
Universidade de São Paulo

Instituto de F́ısica

Teorias com Grande Hierarquia de Escalas

Nayara Fonseca de Sá
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Abstract

In this thesis we explore a class of N-site models that were developed to generate

large-scale hierarchies. Using the dimensional deconstruction approach and appropriate

matchings, these purely four-dimensional theories coincide with AdS5 models in the con-

tinuum limit, which corresponds to the limit with a large number of gauge groups. On

the other hand, in the coarse lattice limit such theories have very distinct couplings of

the excited states to zero mode fields compared with AdS5 constructions, resulting in

a rich phenomenology to be explored at the Large Hadron Collider (LHC). The Stan-

dard Model (SM) hierarchy problem is solved if the Higgs field is infrared-localized as in

Randall-Sundrum scenarios. The SM fermion mass hierarchy and mixings are obtained by

different localizations of zero mode fermions in the theory space.

This framework is employed to tackle the electroweak hierarchy problem from a new

perspective. We show that an effective few site description of a warped extra dimension

can implement the recently introduced relaxion models, which are a new alternative to

explain the radiative stability of the SM scalar sector through the cosmological relax-

ation mechanism. These models require very large field excursions, which are difficult to

generate in a consistent ultraviolet completion and to reconcile with the compact field

space of the relaxion. We propose an N-site model that naturally generates the large

decay constant needed to address these problems. In our model, the mass matrix of the

pseudo-Nambu-Goldstone Bosons (pNGBs), whose zero mode plays the role of the relaxion

field, is identical to the one obtained for a pNGB Wilson line in the deconstruction of AdS5.

Keywords: N-site models, large-scale hierarchies, dimensional deconstruction, warped extra

dimension, cosmological relaxation mechanism, pseudo-Nambu-Goldstone boson.
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Resumo

Nesta tese exploramos uma classe de modelos de N-śıtios que foram desenvolvidos

para produzir grandes hierarquias de escalas. Usando a abordagem de desconstrução

dimensional e correspondências apropriadas, esses modelos puramente quadridimensionais

coincidem com modelos AdS5 no limite do cont́ınuo, que corresponde ao limite com um

grande número de grupos de gauge. Por outro lado, no limite em que há poucos grupos

de gauge, tais teorias possuem os acoplamentos entre estados excitados e modos zero dos

campos muito distintos dos acoplamentos em construções AdS5, resultando em uma rica

fenomenologia a ser explorada no Large Hadron Collider (LHC). O problema da hierarquia

do Modelo Padrão (MP) é resolvido se o campo de Higgs está localizado no infravermelho,

assim como nas teorias Randall-Sundrum. A hierarquia de massa dos férmions do MP e

misturas são obtidas pelas diferentes localizações dos modos zero dos férmions no espaço

dos śıtios.

Essa estrutura é empregada para abordar o problema da hierarquia sob uma nova per-

spectiva. Nós mostramos que uma descrição efetiva com poucos śıtios de uma dimensão

extra curva pode implementar os recentemente introduzidos modelos de relaxion, que são

uma nova alternativa para explicar a estabilidade radiativa do setor escalar do MP através

do mecanismo de relaxação cosmológico. Esses modelos requerem que o campo exper-

imente grandes variações, que são dif́ıceis de serem geradas em um modelo ultravioleta

consistente e de serem compat́ıveis com o espaço compacto do relaxion. Nós propomos um

modelo de N-śıtios que gera naturalmente essa grande constante de decaimento necessária

para abordar esses problemas. No nosso modelo, a matriz de massa dos pseudo Bósons de

Nambu-Goldstone (pBNGs), cujo modo zero faz o papel do relaxion, é idêntica à matriz

obtida para uma linha de Wilson pBNG na desconstrução de AdS5.

Palavras-chave: modelos de N-śıtios, grande hierarquia de escalas, desconstrução dimensional,

dimensão extra curva, mecânismo de relaxação cosmológico, pseudo bóson de Nambu-Goldstone.
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Chapter 1

Introduction

Particle physics has always been crucial for the understanding of the evolution

of the universe. On the other hand, one should ask what the cosmological his-

tory can teach us about our models of fundamental particle interactions. Indeed,

cosmology can be a key ingredient to answer some open questions in elementary

particle physics and the promising bridge between these two areas may show us

unexpected directions. 1 In the past twenty years, cosmology has entered its ‘pre-

cision era’ and its interplay with particle physics became more appealing. In fact,

the data obtained from large-scale structure surveys and by mapping of the Cosmic

Microwave Background (CMB) radiation have enabled us to improve our knowl-

edge of cosmological parameters from about within an order of magnitude to the

percent level. After COBE and WMAP, the ESA satellite Planck has significantly

improved the precision cosmological measurements ensuring more detailed maps of

CMB anisotropies [2, 3]. Although the standard model of cosmology (or ΛCDM)

is in agreement with the current data, there are some anomalies that are far from

being fully understood (see e.g. Ref. [4]).

On the other hand, the Standard Model (SM) of elementary particles has been

proven extremely successful in describing the current experimental data [5]. It pre-

dicts a remnant state from the electroweak symmetry breaking, the Higgs field,

which is consistent with the observed boson at the Large Hadron Collider (LHC) in

1It should be mentioned that this year the Laser Interferometer Gravitational–Wave Observa-
tory (LIGO) announced the first direct observation of gravitational waves [1], which opens a new
era of gravitational astronomy that might reveal surprising features about the fundamental physics.



2 Introduction

2012 [6,7]. If this Higgs-like particle is in fact the SM Higgs 2, it remains unanswered

what protects the Higgs mass from receiving corrections of the ultraviolet (UV) cutoff

of the theory. From this issue results the so-called gauge hierarchy problem [10,11],

whose natural solution indicates new physics close to the TeV scale [12, 13] as it is

explained in the Sec. 1.1.

Together with the electroweak hierarchy problem, there are several open ques-

tions in particle physics and also in cosmology [14–16]. In the following, we are going

to mention some of them. A common feature among these problems is that there

is no compelling indication of at which scale the new physics might appear and we

do not know if such an energy can be achieved in the current and next generation

of experiments. This is a key difference between all these other unsolved questions

and the SM hierarchy problem. As a noticeable example, we can point out the fact

the SM does not provide any explanation for the large hierarchy of fermion masses

and CKM matrix elements. These values are simply chosen in order to match the

experimental data [5]. This issue is also explored in this thesis in Chap. 3, where we

obtained the fermion mass and CKM hierarchies through the different localizations

of zero mode fermions in the theory space, which due to the warping localization

factor, can be achieved by adjusting O(1) parameters.

There is also an important evidence pointing to physics beyond SM, which is

the fact that due to the oscillation phenomenon we know that the neutrinos have

mass (see e.g. [17, 18]). In 2015, the experimental discovery of neutrino oscillation

by the Super-Kamiokande Observatory and the Sudbury Neutrino Observatory was

recognized with the Nobel Prize [19]. This is another indication of an intermediate

scale between the electroweak and the Planck mass, which reminds us about the SM

hierarchy problem. 3

Another problem is related to the fact that the QCD Lagrangian admits a term

that violates the CP symmetry, which results in the so called strong CP problem.

As this effect is not observed, one can obtain an upper bound on the coefficient of

this term which comes from neutron electric dipole moment experiments and it is

about |θ| . 10−10 [23], leading to another fine-tuning in the SM. A possible solution

2For the latest LHC Higgs measurements see Refs. [8, 9].
3Actually there are proposals that claim to explain the neutrino masses and to avoid the natu-

ralness problem if the right-handed neutrinos are lighter than ∼ 107 GeV [20–22].
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to this problem was proposed by Peccei and Quinn [24,25] through the introduction

of a new particle, the axion field, which can dynamically make that coefficient zero.

The QCD axion has not been observed yet and it is subject to many constraints

from direct detection experiments, astrophysics and cosmology [5,26].

The previous discussion shows that there are many hints for new physics already

in the structure of the SM itself. In addition, the SM clearly does not describe astro-

physical and cosmological data. A compelling example is the fact it cannot explain

the matter-antimatter asymmetry observed in the universe, which can be quantified

by the ratio η = (nb−nb̄)/nγ ' 10−10 [27], where nb, nb̄, and nγ refer to the number

densities of baryons, anti-baryons, and photons, respectively. Furthermore, the SM

has no candidate to the non-baryonic matter that we called as dark matter (DM),

which is necessary to explain a large amount of data such as the cosmic microwave

background fluctuation spectrum, the structure formation, and the galaxies rota-

tion curves [27–29]. The weakly interacting massive particle (WIMP) paradigm is

a compelling possibility if the DM is composed of a single new particle (see [30] for

a review). However, as the SM has a vast and subtle structure, it is reasonable to

explore a comparable rich dynamics in the dark sector. For instance, this new sector

may share some of the properties of the visible matter, such as composite states, ac-

cidental symmetries, and asymmetric abundances. Keeping this in mind and taking

the advantage of the fact that many of the theoretical DM candidates can now be

tested by different experimental strategies such as astro-cosmo tests, direct, indirect

and collider searches [31,32], we explored non-minimal DM models and asymmetric

DM scenarios, as it is discussed in the following.

Composite Dark Matter [33]: In the context of non-minimal dark matter scenar-

ios, we explored in [33] the dark matter constraints on composite Higgs models. In

these theories, the Higgs doublet is a pseudo-Nambu-Goldstone boson appearing in

the low energy theory as a result of the spontaneous breaking of a global symmetry

G→ H by new strong sector dynamics.

Based on this framework, we discuss in [33] how the DM observables (relic abun-

dance, direct and indirect detection) constrain the dimension-6 operators induced

by the strong sector, assuming that DM behaves as a WIMP and that the relic

abundance is set by the freeze-out mechanism. We apply our general results to
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SO(6)/SO(5) and SO(6)/SO(4)× SO(2), which contain a singlet and doublet DM

candidate, respectively. In particular, we find that if compositeness is a solution to

the little hierarchy problem, DM representations larger than the triplet are strongly

disfavored.

Asymmetric Dark Matter and Indirect Detection Signals [34]: asymmetric

dark matter (ADM) models are motivated by the hypothesis that the present-day

dark matter abundance originated from an asymmetry in the number density of

particles and antiparticles in the early universe. If the DM and baryon asymmetries

had a common origin, this would explain the closeness of the DM and the baryon

abundances. 4

Typical ADM models face the challenge of lacking potential indirect detection

signatures. Our work [34] considers semi-annihilation process through which it is

possible to produce dark matter indirect signals in the asymmetric paradigm. In

this scenario, the asymmetry sharing is efficient until temperatures below the DM

mass due to light unstable states carrying baryon number. Consequently, the result-

ing DM abundance is set by the thermal freeze-out of the semi-annihilation process

instead of by the decoupling of high-scale interactions. In this framework, the pro-

cesses in charge of asymmetry sharing in the early universe can produce signals today

in indirect detection experiments. Interestingly, there is a region of parameter space

compatible with the observed Fermi excess of GeV gamma rays from the galactic

center [36,37].

Dark Matter and the Baryon Asymmetry of the Universe [38]: In this

work, we discuss scenarios where dark matter particles carry baryon and/or lepton

numbers. As a consequence, the DM fields become intimately linked to the Standard

Model ones and can be maximally asymmetric just like the ordinary matter. We

consider an initial asymmetry frozen in either the SM or the DM sector; the main

role of the transfer operators is to properly share the asymmetry between the two

sectors, in accordance with observations. After the chemical decoupling, the DM

4 Using the measurements of the primordial deuterium abundance of the big bang nucleosyn-
thesis [35] and the temperature anisotropies in the cosmic microwave background (CMB) [27], the
abundance of baryons can be independently determined to be about ΩBh

2 ' 0.02. Additionally,
the CMB measurement also determines the amount of DM to be ΩDMh

2 ' 0.12 [27].
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and SM sectors barely talk to each other as there is only an ineffective interaction

between them. Once the DM mass is specified, the Wilson coefficients of these

operators are fixed by the requirement of the correct transfer of the asymmetry.

We study the phenomenology of this framework at colliders, direct detection and

indirect detection experiments. The LHC phenomenology is very rich and can be

tested in different channels such as monojet with missing energy and monojet plus

monolepton and missing energy.

1.1 The Electroweak Hierarchy Problem

A First Look: a condensed matter analogy

Let us consider a condensed matter system where the low-energy description

breaks down at the cutoff scale Λ, which represents the inverse of the atomic spacing

a, i.e. Λ = 1/a. As a concrete example, we will describe the ferromagnet [39,

40], which loses its magnetization when it is heated at temperatures higher than

some critical temperature (TC). This is a well-known example of a system with

order-disorder phase transition from which we can gain some intuition about the

electroweak hierarchy problem. 5 This phase transition can be parametrized by an

order parameter φ(x). For instance, φ can describe the local spin density projected

in some axis, representing the strength of magnetization in the ferromagnet. At

temperatures near the TC , the phase transition of this system is well described by

the Ginzburg-Landau effective Lagrangian, as follows:

L = b (T − TC)φ2 + c φ4 + · · · , (1.1)

where for these temperatures b and c can be treated as real and positive numbers.

The effective mass-squared for the scalar is m2 = 2b (T − TC), then m2 is positive

for T > TC and negative for temperatures below the critical one, indicating that

a spontaneous symmetry breaking has taken place. Intuitively, the effective mass

defines the coherence length of the system, i.e. ξ ∼ 1/m, which is analogous to

5A typical way to introduce the SM hierarchy problem is through the analogy between quantum
field theory and statistical mechanics [39,40], which we learned from Kenneth G. Wilson and others
in the early 1970s through the renormalization group (see e.g. [41–43]).
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Compton wavelength in the Yukawa potential. From (1.1) we see that only at

temperatures very close to the critical one (T ' TC), it is possible to have m� Λ;

and indeed, the correlation would be of long-range type in this case.

While it is reasonable to imagine that one can delicately choose a specific temper-

ature in a condensed matter system through the experimental apparatus, this is not

the case when one considers the fine-tuning of the Higgs mass in the SM. Of course,

if the SM were valid up to arbitrary high energies, there would be no hierarchy

problem, since in this case there is no physical cutoff. However, as a quantum field

theory, the SM has its domain of validity and its upper bound is at most at energies

close to the Planck mass (MPl ∼ 1019 GeV), where we expect that the gravitational

effects are important. At these high energies the SM must be completed to a more

fundamental theory, i.e. a theory of quantum gravity.

A Closer Look: scalar masses are UV sensitive

According to ’t Hooft [11], a parameter is said ‘technically natural’ if the theory

has an enhanced symmetry once this parameter is set to zero. This can also be seen

from the fact that the quantum corrections to such a parameter are proportional to

the parameter itself, i.e. the parameter is stable under quantum corrections. Let

us consider now our case of study: the scalar field. Schematically, we can write the

running mass of a scalar of mass mS that couples to another state of mass M as

dm2
S

d log µ
= β1M

2 + β2m
2
S, (1.2)

where µ is the renormalization scale and β1, β2 are coefficients that depend on µ.

Note that the term proportional to β2 does not introduce large corrections since it

depends on the mass parameter itself. In quantum field theories, there is a crucial

difference between the running mass of scalars and fermionic or vector fields, which

is the fact that the mass of a fundamental scalar field is not protected by any

symmetry, i.e. it can receive corrections proportional to the mass of any state that

couples to it (as the term proportional to β1 in (1.2)). On the other hand, this is not

the case for fermion and vector fields in the SM, since the corrections to their mass

parameters are proportional to the masses themselves, which is in agreement to the
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fact that they are respectively protected by the chiral and gauge symmetries [39,40].

In the SM, the quantum corrections to the Higgs mass are unstable as there is no

symmetry to protect it. In particular, it is UV sensitive as the Higgs may couple

to heavy states with masses close to the cutoff of the theory, which can be seen

explicitly from (1.2) with M � mS. To make this discussion clearer, let us consider

again the scalar field φ of mass mS that couples to a heavy Dirac fermion ψ of mass

M through the Yukawa interaction L = λφψ̄ψ, where λ is the Yukawa coupling. The

one-loop contribution to the scalar mass due to the interaction with the fermion is

represented in Fig. 1.1. One can use dimensional regularization and MS subtraction

φ φ

ψL

ψR

p p

p + k

k

Figure 1.1: Contribution at 1-loop to the mass of the scalar φ due to the interaction with the

fermion ψ. p refers to the external momentum and k is the momentum in the loop.

scheme to compute the renormalized mass (δm2)MS,1−loop
S,full |µ=M ∼ −λ2M2 + · · · ,

where the dots refer to terms that do not depend quadratically on M [39,40,44,45].

Therefore, assuming that M is much larger than the φ mass measured value (i.e.

M � m2
S,eff), in order to match the effective mass-squared, one needs to delicately

cancel out the 1-loop contribution (proportional to M2) with the bare mass term.

More specifically, assuming that λ ∼ O(1) and that the scalar mass measured value

is m2
S,eff = (125 GeV)2; for a heavy fermion of mass near the GUT scale M2 =

(1015 GeV)2, one gets m2
S,eff/δm

2
S ≈ 10−26, meaning that it is necessary a cancellation

of about one part in 1026 between two a priori independent parameters in order to

get the scalar mass at the electroweak scale. It is important to mention that M is not

present here due to a mathematical artifact that we used to regularize the theory;

instead, M is a physical quantity, i.e. the mass of the heavy fermion that couples

to the scalar field. This discussion summarizes the real nature of the hierarchy
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problem: the quadratic sensitivity to the UV degrees of freedom; or in other words,

the large dependence of measurements at low energy to tiny deformations of a theory

defined at high energy scales. Therefore, if the boson observed by the ATLAS [6]

and CMS [7] in 2012 is indeed the SM Higgs, it is definitely established the question

of what protects the Higgs mass from receiving corrections of the UV cutoff of the

theory. From this perspective, it is natural to expect that new physics might exist

at O(1) TeV such that no large fine-tuning is necessary to adjust the Higgs mass.

On the other hand, one can speculate that there is nothing beyond the SM

between the electroweak and the Planck scale, which is a strong assumption as it

requires a correct description of nature by a single model in a huge energy range.

Since at energies near the Planck mass the quantum effective field theory description

should not be trusted anymore, one can argue that the hierarchy problem described

from this perspective (as discussed before) is nonsense. Although there is nothing

wrong with this assumption, this is very unlikely as physics beyond the SM is nec-

essary to explain other open issues in particle physics and cosmology (for example

to explain dark matter and baryon asymmetry of the universe, as we discussed pre-

viously in this chapter). Then, once one supposes that the SM is valid up to the

Planck scale, this necessarily leads to the assumption that all new physics needed

to solve other open questions is going to appear only at this scale.

Additionally, there is an upper bound on the Higgs mass due to the unitarity of

the electroweak theory [46]. The requirement that the perturbative approach has

to be meaningful sets a maximum value to the Higgs mass. For instance, one can

get such a limit by computing the energy necessary to unitarize scattering channels

whose amplitudes depend on the Higgs mass; through the scattering of longitudinal

gauge bosons as W+
LW

−
L → W+

LW
−
L or W+

LW
−
L → ZLZL. In the SM, the Higgs mass

cannot be larger than 710 GeV [13] in order to respect the unitarity bound. There is

also the issue regarding the Higgs potential metastability [47,48]. Assuming the SM

only, i.e. that the boson observed at the LHC is the SM Higgs, one can conclude that

the SM scalar potential gets unstable at about 1011 GeV; fortunately, the lifetime

of the electroweak vacuum is much longer than the age of the universe [49].
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1.2 Going Beyond

1.2.1 How to Generate Large-Scale Hierarchies?

The electroweak hierarchy problem can be naturally solved in warped extra di-

mension constructions as the Randall-Sundrum (RS) model [50, 51], which is a 5D

theory with an extra dimension in an anti-de Sitter (AdS) background. Due to the

warp factor, a displacement in the extra dimension corresponds to an exponential

factor in the ordinary coordinates. To see this explicitly, one can consider the AdS5

metric,

ds2 = e−2k|y|ηµνdx
µdxν − dy2, (1.3)

where y is the coordinate in the extra dimension, k is the AdS curvature, and ηµν is

the Minkowski metric in four dimensions. Notice that this metric is invariant under

the transformations: y → y + d, x→ ek d |y|x; so that a displacement in y results in

an exponentially suppressed factor in the energy scale ∂µ → e−k d |y|∂µ. The usual

assumption in AdS5 models is that they are dual to 4D strongly coupled theories (see

e.g. [52–55] for reviews). The minimal formulation of RS models has severe problems

with flavor violation at tree level [56–58]. For instance, to overcome the kaon physics

constraints without introducing new global flavor symmetries, these models require

that the mass scale of the first excited state is larger than a few tens of TeV [59–61],

which generates an undesirable hierarchy between the first Kaluza-Klein state and

the electroweak scale.

In this thesis, we study the quiver (or moose) theories [62, 63] which are a class

of four-dimensional models that share many features with warped dimensional con-

structions. In Ref. [64], we present a new class of theories built to generate large-

scale hierarchies, which we denominate full-hierarchy quiver theories. Using the

dimensional deconstruction approach and appropriate matchings, these purely four-

dimensional theories coincide with AdS5 models in the continuum limit [65], which

corresponds to the limit with a large number of gauge groups.

On the other hand, full-hierarchy quiver theories in the coarse lattice limit have

very distinct couplings of excited gauge bosons to zero mode fermions compared

with AdS5 models, resulting in a rich phenomenology to be explored. The hierarchy

problem is solved if the Higgs field is infrared-localized as in the warped extra dimen-
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sion models. We also obtained the fermion mass hierarchy by different localizations

of zero mode fermions in the theory space. This procedure is similar to the localiza-

tions of zero mode fermions in the extra dimension in AdS5 theories, but without

resulting in large flavor violation which severely constrains the minimal formulation

of RS models [66,67]. We study the electroweak precision bounds on quiver models

with few gauge groups, and show that we do not need to impose an extension in the

electroweak gauge sector in order to avoid large contributions to the T parameter

at tree level. Further, in Ref. [68], we derive bounds from the LHC data on the

color-singlet and color-octet excited gauge bosons from their decays to jets and top

pairs.

1.2.2 From Particle Physics to Cosmology and Back

Many SM extensions that were proposed to solve the hierarchy problem are now

being severely constrained by the LHC data. The quadratic sensitivity of the Higgs

mass to UV degrees of freedom has been one of the leading motivations for searches

of new physics at the LHC, whose most popular attempts are supersymmetry [69]

and compositeness [70]. The speculation era regarding this matter is approaching an

end through the Run II that started in 2015. Before the Run I, which started in 2011,

the expectation for a significant amount of the community was to find new physics

close to the TeV scale during the first years of LHC operation. Now this scenario has

been changing since there is no definitive evidence of physics beyond the SM in the

current data. From the experimental side, one cannot categorically say that the new

data will answer urgent and well-debated questions; but surely, it will provide us

a better understanding of the fundamental physics. From the theoretical point-of-

view, it is an opportune moment to explore unusual possibilities and rethink baroque

statements, for instance by searching for connections to surrounding research areas.

On the interchange between theoretical and experimental fronts, it is interesting to

develop complementary searches to connect the LHC physics and other experimental

strategies.6

Following this direction by taking the advantage of the interplay between particle

6See Refs. [71, 72] where it is proposed atomic probes of physics beyond the Standard Model
and Refs. [73–75] for discussions regarding complementarity of dark matter searches.
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physics and cosmology, the relaxion models [76, 77] use the cosmological evolution

to explain the smallness of the Higgs mass. These models are a new alternative

to explain the radiative stability of the SM scalar sector through the cosmological

relaxation mechanism of the electroweak scale. The idea was inspired by Abbott’s

attempt [78] to solve the cosmological constant problem 7, which did not work since

his mechanism besides cancelling the cosmological constant with high precision, it

also removes all the matter as well, resulting in an ‘empty universe’ (see also [83–85]

for similar ideas).

On the other hand, the relaxion models require very large field excursions, which

are difficult to generate in a consistent UV completion and to reconcile with the

compact field space of the relaxion. In Ref. [86] we propose an N-site model which

naturally generates the large decay constant needed to address these issues. Inter-

estingly, our model admits a continuum limit when the number of sites is large,

which may be interpreted as a warped extra dimension.

1.3 Structure and Proposal of this Thesis

In this thesis we focus on the development of theories that can generate large-

scale hierarchies. We were inspired by different model building frameworks such as

dimensional deconstruction techniques, composite Higgs models, and warped extra

dimension scenarios. The theoretical tools studied here can be applied to particle

physics and cosmology; and in fact, from the interchange of these two fields new

perspectives may appear. In the following, we briefly describe the contents of each

chapter.

Chapter 2: Introduction to Quiver Theories. In this chapter, we show the

general framework and model building for N -site models, focusing on constructions

that can generate large hierarchy of scales. The matching of these theories with a

deconstructed warped extra dimension is also discussed. Special attention is given

to the case where there is a remnant pseudo-Nambu-Goldstone resulting from the

7The cosmological constant problem [79–81] refers to the fact the measured energy density
ρΛ ∼ 10−48 GeV4 [82], related to the cosmological constant by ΛC = 8πGNewtonρvac, is many
orders of magnitude smaller than the expected theoretical value.
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spontaneous breaking of a global symmetry.

Chapter 3: Localization in the Theory Space. Here we study the inclusion of

fermion fields in quiver theories. We obtain the fermion mass hierarchy by different

localizations of zero mode fermions in the theory space. In our model [64], this local-

ization does not result in large flavor violation which severely constrains the minimal

formulations of Randall-Sundrum models. We also discuss the electroweak precision

constraints in quiver models. Furthermore, we derive bounds from the LHC data

on the color-singlet and color-octet excited gauge bosons from their decays to jets,

bottom and top pairs, and show their dependence on the number of sites in the

quiver diagram [68].

Chapter 4: Realizing the Relaxion with N-site models. In this chapter, we

discuss the relaxion idea, which is a new avenue to explain the radiative stability of

the Standard Model Higgs sector. These models require very large field excursions,

which are difficult to generate in an UV completion model and to reconcile with

the compact field space of the relaxion field. In order to address these issues, we

propose in [86] an N-site model that generates a large decay constant. The con-

struction involves non-abelian fields, allowing for controlled high energy behavior.

This structure admits a continuum limit for a large number of sites, which might be

interpreted as a warped extra dimension.



Chapter 2

Introduction to Quiver Theories

2.1 N-site Models and Large-Scale Hierarchies

In this section we describe the gauge structure of quiver (or moose) theories

[62,63,87,88]. The models we are interested in have a linear gauge group structure

of the form

G = G0 ×G1 × ...×GN−1 ×GN ,

where, in general, Gj = SU(m)j is a Yang-Mills symmetry group. For each gauge

group there is an associated gauge field Aaµ,j, where a = 1, 2, · · · ,m2 − 1. Further-

more, we add a set of scalar link fields Φj, which transform in the bi-fundamental

representation of Gj−1×Gj, that is, Φj → Uj−1ΦjU
†
j . These link fields are an effec-

tive description at low energies, and the theory requires an UV completion such as

condensates of chiral fermions [62]. In Fig. 2.1, we show a graphical representation

for a linear chain model. Each circle represents a site with an associated gauge group

SU(m)j, and the dashed lines represent the scalar link fields Φj. The convention is

that an outgoing arrow indicates that Φj transforms under the fundamental repre-

sentation of this group, and an ingoing arrow means that Φj transforms under the

anti-fundamental representation.

In the appropriate limit, this structure can be identified with a compactified

warped extra dimension, such that the zeroth site is identified as the ultraviolet

(UV) brane, and the N-th site as the infra-red (IR) brane. As we shall see, it

is possible to establish a dictionary between this purely four-dimensional theory
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Figure 2.1: Quiver diagram for a linear gauge group chain.

with an extra-dimension model. This means that the fields localized in the UV

and IR branes in the Randall-Sundrum models [50, 51] can be represented in the

deconstructed theory as fields that transform under the groups of zeroth and N -th

sites, respectively. It is worth emphasizing that the diagram in Fig. 2.1 is only a

representation of a four-dimensional theory with a group structure and a specific

set of scalar link fields, a priori, the quiver diagram is not interpreted as a physical

dimension.

The action for the gauge fields and scalar link fields in this theory is given by

SA,Φ4 =

∫
d4x

{
−1

2

N∑
j=0

Tr
[
Fµν,jF

µν
j

]
+

N∑
j=1

Tr
[
(DµΦj)

†DµΦj

]
− V (Φj)

}
, (2.1)

where the traces are over the groups’ generators. The covariant derivative is

DµΦj = ∂µ Φj + ig̃j−1 Aµ,j−1a T
a
j−1 Φj − ig̃j Φj Aµ,ja T

a
j , (2.2)

where the T aj are the generators of SU(m)j and g̃j are the associated gauge couplings.

The strength tensor Fµν,j = Fµν,jaT
a
j is written as

F a
µν,j = ∂µA

a
ν,j − ∂νAaµ,j + g̃j f

abc
j Aµ,jbAν,jc, (2.3)

where the fabcj are the structure constants of the groups, given by [T aj , T
b
j ] = ifabcj T cj .

If we“turn off”the gauge couplings, the theory has a global symmetry SU(m)j−1×
SU(m)j for each link field. Then, we can recognize this theory as a sum of sigma

models (see e.g. [89]). Moreover, we are assuming that the potential for the link fields

gives them a vacuum expectation value (vev) which breaks SU(m)j−1×SU(m)j down

to the diagonal group. From these assumptions, we can parametrize the Φj’s in the
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non-linear limit as

Φj =
fj√

2
ei
√

2πaj T̂
a/fj , (2.4)

where the T̂ a are the broken generators, and the πaj are the Nambu-Goldstone Bosons

(NGB) of the breaking of SU(m)j−1×SU(m)j to the diagonal group. Each of these

breaking happens at the corresponding scale fj, which is the vev of the scalar link

field Φj. The vevs of the link fields can be written in the following way [88]

fj = fqj, (2.5)

where 0 < q < 1 is a dimensionless constant, and f is an UV mass scale. As a

consequence, the fj’s progressively decrease from the zeroth site to the N -th site,

f1 · · · > fj · · · > fN . In [90] it is shown that it is possible to get the vevs with a

decreasing profile without large fine tuning of potential parameters. We also assume

that all the gauge groups are identical and that their gauge couplings satisfy

g̃0(f) = g̃1(f1) = · · · = g̃j(fj) = g̃j+1(fj+1) = · · · ≡ g̃ , (2.6)

The parametrization (2.5) allows us to make the matching with the AdS5 models,

and the choice (2.6) is the appropriate one to obtain the running of gauge couplings

in the continuum limit of the deconstructed theory as they are in the Randall-

Sundrum model [91,92].

When the link fields Φj acquire vevs, the global symmetries SU(m)j−1×SU(m)j

break down to the diagonal subgroup SU(m)Vj . Then, considering the whole chain,

there are N × (m2 − 1) NGBs to be absorbed by the gauge bosons that become

massive. As we have N link fields for N + 1 sites, there is a remaining unbroken

SU(m) symmetry corresponding to the zero mode gauge boson. This can be seen

explicitly if one expands in action (2.1) the following term

N∑
j=1

Tr
[
(DµΦj)

†DµΦj

]
=

N∑
j=1

{
Tr
[
(∂µΦj)

†∂µΦj

]
+
f 2
j g̃

2

2

(
Aa 2
µ,j + Aa 2

µ,j−1

)
−2 g̃2 Tr[Φ†jAµ,j−1ΦjA

µ
j ] + g̃Tr

[
i(∂µΦj)

†(Aµ,j−1Φj − ΦjAµ,j) + h.c.
]}
. (2.7)
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Taking the first order term in πj/fj, we notice that (2.7) can be written as

L =
N∑
j=1

1

2
Tr
[
∂µπ

a
j − fj g̃(Aaµ,j − Aaµ,j−1)

]2
+ · · · , (2.8)

where the dots refer to higher order terms. The mixing between the gauge bosons

and the NGBs can be eliminated by adding a gauge fixing term

LGF = −
N∑
j=0

1

2ξj

[
∂µA

µa
j + ξj g̃(fjπ

a
j − fj+1π

a
j+1)

]2
, (2.9)

where in the following we will take ξj ≡ ξ ∀ j. Hence, in the Rξ gauges, the action

at the quadratic level in the NGB fields is given by

SA,π4 =

∫
d4x

{
−1

2

N∑
j=0

Tr
[
Fµν,j F

µν
j

]
− 1

2ξ

N∑
j=0

(∂µA
µ,a
j )2 +

N∑
j=1

g̃2f 2
j

2
(Aaµ,j − Aaµ,j−1)2

+
N∑
j=1

1

2
(∂µπ

a
j )(∂

µπaj )−
N∑
j=0

g̃2ξ

2
(fjπ

a
j − fj+1π

a
j+1)2

}
. (2.10)

The mass term for the NGBs is [93,94]

LMπ = −
N∑
j=0

ξg̃2

2
(fjπ

a
j − fj+1π

a
j+1)2 ≡ −1

2
πa tM2

ππ
a, (2.11)

where πa ≡ (πa1 , π
a
2 , · · · , πaN)t. Therefore, the N × N mass matrix for the NGBs is

given by

M2
π = ξg̃2f 2



2q2 −q3 0 0 . . . 0 0

−q3 2q4 −q5 0 . . . 0 0

0 −q5 2q6 0 . . . 0 0
...

...
...

... . . .
...

...

0 0 0 0 . . . 2q2(N−1) −q2N−1

0 0 0 0 . . . −q2N−1 2q2N


,

where we used the parametrization in Eq. 2.5. Note that det(M2
π) 6= 0, such that in
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the Rξ gauges all the NGBs have non-physical masses which depend on
√
ξ. The

unitary gauge is obtained in the limit ξ → ∞, when the NGBs decouple from the

spectrum. This happens because at each site the global symmetry is completely

gauged, i. e. the (m2 − 1) NGBs from the break of SU(m)j−1 × SU(m)j to the

diagonal subgroup are absorbed by the (m2−1) gauge bosons that become massive.

As we mentioned before, there is a remaining unbroken SU(m) symmetry since we

have N link fields for (N + 1) sites.

Using the unitary gauge, the mass term for the gauge bosons in the Lagrangian

(2.1) is given by [87,88,92]

LMA
=
g̃2

2

N∑
j=1

[fj(A
a
µ,j−1 − Aaµ,j)]2. (2.12)

We can write the (N + 1)× (N + 1) matrix M2
A for the gauge bosons as

M2
A = g̃2f 2



q2 −q2 0 0 . . . 0 0

−q2 q2 + q4 −q4 0 . . . 0 0

0 −q4 q4 + q6 −q6 . . . 0 0
...

...
...

... . . .
...

...

0 0 0 0 . . . q2(N−1) + q2N −q2N

0 0 0 0 . . . −q2N q2N


,

in the basis Aaµ ≡ (Aaµ,0, A
a
µ,1, · · · , Aaµ,N)t. This matrix can be diagonalized by a

change of basis Aµ,j =
∑N

n=0 fj,nA
(n)
µ , where the A

(n)
µ are the mass eigenstates, and

we assumed that the group generators are absorbed in the definition of the gauge

fields, that is, Aµ,j ≡ Aaµ,jT
a. Solving this eigensystem, we obtain the following

difference equations [87,88]

(
q + q−1 − q−1(xn q

−j)2
)
fj,n − q fj+1,n − q−1 fj−1,n = 0 , (2.13)

where xn ≡ mn/(g̃ f). As one could expect, the determinant of M2
A is zero, since

there is a remaining unbroken SU(m) symmetry. Thus, the equation (2.13) has

solution to m0 = 0, the zero mode gauge boson. Therefore, from (2.13) for the zero

mode (n = 0) and assuming Neumann “boundary conditions”: f0,n = f−1,n, and
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fN+1,n = fN,n, we conclude that

fj+1,0 = fj,0 ∀ j . (2.14)

This means that the zero mode wave-function of the gauge bosons has a flat profile,

which is analogous to what happens in warped extra dimensions theories [52–54,95].

Thus, imposing the normalization condition

N∑
j=0

f 2
j,n = 1, (2.15)

we obtain the constant fj,0 ≡ f0

N∑
j=0

f 2
0 = 1⇒ f0 =

1√
N + 1

. (2.16)

Equation (2.13) can also be analytically solved for the massive modes [87]. First

of all, we define t[j] = xn q
−j and F (t[j]) = qj fj,n. Rewriting (2.13) as a function of

these new variables, we get the following difference equation

(q + q−1 − q−1t2)F (t)− F (tq−1)− F (tq) = 0. (2.17)

Equation (2.17) is a special case of the Hahn-Exton equation [96, 97]. Its solutions

are the so-called q-Bessel Jν(t; q
2) and q-Neumann Yν(t; q

2) functions. These func-

tions are discrete generalizations of Bessel and Neumann functions, and have similar

properties to their ordinary ones. Computing the limit q → 1− of the generalized

functions, we get the usual continuous Bessel and Neumann functions [87]. The

solution of the difference equation (2.17) is [87]

fj,n = Nn q
−j [J1(xn q

−j; q2) + β(xn; q2)Y1(xn q
−j; q2)

]
, (2.18)

where Nn is determined from the wave-function normalization (2.16). fj,n is the

coefficient linking the gauge boson at the j-site with the mass eigenstate n, and

from it we can construct the mass eigenstates. Using the boundary conditions for

j = 0 and j = N defined above, we obtain β(xn; q2) and the gauge boson masses.
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The resulting mass spectrum is given by solutions of [87]

J0(xn; q2)Y0(xn q
−(N+1); q2)− Y0(xn; q2) J0(xn q

−(N+1); q2) = 0 . (2.19)

2.2 Matching with a Deconstructed Extra-Dimension

It is interesting to point out that this purely 4D theory can be obtained from

deconstructing an extra-dimensional theory in an AdS background [87,91,98,99]. In

order to see this explicitly, let us consider a gauge field of a group G in a slice of

AdS5:

ds2 = e−2kyηµνdx
µdxν − dy2, (2.20)

where y is the coordinate in the extra dimension, k is the curvature, and ηµ,ν =

diag(1,−1,−1,−1) is the Minkowski metric in four dimensions. Greek indices refer

to four-dimensional coordinates and capital Latin ones refer to both four and five

dimension coordinates, such that M,N = {0, 1, 2, 3, 5}. The gauge boson action is

written as [100]

SA5 =

∫
d4x

∫ πR

0

dy
√−g

{
− 1

2g2
5

Tr
[
F 2
MN

]}
=

∫
d4x

∫ πR

0

dy

{
− 1

2g2
5

Tr [FµνF
µν ] +

1

g2
5

e−2ky Tr
[
(∂5Aµ − ∂µA5)2

]}
, (2.21)

where g5 is the 5D gauge coupling. One can discretize the extra dimension by

substituting

∫ πR
0

dy →
N∑
j=0

a,

∂5Aµ → Aµ,j − Aµ,j−1

a
,

where a is the lattice spacing (inverse of the cutoff). Therefore, one can get:
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SA5 =
a

g2
5

∫
d4x

−1

2

N∑
j=0

Tr
[
Fµν,jF

µν
j

]
+

N∑
j=1

e−2kaj

a2
Tr
[
(Aµ,j −Aµ,j−1 − a∂µA5,j)

2
] , (2.22)

where the continuum is obtained in the limit a→ 0, N →∞, keeping fixed Na = L,

with L = πR the size of the extra dimension.

Consider now the 4D action in (2.1):

SA4 =
1

g̃2

∫
d4x

−1

2

N∑
j=0

Tr
[
Fµν,j F

µν
j

]
+

N∑
j=1

f2g̃2q2jTr

[(
Aµ,j −Aµ,j−1 − ∂µ

πj
fj

)2
] ,

(2.23)

where for convenience we rescale Aµ,j → Aµ,j/g̃ and πj is again the Goldstone field

transforming in the adjoint of the vector symmetry SU(m)Vj , which results from the

breaking SU(m)j−1 × SU(m)j → SU(m)Vj . This action can be matched with the

discretized action in (2.22) by making the following identifications [62,63,87] 1:

a ↔ 1

g̃f
(2.24)

g2
5

a
↔ g̃2, (2.25)

e−ka ↔ q. (2.26)

This matching is not unique and indeed a different identification with varying val-

ues of aj and g̃j, and a fixed fj = f for all sites is given in [102]. Notice that

the Nambu-Goldstone mode is identified with the scalar component of the gauge

field, i.e. the non-linear link field Φj/fj = eiπj/fj is identified with the Wilson line

exp
[
i
∫ a(j+1)

aj
dy A5e

−2ky
]

.

It is shown that in the continuum limit, which corresponds to q → 1−, we obtain

the same solutions and mass spectrum of the Kaluza-Klein modes as in warped

extra dimensions theories [65]. In this limit, the mass spectrum is given by mn ∼
gfπ

(
n− 1

4

)
(1− q)qN , n > 0. However, in the opposite limit (q � 1), the spectrum

is exponential, and then just the first massive mode is relevant to the phenomenology.

On the other hand, for this 4D theory to remain an appropriate description of

the continuum 5D theory, the AdS5 curvature should satisfy k < f . Additionally,

1See Ref. [101] for a recent exploration of ‘Moose/CFT correspondence’.
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generating the hierarchy between the Planck and the weak scales while satisfying

k < f requires typically that N > 35, which results in a low energy theory very

close to the continuum one. Under these conditions, 4D theories with k < f are

just discrete descriptions of theories in AdS5 [87]. On the other hand, here we are

interested in the coarse lattice limit, that is, we will consider that the action (2.1)

is independent of the continuum 5D theory. In these theories it will be possible

to obtain a large hierarchy of scales, as in the Randall-Sundrum theory, using just

small values of N . For example, if f . MP , fN ' O(1) TeV, and using fj = fqj

(2.5) and the matching (2.26), we can write

e−kaN =
fN
f
' 10−16 ⇒ q ' 10−16/N . (2.27)

This choice allows us to solve the gauge hierarchy problem similarly to what is done

in the Randall-Sundrum models.

2.3 A Remnant pseudo-Nambu-Goldstone Boson

Let us consider now the breaking G→ H through boundary conditions in theory

space, that is, we assume that for the first and last sites, the gauge symmetry group

is reduced to H ⊂ G. This is schematically represented in Fig. 2.2

Φ1

G GGlobal :

Gauged :

G

H G G

Φj−2Φj

G

G

G

G

G

H

ΦN

Figure 2.2: Quiver diagram for a linear gauge group chain, where the gauge symmetry is reduced

to H ⊂ G for the sites j = 0 and j = N .

For the broken generators (denoted by hatted indexes), the mixing between the

gauge bosons Aâµ and the Goldstone modes πâj is given by
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L =
1

2

(
∂µπ

â
1 − f1g̃A

â
µ,1

)2
+

N−1∑
j=2

1

2
Tr
[
∂µπ

â
j − fj g̃(Aâµ,j − Aâµ,j−1)

]2
+

1

2

(
∂µπ

â
N + fN g̃A

â
µ,N−1

)2
+ · · · , (2.28)

where the dots refer to higher order terms. Comparing the expression above with

Eq. 2.8, the terms proportional to ∂µπ1Aµ,0 and ∂µπNAµ,N do not appear here due

to the absence of the corresponding gauge bosons at the borders, as it is illustrated

in Fig. 2.2. This happens since in the scenario we discussed in the previous section

the whole global group product was gauged. We can remove the mixing between the

NG modes and the gauge fields in (2.28) by adding the gauge fixing term:

LGF = −
N−1∑
j=1

1

2ξ

[
∂µA

µ,â
j + ξg̃

(
fjπ

â
j − fj+1π

â
j+1

)]2

, (2.29)

where again we considered the same gauge parameter ξ for all sites. As the gauge

symmetry is reduced at the sites j = 0 and j = N , the mass matrix M2
π (2.11) is

now different from the previous case as we explicit show in the following [93,94]

LM
πâ

= −
N−1∑
j=1

ξg̃2

2
(fjπ

â
j − fj+1π

â
j+1)2 ≡ −1

2
πâ tM2

πâπ
â, (2.30)

where πa ≡ (πa1 , π
a
2 , · · · , πaN)t and the N ×N mass matrix is given by

M2
πâ = f 2ξ



q2 −q3 0 · · · 0 0

−q3 2q4 −q5 · · · 0 0

0 −q5 2q6 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2q2(N−1) −q2N−1

0 0 0 · · · −q2N−1 q2N


. (2.31)

Notice that (2.30) differs from Eq. 2.11 only by the limits of the sum. As expected,

Det(M2
πâ

) = 0, indicating the existence of a physical zero mode, i.e. this state
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does not decouple in the unitary gauge limit (ξ → ∞). On the other hand, the

massive modes have gauge dependent masses and are absorbed to the corresponding

gauge bosons in the unitary gauge, which implies that all the N − 1 gauge bosons

associated to the broken generators acquire mass. The eigenstate associated to the

null eigenvalue, that is, the one that cannot be removed by a gauge transformation,

can be obtained through the eigenvalue equation:

M2
πâ · (η1π

â
1 , η2π

â
2 , . . . , ηNπ

â
N)t = 0, (2.32)

where ηj’s are weighting the zero mode at each site, i.e. they play the role of the

wave-function of the physical state. From the Eq. 2.32, one can obtain the following

recursion relation:

ηj = q ηj+1. (2.33)

As 0 < q < 1, from (2.33) we conclude that the zero mode wave-function is IR-

localized, that is, it is localized towards the site j = N . Using the normalization

condition
∑N

j=1 |ηj|2 = 1 together with (2.33), one can get that

ηj =
qN−j√∑N
k=1 q

2(k−1)

, (2.34)

i.e. the physical NGB is

ηâphys =
N∑
j=1

qN−j√∑N
k=1 q

2(k−1)

πâj . (2.35)

Note that the fact the physical mode is localized towards the site j = N is a generic

feature of this construction, which is independent of the details of the model such

as the choice of the gauge groups in the quiver.

Notice that in this construction there is always a parametric scale separation

between the pNGBs and the heavy massive states, which is one of the leading moti-

vations for the so-called composite Higgs models [103,104] (see [70] for a review). In

this class of theories, the Higgs field is a pNGB appearing in the low energy theory

as a result of the spontaneous breaking of a global symmetry G → H by a new
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strong sector. A non-trivial potential for the Higgs can be generated for instance by

gauging part of this global symmetry, and then explicitly breaking it. The frame-

work implemented in this section follows this same reasoning. As one can notice, in

our construction, the pNGB field is dynamically localized close to the IR-site, which

is analogous to composite Higgs models in AdS5 [105–108].

Let us remember that this separation of scales is analogous to the mass gap

between the pion mass and the masses of other hadrons in QCD. The pions can

be understood as NGBs from the spontaneous breaking of the chiral symmetry. As

the chiral symmetry is explicitly broken by the up and down masses and by the

electromagnetic interaction, the pions are not exact NGBs and acquire their small

masses. The apparent parametric separation between the electroweak and the new

physics scale motivates models where the Higgs is naturally lighter than the states

in the new sector [109,110].



Chapter 3

Localization in the Theory Space

The different localizations of the zero mode fermions in the quiver diagram result

in non-universal couplings of them to the massive gauge bosons, which points to the

existence of FCNCs (flavor changing neutral currents) at tree level. The FCNC

is a challenging problem in Randall-Sundrum models [56–58] as at tree level this

effect is absent in the SM, and it results in the most stringent constraint of these

theories [59–61]. As we will see, in the quiver theories with few sites the gauge

couplings quickly saturate with the localization parameters (cL, cR), so we can expect

to get large mass hierarchy with almost universal couplings. In the next section, we

will compute the effective couplings of zero mode fermions to the massive gauge

bosons in full-hierarchy quiver theories, and show that it is possible to obtain the

quark masses and mixing angles without large tree-level FCNCs.

3.1 Including the Fermions

The fermion action in this quiver theory is given by [88]

Sψ =

∫
d4x

{
N∑
j=0

[
ψ̄L,ji 6DjψL,j + ψ̄R,ji 6DjψR,j − (µjψ̄L,jψR,j + h.c)

]
+

−
N∑
j=1

(
λjψ̄R,j−1ΦjψL,j + h.c.

)}
, (3.1)



26 Localization in the Theory Space

where we consider vector-like fermions ψj transforming in the fundamental represen-

tation of SU(m)j. The vector-like mass terms and the Yukawa couplings preserve

the gauge symmetries. In the most general case of the 4D theory, the Yukawa cou-

plings λj are allowed to be site-dependent. If one wants to get in the continuum

limit of this theory the AdS5 theory, it is necessary to take all λj to be equal [88].

The quiver diagram of the theory including the fermions is illustrated in Fig. 3.1.

The boundary condition choice ψ̄R,N = 0 leads to a left-handed zero mode. In or-

der to get a right-handed zero mode in a quiver diagram with the same hopping

direction, one needs to remove ψL,0. The convention is that the outgoing (ingoing)

arrows represent chiral fermions in the fundamental (anti-fundamental) represen-

tation of SU(m). As in the previous chapter, the link scalar fields Φj are (m, m̄)

under SU(m)j−1 × SU(m)j. The dotted lines represent Yukawa couplings of the

chiral fermions. In the unitary gauge Φj = fj/
√

2, so we write the mass Lagrangian

Φ1
Φj−2Φj ΦN

ψL,0

ψ̄R,0

ψL,1 ψL,j−1 ψL,j ψL,N−1 ψL,N

ψ̄R,1 ψ̄R,j−1 ψ̄R,j ψ̄R,N−1

Figure 3.1: Quiver diagram for a linear gauge group chain including the fermions, in the case

that the spectrum has a left-handed zero mode fermion.

for the fermions as

LMψ
=

N∑
j=1

λjfj√
2

(
ψ̄R,j−1 ψL,j + h.c.

)
+

N∑
j=0

(
µj ψ̄L,j ψR,j + h.c.

)
≡ Ψ̄LMψΨR + h.c., (3.2)



3.1 Including the Fermions 27

where ΨL ≡ (ψL,0, ψL,1, · · · , ψL,N)t. Given this, the mass matrix for the left-handed

fermions can be written as

MψM
T
ψ =



µ2
0

λ1√
2
µ0 v1 0 · · · 0 0

λ1√
2
µ0 v1 ( λ1√

2
)2v2

1 + µ2
1

λ2√
2
µ1 v2 · · · 0 0

0 λ2√
2
µ1 v2 ( λ2√

2
)2v2

2 + µ2
2 · · · 0 0

...
...

... · · ·
...

...

0 0 0 · · · (λN−1√
2

)2v2
N−1 + µ2

N−1
λN√

2
µN−1 vN

0 0 0 · · · λN√
2
µN−1 vN (λN√

2
)2v2

N


.

As in the gauge bosons case, we can diagonalize this matrix by unitary transforma-

tions

ψL,j =
N∑
n=0

hLj,nψ
(n)
L . (3.3)

Analogously, it is possible to diagonalize the mass matrix for the right-handed

fermions MT
ψMψ by

ψR,j =
N∑
n=0

hRj,nψ
(n)
R . (3.4)

Using the equations of motion for the fields ψL,j and ψR,j obtained from the La-

grangian (3.2), and the fact that ψ
(n)
L and ψ

(n)
R satisfy the Dirac equation, we obtain

mn h
R
j,n + µj h

L
j,n +

λj+1√
2
fj+1 h

L
j+1,n = 0, (3.5)

mn h
L
j,n + µj h

R
j,n +

λj√
2
fj h

R
j−1,n = 0, (3.6)

where mn is the mass of the mass eigenstates ψ
(n)
L and ψ

(n)
R . Decoupling these

equations we get [88](
µ2
j +

λ2
jf

2
j

2
−m2

n

)
hLj,n +

λj+1fj+1√
2

µjh
L
j+1,n +

λjfj√
2
µj−1 h

L
j−1,n = 0, (3.7)(

µ2
j +

λ2
j+1f

2
j+1

2
−m2

n

)
hRj,n +

λj+1fj+1√
2

µj+1 h
R
j+1,n +

λjfj√
2
µj h

R
j−1,n = 0. (3.8)
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There are analytical solutions to these equations [87], as in the gauge bosons case.

In the continuum limit, the solutions of (3.7) and (3.8) can match the solutions for

the eigenfunctions of the Kaluza-Klein fermions in an AdS background [88]. We

will not deal with this case here because we are interested in the limit far from the

continuum.

Next we handle the zero mode case. From equations (3.5) and (3.6) with m0 = 0,

we can obtain the equations of motion for the left-handed zero mode

µjh
L
j,0 +

λj+1√
2
fj+1h

L
j+1,0 = 0⇒

hLj+1,0

hLj,0
= −

√
2µj

λj+1fj+1

≡ qcL−1/2, (3.9)

and for the right-handed zero mode

µj h
R
j,0 +

λj√
2
fjh

R
j−1,0 = 0⇒

hRj,0
hRj−1,0

= − λjfj√
2µj
≡ q−(cR+1/2). (3.10)

In the left-handed case, for cL > 1/2 the hLj,0 coefficients decrease from the zeroth to

the N -th site, since 0 < q < 1. Therefore, in this case the left-handed zero mode is

“localized” close to the zeroth site. However, if cL < 1/2 the left-handed zero mode

is “localized” near the N -th site. If one identifies the zeroth and N -th site as the

UV and IR branes of the continuum case, respectively, this behaviour coincides with

the left-handed zero mode of the continuum theory [95]. On the other hand, the

right-handed zero mode is “localized” near the N -th site for cR > −1/2, and towards

the zeroth site for cR < −1/2. Analogously to the previous case, this behaviour

coincides with the right-handed zero mode of the Randall-Sundrum constructions.

Moreover, if we choose j = 0 in the recurrence relations (3.9) and (3.10), we get

hL,R1,0

hL,R0,0

≡ ZL,R, (3.11)

where we defined ZL ≡ qcL−1/2 and ZR ≡ q−(cR+1/2). By repeating this process, one
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concludes that

hL,Rj,0 = hL,R0,0 (ZL,R)j . (3.12)

Furthermore, using the normalization condition defined by

N∑
j=0

|hL,Rj,0 |2 = 1, (3.13)

we obtain
N∑
j=0

|hL,Rj,0 |2 = |hL,R0,0 |2
N∑
j=0

(
Z2
L,R

)j
= 1. (3.14)

Computing the geometric series in (3.14) we conclude that

hL,R0,0 =

(
1− Z2

L,R

1− Z2(N+1)
L,R

)1/2

. (3.15)

Using the previous results we will compute the Yukawa couplings to the Higgs.

For simplicity, we assume that the Higgs only transforms under SU(m)N , i.e. the

Higgs field is “localized” at the end of the quiver diagram. This assumption will be

of little impact for the results of this work. The Yukawa coupling of a fermion to

the Higgs localized in the N -th site is defined by

LY = −Y ψ̄R,NHψL,N + h.c., (3.16)

where the flavor indices are suppressed and the elementns in the Yukawa matrix

Y are assumed to be O(1) numbers. If we replace in (3.16) the ψ̄R,N and ψL,N

interaction eigenstates (quiver fermions) by their expansions in the mass eigenstates,

given by ψ̄R,N =
∑N

n=0

(
hRN,n

)∗
ψ̄

(n)
R and ψL,N =

∑N
n=0

(
hLN,n

)
ψ

(n)
L , we obtain for the

coupling to the zero mode fermions

LY = −Y (ZL)N (ZR)N
(

1− Z2
L

1− Z2(N+1)
L

)1/2(
1− Z2

R

1− Z2(N+1)
R

)1/2

ψ̄
(0)
R Hψ

(0)
L + h.c.,

where we used (3.12) and (3.15). Thus, the effective Yukawa coupling of the Higgs
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to the zero mode fermions is given by

Yeff = Y (ZL)N (ZR)N
(

1− Z2
L

1− Z2(N+1)
L

)1/2(
1− Z2

R

1− Z2(N+1)
R

)1/2

. (3.17)

It is possible to obtain the fermion mass hierarchy even if we use non-hierarchical

Yukawa couplings in Y . This can be done by choosing the appropriate localization

of the zero modes fermions in the quiver diagram, i.e. the cL and cR parameters.

Therefore, the large SM fermion mass hierarchy can be explained by the different

zero modes’ localizations. This way of obtaining the hierarchical masses is very

similar to what is done in the Randall-Sundrum theory. As we shall show in the

next section, this can be achieved in quiver theories with just few sites, i.e. in models

very far from the continuum limit. To explore quantitatively the flavor violation and

the electroweak precision constraints we choose N = 4, but any model with few sites

will have the same qualitative features. For instance, we show a solution satisfying

the electroweak precision bounds that has the SM quark masses and the CKM mixing

matrix without large FCNCs at tree level.

3.2 Gauge Couplings

In the deconstructed theory given by action (3.1), the coupling of the gauge

bosons to the left-handed zero mode fermions is written as

LψA =
N∑
j=0

g̃jψ̄L,jAµ,jγ
µψL,j, (3.18)

where g̃j is the gauge coupling associated with the SU(m)j gauge group, and ψL,j,

Aµ,j are interaction eigenstates, and the group generators are absorbed in the def-

inition of the gauge fields. As explained previously in Sec. 2.1, we assume that the

gauge coupling is universal, that is, g̃j = g̃ for all j. If we expand in the Lagrangian

(3.18) the fields in the mass eigenstate bases, we obtain

LψA =
N∑

j,n,m,p=0

[
g̃
(
hLj,n
)∗
fj,mh

L
j,p

]
ψ̄

(n)
L A(m)

µ γµψ
(p)
L . (3.19)
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Therefore, the effective coupling of the gauge bosons to the left-handed fermions in

quiver theories is

gLnmp =
N∑

j,n,m,p=0

[
g̃
(
hLj,n
)∗
fj,mh

L
j,p

]
. (3.20)

An analogous expression is obtained for the right-handed fermions. In order to relate

the g̃ couplings to the Standard Model ones, we use the effective coupling of the zero

mode gauge boson (m = 0) to the zero mode fermions (n, p = 0). Thus, for the left-

and right- handed cases, we obtain

gL,R00 =
g̃√
N + 1

N∑
j=0

|hL,Rj,0 |2 =
g̃√
N + 1

, (3.21)

where we use the normalization conditions for hL,Rj,0 (3.13), and the fact that the wave-

function for the zero mode gauge boson has a flat profile, that is, fj,0 = 1/
√
N + 1

(2.16). As the zero mode gauge couplings (gL,R00 ) must be the Standard Model

couplings, we get the general relation

g̃(′) =
√
N + 1 g(′), (3.22)

where g and g′ are the usual gauge couplings of the W µ
a and Bµ bosons, respectively.

In order to obtain consequences for the Standard Model fermion sector, we focus

on the couplings to the zero mode fermions. Furthermore, we are interested in

obtaining the coupling of zero mode fermions to the first excited gauge boson, since

this state gives the largest contribution to the FCNCs. Thus, from (3.20) this

coupling is given by

gL01 =
N∑
j=0

g̃|hLj,0|2fj,1. (3.23)

The coefficients fj,1 can be obtained by diagonalizing the gauge bosons matrix fol-

lowing the procedure described in Sec. 2.1, and the expression for hLj,0 is given by

(3.12). Using these expressions, one finds that

gL01 =
N∑
j=0

g̃ (ZL)2j

(
1− Z2

L

1− Z2(N+1)
L

)
fj,1, (3.24)
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where ZL = qcL−1/2. The procedure to obtain the coupling of the right-handed zero

mode fermions to the first massive mode of a gauge boson is analogous to the one

performed to the left-handed zero mode fermions. The resulting gauge coupling is

given by

gR01 =
N∑
j=0

g̃ (ZR)2j

(
1− Z2

R

1− Z2(N+1)
R

)
fj,1, (3.25)

where ZR = q−(cR+1/2). Fig. 3.2 shows the couplings of the left-handed zero mode

fermions to the first excited state of a gauge boson as a function of the localiza-

tion parameter cL for theories with different numbers of sites. The couplings are

normalized by the SM gauge coupling g.

N ! 4
N ! 15
N ! 30
N ! 90

N ! 2

!5. !4. !3. !2. !1. 1. 2. 3. 4. 5.
cL

!0.5

1.

2.5

4.

5.5

7.

g01L

g

Figure 3.2: Couplings of left-handed zero mode fermions to the first massive mode of a gauge

boson (normalized to the zero mode gauge boson coupling) as a function of the localization pa-

rameter cL. For the left side of the plot and starting from the bottom: N = 2, N = 4, N = 15,

N = 30 and N = 90.

In Fig. 3.2 we observe that the effective gauge couplings have different behaviours

for theories with few sites when compared with theories near to the continuum limit,

i.e. models with large values of N . Furthermore, we see that as N increases, the

couplings go to their continuum limit, as it is possible to verify by comparing the

N = 90 case with the results for Randall-Sundrum models in [95]. In fact, as
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discussed before, using the appropriated matchings, this desconstructed theory in

the continuum limit coincides with a 5D theory with a curved extra dimension in an

AdS background [87,88]. It is interesting to note that for the models with few sites,

the gauge couplings quickly saturate with the localization, the cL parameter, so in

these cases there are two well-defined plateaus. Therefore, as we know the flavor

violation is a consequence of the non-universality of couplings, we can expect that

a solution for the fermion masses and mixings such that all localization parameters

are in the same plateau implies suppressed flavor violation at tree level. The same

conclusion is obtained for the right-handed couplings. In the following, we study the

parameters space for a quiver theory with N = 4, and show solutions that have the

Standard Model quark masses and the CKM mixing matrix without large FCNCs

at tree level.

3.3 Model with a Few Sites

We chose a model with five sites (N = 4) in order to have quantitative results,

but any model with few sites will have similar features. The solutions satisfying the

quark masses and the mixings angles were found by a scan of the parameter space

using a genetic algorithm. Our purpose here is not to perform a detailed study of

the parameter space, but point out cases that represent different classes of solutions.

The Fig. 3.3 shows the coupling of the left-handed zero mode fermions to the

first excitation of a gauge boson. In this plot there are two plateaus for which the

couplings are universal: one above cL & 1/2, and other for cL . 0.25. The lower

plateau corresponds to localization close to the zeroth site, that is, in the UV region.

For the fermions in the upper plateau the localization is close to the N -th site,

i.e. near the IR. In the Randall-Sundrum model there is just the UV plateau [95],

which means that in the continuum case we can obtain universal couplings only for

localizations in the UV. In our model with five sites we expect that a given solution

for the cL’s in which they are in the same plateau will have very small flavor violation.

This is analogous for the right-handed zero mode fermions. Summarizing, we want

to find solutions for the localization parameters ciL,R’s, where i = 1, 2, 3 denotes

generation, which are as much as possible on the plateaus in order to minimize

flavor violation. We divide the solutions in two classes which have different features,
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Figure 3.3: Couplings of the left-handed doublet zero mode quarks to the first excited state of a

gauge boson for N = 4 (in units of the zero mode gauge coupling) as a function of the localization

parameter cL. The dots show the localization for case A.

called case A and case B.

In case A (Figs. 3.3, 3.4, and 3.5) the right-handed quark sector is localized to-

wards the UV plateau, while the left-handed quark sector is localized in the IR

plateau. The dots indicate a solution for the quark sector in the interaction (diago-

nal) basis that results in the correct masses and mixing angles. We can see that the

couplings of the left-handed doublet zero mode quarks (Fig. 3.3) and right-handed

zero mode down quarks (Fig. 3.4) are universal, so in these cases there is no flavor

violation. The only exception is the up-type right-handed quark

sector, which does not have universal couplings to the first gauge boson excitation,

as shown in Fig. 3.5. This happens because to generate the large top quark mass

the right-handed top needs to be closer to the IR in order to enhance the coupling

with Higgs, which results in a source of tree-level flavor violation for case A.
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Figure 3.4: Couplings of the right-handed zero mode down quarks to the first excited state of a

gauge boson for N = 4 (in units of the zero mode gauge coupling) as a function of the localization

parameter cR. The dots show the localization for case A.
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Figure 3.5: Couplings of the right-handed zero mode up quarks to the first excited state of a

gauge boson for N = 4 (in units of the zero mode gauge coupling) as a function of the localization

parameter cR. The dots show the localization for case A.
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Figure 3.6: Couplings of the left-handed doublet zero mode quarks to the first excited state of a

gauge boson for N = 4 (in units of the zero mode gauge coupling) as a function of the localization

parameter cL. The dots show the localization for case B.

A solution for case B is shown in Figs. 3.6, 3.7, and 3.8. The main difference in

this case with respect to the previous one is that now the left-handed zero mode

quarks are localized towards the UV, Fig. 3.6. The down-type right-handed quarks

remain universally coupled to the first excited gauge boson in the UV plateau,

Fig. 3.7. The right-handed up sector in this case is also localized towards the UV,

and again it does not have universal couplings to the first massive gauge boson since

one dot is localized closer to the IR to generate the large top mass. Comparing

with case A, here there is more flavor violation because besides the right-handed up

sector there is also flavor violation in the left-handed sector. In particular, the non-

universality of the doublets’ couplings introduces flavor violation in the down-type

quarks. However, as we will see, this effect is still lower than in the continuum case.
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Figure 3.7: Couplings of the right-handed zero mode down quarks to the first excited state of a

gauge boson for N = 4 (in units of the zero mode gauge coupling) as a function of the localization

parameter cR. The dots show the localization for case B.
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Figure 3.8: Couplings of the right-handed zero mode up quarks to the first excited state of a

gauge boson for N = 4 (in units of the zero mode gauge coupling) as a function of the localization

parameter cR. The dots show the localization for case B.

3.3.1 Flavor Violation Bounds

In this subsection we obtain the flavor violation bounds resulting from the tree-

level couplings of the zero mode fermions to the first excited state of a gauge boson.
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In our model, it is not necessary to assume the strong interaction in the quiver

diagram since we want to solve the hierarchy problems associated to the electroweak

gauge group sector. However, we will consider the case when SU(3)c propagates

in the quiver, because its consequences generate the most stringent constraints.

Furthermore, this case allows us to make a comparison with the analogous flavor

violation bounds in the Randall-Sundrum models.

In order to study quantitatively the flavor violation effects we must rotate the

couplings to the mass eigenstate basis. Remember that in Sec. 3.3 the couplings

of quarks to the first gauge excitation (Figs. 3.3 – 3.8) are in the interaction (diago-

nal) basis. We define the couplings of the up-type left-handed quarks in the mass

eigenstate basis as

GU
L ≡ U−1

L

 guL 0 0

0 gcL 0

0 0 gtL

UL ,

where UL is a unitary matrix that rotates to the mass eigenstates, and the couplings

guL , gcL , and gtL are computed in (3.24), which are indicated by the dots in Fig. 3.3

for case A, and Fig. 3.6 for case B. Similarly, we define rotation matrices for the

right-handed up quarks, as well as for left- and right-handed down sector. The non-

diagonal values in the G’s matrices lead to tree-level flavor violation, which results

in bounds on the mass of the first gluon excitation in full-hierarchy quiver theories

(FHQT). These non-diagonal couplings are shown in Tabs. 3.1 and 3.2 for the case

A and case B, respectively.

L R L R

|Gu,c| 1.1× 10−5 2.2× 10−8 |Gd,s| 5.7× 10−5 1.6× 10−9

|Gu,t| 2.0× 10−4 2.3× 10−6 |Gd,b| 1.9× 10−4 2.1× 10−8

|Gc,t| 5.5× 10−6 6.8× 10−4 |Gs,b| 5.9× 10−5 2.5× 10−6

Table 3.1: Non-diagonal values of the quark couplings to the first excited state of the gluon in

case A.
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L R L R

|Gu,c| 2.8× 10−3 2.9× 10−4 |Gd,s| 5.7× 10−4 6.5× 10−6

|Gu,t| 4.2× 10−3 2.9× 10−3 |Gd,b| 5.9× 10−3 5.0× 10−5

|Gc,t| 3.3× 10−2 1.8× 10−1 |Gs,b| 6.7× 10−3 1.2× 10−4

Table 3.2: Non-diagonal values of the quark couplings to the first excited state of the gluon in

case B.

At low energies, the excited gluon is integrated out and the effective Hamiltonian

for ∆F = 2 transitions receives contributions given by

Heff =
1

M2
G

[
1

6
Gij
LG

ij
L (q̄iαL γ

µqjLα)(q̄iβL γ
µqjLβ) + (L↔ R)

−Gij
LG

ij
R

(
(q̄iαR q

j
Lα)(q̄iβL q

j
Rβ)− 1

3
(q̄iαR q

j
Lβ)(q̄iαL q

j
Rβ)

)]
. (3.26)

Therefore, the coefficients in (3.26) are identified as the corresponding Wilson coef-

ficients of the low energy ∆F = 2 Hamiltonian. Using [111], the contributions from

the Hamiltonian (3.26) are

C1
M(MG) =

1

6

(Gij
L )2

M2
G

, C4
M(MG) =

Gij
LG

ij
R

M2
G

C5
M(MG) =

Gij
LG

ij
R

3M2
G

, (3.27)

where M = K,D,Bd, Bs indicates different mesons. It is possible to obtain cons-

traints for MG using the Wilson coefficients bounded by the UTFit collaboration

fits for the flavor data [111,112]. These bounds are obtained at larger scales Λ, and

when Λ is much larger than MG, the correction coming from the renormalization

group evolution of the Wilson coefficients is significant, and must be considered.

The results are shown in Tab. 3.3. The third column gives the bounds on the scale

of New Physics (NP) implied by assuming C(Λ) ∼ 1/Λ2. On the other hand, in our

model the Wilson coefficients (3.27) have a natural large suppression, and thus the

scale MG can be much lower as it is shown in the fourth column for case B.

Comparing the Tabs. 3.1 and 3.2, we see that the couplings in case A are much

smaller than the ones in case B, and the former will not result in significant flavor

violation bounds. Case A minimizes the tree-level flavor violation effects, but as we

will see in the next section, the zero mode fermion localizations in this case will result



40 Localization in the Theory Space

Parameter 95% allowed range Lower limit on Λ (TeV) Bound on Color-octect
(GeV−2) for arbitrary NP Mass in FHQT (TeV)

ReC1
K [−9.6, 9.6] · 10−13 1.0 · 103 0.2

ReC4
K [−3.6, 3.6] · 10−15 17 · 103 0.1

ReC5
K [−1.0, 1.0] · 10−14 10 · 103 0.1

ImC1
K [−2.6, 2.8] · 10−15 1.9 · 104 2.6

ImC4
K [−4.1, 3.6] · 10−18 49 · 104 3.0

ImC5
K [−1.2, 1.1] · 10−17 29 · 104 1.0

|C1
D| < 7.2 · 10−13 1.2 · 103 1.0
|C4
D| < 4.8 · 10−14 4.6 · 103 2.9
|C5
D| < 4.8 · 10−13 1.4 · 103 0.5

|C1
Bd
| < 2.3 · 10−11 0.21 · 103 0.3

|C4
Bd
| < 2.1 · 10−13 2.2 · 103 0.3

|C5
Bd
| < 6.0 · 10−13 1.3 · 103 0.1

|C1
Bs
| < 1.1 · 10−9 30 0.1

|C4
Bs
| < 1.6 · 10−11 250 0.1

|C5
Bs
| < 4.5 · 10−11 150 0.03

Table 3.3: 95% probability range for C(Λ) and the corresponding lower bounds on the NP scale

Λ for arbitrary NP flavor structure [111, 112]. The last column corresponds to the bound on the

gluon excitation in full-hierarchy quiver theories (FHQT) in case B.

in larger contributions to the electroweak parameters. Nevertheless, in case B, the

zero mode fermion localizations minimize the effects on the S and T parameters,

but there is larger flavor violation at tree level. As we see in Tab. 3.3, the most

stringent constraint comes from kaon physics, the bound on ImC4
K , which results

in MG > 3 TeV. This bound represents the typical value in agreement with all

flavor constraints for the solution called case B, and it is not necessarily the smallest

possible value for MG for all solutions.

To sum up, in quiver models with few sites it is possible to obtain the quark

masses and mixings without large FCNCs at tree level. This is not the case in

Randall-Sundrum models, where the typical tree-level flavor violation in the down-

quark sector leads to challenging bounds. For instance, to overcome the kaon physics

constraints without introducing new global flavor symmetries these models require

first excited state masses of at least MKK ∼ 20 TeV [59–61], which generates a

hierarchy between the first massive state and the electroweak scale.
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3.3.2 Electroweak Precision Parameters

The electroweak precision measurements [113] set important bounds for the

physics beyond the Standard Model. We compute the contribution of our model

to the S and T parameters [114] that can be defined using the Standard Model

vacuum polarization functions for the electroweak sector as

S =
16π

g2 + g′2

[
Π′ZZ(0)− g2 − g′2

gg′
Π′γZ(0)− Π′γγ(0)

]
= 16π

[
Π′33(0)− Π′3Q(0)

]
, (3.28)

T =
4π

e2

[
ΠWW (0)

M2
W

− ΠZZ(0)

M2
Z

]
,

=
16π

v2
EWe

2
[Π11(0)− Π33(0)] . (3.29)

In full-hierarchy quiver theories, as in the Randall-Sundrum models, there are contri-

butions to S and T parameters already at tree level. These come from the mixing of

the Standard Model gauge bosons W± and Z with their excited states by the Higgs

vev insertions, as it is shown in Figs. 3.9 and 3.10. Additionally, there are contribu-

tions coming from the universal shifts in the gauge couplings of light fermions, the

mixing is represented in Fig. 3.11. The S parameter does not receive significant con-

tributions from diagrams as shown in Figs. 3.9 and 3.10, since these are suppressed

by a factor of v4
EW/M

4
1 , where M1 is the mass of the first gauge boson excitation.

In this five sites model we assume that the Higgs doublet is localized in the N -th

site. We also use the minimum choice for the electroweak sector in the quiver, that is,

SU(2)L×U(1)Y for all sites. The analogous situation in a curved extra-dimensional

theory would be to have the Standard Model gauge fields propagating in the bulk,

and the Higgs doublet localized in the IR brane.
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Figure 3.9: Diagrams representing the exchange of the W
(j)
a gauge bosons.
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Figure 3.10: Diagrams contributing to S and T through the exchange of the B(j) gauge bosons.
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Figure 3.11: Diagrams contributing to S and T by vertex correction of the W
(0)
a and B(0) gauge

couplings to fermions.

The interaction Lagrangian for the gauge bosons with the Higgs localized in the

N -th site is given by

L =
1

2
(DµH)†DµH =

g̃2v2
EW

8

[(
WN

1

)2
+
(
WN

2

)2
+
(
WN

3

)2
]

+
g̃g̃′v2

EW

4

(
WN

3 B
N
)

+
g̃′2v2

EW

8

(
BN
)2
, (3.30)

where the Lorentz indices are omitted, and we use the usual Higgs vev 〈H〉t =

(0, vEM/
√

2) and the covariant derivative Dµ = ∂µ + ig̃T aW µ,N
a + ig̃′Y Bµ,N . Ex-
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panding in Lagrangian (3.30) the fields WN
µ,a in the mass eigenstate basis as

WN
µ,a =

N∑
j=0

fN,jW
(j)
µ,a, (3.31)

and analogously for BN
µ , we see that the Higgs vev insertions induce mixings between

the gauge boson modes. These mixing effects lead to contributions to S and T

parameters at tree level. The mixings between the zero mode gauge bosons and

their excited states are shown in Figs. 3.9 and 3.10. Notice that in (3.30) the W±
µ

zero modes have mixings only with their own modes, whereas the W 3
µ and Bµ zero

modes mix with the massive modes of each other. The vertex for the WW mixing

(3.9) is given by
i(N + 1)g2v2

EW

4
fN,0fN,j, (3.32)

and for the WB mixing (3.10) it is

i(N + 1)gg′v2
EW

4
fN,0fN,j. (3.33)

In both cases we use the expression (3.22) to relate the g̃(′) with the Standard Model

gauge couplings. Using these mixing vertices, and the corresponding first massive

mode propagator valued at q2 = 0, we obtain the vacuum polarizations functions

ig2Π11(0) = −ig2

[
(N + 1)v2

EW

4
fN,0fN,1

]2(
g

M1

)2

, (3.34)

ig2Π33(0) = −ig2

[
(N + 1)v2

EW

4
fN,0fN,1

]2
[(

g

M1

)2

+

(
g′

M1

)2
]
, (3.35)

where the M1 is the mass of the corresponding first massive mode. Note that we

are only considering the contribution of the first excited state. This is justified since

this model has a coarse discretization, that is, we are using just five sites (N = 4)

to generate a large hierarchy of scales in the quiver. For instance, from the link

fields parametrization fj = fqj (2.5), we see that the mass of the lightest massive

mode, which is of the order of the last link field vev, is f4 = fq4 ∼ O(1) TeV. The

next massive state has mass of order f3 = fq3 ∼ 104 TeV. Therefore, we can safely
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ignore the contributions of the next states. These exchange diagrams generate the

following contribution to the T parameter (3.29)

Te =
16π

v2
EWe

2
[Π11(0)− Π33(0)] =

g′2π

e2
[(N + 1)fN,0fN,1]2

(
vEW

M1

)2

' 0.05×
(

3 TeV

M1

)2

. (3.36)

The corresponding contribution to the S parameter (3.28) depends on Π′ii(0) ∝(
d
dq2

1
q2−M2

1

)
q2=0

= − 1
M4

1
, so it is suppressed by a factor of v4

EW/M
4
1 and is not the

leading source of S. On the other hand, as we will see, the S parameter receives

much larger contributions from the universal shifts of gauge couplings that result

from diagrams like the one in Fig. 3.11.

If we absorbed the universal part of the vertex corrections coming from diagrams

like the one in Fig. 3.11 to a redefinition of the electroweak gauge fields, this will

restore the gauge couplings to their Standard Model values, but will generate con-

tributions to the S and T parameters similarly to what occurs in Randall-Sundrum

models [115]. These fields redefinitions are given by

W± → W±(1− g2δ)

W 3 → W 3(1− g2δ) +B g g′ δ (3.37)

B → B(1− g′2δ) +W 3 g g′ δ ,

with

δ = −
(
vEW

M1

)2

fN,0fN,1
(N + 1)2

4

g01

g
, (3.38)

where g01 is the coupling of the zero mode fermions to the first excited state of a

gauge boson, given by the expressions (3.24) and (3.25). These redefinitions generate

the following contributions to S and T

Sv = 32πδ, (3.39)

Tv =
8π

cos2 θW
δ. (3.40)

As we had anticipated, case A, which minimizes flavor violation, results in larger
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contributions to the oblique parameters. This happens because when the left-handed

zero mode fermions are localized close to the N -th site (IR), there is an increase in

gauge couplings universal shifts induced by diagrams like the one in Fig. 3.11. In

Figs. 3.3-3.8 we see that for fermions localized in the UV plateau
gL01
g
|UV ' −0.5,

and for those localized in the IR plateau
gL01
g
|IR ' 2.0. Therefore, comparing case A

with case B, where the left-handed fermions are localized towards the zeroth site

(UV), the vertex contributions to S and T are about four times larger in case A

than the ones in case B. The results for case B, adding the exchange and vertex

contributions, are given by

S ' 0.17×
(

3 TeV

M1

)2

,

T ' 0.16×
(

3 TeV

M1

)2

. (3.41)

These results must be compared with the experimental fit to the oblique parameters,

i.e., Sexp = 0.03 ± 0.10 and T exp = 0.05 ± 0.12 with mt = 173 GeV and mh =

126 GeV as reference values [116]. Thus, we conclude that a mass scale of about

M1 ' 3 TeV is in agreement within the 95% C.L. bounds. Therefore, the results

present here together with the bounds in Subsec. 3.3.1 show that this mass scale is

enough to pass all flavor and electroweak constraints.
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3.4 Resonances from Quiver Theories

In the previous sections we have shown that full-hierarchy quiver theories with

few sites differ significantly from warped extra dimension models. Therefore, a

detailed phenomenological study of the former is necessary in order to search for

their collider signals. We explore these signals at the LHC and derive bounds on

the resonances in specific quiver models. As it was shown in Subsec. 3.2, for a

fixed UV cutoff, the couplings of the first excited gauge boson to the zero mode

fermions depend on the number of sites. We use these couplings (given by (3.24)

and (3.25)) for different values of N to obtain the s-channel production of the first

gauge excitation at the LHC. We consider the case when the color propagates in the

quiver diagram, as well as the minimum model that consists of full-hierarchy quiver

theories containing only the electroweak sector. Fig. 3.12 shows the couplings of the

first excited gauge boson to the left-handed zero mode fermions for N = 4, 9, 15.

The dots on the black line (N = 4) indicate a solution for the quark sector in the

interaction basis that obtains correct masses and mixing angles, the same one that

we called case B in Sec. 3.3, as in Figs. 3.6-3.8.

-1.-1.5 1. 1.5
cL

1

2

3

g01
L

g

Figure 3.12: Couplings of left-handed zero mode fermions to the first massive mode of a

gauge boson (normalized to the zero mode gauge boson coupling) as a function of the localization

parameter cL. For the left side of the plot and starting from the bottom: N = 4 (black line),

N = 9 (orange line), N = 15 (purple line). The dots on the black line show the localization of the

solution called case B in Sec. 3.3.
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We computed the s-channel production cross section at the LHC with
√
s = 8

TeV and
√
s = 14 TeV using MSTW PDFs [117]. The results with

√
s = 8 TeV for

decays of the color-octet and color-singlet excited gauge bosons to dijet, b-quarks,

and top pairs are shown in Fig. 3.13.

As indicated in the plots (d)-(f) in Fig. 3.13, we considered the production cross

section of the combination (Z ′ + γ′) in order to obtain a conservative bound on the

weakly-coupled massive gauge bosons. Thus, we are assuming that the Z ′ and γ′

masses are close enough to appear degenerate at the LHC, at least in the search

stages. In Fig. 3.13 we see that in general, as we increase N , the production cross

section decreases. This happens because the absolute value of the light quarks

couplings to the first gauge excitation decreases with N , as the light quarks are

localized towards the UV region in the right side of the plot in Fig. 3.12. The only

exception is plot (e), which is the decay of the color-singlet to b-quarks. In this case

the production cross section for N = 15 is larger than the one for N = 9. This occurs

because the left-handed coupling to the third-generation quarks for the solution with

N = 9 is very small in modulus (cL ' 0.5). This effect in this particular case exceeds

the suppression factor coming from the increasing of N . On the other hand, we see

that the production cross section for decays to tt̄ are much more degenerate than

for decays to dijet and bb̄. This is related to the fact that the values of the couplings

in the IR region increase with N , see left side of the plot in Fig. 3.12. As the

right-handed top is localized towards the IR to generate the large top mass, the

right-handed top coupling grows with N , which partially compensates the decrease

of the light quarks couplings. The bounds on resonances mass in full-hierarchy quiver

theories are shown in Tabs. 3.4 and 3.5. These constraints were extracted from the

LHC data with
√
s = 8 TeV [118–120]. The dashes in Tabs. 3.4 and 3.5 indicate the

cases where there are no bounds, that is, the resonance production cross section is

lower than the current LHC constraints, and additionally, these bounds are too low

to be consistent with flavor and electroweak limits. The bb̄ production cross section

only gives a bound for the color-octet excited state when N = 4, which is MG > 1.6

TeV. For the other cases there is no bound coming from the b-quarks production

cross sections. These results show that the most stringent direct bound comes from

dijet on the color-octet excitation for the case N = 4, which is MG > 3 TeV.
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(e): (Z′ + γ′)→ bb̄
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(c): Ga → tt̄
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Figure 3.13: Production cross sections at the LHC with
√
s = 8 TeV as a function of the

resonance mass for N = 4 (red), N = 9 (green), and N = 15 (blue). On the left we have the

plots for the decay of the color-octet excited gauge boson (Ga): to dijet (a), b-quarks (b), and top

pairs (c). On the right we have the plots for the decay of the color-singlet massive gauge boson

(Z ′ + γ′): to dijet (d), b-quarks (e), and top pairs (f).

This separation of scales between the electroweak scale (vEW ' 246 GeV) and

the new physics scale (MG & O(1) TeV) is naturally explained in models where the
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Bounds on Color-Octet Mass (TeV)

N 4 9 15

tt [120] 2.7 2.6 2.5
Dijet [118] 3.0 1.6 -

Table 3.4: Direct bounds on color-octet mass in full-hierarchy quiver theories at the LHC with√
s = 8 TeV.

Bounds on Color-Singlet Mass (TeV)

N 4 9 15

tt [120] 2.1 2.0 1.8
Dijet [118] 1.7 - -

Table 3.5: Direct bounds on color-singlet mass in full-hierarchy quiver theories at the LHC with√
s = 8 TeV.

Higgs is a remnant pseudo-Nambu Goldstone Boson from the spontaneous breaking

of a global symmetry [103, 104]. The mass difference of the Higgs and the new

resonances is analogous to the mass gap between the pion mass and the masses of

other hadrons in QCD.

An interesting aspect of these quiver theories are their very narrow resonances

even for the colored states. For instance, for the first color-octet excitation the

ratios of the width to the mass are given by ΓG/MG ' 4% (N = 4), 6% (N =

9), 9% (N = 15), which are very small compared with the analogous ratio for the

first Kaluza-Klein gluon in Randall-Sundrum models that is ΓKK/MKK ' 15% [121].

We also computed the s-channel production cross section at the LHC with
√
s = 14 TeV. The decays of the color-octet (Ga) and color-singlet (Z ′ + γ′) ex-

cited gauge bosons to dijet and top pairs in quiver theories with N = 4, 15 are

shown in Figs. 3.14 and 3.15. The LHC new data can improve the constraints for

this class of models and provide a better understanding of the main differences of

these quiver theories with respect to other models.
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Figure 3.14: Production cross sections at the LHC with
√
s = 14 TeV as a function of the

color-octet resonance mass for N = 4 (red) and N = 15 (blue). The solid lines correspond to the

decay of the color-octet excited gauge boson to dijet, and the dashed lines to top pairs.
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Figure 3.15: Production cross sections at the LHC with
√
s = 14 TeV as a function of the

color-singlet resonance mass for N = 4 (red) and N = 15 (blue). The solid lines correspond to the

decay of the color-singlet excited gauge boson to dijet, and the dashed lines to top pairs.



Chapter 4

Realizing the Relaxion with N-site

Models

4.1 The Relaxion Idea

The sensitivity of the Higgs mass to UV physics has been one of the leading

motivations for searches of beyond SM physics at the LHC; however, until now, there

is no compelling evidence of new physics at the LHC data. A new option to explain

the smallness of the Higgs mass is provided by the relaxion models, which explain the

radiative stability of the Higgs sector through the cosmological relaxation mechanism

of the electroweak scale [76]. In these scenarios we have a scalar field starting at

some large value and slowly decreasing during the inflationary epoch [122, 123]. As

an illustration, consider the relaxion model [76,77]:

V (φ,H) = Λ3gφ− 1

2
Λ2

(
1− gφ

Λ

)
H2 + Λ4

c(H) cos(φ/f) + · · · , (4.1)

where H is the Higgs field, Λ is the cutoff of the model, φ is the relaxion field

(assumed to be a pseudo-Nambu-Goldstone Boson (pNGB) with decay constant f),

the spurion g quantifies the explicit breaking of the discrete shift symmetry and

Λc(H) is a scale depending on the Higgs vev so that Λc(H) 6= 0↔ 〈H〉 6= 0.

It is ‘technically natural’ 1 to set g to small values, so the first term in Eq. 4.1

is responsible for the slow roll of φ. Once the coefficient of H2 on the second term

1See Chapter 1 for a discussion about naturalness.
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becomes negative H acquires a vev and one can see that for Λ ≈ gφ the Higgs mass

is much smaller than Λ. As Λc(H) 6= 0, φ gets trapped close to this phase transition

(which fixes 〈H〉). If this is to work in a natural way we must assume φ scanned the

typical range of field values ∆φ ∼ Λ/g � Λ.

There are relevant concerns regarding this idea:

1. Although having field excursions larger than the cutoff of the effective theory

is not a problem in itself, it might be problematic to construct a theory that

could consistently generate these large excursions, especially if the UV theory

includes quantum gravity [124–127].

2. Other essential feature of Eq. 4.1 is the presence of a linear term that explicitly

breaks a gauge symmetry (the axion shift symmetry), which is inconsistent

with the pNGB nature of the relaxion [128].

This second point can be avoided if all operators involving φ are periodic, but

with very different periods, and the linear term is nothing but a small region in an

oscillation of longer period. A simple way to generate such oscillations is to produce

a large hierarchy between the decay constants [129–138]:

V (φ,H) ∼ Λ4 cos

(
φ

F

)
+ Λ4

c(H) cos

(
φ

f

)
, (4.2)

where F � f . If additionally F > Λ then the first point is also addressed, because

φ will have a compact field space of size 2πF (we will comment on gravity related

problems below).

An explicit example is proposed in [129] to generate an effective super-Planckian

field range, by considering N + 1 complex scalars with the same decay constant

f < MPl. By adding a conveniently chosen breaking term, the global U(1)N+1 is

explicitly broken to U(1) and the remaining pNGB has a decay constant which

exponentially depends on the number of fields as F � ecNf , where c ∼ O(1). It is

emphasized in [129] that this construction cannot be interpreted as a deconstructed

extra dimension, i.e. there is no continuum limit for this model. (see [139–141] for

other approaches achieving similar results).

A relevant concern arising when attempting to include gravity in the UV theory

is the so-called weak gravity conjecture [124], which limits how small the coupling
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constants in gauge theories may be. Although there is no rigorous proof attesting its

validity, the conjecture and its versions [126, 127] seem to satisfy all tests proposed

so far. Assuming an unbroken U(1) gauge symmetry in the low-energy theory, the

conjecture is necessary to avoid a spectrum containing a large number of charged

black hole remnants. The black holes’ stability is guaranteed if there is no particle to

which the remnants can decay and radiate away all their charge. Once one assumes

negligible kinetic mixing among the gauge fields and minimal charge assignments,

the conjecture can be directly applied to multiple U(1) gauge interactions, resulting

in an even stronger constraint than in the single U(1) case [125, 126]. In a non-

abelian setup, the conjecture is not yet sufficiently explored, however, it is expected

that the usual arguments will also apply to the non-abelian case [142–145].

In the following we present a different approach that can deal with the issues

discussed previously and at the same time indicates a different strategy to search

for UV completions for the relaxation mechanism. The two main advantages of

our approach are that: (i) the model does have a continuum limit that could be

interpreted as an extra dimension; and (ii) we show that the desired features can be

obtained from non-abelian groups, allowing for controlled (asymptotically free) UV

behaviour.

4.2 Minimal Model

Let us consider a 2N -site model represented in Fig. 4.1, where each site represents

a global symmetry group 2, SU(2) (the construction is trivially generalized for other

groups).

2It is well known that in a theory of quantum gravity, all global symmetries are violated (see
e.g. [146]). For this reason, the model we propose in Eq. 4.3 cannot be regarded as a consistent
description for arbitrary energy scales. However, it may be seen as an effective few site description
of an extra dimension (see Sec. 2.2). In this case, the global symmetries are gauged, and this
concern disappears.
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Figure 4.1: Diagram for a 2N -site model. The symmetry groups and link fields are in black.

In red (blue) we show the effect of the g2
j (gjgj+1) explicit breakings, and the resulting preserved

groups.

The Lagrangian for the link fields reads:

LΦ =
N∑
j=1

Tr

[
∂µΦ†j ∂

µΦj+
f 3

2
(2−δj,1−δj,N)g2

j

(
Φj+Φ†j

)]

− f 2

2

N−1∑
j=1

gjgj+1Tr
[
(Φj − Φ†j)(Φj+1 − Φ†j+1)

]
, (4.3)

where the Φj are scalars transforming as Φj → LjΦjR
†
j, under adjacent SU(2)

groups. We assume the Φj acquire a vev 〈Φj〉 ≡ f/2, spontaneously breaking

SU(2)Lj×SU(2)Rj → SU(2)Vj . In the low energy limit, these fields are non-linearly

realized as:

Φj →
f

2
ei~πj ·~σ/f =

f

2
cos

(
πj
f

)
+ i

f

2

~πj · ~σ
πj

sin

(
πj
f

)
, (4.4)

where ~σ are the Pauli matrices, ~πj are the NGB multiplets and πj ≡
√
~πj · ~πj.

The Lagrangian contains terms that explicitly break some global symmetries.

These parameters are assumed to be small spurions generated at a higher scale

and may be chosen such that they give a mass to all but one linear combination

of the ~πj. The terms with gj explicitly break the chiral symmetries to the vector

combination, SU(2)Lj × SU(2)Rj → SU(2)Vj , while the terms with gjgj+1 break

SU(2)Vj × SU(2)Vj+1
→ SU(2)Vj,j+1

. Taken together these terms break explicitly

all symmetries down to a diagonal SU(2)V . However, due to the peculiar structure

of the breaking parameters, one combination of the ~πj remains accidentally lighter,

gaining a small mass only at higher order. Additional breaking terms (involving

three or more powers of the Φj fields) could be present, but we will assume that

they are suppressed in relation to those in Eq. 4.3.
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The Lagrangian in terms of the Goldstone fields is:

Lπ =
N∑
j=1

[
1

2
∂µ~πj ·∂µ~πj+f 4(2− δj,1−δj,N)g2

j cos

(
πj
f

)]

+ f 4

N−1∑
j=1

gjgj+1
~πj · ~πj+1

πjπj+1

sin

(
πj
f

)
sin

(
πj+1

f

)
, (4.5)

where we omitted terms corresponding to interactions with two derivatives. Expand-

ing to quadratic order, we obtain the mass matrix for the ~πj, which is independent

of the SU(2) index:

~πt ·M2
π · ~π ≡

N−1∑
j=1

f 2(gj~πj − gj+1~πj+1)2, (4.6)

where ~πt ≡ (~π1, · · · , ~πN). The parametrization gj → qj, with 0 < q < 1, results

in a mass matrix for the pNGBs that is identical to the one obtained for a pNGB

Wilson line (zero mode) in the deconstruction of AdS5 (Eq. 2.31) as obtained in the

Sec. 2.3 [93,94]:

M2
π = f 2



q2 −q3 0 . . . 0 0

−q3 2q4 −q5 . . . 0 0

0 −q5 2q6 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 2q2(N−1) −q2N−1

0 0 0 . . . −q2N−1 q2N


. (4.7)

As det[M2
π ] = 0, this matrix has a zero mode (at tree level), as emphasized previously.

Its profile is given by (see Eq. 2.35):

~η0 =
N∑
j=1

qN−j√∑N
k=1 q

2(k−1)

~πj, (4.8)

which is similar to the result found in [129]. One sees that ~η0 is exponentially

localized at the last site. It is important to note that, in contrast with [129], since
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q < 1 our matrix does admit a continuum limit.

Since ~η0 has a mass much smaller than the other states 3, one is justified to

consider it as the relaxion field, since the other modes rapidly lose coherence on scales

larger than their Compton wavelength and may thus be assumed to be constant on

the scale m−1
η0

. They correspond to immaterial phase shifts in the potential of ~η0.

In terms of ~η0, one obtains the following Lagrangian after integrating out the other

pNGBs:

Lη =
N∑
j=1

[
1

2
∂µ~η0 · ∂µ~η0 + f 4(2− δj,1 − δj,N)q2j cos

η0

fj

]

+
N−1∑
j=1

f 4q2j+1 sin
η0

fj
sin

η0

fj+1

, (4.9)

where η0 ≡
√
~η0 · ~η0 and the effective decay constants are given by:

fj ≡ f

√∑N
k=1 q

2(k−1)

qN−j
≡ fqj−NCN , (4.10)

where CN ≡
√

q2N−1
q2−1

. One sees that a large hierarchy of decay constants is generated,

from the largest fmax = f1 ≈ f/qN−1 to the smallest fmin = fN ≈ f , as we wanted.

Regarding the radiative stability of the potential, we find that interactions with p

external ~η0 legs scale as cp ∼ q2Nf 4−p and renormalize multiplicatively (as expected,

since all the couplings in the Lagrangian Eq. 4.9 are spurions), so the whole potential

is radiatively stable up to small corrections.

3At tree level, for q � 1, the spectrum is approximately given by m2
j ≈ f2q2(j−1) for 1 < j ≤ N

plus a zero mode. Expanding Eq. 4.9, a quartic term is generated of order q2N(~η0 · ~η0)2. Closing
the loop, one obtains a mass for ~η0 of order m2

η0 = f2q2N , which is a factor of q2 smaller than the
lightest tree level mass, hence the approximation scheme is consistent.
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4.3 Higgs-Axion Interplay

If the lightest pNGB is to function as a relaxion, its potential must be such that

no local minima stops it when the Higgs vev is zero. The potential in Eq. 4.9 is

dominated by the oscillation with the largest amplitude and period, −f 4q2 cos η0
f1

,

which grows monotonically in 0 < η0 < πf1 (which will be our region of interest).

To check that the other oscillations do not get the field stuck we need to consider:

∂Vη
∂η0

=
f 3qN

CN

N∑
j=1

qj sin

(
η0

fj

){
(2− δj,1 − δj,N) +

−(1− δj,1) cos

(
η0

fj−1

)
−(1− δj,N) cos

(
η0

fj+1

)}
. (4.11)

The constant f3qN

CN
is positive for any q < 1 and N > 1, and the term between braces

is bounded between 0 and 4. The leading term for small q is:

f 3qN

CN
q sin

(
η0

f1

){
1− cos

(
η0

f2

)}
, (4.12)

which is never negative for 0 < η0 < πf1 and is only zero at ηm0 ≡ 2πmqf1, with

m = {0, 1, 2 . . . }. Close to these points the sign of the derivative will come from

terms with higher powers of q. The one multiplying qN+2 is:

sin

(
ηm0
f2

)
≈ η0

qf1

− 2πm. (4.13)

This sine will push the derivative to negative values near ηm0 , generating shallow min-

ima (similar arguments apply to the next terms in the q-expansion). The derivative

only remains negative while the term in Eq. 4.12 is smaller than the O(qN+2) term,

so these minima become less and less important as q gets smaller. In fact, the height

of the barrier between two adjacent minima decreases as q4, the width decreases as

q2−NCN and we expect the field to be able to proceed rolling down for the typical

values of q considered below. The shape of the potential with decreasing q can be

seen in Figure 4.2. One can see that, despite the use of quite large values of q and

a scaling factor α to exaggerate the features of the potential, the slope quickly gets

smooth.
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Figure 4.2: Potential Vη(η0) for different values of q and N = 3. A factor α was introduced to

allow easy comparison between the curves. The black, blue (dashed) and yellow (dotted) curves

have respectively (q = 0.1, α = 1), (q = 0.05, α = 103) and (q = 0.01, α = 1010). Note that

these values of q are much larger than the realistic ones, in order to exacerbate the features in the

potential.

We include the Higgs by multiplying the Lagrangian by 1 + |H|2/Λ2, where

Λ ≈ 4πf . Adding in the Higgs potential and kinetic term, the full Lagrangian is

now:

Lη,H =

(
1 +
|H|2
Λ2

)
Lη + |DµH|2 +

Λ2

2
|H|2 − λH

4
|H|4. (4.14)

Once the Higgs is set to its vev, 〈h〉 = vEW > 0, the slope equation is the same

as Eq. 4.11, multiplied by (1+v2
EW/(2Λ2)). The field φ should stop rolling when this

expression is approximately zero. However, this clearly has no solutions apart from

the trivial one v2
EW = −2Λ2, which is undesirable.

With the current Lagrangian, having vEW � f is untenable. In order to fix this,

we add the following breaking term at the last site, which would be equivalent, in the

continuum limit, to a deformation of the metric in the infrared (see again Sec. 2.2):

Lη,H → Lη,H + ε
Λc

16π
Tr[ΦN + Φ†N ]|H|2 (4.15)

where ε is a small parameter, and Λc is a new scale, which we could assume is

generated at lower energies to avoid spoiling the results of the previous section (see

Eq. 4.2). However, as pointed out in [77], a small Λc scale leads to a coincidence

problem (i.e., Λ� Λc ∼TeV) for the model. We will then take Λc ≈ Λ ≈ 4πf and
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discuss below how to avoid the problems generated by this choice.

Once this operator is added, the relaxion potential acquires the term

εf 2|H|2 cos
η0

fN
, (4.16)

giving the relaxion a small mass. By closing the loop of H, εf 4 cos(η0/fN) is gener-

ated, which can spoil the relaxation mechanism. One possible solution is to adopt

the double scanner mechanism of [77], that is, we may add a scalar singlet to control

the amplitude of the additional term. As emphasized in [77], the new field needs

an even larger field excursion than the relaxion. This can be accommodated in our

framework by replicating this scalar on the N -sites, provided we choose a smaller

value of the q parameter for this scalar. A non-trivial issue that must be addressed

in a complete model is the fact that the UV completion should not couple the new

scalar to the Higgs at tree level, or else one risks spoiling the relaxation [77]. For a

supersymmetric version of a two-field relaxion model, see [147].

With the inclusion of (4.16), the new slope equation is given by:

∂Vη,H
∂η0

=
f 3qN+1

CN

{(
1 +

v2
EW

2Λ2

)
sin

(
η0

f1

)[
1− cos

(
η0

f2

)
+O(q)

]
− ε v2

EW

2f 2qN+1
sin

(
η0

fN

)}
+ · · · . (4.17)

This slope should be zero when vEW ≈ 246 GeV. Solving for this yields

v2
EW ∼

f 2

ε
qN+1 . (4.18)

For qN+1 < ε < 1, a natural electroweak scale is obtainable and qN+1 should be

identified with the relaxion coupling g of [77], as in Eq. 4.1.

The cutoff for our model can be estimated along the lines of [77] by considering

additional constraints besides Eq. 4.18. The main bounds come from requiring that

~η0 does not drive inflation, i.e. Λ2 . HIMPl, where HI is the inflation scale and MPl

is the reduced Planck scale, and that quantum fluctuations of ~η0 are less important

than its classical rolling. This yields the condition that H3
I . qN+1f 3. Finally,

suppressing higher order terms like ε2f 4 cos(η0/f)2 requires ε . v2/f 2 ∼ 10−12, for



60 Realizing the Relaxion with N-site Models

f = 108 GeV [77]. Combining these with Eq. 4.18, we obtain:

Λ6

f 3M3
Pl

. qN+1 .
v4

EW

f 4
. (4.19)

From this, we find the upper bound of f . 108 GeV and also that q . 10−23/(N+1).

Finally, using all these constraints, we find that for q ≈ 10−24/(N+1) and ε ≈
10−12, we obtain vEW ∼ 10−6f which is of the order of the electroweak scale for

f ≈ 108 GeV. Note that for these parameter choices, Eq. 4.18 does not depend on

N , what is fixed is qN+1. Of course, having a large value for N allows for a larger

value of q.

Remarks

Our model has some distinctive features when compared with previous many-field

models that also address the points above [129,130]:

• The N fields are bi-fundamentals of 2N non-abelian SU(2) groups and the

formalism employed can be trivially generalized to any non-abelian group.

This allows for a controlled UV behavior and opens up many possibilities of

model building in particle physics and inflation.

• The model has a well defined continuum limit N →∞, q → 1, with qN+1 kept

fixed, and the mass matrix for the pNGBs in Eq. 4.7 is exactly the one obtained

from a pNGB Wilson line in the deconstruction of AdS5 [93,94] (see Sec. 2.3).

Even the desired relation between vEW and f (in Eq. 4.18) is maintained in

the continuum limit, as f 2qN+1 → M/g2
5 e−kL, where L is the size of the

extra dimension, k is the curvature, g5 is the 5D gauge coupling, and M is the

cutoff of the UV theory. In addition, we find that (up to suppressed terms)

in the continuum limit (see Eq. 4.10), f1 = CNfq1−N → M/(g5

√
2k)ekL and

fN = CNf → M/(g5

√
2k), that is f1/fN → ekL, i.e. they are related by the

AdS5 warp factor. These expressions are in agreement with those obtained

by [107] in AdS5.
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Conclusions and Remarks

In this thesis we explored the full-hierarchy quiver theories, which is a class of

N-site models that can generate large-scale hierarchies with just a few sites. As we

discussed in the previous chapters, these four-dimensional models can be used in a

broader context. We summarize in the following our main results.

• Localization in the Theory Space and Flavor Bounds: Using this class

of N-site models we were able to obtain the quark mass hierarchy and mixings

without large flavor changing neutral currents at tree level [64]. In Randall-

Sudrum scenarios, in order to overcome the kaon physics constraints without

introducing new global flavor symmetries, it is necessary to require first excited

state masses of at least MKK ∼ 20 TeV [59–61], generating a large gap between

the first massive state and the electroweak scale. Additionally, we show that

the solution we called case B in Sec. 3.3 is in agreement with the electroweak

precision tests without the extension of the electroweak gauge sector to provide

custodial protection, which is necessary in AdS5 models [115]. The bound on

the mass of the color-octet gauge excitation for the solution case B is MG > 3

TeV, which passes all flavor and electroweak precision constraints [64].

• Resonances from Quiver Theories: We also explored the phenomenology

of quiver theories with different number of sites. In Sec. 3.4 we derived bounds

from the LHC data on the color-octet and color-singlet excited gauge bosons

from their decays to dijet, b-quarks and top pairs [68].
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• N-Relaxion: Inspired by the quiver theories framework, we constructed a

2N-site model capable of addressing two challenging points of the relaxion

scenarios: the requirement for large field excursions, and a linear term that

explicit breaks the axion shift symmetry. Our model generates a potential

composed of many oscillatory terms with very different periods (see Eq. 4.9),

where the term with the larger period plays the role of the linear term in

Eq. 4.1. From N fields acquiring expectation values of order f , an effective

scale f1 = CNf/qN−1 � f is generated and the pNGBs have a compact field

space of 2πf1, which allows for large field excursions. In the viable region of

parameter space, we find that the cutoff of the model can be pushed up to

Λ ≈ 4πf ∼ 109 GeV.

We mention next some possible directions. Although the potential of the N-site

model (Eq. 4.9) has shallow minima that do not affect the slow roll of the relaxion,

adding the Higgs requires the introduction of a new term that generates large barriers

for 〈H〉 6= 0. The extra breaking is proportional to a new spurion ε and ultimately

controls the magnitude of the Higgs vev via Eq. 4.18. This operator may also spoil

the relaxation mechanism via higher order corrections, but we expect these can be

amended by adopting the double scanner scenario of Ref. [77]. As mentioned in

Sec.4.3, this is a non-trivial issue that should be addressed in a complete model,

and it would be interesting to search for a model building that can overcome this

difficulty.

Furthermore, the breaking term of Eq. 4.15 is not unique, and it may be possible

to avoid introducing it by considering different terms in Eq. 4.3 that automatically

generate the large barriers needed to stop the rolling of the relaxion. Alternatively,

one might be able to achieve the same result through changing the parametrization

of the gj couplings in the Lagrangian in order to mimic a metric that is slightly

deformed from AdS5.

A natural next step is to investigate the continuum limit of this 2N-site model

or even change the approach by considering a model directly in the warped extra

dimension, which is a promising direction to achieve an UV completion that is

compatible with the weak gravity conjecture [148]. In addiction, the framework

established here may find application in model building of the inflation sector, which
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also requires large field excursions. Finally, it is interesting to search for viable

inflation models compatible with the relaxion proposal (see e.g. [149])

To sum up, here we explored different model building frameworks such as di-

mensional deconstruction, composite Higgs models, and warped extra dimension

scenarios. We have combined and extended these techniques to develop theories

that can generate a large hierarchy of scales. Surprisingly, by going from particle

physics to cosmology (and back), we were able to apply these tools to propose an

UV completion model that can solve some of the problems faced by the recently

proposed cosmological relaxation mechanism of the electroweak scale.

To conclude with a personal note, we want to mention that given the high ex-

pectations regarding the next discovery in the field, the particle physics community

is currently experiencing an intricate moment: from one side, the area is extremely

successful, whose recent peak of excitement may be attributed to the discovery of a

boson compatible with the Standard Model Higgs at the LHC in 2012. On the other

hand, there is an inevitable, perhaps premature, disappointment since there is no

definitive evidence of new physics at the LHC current data. This scenario should not

be discouraging; instead, this is an opportune moment to focus on real challenges in

fundamental physics and be inspired by many apparently end-of-road’s in the past

that turned out to be amazing changes of paradigm. We hope that the interchange

with other areas may bring us some of the mechanisms necessary to better explore

the open questions in the field.
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