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Resumo

O composto magnético geometricamente frustrado Gd2Ti2O7 da famı́lia dos pirocloros apresenta um

comportamento bastante interessante, sendo que a natureza da fase magnética em baixas tempera-

turas se encontra ainda sob intenso debate. Este material entra em um estado antiferromagnético

parcialmente ordenado à temperatura T1
N ∼ 1 K, apresentando outra transição de fase em T2

N ∼

0.7 K. Neste trabalho é investigada a f́ısica de baixas temperaturas de amostras de Gd2Ti2O7 com

defeitos estruturais tais como vacâncias de oxigênio e diluição de ı́trio. Amostras policristalinas com

composição Gd2Ti2O7−δ e Gd2-xYxTi2O7 foram sintetizadas em diferentes condições por uma rota

alternativa conhecida como método sol–gel. O refinamento de um modelo para os dados de difração

de raios X mostra que vacâncias de oxigênio são os principais defeitos estruturais neste material. As

vacâncias de oxigênio resultam numa ligeira diminuição de T1
N e numa redução da magnetização de

saturação. A diluição da rede com ı́trio leva a uma clara diminuição de T1
N e da temperatura de

Curie–Weiss θCW. Medidas de calor espećıfico evidenciaram as duas transições T1
N e T2

N no composto

com menor grau de vacâncias de oxigênio. A análise da contribuição magnética ao calor espećıfico Cm

em baixas temperaturas, 0.39 K ≤ T ≤ 0.68 K, revelou um comportamento proporcional a T2 previ-

amente discutido na literatura. Entretanto, verificamos que uma dependência Cm ∝ T3, usualmente

encontrada em antiferromagnetos convencionais, descreve igualmente bem nossos dados experimentais

resultando em uma velocidade de magnons consistente com a apresentada por outros pirocloros.

Palavras–chave: Magnetos Geometricamente Frustrados, Estrutura Pirocloro, Defeitos Estruturais.
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Abstract

The geometrically frustrated compound Gd2Ti2O7 of the pyrochlore family displays such an interest-

ing behaviour that the nature of the ordered magnetic phase at low temperatures is still under intense

discussion. This material enters in a partially ordered magnetic state at a temperature T1
N ∼ 1 K, and

there is another phase transition at T2
N ∼ 0.7 K. In this dissertation we study the low temperature

physics of Gd2Ti2O7 with structural defects such as oxygen vacancies and yttrium dilution. Poly-

crystalline samples of Gd2Ti2O7−δ and Gd2-xYxTi2O7 were synthesized in different conditions by an

alternative route known as the sol–gel method. The refinement of a model for the X–ray diffraction

data reveals that the oxygen vacancies are the leading defects in this material. The oxygen vacancies

result in a slight decrease of T1
N and in a reduction of the saturation magnetization. The yttrium

dilution of the lattice leads to a clear reduction of T1
N and of the Curie–Weiss temperature θCW.

Specific heat measurements display both transitions T1
N and T2

N in the compound with lower degree

of oxygen vacancies. The analysis of the magnetic contribution to the specific heat Cm at low tem-

peratures, 0.39 K ≤ T ≤ 0.68 K, reveals a behaviour proportional to T2 previously discussed in the

literature. However, we verify that a dependence Cm ∝ T3, usually found in standard antiferromag-

nets, describes similarly well our experimental data resulting in a velocity of magnons consistent with

the ones exhibited for another pyrochlores.

Keywords: Geometrically Frustrated Magnets, Pyrochlore Structure, Structural Defects.
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Chapter 1
Introduction

Advances in topics such as magnetism and magnetic materials have taken part in the developing of

new technologies for everyday life. For example, applications of magnetism include from hard disk

data storage, magnetic resonance imaging, to future public transportation. Indeed, magnetism on the

atomic scale is becoming essential as data–storage and modern devices are being miniaturized. So,

to continue with the improvement of new technologies, it is indispensable to study and to synthesize

new magnetic materials.

In recent years, as a result of several experiments concerning novel materials known as geometrically

frustrated magnets it was found that they are subject to new exotic physical properties at microscopic

scale. These phenomena occur at very low temperatures and give rise to unconventional quantum

mechanical behaviours which are experimental and theoretical challenges. Therefore, in order to

describe such magnetic systems it is required to improve the current theoretical models and to extend

the experimental perspectives for a better understanding of this new physics.

An active area of research in condensed matter physics is the study of frustrated materials. Systems

with their components interacting by competing interactions are subject to frustration. Because

of this competition the system cannot minimize the energy of all interactions simultaneously or,

in other words, the system cannot find a unique ground state. Also, when those interactions are

of similar magnitude, it leads to a large degeneracy of ground states [1]. These attributes made

frustration a crucial element in diverse topics of condensed matter physics. Superconducting Josephson

junction arrays [2], liquid crystals [2], and quantum dots (artificial atoms) as potential quantum bits

for quantum computation [3] are a few examples of the richness of frustration. It has an important
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role also outside the field of condensed matter physics with a wide range of phenomena such as the

folding of proteins and neural networks [4, 5].

Geometric frustration occurs in systems where the competition of interactions originates in the

spatial arrangement of their components [1]. Two simple and illustrative examples are the magnetic

systems whose spins lie on the vertices of an equilateral triangle or a tetrahedron. They are subject to

geometric magnetic frustration as we will see in Chapter 2. Other examples of geometric frustration

are the magnetic systems with their spins residing on lattices of corner–sharing triangles (Kagomé

lattice) or corner–sharing tetrahedra (pyrochlore lattice). Magnetic materials with the mentioned

corner–sharing tetrahedra or pyrochlore structure are expected to be ideal candidates for exhibiting

large quantum mechanical spin fluctuations and for giving rise to novel magnetic ground states [2].

Experimental realizations of the pyrochlore oxides, A2B2O7, have been essential to go forward

in the understanding of geometrically frustrated magnetism. In these oxides, the A and B ions are

located on two distinct interpenetrating pyrochlore lattices. The geometrical constraints imposed by

the arrangement of the interpenetrating tetrahedra frustrate the near–neighbour magnetic interactions,

originating exotic behaviours in the simplest and more complex spin Hamiltonians [6].

In order to study real systems, one must include extra interactions into the simplest spin Hamil-

tonian which is the nearest–neighbour exchange Hamiltonian H = −
∑

JijSi · Sj . Examples of

additional physical contributions are: second or higher neighbour exchanges, dipolar interactions,

applied magnetic fields, anisotropic exchange (Dzyaloshinskii–Moriya), thermal or quantum fluctua-

tions, etc [7]. All these interactions compete between them to establish spin–spin correlations as the

system reaches extremely low temperatures [2]. The nature of the material being studied determines

whether the additional terms in the Hamiltonian lead to a long–range ordered state in the system.

Because of that, a fairly high number of pyrochlore oxides display unusual magnetic ground states.

Those A2B2O7 materials display a broad range of phenomena comprehending spin glass freezing in

Y2Mo2O7, spin–liquid behaviour in Tb2Ti2O7, spin–ice phenomenon in Ho2Ti2O7 and Dy2Ti2O7, XY

antiferromagnetism in Er2Ti2O7, and superconductivity in Cd2Re2O7, among others [2].

Besides the pyrochlore materials mentioned above, there are other examples being discussed

through recent research. For making an improvement in the understanding of the pyrochlore systems

this dissertation deals with the phenomena involving Gd2Ti2O7, a remarkable example of pyrochlore

in which the magnetic ground state involves a partial ordering of spins that is still an open topic.

In Chapter 2, we will review the fundamentals of the magnetic interactions in spin systems. Then,

we will explain how frustration is involved with magnetic systems. Moreover, we will study the
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crystal structures of pyrochlore materials and we will explain briefly the exotic magnetic behaviours

of spin ice, spin liquid and long–range order. We will review the theoretical and experimental results

concerning the magnetic structure at low temperatures for Gd2Ti2O7. On the theoretical side, we will

study results from mean field theory, but we will not enter on a rigorous formalism because it is not

the focus of this dissertation. On the experimental side, we will study results from magnetic, thermal,

and neutron diffraction studies to understand the proposed ground state of Gd2Ti2O7.

In Chapter 3, we will explain the sample preparation employed and also the experimental tech-

niques used in the laboratory. First, we will describe the alternative chemical method to prepare

polycrystalline Gd2Ti2O7 known as sol–gel. Then, we will extend this method to prepare Gd2Ti2O7

samples with yttrium, that is, samples of formula Gd2−xYxTi2O7, where x is the yttrium propor-

tion. The experiments performed to study the pyrochlore Gd2Ti2O7 are magnetization, ac magnetic

susceptibility, and specific heat measurements.

In Chapter 4, we will discuss how the long–range magnetic ordering of the pyrochlore Gd2Ti2O7

changes due to lattice defects such as oxygen vacancies. Those defects are introduced by employing

the mentioned sol–gel method. After this method, we annealed our samples in different atmospheres

as oxygen, O2, hydrogen, H2, and air in order to modify the content of the different components of

Gd2Ti2O7. The lattice defects are important in the magnetic lattice of Gd since we do not know if they

will favor the magnetic ordering or not, and as a result a transition to a long–range ordered phase.

To verify if our samples were grown with defects of vacancy, we will analyse the X–ray diffraction

data by the method called Rietveld refinement using the FullProf software. Then, we will report

magnetization, ac magnetic susceptibility, and specific heat data to compare the magnetic properties

of the different Gd2Ti2O7 samples. Finally, we will discuss if those defects involve a pattern or

tendency in the variation of the magnetic properties experimentally measured of Gd2Ti2O7.

In Chapter 5, we will study Gd2Ti2O7 at low temperatures when it is diluted by yttrium impurities

resulting on Gd2−xYxTi2O7. We will analyse the X–ray diffraction data to discuss the introduction

of yttrium on the magnetic lattice. Also, we will report magnetization, ac magnetic susceptibility,

and specific heat of Gd2−xYxTi2O7 with different contents of yttrium. We will close with a discussion

about the magnetic and thermal properties obtained for the Gd2−xYxTi2O7 samples at very low

temperatures.

Finally, in Conclusions we will sum up the most important results of this dissertation and also we

will mention the future work concerning different experiments to complete our study of Gd2Ti2O7

with structural defects.
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Chapter 2
Fundamentals and Theoretical Background

This chapter is about the fundamentals of magnetism in condensed matter and an introduction to our

study of the pyrochlore Gd2Ti2O7. We present first the basic theory of magnetic interactions focusing

on nearest–neighbour interactions model by the Heisenberg Hamiltonian and additional interaction

terms to this Hamiltonian. We deal with the order structures and magnetic properties such as mag-

netic susceptibility arising from ferromagnetic and antiferromagnetic interactions. We also study the

phonon, electron, and magnon contributions to the low temperature specific heat of a solid.

Then, we define the concept of geometrical frustration and its implications on magnetism. We dis-

cuss the microscopic properties of geometrically frustrated materials and present typical experimental

behaviours to recognize them. We provide examples of geometrically frustrated lattices and among

them the pyrochlore lattice which is of our interest.

Next, we focus on the pyrochlore materials A2B2O7, where A is a rare–earth ion, B a non–magnetic

ion, and O oxygen. We study the crystal structure of the pyrochlore lattice which consists of arrays

of corner–sharing tetrahedra. For pyrochlores with titanium as the B ion, we describe the exotic

magnetic ground states induced by geometrical frustration such as long–range order, spin ice, and

spin liquid.

Finally, we study the physical properties of the rare–earth pyrochlore Gd2Ti2O7 and present

previous results taken from magnetic, thermal, and neutron diffraction measurements, which have been

pivotal to propose the low–temperature ground state of the pyrochlore antiferromagnet Gd2Ti2O7.
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2.1 Magnetic interactions

In this dissertation we will look into the low temperature magnetic ordering of the pyrochlore Gd2Ti2O7,

focusing on its physical properties at very low temperatures. We will therefore begin by introducing

the classical Heisenberg model and the Ising model which are two models widely used to describe

magnetic spin systems as pyrochlore materials. Having studied both models, we will then spread out

the concept of geometric frustration mentioned in the Introduction of this dissertation.

2.1.1 The Heisenberg and Ising models

In order to understand the magnetic behaviour of solids, we need to provide microscopic models of

the magnetic interaction. The Heisenberg model describes the interaction between neighbouring spins

and the Hamiltonian for this model, written in terms of the Heisenberg exchange Jij and the spin

operators Si at sites i, has the form

H = −
∑
ij

JijSi · Sj , (1)

where the sum runs over nearest–neighbour pairs at sites ij. The spins Si are treated as three–

dimensional vectors since there is no constraint to them, so they are allowed to point in any direction

in the three–dimensional space. While the Hamiltonian above provides a useful starting point for

understanding the properties of many geometrically frustrated magnetic materials, for a more realistic

model various additional terms to the Hamiltonian H are required. Perturbations to H include single–

ion anisotropy, further neighbour exchange, dipolar interactions, Dzyaloshinskii–Moriya interaction,

magnetoelastic coupling, and exchange randomness [6]. We will detail these additional interactions

later.

A model in the flair of the previous Hamiltonian is the Ising model, in which the spins of a system

can only point up or down. In other words, we restrict to the z component of the spin. The expression

for the Hamiltonian of the Ising model is

H = −
∑
ij

JijS
z
i · S

z
j , (2)

here the spins Si are taken as one–dimensional vectors (the spins are only allowed to point along

±z). These one–dimensional spins can be arranged on a lattice of 1, 2 or 3 dimensions [8]. A

simple configuration is when the Ising spins are placed on a linear chain. If we assume Jij < 0 in

the Hamiltonian, we can see that the ground state is obtained by having antiparallel collinear spin
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alignments. Hence the exchange energy is minimized for antiferromagnetic correlations. On the other

hand for Jij > 0, a parallel spin alignment favours the ground state. Thus the exchange interactions

between nearest neighbours (n.n.) are ferromagnetic. Both ordered states are shown in figure 2.1.

(a)

(b)

Figure 2.1: Spins on a linear arrangement illustrating its ground state corresponding to antiferromag-

netic (a) and ferromagnetic (b) interactions.

We will now study some of the interactions which lead to magnetic ordering in next Subsections.

The leading order terms in the magnetic Hamiltonian are the ones which compete directly against

each other, thus the additional sub–leading terms in the Hamiltonian will select the ground state in

frustrated materials. These can be relatively weak terms which might be ignored in the study of

magnetic materials without frustration [6].

2.1.2 Magnetic dipolar interactions

Dipolar coupling is the interaction that is the most familiar on a macroscopic scale as it gives rise

to observable magnetic fields. When the magnetic moment is small, however, the interaction is weak

and is often the contribution of least importance for magnetic order. The energy for the dipolar

interaction, for two magnetic spins Si and Sj , separated by rij is given by,

Hdip = (gµB)2
∑
ij

[
Si · Sj
r3
ij

− 3
(Si · rij)(Sj · rij)

r5
ij

]
, (3)

where g is the electron spin g–factor and µB = 9.274 × 10−21 emu is the Bohr magneton. This

interaction is generally insignificant as it is much weaker than the exchange interaction but can play

an important role in materials that order at millikelvin temperatures with large moments, such as the

rare earth pyrochlores.
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2.1.3 Anisotropic exchange interaction

Anisotropic exchange occurs when there is an exchange interaction, mediated by spin–orbit coupling,

between the excited state of ion i and the excited state of ion j. The interaction, known as the

Dzyaloshinskii–Moriya interaction, when acting between the spins Si and Sj is given by the Hamil-

tonian:

HDM =
∑
ij

JDM d̂ ij · (Si × Sj), (4)

here JDM is the strength of the interaction and d̂ ij is the Dzyaloshinskii–Moriya vector. This term

is minimized when the d̂ ij lies in the direction antiparallel to the products of the spins Si and Sj .

The collective effect of this term causes a small ferromagnetic component to arise perpendicular to

the spin–axis of an antiferromagnetically ordered material and to the direction of d̂ ij .

2.1.4 Crystal–field interaction

The crystal field is due to the electric field from neighbouring atoms in the crystal and it depends

on the symmetry of the local environment. In a strong crystal field the electrons adopt a low spin

configuration and, if it is possible, form pairs in the lowest energy orbitals. On the other hand, for

weak crystal field the electrons adopt a high spin configuration occupying all the available orbitals.

The interactions between the unpaired spins in the orbitals stabilize a magnetic ordering. For atoms

in the f–block, the crystal field lifts the degeneracy of the 2J + 1 states which minimise Hund’s

rule (being an exception the case with an exactly half–filled electron shell with zero orbital angular

momentum).

2.1.5 Single–ion anisotropy

When there is a large crystal field effect the orbital moment may be quenched. The crystalline

environment, and the crystal field, tends to be anisotropic and this anisotropy is transferred to the

overall spins when there is also large spin–orbit coupling. The effect of the single–ion anisotropy can

be large and prevent the spins from aligning with an applied magnetic field. The following term is

added to the Hamiltonian to describe this interaction:

H = D
∑
i

(ni · Si)2, (5)

where ni is the anisotropy axis and D is a factor that determines the magnitude of the interaction.
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2.2 Magnetic structures and order

The long range structure of magnetic materials is dictated by the interactions described in the previous

section. The greater the variety of interactions that contribute substantially to the local order, and

hence more terms prevail in the Hamiltonian, the more complex is the long range structure that will

arise. This section will cover two different types of order: ferromagnetism and antiferromagnetism,

which are leading interactions in the geometrically frustrated pyrochlore materials [2].

2.2.1 Paramagnetism

In a paramagnetic material, without an applied magnetic field, the magnetic moments point in random

directions because the neighbouring moments only interact very weakly with each other and they can

be assumed to be independent. Then the magnetization M , which is defined as the magnetic moment

per unit volume, vanishes for a paramagnet. The application of a magnetic field makes the magnetic

moments point out in the direction of the field, the degree of the induced magnetization depends on

the strength of the applied magnetic field and on the temperature.

The magnetic moment on an atom is correlated with its total angular moment J which is a sum

of the orbital angular momentum L and the spin angular momentum S, then

J = L+ S. (6)

Now we will study quantitatively the magnetization of a spin system in an applied field. Thus, in a

field B an atom with angular moment quantum number J has 2J+1 energy levels. The magnetization

is shown to follow [9]

M = ngJµBBJ(x), (7)

where n is the spin concentration, g the Landé g–factor, x = gJµBB/kBT and BJ is the Brillouin

function defined as

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x

)
− 1

2J
coth

(
1

2J
x

)
. (8)

Then the saturation magnetization Ms is the maximum magnetization that can be obtained when

all the magnetic moments are aligned. For x = gJµBB/kBT � 1 (high magnetic fields and low

temperatures) we have BJ(x) = 1, so the magnetization saturation is:

Ms = ngJµB. (9)
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The magnetic susceptibility χ which is the response of a material to an applied magnetic field is

defined by

χ =
M

H
, (10)

where M is the magnetization and H is the applied magnetic field. For low values of B, the magnetic

susceptibility, χ, of a paramagnet describes the response to an applied field of an effective moment,

peff , which is given by [9]

χ =
M

H
≈ µ0M

B
=
nµ0 p2

eff

3kBT
=
C

T
. (11)

Here µ0 is the permeability of free space, n is the number of magnetic moments per unit volume, kB =

1.38062×10−16 erg.K −1 is the Boltzmann constant, C is the Curie constant and T is the temperature.

This dependence of χ versus T is called the Curie law, and states that the magnetic susceptibility is

inversely proportional to the temperature.

2.2.2 Ferromagnetism

A ferromagnet has a spontaneous magnetization even in the absence of an applied field. Here, some

of the magnetic moments lie along a single unique direction. This effect is generally due to exchange

interactions which were described in the previous section. For a ferromagnet in an applied magnetic

field B, the appropriate Hamiltonian is:

H = −
∑
(ij)

JijSi · Sj − gµB
∑
(i)

Si ·B, (12)

and the exchange constants for nearest neighbours will be positive in this case, to ensure ferromagnetic

alignment. The first term on the right is the Heisenberg exchange energy. The second term on the

right is the Zeeman energy.

The Weiss model of a ferromagnet

In order to find the transition temperature, it is introduced the Weiss model [8]. This procedure

requires to define the effective mean (or molecular) field at the i–site given by [8]

Bmf =
2

gµB

∑
i

JijSi. (13)

By focusing on the ith spin in (12), we have that its energy is due to an exchange part and a

Zeeman part −gµBSi ·B. The total exchange interaction between the ith spin and its neighbours is

9
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−2
∑
j

JijSi ·Sj , where the factor of 2 is because of the double counting. This term can be written as

− 2Si
∑
j

Jij · Sj = −gµBSi ·Bmf . (14)

Thus the exchange interaction is replaced by the effective mean field Bmf produced by the neigh-

bouring spins. The effective Hamiltonian (12) can now be written as

H = −gµB
∑
i

Si · (Bmf + B) (15)

which is analogue to the Hamiltonian for a magnet in a magnetic field Bmf + B. The assumption

underlying this approach is that all magnetic ions experience the same mean field. For a ferromagnet

the mean field will act so as to align neighbouring magnetic moments. This is because the dominant

exchange interactions are positive (for an antiferromagnet, they will be negative).

Since the mean field measures the effect of the ordering of the system, it is assumed that

Bmf = λM , (16)

being λ a constant that parametrizes the strength of the mean field as a function of the magnetization,

and for the case of a ferromagnet λ > 0. Then, this problem could be treated as if the system were a

simple paramagnet placed in a magnetic field Bmf +B. We will detail this later when we present the

Curie–Weiss law for the magnetic susceptibility. At low temperatures, the moments can be aligned by

the internal mean field, even without any applied field being present. As the temperature is raised,

thermal fluctuations begin to progressively destroy the magnetization and at a critical temperature

the order will be destroyed.

In ferromagnets, below the Curie temperature TC the magnet orders spontaneously and gives

rise to bulk magnetism. The Curie temperature is the point at which the susceptibility presents an

anomaly, and is given by [8]

TC =
gµB(J + 1)λMs

3kB
=
nλp2

eff

3kB
. (17)

Here λ is the parameter representing the mean field, Ms is the saturation magnetization, peff =

gµB
√
J(J + 1) the effective magnetic moment, J total quantum number, g Landé g–factor, µB =

9.274 × 10−21 emu the Bohr magneton and kB = 1.38062 × 10−16 erg.K −1 Boltzmann’s constant.

From equations (12), (15), and (16), the order parameter λ is related to the exchange constant J by

[8]:

λ =
2zJ

ng2µ2
B

, (18)
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where z is the number of nearest neighbours of an ion. Finally, by substituting λ in (17) we obtain

the Curie temperature TC also in terms of the exchange constant J:

TC =
2zJ

3kB
J(J + 1). (19)

2.2.3 Antiferromagnetism

On antiferromagnets, the exchange interaction is J < 0 and because of the mean field it is favourable

for nearest neighbour magnetic moments to adopt an antiparallel configuration. Antiferromagnetic

order can be considered as two interpenetrating sublattices in which one sublattice has the magnetic

moments pointing up and the other pointing down as shown in figure 2.2 from [8].

Figure 2.2: An antiferromagnet can be considered as two interpenetrating sublattices.

The Weiss model of an antiferromagnet

Considering a simple antiferromagnet composed of a positive, +, and negative, –, sublattice the mean

field on each sublattice is:

B+ = −|λ|M− and B− = −|λ|M+, (20)

which gives the relation for the transition temperature known as the Neél temperature TN [8]:

TN =
gµB(J + 1)|λ|Ms

3kB
=
n|λ|p2

eff

3kB
. (21)

This relation is similar to the Curie temperature TC, but now the constant λ is negative because of

the negative exchange interaction J. For an antiferromagnet, TN depends on the exchange constant J

as equation (19) of a ferromagnet. Thus, according to [8]

TN =
2zJ

3kB
J(J + 1). (22)
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2.2.4 Magnetic susceptibility

In the paramagnetic phase an applied field B will originate a finite magnetization M and consequently

a mean field Bmf . Being χ the paramagnetic susceptibility, the magnetization and the total magnetic

field are related by [9]

M = χ(B + Bmf ). (23)

The paramagnetic susceptibility χ is given by the Curie law χ = C/T , where C is the Curie

constant. From (16) and (23): M = C/T (B + λM). So, the susceptibility now is given by [9]:

χ =
M

B
=

C

T − Cλ
, (24)

Thus, the magnetic susceptibility as a function of the temperature is described by the Curie–Weiss

law. It states that [8]:

χ =
C

T − θCW
, (25)

where θCW is the Curie–Weiss temperature and the Curie constant is C = np2
eff/3kB with n the

spin concentration, peff = gµB

√
J(J + 1) the effective magnetic moment, and J the total quantum

number. This result comprises the magnetic susceptibility for the paramagnet, ferromagnet, and

antiferromagnet in the mean field approximation. Thus, if the material is a paramagnet, θCW = 0.

For a ferromagnet, θCW > 0 and it is expected that θCW = TC. For an antiferromagnet, θCW <

0 and θCW = –TN. From the above, θCW is equivalent to (19) for a ferromagnet or to (22) for an

antiferromagnet. The behaviour of the inverse of susceptibility 1/χ versus temperature is shown in

figure 2.3.

Figure 2.3: Inverse of magnetic susceptibility against temperature graphs for θCW = 0 (paramagnet),

θCW = Θ > 0 (ferromagnet) and θCW = Θ < 0 (antiferromagnet). This figure was taken from [8].

12
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From (25) the inverse magnetic susceptibility is:

χ−1 =
T

C
− θCW

C
(26)

and
θCW
C

=
3kBθCW

n g2µ2
BJ(J + 1)

. (27)

2.2.5 Specific heat

The specific heat at constant volume Cv of a solid can be calculated from its internal energy U and

the temperature T as

Cv =

(
∂U

∂T

)
v

. (28)

For purposes of actual measurement, the specific heat at constant pressure, Cp, is much more

convenient, but actually in a solid the difference (Cp - Cv) is almost negligible. Furthermore, what it

is measured experimentally at any temperature T is the total specific heat C of the solid. Then, we

can separate the different contributions to C as

C = Clat + Cel + Cm + CN , (29)

where Clat is the specific heat due to the phonons, Cel is the contribution of the conduction electrons,

Cm is the magnetic contribution, and CN is the nuclear contribution.

Firstly, we will study the case of the phonons or lattice contribution to the specific heat. The Debye

model provides an excellent fit to the low temperature specific heat of the phonons of many solids.

The procedure supposes that the modes of vibration at frequencies ω of the phonons are subject to

a density of states g(ω) and that the phonon occupancy is given by the Bose–Einstein statistics [10].

Then, the thermal energy U is [10]

U =

∫
(~ω).g(ω).dω

[exp(~ω/kBT )− 1]
. (30)

In the Debye model the speed of sound v0 is taken as constant for each polarization type, as in

a classical elastic continuum, then g(ω) = 3ω2/2π2v3
0 [10]. In addition, a solid comprising N atoms

in a volume V must have (3N/V ) modes per unit volume which sets a cutoff frequency ωD [10]. The

resulting lattice vibrational energy per unit volume is then [10]

U = 9nkBT

(
T

ΘD

)3 ∫ ΘD/T

0

x3dx

(ex − 1)
, (31)

13
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where x = ~ω/kBT is a dimensionless substitution, ΘD = ~ωD/kB = (~v0/kB)(6π2N/V )1/3 is the

Debye characteristic temperature, and n = N/V is the atom concentration in the solid. Differentiating

(31) with respect to the temperature, the specific heat is [10]

Clat = 9nkB

(
T

ΘD

)3 ∫ ΘD/T

0

x4exdx

(ex − 1)2
. (32)

In the low–temperature regime, that is, for x = ~ω/kBT � 1, the lattice contribution to the

specific heat is given by [10]

Clat =
12π4

5
nkB

(
T

ΘD

)3

= βT 3. (33)

Secondly, we will discuss the case of the electronic contribution to the specific heat. Here, the total

energy U of the conduction electrons which obey the Fermi–Dirac statistics can be written as [9]

U =

∫
ε.g(ε).f(ε)dε, (34)

where ε = ~2k2/2m is the electronic energy for a electron gas, g(ε) = (m/π2~2)(2mε/~2)1/2 is the

density of electron states, and f(ε) is the Fermi–Dirac distribution. In the ground state of a system

of N free electrons in a volume V the occupied orbitals can be represented as points inside a sphere

in k space [9]. The highest energy of the electrons corresponds to the surface of a sphere with radius

kF and is known as the Fermy energy εF = ~2k2
F /2m. Then, the total energy U is [9]

U =
π2

6
(kBT )2g(εF ), (35)

where the density of levels at the Fermy energy is g(εF ) = (3ne/2εF ) with ne = Ne/V the electronic

density and εF is the Fermi energy which can be written as [9]

εF =
~2

2m

(
3π2ne

)2/3
. (36)

From (35), the specific heat of the electrons at low temperatures kBT � εF is therefore [9]

Cel =
π2

3
k2

BTg(εF ), (37)

or in terms of the Fermy energy

Cel =
π2

2

(
kBT

εF

)
nekB = γT. (38)

Thirdly, we will study the case of the magnetic contribution Cm to the specific heat. As we will

discuss later, in the pyrochlore Gd2Ti2O7 the leading interaction is the antiferromagnetic Heisenberg
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exchange, then the magnetic specific heat Cm is computed by considering magnons or spin waves,

which are collective spin excitations, in an antiferromagnet. The procedure proposed in [11] for

another pyrochlore antiferromagnet Er2Ti2O7 assumes that the dispersion relation ~ω(q) for their

lowest energy can be approximated at small wave vectors as

~2ω2(q) = ~2ω2(q) = 42 + ~2v2
swq

2, (39)

where 4 is the gap energy of the spectrum at the zone center and vsw is the magnon velocity. When

4 is negligible, the magnon specific heat is calculated in the temperature regime where small wave

vectors occur that is when (39) applies. According to [11], the T 3 law for the specific heat Cm in a

pyrochlore antiferromagnet is

Cm =
π2

120
NA

k4
Ba

3

~3v3
sw

T 3 = ΛT 3, (40)

where NA is Avogadro’s constant and a the lattice parameter. Later, from our specific heat measure-

ments we will discuss the magnon velocity in different pyrochlores. Then, by replacing the values of

the constants in (40), the magnon velocity is given by

vsw =

(
1537.

a3

Λ

)1/3

. (41)

Here a in Å units and Λ in J.K−4.mol−1 return a value in m/s for vsw.

Finally, we will discuss the case of the nuclear contribution CN to the specific heat. This contribu-

tion arises from the combination of a nuclear electric quadrupole interaction and a nuclear magnetic

hyperfine interaction of the magnetic atoms. Then, the nuclear specific heat is given by [12]

CN =
R

(kBT )2

∑
i,j

(W 2
i −WiWj) exp[−(Wi +Wj)/kBT ]∑
i,j

exp[−(Wi +Wj)/kBT ]
, (42)

where i,j = -I, -I+1, ...,I with I the number of spin nuclear, and Wi the potential energy of the i level.

The pyrochlore material discussed in this dissertation: Gd2Ti2O7 is an insulator (γ = 0) so the

electronic contribution will not be considered to the total specific heat C. Nuclear contributions to

the specific heat are also neglected because in Gd2Ti2O7 they arise at temperatures of the order of

ten mK, where we did not perform thermal measurements. Then, the total specific heat is considered

as

C = Clat + Cm = βT 3 + ΛT 3. (43)
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An additional contribution to the specific heat that we will study is known as the Schottky anomaly.

This anomaly occurs in systems with quantized energy levels and is reflected in the specific heat by

the presence of a maximum. For example, for a spin S there are 2S+1 possible orientations of the

spin; in a magnetic field, there are a number of discrete energy levels. So, when the temperature is

comparable to the energy separation there is a broad peak in the specific heat due to a large change in

entropy for a small change in temperature. For a system with two energy levels the Schottky specific

heat CSch at a temperature T is given by [13]

CSch = R

(
δ

T

)2
g0

g1

exp(δ/T )

[1 + (g0/g1) exp(δ/T )]2
, (44)

where g0 and g1 are the degeneracies of the two energy levels, δ = 4E/kB is the energy separation in

Kelvin units, and R = 8.314 J.K−1.mol−1 is the gas constant. For spins with magnetic moment µ in

an external magnetic field B, the energy separation is 4E = 2µB.
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2.3 Geometric frustration

As mentioned earlier in the Introduction of this dissertation, the phenomenon of frustration is present

in systems with competing interactions among the components. Thus, frustration is defined as a

system’s inability to simultaneously minimize the competing interaction energies between all its com-

ponents [1], or in simpler terms that the system cannot minimize its energy or find a unique ground

state. In addition to that, frustration occurs as a result of each interaction in the system opting for

favoring its own characteristic spatial correlations [2]. Within the context of competing interactions

is the topic of geometric frustration, which is the core for exotic magnetic phenomena present in the

pyrochlore materials and that we will discuss later. When frustration is determined purely by the

geometry (topology) of the lattice it is termed geometric frustration. That means that the system

cannot minimize its energy because of the spatial arrangement of the components.

The fundamentals underlying geometric frustration are easy to understand in the frame of mag-

netic materials. In many magnetic spin systems, nearest–neighbour Heisenberg exchange interaction

dominates. The examples in one dimension of the previous subsection illustrate that, for simple

lattices, minimising the nearest–neighbour exchange interaction (antiferromagnetic or ferromagnetic)

specifies a unique ground state. On the other hand, novel exotic ground states arises when those

exchange interactions compete in more complex lattices. Geometric frustration in a magnetic system

arises when the competing interactions between spins are subject to constraints imposed by the geom-

etry which cannot be satisfied by simple co–linear orderings [7]. The inability of frustrated systems

to satisfy all pairs of interactions is reflected by the fact that a large number of different magnetic

configurations minimize the classical energy, hence leading to an extensive degeneracy [14]. Thus,

the study of geometrically frustrated magnetic systems is concerned with what happens when lattice

geometry inhibits the formation of a simple, ordered, and low–temperature spin configuration.

The canonical example of a geometrically frustrated lattice is the equilateral triangle in which the

spins lie at the vertices as shown in figure 2.4. For Ising spins, which can only point up or down,

interacting with the simple Hamiltonian H = −
∑

JijSi ·Sj via nearest–neighbour antiferromagnetic

exchange (Jij < 0) we see that it is impossible for the three spins to satisfy each bond simultaneously.

This is because once two of the spins are antialigned to satisfy their antiferromagnetic interaction, the

third one can no longer point in a direction opposite to both other spins. Also it is important to notice

that the lowest energy state of these three spins is not unique, but six equal energy states exist. When

many triangles are condensed to form an edge–sharing triangular lattice the frustration of the system
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increases massively. The triangular lattice is an example of geometric frustration because it is the

regular periodic structure of the space lattice that imposes the constraint inhibiting the development

of a long–range ordered state given antiferromagnetic interactions between the spins [2]. If we consider

the tetrahedron as shown in figure 2.4 instead of a singular triangular lattice it can be seen that if

the bondings are antiferromagnetic the same situation arises as all the pairwise interactions cannot

be simultaneously satisfied.

?

AF

AF AF

?

?

Figure 2.4: Spins with antiferromagnetic exchange arranged on a triangle or tetrahedron are geometri-

cally frustrated. In the triangle one–third of the sites are always frustrated, while for the tetrahedron

two of the four sites.

For the case of Heisenberg spins, we illustrate geometric frustration on a system of spins which lie

at the vertices of two corner–sharing triangles with nearest–neighbour antiferromagnetic interactions.

Here, the ground states are configurations in which spins within each triangle are coplanar and at

relative angles of 2π/3. There is also a degeneracy arising from rotations about the common spin, as

indicated in figure 2.5.

AF

AF AF

AF

AFAF

Figure 2.5: Heisenberg spins in a triangle lattice are subject to frustration.

But why do the geometrically frustrated magnets have such importance in condensed matter

physics? The first reason is that geometric frustration inhibits the formation of long range ordered

spin ground states, that means the system is impeded from removing its spin entropy because of the

extensive degeneracy of the ground state, as is demanded by the third law of thermodynamics. This
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results in exotic spin dynamics, which can be studied by different means, such as magnetization, ac

susceptibility, Mössbauer spectroscopy and neutron scattering [7]. The second one is that due to the

large degeneracy of the ground state, it results in a macroscopic problem with a degeneracy of the

order of the number of magnetic sites, that is, ∼ 1022 [7]. This large degeneracy gives rise to complex

long range order or exotic short range ordered ground states as in spin liquids or spin ices [7].

Figure 2.6 shows some examples of geometrically frustrated lattices that are based on the canonical

equilateral triangle or tetrahedron, which include the edge shared triangular lattice (a), the corner

shared triangular lattice known as Kagomé (b), the edge shared tetrahedral lattice or face centered

cubic lattice (c) and the corner sharing tetrahedral lattice or pyrochlore (d). The pyrochlore lattice

occurs in spinel materials and A2B2O7 compounds. The latter will be described in detail in the next

section.

Figure 2.6: Geometrically frustrated lattices: (a) edge–sharing triangular, (b) corner–sharing triangu-

lar or Kagomé, (c) edge–sharing tetrahedral and (d) corner–sharing tetrahedral or pyrochlore. Figure

taken from [7].

In the laboratory, how do we identify geometrically frustrated materials? We identify them because

their magnetic susceptibility has a characteristic behaviour. The inverse susceptibility, χ−1, follows the

usual Curie–Weiss law down to temperatures well below the expected mean–field–ordering transition
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temperature θCW. At some low temperature T� θCW substantial deviations from the linear behaviour

occur, typically signaling a transition to a state that differs from compound to compound, which may,

for example, be ordered or glassy [6]. Figure 2.7 displays how for a frustrated antiferromagnet the

behaviour of the inverse susceptibility differs from the antiferromagnet or ferromagnet.

Antiferromagnet

Frustrated
Magnet

Ferromagnet

T

χ−1

θCW−θCW TN

Figure 2.7: Characteristic behaviour χ−1 vs T of a geometrically frustrated antiferromagnet (red line).

The transition occurs at the temperature TN � θCW.

In order to measure the level of frustration of our magnetic systems, we calculate the ratio between

the Curie–Weiss temperature θCW and the transition temperature T∗ which defines the frustration

index f [2, 15]:

f ≡ |θCW|
T∗

. (45)

Here θCW is defined from the high–temperature paramagnetic response of the system that is from

the linear Curie–Weiss behaviour of the inverse susceptibility. The temperature T∗ is the transition

temperature or Néel temperature TN at which the system develops long–range spin order [2]. Thus,

large values of f are a signature of frustration [16]. This frustration index will be calculated recurrently

in Chapters 4 and 5 for the pyrochlore Gd2Ti2O7 with lattice defects such as oxygen vacancies and

yttrium dilution in order to compare the degree of frustration of similar samples.
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2.4 Rare Earth Pyrochlores

In this section we will study the rare earth pyrochlores in detail and also we will review briefly the novel

microscopic behaviours of some of these materials. First, we will describe the crystalline structure of

rare earth pyrochlores which, as mentioned before, have the general formula A2B2O7. Next, we will

focus on the compounds of the B = Ti series which suffer phase transitions to novel magnetic ground

states reported on previous works [2, 7]. Then, we will study some of those magnetic phases that the

Ti series of the rare earth pyrochlores present, such as the long–range ordered, the spin–ice, and the

spin–liquid phase. Finally, examples of pyrochlores for each of these exotic magnetic phases will be

introduced.

2.4.1 Pyrochlore structure

The pyrochlore materials have a general formula A2B2O7, where A is a trivalent rare earth, A3+, which

includes the lanthanides (Gd, Tb, Dy, Ho, Er, Yb) and yttrium, and B is either a transition metal

or a p–block metal ion (Ti, Sn, Mn, Mo, Pb) with valence B4+. Pyrochlore materials A2B2O7 are

oxides that crystallize in the space group Fd3m. The standard method to study the crystal structure

of pyrochlores is to formulate them as A2B2O6O′ and to place the B ion at 16c, A at 16d, O at 48f

and O′ at 8b [2]. This is shown in table 2.1 where O′ and O are labeled as O(1) and O(2) respectively.

There is only one adjustable positional parameter x for the O(2) atom at the site 48f .

Atom Wyckoff positions Point symmetry Minimal coordinates

A 16d 3m (D3d) 1/2, 1/2, 1/2

B 16c 3m (D3d) 0, 0, 0

O(1) 8b 43m (Td) 3/8, 3/8, 3/8

O(2) 48f mm (C2v) x, 1/8, 1/8

Table 2.1: The crystallographic positions for the space group Fd3m suitable for the cubic pyrochlore

A2B2O6O′ with origin at 16c.

Both the A site and the B site, independently, reside on a network of corner–sharing tetrahedra

giving rise to the geometrically frustrated pyrochlore lattice - as shown in figure 2.8. Also, the two

pyrochlore lattices of the cations A3+ and B4+ are displaced from each other by a translation along

the cubic diagonal [111]. From figure 2.8, there are two types of tetrahedra in the pyrochlores, which
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are labeled as the down tetrahedra and the up tetrahedra. Each down tetrahedron is connected to four

up ones, and vice versa. The cube represents a unit cell with eight tetrahedra (four of each kind) and

16 cations or spins. Thus a unit cell contains 8 chemical units A2B2O7. For the rare earth pyrochlores

the length of a unit cell is a ∼ 10 Å hence the distance between nearest neighbours is rnn =
√

2
4 a ∼

3.5 Å and the distance between the centres of two tetrahedra is rd =
√

3
4 a ∼ 4.3 Å [17]. The smallest

closed loop in the pyrochlore lattice comprises six spins (green dotted loop).

Figure 2.8: Pyrochlore lattice: the rare–earth ions A3+ of A2B2O7 are located on the vertices of

every tetrahedron. The ions B4+ sit on an identical lattice displaced by a translation along the cubic

diagonal [111]. Figure taken from [17].

Having defined the atomic positions on the lattice and the array of corner–sharing tetrahedra for

pyrochlores A2B2O7 in general, we now restrict to the pyrochlore materials belonging to the titanate

series. These compounds with the rare earth ion A3+ and B being Ti4+ are of formula A2Ti2O7.

Rare earth pyrochlores in the titanate series display a wide range of magnetic phenomena when

they are studied at very low temperatures. We will study in next Subsection some of the magnetic

ground states that the pyrochlores A2Ti2O7 present, such as spin ice, spin–liquids, and long–range

order. Remarkable examples of spin ice are Ho2Ti2O7 and Dy2Ti2O7; of spin liquid is Tb2Ti2O7; and

exhibiting long–range order are Gd2Ti2O7 and Gd2Sn2O7 [2].
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2.4.2 Ordered phases in pyrochlore oxides

The pyrochlore oxides mentioned before enter in the magnetic phases of spin ice, spin liquids, and

long–range order as we will discuss here. Since the central theme of this dissertation is the pyrochlore

Gd2Ti2O7 which is subject to long–range order [18], we will discuss briefly the spin–ice and spin–

liquid phases. However, we will emphasize the magnetic properties of spin ices because we will go

back to them in Chapter 4. First, we will begin by introducing the spin–ice phase in Ho2Ti2O7 and

Dy2Ti2O7, and how its analogy with the problem of water ice led to determine its ground state. Next,

we will explain in general words the main properties involving spin liquids and also their experimental

realizations Yb2Ti2O7 and Tb2Ti2O7. Finally, we will move on to consider the long–range ordering

in Gd2Ti2O7 and Gd2Sn2O7.

Spin ice

Currently the spin–ice phase has been studied extensively in the rare earth pyrochlores Ho2Ti2O7 and

Dy2Ti2O7. The rare–earth ions Ho3+ and Dy3+ present single–ion electronic ground states 5I8 and

6H15/2 respectively. In Ho2Ti2O7 the Curie–Weiss temperature is θCW ∼ +2 K, indicating ferromag-

netic correlations [19]. However, it was quite unexpected that Ho2Ti2O7 does not develop long–range

order down to 50 mK, as reported by muon spectroscopy and neutron scattering measurements [19].

This presented a paradox, as the dominant spin–spin coupling is apparently ferromagnetic and it was

unclear how a ferromagnet could be subject to geometric frustration [7]. As discussed in [20], in

Ho2Ti2O7 because of the strong crystal field acting on Ho3+, 5I8, it stabilises a ground–state doublet

of states with |J,mj〉 = |8,±8〉, i.e., gives rise to a classical Ising spin with easy–axis (quantization)

along the local 〈111〉 direction [2, 7]. With this constraint on a tetrahedron, a spin can only point

“in” toward the centre of the tetrahedron, or point “out” of the tetrahedron. Regarding the problem

of the ground state in which the ferromagnetic exchange between spins on the tetrahedron must be

minimized, in [20] it was discussed that this ground state or spin configuration could be mapped onto

the problem of the proton (hydrogen) positions in water ice studied by Pauling [21]. Thus, the spin

configuration minimizing the energy and relieving the geometric frustration is “two spins in, two spins

out” called the ground state of spin ice [20]. This is illustrated on the left side of figure 2.9.
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Figure 2.9: Ising spins at each vertices of tetrahedron, oriented along local easy–axis 〈111〉, and its

analogy with the arrangement of protons (white circles) about oxygen in water ice (red circle). The

“spin ice” analogy. Figure taken from [17].

Figure 2.9 from [17] shows how the spins with local 〈111〉 direction pointing inside (outside) the

tetrahedron correspond to short covalent bonds (long H–bond) for water ice [17]. Pauling showed that

for water ice there is a large degeneracy of the ground state, and there is therefore an extensive or

residual entropy of the ground state. The value of this residual entropy was calculated by Pauling as

S0 = R
2 ln( 3

2 ) [21].

On the other hand, Dy2Ti2O7 also presents strongly anisotropic properties as discussed in [22]

where the strong Ising nature of Dy3+ with local axis 〈111〉 was observed. Similarly to Ho3+ ions,

for Ising spins Dy3+, 6H15/2, the strong crystal field lifts the single–ion electronic states to a doublet

with |J,mj〉 = |15/2,±15/2〉 [23]. The first experimental verification of the spin ice in Dy2Ti2O7 was

provided by Ramirez et al. in [24]. They observed from the magnetic specific heat Cm(T ) shown in

figure 2.10(a) that the residual entropy in Dy2Ti2O7 approached the Pauling value for water ice [24].

The magnetic entropy removed δS1,2 upon cooling between temperatures T1 and T2 can be determined

from the specific heat measurements using the thermodynamic relationship:

δS1,2 ≡
∫ T2

T1

C(T )

T
dT. (46)

The magnetic entropy S = kB ln(Ω) for a system of N Ising spins (two spin orientations) is

determined from its total number of microstates Ω = 2N , so the expected entropy is S = NkB ln(2).

Then, the total magnetic entropy per mol is R ln(2). Figure 2.10(b) shows that the entropy recovered

at 10 K is 3.9 J.K−1.mol−1, a value that is less than the expected R ln(2) = 5.76 J.K−1.mol−1. The

difference of entropies, 1.86 J.K−1.mol−1, is very close to Pauling’s estimate for the residual extensive

entropy of water ice, S0 = R
2 ln( 3

2 ) = 1.68 J.K−1.mol−1, thus with this result Ramirez et al. proved
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that Dy2Ti2O7 carries an extensive entropy close to S0 and obeys the ice rules [24].

Figure 2.10: Dy2Ti2O7: (a) Specific heat and (b) entropy as a function of the temperature reported

by [24]. The residual entropy of Dy2Ti2O7, 1.86 J.K−1.mol−1, is in agreement with Pauling’s entropy,

R
2 ln( 3

2 ) = 1.68 J.K−1.mol−1 [24]. (a) and (b) also show a comparison with Monte Carlo simulations

(MC data) of [25]. This figure was taken from [24].

The first Hamiltonian to discuss the physics of spin ice in good approximation is an effective

model with nearest neighbour ferromagnetic interaction between the moments which, together with

the strong crystal field, gives rise to a frustrated ferromagnetic system [6]:

H = −3Jeff

∑
(ij)

Si · Sj , (47)

where Jeff > 0 is the effective nearest–neighbour coupling of this nearest neighbour spin ice (NNSI)

Hamiltonian. According to Harris et al. [19] the ground state of this system is identical to the Pauling

model for water ice [21], which presents an extensive residual entropy of ground state and obeys the
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ice rules.

However, the spin–ice materials Ho2Ti2O7 and Dy2Ti2O7, with rare earth ions Ho3+ and Dy3+,

carry a sizeable magnetic moment µ of ∼ 10 µB which leads to dipolar interactions that cannot be

considered as negligible. Furthermore, because the exchange coupling between the ions is due to 4f

electrons, behind 5s and 5p orbitals, it is very weak (∼ 1 K) in comparison with other ferromagnets

[17, 2]. Thus, for Ho3+ and Dy3+ the dipolar interactions are on the same energy scale as the exchange

interaction [2]. The minimal model of Hamiltonian for a dipolar spin ice (DSI) [25], which includes

the terms of nearest–neighbour exchange and magnetic dipole interactions, is

H = −J
∑
(ij)

Si · Sj + Dr3
nn

∑
i>j

[
Si · Sj
|rij |3

− 3(Si · rij)(Sj · rij)
|rij |5

]
, (48)

where J, D and rnn ∼ 3.5 Å are, respectively, the antiferromagnetic exchange coupling, the dipole–

dipole coupling and the nearest neighbour distance between rare earth ions, which has been shown to

provide a comprehensive quantitative description of spin ice materials [25]. Because the local Ising

axes belong to the set of 〈111〉 vectors, the effective nearest–neighbour coupling Jeff of equation (30)

can be written as Jeff = Jnn + Dnn, with Jnn = J/3 and Dnn = 5D/3 which shows the equivalence

between the NNSI and DSI Hamiltonians [2, 25]. The estimate of the dipole–dipole coupling D is

defined as D = µ0µ
2/4πr3

nn, thus for both Ho2Ti2O7 and Dy2Ti2O7 D ∼ +1.4 K and Dnn = +2.35

K. The estimated value of J was obtained from Monte Carlo simulations and specific heat data in

Dy2Ti2O7 [25] or from neutron scattering on Ho2Ti2O7 [26], with reported values of J ∼ –3.72 K

for Dy2Ti2O7 and J ∼ –1.65 K for Ho2Ti2O7, confirming antiferromagnetic coupling [25, 26]. From

above, the effective nearest–neighbour ferromagnetic couplings Jeff = J/3 + 5D/3 in the NNSI model,

are 1.1 and 1.8 K for Dy2Ti2O7 and Ho2Ti2O7 respectively.

In summary, the spin ices Ho2Ti2O7 and Dy2Ti2O7 possess a residual low–temperature entropy

consistent with that estimated by Pauling applied to the ferromagnetic nearest–neighbour 〈111〉 Ising

model on the pyrochlore lattice. Also, in Ho2Ti2O7 and Dy2Ti2O7 the effective ferromagnetic nearest

neighbour coupling between spins, which gives rise to frustration in the spin ice, comes from the

dipolar interactions (D > 0) being strong enough to balance the antiferromagnetic exchange (J < 0)

[17, 25].
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Spin liquid

Among the series of pyrochlores, there are some that exhibit a more exotic magnetic behaviour called

spin liquid. This is known for presenting the most dynamic behaviour in which spins continue to

fluctuate and evade order even at the lowest temperature observed [27], resembling the constant

motion of molecules within a true liquid. Such a spin liquid is an unusual phenomenon, since it has

a non–magnetic ground state that is built from well–formed local moments [27]. This remarkable

situation of spin liquids is produced by relaxing the Ising nature of the spins [14]. Thus, considerable

fluctuations between degenerate configurations are restored, resulting in a spin liquid state, which is

known as a “quantum variant” of spin ices [14]. The spin liquids were first proposed by Anderson in

1973 [28] and since then their theoretical possibility has been in discussion. Two potential candidates

for the spin liquid state are the pyrochlores Tb2Ti2O7 and Yb2Ti2O7.

First, we will consider Tb2Ti2O7, which is characterized by an Ising–like anisotropy of the Tb3+

ions along the local 〈111〉 axes [29], in a similar way to spin ices Ho2Ti2O7 and Dy2Ti2O7. Although

presenting a Curie–Weiss temperature of θCW ∼ -19 K which indicates antiferromagnetic interactions

[29], Tb2Ti2O7 does not enter a long–range ordered state [30]. However, the study of Yasui et

al. suggested that Tb2Ti2O7 suffered a phase transition to an “ordered state” at T ∼ 1.5 K [31].

Subsequent results of Gardner et al. concluded that the previous order of Tb2Ti2O7 at T ∼ 1.5 K is

a result of a few spins freezing around defects in the stochiometric crystal structure, and also pointed

out a disordered fluctuating ground state with short range spin correlations down to 50 mK [32]. From

a theoretical perspective, a proposal by Molavian et al. discussed that Tb2Ti2O7 is kind of a quantum

spin–ice system where the spin–ice–like correlations remain hidden down to 0.5 K [33].

On the other hand, for ytterbium titanate Yb2Ti2O7 early work from Blöte et al. proposed an

ordered magnetic state below 200 mK, where a sharp anomaly in the specific heat was observed

[34]. Also, Bramwell et al. reported a Curie–Weiss temperature θCW ∼ +0.59 K indicating a weak

ferromagnetic coupling [35]. However, in [36] Hodges et al. found an abrupt change in the fluctuation

rate of the Yb3+ spin at 240 mK that did not correspond to the ordered state expected from [34].

Specific heat measurements in powder and crystal samples of Yb2Ti2O7 show that the temperature of

the phase transition varies significantly between them [37, 38], thus it has been proposed by Ross et al.

that the low temperature magnetic state is very sensitive to sample preparation conditions [37]. Some

samples show anomalies with the highest temperature observed at 265 mK in a polycrystalline powder

samples [38]. Other powder samples show slightly broader anomalies at lower temperatures; 250 mK
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and 214 mK [38]. For crystal samples they present broad humps instead of sharp anomalies and in

some cases a mixture of broad hump and sharp peak [37]. This sample dependence is illustrated in

figure 2.11 taken from [37], in which the specific heat measurements of Yb2Ti2O7 show different kind

of anomalies at different temperatures. Currently, the transition in Yb2Ti2O7 at 200 mK remains

unexplained, but it seems essential that a small number of defects in Yb2Ti2O7 have the potential to

cause significant changes in such a frustrated system [38].

Figure 2.11: Low–temperature specific heat measurements of Yb2Ti2O7. A significant sample depen-

dence is observed in both powders and single crystals. The powder sample (blue) shows the highest

temperature (265 mK) and sharpest anomaly. The second crystal sample (for neutron scattering

purposes), B, shows a sharp peak at 265 mK similar to the powder, and a broad, low–temperature

feature similar to crystal A. Figure from [37].

Finally, from this short review of spin liquids Tb2Ti2O7 and Yb2Ti2O7 it is concluded that the

fluctuation of spins and the type of order that might exist are still not well understood and also that

in both cases the structural defects have a key role in that unexplained order occurring in them. Thus,

further theoretical and experimental studies are required to describe the physics of spin liquids [2].

For a more detailed explanation of the spin liquid state review references [2], [6], and [27].
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Long–range order

We will now study rare earth pyrochlores that develop long–range magnetic ordering. These magnetic

systems are of significant interest because they provide systems with axial and planar symmetry,

quantum order–by–disorder transition, and partially ordered systems [2]. As we discussed earlier, an

estimate of the Heisenberg exchange constant J can be computed from the Curie–Weiss temperature

θCW. For instance, for an ordinary magnet being cooled down to the Curie–Weiss temperature, it is

expected that they begin to develop long–range magnetic order. On the other hand, in a magnetic

system with the main interaction subject to frustration what happens is that the temperature at

which long–range order begins to develop, TN, decreases to very low temperatures. Examples of rare

earth pyrochlores subject to long–range order are Gd2Ti2O7 [18] and Gd2Sn2O7 [4]. On subsequent

Sections we will discuss Gd2Ti2O7 deeply when we will study its proposed order structure and also

inherent to it the magnetic ordering in Gd2Sn2O7.

But before continuing with Gd2Ti2O7, in table 2.2 is summarized what it is known about the

presence or absence of long–range order in the rare earth pyrochlores A2Ti2O7. It shows the number

of electrons n in the 4f shell of the rare–earth ion, the presence of long–range order, and the temperature

of ordering Tc. Thus, a first correlation is to notice if the rare–earth ion of the A2Ti2O7 pyrochlores

have a Kramer ion that is an odd number of electrons. From that, the Kramer ions nearly always show

long–range order (being Dy and Yb exceptions) whereas those with a non–Kramer ion (even electron)

do not [39]. Finally, we notice that the existence of a magnetic transition does not automatically

implies a long–range order as in the case of Yb2Ti2O7 in which the occurrence of long–range order is

still in discussion.

Rare earth n in 4fn Long–range order Tc (K)

Gd2Ti2O7 Gd 7 Yes [40] 1

Tb2Ti2O7 Tb 8 No [30] –

Dy2Ti2O7 Dy 9 No [41] –

Ho2Ti2O7 Ho 10 No [42] –

Er2Ti2O7 Er 11 Yes [43] 1.2

Yb2Ti2O7 Yb 13 Yes [44]/No [45] 0.2

Table 2.2: Presence or absence of long–range order in the Ti–based pyrochlores.
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2.5 Gadolinium Titanate – Gd2Ti2O7

In previous Sections we discussed the phenomenon of geometric frustration and the properties of

rare–earth pyrochlores in general so that now we are going to focus our study on the pyrochlore oxide

Gd2Ti2O7 with gadolinium Gd3+ as the central magnetic ion. The rare earth pyrochlore Gd2Ti2O7 is

regarded as an excellent approximation to a classical Heisenberg antiferromagnet. Indeed, the Gd3+

ion has a half–filled 4f–shell i.e. an electronic configuration of 4f7 with a large spin angular momentum

S = 7/2 and an orbital angular momentum of L = 0. This configuration evidences that Gd3+ is the

best example of a Heisenberg spin among the rare–earth ions. From the Hund’s rules [8], the total

momentum quantum number is J = 7/2 and therefore its electronic ground state is 2S+1LJ = 8S7/2.

In Gd2Ti2O7, the leading interactions between Gd spins are the antiferromagnetic nearest–neighbour

exchange and the dipole–dipole coupling with additional contributions identified as further nearest–

neighbour exchanges [18]. However, a considerable anisotropy was found in Gd2Ti2O7 [46] and thus a

crystal field splitting of the ionic levels occurs due to a strong spin–orbit coupling among 4f electrons

which mixes 8S7/2 and 6P7/2 states [47, 48].

For the electronic ground state 8S7/2 of Gd2Ti2O7, the total magnetic entropy associated is given by

S = NkB ln(g0), where N is the number of Gd ions and g0 is the ground–state degeneracy of J . Then,

for J = 7/2 the degeneracy is g0 = 2J + 1 = 8. From the above, the total entropy is S = NkB ln(8)

and the total entropy per mol of Gd is S = R ln(8) where R = kBNA is the Gas constant and NA

is the Avogadro constant. This value of the expected entropy S = R ln(8) = 17.3J/(K.mol) will be

discussed in next Section when we will review previous thermal results.

On the experimental side, magnetization measurements of Gd2Ti2O7 provide a saturated spin–

only moment of 7 µB per ion of Gd [49] in agreement with the expected value of gµBJ = 7 µB

where g = 2, J = 7/2, and µB the Bohr magneton. The magnetic susceptibility for Gd2Ti2O7

follows the Curie–Weiss law with an effective magnetic moment close to the theoretical value given

by peff = gµB

√
J(J + 1) = 7.94 µB and with a Curie–Weiss temperature θCW ∼ –10 K [18]. Also,

it was reported a magnetic phase transition to an ordered state in Gd2Ti2O7 when it goes through

a temperature of TN ∼ 1 K [18, 50]. From the above, the frustration index f ≡ |θCW|/TN is f ∼

10. Apart from ac susceptibility measurements which exhibit a transition at ∼ 1 K [18], subsequent

specific heat studies reported two phase transitions in zero applied field, at 0.75 and 1 K [39, 51].

Along with the rare earth pyrochlore Gd2Ti2O7, Gd2Sn2O7 is also a good realization of a Heisen-

berg antiferromagnet [40]. Magnetic properties of the stannate and titanate of gadolinium would
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therefore be expected to be very similar, however, the contrasts between the low–temperature be-

haviour of Gd2Sn2O7 and its analogous Gd2Ti2O7 are remarkable [4]. For example, Gd2Sn2O7 un-

dergoes a first–order transition into an ordered state near 1 K different from the two transitions found

in Gd2Ti2O7 at 0.75 and 1 K [39]. Another difference between them is the larger lattice constant a =

10.45 Å of Gd2Sn2O7 [4] compared with a = 10.184 Å of Gd2Ti2O7 [18].

Finally, as we mentioned, the rare earth pyrochlore Gd2Ti2O7 exhibit a long range order but this

is just part of the story. Hence, in the next Section we will discuss the proposed structures at very low

temperatures of the rare earth pyrochlore Gd2Ti2O7. These ordered structures are best pictured if the

pyrochlore lattice is described by layers stacked along the [111] direction of the crystal [40] as shown

on the left side of figure 2.12 taken from [2]. From this perspective, the pyrochlore lattice is seen

to consist of alternating Kagomé layers and intermediate triangular planes labeled as the interstitial

sites of the lattice [2]. Also, in Chapter 4 we will study the oxygen vacancies in Gd2Ti2O7 and the

consequences of such crystalline defects on the magnetic ground state. Thus, it is essential to know

how the local environment surrounding the rare–earth ions of pyrochlores is, specially the positions

of oxygen ions. For Gd2Ti2O7 or any other rare earth pyrochlore this is depicted on the right side

of figure 2.12, where the six oxygen ions labeled as O(2) form a ring around a central Gd3+ and the

oxygen labeled as O(1) is inside and lies on the center of the tetrahedra formed of four Gd3+.

Figure 2.12: (a) The pyrochlore lattice can be visualised as alternating Kagomé and interstitial planar

layers stacked along the [111] direction. (b) Corner–sharing tetrahedra of the pyrochlore Gd2Ti2O7

with isolated Gd and O ions. We have two non–equivalent oxygen at sites O(1) and O(2). The Ti

ions were removed for clarity. These figures were adapted from [2] and [52].

31



CHAPTER 2. Fundamentals and Theoretical Background

2.6 Previous work on Gd2Ti2O7

In this Section we are going to present results of previous researches concerning Gd2Ti2O7 that

propose its magnetic structure of ground state at very low temperatures. Until last year (2014),

the accepted proposal for the magnetic structure of Gd2Ti2O7 at 50 mk was an ordering of spins

known as 4–k (which we will explain below) reported on J. R. Stewart et al.’s paper [40]. In the

7th International Conference on Highly Frustrated Magnetism 2014, J. R. Stewart stated that the

4–k ordering is inconsistent with new data obtained from new neutron diffraction experiments in

Gd2Ti2O7, hence ruling out his previous proposal. Then, since it is still under discussion the low–

temperature magnetic ground state of the Heisenberg pyrochlore antiferromagnetic Gd2Ti2O7, we will

study on this dissertation its ordering at temperatures near to the two magnetic transitions found.

Indeed, a clear understanding of the magnetic properties of Gd2Ti2O7 will lead us to come up with

ideas for its behaviour in presence of crystalline defects as we will study in Chapters 4 and 5.

2.6.1 Long–range magnetic order in Gd2Ti2O7

The problem of antiferromagnetic nearest–neighbour exchange interactions on the pyrochlore lattice

was first considered by Anderson (1956) in the spinel structure of ferrites, where he predicted a very

high ground state degeneracy and that no long range order would exist at any temperature for Ising

spins [53]. More than twenty years later, Villain (1979) reached the same conclusion for Heisenberg

spins with antiferromagnetic nearest–neighbour interactions on the pyrochlore lattice [54]. Villain

stated that such system will display an unusual collective behaviour which remained disordered and

fluctuating down to zero temperature, giving rise to a state that he called collective paramagnet

[54]. However, the best example of an Heisenberg antiferromagnet on a pyrochlore lattice: Gd2Ti2O7

enters into an unexpected long–range ordered state at low temperatures differing from that collective–

paramagnet behaviour [18].

Raju et al. (1999) reported in [18] the dc magnetic susceptibility χ vs temperature for a polycrys-

talline sample of Gd2Ti2O7. The collected data was found to follow the Curie–Weiss behaviour in the

range 10 K – 300 K as is shown in figure 2.13 from [18], with an effective magnetic moment of 7.7

µB/Gd ion and a Curie–Weiss temperature θCW of –9.6 K indicating antiferromagnetic interactions

between the Gd spins.
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Figure 2.13: Inverse susceptibility χ−1 of Gd2Ti2O7 against temperature in the range 2 – 25 K, and

in the range 2 – 300 K in the inset. Figure taken from [18].

In the same paper, Raju et al. observed from experimental data of ac susceptibility χac a broad

peak centered near to 1 K as show in figure 2.14, which provides an indication of a transition to long–

range antiferromagnetic order [18]. Also, measurements of χac(ω) seem to be independent of frequency

[18] as shown in 2.14. The specific heat Cm as a function of temperature is shown in figure 2.14. Here,

there is a single sharp peak at T = 0.97 K (better illustrated in the inset) in agreement with the

ac asusceptibility data developing a transition to a long–range–ordered state [18]. The specific heat

from 1.4 K to 18 K shows a broad Schottky anomaly peaked near 2 K with magnetic contributions

extending to 20 K. The solid line in figure 2.14 represents the theoretical fit of the Schottky peak

which is detailed in [18].
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Figure 2.14: (a) Real part of the ac susceptibility χ′ vs temperature at different frequencies, (b)

specific heat Cm vs temperature. The inset displays Cm in the low–temperature range below 5 K.

Figures taken from [18].

To establish a model for the magnetic–ordered phase of the spins in pyrochlores systems many

previous works have made use of the mean field theory (MFT) [55, 56]. The formalism of this theory

is beyond the scope of this dissertation however we will discuss about some order parameters obtained

from MFT that can be compared with experimental results specifically with neutron diffraction. In

very simple terms, calculations of MFT imply first to consider a Hamiltonian H for the spins Si in

the system and from it analyse the thermodynamic of the system through its free energy F which has

the form

F = Tr(ρH) + kBT Tr(ρlnρ), (49)

where ρ is the full density matrix of the system, T is the temperature, and H the Hamiltonian of

the spins Si. In the paper of Reimers et al. [55] is set the procedure to obtain an expansion for the

free energy F of the system in terms of the order parameters B(ri) at lattice sites ri (for a detailed

definition review [55]). Also, in this calculation it is mandatory that the order parameters B(ri) are

expanded in terms of Fourier components as

B(ri) =
∑
q

B(q) exp(iq · ri). (50)

This results in a diagonalization problem of the free energy F to calculate the ground state and the

transition temperature as a function of the order parameter q [55]. In the MFT q (also labeled as k)
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is defined as the ordering vector correlated to the ground state of the spins [55]. On the experimental

side, q is an essential result of neutron diffraction characterizing the ordered structures of spins at

low temperatures, thus a comparison between experiment and theory has been discussed in previous

works as we will see below.

Within the framework of the MFT, Raju et al. discussed in [18] what the expected magnetic

properties and type of magnetic–ordered phase for Gd2Ti2O7 are. First, they considered the classical

spin Hamiltonian H with nearest-neighbour antiferromagnetic interactions and dipole–dipole coupling

between spins:

H = −J
∑
(ij)

Si · Sj + Dr3
nn

∑
(ij)

[
Si · Sj
r3
ij

− 3(Si · rij)(rij · Sj)
r5
ij

]
, (51)

where J, D and rnn are, respectively, the antiferromagnetic exchange coupling, the dipolar coupling

and the nearest neighbour distance between Gd3+ ions. On [18] is set an estimate of the nearest–

neighbour exchange J ∼ -4.8 K and a strength of D ∼ 0.8 K for the dipole–dipole exchange. With this

Hamiltonian, Raju et al. followed the line set in [55] and showed that H does not lift the ground state

degeneracy to second order in the expansion of the free energy. However, it embraces an ordering

vector q = (h h h) [18]. Thus, in the frustrated magnet Gd2Ti2O7 Raju et al. stated that the long-

range order is not established for nearest-neighbour antiferromagnetic interactions J and long-range

dipolar interactions D only [18]. Instead, long-range order is expected when we also have in account

a second (J2) or third (J3) nearest-neighbour exchange interactions [18].

Finally, Raju et al. concluded that the frustrated Gd2Ti2O7 exhibits a transition to a long–range–

ordered state at 0.97 K and that the hamiltonian of the pyrochlore Gd2Ti2O7 must described nearest–

neighbour and dipolar interactions, and also exchange beyond nearest neighbours J2 and J3.

2.6.2 Palmer–Chalker State in the pyrochlore antiferromagnet

Palmer and Chalker (2000) studied in [57] the problem of the pyrochlore antiferromagnet including

dipole–dipole interactions just as Raju et al. had discussed [18]. However, they extended the mean–

field description of this system with the previous Hamiltonian H to find an ordering pattern below

a finite temperature T. Thus, they showed that the quartic term in the expansion of the free energy

lifts the ground state degeneracy, finding the ground state for spins on the pyrochlore antiferromagnet

with the Hamiltonian H [57]. With this fourth–order expansion, the spins on the pyrochlore lattice

select an ordering wave vector q = (000) known as the Palmer–Chalker state (PC).
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The Palmer–Chalker state q = (000) is shown in figure 2.15 for spins on a single tetrahedron of

the pyrochlore. The ground state for the full pyrochlore lattice is a periodic repetition of that for a

single tetrahedron. In figure 2.15 taken from [58] all the spins lie on the xy plane and form pairs of

antiparallel spins that are parallel to the opposite edge of the tetrahedron they belong to. According

to Palmer and Chalker the ordering obtained is due to energy selection and does not occur by an

entropically selected mechanism [57].

Figure 2.15: The PC state q = (000) for a single tetrahedron of the pyrochlore lattice. Here, all the

spins lie onto the xy plane and are parallel to certain edge of the tetrahedron. Figure taken from [58]

Figure 2.16 from [57] shows the configuration of the spins on the xy plane for the PC state with

ordering vector q = (000). Here, the spins are coplanar and form what is called a four–sublattice Néel

state [57].

Figure 2.16: Projection of the PC state q = (000) onto the xy plane of the pyrochlore lattice. Figure

taken from [57].
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In the study of the ground state in the geometrically frustrated lattices, it is worthwhile to mention

that the ordering vector q = 0 defines a different ground state of the spins in the frustrated Kagomé

lattice. We cite this because, as we mentioned before, the pyrochlore lattice could be understood as

parallel layers of Kagomé planes with atoms in interstitial positions along the [111] direction. Thus, the

ground state in the Kagomé lattice could provide us a hint of the spin configuration in the pyrochlore.

In [56] Reimers et al. showed that for spins in the Kagomé lattice interacting by nearest–neighbour

antiferromagnetic exchange, the system stabilizes an ordering vector q = 0. In this configuration the

three spins on the triangular sublattices forming an arrange of 120◦ among them as shown in figure

2.17. This is known as the ground state q = 0 for spins in a antiferromagnet Kagomé lattice.

Figure 2.17: The ground state q = 0 for spins in the Kagomé lattice. The spins on each triangle order

in a 120◦ pattern. This figure was taken from [59].

2.6.3 Low–temperature magnetic properties of Gd2Ti2O7

Bonville et al. (2003) reported in [39] specific heat, Mössbauer, magnetic susceptibility and magneti-

zation measurements for the antiferromagnet pyrochlores Gd2Ti2O7 and Gd2Sn2O7. However, we will

discuss here the temperature dependence of the specific heat and results from Mössbauer spectroscopy

for these pyrochlores. To carry out these experiments on Gd2Ti2O7 and Gd2Sn2O7, Bonville et al.

employed polycrystalline samples grown by the method described in [39]. In addition to these results,

we will discuss the magnetic susceptibility data reported by Petrenko et al. in [60]. It is important

to point out that for these experiments the authors of [60] worked with single crystal samples of

Gd2Ti2O7 instead of polycrystalline samples as in [39].
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For Gd2Ti2O7, Bonville et al. reported the specific heat data divided by the temperature as shown

in figure 2.18. It shows clearly two peaks corresponding to two phase transitions in Gd2Ti2O7, the

first one is at T1
N = 1.05 K and the second is at T2

N = 0.75 K. Also, the amplitudes of both peaks are

of an order of magnitude ∼ 10 J.K−2.mol−1. Then, according to Bonville et al. Gd2Ti2O7 enters in a

long–range order state at low temperatures as stated earlier by Raju et al. in [18]. By integrating the

specific heat data divided by the temperature, Bonville et al. found the magnetic entropy of Gd2Ti2O7

which is shown by the solid line in the inset of figure 2.18. Also, as we showed in Section 2.5, the total

magnetic entropy at high temperatures for Gd2Ti2O7 with J =7/2 is S = R ln(8) = 17.3 J.K−1.mol−1

which is represented by the dash line in the inset of figure 2.18. About the 20% and 35% of the total

magnetic entropy of R ln(8) is released up to the temperatures of the two transitions T1
N ∼ 1 K and

T2
N ∼ 0.75 K [39]. This value of entropy is not fully recovered for temperatures above 5 K indicating

the presence of considerable short–range order interactions [39].

Figure 2.18: Thermal dependence of the specific heat divided by the temperature of Gd2Ti2O7. The

inset shows the change in the entropy and the dashed line represents the total magnetic entropy

R ln(8) = 17.3 J.K−1.mol−1. This figure was taken from [39].

Bonville et al. also reported the specific heat data versus temperature for Gd2Sn2O7 as shown in

figure 2.19 from [39]. Here, there is a single sharp peak at TN = 1.015 K [39]. The amplitude of the

peak of Gd2Sn2O7 is ∼ 120 J.K−1.mol−1 which is of an order of magnitude higher compared with

the peaks of Gd2Ti2O7. Also, in the inset of figure 2.19 the dashed line represents the total magnetic
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entropy R ln(8) = 17.3 J.K−1.mol−1. The inset shows that about the 40% of the total magnetic

entropy is released up to the temperature of the transition TN = 1.015 K. Thus, for Gd2Sn2O7

short–range interactions are present in higher temperatures just as in Gd2Ti2O7.

Figure 2.19: Specific heat as a function of temperature for Gd2Sn2O7. The inset shows the variation

in entropy and the dashed lines represent R ln(8) = 17.3 J.K−1.mol−1.

Mössbauer measurements reported by Bonville et al. in [39] discuss the orientation of the mag-

netic moments in the pyrochlore materials Gd2Ti2O7 and Gd2Sn2O7. As mentioned before, in each

tetrahedron of the pyrochlore lattice the rare–earth Gd3+ ions lie at their respective vertices. These

Gd3+ ions or magnetic moments have a saturated low temperature value of 7 µB and also they have

as symmetry axis the local 〈111〉 direction defined from the Gd site to the center of the tetrahedron

[39]. From Mössbauer measurements, in Gd2Sn2O7 at temperatures ∼ 1 K, the four magnetic mo-

ments of the tetrahedra have the same size (∼ 5.25 µB) and each is perpendicular to the local 〈111〉

axis [39]. On the other hand, for Gd2Ti2O7 at temperatures between the transitions that is between

0.75 K and 1 K reveals that three sites of the tetrahedron retain an orientation perpendicular to the

local direction 〈111〉 and the fourth site has a tilted and different sized moment [39]. In terms of

the magnetic structure, Bonville et al. stated that those three sites of the tetrahedron correspond to

unchanged spin orientations in the Kagomé layer, with a different moment in the interstitial sites.

This is illustrated in figure 2.20 taken from [50]. Thus, in a very summarized idea, according to

the Mössbauer measurements in Gd2Ti2O7 and Gd2Sn2O7, each magnetic moment on the pyrochlore
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lattice lies perpendicular to its local trigonal axis 〈111〉.

Figure 2.20: Spin orientations in the Kagomé planes are perpendicular to crystalline direction [111]

and the disordered spins lie in the interstitial sites. The so–called 1–k model. Figure from [50].

Before ending this Section, we are going to present magnetic susceptibility results of Gd2Ti2O7

reported by Petrenko et al. in [60]. Figure 2.21(a) from [60] shows the temperature dependence of

the magnetic susceptibility of Gd2Ti2O7 measured with a magnetic field of 100 Oe applied along the

[100] direction. Here, the arrows indicate the two transition temperatures at 1.02 K and 0.74 K in

agreement with the specific heat measurements in zero field of [39] and [60]. Also, the second transition

at 0.74 K is slightly clear even though the sample was a Gd2Ti2O7 crystal. Thus, if for the crystal

samples the transition peaks are not so clear, we expect that in polycrystalline samples of Gd2Ti2O7

the transitions from susceptibility measurements will be difficult to distinguish. Figure 2.21(b) shows

the temperature dependence of the susceptibility measured in different magnetic fields. Here, for low

magnetic fields as 0.93 kOe and 4.66 kOe we can resolve two transitions near to 1.02 K and 0.74

K. However, for a field of 56.9 kOe the values of magnetic susceptibility are still increasing until the

lowest shown temperature 0.5 K, suggesting thus a magnetic transition under this temperature. These

curves are consecutively offset by 0.05 emu/mol for clarity.
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Figure 2.21: (a) Temperature dependence of the magnetic susceptibility of Gd2Ti2O7 measured with a

magnetic field of 100 Oe, the arrows indicate the two transitions at 1.02 and 0.74 K. (b) Temperature

dependence of the susceptibility measured for different magnetic fields. Figure taken from [60].

2.6.4 Neutron diffraction and multi–k order in Gd2Ti2O7

The ordered magnetic structures at low temperatures in pyrochlore materials can be studied directly

by neutron diffraction experiments. However, in Gd2Ti2O7 and Gd2Sn2O7 these experiments are

difficult to carry out since gadolinium is very adverse to them [2]. Because of the high absorption

cross section of gadolinium 155Gd, neutron studies are performed in isotopically enriched 160Gd2Ti2O7

samples [50]. In fact, the difficulty of performing neutron scattering on Gd2Ti2O7 has led to reconsider

its proposed structure at very low temperatures as we will discuss here.

First studies of neutron diffraction in Gd2Ti2O7 were performed by Champion et al. (2001) and

reported in [50]. They found that the magnetic structure below T1
N ∼ 1 K is indexed with an ordering

vector k = (
1

2

1

2

1

2
). This k agrees with the ordering vector of Gd2Ti2O7 predicted by Raju et al. [18].

The spin structure observed for the pyrochlore Gd2Ti2O7 can be understood in terms of the Kagomé

planes and interstitial sites forming the pyrochlore as shown in figure 2.12. The ground state k =

(
1

2

1

2

1

2
) for Gd2Ti2O7 at 50 mK consists of the ordering q = 0 for the Kagomé planes that means an

arrangement of 120◦ between the spins of the triangular sublattices (figure 2.17) with the spins in the

interstitial sites carrying a either statically or dynamically disordered spin as shown in figure 2.20.

This result implies that about 1/4 of Gd spins are disordered at 50 mK. As stated by Champion et
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al., neutron diffraction can be ambiguous for high symmetry systems so there is always the possibility

of multi–k structures. These are alternative structures described by one or several symmetry–related

ordering vectors k which give identical diffraction patterns [40] as we will discuss below. To sum up,

the dipolar Heisenberg antiferromagnet Gd2Ti2O7 is partially ordered at 50 mK in a pattern that

consists of q = 0 Kagomé planes plus a disordered interstitial moment [50].

Stewart et al. (2004) discussed the problem of the multi–k structures in Gd2Ti2O7 by neutron

diffraction experiments [40]. First, as expected, they found the neutron diffraction pattern below the

first transition at T1
N ∼ 1 K and the ordering vector k = (

1

2

1

2

1

2
). Also, the data was consistent

with the magnetic structure of Gd2Ti2O7 described in the previous paragraph, which was labeled as

the 1–k model. On it, 1/4 of Gd spins are disordered while 3/4 of spins are fully ordered [40]. The

second transition at T2
N ∼ 0.75 K is associated with a partial order on the disordered site that is

the interstitial spin [40]. Stewart et al. stated that the 1–k structure generates multi–k possibilities:

2–k, 3–k and 4–k which give identical diffraction patterns [40]. Nevertheless, the 2–k and 3–k were

first rule out because they provided unphysical magnetic moments of Gd3+ greater than 7 µB. Thus,

Stewart et al. retained the 1–k and 4–k to work with.

The 1–k and 4–k structures are shown in figure 2.22 from [40]. In the 1–k structure, the ordered

spins lie on the Kagomé planes perpendicular to the single global [111] crystallographic direction and

in between these planes the spins remain disordered [40]. These disordered spins have a weak moment

in first approximation [40]. On the other hand, for the 4–k structure the spins are perpendicular

to the local trigonal 〈111〉 axes, which connect the vertices of the tetrahedra with their centres [40].

On it, there is essentially a disordered tetrahedron. In addition to that, the disordered spins in both

structures lie in different lattice sites. In the 1–k structure, nearest neighbour disordered spins are

separated by a much larger distance of 7.2 Å compared with 3.6 Å of the 4–k structure [40].
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Figure 2.22: Low temperature magnetic structures 1–k and 4–k of Gd2Ti2O7. In each model the four

disordered Gd spins are coloured in orange. The phase transition at T2
N ∼ 0.75 K involves partial

ordering of these four spins. Figure from [40].

The same comparison between the 1–k and 4–k structures is pictured in figure 2.23 from [62]. On

it, it is more clear the ordered Kagomé plane (blue) with the disordered spins (yellow) for the 1–k

structure.

Figure 2.23: (a) 1–k structure along the direction [111], the ordered sites (blue) form a 120◦ pattern

on a triangle in a Kagomé plane and the disordered spins lie on the interstitial sites (yellow). (b) 4–k

structure with the ordered spins being perpendicular to the local 〈111〉 axes. Figure taken from [62].

Reported data of diffuse neutron scattering by Stewart et al. is shown in figure 2.24 from [40].

They analysed the diffuse neutron scattering because it is able to distinguish the differences between

the 1–k and 4–k structures [40]. Then, the diffuse neutron pattern was modeled involving first and
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second near–neighbour interactions [40]. In figure 2.24, the 1–k and 4–k fits are shown as the red and

blue lines respectively, and of which the 4–k model produces a better fit than the 1–k model. Thus,

Stewart et al. stated that for Gd2Ti2O7 the magnetic structure at 46 mK was the 4–k model [40].

Figure 2.24: Magnetic diffuse scattering at 46 mK (black circles). Fits of the data with 1–k (a) and

4–k (b) models. This figure was taken from [40].

2.6.5 Magnetic ordering in Gd2Sn2O7 and Gd2Ti2O7

Wills et al. (2006) reported that Gd2Sn2O7 orders with the PC ground state which is the result of

having as leading interactions the antiferromagnetic exchange and dipole–dipole coupling. This PC

State, q = (000), differs largely from the ground state of its closely related Gd2Ti2O7, k = (
1

2

1

2

1

2
),

described above. Thus, Wills et al. stated that the magnetic Hamiltonian of Gd2Ti2O7 contains

additional terms [4]. In figure 2.25(a) from [4] is shown the second–neighbour exchange J2 as well as

the two types of third–neighbour exchange J31 and J32. Then, from MFT, Wills et al. determined

the instability of the ordering vector for different values of second– and third–neighbour exchange
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constants. This is shown in figure 2.25(b) from [4] which shows the diagram of possible ordering

vectors for a small regime of J31 and J2. Wills et al. found that antiferromagnetic interactions J31

stabilizes the order vector k = (
1

2

1

2

1

2
), which exists in the range of J31 between 0 and 0.335J. Also,

as expected, they found that the ground state for Gd2Ti2O7: k = (
1

2

1

2

1

2
) corresponds to a 120◦ spin

structure with q = 0 in the Kagomé planes and no ordered spins on the interstitial sites.

Figure 2.25: (a) Pyrochlore lattice of corner–sharing tetrahedra where next–neighbour exchanges are

shown by dashed lines. (b) Ordering wavevectors for different values of second– and third– neighbour

exchange constants for a Heisenberg antiferromagnet with dipolar interactions. Figures from [4].

To sum up, the fact that Gd2Sn2O7 orders with the PC State indicates how excellent it is to

model the Heisenberg pyrochlore antiferromagnet with dipolar interactions. On the other hand, the

Hamiltonian of Gd2Ti2O7 possesses additional interactions as a type of third–neighbour exchange

which led to the magnetic orderings 1–k and 4–k mentioned in the previous Section.

2.6.6 The low temperature magnetic ground state of Gd2Ti2O7 is not 4–k

Taking place in the 7th International Conference on Highly Frustrated Magnetism 2014, J. R. Stewart

and J. Paddison stated that the previously 4–k structure was ruled out as a candidate for the low

temperature magnetic ground state at 50 mK. They revealed that the 4–k structure is not consistent

with the new data of in–field neutron diffraction [61]. They also cited the work of Javanparast et

al. (2013) in which by introducing different bilinear interactions to the Hamiltonian of Gd2Ti2O7

it is studied the problem of partially ordered phases with periodically arranged disordered sites on
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the pyrochlore lattice. Figure 2.26 from [62] shows the order selected depending of the interaction

constants in the Hamiltonian. From it, Javanparast et al. predicted a 1–k or 4–k structure to exist

in Gd2Ti2O7 with the order vector k = (
1

2

1

2

1

2
) between the temperatures T1

N = 1 K and T2
N = 0.75

K [62]. In conclusion, J. Paddison et al. stated the 1–k structure for Gd2Ti2O7 is still valid with the

latest research [61].

Figure 2.26: Ordering vectors at T1
N = 1 K obtained from MFT [62]. The combined area 1–k and 4–k

correspond to the order vector k = (
1

2

1

2

1

2
). The k = 0 region involve all states for which all spins are

fully ordered. Figure taken from [62].

2.6.7 Vacancy defects in pyrochlores

Sala et al. discussed in [63] that the vacancy defects of oxygen are the main cause of magnetic impurities

in as–grown samples of the pyrochlores Y2Ti2O7 and spin ice Dy2Ti2O7. They reported the effects

of the oxygen vacancies in the structure and magnetism of Y2Ti2O7 and Dy2Ti2O7 using neutron

scattering and magnetization measurements.

For Y2Ti2O7, Sala et al. analysed the x–ray diffraction data of different samples: oxygen–depleted,

as–grown, and annealed in oxygen Y2Ti2O7. Then, they reported that these samples refined in the

pyrochlore with space group Fd3m. The refinement revealed equal occupancies on the Y and Ti sites

minimizing thus the stuffing of Ti sites by Y. Also, Sala et al. reported that for the depleted Y2Ti2O7

the majority of the vacancies were found to be on the O(1) sites [63]. As shown in [63] the length of the

unit cell increases monotonically with decreasing oxygen concentration. Sala et al. modeled the defect

structure due to the presence of oxygen vacancies which corresponds to a distortion of the pyrochlore
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lattice shown in figure 2.27 from [63]. Here, there are Y ions that relax away from the vacancy O(1)

owing to Coulomb repulsion, two Ti4+ ions transform to Ti3+ to preserve charge neutrality, and also

neighbour O(2) ions move towards Ti4+ ions to give the correct bond lengths [63].

Figure 2.27: Defect structure in the pyrochlore Y2Ti2O7−δ around an O(1) vacancy defect. The

displacements are displayed by green arrows. Figure adapted from [63].

For Dy2Ti2O7, Sala et al. reported that annealing as–grown Dy2Ti2O7 in oxygen led to defect–free

crystals concluding that the dominant defects are also oxygen vacancies [63]. These oxygen vacancies

are located on the O(1) sites according to neutron scattering studies [63]. Sala et al. reported a

comparison between the static magnetic susceptibility of an as–grown Dy2Ti2O7 sample before and

after annealing in oxygen. This measurement showed a clearly reduction in saturation magnetization

that implies a reduced moment on the defective Dy3+ sites [63]. Thus, the oxygen vacancies reduce the

saturation magnetization [63]. On the other hand, Sala et al. reported for Dy2Ti2O7 crystal electric

field calculations [64]. They showed that the Dy3+ ions have a reduced moment in the presence of

and O(1) vacancy and that the anisotropy of the moments change [64]. Recalling the ground–state

of the spin ice in which the magnetic moments have an easy axis along 〈111〉, in the oxygen–depleted

spin ice Dy2Ti2O the magnetic moments lie in a easy plane perpendicular to the local 〈111〉 [64].

Thus, the results of [63] make it clear that the density of oxygen vacancies in spin–ice samples or

another frustrated system is of key importance in the understanding of their magnetic properties at

low temperatures. We will recall this ideas in Chapter 4 when we will study the effects of oxygen

vacancies in Gd2Ti2O7.
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2.6.8 Summary

To end this Chapter, it is convenient to sum up the proposed structure at low temperatures of

Gd2Ti2O7 concluded from experimental and theoretical studies of the works above–mentioned. Thus,

according to the authors in each work:

• Raju et al. (1999)

– The main terms in the Hamiltonian of the Heisenberg pyrochlore Gd2Ti2O7 are the nearest–

neighbour antiferromagnetic exchange and dipolar interaction.

– Long–range order in Gd2Ti2O7 is expected to occur including interactions beyond nearest–

neighbour exchange J and dipole–dipole coupling D.

– From mean field theory, these interactions stabilizes an ordering vector q = (h h h).

• Palmer and Chalker (2000)

– The Heisenberg pyrochlore antiferromagnet with dipolar interactions lift the degeneracy

and stabilize a four–sublattice state using an approximation to the quartic terms in the

free energy.

– It is stabilized an ordering vector q = (000) corresponding to the ground state known as

the Palmer–Chalker state.

• Bonville et al. (2003)

– Specific heat data of Gd2Ti2O7 shows two magnetic transitions at T1
N = 1 K and T2

N =

0.75 K. For Gd2Sn2O7, there is a phase transition at 1 K.

– Mössbauer experiments evidence in Gd2Ti2O7 and Gd2Sn2O7 the magnetic moments lie

perpendicular to the local trigonal 〈111〉 axis.

• Stewart et al. (2004)

– From powder neutron diffraction, the magnetic structure of Gd2Ti2O7 corresponds to the

ordering vector k = (
1

2

1

2

1

2
).

– Proposed structures: 1–k and 4–k (figure 2.22).
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• Wills et al. (2006)

– Gd2Sn2O7 orders in the PC State with the ordering vector q = (000) (figure 2.15).

– From MFT, additional terms in the Hamiltonian of Gd2Ti2O7 are a type of third–neighbour

exchange J31. It stabilizes the ordering vector k = (
1

2

1

2

1

2
).

• Paddison et al. (2015)

– The previous low–temperature 4–k model was ruled out because it does not reconcile with

in–field neutron diffraction experiments.

– The 1–k model at low temperatures is still valid.

– It is predicted a 1–k or 4–k model between the temperatures T1
N = 1 K and T2

N = 0.75 K

by considering additional terms in the interaction Hamiltonian of Gd2Ti2O7.
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Chapter 3
Sample Preparation and Experimental

Techniques

In this chapter we describe the growth of polycrystalline powder samples of Gd2Ti2O7 and diluted

samples of Gd2Ti2O7 with yttrium Y: Gd2−xYxTi2O7. For the preparation of the samples it was

employed an alternative route known as the sol–gel method. We describe the procedure to obtain

polycrystalline as–grown Gd2Ti2O7 samples which are the starting point to study vacancy defects in

different annealing conditions. Also, the sol–gel method with specific variations on the preparation

provides polycrystalline diluted Gd2−xYxTi2O7 samples with different yttrium contents x.

We study X–ray diffraction technique in order to determine the crystalline structure of our sam-

ples. To quantify the vacancy defects and the yttrium dilution in Gd2Ti2O7 and Gd2−xYxTi2O7

respectively, we employ the Rietveld refinement using the FullProf software.

Furthermore, we explain the experiments performed to study magnetically and thermally the

Gd2Ti2O7 and Gd2−xYxTi2O7 polycrystalline samples. Magnetic measurements were carried out

on a Vibrating Sample Magnetometer (VSM), an AC susceptometer, and a Superconducting Quan-

tum Interference Device (SQUID), whereas specific heat experiments were performed on a Physical

Property Measurement System (PPMS).

50



CHAPTER 3. Sample Preparation and Experimental Techniques

3.1 Sol–gel method

Most of the works reviewed in Chapter 2 concerning the pyrochlore Gd2Ti2O7 employ different meth-

ods to prepare stoichiometric samples. Two methods widely used to prepare polycrystalline powder

and crystal samples of Gd2Ti2O7 are the solid–state reaction method and the optical floating zone

technique respectively. Using the conventional method of solid–state reaction, a single phase poly-

crystalline sample of Gd2Ti2O7 is prepared by mixing and grinding the constituent oxide powders:

Gd2O3 and TiO2. Then, by heat treatment of the mixture several times up to 1350◦C with intermedi-

ate grindings for a few days, the polycrystalline powder of Gd2Ti2O7 is synthesized [39]. The second

method; the optical floating zone; uses as starting material a pressed powder prepared by solid–state

reaction to synthesize the single crystal [65]. The procedures of these methods are described in detail

in the literature [39, 65].

However, in this dissertation it was employed an alternative route known as the sol–gel method

to prepare polycrystalline samples of Gd2Ti2O7 and Gd2−xYxTi2O7. Indeed, this technique has been

used in the synthesis of other pyrochlores like Y2Ti2O7 [66] and diluted Gd2−2xBi2xTi2O7 [67]. The

sol–gel method starts from precursor dissolutions, in which metal ions are distributed, and then during

the heat treatment, the metal oxide powders are left [66]. In comparison with powder samples prepared

by solid–state reaction, the sol–gel method allows us to obtain powders extremely pure that are mixed

at a molecular level [66]. Thus, this method allows us to achieve a high chemical homogeneity with

a shorter reaction time and lower temperatures of heat treatment [67]. In addition, it is worthwhile

to mention that the preparation of diluted samples of Gd2−xYxTi2O7 by the sol–gel method is a

practical process to introduce ions (in our case Y3+) in the structure using an appropriate precursor.

In next Subsections we describe the sol–gel method used to prepare polycrystalline powder samples

of Gd2Ti2O7 and Gd2−xYxTi2O7 that we will discuss in the Chapters 4 and 5 respectively.

3.1.1 Polycrystalline growth of Gd2Ti2O7

The polycrystalline samples of Gd2Ti2O7 were prepared at the Institute of Chemistry of the University

of São Paulo by Dr. Flavio Vichi, doctoral student Marina Leite, and with my assistance. The sol–gel

method employed was based on the synthesis described in [66]. To synthesize the polycrystalline

powder of Gd2Ti2O7 it was used gadolinium oxide powder Gd2O3 (99.99%, Reacton) and alkoxide

tetrabutyl titanate Ti(OC4H9)4 (Gelest) –also called Ti(OBu)4– as starting materials. Both Gd2O3

and Ti(OBu)4 were used as the precursors of Gd and Ti respectively. The stoichiometry of the chemical
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reaction is given by

Gd2O3 + 2 TiO2 → Gd2Ti2O7 . (52)

First, according to [66], a non–stoichiometric amount of powder citric acid C6H8O7 (Merck) was

dissolved into the solvent ethanol C2H5OH (Sigma–Aldrich) and also a stoichiometric amount of

Ti(OBu)4 was added into maintaining the stirring vigorously. The molar quantity of citric acid was

2.5 times the mol of Gd and Ti that is nCA/(nGd + nTi) = 2.5. On the other side, a stoichiometric

amount of powder Gd2O3 was dissolved into a non–stoichiometric amount of concentrated nitric acid

HNO3 (65%, Sigma–Aldrich) with some drops of water in order to obtain a Gd3+ dissolution of a

molar rate Gd/Ti = 1. This dissolution of Gd3+ was placed in magnetic stirring and the excessive

HNO3 was evaporated by slow heating at 80◦C. Next, the dissolution containing Ti was poured into

the Gd dissolution and this mixture was placed in an 80◦C oil bath to vaporize water and excessive

solvent. Here, the alkoxide (Ti(OBu)4) is hydrolysed and forms hydroxyl (Ti(OBu)3–OH) and alkoxi

(Bu–OH) where the former with the citric acid as a chelating agent results in a dissolution of Ti4+

[68]. Thus, we have a mixture of two dissolutions one containing Gd3+ and the other one Ti4+ with

excessive organic compounds. The magnetic stirring was maintained for 12 hours until the mixture

became highly viscous and finally changed into a yellow gel. Then, in order to remove residues of the

organic compounds, this yellow gel of Gd2Ti2O7 was heat–treated in “air”; that is without any gaseous

atmosphere; at 900◦C for 3 hours. From that, the resulting polycrystalline powder of Gd2Ti2O7 is an

extremely white one. This white powder was heat–treated once more at 1100◦C for 24 hours in air and

the resulting final powder of Gd2Ti2O7 is a darker one. This sample is referred to in this work as the

“as–grown sample” and it is the starting point of our study presented in Chapter 4 in which different

post–growth annealing conditions take place. To confirm that the phase of the polycrystalline powder

is indeed Gd2Ti2O7, X–ray powder diffraction was performed. X–ray powder diffraction is detailed in

Section 3.2.

The samples of Gd2Ti2O7 studied in Chapter 4 are separated in two different batches. The first set

of Gd2Ti2O7 samples consists of a polycrystalline powder as–grown in air and two samples annealed

in oxygen O2 for 24h and 27h. That means that our as–grown polycrystalline sample of Gd2Ti2O7

will be annealed at 1100◦C in O2 at a flow rate of 50 ml min−1 for 24h and 27h. The second one

consists of polycrystalline powder Gd2Ti2O7 grown in three different atmospheres: air, H2, and O2.

Here, the polycrystalline Gd2Ti2O7 is heat–treated at 1100◦C for 24 hours in air, in H2 at a flow

rate of 50 ml min−1 and in O2 at a flow rate of 50 ml min−1. In order to measure the magnetic and
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thermal properties of Gd2Ti2O7, we compact the polycrystalline powder samples into circular pellets

of 10 mm of diameter.

3.1.2 Polycrystalline growth of Gd2−xYxTi2O7

To prepare the polycrystalline powder of Gd2−xYxTi2O7 we employed the sol–gel method described

above with extra steps. We used as starting materials: gadolinium oxide powder Gd2O3 (99.99%,

Reacton), tetrabutyl titanate Ti(OBu)4 (Gelest), and yttrium oxide powder Y2O3 (99.99%, Sigma–

Aldrich) which contains the non–magnetic ion Y3+ responsible for the dilution of the magnetic lattice.

The stoichiometry of the chemical reaction is given by

(1− x

2
) Gd2O3 +

x

2
Y2O3 + 2 TiO2 → Gd2−xYxTi2O7 . (53)

Similar to the method described above, first an proper amount of powder citric acid C6H8O7 was

dissolved into ethanol C2H5OH and a stoichiometric amount of Ti(OBu)4 was added to the dissolution

maintaining the stirring. The molar quantity of citric acid was 2.5 times the mol of Gd, Ti, and Y

that is nCA/(nGd + nY + nTi) = 2.5. Then, concentrated HNO3 was used as a solvent of the oxides

Gd2O3 and Y2O3 with some drops of water to obtain a dissolution of Gd3+ and Y3+ with a molar rate

Gd+Y/Ti = 1. To evaporate the excessive HNO3 the solution was placed in magnetic stirring and

heating. After that, the two solutions–one of Ti and the other one containing Gd and Y–were mixed

and placed in an 80◦C oil bath to vaporize water and excessive solvent. The magnetic stirring was

maintained for 12 hours until the mixture became into a gel. This gel of Gd2−xYxTi2O7 was heated

in air at 900◦C for 3 hours to evaporate excessive organic compounds. Next, the resulting powder

of Gd2−xYxTi2O7 was heat–treated at 1100◦C for 24 hours in air. A final heating at 1100◦C for 24

hours in O2 at a flow rate of 50 ml min−1 is made to obtain stoichiometric samples of Gd2−xYxTi2O7.

We analysed the polycrystalline Gd2−xYxTi2O7 by X–ray powder diffraction to verify the phase of

our sample and to compare its X-ray diffractogram with the polycrystalline Gd2Ti2O7 of the previous

subsection.

In Chapter 5 it is studied the polycrystalline Gd2−xYxTi2O7 samples with different concentrations

of yttrium that is for x = 0.1, 0.14, 0.16, 0.2, 0.3, 0.4, 0.7, 1, 1.2, and 1.5. Also, the polycrystalline

powder samples of Gd2−xYxTi2O7 were compacted into circular pellets of 10 mm of diameter to

measure their low–temperature magnetic properties.
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3.2 X–ray powder diffraction

X–ray diffraction (XRD) is a powerful technique to characterize the homogeneity, crystal structure,

stoichiometry and phase of a sample. It occurs when the X–rays are scattered by the periodic array

of the atoms in the solid producing constructive interference at specific angles. The wavelength of the

X–rays are similar to the distance between atoms being thus an excellent probe of the microscopic

structure [10]. The scattering of the X–rays from atoms produces a diffraction pattern when they

satisfy the Bragg condition [10]:

λ = 2dhkl sinθ. (54)

It calculates the angle where constructive interference from X–rays scattered by parallel planes of

atoms will produce a diffraction peak [10]. Here, the X–ray wavelength λ is fixed and thus a family

of planes produces a diffraction peak only at a specific angle θ. dhkl is the distance between parallel

planes of atoms in the family (hkl) and it is a geometric function of the size and shape of the unit cell

[10].

Figure 3.1: Diagram of the diffractometer. This figure was taken from [69].

Bragg’s condition provides a simple model to understand what conditions are required for diffrac-

tion as shown in figure 3.1 from [69]. For parallel planes of atoms, with a space dhkl between the

planes, constructive interference only occurs when Bragg’s condition is satisfied. The plane normal

[hkl] must be parallel to the diffraction vector s [69]. Here, the plane normal [hkl] is the direction

perpendicular to a plane of atoms and the diffraction vector s is the vector that bisects the angle

between the incident and diffracted beam [69].

The diffraction technique used in this dissertation to determine the phase and quality of the

samples is powder X–ray diffraction. Here, the sample is crushed into a polycrystalline powder. A

single wavelength of incident X–rays is used, and the 2θ angle is varied. As the sample was ground
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into a powder, the diffraction pattern is averaged over all crystallographic directions. A diagram of

the diffractometer is shown in figure 3.2 from [69]. It illustrates the X–ray tube as the source of the

beam and the detector of the diffracted X–rays. Figure 3.2 also shows the Bragg–Brentano geometry

of the diffractometer in which the incident and diffracted beams are focussed at a fixed radius from

the sample position [69]. The diffraction angle, 2θ, is defined between the incident beam and the

detector. The incident angle, ω, is defined between the X–ray source and the sample, and it is the

half of the diffraction angle 2θ.

Figure 3.2: Diagram of the diffractometer. The diffraction angle, 2θ, and the incident angle, ω, which

is the half of the diffraction angle 2θ. Figure from [69].

For the powder X–ray diffraction of the samples of Gd2Ti2O7 and Gd2−xYxTi2O7 it was used

the diffractometer –Shimadzu XRD–7000– from the group of Dr. Flavio Vichi at the Institute of

Chemistry of the University of São Paulo. Bragg–Brentano geometry and Cu Kα1 radiation (1.5406

Å) was used. Gd2Ti2O7 and Gd2−xYxTi2O7 samples were pulverized into fine powder to run the

diffraction experiments. In Chapter 4 and 5 we present the X–ray diffraction patterns of our samples

and their respective structural analysis by the Rietveld method. The Rietveld refinement, which is

detailed in [72], is an excellent method to validate the structure and the space group in which the

material belongs [70]. Then, we use the software FullProf [71] with implemented Rietveld method to

refine the collected data.
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3.3 Magnetic measurements

3.3.1 Vibrating Sample Magnetometer (VSM)

The principle of operating of the Vibrating Sample Magnetometer (VSM) is based in the Faraday’s

law of induction in which an induced electromotive force arises in a closed loop when there is a time–

variation of the magnetic flux through the loop. The time–dependent induced voltage is given by the

following equation

V (t) =
∑
n

∫
S

∂B(t)

∂t
· dS, (55)

where n is the number of loops in the pickup coils and S its respective area. Using the VSM it was

collected magnetization saturation data as a function of the applied magnetic field at fixed tempera-

tures.

Figure 3.3: (a) Diagram of the vibrating sample magnetometer (VSM). (b) Detailed mechanical

features of the VSM. This figure was adapted from [73].

All the magnetic induction measurements involve observation of the voltage induced in a pickup

coil by a flux change when the applied magnetic field, coil position, or sample position is changed. A
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simplified diagram of the VSM is shown in figure 3.3(a) from [73]. Here, the applied magnetic field

is generated by the superconducting coil (8). The sample (5) vibrates parallel to the applied field

by the assembly (1), (2), and (4) [73]. Then, the oscillating magnetic field of the vibrating sample

induces a voltage in the stationary pickup coils (7), and from measurements of this voltage, which is

proportional to the magnetic moment, it is determined the magnetic moment of the sample [73]. This

technique of measurement is capable of an extremely high sensitivity in which changes of the order of

10−5 to 10−6 emu are detected [73]. Figure 3.3(b) from [73] shows a more detailed view of the VSM.

It shows the coil source of the applied magnetic field and also the sample centrally positioned between

them.

Magnetization measurements in the VSM magnetometer are examples of dc or direct measure-

ments. On them, the magnetization, M , does not change with time and it is measured for some

applied field, H. As we mentioned above, the periodic movement of the sample gives rise to a varia-

tion of the magnetic flux and consequently to an output induced signal. This induced voltage detected

by the pickup coils, V , depends of the magnetic moment of the sample σ, the frequency of the assembly

f , the amplitude of vibration A, and G a factor that depends of the geometry of the pickup coils:

V = σGA2πf cos(2πft). (56)

The magnetization measurements using the VSM were carried out at a pumped helium–4 cryostat

as shown in figure 3.4. This system reaches a temperature of 1.2 K with vacuum pumping and

possesses a superconducting coil able to generate a magnetic field of 20 T. To operate the pumped

helium–4 cryostat with the VSM, first, it is required to cool down the space of the superconducting coil

(in cyan) with liquid nitrogen (77 K). After the system reaches the thermal equilibrium, the liquid

nitrogen is pumped out and the helium (4.2 K) is transferred into the superconducting coil space.

Then, to cool down the sample space (in red), it is required to transferred helium–4 to the anti–dewar

(in blue) allowing the thermal contact with the inner chamber of the sample space. By pumping the

anti–dewar, the gas of helium–4 of the sample is liquefied. To reach temperatures down to 4.2 K, it is

used a vacuum pump in the sample space allowing a minimum temperature of 1.2 K. Here in the inner

chamber, it is also used liquid helium–3 to reach temperatures down to 1.26 K, and using a vacuum

pump it reaches a minimum temperature of 0.4 K.
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Figure 3.4: Schematic diagram of the VSM inside the pumped helium–4 cryostat.

3.3.2 Home–made AC susceptometer

The measurements of the ac or dynamic magnetic susceptibility were carried out at a home–made AC

susceptometer. It consists of a pumped helium–4 cryostat; analogue to the figure 3.4 of the VSM; and

of a mutual inductance bridge. The AC susceptometer reaches a temperature of 1.1 K using liquid

helium–4 and a minimum one of 0.35 K using liquid helium–3. Also, it consists of a superconducting

coil able to generate a magnetic field up to 7.5 T. As in the VSM magnetometer, the AC susceptometer

uses pickup coils to detect changes in the magnetic flux due to the sample.

In an AC susceptometer, an ac field hac is produced by a primary coil which is applied to the

sample. This hac can be applied to the sample in addition to a static field H. The total field is given

by

HT = H + hac, (57)

where hac = h0 cos(ωt). Then, the ac magnetic susceptibility χ is given by [74]

χ =
dM

dhac
, (58)
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where M is the magnetization of the sample.

Thus, the magnetic susceptibility χ can be studied as a complex and having two components:

χ′ + iχ′′. Indeed, on our measurements we focus on the real component χ′ that represents the

component of the susceptibility that is in phase with the applied ac field. Because of that, we choose

an appropriate phase to suppress the imaginary component χ′′ which is related to the energy losses.

In the operating of the AC susceptometer, it is used together with the cryostat a mutual inductance

bridge. The sample is placed between two coupled coils known as the primary and secondary coils.

This configuration is shown in figure 3.5. The secondary coils are two identical pickup coils positioned

symmetrically inside the primary coil and are connected in opposition in order to cancel the voltages

induced by the ac field itself or external sources. Thus, the sample susceptibility is determined from

the difference between the values of inductance of the bridge with the sample in the secondary coil

and without the sample.

Figure 3.5: Primary and secondary coil configuration. Figure taken from [74].

To collect the data in the ac susceptometer, it was used a typical setup as detailed in reference [74].

Measuring the induced voltage with a lock amplifier, the real, χ′, and the imaginary, χ′′, parts of the

susceptibility can be separated. An ac signal produced by the primary coil is applied to the sample

and then the sample induce a signal on the secondary coils. Thus, this induced signal proportional to

the ac magnetic susceptibility χ is measured.
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3.3.3 Superconducting Quantum Interference Device (SQUID)

The Superconducting Quantum Interference Device (SQUID) is the most sensitive measuring instru-

ment to probe extremely low magnetic fields up to a magnitude order of 10−14 T [75]. The SQUID

is a superconducting device that measure magnetic flux and output voltage signal. From this output

voltage, it is determined the magnetic moment of a material and consequently its magnetization and

magnetic susceptibility. In fact, the SQUID consists of a superconducting ring with two Josephson

junctions (denoted X) as is shown in figure 3.6. A Josephson Junction is a non–superconducting

material (usually an insulator) sandwiched between two superconductors, forming a weak link. To

understand how a Josephson junction works, we will discuss briefly superconductivity, the quantization

of the magnetic flux, and the Josephson effect.

Φ

X

X

I

Figure 3.6: Diagram showing the Josephson junctions (denoted X), and the superconducting ring. Φ

is the magnetic flux through the superconducting ring and I is the current through the loop.

Superconductivity is a remarkable phenomenon concerning the ability of certain materials to pass

electrical currents [10]. It occurs when they are cooled down to a sufficiently low temperature that their

electrical resistance vanishes completely [10]. This phenomenon is tied to the quantum–mechanical

nature of solids, specifically, to the tendency of the electrons to form organized collective quantum

mechanical states [76]. One instance of this are the Cooper pairs of electrons that behave cooperatively

and form a single quantum–mechanical state [76]. In normal conductors, the resistance to the electrical

current is caused by the electrons scattering off of the vibrating atomic nuclei (phonons), this scattering

changes the electron’s direction and transfers energy from the electrical current to the sound waves. In

superconductors the electrons also interact with the phonons, but instead of scattering off of them and

diminishing the flow of electrical current, the phonons actually promote the formation and movement

of Cooper pairs [77]. It is because the phonons create a local concentration of positive electrical charge

as the sound wave move past them [77].

Also, superconductivity provides a unique opportunity to observe the quantization of a physical
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quantity as the magnetic flux in a macroscopic system. To discuss the quantization of the magnetic

flux, we first consider the magnetic flux, Φ, inside a superconducting ring as is shown in figure 3.6. If

the flux through the ring changes, circulating currents of Cooper pairs will arise in the ring to cancel

the change. These circulating currents can be detected using a phenomenon called the Josephson

effect, and hence, the small magnetic field can be measured. The answer to the quantization of the

magnetic flux lies in the long–range coherence of the superconducting wavefunction Ψ. In addition, the

geometry of a superconducting ring places special restrictions on the superconducting wavefunction.

In order for the wavefunction to have a single value at a given point in the superconducting ring,

the wavefunction must satisfy Ψ(0) = Ψ(2π). From this condition, it is derived that the amount

of magnetic flux Φ contained within in the ring can only assume certain discrete values of the flux

quantum φ0 = h/2e [77]:

Φ = nφ0 =
nh

2e
, (59)

where n is an integer, h is the Planck’s constant, and e the fundamental charge of the electron.

As we mentioned before, the superconducting ring in the SQUID device presents two Josephson

junctions. These junctions are thin gaps that separate two superconducting regions and in which

occurs the Josephson effect. This phenomenon allows to detect circulating currents and thus it is the

basis of the SQUID operation. First, we suppose that we have in the two superconducting regions

two wavefunctions of the Cooper pairs with different phases ϕ1 and ϕ2. So, in the thin insulator gap

takes place an overlapping of the wavefunctions which reduce their amplitude without being vanished.

This is due to the thin gap between two superconducting regions allows the tunneling of Cooper pairs

of electrons through it. Thus, in the Josephson effect a supercurrent, Is, appears inside the insulator

without dissipation or any resistance that depends of the phase change ∆φ = ϕ1 − ϕ2 [77]:

Is = Ic sin(∆φ), (60)

where Ic is the critical or maximum supercurrent that the junction can support. The voltage between

the two junctions is a periodic function of the magnetic flux inside the loop [77]. The change in the

magnetic flux Φ through the ring generates a measurable change in the current through the Josephson

junction [77]. Thus, the voltage is given by [77]:

V =
R

2

√
I2 −

[
2Ic cos(

πΦ

φ0
)

]2

. (61)
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Here R is the resistance of the Josephson junction, I the current trough the superconducting ring,

and Ic is the critical current.

A diagram of the SQUID detection system is shown in figure 3.7. On the left side, it is shown

the pickup coils to detect the signal and the sample. Here, the sample is positioned in the center of

two pickup coils and a magnetic field is applied in a stablish direction. This magnetic field generates

an induced current in the pickup coils that goes through the loop which is inductively coupled to the

SQUID device. On the right side of figure 3.7, it is shown the SQUID device as presented in figure

3.6 which works as we discussed above.

Figure 3.7: Diagram of detection of the SQUID. This figure was adapted from [75].

To measure magnetization and ac susceptibility it was used a SQUID –Model MPMS XL–7– of

the Quantum Design, operating at a cryostat of 4He to reach temperatures in the range 2 K to 400 K

and magnetic fields up to 7 T. In order to reduce the effects of demagnetization in our measurements,

the circular pellets of Gd2Ti2O7 and Gd2−xYxTi2O7 were cut into needle shapes.
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3.4 Calorimetric measurements

3.4.1 Physical Property Measurement System (PPMS)

To collect the specific–heat data we used the calorimeter Physical Property Measurement System

(PPMS) in heat capacity option of the Quantum Design. It measures the specific heat or heat

capacity of a material which is defined by the amount of energy required to raise the temperature by

a unit amount:

Cp =

(
dQ

dT

)
p

, (62)

where dQ is the applied heat, and dT is the resultant change in temperature of the sample.

In the PPMS during a measurement, a known amount of heat is applied at constant power for a

fixed time, and then the heating period is followed by a cooling period of the same duration [78]. As

is shown in figure 3.8 from [78], the PPMS consists of a platform heater and platform thermometer

which are attached to the bottom side of the sample platform. Figure 3.8 also shows the small wires

that provide electrical connection to the platform heater and platform thermometer as well as the

thermal connection and support for the platform [78]. The sample is mounted to the platform by

using a thin layer of vacuum grease, which provides the required thermal contact to the platform [78].

Figure 3.8: Sample and sample platform in the PPMS. This figure was taken from [78].

The measurement technique of the PPMS consists of a relaxation technique in which after each

measurement cycle it fits the temperature response of the sample platform to a model that accounts

for both the thermal relaxation of the sample platform to the bath temperature and the relaxation

between the sample platform and the sample itself [78]. In a simple model, the temperature T of the
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platform as a function of time t obeys the equation [78]

C
dT

dt
= −Kw(T − Tb) + P (t), (63)

where C is the total specific heat of the sample and sample platform, Kw is the thermal conductance

of the supporting wires, Tb is the temperature of the thermal bath, and P (t) is the power applied by

the heater. The heater power P (t) is equal to P0 during the heating period of the measurement and is

reduced to zero during the cooling period [78]. The solution of this equation is given by an exponential

function with a characteristic time constant τ equal to C/Kw [78]. Thus, the time–dependence (or

temperature dependence) of the specific heat is given by [78]

C(t) = Kw∆t

/
ln

(
T (t)− Tb − P

T (t+ ∆t)− Tb − P

)
. (64)

In order to collect the specific heat data of the sample we first measure the specific heat of the

addenda (platform and Apiezon grease) Cadd. Then, we put the sample on the addenda and measure

again the total specific heat C. Finally, we subtract C−Cadd to obtain the specific heat of the sample.
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Chapter 4
Vacancy Defects in Oxygen-deficient

Gd2Ti2O7

In this chapter we discuss the effects of the vacancy defects in the structural, magnetic, and thermal

properties of the pyrochlore Gd2Ti2O7. We study the pyrochlore Gd2Ti2O7 with vacancy defects near

to the temperature of its first phase transition T1
N ∼ 1 K in two different batches of polycrystalline

Gd2Ti2O7. The first batch consists of Gd2Ti2O7 samples with post–growth annealings in oxygen and

the second one consists of Gd2Ti2O7 samples grown in different atmospheres: air, oxygen, and hydro-

gen. Actually, in all these Gd2Ti2O7 samples it is expected to obtain non–stoichiometric Gd2Ti2O7−δ

compositions which present a small degree of deficiency of oxygen. To quantify the vacancy defects

of the pyrochlore Gd2Ti2O7, it was refined the calculated X–ray diffraction data by the Rietveld

method using the software FullProf. Also, in order to discuss the low–temperature ground state of

our Gd2Ti2O7 samples, we report experimental data of ac magnetic susceptibility, magnetization, and

specific heat.
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4.1 Results of Gd2Ti2O7 annealed in oxygen

The aim of this section is to discuss the effect of the oxygen annealing in Gd2Ti2O7 on its magnetic

properties. The polycrystalline Gd2Ti2O7 samples were prepared with the sol gel method described

in Chapter 3. Specifically, this first batch consist of three samples: one as–grown sample of Gd2Ti2O7

and other two Gd2Ti2O7 samples annealed in oxygen. The first and the second annealing in oxygen

were carried out at a rate of 50 ml/min for 24 hours and 27 hours respectively at 1100◦C. Then,

using Rietveld refinement we discuss results for the structural parameters obtained by X–ray diffrac-

tion. Also, we study the magnetic properties of our three Gd2Ti2O7 samples by measurements of ac

susceptiblity and magnetization.

4.1.1 Structural analysis

We present a structural study of the powder X–ray diffraction data for the sample of Gd2Ti2O7 with

a second annealing in oxygen. We report results only for this sample because we have the assumption

that a second annealing in oxygen leads to a sample with ideal stoichiometry. X–ray diffraction data

collected at room temperature is shown in figure 4.1 (red points). The diffraction peaks shown are

consistent with the positions of the expected peaks (green lines) for the pyrochlore structure.

Figure 4.1: Powder X–ray diffraction (red points) and calculated (black solid line) data for Gd2Ti2O7

annealed in oxygen. The Rietveld refinement using Fullprof software was performed with the X–ray

diffraction pattern of Gd2Ti2O7 measured at room temperature.
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The structural analysis was done by using Rietveld refinement software FullProf and the graphical

interface WinPLOTR. The calculated profile assuming a stoichiometric model of Gd2Ti2O7 is shown

in figure 4.1 (black solid line). The curve in the lower side (blue) represents the difference between

the data and the model. Results from the Rietveld analysis are shown in table 4.1. The refinement

revealed that the X–ray diffraction data refine in the pyrochlore structure with Fd3m space group.

As mentioned before, Gd and Ti ions are located on corner–sharing tetrahedra lattices, and there

are two inequivalent oxygen sites: O(1) located at the centre of the Gd tetrahedra, and O(2) filling

interstitial regions. Then, we found that the occupancies of the Gd and Ti sites are very close to

one (a site without vacancies is ideally one) excluding the possibility of vacancies on these sites. The

occupancy of the O(2) sites are also close to one, however the occupancy of the O(1) sites is much

lower than one. Thus, the oxygen vacancies were found to be mainly on the O(1) sites. The value of

chi-squared χ2 (a measure of the goodness of the fit which is ideally one) is 2.09 which indicates that

the refinement could be still improved. However, this value of χ2 was the minimum obtained and as

shown in figure 4.1 there are slight differences between the experimental and calculated data, so we

keep this value. Furthermore, the lattice parameter for Gd2Ti2O7 annealed in oxygen, 10.184 Å, is

consistent with the values reported by [39, 51].

Gd2Ti2O7 Second annealing

Space group Fd3m

Lattice parameter 10.184 Å

Gd 1.03

Ti 1.05

O(1) 0.66

O(2) 0.98

χ2 2.09

Table 4.1: Refinement of the structure of Gd2Ti2O7 annealed in oxygen showing the space group, the

lattice parameter, the occupancies of each site, and the value of chi-squared.
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4.1.2 AC magnetic susceptibility

AC magnetic susceptibility measurements were conducted on needle–shaped samples for the as–grown,

first annealing and second annealing in oxygen Gd2Ti2O7. Above 4.2 K, the ac magnetic susceptibility

χac was measured using the SQUID. Below 4.2 K, χac was measured on the ac susceptometer using

a mutual inductance bridge at modulation frequency f = 155 Hz and ac field µ0hac = 10 mT.

Figure 4.2: ac magnetic susceptibility χac as a function of the temperature for the as–grown, first

annealing and second annealing in oxygen Gd2Ti2O7 samples measured at zero field.

Figure 4.2 shows the ac magnetic susceptibility data for the as–grown Gd2Ti2O7 and also for the

samples with a first and a second annealing in oxygen in the temperature range of 0.5 to 2.25 K. For

the three samples, it shows the expected peak of the first phase transition ∼ 1 K which corresponds

to a partial ordering of the spins of Gd2Ti2O7. This phase transition is in agreement with previously

reported results [15, 39]. The values of susceptibility near to 1 K were difficult to measure since it

changed rapidly but it was evident a sizeable increasing and a maxima at this temperature. After

the phase transition, the magnetic susceptibility values start to decrease slowly. The phase transition

of the samples with a first and second annealing in oxygen occurs almost at the same temperature

T1
N; 1.18 K and 1.17 K respectively; whereas the as–grown sample has its phase transition slightly at

a lower temperature T1
N= 1.01 K. This could infer that an extra second annealing in oxygen makes

no difference at all but figure 4.2 tells us that they do not have exactly the same behaviour at low
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temperatures. It also indicates that the as–grown sample which we think that possesses more vacancies

of oxygen has a higher degree of frustration. We observe that the intensity of the peak of magnetic

susceptibility increases as we anneal the samples in oxygen for an extended time. Furthermore, we

notice that the Gd2Ti2O7 sample with a second annealing in oxygen (green) seems to develop a

more defined order at T1
N = 1.17 K which reflects on the intensity of the peak. This temperature is

higher than the transition temperature of the as–grown sample (T1
N = 1.01) meaning that there is

a lower degree of geometric frustration in the sample with oxygen annealing. The variation of the

temperature at the first phase transition for all our samples is correlated to the stoichiometry of the

oxygen–deficient Gd2Ti2O7 samples.

Figure 4.3: Left : Full χac data between 1 K and 20 K for the as–grown, first annealing and second

annealing in oxygen Gd2Ti2O7 samples at zero field. The χac curves are slightly offset for clarity.

Right : χac data between 1 and 30 K without the offset.

The left side of figure 4.3 shows the full data of the ac magnetic susceptibility for the Gd2Ti2O7

samples. Here, for the as–grown sample of Gd2Ti2O7 (blue) there is almost no variation on the data

after the peak of the phase transition. For the annealed samples in oxygen (red and green), each one

of the magnetic susceptibility points after the magnetic transition were measured after a long time of

relaxation waiting to stabilize the magnetic susceptibility value. The right side of figure 4.3 shows the

raw data of the χac for the Gd2Ti2O7 samples. In our experiments we were not able to resolve the

second magnetic transition at T2
N ∼ 0.75 K since small variations on the temperature seemed not to

produce any difference on the magnetic susceptibility. The second phase transition at 0.75 K is visible

as a lower peak but present in the χac results of [60] for a Gd2Ti2O7 crystal so for our polycrystalline
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samples we did not expect to resolve this peak. From the previous χac curves, we report the values

of the ordering temperatures in table 4.2. The annealing in oxygen of Gd2Ti2O7 takes the phase

transition to the same temperature as is shown by the almost identical values of T1
N: 1.18 and 1.17 K.

Gd2Ti2O7 As–grown First annealing Second annealing

Annealing in oxygen for 0 h 24 h 27 h

T1
N (K) 1.01 1.18 1.17

Table 4.2: Transition temperatures, T1
N, for Gd2Ti2O7 as–grown, with a first annealing in oxygen,

and with a second annealing in oxygen.

4.1.3 DC magnetic susceptibility

DC magnetization data, M , were collected using the superconducting quantum interference device

(SQUID). M was measured as a function of the temperature in a small magnetic field of H = 100

Oe. Then, the dc magnetic susceptibility χ was determined from its definition χ = M/H. Figure

4.4 shows the dc magnetic susceptibility data χ for the as–grown and annealed in oxygen Gd2Ti2O7

samples in the temperature range of 2 to 300 K.

Figure 4.4: dc magnetic susceptibility χ for the as–grown, first annealing and second annealing

Gd2Ti2O7 samples measured with a field H = 100 0e. The χ curves are slightly offset for clarity.
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We are interested in studying the Curie–Weiss behaviour of our material by analysing the inverse

dc magnetic susceptibility χ−1. The linear fit of χ−1 provides us the values of the effective magnetic

moment, peff , and the Curie–Weiss temperature, θCW, which allow us to study the magnetism on the

Gd sites and the degree of frustration of our different samples. Figure 4.5 shows the inverse magnetic

susceptibility data, χ−1, and the linear fit as a function of the temperature for the as–grown and

annealed in oxygen Gd2Ti2O7 samples. From the linear fit in the interval 10 – 300 K, we extracted

the effective moments and Curie–Weiss temperatures shown in table 4.3. For Gd2Ti2O7 with a second

annealing in oxygen these results evidence that the peff and θCW are in best agreement with peff =

7.94 µB/Gd ion and θCW = –9.6 K [15, 39]. The peff for the as–grown and the first annealing samples

are 8.1 and 8.4 µB/Gd ion respectively which are slightly higher than 7.94 µB/Gd. The θCW for these

samples also present a higher value than the literature as shown in table 4.3. By fitting the data

in different temperature ranges between 10 and 300 K does not produce a significant change in the

values of the peff or θCW. The negative values of the θCW indicate the antiferromagnetic exchange

interaction of the Gd3+ spins and the fact that the θCW for the as–grown and the first annealing

samples are “more negative” suggest a nature slightly more antiferromagnetic of the samples. Then,

the frustration index f ≡ θCW/T
1
N is determined.

Figure 4.5: Inverse magnetic susceptibility χ−1 as a function of the temperature and its respective

linear fit of Curie–Weiss for the as–grown (blue), first annealing (red) and second annealing in oxygen

(green) Gd2Ti2O7.
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Gd2Ti2O7 As–grown First annealing Second annealing Literature

peff (µB/Gd) 8.1 8.4 7.9 7.94 [15]

θCW (K) –10.9 –12.0 –9.7 –9.6 [15]

T1
N (K) 1.01 1.18 1.17 1.05 [39]

Frustration index f 10.8 10.2 8.3 10 [15]

Table 4.3: Values of the Curie–Weiss temperatures θCW, the effective magnetic moments peff ,

the transition temperatures T1
N, and the frustration indexes f for the oxygen–deficient samples of

Gd2Ti2O7.

Analysing the inverse magnetic susceptibility χ−1 data below 22.5 K as shown in figure 4.6, we

notice that it starts to deviate from the linear fit approximately at 10 K. This deviation is exhibited in

all the Gd2Ti2O7 samples and it is more prominent in the sample with a second annealing in oxygen

(green). This deviating at the order of θCW ∼ 10 K where it is expect to occur an antiferromagnetic

transition of long–range order is consistent with Raju et al. [18].

Figure 4.6: Inverse magnetic susceptibility χ−1 in the temperature range of 2.5 – 22.5 K for the as–

grown, first annealing and second annealing in oxygen Gd2Ti2O7 samples. The χ−1 curves and the

linear fits are shown slightly offset for clarity.
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4.1.4 Saturation magnetization

Magnetization measurements were conducted on the as–grown, first annealing and second annealing

in oxygen Gd2Ti2O7 samples using a vibrating sample magnetometer (VSM) and a SQUID. From

the magnetization data, we will discuss if the annealing in oxygen of our samples is correlated to the

increase or decrease in the saturation moment. We have the assumption that a change in the saturated

moment is an indicator for the presence of vacancy defects in our samples as stated in the work of

Sala et al. [63]. The isothermal magnetization curves were measured above the first phase transition

temperature; ∼ 1 K; of Gd2Ti2O7.

Figure 4.7: Saturation magnetization as a function of the magnetic field for the as–grown Gd2Ti2O7

(blue) and for Gd2Ti2O7 with a first (red) and second (green) annealing in oxygen at T = 1.26 K.

Inset, magnetization as a function of the magnetic field for the Gd2Ti2O7 samples at T = 4.2 K.

Figure 4.7 shows the magnetization curves as a function of the applied field for the oxygen–deficient

Gd2Ti2O7 samples. The saturation moments of our samples are close to the theoretical value of 7

µB expected for a state with J = 7/2. At 1.26 K, we found that for a magnetic field of 10 T, the

magnetic moment of the as–grown sample (blue) reaches a saturation value of 6.5 µB/Gd ion which

is the lowest value among the three Gd2Ti2O7 samples. Also, we found that the annealing in oxygen

leads to samples with a saturation moment of 6.8 µB/Gd ion (first annealing in O2) and 6.7 µB/Gd ion
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(second annealing in O2) closer to 7 µB . This small difference in the saturation moments is an indicator

for the presence of vacancy defects in our samples [63]. Between the two annealed Gd2Ti2O7 samples,

we would expect that the sample with a second annealing in oxygen produces a higher saturation

moment. But as the variation between these two saturated moments is minimal, we think that this is

due to demagnetization effects of the sample shapes. These first results are consistent with Petrenko

et al. [49] who reported a magnetic moment of 6.8 µB/Gd ion at 7 T. In the inset of figure 4.7 we show

the magnetization data collected using the SQUID. At 4.2 K, we found that the magnetization curves

of our Gd2Ti2O7 samples present a much slower approach to the saturated moment of 7 µB . At this

temperature the magnetization data continues increasing at a high rate with and reach a value of 6

µB/Gd ion at a field of 7 T. Also, by measuring magnetization for increasing and decreasing magnetic

field, we found that the magnetization process is hysteresis–free for our as–grown and annealed in

oxygen Gd2Ti2O7 samples. The samples employed were needle–shaped pellets in order to reduce the

demagnetization correction when we measure magnetization.
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4.2 Results of Gd2Ti2O7 grown in different atmospheres

In this section we will continue with an enhanced study of Gd2Ti2O7 and how the oxygen vacancies

affect its magnetic and thermal properties. To study oxygen–depleted pyrochlores of Gd2Ti2O7 we

prepared polycrystalline Gd2Ti2O7 with the sol–gel method detailed in Chapter 3 but now the samples

were sintered in three different atmospheres: oxygen, hydrogen, and air (without a particular gaseous

atmosphere) that is the last heat treatment was for 24 hours at 1100◦C in the mentioned atmospheres.

Results obtained by X–ray diffraction, magnetic, and thermal measurements are reported here.

4.2.1 Structural analysis

In order to discuss about the vacancy defects in Gd2Ti2O7 grown in air, hydrogen (H2), and oxygen

(O2), we analysed the X–ray powder diffractograms of our samples. We refined the data that model

the diffraction patterns to obtain the lattice parameters, the occupancies on each site of the pyrochlore

lattice, and the concentration of oxygen vacancies. The X–ray diffraction patterns for Gd2Ti2O7 grown

in air, H2, and O2 are shown in figure 4.8. These diffraction patterns do not present any anomalous

peak excluding thus the presence of another structure different of pyrochlore.

Figure 4.8: Powder X–ray diffraction patterns for Gd2Ti2O7 grown in air, H2, and O2.

Rietveld structural refinements were carried out using the software FullProf and the graphical

interface WinPLOTR. Table 4.4 shows the refinement of the structure for Gd2Ti2O7 grown in air, hy-
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drogen, and oxygen. While growing Gd2Ti2O7 in air leads to white powder, the growing of Gd2Ti2O7

in hydrogen and oxygen leads to black and gray samples respectively. All the diffraction data refined in

the cubic pyrochlore structure with space group Fd3m as shown in table 4.4. For the three Gd2Ti2O7

samples the occupancies of the Gd and Ti sites are very close to one (a site without vacancies is ideally

one) which means that there are no vacancies of Gd or Ti. Also, the refinement reveals equal concen-

trations on the Gd and Ti sites, ruling out the stuffing of the Ti sites by Gd. Then, the refinement

reveals that the oxygen vacancies were found mostly to be on the O(1) sites but with Gd2Ti2O7 grown

in hydrogen exhibiting a higher concentration of oxygen vacancies. The occupancies of the O(2) sites

are very close to one excluding thus any chance of vacancies in these sites. These results are consistent

with Sala et al. [63] obtained for the spin ice Dy2Ti2O7. Thus, our Gd2Ti2O7 samples were found to

be of an oxygen–deficient stoichiometry: Gd2Ti2O7−δ. In addition, the chi-squared values χ2 of our

three samples are very close to one showing that the structure refines well within the stoichiometric

model. From table 4.4, the length of the lattice parameters for the Gd2Ti2O7 samples are consistent

with [39, 40] and present a negligible difference among them. It is difficult to define a behaviour of

the lattice parameter as a function of the oxygen concentration; however, we found that the length of

the lattice parameter increases for Gd2Ti2O7 grown in oxygen compared to Gd2Ti2O7 grown in air.

Gd2Ti2O7 grown in H2 Air O2

Colour Black White Gray

Space group Fd3m Fd3m Fd3m

Lattice parameter (Å) 10.181 10.184 10.181

Gd 0.99 0.99 0.99

Ti 1.01 1.05 1.04

O(1) 0.73 0.81 0.81

O(2) 0.96 0.95 0.99

χ2 2.18 1.57 1.60

Table 4.4: Refinement of the structure of Gd2Ti2O7 grown in air, H2, and O2 showing the space

groups, the lattice parameters, the occupancies of each site, and the values of chi-squared.
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4.2.2 AC magnetic susceptibility

For the Gd2Ti2O7 samples grown in air, H2, and O2, we report in figure 4.9 the ac magnetic suscep-

tibility χac as a function of the temperature. The collected data of the Gd2Ti2O7 samples display

a peak like anomaly close to 1 K in agreement with [15, 39]. Gd2Ti2O7 samples grown in different

atmospheres present a broader peak in contrast to the sharp magnetic transition of Gd2Ti2O7 an-

nealed in oxygen of the previous section (figure 4.2, green). The transition at 1 K is identified as a

partial ordering of the Gd spins in the Kagomé planes of the pyrochlore lattice [61]. For Gd2Ti2O7

grown in air (blue) and O2 (red) the transitions occur at T1
N = 0.99 and 1.02 K respectively. The

oxygen–depleted Gd2Ti2O7 grown in H2 (purple) shows an unexpected defined peak of phase transi-

tion at T1
N = 0.98 K. Even though the difference among the reported transition temperatures T1

N is

negligible, there is a remarkable difference on the peak intensity of the χac curve of Gd2Ti2O7 grown

in H2 compared to the Gd2Ti2O7 grown in air and O2 which present an analogue behaviour after

the phase transition. The χac collected data of Gd2Ti2O7 grown in air and O2 converge to the same

values after their ordering temperatures.

Figure 4.9: Temperature dependence of the ac magnetic susceptibility χac for Gd2Ti2O7 grown in

different atmospheres: air (blue), H2 (purple), and O2 (red) measured at zero field.

The left side of figure 4.10 shows the complete ac susceptibility data of figure 4.9. Here, the χac

curves of Gd2Ti2O7 grown in air, H2, and O2 present an analogue behaviour to the curves presented in

77



CHAPTER 4. Vacancy Defects in Oxygen-deficient Gd2Ti2O7

figure 4.3. The right side of figure 4.10 shows the χac data without the offset. Here, we notice better

that the χac curves of Gd2Ti2O7 grown in air (blue) and O2 (red) are superimposed and converge to

the same values of susceptibility. As in the previous section, the second magnetic transition at T2
N ∼

0.75 K was not found for any of our Gd2Ti2O7 samples.

Figure 4.10: Left : Full data of ac magnetic susceptibility χac as a function of the temperature for

Gd2Ti2O7 grown in air, H2, and O2 measured at zero field. χac curves present a slight offset for

clarity. Right : Raw χac data of the Gd2Ti2O7 samples.

The values of the transition temperatures for the Gd2Ti2O7 samples are presented in table 4.5.

These ordering temperatures T1
N present a slight variation of ± 0.02 K among them.

Gd2Ti2O7 grown in H2 Air O2

T1
N (K) 0.98 0.99 1.02

Table 4.5: Transition temperatures T1
N for Gd2Ti2O7 samples grown in H2, air, and O2.
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The field dependence of the ac magnetic susceptibility χac measured at different temperatures is

shown in figure 4.11. Since previous χac results of Ramirez et al. [15] were reported for stoichiometric

Gd2Ti2O7, we performed experiments on the Gd2Ti2O7 grown in oxygen which has less vacancies and

a better stoichiometry according to table 4.4. From figure 4.11, we found that as the field reaches

a value around 6 T, all the susceptibility curves exhibit a sharp downturn and then go to zero. At

1.11 (black) and 0.90 K (red) both χac curves resemble each other and do not present a visible peak

between 0 and 3 T but at 0.90 K there is a small hump for a field close to 2.3 T. At these temperatures

it was not collected the χac data between 3 and 6 T since there is no any visible hump according to

[15]. The χac curves at 0.67 (blue) and 0.50 K (green) exhibit a peak centered at fields of 2.9 and 3

T respectively. The χac data at 0.50 K presents a higher and sharper peak compared with the data

at 0.67 K. Thus, as the temperature is decreased the susceptibility peak gets sharper and moves with

the increase of the magnetic field. The positions of the peaks at a fixed field are consistent with the

field–induced transitions of the phase diagram for Gd2Ti2O7 reported by Ramirez et al. [15].

Figure 4.11: Field dependence of the ac susceptibility χac(H) for Gd2Ti2O7 grown in oxygen atmo-

sphere at temperatures above and below the transition temperature T1
N = 1.02 K. The 0.50, 0.90, and

1.11 K data are offset by +3.5, -3.0, and -5.0 emu/mol–Oe, respectively, for clarity.
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4.2.3 DC magnetic susceptibility

As in the previous section, we obtained the Curie–Weiss parameters by means of the linear fit of the

inverse dc susceptibility χ−1. In figure 4.12 it is presented the temperature dependence of χ−1 for

Gd2Ti2O7 grown in air, H2 and O2 measured in a magnetic field of 100 Oe. The χ−1 data present

a tendency to increase for Gd2Ti2O7 grown in O2 (red) that is a higher slope of the linear fit in

comparison with the samples grown in air (blue) and H2 (purple).

Figure 4.12: Inverse susceptibility χ−1 as a function of the temperature and its respective linear fit

of Curie–Weiss for Gd2Ti2O7 grown in air (blue), H2 (purple) and O2 (red) measured in an applied

field of 100 Oe.

From the linear fit in the interval 10 – 300 K, we obtained the effective moments peff and the

Curie–Weiss temperatures θCW. Also, in order to measure the degree of frustration of our Gd2Ti2O7

samples we used the transition temperatures T1
N to obtain the frustration index f . These values are

shown in table 4.6. The effective magnetic moment for Gd2Ti2O7 grown in O2 is 7.9 µB/Gd ion very

close to the theoretical value of 7.94 µB/Gd ion for J = 7/2 [9]. On the other hand, for Gd2Ti2O7

grown in H2 and air the values of peff exceed unexpectedly the theoretical value of 7.94 µB/Gd ion.

The frustration indexes f in table 4.6 show that Gd2Ti2O7 grown in air with f = 13.9 presents a

higher degree of geometric frustration compared with the samples grown in O2 and H2.
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Gd2Ti2O7 grown in H2 Air O2 Literature

peff (µB/Gd) 8.3 8.5 7.9 7.94 [15]

θCW (K) –11.5 –13.8 –10.9 –9.6 [15]

T1
N (K) 0.98 0.99 1.02 1.05 [39]

Frustration index f 11.7 13.9 10.7 10 [15]

Table 4.6: Values of the Curie–Weiss temperatures θCW, the effective magnetic moments peff , the

transition temperatures T1
N, and the frustration indexes f for Gd2Ti2O7 grown in H2, air, and O2.

We present in figure 4.13 the low–temperature regime of the inverse susceptibility for the Gd2Ti2O7

samples. Below 5 K the collected data of Gd2Ti2O7 grown in H2, air, and O2 starts to deviate from

the linear behaviour and for the samples grown in O2 and H2 there is a more pronounced deviation

which is related with a long–range antiferromagnetic transition [18].

Figure 4.13: Inverse magnetic susceptibility χ−1 between 2 K and 22.5 K for Gd2Ti2O7 grown in H2,

air, and O2 measured in an applied field of 100 Oe.
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4.2.4 Saturation magnetization

Magnetization data for Gd2Ti2O7 grown in air, H2, and O2 was collected using a vibrating sample

magnetometer (VSM). Figure 4.14 displays the magnetization curves as a function of the applied field.

For our Gd2Ti2O7 samples, we found that the magnetization process is essentially hysteresis–free and

does not depend on sample history. At 4.2 K, above the transition temperature 1 K, the magnetization

of each Gd2Ti2O7 sample shows a slow approach to the theoretical expected value of 7 µB and starts

to saturate for magnetic fields higher than 12 T. Specifically, for Gd2Ti2O7 grown in air the saturation

moment reaches a value of 6.7 µB/Gd ion in a field of 13 T. Remarkably, for Gd2Ti2O7 grown in O2,

in an applied field of 14 T, the saturation moment reaches a value of 7 µB/Gd ion which is slightly

higher than the former. Both saturated moments are consistent with the theoretical value of 7 µB and

even though the difference between them is minimal it leads us to think about the reduced magnetic

moment on the Gd sites. However, for Gd2Ti2O7 grown in air we found an unexpected saturation

moment of 7.5 µB/Gd ion which certainly has no physical meaning. Our data display a pattern

behaviour in which the annealing in oxygen reduces the oxygen vacancies and increases the saturation

moment to reach the expected theoretical value. These results are consistent with our previous results

of figure 4.7.

Figure 4.14: Saturation magnetization as a function of the applied field for Gd2Ti2O7 grown in air,

H2, and O2 measured at 4.2 K. Dash line indicates the expected theoretical value of 7 µB/Gd ion.
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4.2.5 Specific heat

The specific heat measurements were obtained using a Quantum Design PPMS calorimeter equipped

with a 3He–4He dilution refrigerator. We report the data for the Gd2Ti2O7 sample grown in O2

atmosphere because it has less concentration of oxygen vacancies and thus a stoichiometry closer to

the ideal one. Figure 4.15 shows the magnetic specific heat data divided by the temperature Cm(T)/T

measured in a zero applied field. The Cm data was obtained by subtracting the lattice specific heat

Clat ∝ T3 from the total specific heat C. To compute an approximate value of Clat we fit C with a T3

dependence between 10 and 15 K. Then, as shown in figure 4.15 we found in the Cm data two sharp

peaks with similar amplitudes at temperatures T1
N = 1.04 K and T2

N = 0.73 K that correspond to

two consecutive magnetic transitions as reported previously [39, 51]. The transition observed at T1
N

= 1.04 K corresponds to a partial magnetic ordering of the Gd spins [40], whereas the transition at

T2
N = 0.73 K concerns a quarter of the Gd spins which are disordered above 0.73 K and very weakly

ordered below [40]. Our Cm/T data reaches a value of 11 J.K−2.mol−1 at the temperature of the first

transition 1.04 K and a value of 10 J.K−2.mol−1 at the temperature of the second transition 0.73 K

in excellent agreement with the data reported for polycrystalline stoichiometric Gd2Ti2O7 in [39].

Figure 4.15: Temperature dependence of the magnetic specific heat divided by the temperature

Cm(T)/T for Gd2Ti2O7 measured in zero field. Two phase transitions occur at T1
N = 1.04 K and T2

N

= 0.73 K. The inset displays the entropy variation as a function of the temperature.
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The inset of figure 4.15 shows the temperature dependence of the variation of the magnetic entropy

S, obtained by integrating numerically Cm(T)/T versus temperature. Above 10 K, the total magnetic

entropy is not fully recovered and reaches a value of 14.5 J/mol K which is approximately 84% of

the expected entropy R ln(8) = 17.3 J/mol K. Then, it seems that the magnetic entropy has reduced

its maximum value and thus there is a missing entropy which is related to the oxygen vacancies

of Gd2Ti2O7. Also, approximately 15% and 30% of the expected R ln(8) is recovered up to the

temperatures of the peaks T2
N = 0.73 K and T1

N = 1.04 K respectively. Thus, short–range order

interactions are expected for temperatures above of the first peak according to [39].

Figure 4.16: Magnetic specific heat Cm of Gd2Ti2O7 as a function of the temperature below the

second transition T2
N = 0.73 K. The T2 power law previously proposed and a T3 power law are

plotted between 0.68 and 0.39 K.

By analysing Cm in the low–temperature regime that is below the second transition of Gd2Ti2O7,

we compare the different temperature dependences observed in different antiferromagnet pyrochlores

in previous works [11, 79, 80]. Figure 4.16 shows, up to 0.68 K, the T2 and T3 power law behaviours

for the specific heat Cm. Even though the T2 dependence of Cm for Gd2Ti2O7 is expected and has

been discussed by considering a density of magnetic states that is linear with energy [79], we study

the T3 behaviour due to the antiferromagnetic magnons contribution since in the temperature range

0.39 K ≤ T ≤ 0.68 K both power laws resemble each other. Then, the calculated T2 fit of Cm is: AT2
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with A = 13.76 J.K−3.mol−1 (R2 = 0.99). On the other side, the T3 fit results in a dependence: ΛT3

with Λ = 16.41 J.K−4.mol−1 (R2 = 0.99). Then, from the T3 fit and by using equation (41) with a

= 10.181 Å we found that the velocity of magnons in Gd2Ti2O7 is vsw = 46.2 m/s.

Figure 4.17: Temperature dependence of the magnetic specific heat Cm of Gd2Ti2O7 measured with

different magnetic fields. All the Cm curves present a Schottky anomaly above the transition temper-

ature T1
N = 1.04 K. The solid lines represent the fits of the data to the Schottky specific heat.

We also performed specific heat measurements in magnetic field of Gd2Ti2O7 above its first tran-

sition temperature T1
N = 1.04 K. Figure 4.17 displays the magnetic specific heat Cm as a function

of the temperature measured with fields between 0 and 9 T. Applying a magnetic field of 1 T, the

values of Cm present no differences with the data measured at zero field. Increasing the field up to

3 T a broad peak emerges centered at about 3 K. This peak becomes broader and shifts to higher

temperatures with higher fields as is shown for 5, 7, and 9 T. This high–field behaviour resembles a

Schottky anomaly as reported by [81]. Then, to describe the broad peak we use the simple model of

two energy levels; equation (43); for the Schottky specific heat. The calculated fits (solid lines) for

the high–field Cm data result in sharper peaks with higher maximum values of Cm which do not fit

well the data.
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4.3 Discussion

The results of the refinement of the X–ray patterns presented in table 4.1 and 4.4 for Gd2Ti2O7 with

annealings in oxygen and for Gd2Ti2O7 grown in different atmospheres respectively reveal that the

oxygen vacancies are located on the site O(1) of the pyrochlore lattice. We found a higher level of

oxygen vacancies in the Gd2Ti2O7 sample with a second annealing in oxygen (occupancy 0.66) and

also in Gd2Ti2O7 grown in hydrogen atmosphere (occupancy 0.73). The sample grown in oxygen

atmosphere reaches a better stoichiometry and possesses less oxygen vacancies (occupancy 0.81). The

oxygen deficiency suggests that in our Gd2Ti2O7 samples there is a slight distortion in the lattice

as reported for the spin ice Dy2Ti2O7 in [63]. Then, we assume that the Gd ions relax away from

the oxygen vacancy O(1) along 〈111〉 directions similarly to the structure of Dy2Ti2O7 with oxygen

vacancies shown in figure 2.27. In addition, the lattice parameters obtained are close to 10.184 Å and

present negligible differences among them.

From our ac magnetic susceptibility measurements we found that the transition temperatures T1
N ∼

1K for all the Gd2Ti2O7 samples in the two different batch consistent with results of [15]. We found

particular differences in each one of the batch. For the Gd2Ti2O7 samples with annealing in oxygen,

we found that the first and second annealing in oxygen does not alter the transition temperatures;

1.18 and 1.17 K; and also that the peaks of the transition are well defined. On the other side,

the Gd2Ti2O7 samples grown in different atmospheres again present no variation on the transition

temperatures but now the peaks of transition are broader. Also, the χac curve of Gd2Ti2O7 grown in

hydrogen differs largely from the ones of Gd2Ti2O7 grown in air and oxygen. For Gd2Ti2O7 grown in

a oxygen atmosphere; with a small concentration of vacancies; we reproduce the field dependence of

the ac susceptibility reported in [15]. Then, this result suggest that the small non–stoichiometry in

Gd2Ti2O7 does not alter the field–driven phase transitions.

Results from the Curie–Weiss fit are shown in table 4.3 and 4.6 for Gd2Ti2O7 with annealings

in oxygen and for Gd2Ti2O7 grown in different atmospheres respectively. We found that this liner

fit for both batch provides peff in excellent agreement with the theoretical value of µB/Gd ion. On

the other side, the values of θCW obtained for Gd2Ti2O7 with oxygen annealings are lower compared

with the θCW for Gd2Ti2O7 grown in different atmospheres. Also, all the values of θCW turns out to

be negative in agreement with the leading antiferromagnetic interaction present in the Hamiltonian

of Gd2Ti2O7 [18]. The frustration index obtained suggest that when Gd2Ti2O7 is grown in different

gaseous atmospheres such as oxygen and hydrogen the degree of frustration drops and the ordered
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ground state could be reached with a higher temperature.

Saturation magnetization of each batch display differences in the saturated moment. For example;

as shown in figure 4.7; the Gd2Ti2O7 with a first and a second annealing in oxygen reaches saturated

moments closer to the expected value 7 µB in comparison to the as–grown sample. As shown in

figure 4.14, for Gd2Ti2O7 grown in different atmospheres there is a very small difference between the

saturated moments of Gd2Ti2O7 grown in air and oxygen. For Gd2Ti2O7 grown in hydrogen, the

saturated moment reaches a value higher than 7 µB which results of the incorrect use of the ideal

stoichiometry to compute magnetization per mol. We first thought that this increase in the saturation

magnetization to the magnetic moment of the Ti3+ present in oxygen–deficient pyrochlores, but as

reported in [63] this contribution does not significantly affect the magnetization. For the two batch,

the reduction in the saturated moment is related to the presence of oxygen vacancies in our Gd2Ti2O7

samples which is in agreement with magnetization measurements of the spin ice Dy2Ti2O7 reported

in [63].

The magnetic specific heat Cm of Gd2Ti2O7 presented in figure 4.15 shows that the two phase

transitions occur at T1
N = 1.04 K and T2

N = 0.73 K consistent with the transitions temperatures

of the literature [39, 51]. As we report earlier, our Gd2Ti2O7 sample presents a slight deficiency of

oxygen. This small non–stoichiometry seems not to alter the transition temperature. On the other

hand, the recovered magnetic entropy at 10 K presents a reduction of 15% about the expected R

ln(8) which we presume is associated to the oxygen vacancies. In order to confirm that, it is required

to measure the magnetic specific heat Cm below the lowest temperature ∼ 0.39 K considered here.

Then, we could determine the cause of the reduction on the recovered entropy as due to the presence

of oxygen vacancies or to the lack of measurements in lower temperatures. Also, it is important to

study Gd2Ti2O7 samples with an appreciable deficiency of oxygen in order to see clear changes in the

temperature transitions of specific heat and in the value of the recovered magnetic entropy at high

temperatures.

For the magnetic specific heat Cm in the low–temperature range studied, it is difficult to distinguish

between the T2 and T3 power law as shown in figure 4.16. In addition, both fits result in values for the

coefficients A and Λ that are very close. As we mention before the T2 power law is proposed at low

temperatures for Gd2Ti2O7 however the study of the T3 power law provides interesting results.In very

simple terms, we notice that the developed theory for the antiferromagnet Er2Ti2O7 in [83] considers

an appropriate dispersion relation for the spin–wave modes and also in the frame of spin–wave theory

that the components of the velocity are approximately proportional to exchange interactions J. Then,
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it is computed an expression for the specific heat with a T3 dependence; equation (41); with the

coefficient Λ depending of the velocity of magnons. Within the T3 power law for the magnetic specific

heat Cm, the magnons velocity in Gd2Ti2O7 was found to be vsw = 46.2 m/s. This value of vsw

is close to the magnons velocity reported in another pyrochlore antiferromagnets as Yb2Ge2O7 with

transition temperature TN = 0.62 K which is very close to T2
N resulting in vsw = 45.8 m/s [82],

Er2Ti2O7 with TN = 1.17 K and vsw = 86 m/s [11], and Er2Ge2O7 with TN = 1.41 K and vsw =

132 m/s [82]. Among these three examples, the spin–waves in Gd2Ti2O7 seems to behave in a similar

way to Yb2Ge2O7. Also, we notice that an increase in the values of vsw is associated to an increase

in the ordering temperature TN.

The nearest–neighbour exchange interaction J can be estimated from the Curie–Weiss constant

θCW = –10.9 K by J = 3θCW/zJ(J+1) = –0.35 K, where z = 6 is the number of nearest neighbours. On

the other side, for a typical antiferromagnet the dispersion relation is given by ω = 2JSak/~ = vswk,

where S is the spin, a is the lattice parameter, and k is the wave vector [13]. Then, for Gd2Ti2O7

with vsw = 46.2 m/s the exchange interaction is J ∼ –0.05 K. This value of 0.05 K differs significantly

from the previous –0.35 K. However, we think that this difference makes sense since it is not correct

to suppose Gd2Ti2O7 with ordered spins since we know that below the second transition 1/4 of the

spins are still disordered in a dynamic state.

As shown in figure 4.17, the calculated fits to the Schottky anomaly does not described well the

Cm data of Gd2Ti2O7 in high magnetic fields. In fact, we expect this result since Gd2Ti2O7 with spin

S = 7/2 can no be studied as a system with two energy levels. A first fit to Cm was reported by Raju

et al. in [18] as shown in figure 2.14. This fit describes the Schottky peak by reaching also the peak

of the first phase transition which we think that is still an arguable result. Another attempt to fit the

Cm data could be done by considering not only the system with the energy levels of the 8S7/2 state

but also the split of the energy levels due to the crystal field as reported by [46] which we think that

turns out to be a complicated problem. In addition, we found that the broad peaks of Schottky for

our polycrystalline Gd2Ti2O7 are consistent with the specific heat measurements reported in [81] for

single crystals.
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Chapter 5
Yttrium Dilution Effects on Gd2Ti2O7

In Chapter 5 we complete our study of the structural defects in Gd2Ti2O7 by introducing non–magnetic

yttrium Y on the gadolinium Gd sites of the pyrochlore lattice. This chapter covers the results of the

structural and low–temperature magnetic properties of the yttrium diluted Gd2-xYxTi2O7. Thus, we

discuss the trend and variation of these properties close to the first transition temperature T1
N ∼ 1 K

of Gd2Ti2O7 as we increase the yttrium content x.

5.1 Results

We now study the low–temperature magnetic behaviour of the yttrium diluted Gd2-xYxTi2O7. Poly-

crystalline Gd2-xYxTi2O7 samples with different yttrium contents x were prepared by the sol–gel

method described in Chapter 3. Here, a value of x = 0.1 means that the Gd2-xYxTi2O7 sample

presents a 5% of mol substitution of the Gd sites by Y, whereas for x = 1 there is a 50% of mol sub-

stitution of Gd by Y. To reduce the oxygen deficiency, all the Gd2-xYxTi2O7 samples were annealed

in oxygen flow (50 ml/min) at 1100◦C for 24 hours. Then, in this section we first present the powder

X–ray diffraction (XRD) patterns of the Gd2-xYxTi2O7 samples and their respective refinement of the

data by using the software FullProf. Also, in order to discuss the magnetic and thermal properties in

Gd2-xYxTi2O7 we report ac susceptibility, magnetization, and specific heat data.

89



CHAPTER 5. Yttrium Dilution Effects on Gd2Ti2O7

5.1.1 Structural analysis

The powder X–ray diffraction patterns of the samples in the series Gd2-xYxTi2O7 (x = 0.1, 0.14, 0.2,

0.3, 0.4, 0.7 and 1.1) are shown in figure 5.1. It also displays the XRD pattern of the non–diluted

Gd2Ti2O7. As the yttrium content x is increased, there is a very slight shift to the left of the peak

centers due to differences in lattice parameters.

Figure 5.1: Powder X–ray diffraction patterns at room temperature, obtained from Gd2-xYxTi2O7

samples with different yttrium contents x. The diffraction data is offset for clarity.

Rietveld refinements were carried out using the software FullProf and the graphical interface Win-

PLOTR. The results of the refinement are given in table 5.1. We found that all of our X–ray diffraction

data refine in the pyrochlore structure with space group Fd3m. Even for a high yttrium content that

is 55 % of mol substitution (x = 1.1) the average structure becomes pyrochlore. We also found that

the refined lattice parameter decreases from 10.184 to 10.140 Å as the yttrium content x increases in

Gd2-xYxTi2O7. Figure 5.2 displays this reduction on the lattice parameter which can be attributed

to the smaller ionic radius of Y3+. From the refinement, we obtained that the occupancies of the

Gd sites are very close to one showing that there are no vacant sites of Gd even if the Gd content

decreases in Gd2-xYxTi2O7. On the other hand, the refinement reveals that the occupancies of the Y

sites are very close to one for small values of Y content. The occupancies for x = 0.7 and 1.1 seems to
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show that as we increase the Y content it is more likely find vacancies on the Y sites. The occupancies

of Ti have values very close to one showing that there is no a titanium deficiency. Once again, the

vacancies were found to be on the O(1) sites for all the yttrium diluted samples. Furthermore, for

all the diluted samples studied here, the values of the occupancies O(1) do not present a significant

difference between them. For the O(2) sites, the values of occupancies are close to one suggesting no

oxygen vacancies as in our previous results of the non–diluted Gd2Ti2O7. We refined all data sets in

order to obtain the lowest chi-squared χ2 which reach minimums around a value of two.

Yttrium content x 0 0.1 0.14 0.2 0.3 0.4 0.7 1.1

Space group Fd3m

Lattice parameter (Å) 10.184 10.176 10.176 10.175 10.165 10.163 10.148 10.140

Gd 1.03 0.95 1 1 1 1 1 1

Y 0 0.98 1.03 0.99 0.98 1.03 0.82 0.90

Ti 1.05 1 1.04 1.05 1.06 1.05 1 1

O(1) 0.66 0.77 0.74 0.75 0.81 0.77 0.80 0.73

O(2) 0.98 0.92 0.96 0.97 0.96 0.95 0.92 0.93

χ2 2.09 2.11 2.02 2.09 2.14 2.53 2.33 2.12

Table 5.1: Refinement of the structure of Gd2-xYxTi2O7 with different yttrium contents x.

Figure 5.2: Refined lattice parameter (±0.02%) as a function of the yttrium content x.
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5.1.2 AC magnetic susceptibility

AC magnetic susceptibility measurements were conducted on needle–shaped samples for Gd2-xYxTi2O7

with different yttrium concentrations. Above 4.2 K, the ac magnetic susceptibility χac was measured

using the SQUID. Below 4.2 K, χac was measured on the ac susceptometer using a mutual inductance

bridge at frequency f = 155 Hz and modulation field µ0hac = 10 mT.

In figure 5.3 we present measurements of χac as a function of the temperature for Gd2-xYxTi2O7

with different yttrium contents x. The χac data is presented in the temperature range of 0.4 to 7 K

and was collected at zero field. In each Gd2-xYxTi2O7 compound, the ac susceptibility exhibits an

anomaly close below 1 K which corresponds to the first phase transition. For Gd2-xYxTi2O7 samples

with small yttrium content or x = 0.1, 0.14, 0.16 and 0.2, the values of susceptibility χac remain

almost constant for each sample after the peak at its respective transition temperature T1
N. Also, for

a slightly higher yttrium content that is for x = 0.3 and 0.4 we observe that the values of χac fall

short after the phase transition at T1
N = 0.74 and 0.67 K respectively. Then, for high yttrium content:

x = 0.7 and 1, it is clear that after the phase transition the values of χac start to fall in a high rate

defining well the peaks. The collected data of susceptibility does not show a second phase transition

for any of our yttrium diluted Gd2-xYxTi2O7 samples.

Figure 5.3: ac magnetic susceptibility χac as a function of the temperature for Gd2-xYxTi2O7 with

different yttrium contents x measured at zero field. χac curves are slight offset for clarity.
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The left side of figure 5.4 shows the χac curves in a larger temperature range with at zero field.

It illustrates better the peaks and indicates a progressive decrease in the transition temperature T1
N.

For high yttrium contents: x = 0.7 and 1, we have that the susceptibility curves increase in a very

high rate close to the anomaly compared with the samples with x < 4 and also display a more defined

peak. The right side of figure 5.4 displays the raw data of χac. It shows that as we increase the

yttrium content x in Gd2-xYxTi2O7, the values of χac decrease and also that the position of the peaks

at T1
N shift slightly to the left. For x = 0.1, 0.14, 0.16, and 0.2 χac curves converge with an analogue

behaviour in the temperature interval of 5 to 30 K. Also, for x = 0.3, 0.4, and 0.7 the χac data seems

to approach the anomaly with the same behaviour. We found that the χac curve of the sample with

x = 1 presents a very broad kink before reaching the temperature of the sharp peak. This is a very

different behaviour compared with the smooth growing of the χac curves for lower yttrium contents.

Figure 5.4: Left : Temperature dependence of the ac magnetic susceptibility χac of Gd2-xYxTi2O7

for x = 0 – 0.7. The χac curves are slightly offset for clarity. Right : Raw data for the ac magnetic

susceptibility of Gd2-xYxTi2O7.

From the ac susceptibility data, we report the transition temperatures T1
N in table 5.2. The values

of T1
N in fact decrease from 1.18 K for x = 0 to 0.41 K for x = 1 when the yttrium content x is

increased. It implies that the degree of geometric frustration rises with the yttrium dilution in the

lattice and also that the antiferromagnetic interactions between Gd spins, in first approximation,

require lower temperatures to develop a long–range order. We did not collect χac data for yttrium

contents x higher than 1 since for x = 1 we have an ordering temperature T1
N = 0.41 K which is closer

to the minimum reached in the laboratory, 0.39 K. So, for values x > 1 it is not possible to resolve
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the peak of the first phase transition.

Gd2-xYxTi2O7 Yttrium content x T1
N (K)

Gd2Ti2O7 0 1.18

Gd1.9Y0.1Ti2O7 0.1 0.97

Gd1.86Y0.14Ti2O7 0.14 0.92

Gd1.8Y0.2Ti2O7 0.2 0.77

Gd1.7Y0.3Ti2O7 0.3 0.74

Gd1.6Y0.4Ti2O7 0.4 0.67

Gd1.3Y0.7Ti2O7 0.7 0.54

Gd1Y1Ti2O7 1 0.41

Table 5.2: Values of the transition temperatures T1
N for the yttrium diluted Gd2-xYxTi2O7.

Figure 5.5 displays the transition temperatures T1
N as a function of the yttrium content x in

Gd2-xYxTi2O7. We observe that for small yttrium contents the ordering temperatures experiments a

quick variation until x = 0.2 or 0.3 where it stabilizes. Then, for a higher concentration of yttrium

that is for x > 0.3, we notice the linear dependence of the transition temperatures T1
N.

Figure 5.5: Transition temperatures T1
N as a function of the yttrium content x in Gd2-xYxTi2O7.
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Now we study if field–induced phase transitions occur for a diluted sample with yttrium content

x = 0.3 or Gd1.7Y0.3Ti2O7. From our previous results, we report that for x = 0.3 the diluted sample

undergoes a phase transition at a temperature T1
N = 0.72 K. In figure 5.6 we present the ac suscep-

tibility data as a function of the applied field, χac(H), for x = 0.3. Then, the χac(H) data shows

that there is no peak indicating phase transition at temperatures 0.63 and 0.51 K, and for field values

around 7 T the susceptibility displays a broad downturn and goes to zero. We think that there is no

phase transition at 0.63 and 0.51 K as the field increases because these temperatures are very close

to the transition temperature T1
N = 0.72 K and it is required a lower temperature to observe another

phase transition. Also, 0.51 K is a temperature very close to the minimum reached in the lab: 0.49

K, so χac measurements for lower temperatures were not carried on.

Figure 5.6: Field dependence of ac susceptibility for Gd2-xYxTi2O7 with yttrium content x = 0.3

measured at 0.63 and 0.51 K.

95



CHAPTER 5. Yttrium Dilution Effects on Gd2Ti2O7

5.1.3 DC magnetic susceptibility

We present in figure 5.7 the temperature dependence of the inverse dc susceptibility χ−1 for Gd2-xYxTi2O7

with different yttrium contents x. The χ−1 data was collected in the temperature range of 2 to 300

K and was measured in an applied field of H = 100 Oe. Figure 5.7 also displays the respective Curie–

Weiss linear fit in high temperatures for each Gd2-xYxTi2O7 sample. We notice that when the yttrium

content is increased, the slope of the linear fit (inversely proportional to |θCW|) tends to increase which

means a reduction in the antiferromagnetic exchange interaction between the Gd spins.

Figure 5.7: Inverse susceptibility χ−1 as a function of the temperature and its respective linear fit of

Curie–Weiss for Gd2-xYxTi2O7 measured in an applied field of 100 Oe.

From the linear fit we extract the Curie–Weiss temperatures, θCW, and effective magnetic moments,

peff and report these values in table 5.3. From the values of the transition temperatures T1
N, we obtain

the frustration index f . For small yttrium contents in Gd2-xYxTi2O7 that is for x = 0.1 and 0.14,

the degree of frustration f almost does not vary and stay below the reported frustration index of

Gd2Ti2O7 [15], f ∼ 10. When the yttrium content x is increased to 0.2 and forward, the frustration

index exceeds the index of Gd2Ti2O7 becoming evident the higher frustration of the system and that

we will need lower temperatures to order the Gd spins.
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x 0 0.1 0.14 0.2 0.3 0.4 0.7 1

peff (µB/Gd3+) 7.9 7.9 8.1 8.1 7.9 8.0 7.6 8.0

θCW (K) –9.7 –8.8 –8.7 –8.9 –8.3 –7.5 –6.5 –4.1

T1
N (K) 1.18 0.97 0.92 0.77 0.74 0.67 0.54 0.41

f 8.2 9.1 9.5 11.6 11.2 11.2 12.0 10

Table 5.3: Values of the effective magnetic moment, peff , Curie–Weiss temperatures, θCW, and

transition temperatures, T1
N, for different yttrium concentrations x in Gd2-xYxTi2O7.

Figure 5.8 presents the values of |θCW| as a dependence of the yttrium content x in Gd2-xYxTi2O7.

The values of |θCW| decrease almost linearly from the value of 9.7 K of the non–diluted sample as

the yttrium concentration rises in agreement with [18] meaning smaller antiferromagnetic exchanges

interactions. This linear dependence as a function of the yttrium content x is a reminiscent of the

linear tendency of the T1
N (figure 5.5). We think that more measurements with other different yttrium

contents x will help to clarify the behaviour of the θCW. Also, figure 5.8 displays the values of the peff

of Gd2-xYxTi2O7 as the yttrium content x is increased. It shows that the peff values of all our diluted

samples oscillate around the expected value of 7.94 µB/Gd [9] without a tendency in particular and

present slight differences between them as the yttrium concentration rises.

Figure 5.8: Curie–Weiss temperatures |θCW| (±5%) (left axis) and effective magnetic moments peff

(±1%) (right axis) for Gd2-xYxTi2O7 as a function of the yttrium content x.
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5.1.4 Saturation magnetization

Measurements of magnetization of the yttrium–diluted Gd2-xYxTi2O7 samples were carried out on a

vibrating sample magnetometer (VSM). Figure 5.9 shows the magnetization curves as a function of

the applied field for Gd2-xYxTi2O7 with small values of yttrium content x. At 4.2 K, for x = 0.2 and

0.3 that is Gd1.8Y0.2Ti2O7 and Gd1.7Y0.3Ti2O7 respectively we observe the same curve behaviours

for values of magnetic field up to 3 T. As we increase the magnetic field those samples reach the

expected saturated moment of 7 µB but the magnetization of the sample with x = 0.3 saturates above

8 T in comparison with x = 0.2 which saturates for a higher field close to 14 T. It seems that this

yttrium content x = 0.2 marks a point for which it is needed very high fields in order to reach the

expected moment. At 1.28 K, we observe that for the samples with x = 0.4 and x = 0.7 the values

of magnetization grow rapidly with the magnetic field and saturate around values of 7 T. For x =

0.4, we found a lower and unexpected saturation value which could be related to non–stoichiometric

of this sample. We also show the saturation magnetization curve for the non–diluted sample x = 0 at

1.26 K in order to compare it with the different saturation curves of the diluted samples.

Figure 5.9: Saturation magnetization for Gd2-xYxTi2O7 with different yttrium concentrations x mea-

sured at 1.28 and 4.2 K.

Having presented the saturation magnetization for small yttrium contents in Gd2-xYxTi2O7, now

we report on figure 5.10 the magnetization curves for x = 1, 1.1, and 1.5. The field dependence of the
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magnetization data was measured using a commercial SQUID at a fixed temperature T = 4.2 K. We

found that as the applied field increases up to a value of 7 T, the magnetization grows at a considerable

rate, and reaches a value of 6.8 µB/Gd ion. Also, the behaviour of the magnetization curves suggest

that for a higher yttrium content it is easy to reach the saturated moment. For values above 7 T, we

expect that the samples with high yttrium content reach the expected saturation moment of 7 µB .

Figure 5.10: Magnetization as a function of the applied field of Gd2-xYxTi2O7 with x = 1, 1.1 and

1.5 measured at 4.2 K.
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5.1.5 Specific heat

The specific heat data for Gd2-xYxTi2O7 with different yttrium contents was collected using a Quan-

tum Design PPMS calorimeter. Figure 5.11 displays the total specific heat C as a function of the

temperature for the yttrium diluted samples Gd2-xYxTi2O7 measured in zero field. Up to temperature

of 50 K, the C data for x = 0, 0.1, 0.2, and 0.4 behave with a linear dependence and present very

slight variations between them in contrast with the samples with a higher yttrium content such as x

= 0.7 and 1. In order to compute the magnetic contribution to the specific heat Cm we examine C

in a lower temperature range. Between 10 and 15 K, as shown by figure 5.11, the C curves for all the

different yttrium contents are very close to each other and behave in a similar way. So, we expect

that the lattice specific heat Clat for the Gd2-xYxTi2O7 samples to be the same as the estimated Clat

of Gd2Ti2O7 obtained in Chapter 4 from a T3 fit. Then, the magnetic specific heat Cm is obtained

by subtracting Clat from C and its temperature variation is shown in the figures below.

Figure 5.11: Temperature dependence of the total specific heat C for Gd2-xYxTi2O7 with different

yttrium contents x measured in zero field.

Figure 5.12 shows the temperature and field dependencies of the magnetic specific heat Cm for

Gd2-xYxTi2O7 with small values of yttrium content. We study the Gd2-xYxTi2O7 samples with

yttrium contents x = 0.1 and 0.4 in the temperature range of 2 to 20 K. We found that the values of

the collected data and behaviour of Cm for fields up to 2 T are very similar to each other and also

that these values of Cm start to decrease for fields of 3 and 4 T. Clear in the figure is the presence
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of maximums for fields above 5 T which are identified as a Schottky anomalies due to separation of

the energy levels in high magnetic fields. With the increasing of the field up to 9 T, the Schottky

anomaly becomes broader and the center of the peak moves to higher temperatures. We do not fit the

data to the Schottky specific heat because it provides a poor fit in a similar way to the non–diluted

Gd2Ti2O7 sample studied in Chapter 4.

Figure 5.12: Magnetic specific heat Cm as a function of the temperature for Gd2-xYxTi2O7 with

yttrium contents x = 0.1 (left) and x = 0.4 (right) measured with different magnetic fields.

Figure 5.13 displays the temperature dependence of the magnetic specific heat Cm for Gd2-xYxTi2O7

with yttrium contents x = 0.7 and 1 measured in different magnetic fields. On contrast with the Cm

curves above, we observe the Schottky anomaly for fields above 4 T. For x = 1, the Schottky peak

is well defined at a field of 5 T. As the field is increasing, the Schottky peak becomes broader and is

centered at higher temperatures. As mentioned before, for these yttrium contents x = 0.7 and 1 the

values of Clat present slight differences compared with the other diluted samples. Then, if we consider

different estimated values of Clat we would expect that Cm will not display that small increase close

to 18 K but instead broader peaks better defined.
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Figure 5.13: Magnetic specific heat Cm as a function of the temperature for Gd2-xYxTi2O7 with

yttrium contents x = 0.7 (left) and x = 1 (right) measured with different magnetic fields.

5.2 Discussion

The refinement of the X–ray diffraction patterns reveal that the series of yttrium diluted Gd2-xYxTi2O7

also possesses a small deficiency of oxygen in the O(1) site in the same way that our Gd2Ti2O7 samples.

The values of the occupancies of O(1) are very close and it seems that there is no relation between

the oxygen vacancies and the yttrium content in Gd2-xYxTi2O7. There is a clear reduction with an

almost linear dependence of the lattice parameter as the yttrium content is increased which is due to

the smaller ionic radius of yttrium. So, we suppose that a distortion lattice in Gd2-xYxTi2O7 must

consider the relaxations of the Gd and Y ions away from O(1) vacancies along 〈111〉 directions and

that it occurs in a smaller lattice.

AC susceptibility measurements of the yttrium diluted Gd2-xYxTi2O7 shown in figure 5.3 display

peaks like phase transitions below 1 K. By increasing the yttrium content, we found that the values of

the temperature transitions decrease roughly with a linear dependence. Our curves of ac susceptibility

do not display a peak corresponding to the second phase transition but for small yttrium contents;

x = 0.1, 0.14, 0,16 and 0.2; the existence of a plateau after the first transition does not close this

possibility. On the other hand, we do not know if for high yttrium contents in Gd2-xYxTi2O7 we

will be able to measure a second phase transition because the peaks of the first transition are better

defined as in the case of x = 1.
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Results from the Curie–Weiss fit shown in figure 5.8 display that the values of θCW decreases as

we increase the yttrium content in Gd2-xYxTi2O7 which is consistent with lower antiferromagnetic

interactions. Also, the values of the effective magnetic moments peff oscillate around the theoretical

value of 7.94 µB/Gd when the yttrium content is increased in Gd2-xYxTi2O7. We think that it

could be useful to study Gd2-xYxTi2O7 with higher yttrium contents in order to establish better the

behaviours of θCW and peff.

Magnetization measurements of the Gd2-xYxTi2O7 samples with small yttrium content; x = 0.2,

0.3, 0.4 and 0.7; present a slight variation among them but still reach saturated moments close to the

expected of 7 µB for fields higher that 10 T. For the Gd2-xYxTi2O7 samples with high yttrium contents

such as x = 1, 1.1 and 1.5, we found that they reach the same saturated moment with an applied field

of 7 T. We think that the lower values of θCW and thus of exchange antiferromagnetic interactions

J for Gd2-xYxTi2O7 samples with a higher yttrium content cause the fact that it is easier to reach a

saturated moment since with lower antiferromagnetic interactions, the Gd2-xYxTi2O7 samples behave

more like a paramagnet.

The magnetic specific heat of the Gd2-xYxTi2O7 samples as a function of the temperature and

field present a Schottky anomaly above 1 K. We found that the position of the Schottky peak shifts

to higher temperatures as we increase the yttrium content. We did not fit the data to equation (41)

since we know that it provides a very poor fit as discussed for Gd2Ti2O7 in Chapter 4. As in the

case of Gd2Ti2O7, a better fit can be made by considering the ground state 8S7/2 with the energy

levels of the crystal field. For Gd2-xYxTi2O7, the lack of measurements of the specific heat in a lower

temperature range then we can not discuss about the first and second phase transition and compute

the recovered entropy of the yttrium diluted samples. It will be interesting to study the behaviour of

the transitions temperatures as we increase the yttrium content as well as to compare them with the

transition temperatures obtained from ac susceptibility measurements.
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In this study, polycrystalline samples of Gd2Ti2O7 and yttrium–diluted Gd2-xYxTi2O7 were success-

fully synthesized by using the sol–gel method. As shown by the Rietveld refinement, our Gd2Ti2O7

samples present a varying degree of oxygen vacancies in the O(1) site, which can be reduced by chang-

ing the growth atmosphere of the samples to oxygen. Also, the computed lattice parameter for the

sample with a better stoichiometry, that is, for Gd2Ti2O7 grown in oxygen atmosphere was found

to be 10.184 Å. On the other side, the increasing of the yttrium content in Gd2-xYxTi2O7 leads to

smaller lattice parameters.

Peaks of phase transition were observed close to 1 K through ac susceptibility measurements for

Gd2Ti2O7 with annealings in oxygen, as well as for Gd2Ti2O7 grown in different atmospheres. For

each yttrium–diluted sample Gd2-xYxTi2O7, ac susceptibility measurements show a peak of transition

below 1 K. For small yttrium contents; x = 0.1, 0.14, 0.16 and 0.2 the peaks form a plateau after

the first transition, which suggests that we could observe a peak corresponding to the second phase

transition. For x = 0.1 and 0.7, the well defined peaks of the first transition leave some doubts about

the existence of a second phase transition. The position of the peak shifts to lower temperatures as

we increase the yttrium content in Gd2-xYxTi2O7, then the transition temperatures decrease with a

higher yttrium content.

Both Gd2Ti2O7 and Gd2-xYxTi2O7 samples reach a saturated moment close to 7 µB for fields

about 10 T. The magnetization measurements in Gd2Ti2O7 show that the samples with less value

of occupancy in the O(1) site, that is, with more oxygen vacancies, exhibit a small but still clear

reduction in the saturated moments. In order to resolve a higher reduction in the saturated moments,
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it is required to introduce a sizeable density of oxygen vacancies. The lower values of θCW and

thus of exchange antiferromagnetic interactions J for increasing yttrium content in Gd2-xYxTi2O7 are

responsible for the fact that it is easier to reach a saturated moment with a higher yttrium content.

Our polycrystalline Gd2Ti2O7 sample with a small deficiency of oxygen exhibits two phase tran-

sitions at the temperatures T1
N = 1.04 K and T2

N = 0.73 K. The recovered entropy up to high

temperatures of the system presents missing entropy which could be associated to the presence of

oxygen vacancies. In this sample, we have discussed the T2 and T3 power laws of the magnetic spe-

cific heat, which have very similar behaviour in the temperature range 0.39 K ≤ T ≤ 0.68 K studied

here. In the frame of the T3 power law, for Gd2Ti2O7 we obtained the velocity of the magnons vsw

= 46.2 m/s, which is consistent with the value vsw = 45.8 m/s reported for the antiferromagnetic

pyrochlore Yb2Ge2O7 [82]. Finally, an appropriate fit to the Schottky anomaly for the Gd2Ti2O7

and Gd2-xYxTi2O7 samples could be made by considering the 8S7/2 state with the split of the energy

levels by the crystal field.

Future Work

Future work concerns to study our Gd2Ti2O7 and Gd2-xYxTi2O7 samples by using high energy

x–rays at the Brazilian Synchrotron Light Laboratory (LNLS) in order to improve our structural

analysis by refining the x–ray patterns and also to confirm the same displacements of the Gd and Y

ions as in Dy2Ti2O7. Also, in order to determine the compositions of our samples and thus the oxygen

concentration or δ in Gd2Ti2O7−δ it is required to perform a thermogravimetric analysis.

To discuss the low–temperature behaviour of the magnetic specific heat of our samples, it is required

to perform experiments below the lowest 0.39 K considered here. Then, for Gd2Ti2O7 studied in

Chapter 4 we could find if there is any significant difference between the transition temperatures for

Gd2Ti2O7 annealed in oxygen and grown in different atmospheres as well as compare the recovered

magnetic entropy of our samples. Also, we could distinguish better between the T2 and T3 power laws

studied in our work. For the Gd2-xYxTi2O7 samples, it is required to measure specific heat in a very

low–temperature range in order to obtain the temperatures of the first and second phase transition.
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