• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.43.2017.tde-21112017-170853
Documento
Autor
Nombre completo
Ana Maria Valencia Garcia
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2017
Director
Tribunal
Caldas, Marilia Junqueira (Presidente)
Capaz, Rodrigo Barbosa
Silva, Luis Gregorio Godoy de Vasconcellos Dias da
Teles, Lara Kuhl
Vasconcelos, Ado Jorio de
Título en portugués
Estudo ab initio de nanoestruturas de grafeno: defeitos intrínsecos e interação com água
Palabras clave en portugués
grupos de água.
nanoestrutura de grafeno
Teoria do funcional da densidade
Resumen en portugués
Neste trabalho utilizamos métodos computacionais ab initio, baseados na Teoria do Funcional da Densidade (DFT), para simular em nível atomístico propriedades estruturais, eletrônicas e magnéticas de nanoestruturas de grafeno. Estudamos nanoflocos de grafeno (GNFs) em estado pristino e GNFs com defeitos intrínsecos (monovacância, divacância e Stone-Wales). Escolhemos GNFs com diferentes terminações e formas, e estudamos também empilhamentos duplos - biflocos - em diferentes composições. Empregamos dois enfoques diferentes de DFT, a aproximação de gradiente generalizado simples no nível teórico de Perdew-Burke-Ernzerhof (PBE), e PBE híbrida (PBEh), incorporando uma fração de troca de Hartree-Fock. Todos os cálculos foram realizados através do código all-electron AIMS, incluindo correções de van der Waals. Nossos GNFs foram escolhidos com simetrias específicas: D2h, D3h e D6h, e com diferentes bordas, armchair (AC), zigue-zague (ZZ) e misturas das duas. Os flocos hexagonais D6h apresentam um gap de energia e nao apresentam spin, enquanto flocos perfeitos com bordas zigue-zague e mistas apresentam spin intrínseco. Esse spin não nulo é devido à diferença no numero de átomos entre uma e outra subrede do grafeno (Liebs imbalance). Defeitos em materiais de carbono sao frequentes, e tem sido estudados experimental e teoricamente. Aqui, estudamos a monovaçancia, através de modelos de cluster e supercélulas, e obtemos para esse defeito o momento magnético de = 2B, (B ´e o magneton de Bohr). Mostramos que as diferenças entre resultados anteriores são oriundas do erro de auto-interação presente na DFT simples, amenizado através do uso de PBEh. Através da mesma metodologia estudamos a interação de nanoestruturas de grafeno com moléculas de água, focalizando em propriedades estruturais. A grafite é um material hidrofóbico, mas a nanoestrutura poderia favorecer a interação com a água. Obtemos que pequenos agregados de água são adsorvidos na superfície de GNFs e biflocos, entretanto a inclusão desses agregados na região interna dos biflocos é altamente desfavorável. Assim podemos esperar que essas nanoestruturas empilhadas sejam também hidrofóbicas.
Título en inglés
Ab initio study of intrinsic defects and water interaction with graphene nanostructures
Palabras clave en inglés
Density Functional Theory
Graphene Nanostructure
water groups.
Resumen en inglés
In this work, computational ab initio methods based on density functional theory (DFT) are used to simulate on an atomistic level the structural, electronic and magnetic properties of graphene nanostructures. We study pristine graphene nanoflakes (GNFs), and GNFs with intrinsic defects (monovacancy, divacancy, Stone-Wales). We design GNFs with different terminations and shapes and also studied stacked forms -biflakes- in different compositions. We employed two DFT approaches, plain generalized gradient approximation in the Perdew-Burke-Ernzerhof (PBE) level of the theory, and hybrid PBE (PBEh) incorporating a fraction of Hartree-Fock exchange. All calculations were performed with the all-electron code AIMS, including van der Waals corrections. Our GNFs were chosen from three symmetry groups: D2h, D3h and D6h, and with different edges, armchair (AC), zigzag (ZZ) and a mixture of both. Our chosen D6h- hexagonal flakes present an energy gap and no spin, while perfect trigonal zigzag and mixed edges GNFs have an intrinsic spin. This non-zero spin is due to the graphene sublattice imbalance (Liebs imbalance). Defects are common in carbon materials, and have been experimentally and theoretically studied in graphene. Here, the single vacancy in graphene was studied, by cluster and supercell approaches, finding that the vacancy induces a magnetic moment = 2B (Bohr magneton). We show that conflicting results for the magnetic moment coming from theoretical studies come from the self-interaction error present in plain PBE, cured through the use of PBEh. Using the same methodology we studied the interaction of carbon nanostructures with water molecules, focusing on structural properties. Graphite is a hydrophobic material but nanostructuring could favor the interaction with water. We obtained that small water groups are adsorbed on the surface of GNFs and biflakes, however the inclusion of these groups in the internal region of biflakes is highly unfavorable, thus we can expect these stacked nanostructures to be also hydrophobic.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2017-11-28
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2024. Todos los derechos reservados.