3)+60x1 w3 4m 3$0+06$1 )

This is zero, because

O w0 [ 20 0] i [0 Ly
31:0 Caml a Cax,l Caxll o 8.1'6 x/:const_ .

Referring to the linear Maxwell equation in the rest frame

0 (—x
@ ( 7”/3 ) = 471'(53()(/), (A5)

one can write v
OMF,, = 4m (e’yég(x’), —ey63(x'),0, 0) :
c

This coincides with the current (2.2.4).
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Appendix 2: Basic elements of QED with
x-electric critical potential steps

Solutions of the Dirac equation with x-electric potential steps, (1, (X) and $¢, (X), ¢ = +, can be
subjected to the following orthonormality conditions on z-constant hyperplane

( g@/Jm C”lvbn’)m = C77L5g,4'5n,n/7 Th, = sgn Ty (L) , To (L) =po — Uy,

< “Un, C'@bnf) = (MRI¢,¢'Onmrs TR = sg0 7o (R), ™o (R) = po — Uk,

o), = [ 01 (0P (X) e (B.1)
Coefficients ¢ ( ¢ !4') = ( cWn, <'%)m define mutual decompositions of these solutions

L Cwn(X>: +¢n(X)g(+‘<)_ JPn(X)g(f\C),
M Wn (X) = T (X) g (Tle) = "n (X)) g (T ) (B.2)

Unitary relations for the decomposition coefficients are

g<+ C'>*g(+|<)—g<—

To extract results of the one-particle scattering theory, all the constituent quantities, such as reflection
and transmission coefficients etc., have to be represented with the help of the ¢’s, that is, the matrix
elements of current in x-direction.

We find the following linear independent pairs for each n by calculating scalar products on t-
constant hyperplane:

(¢Wns ) = (U, ) = 86,000 (D0 — P) 8 (P1 — P') My,

M, = \g(+]+)|2, neulls M;z= |g(+‘7) 2, n € Qs;

(¢¥ny ) =0, n€QUUQs, (b, and ‘4, independent,

(ctns C@%) =0, n€Q, ¥, and ¢, independent. (B.4)

C/>* g(-|°) = Cmmrdee - (B.3)

Then we identify:

in — solutions : -‘rwnp _¢n1; —¢n5a +¢n5; —wn;;v _¢n3 3
out — solutions : ¥, T¥n; 1Unsy  Ung; Ung,  WUns (B.5)
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We can decompose the Heisenberg operator ¥ (X) as

= M:le/zl[ Tay(out) T, (X) + _au(out) _1h, (X)],
ni?) =" M Pag, (X)), B (X) =Y MV, (X)),
§§A4U2 [ ~a,(in) wax>+nz%mmxxﬂ
_ ZQ Mf:;/z [ Tan(out) Tep, (X) + 10 (out) 11b, (X)],
p 3::22;,A4;L” [ 70 (in) Teb, (X) + _b](in) _b, (X)]
— zgg,m;;”z[-+dxout)+¢m()()%— ~bl(out) ¥, (X)], (B.6)

where all @ and b are Fermi annihilation operators and all a' and b are Fermi creation operators.

We denote the quantum numbers in corresponding zone by n;, so that n; € €2;. The manifold of
all the quantum numbers n is denoted by €2, so that Q@ = Q; U---U Q5. The in and out vacua can
be factorized

5 5
0,in) = TT%10,i)® . 0, 0ut) = JT* [0,0ut) (B.7)

where [0,in)” and [0, out)® are the partial vacua in the ranges ;. Note that in each range €, it is
also possible to factorize vacuum vectors in modes with fixed quantum number n so that

|0, in) H |0, in) ), 10, out)! H |0, out (B.8)

ne; ne);

It was shown that all in and out vacua, except the vacua in the range Q3 (in the so-called Klein

zone) coincide,
10, 0ut)” =10,in)?, i=1,2,4,5, ]0,0ut)® #£10,in)® (B.9)

The vacuum-to-vacuum transition amplitude ¢, = (0, out|0,in) coincides (due to Eq. (B.9)) with

@) -

the vacuum-to-vacuum transition amplitude ¢, in the Klein zone,

¢ = (0,0ut|0,in) = ¢» = (0, out|0,in)® . (B.10)
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Appendix 3:Some asymptotic expansions

The asymptotic expression of the confluent hypergeometric function for large n and ¢ with fixed a
and 7 =n/c ~ 1is given by Eq. (13.8.4) in [89] as

®(a,) = PF N (a,05m), 2=~ (r =)W (1) Ve,

F(a,c;7) =W *D_,(2) + RD,_4(2),

R= (W' —tW") /2, W(r)=[2(r—1—In7)/(r - 1)}]" (C.1)

where D_, (Z) is the Weber parabolic cylinder function (WPCF) [88]. Using Eq. (C.1) we present
the functions y2, y; and their derivatives at z = 0 as

Ui,y = e ™ (ih)" P (ar i),
Zi=—(n—1)W(n)Ja, m=ih/c,

8_@/% ~ o2 (1)1 (/2R [__ L 29
O |,—o ! 2ihy ¢ 01y
y%}xzo ~ ¢th2/2 (ihe) "% (2 — 02)(1—@)/2 2R (1 —ag,2—co;70),
Zo=— (g = )W (1) V2 — 3, To = —ihy/ (2 —c3),

Oz 119
Iy 2ihy 2 — ¢y OT

1 1 0
] F(ahCl;Tl);

~ eih2/2 (Z-h2>—u2 Cél_a2)/26222/4 |:_ :| F (1 — Qg, 2 — Co; 7'2) . (02)

=0

Assuming 7 — 1 — 0, one has

_ -1 2(a+1)
l=a o1 @ —1 ~N——, Zx— -1
)% + (t—1), R N (1 —1)+/c,
OF (a,c;7)  24a 0D_,(2) 0D1_, (Z)
~ D_,(Z .
or 3 «(2)+ or R or

Expanding WPCFs near Z = 0, in the leading approximation at Z — 0 one obtains that

OELET) o D, (0) + O ).
F(a,c;7)~ D_,(0)+ O (071/2) ) (C.3)
and
—a/2 T (1—a)/2 T
D_.(0) = % D', (0) = % (C.4)
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where I'(2) is the Euler gamma function. We find under condition (1.5.40) that

pL’R ~ ol (1= A hi2), a2~ (1—x)/2—1)\/2,

2 2
01%1—Z<>\—$)7 2—02%1+Z(A—¥),
1 2

L /. 2po L/ 2po
—l=—-——[(i—- A+ — -1~ — A+ —. .
T I (Z + i ) ;T2 I (l+ + i ) (C.5)

Using Eqgs. (C.2), (C.3), and (C.5) we represent Eq. (1.5.35) in the form
N;;r _ 6777)\/2 [‘5()'—2 +0 (hII/Z) +0 (h;1/2)] ’
G = €™*D_o, (0) Dy, (0) — e ™*D", (0) D, 1 (0). (C.6)

Assuming x = 1 and using the relations of the Euler gamma function we find that
3
dp = exp <ZZ7T — z%) ™A, (C.7)

Assuming |7 — 1| ~ 1, one can use the asymptotic expansions of WPCFs in Eq. (C.1), e.g., see
88, 89]. Note that arg (£) ~ L arg(c) if 1 —7 > 0. Then one finds that

O(a,c;n)=(1-7)*1+0(|2]"Y)] it 1—7>0. (C.8)

In the case of 1 — 7 < 0, one has

Targ(c) +m if arg(c) <0

~Jd 2
arg(Z)N{ sarg(c) —m if arg(c) >0 -

Then one obtains finally that

T—1)"e"™ 140 (!Z\_l)} if arg(c) <0 '

) (CL,C; ?7) = { (7_ . 1)—0, ema [1 + o) (|Z|—1)} if arg (C) >0 (C9)

The asymptotic expression of the confluent hypergeometric function ® (a, c; £ih) for large real h
with fixed a and c is given by Eq. (6.13.1(2)) in [88] as

R I'(c) +ira/27 —a I'(c) 1 +im/27,)\ 3¢
® (a,c;+ih) = N a)e h™" + T (a)e (e h)" . (C.10)
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