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Resumo

Neste trabalho nós exploramos o comportamento à baixas temperaturas dos compostos
metalorgânicos NiCl2-4SC(NH2)2 (DTN), MnCl2-4SC(NH2)2 (DTM), FeCl2-4SC(NH2)2
(DTF) e da versão dopada com Br do DTN, Ni(Cl1−xBrx)2-4SC(NH2)2, através de
medidas de magnetização, suscetibilidade magnética e calor específico. Para o DTN,
nós estudamos a existência de um comportamento quase-1D subsequente a uma fase
3D ordenada e comparamos nossos resultados com simulações através do método de
Monte-Carlo Quântico (QMC). Nós delimitamos a região correspondente ao comportamento
quase-1D logo acima da porção do diagrama de fase correspondente à condensação de
Bose-Einstein (CBE) de mágnons, detectando assim a reminiscência de um regime de
líquido de Tomonaga-Luttinger, relacionado a cadeias magnéticas de DTN fracamente
interagentes. Além disso nós extendemos nossos estudos para temperaturas mais altas,
onde as correlações entre os spins se tornam desprezíveis. Isso nos permitiu verificar
algumas discrepâncias no valor do parâmetro D da anisotropia de íon único. Em relação
ao composto DTM, nossas medidas de calor específico mostraram a existência de duas
transições de fase antiferromagnéticas para temperaturas tão baixas quanto 60 mK e
campos magnéticos de até 1.4 T e nós discutimos hipóteses para tal fenômeno. Para o
DTF, nossos resultados não mostram a existência de um ordenamento magético para
temperaturas tão baixas quanto 100 mK, o que faz desse composto um canditado para
frustração magnética. Nós também sintetizamos amostras de DTN dopadas com Br com
diferentes concentrações de dopante e realizamos medidas de suscetibilidade magnética,
construindo o diagrama de fase em função da temperatura e campos magnéticos críticos
com a porcentagem do dopante Br nas amostras. A partir desses resultados nós estudamos
a influência da concentração de Br nas amostras. Finalmente nós apresentamos resultados
preliminares acerca da influência da pressão em medidas magnéticas no DTN. A partir dos
nossos resultados experimentais, combinados com teoria de campo médio, nós estimamos a
pressão crítica pc necessária para fechar o gap de energia e, consequentemente, promover
uma transição de fase induzida por pressão.

Palavras-Chave: Condensação de Bose-Einstein, DTN, antiferromagnetismo.





Abstract

In this work we explored the low temperature physics of the metal-organic compounds
NiCl2-4SC(NH2)2 (DTN), MnCl2-4SC(NH2)2 (DTM), FeCl2-4SC(NH2)2 (DTF) and the
Br-doped version of DTN, Ni(Cl1−xBrx)2-4SC(NH2)2, through magnetization, magnetic
susceptibility and specific heat measurements. For DTN we studied the crossover from
the quasi-1D behaviour to the 3D ordered phase and compared our experimental results
with Quantum Monte-Carlo (QMC) calculations. We delimited the region correspondent
to the quasi-1D behaviour right above the portion of the phase diagram correspondent
to the Bose-Einstein condensation (BEC) of magnons, detecting the reminiscence of a
Tomonaga-Luttinger-liquid (TLL) regime related to the weakly coupled 1D magnetic
chains in DTN. Also, we extended our studies to higher temperatures, where the spin
correlations become negligible. This allowed us to verify some discrepancies in the
value of the single-ion anisotropy parameter D. Regarding the DTM compound, our
specific heat measurements showed the existence of two antiferromagnetic transitions for
temperatures down to 60 mK and fields up to 1.4 T and we discuss some hypothesis for such
phenomena. For DTF, our results show no magnetic ordering down to 100 mK, making
this compound a candidate for frustrated magnetism. We also synthesized Br-doped DTN
samples with different concentrations of bromine ion dopant and performed magnetic
susceptibility measurements, constructing the phase diagram as a function of the critical
temperature, critical magnetic field and the Br content in the samples. From these results
we studied the influence of the amount of Br doping in the system. Finally, we present
our preliminary results regarding the influence of pressure in magnetic measurements
of DTN. From our experimental results combined with mean-field theory we estimate
the critical pressure pc to close the energy gap and so promote a pressure-induced transition.

Keywords: Bose-Einstein Condensation, DTN, antiferromagnetism.
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Chapter 1

Introduction

The existence of magnetic properties in matter is known, at least, since the origin of
the first civilizations and the invention of writing. Chinese, Greek and Indian ancient
civilizations knew and used the properties of loadstone for many prouposes, from the
invention of compass in China to the removal of pieces of spears from injured soldiers
as mentioned in ancient treaties of medicine in India [1]. Studies of magnetism and the
magnetic properties of matter has been carried on across the centuries and more intensively
since the 19th century, when the foundations of the electromagnetism were established.
Later, in 20th century, from the advent of the statistical mechanics and the newborn
quantum mechanics, microscopic theories were formulated and since then substantial efforts
on theoretical and experimental investigations has been made to unveil the many properties
of matter, specially the magnetism.

Currently we have the knowledge of several types of magnetic ordering. Since there are
many, describing each one of them can be a difficult task. Here we are interested in discuss
a specific type of magnetic ordering known as antiferromagnetism.

The idea of antiferromagnets was first proposed by L. M. Néel in 1948 [2], where he
idealized that such behaviour consists in a collection of magnetic dipoles, each one located
in a site of a crystal lattice, being the orientation of such dipoles opposite regarding their
first neighbours. In absence of an external magnetic field, the total magnetization of this
system is zero. Such ordering exists below a certain temperature, known as Néel temperature.
Above such temperature the system is a paramagnet.

The first experimental evidence of antiferromagnetic ordering came few years later,
in 1951, by C. G. Shull, W. A. Strauser, and E. O. Wollan in neutron scattering and
neutron diffraction measurements on different substances [3]. In fact these techniques are
the "smoking gun" to determine the magnetic ordering in materials. They also serve to
study the different types of collective excitations present in solids. Sound examples of such
excitations are the quantized lattice vibrations, known as phonons and the quantized spin
waves in magnets, the so-called magnons.

Magnons were first idealized by F. Bloch in 1930 in order to explain the spontaneous
magnetization in ferromagnets [4]. Later, in 1957, B. N. Brockhouse achieved the first
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CHAPTER 1. INTRODUCTION

experimental evidences of magnons from inelastic neutron scattering [5].
It is a known fact that magnons are collective excitations with a integer spin, which

means that they are bosons and consequently obey the Bose-Einstein statistics. In 1956 T.
Matsubara and H. Matsuda were interested in studying the properties of liquid helium at
zero temperature. Describing it by a lattice model, the authors introduced a transformation
in which they mapped a weakly interacting Bose gas into spins in a lattice. In this sense,
they showed the correspondence between a weakly interacting Bose gas with some magnets,
where the bosons in this case are nothing but magnons [6].

Since then, this correspondence started to be explored and the possibility for the
occurrence of the so-called Bose-Einstein condensation of magnons was predicted in later
studies [7–10].

Bose-Einstein condensation (BEC) occurs when a system of bosons is sufficiently cooled
down to promote a macroscopic occupation of a single quantum state. The first hint related
to the occurence of a BEC came from studies of the helium superfluid phase. In fact the
Bose-Einstein statistics makes quantitative predictions of the superfluid helium, such as
the lambda shape of specific heat curve and the existence of quantized vortices. However,
theoretical predictions state that at zero temperature the condensed fraction in helium
is not larger than 10%. Also, neutron scattering experiments are elusive to determine
such macroscopic occupation of helium atoms in the lowest energy state [11]. The strong
interactions among atoms in helium prevent the macroscopic occupation of a single quantum
state. Thus, such occupation can be achieved in a diluted system at low temperatures, as
performed by the groups of E. Cornell and C. Weiman in JILA using a dilute gas of 87Rb
and W. Ketterle in MIT from a 23Na dilute gas, both in 1995 [12,13].

The occurence of BEC has been also studied in other diluted gases [11, 14] as well
as in other contexts, including the condensation of excitons-polaritons in semiconductor
cavities [15] and BEC of magnons in ferromagnetic [16] and field-induced antiferromagnetic
materials [17].

The first interpretation of an experimental data as being a BEC of magnons is
dated to 1999 [18, 33], when the authors studied the spin-gapped magnetic compound
TlCuCl3 and related the observation of field-induced Néel ordering as a BEC of magnons.
After this, BEC of magnons were observed in other quantum magnets, like BaCuSi2O6,
KCuCl3, (C4H12N2)Cu2Cl6 (PHCC), (C7H10N)2CuBr4 (DIMPY), Ni(C9H24N4)(NO2)ClO4

(NTENP), NiCl2-4SC(NH2)2 (DTN) and many others [17].
Not only BEC, but also other leading edge topics on the so-called emergent phenomena

has been studied in some of these compounds, which may bring some enlightenment on the
understanding of current open problems in condensed matter physics.

A first example of such problems are systems of interacting fermions that cannot be
described by the Fermi liquid theory and are often called strange metals [19]. One example
of Fermi system that is not described by the Fermi liquid theory are interacting fermions
in 1D. In this system, the so-called Tomonaga-Luttinger Liquid (TLL) regime has been
studied in different contexts, including field-induced antiferromagnets such as NTENP [20]

2



CHAPTER 1. INTRODUCTION

and DIMPY [21], where the TLL regime is observed for temperatures right above those for
the BEC of magnons in these compounds.

Another example is the geometrical frustration in magnetic systems, where competing
interactions among atoms lead to non-trivial spins orientations. This may leads not only
to exotic regimes like spin glasses, spin ices and spin liquids but also to exotic topological
phases such as skyrmions and analogues to magnetic monopoles [22,23].

We can also mention the effects of disorder in quantum magnets that exhibit BEC of
magnons. Such systems provide an alternative route to explore disorder in bosonic systems
and quantum phase transitions like the BEC-to-Bose Glass (BG) transition where, driven
by an external parameter such the external magnetic field, the bosons in the BEC phase
became confined in localized regions, forming superfluid clusters of different sizes, which
characterizes the BG phase. This transition is analogous to the Anderson localization in
fermionic systems [17]. In quantum magnets, the BEC-to-BG transiton has been studied in
some compounds by bromine doping, as in the case of DTN [24,25] and in the IPA-CuCl3,
where some Cl atoms are replaced by Br atoms [26–28, 38], and in the case of TlCuCl3
where some Tl atoms are replaced by K atoms [29–32].

Finally some studies have been focused in exploring the effects of pressure in the phase
diagram of field-induced antiferromagnets. In this case, instead of a phase transition
driven by the application of external magnetic fields, phase transitions are achieved by
applying pressure in these compounds. Some examples of systems in which pressure-induced
phase transitions are achieved are the TlCuCl3 [33–37], IPA-CuCl3 [38], PHCC [39] and
CsFeCl3 [40]. The possibility of studying the effects of pressure in strongly correlated
systems have been unveiling new horizons on the understanding of such systems, which
calls attention of scientific community and stimulates new efforts for studying pressure in
condensed matter systems.

In our group, studies are focused on the properties of the DTN compound. From
all known quantum magnets which exhibit BEC of magnons, DTN manifest its phase in
relatively low magnetic fields (Hc1=2.1 T and Hc2=12.6 T) and high temperatures (up to
Tc=1.2 K) comparing to other materials [17]. Also, one of the advantages of the DTN is
the easy preparation of the samples, as described in the next chapters.

In this thesis we present our results regarding the studies of the DTN and related
compounds on some of these aforementioned emergent phenomena. We identified the
existence of a quasi-1D TLL-like regime in DTN, the existence of two phase transitions in
the related compounds MnCl2-4SC(NH2)2 (DTM) and the possibility of magnetic frustration
in the compound FeCl2-4SC(NH2)2 (DTF), the influence of disorder in the DTN phase
diagram, where the disorder is induced by chemical dopping of Br ions in the DTN and also
we made some attempting studying the influence of pressure on the magnetic measurements
of DTN.
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CHAPTER 1. INTRODUCTION

1.1 About this thesis

This thesis is divided as follow. In Chapter 2 we give an overview of the physics involved
in the compounds studied. We start presenting some considerations about magnetic ordering
and exchange interactions, Zeeman effect and zero-field splitting, which are the ingredients
to describe our magnetic systems. Then, we discuss the magnetic behaviour of DTN
compound and the mapping from a spin hamiltonian to the weakly interacting Bose gas
hamiltonian, which motivates the studies of Bose-Einstein condensation of magnons in
quantum magnets. Later, some considerations about the specific heat are presented. Finally
we outline the Quantum Monte-Carlo (QMC) method of Stochastic Series Expansion, used
to compare the theoretical description of the compounds with our experimental results.

The Chapter 3 is devoted to describe the preparation and X-ray characterization of the
samples used in this work by diffractometry and fluorescence techniques.

Following, in the chapter 4 we give a description of the measurements instruments for
magnetization, magnetic susceptibility and specific heat used in this work.

The first results of this work are presented in Chapter 5 where, from magnetic and
specific heat measurements and QMC calculations, we investigate the existence of a quasi-
1D regime in DTN and we point out the difference of values for the single-ion anisotropy
parameter D reported in the literature and our findings, which have a good agreement with
some of the reported values.

In Chapter 6 we report our results, also from magnetic and specific heat measurements,
of the DTM and DTF compounds, where we found the existence of antiferromagnetic
orderings in the DTM compound, highlighted by the existence of a double peak in the
specific heat curve. For the DTF compound we discuss the possible influence of magnetic
frustration.

The final results of this work, concerning the magnetic susceptibility measurements of
Br-doped DTN samples with different concentrations of bromine dopant are presented in
Chapter 7.

In Chapter 8 we discuss our efforts in studying the effects of pressure in DTN magnetic
properties and present an estimate value for the critical pressure pc necessary to close the
energy gap and promote a pressure-induced transition.

The conclusions of this work and the perspectives of future works involving the
compounds studied in this thesis are given in Chapter 9.
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Chapter 2

Theoretical background

In this chapter we introduce the theoretical background necessary to understand the
systems studied in this work. First we discuss the exchange interactions, Zeeman splitting
and zero-field splitting, which are necessary in the description of our systems. Then, we
present some general remarks on the magnetic properties of DTN, the XXZ model, the
correspondence of the XXZ model with a diluted bose gas and then the Bose-Einstein
condensation of magnons in some magnetic system, specially in DTN. Finally we discuss
the contributions to the specific heat in our systems and give a brief overview regarding the
Quantum Monte-Carlo method of Stochastic Series Expansion used to corroborate some of
our experimental results.

2.1 Exchange interactions

It is known that a single atom displays magnetic behaviour. Every atom presents a weak
diamagnetic response and, if such atom has unpaired electrons, a paramagnetic behaviour
is also present.

Nevertheless, in general, we study systems with large number of atoms (1023, as a
typical example). These atoms interact each other in many ways and in what concerns the
magnetic behaviour of the whole system, these interactions can lead to a vast number of
different types of magnetic behaviours beyond the diamagnetism and paramagnetism of a
single atom.

Classifying and describe every single type of magnetic behaviour is very difficult since
the source of such behaviour are distinct and depends on many conditions such as the
constitution of the material, its purity, the temperature, external pressure and magnetic
field and so on.

For our purposes we will restrict ourselves to a simple example from which we can take,
in part, the necessary understanding of the magnetic behavior in our systems as well as
in many others. Like other examples in physics we start studying a two-body problem
due to its simplicity and theoretical treatability but that can be, at least, qualitatively
generalized. The following discussion can be found in many textbooks. Our discussion is
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based on reference [41].

So let us consider a hydrogen molecule described by the following hamiltonian:

Ĥ = ĥ1 + ĥ2 + V̂1,2, (2.1)

where

ĥi = − h̄2

2m
∇2
i −

Ze2

4πε0ri
, (2.2)

is the hamiltonian for a single hydrogen atom and

V̂1,2 =
e2

4πε0|~r1 − ~r2|
, (2.3)

is the two-body Coulomb repulsion term.

Now we write the basis states of this system in terms of the one-body states. Since the
electrons are fermions we need to obey the Pauli exclusion principle and write the basis
states as antisymmetric combinations of the one-body states. This can be represented by
the so-called Slater determinant

|Ψσσ′(1, 2)〉 =
1√
2

∣∣∣∣∣|ψaσ(1)〉 |ψaσ′(2)〉
|ψbσ(1)〉 |ψbσ′(2)〉

∣∣∣∣∣ , (2.4)

where |ψpσ(n)〉 is the one-body state for a particle p in a state n and spin σ =↑ or ↓.
So, we have the basis states for this system given by

|Ψ↑↑(1, 2)〉 =
1√
2

[|ψa↑(1)〉|ψb↑(2)〉 − |ψa↑(2)〉|ψb↑(1)〉] (2.5a)

|Ψ↑↓(1, 2)〉 =
1√
2

[|ψa↑(1)〉|ψb↓(2)〉 − |ψa↑(2)〉|ψb↓(1)〉] (2.5b)

|Ψ↓↑(1, 2)〉 =
1√
2

[|ψa↓(1)〉|ψb↑(2)〉 − |ψa↓(2)〉|ψb↑(1)〉] (2.5c)

|Ψ↓↓(1, 2)〉 =
1√
2

[|ψa↓(1)〉|ψb↓(2)〉 − |ψa↓(2)〉|ψb↓(1)〉] . (2.5d)

When we evaluate the elements of the hamiltonian (2.1), if σ = σ′, we have

〈Ψσσ′(1, 2)|ĥi|Ψσσ′(1, 2)〉 = Ei, (2.6)

where Ei are the eigenenergies for the hydrogen atom. We also have two different terms
when we evaluate 〈Ψσσ′(1, 2)|V̂1,2|Ψσσ′(1, 2)〉. The first term, is the Coulomb term

C =
e2

4πε0

∫ ∫
|ψa(r1)|2|ψb(r2)|2

|r1 − r2|
dr1dr2, (2.7)

and the second is the so called exchange integral

6
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J = − e2

4πε0

∫ ∫
ψ∗a(r1)ψb(r1)ψa(r2)ψ∗b (r2)

|r1 − r2|
dr1dr2, (2.8)

which we can interpret as how much the two wavefunctions overlap.

We can write the hamiltonian (2.1) in a matrix form as

Ĥ = (Ea + Eb)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+


C + J 0 0 0

0 C J 0

0 J C 0

0 0 0 C + J

 . (2.9)

From the results presented in Appendix A, the above hamiltonian can be written as

Ĥ =

(
Ea + Eb + C +

J

2

)
+ 2JS1S2. (2.10)

As we can see from (2.8) the sign of J depends on the product of wavefunctions and
their symmetries. When J is negative, a parallel alignment of the spins is favoured and it
is known as a ferromagnetic interaction. In the case of J positive, the spins are found in an
antiparallel alignment, what is called a antiferromagnetic interaction.

All this discussion was made considering a two atom system. Now let us generalize
this result for a many body system with pair interactions. Omitting the constants and
conveniently rescaling the exchange term we can finally write the hamiltonian of the
Heisenberg model

Ĥ =
∑
ij

JijSiSj . (2.11)

From this model a large number of magnetic orderings are described. Some overview of
these possibilities can be found in reference [42].

2.1.1 Superexchange interactions

In some solids, the atoms are far apart enough to make the exchange interactions between
them very small. Also small exchange interactions are found when the wavefunctions are
fairly localized. In these examples, any collective magnetic behaviour of the system is
expected to be suppressed and noticeable only in a such low temperature range that may
be not accessible experimentally.

Nevertheless there are situations as those listed in which a reasonable exchange between
the atoms is found and so a collective magnetic behaviour of the system is observable. In
such situations the interaction between two magnetic ions are mediated by non-magnetic
ligand located between them [43].

As an example we can mention the interaction between two Ni2+ ions mediated by a Cl
ligand. In this case an electron from the pz orbital of Cl ligand exchanges with the half-filled
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d2
z orbital of Ni2+ ion [44]. This mechanism result in an indirect exchange between the Ni

ions and it is known as a superexchange interaction.

2.2 The Zeeman term

When an atom experiences an external magnetic field it is observed that such field
breaks the degeneracy of the energy levels and promotes its splitting. This phenomena is
known as Zeeman effect [45].

Let us consider an external magnetic field H applied parallel to the z axis of our
coordinate system. In this situation, a system described by the hamiltonian (2.11) will
have an additional term given by

Hzeeman = −gµB
∑
r
Szr , (2.12)

where g is the gyromagnetic factor and µB is the Bohr magneton.

2.3 Zero-field splitting

In an atom with two or more unpaired electrons, which results in a ground state spin
multiplicity larger than 2, the interactions among the electrons promotes the splitting
of degenerate energy levels even in the absence of an external magnetic field [46]. This
phenomena is known as Zero-Field Splitting (ZFS) and it causes a single-ion anisotropy [44].

There are two main sources for the ZFS. The first one is the dipole-dipole interaction,
which is the most important contribution to the ZFS. The second one is the spin-orbit
coupling [47]. In this work we are interested in discuss the ZFS due to the dipole-dipole
interactions.

To present an overview about the derivation of the ZFS hamiltonian let us start from
the hamiltonian for the dipole-dipole interaction

HDD = g2µ2
B

[
s1 · s2

r3
− 3

(s1 · r)(s2 · r)
r5

]
. (2.13)

Regarding the spin operators for two 1/2-spin particles introduced in Appendix A we
have Si = s1i + s2i and 2s1is2i = S2

i − 1
2 with i = x, y, z. Developing equation (2.13) and

using such relations, we have [48]

HDD =
1

2
g2µ2

B

[
r2 − 3x2

r5
S2
x +

r2 − 3y2

r5
S2
y +

r2 − 3z2

r5
S2
z−

−3xy

r5
(SxSy + SySx)− 3yz

r5
(SySz + SzSy)−

3zx

r5
(SzSx + SxSz)

]
. (2.14)

For convenience let us write the above expression as H = SDS, where D is a tensor
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whose the elements are

Dij =
1

2
g2µ2

B

〈
ψT

∣∣∣∣r2δij − 3ij

r5

∣∣∣∣ψT〉 , (2.15)

where |ψT 〉 are triplet wavefunctions.

Choosing a proper basis, the hamiltonian H = SDS can be written in a diagonal form
as

HZFS = DxxS2
x +DyyS2

y +DzzS2
z. (2.16)

After some algebraic manipulations in equation (2.16) we end up with our final form
for the ZFS hamiltonian

HZFS = D

[
S2
z −

1

3
S(S + 1)

]
+ E

(
S2
x − S2

y

)
, (2.17)

where
D =

3

2
Dzz and E =

1

2
(Dxx −Dyy). (2.18)

2.4 Magnetic properties of DTN

Most of this work is devoted to study some features of the compound NiCl2-4SC(NH2)2,
named dichloro-tetrakis-thiourea-nickel, or simply DTN. It has a body-centred structure in
tetragonal symmetry. The chlorine atoms are arranged along the c-axis and are responsible
for the superexchange interactions Jc among the Ni2+ ions, while in the ab-plane the Ni2+

ions display an exchange interaction Jab
In figure 2.1 we present a simplified version of the DTN structure.

Figure 2.1: Simplified version of the DTN structure (omitting S,C,N and H) atoms denoting
the exchange interactions Jab and Jc between the Ni2+ ions.
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As discussed in the previous sections, the exchange interactions are responsible for the
magnetic ordering displayed in the system. Also, the magnetic ordering is subject to other
factors, such the single-ion anisotropy from the zero-field splitting and the Zeeman effect in
the case that the system is under external magnetic fields.

To describe the magnetic properties of DTN, we take into account all these
aforementioned terms. In this sense, this S = 1 system is described by the follow hamiltonian

H = Jab
∑
r,ab

~Sr~Sr+eab + Jc
∑
r,c

~Sr~Sr+ec +D
∑
r

(Szr )2 − gµBH
∑
r
Szr , (2.19)

with Jab/kB = 0.18 K, Jc/kB = 2.2 K, D/kB = 8.9 K, and g = 2.2, estimate in
thermodynamic [50], neutron scattering [54] and electron spin resonance measurements [51].

Although DTN is an antiferromagnetic system, the antiferromagnetic ordering in DTN
does not manifests itself at H = 0 T just by decreasing the temperature. The first studies
on the magnetic properties of DTN in 1981 by A. Paduan-Filho et al [49] showed that it
is a field-induced antiferromagnetic compound, in which the antiferrromagnetic ordering
exists after the application of an external magnetic field H greater than 2 T applied parallel
to the c-axis. After, it was shown that for fields greater than H = 12.6 T, the system
becomes spin polarized [50]. In figure 2.2 we present the DTN phase diagram obtained from
magnetocaloric and magnetization measurements as well as from Quantum Monte-Carlo
(QMC) calculations [51].

Figure 2.2: Phase diagram of DTN determined from magnetocaloric measurements (open
squares) and magnetization measurements (open blue circles) with the external magnetic
field applied along the c-axis of the samples. Full red squares and circles are results from
QMC calculations. The abbreviation GP stands for the gapped phase, while XY-AFM
is the antiferromagnetic phase in the XY plane and SP is the spin polarized phase. This
figure was adapted from reference [51].
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Elastic neutron scattering (ENS) measurements confirmed the antiferromagnetic ordering
in DTN and showed that such ordering happens with the antiparallel alignment of the
magnetic moments in the ab-plane [52]. Figure 2.3 illustrates the magnetic ordering of
DTN for different values of the external magnetic field applied along the c-axis.

Figure 2.3: Magnetic ordering in DTN for different values of external magnetic field. For
H < Hc1 applied parallel to c-axis (figure a) the system is in the gapped (non-magnetic)
phase and so no magnetic ordering is expected. As the field increases, for Hc1 < H < Hc2

the gap closes and the system presents a field-induced antiferromagnetic ordering in the
ab-plane (red arrows). When the external field is H > Hc2 the spins are polarized along
the c-axis.

Another important feature of DTN is that, although its structure consists in two
interpenetrating sublattices, as shown in figure 2.4, no indicative of magnetic frustration
was found within the experimental error [53, 54].

Figure 2.4: Illustration of the DTN body-centered tetragonal structure with two sublattices.
Dashed lines represents frustrate couplings that, for DTN are very small. This figure was
adapted from reference [53].

The field-induced antiferromagnetic phase in DTN is due to the high single-ion anisotropy
which originates a gap between the non-magnetic ground state Sz = 0 and the first excited
(magnetic) state Sz = ±1. When such gap closes due to the application of an external
magnetic field, there is the overlap between these two states and then the antiferromagnetic
ordering takes place. In figure 2.5 we present a schematic representation for the energy
levels of Ni2+ ion and DTN.

For a linear Heisenberg antiferromagnetic chain with integer spin, as in the case of
DTN, F. D. M. Haldane [55, 56] conjectured that must exist an energy gap between a
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non-magnetic ground state and lowest-lying excited magnetic state. The size of this gap,
known as Haldane gap depends on the single-ion anisotropy parameter D. Increasing D,
the size of the gap reduces up to a critical value Dc ' J , when the gaps closes. However for
D > 2J the gap reopens due to the doubly-degenerate excitonic modes and, in this case, it
is known as large-D gap [57–59].

Figure 2.5: Schematic representation for the energy levels of a Ni2+ ion (left panel) and the
DTN energy levels (right panel). Due to the Ni2+ single-ion anisotropy a gap ∆ between
the Sz = 0 ground state and the excited level Sz = ±1 is present. The application of an
external magnetic field H is responsible for the splitting of the excited level, due to the
Zeeman effect, and the level crossing at a field Hc. In the case of DTN, the existence of
exchange couplings promotes a broad dispersion for the excited level [60].

An expression for the energy gap is obtained from a bosonic representation of spin
operators from the DTN hamiltonian (2.19). Using the diagram technique and treating the
exchange couplings as perturbations, A. V. Sizanov and A. V. Syromyatnikov obtained an
approximation to the dispersion relation for DTN at H=0 T [61,62]

ω(k) = D + 2
∑
ν

Jν cos kν +
1

D

3
∑
ν

J2
ν − 2

(∑
ν

cos kν

)2
+

+
1

D2

2
∑
ν

J3
ν + 4

(∑
ν

cos kν

)3

+
5

2

∑
ν

J3
ν cos kν − 7

(∑
µ

J2
µ

)(∑
ν

Jν cos kν

)
−

−2

(∑
µ

Jµ cos kµ

)(∑
ν

J2
ν cos kν

)]
, (2.20)

with ν = a, b, c.
Even for external fields close to the critical field Hc1 equation (2.20) is a good

approximation. Since the smallest value of ω(k) is obtained for k = (π, π, π), the expression
for the energy gap is given by

gµBHc1 = ∆ = ω[k = (π, π, π)], (2.21)
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where, neglecting O(1/D) contributions,

∆ = D − 2Jc − 4Jab. (2.22)

For higher fields the antiferromagnetic phase is suppressed and a spin polarized phases
arises. In this case is also possible to write an expression for the dispersion relation of
equation (2.19). From such expression we have

ε(k) = gµBH −D − 2

(∑
ν

Jν

)
+ 2

(∑
ν

Jν cos kν

)
, (2.23)

and a second critical field Hc2 which marks the transition from the antiferromagnetic phase
to the spin polarized phase is given by [62]

gµBH2 = D + 4

(∑
ν

Jν

)
. (2.24)

2.5 XXZ model and BEC of magnons

Some spin hamiltonians, as in case of DTN, can be mapped into other models such
as the weakly-interacting bose gas or the Hubbard model hamiltonians. Through these
mappings we can interpret some magnetic phases or short-range regimes as quantum critical
phenomena, like the Bose-Einstein condensation, or the Luttinger liquid regime of the
quantized magnetic excitations known as magnons.

The simplest example of a hamiltonian that allow us to construct such mappings is
the so called spin-1/2 XXZ hamiltonian. In this section we introduce such hamiltonian,
starting from the one-dimensional case and afterwards describing the three-dimensional
case, as well as the mappings that allow us to represent such systems in terms of fermionic
and bosonic systems.

2.5.1 XXZ model in one dimension

In one-dimension, the spin-1/2 XXZ hamiltonian is given by

H1D
xxz = J

∑
j

[
Sxj S

x
j+1 + Syj S

y
j+1 + δSzjS

z
j+1

]
− gµBH

∑
j

Szj . (2.25)

Defining the ladder spin operators

S±j = Sxj ± iS
y
j , (2.26)

and applying such operators in the XXZ hamiltonian leads to

H1D
xxz = J

∑
j

[
1

2

(
S+
j S
−
j+1 + S−j S

+
j+1

)
+ δSzjS

z
j+1

]
− gµBH

∑
j

Szj . (2.27)
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This last form of the XXZ hamiltonian can be mapped into a spinless Hubbard model
hamiltonian using the so called Jordan-Wigner transformation [63] were spin-1/2 operators
are mapped into fermionic spinless operators via a non-local transformation defined by

S+
j = c†je

−iπ
∑
k<j c

†
kck , S−j = cje

iπ
∑
k<j c

†
kck , Szj = c†jcj −

1

2
. (2.28)

Applying these transformations in the 1D-XXZ hamiltonian (2.27) we obtain a spinless
Hubbard model, given by

H =
J

2

∑
j

(
c†jcj+1 + c†j+1cj

)
+ δJ

∑
j

(
c†jcj −

1

2

)(
c†j+1cj+1 −

1

2

)
− µ

∑
j

c†jcj . (2.29)

For δ = 0 this model is reduced to the tight-binding model, easily diagonalized in the
momentum space with cj = (N)−

1
2
∑

q cqe
ijq [66]. Here we define µ = gµBH which suggest

that the external magnetic field applied in the z direction is related to the chemical potential
of this fermionic system. This will be discussed in more detail in the next section.

2.5.2 XXZ model in three dimensions

In the three-dimensional case, the XXZ hamiltonian written in terms of the ladder
operators is given by

H3D
xxz = J

∑
r,r′

[
1

2

(
S+

r S
−
r′ + S−r S

+
r′
)

+ δSzr S
z
r′

]
− gµBH

∑
r
Szr . (2.30)

Although a three-dimensional form of the Jordan-Wigner transformation can be applied
to the hamiltonian in (2.30, for our purposes we want to introduce another transformation
which maps spins operators into bosonic ones. This transformation is defined as

S+
r = b†r, S−r = br, Szr = b†rbr −

1

2
, (2.31)

was introduced by T. Matsubara and H. Matsuda in 1956, where the authors mapped
a lattice model for a bose gas into the 3D-XXZ hamiltonian [64]. We note from the
definition of this local transformation that it has a much simpler form if we compare to the
Jordan-Wigner transformation.

Another transformation that maps spin operators into bosonic operators is the well
known Holstein-Primakoff transformation [65]. However, in some applications for practical
purposes, a truncated form of the Holstein-Primakoff transformation is used, which leads
exactly to the Matsubara-Matsuda transformation.

Using the Matsubara-Matsuda transformation in the 3D-XXZ hamiltonian (2.30) we get

H =
J

2

∑
r,r′

(
b†r br′ + b†r′br

)
+ δJ

∑
r,r′

(
b†rbr −

1

2

)(
b†r′br′ −

1

2

)
− µ

∑
r
b†rbr, (2.32)
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where, again, µ = gµBH.

If we represent the bosonic operators br in the momentum space as

b†k =
1√
L

∑
r
eirkb†r, (2.33)

and use this representation in the hamiltonian (2.32) we finally obtain the Bose gas
hamiltonian in the momentum space

H =
∑
k

(ωk − µ) b†kbk +
1

2L

∑
k,k′,q

Vqb
†
k+qb

†
k′-qbkbk′ , (2.34)

where

ωk = J
∑
r

(1 + cos kr) and Vq = U + 2δJ
∑
r

cos qr. (2.35)

In (2.35) we introduce the term U which represents a hard-core potential. The need
of such potential is justified by the nature of the Matsubara-Matsuda transformation and
their commutation relations. Remembering that spins-1/2 operators obey the commutation
relations [

S+
i , S

+
j

]
=
[
S−i , S

−
j

]
=
[
S+
i , S

−
j

]
= 0,

[
S+
i , S

+
i

]
=
[
S−i , S

−
i

]
= 0,[

S+
i , S

−
i

]
= 2Szi , (2.36)

while for bosons the commutation relations are given by[
bi , b

†
j

]
= bib

†
j − b

†
jbi = δij ,

[
bi , bj

]
=
[
b†i , b

†
j

]
= 0, (2.37)

and for fermions we have the anticommutation relations{
ci , c

†
j

}
≡ cic

†
j + c†jci = δij ,

{
ci , cj

}
=
{
c†i , c

†
j

}
= 0 →

(
c†i

)2
=
(
ci

)2
= 0. (2.38)

Let us evaluate the commutation relations for the bosons from Matsubara-Matsuda
transformation. From (2.31) and (2.36) we have that for bosons in different sites[

bi , b
†
j

]
=
[
bi , bj

]
=
[
b†i , b

†
j

]
= 0 (i 6= j), (2.39)

while for bosons in the same site{
bi , b

†
i

}
= 1,

{
bi , bj

}
=
{
b†i , b

†
j

}
= 0 →

(
b†i

)2
=
(
bi

)2
= 0 (i = j). (2.40)

Clearly, for bosons in different sites the commutation relations obtained from the
Matsubara-Matsuda transformation are the usual commutation relations for bosons.
However, the on-site commutation relations resembles the ones for fermions. The way to
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interpret such apparent contradiction is to assume that the number occupation per site in
this representation is limited to one boson. In this sense, such transformation maps a spin
system into a dilute system of bosons and it is valid only in such condition.

In the Bose gas hamiltonian (2.34) this diluteness requirement is fulfilled if we consider
in the potential term (2.35) a hard core potential like

U =


∞, if two particles are in the same site

U0, if two particles are nearest neighbors

0, otherwise.

(2.41)

2.5.3 BEC of magnons

Since the pioneering work by Matsubara and Matsuda, some speculations about the
possibility for occurrence of BEC of magnons in uniaxial magnetic materials were made
and finally theoretically demonstrate few decades later [7–10].

The first experimental evidence for the BEC of magnons came in 2000 with the work by
T. Nikuni et al [18] for the compound TlCuCl3. After this work, efforts for finding other
materials in which BEC of magnons occurs has been made in many compounds, specially
field-induced antiferromagnets, and the BEC of magnons was identified in some systems.
An overview of BEC in quantum magnets can be found in reference [17].

In figure 2.6 we present the phase diagram of some quantum magnets in which the BEC
phase is observed.

Figure 2.6: Phase diagrams of some quantum magnets in which the BEC phase of magnons
is observed. This figure was adapted from reference [17].

In these compounds the BEC phase of magnons corresponds to the field-induced
antiferromagnetic phase. The evidences to identify such phases are experiments of neutron

16



CHAPTER 2. THEORETICAL BACKGROUND

scattering, which determines the spectrum of excitations, and from measurements of
thermodynamic properties and the determination of the critical exponents. A sound
example, is the critical exponent φ from

Hc(T )−Hc(0) ∼ T φ, (2.42)

where for these compounds is close to φ = 3/2, which corresponds to the value obtained
for an ideal bose gas for the dependence of the chemical potential with the temperature.
From the Matsuba-Matsubara mapping we learn that the chemical potential of a bose
gas is related to the external magnetic field in a magnetic system, which justifies such
correspondence between the critical exponents of both systems.

It is important to mention a few remarks concerning the occurrence of BEC in quantum
magnets. As shown in this section, the mapping between magnetic systems and bose systems
leads to the weakly interacting bose gas hamiltoninan if we consider a spin hamiltonian
which obeys the uniaxial symmetry. A BEC is a system with a U(1) symmetry and a
complex order parameter. In the case of XXZ antiferromagnets, we can introduce the
complex order parameter MAF =

∑
r〈Sxr + iSyr 〉eir.k which is non-zero in the field-induced

antiferromagnetic (BEC) phase.

Another correspondences from both spin system and weakly interacting bose gas can
be established from the magnetization along the z axis, which is given by

Mz =
∑
r
Szr . (2.43)

But from (2.31) we have Szr = nr − 1
2 , which relates the z component of the spin with the

number operator. So, the magnetization in the z-axis in these spin system is related to the
number of bosons.

We can also interpret this result if we remember that the action of an external magnetic
field promotes the emergence of magnons in the system, which are the bosons we are
studying. From this fact and from (2.30) and (2.34) we interpret the external magnetic
field on the system as a chemical potential.

An important requirement for the occurrence of BEC is the number conservation. In
the case of magnetic systems, the uniaxial symmetry is fundamental for this requirement.
However, since it is not perfectly true, the idea of BEC in a magnetic systems is an
idealization, but a good approximation in many of the studied compounds [17].

In table 2.1 we summarize the correspondences between XXZ antiferromagnets and
bose systems.

One of the most studied field-induced antiferromagnetic system in which the BEC phase
was identified is the DTN. In fact DTN is one of the lowest critical field compounds for the
observation of BEC phase (see figure 2.6). It is important to notice that all the discussion
made for BEC of magnons considers a XXZ-1/2 system. Although DTN is also an uniaxial
system, it is a S = 1 magnet. Despite this fact, all the development for BEC of magnons
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presented here still holds for DTN. Regarding the energy levels of DTN in figure 2.5, we
notice that close to the critical fields the Sz = −1 level are far apart from the Sz = 0 and
Sz = 1 levels. So, in a good approximation the states |0 > and |1 > can be mapped into
the | − 1/2 > and |1/2 > states and the state | − 1 > can be neglected in the vicinity of the
critical field and at low temperatures. It means that the description of BEC of magnons is
valid specially in this conditions, where the hamiltonian of the system can be mapped into
the XXZ-1/2 hamiltonian [66].

Table 2.1: Correspondence between the characteristics of a XXZ antiferromagnet and a
bose system.

Antiferromagnet Bose system

Magnetization: Mz =
∑

r S
z
r Number of particles: N =

∑
r nr

In-plane ordering BEC

External magnetic field H Chemical potential µ

MAF =
∑

r〈Sxr + iSyr 〉eir.k Ψ =
√
n0e

iθ

Transverse spin wave stiffness Superfluid density

It is also worth to mention that, in the literature, magnons from these triplet state are
often called triplons. So, since the magnons that forms the condensate are those from the
triplet state, the BEC of magnons is also called BEC of triplons. However in this work we
keep the term BEC of magnons since it is the most used in the literature.

2.6 Heat capacity

The heat capacity in a solid have contributions from different sources. In many cases
the total heat capacity is given by

C = Cph + Cmag + Cel + Cnucl, (2.44)

where Cph is the contribution to the heat capacity due to the lattice vibrations (phonons),
Cmag is the contribution from the magnetic ions, Cel is due to the electron gas and Cnucl is
the nuclear contribution to the heat capacity.

Since in this work we study insulators, Cel can be neglected. The nuclear contribution,
which gives a term proportional to T−2 [68, 69] is not seen in our measurements, so in our
case we can also disregard this contribution.

In this sense, for our compounds only the lattice and the magnetic contributions are
relevant. In this section we present a brief discussion about them.
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2.6.1 Lattice contribution to the heat capacity

A crystal lattice can be regarded as a collection of many coupled oscillators, where
atoms or molecules vibrate around their equilibrium position. According to the model
proposed by P. Debye in 1912, such oscillations are small at low temperatures and then
they can be consider as harmonic. This model consist in the treatment of the vibrations
in the solid as a superposition of stationary elastic waves in longitudinal and transversal
directions. Inspired by the treatment of the black body radiation problem proposed by
M. Planck, Debye treated the lattice vibrations in a crystal as photons in a cavity. Like
photons, this acoustic waves are quantized and they are called phonons.

In this section we derive the expression to the lattice contribution to the heat capacity
following the path of many references (see [70–72]).

The energy of a phonon with polarization α (transversal or longitudinal) with momentum
h̄~k and frequency ω~k,α is

ε~k,α = h̄ω~k,α. (2.45)

In this model only long wavelength vibrations are considered and then the dispersion
relation is linear

ω~k,α = csα |~k|, (2.46)

where csα is the sound velocity in the polarization direction α. For sake of simplicity, we
will consider that the lattice in this model is composed solely by one type of atom. So, the
sound velocity is equal in all the polarization directions and this index will be neglected
hereafter.

From (2.45) and (2.46) the energy can be expressed as

ε~k = h̄cs|~k| = h̄cs

√
k2
x + k2

y + k2
z . (2.47)

Since we have stationary waves the wavevectors in a cubic solid with length L is

~k = (kx, ky, kz) =
2π

L
(nx, ny, nz) , (2.48)

with −π/d < (kx, ky, kz) ≤ π/d, where d is the spacing between two atoms in the lattice
and nα are integer numbers . This relation restrict the wavevectors to the first Brillouin
zone, which means that no vibration with wavelenght small than 2d can exist.

In the reciprocal space, the volume of a primitive cell is (2π/L)3 = 8π3/V . So the
number of states (or number of phonons) with momentum lesser or equal to K = |~k| is
equal to the volume of the sphere in the momentum space with radius K divided by the
volume of a primitive cell in the reciprocal space. In other words

N (K) =
4
3πK

3

8π3

V

, (2.49)

for each polarization.
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In terms of the energy of the phonon, the number of states is given by

N (ε) =

4
3π
(

ε
h̄cs

)3

8π3

V

=
V

2π2

(
ε

h̄cs

)3

. (2.50)

The density of states is given by

D(ε) = 3
dN (ε)

dε
=

3V

2π2

ε2

h̄3c3
s

, (2.51)

where the factor 3 takes into account the three different polarizations.

Since we are restricted to the first Brillouin zone, we must have a cutoff energy for the
phonons, which means that no phonon with an energy up to a certain energy εD should
exist. From equation (2.50) we find that such energy is

εD = h̄cs

(
6π2N

V

)1/3

, (2.52)

where N is the number of phonons in one polarization, so the total number of phonons in
the system is 3N .

The total energy of the system can be calculated as

U =

∫ εD

0
εf(ε)D(ε)dε, (2.53)

where f(ε) is the Planck’s distribution

f(ε) =
1

exp(ε/kBT )− 1
. (2.54)

So, the total energy of the system is

U =
3V

2π2h̄3c3
s

∫ εD

0

ε3

exp(ε/kBT )− 1
dε. (2.55)

We now define the quantity ξD = εD/kBT = θD/T , where θD = εD/kB is the so called
Debye temperature. Using these definitions, we can rewrite the expression for the energy as

U = 9NkBT

(
T

θD

)3 ∫ ξD

0

ξ3

exp(ξ)− 1
dξ. (2.56)

Differentiating U with respect to the temperature gives us the expression of the heat
capacity of the system as

Cph(T ) = 9R

(
T

θD

)3 ∫ ξD

0

ξ4 exp(ξ)

(exp(ξ)− 1)2dξ, (2.57)

where R = NkB is the gas constant.
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2.6.2 Magnetic contribution to the heat capacity

In our studies, another important contribution to the heat capacity comes from the
magnetic excitations (magnons). In this section we discuss this contribution based in a
semiclassical approach frequently presented in literature [71,73].

For sake of simplicity let us consider an isotropic and one-dimensional system with
antiferromagnetic nearest-neighbour interactions described by

H = J
∑
j

SjSj+1. (2.58)

In a semiclassical approach, the spin dynamics is expressed as

h̄
dSj
dt

= µj ×Bj , (2.59)

where µj = −gµBSj is the magnetic moment at the j-th site and

Bj =
J

gµB
(Sj−1 + Sj+1), (2.60)

is the effective magnetic field at the j-th site generated by the surrounding spins.

So, equation (2.59) can be written as

dSj
dt

=
J

h̄
(Sj × Sj−1 + Sj × Sj+1) . (2.61)

For each cartesian component of the spin we have

dSxj
dt

=
J

h̄

[
Szj

(
Syj−1 + Syj+1

)
− Syj

(
Szj−1 + Szj+1

)]
, (2.62a)

dSyj
dt

=
J

h̄

[
Sxj
(
Szj−1 + Szj+1

)
− Szj

(
Sxi−1 + Sxj+1

)]
, (2.62b)

dSzj
dt

=
J

h̄

[
Syj
(
Sxj−1 + Sxj+1

)
− Sxj

(
Syj−1 + Syj+1

)]
. (2.62c)

We now consider that the spins are aligned along the z-axis and that Sz = S. If the
amplitude of the oscillations are small, we can write the previous set of equations as

dSxj
dt

= −JS
h̄

[
2Syj − S

y
j−1 − S

y
j+1

]
, (2.63a)

dSyj
dt

=
JS

h̄

[
2Sxj − Sxj−1 − Sxj+1

]
, (2.63b)

dSzj
dt

= 0. (2.63c)

Until now we made the assumption that all the spins are point along the same direction,
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which is true for a ferromagnetic system. For an antiferromagnetic system, we should
consider that the system consists in two sublattices A and B with all the spins in A pointing
up along the z-axis and in B all the spins are pointing down along the z-axis.

So, for the antiferromagnetic case, the set of equations (2.63) splits into the following
two set of equations

dSx2j
dt

=
JS

h̄

[
2Sy2j + Sy2j−1 + Sy2j+1

]
, (2.64a)

dSy2j
dt

= −JS
h̄

[
2Sx2j + Sx2j−1 + Sx2j+1

]
, (2.64b)

and
dSx2j+1

dt
= −JS

h̄

[
2Sy2j+1 + Sy2j + Sy2j+2

]
, (2.65a)

dSy2j+1

dt
=
JS

h̄

[
2Sx2j+1 + Sx2j + Sx2j+2

]
. (2.65b)

Since S+
j = Sxj + iSyj , the two set of equations (2.64) and (2.65) can be combined into one

set
dS+

2j

dt
= − iJS

h̄

[
2S+

2j + S+
2j−1 + S+

2j+1

]
, (2.66a)

dS+
2j+1

dt
=
iJS

h̄

[
2S+

2j+1 + S+
2j + S+

2j+2

]
. (2.66b)

We seek for solutions to equations (2.66) in the form of plane wave as

S+
2j = u exp[i2jka− iωt] and S+

2j = v exp[i(2j + 1)ka− iωt], (2.67)

where u and v are constants and a is the lattice constant.

The substitution of the these plane wave into equations (2.66) results in

uω = −JS
h̄

(2u+ ve−ika + veika), (2.68a)

vω =
JS

h̄
(2v + ue−ika + ueika), (2.68b)

whose solution is
ω(k) =

2JS

h̄

(
1− cos2 ka

)
=

2JS

h̄
| sin ka|. (2.69)

For low energy excitations (ka << 1) the dispersion relation for magnons in an
antiferromagnet is

ω(k) =
2JS

h̄
a|k|. (2.70)

The generalization of this problem to a three-dimensional space is straightforward, with
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the dispersion relation written as

ω(~k) =
2JS

h̄
a|~k|. (2.71)

We notice the similarity of equation (2.71) with the dispersion relation for phonons
given in (2.46). This similarity allow us to evaluate the heat capacity for magnons as did in
the case for phonons.

Analogously to the total energy for phonons given by equation (2.55), the total energy
for magnons is

U =
3V JSa

π2

∫ ∞
0

k3

exp(2JSka/kBT )− 1
dk. (2.72)

Defining x = 2JSKa/kBT , we have

U =
3V JSa

π2

(
kBT

2JSa

)4 ∫ ∞
0

x3

exp(x)− 1
dx. (2.73)

The integral in equation (2.73) is equal to π4/15. Knowing this result, we can express
the total energy as

U =
V π2k4

B

48(JSa)3
T 4, (2.74)

and finally, the heat capacity of antiferromagnetic magnons is given by

Cmag =
dU

dT
=

V π2k4
B

12(JSa)3
T 3, (2.75)

with the well known T 3 dependence of the heat capacity.

2.6.3 Schottky anomaly

Let’s consider a system with a finite set of energy levels E1, ..., Ek. So the partition
function of this system is expressed as

Z =

k∑
i=1

e−βEi , (2.76)

where β = (kBT )−1.

From the expressions for the energy

U = kBT
2∂ lnZ

∂T
, (2.77)

and for the heat capacity,

C =
∂U

∂T
, (2.78)
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is easy to show that

C =
N

kBT 2

1

Z2

Z k∑
i=1

E2
i e
−βEi −

(
k∑
i=1

Eie
−βEi

)2
 , (2.79)

where N is the number of constituents of the system.

From the expression above we see that in both limits β → 0 and β → ∞ we have
C → 0, with a broad maximum for a finite temperature. This behavior is known as Schottky
anomaly and it is characteristic of system with finite set of energy [74].

2.6.4 Entropy

In terms of the heat capacity, the entropy of a system between T = 0 to T = TF can be
calculated as [68]

S(TF ) =

∫ TF

0

C(T )

T
dT. (2.80)

From measurements of heat capacity combined with this expression we can calculate the
magnetic entropy in our systems. From statistical mechanics we learn that the entropy
of a system with equiprobable microscopic configurations (microstates) is temperature
independent and equal to the Boltzmann constant times the logarithm of the number of
the microscopic configurations that this system can access [74]. So

S = kB ln Ω, (2.81)

where Ω is the number of microscopic configurations of the system. For a single magnetic
dipole with spin S the number of possible spin configurations is (2S + 1). If we consider an
ideal paramagnet consisting in a collection of N particle the total number of configurations
in this system is Ω = (2S + 1)N . So, for such system, the entropy is given by

S = R ln(2S + 1), (2.82)

where R = kBN is the gas constant. This result is particularly useful when analysing
the entropy of magnetic systems in the limit of high temperatures, since in such situation
the thermal fluctuations may overcome the interactions among the spins and, in some
approximations, the system can be regarded as an ideal paramagnet. So, if the entropy
of the system as a function of the temperature tends to the constant value given by 2.82,
the ideal paramagnet approximation is valid. Otherwise, it is an indicative that some
interactions in the system are not negligible in such temperatures.
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2.7 Quantum Monte-Carlo and the Stochastic Series
Expansion method

In order to corroborate some of our experimental results we performed Quantum Monte-
Carlo (QMC) calculations to evaluate thermodynamic properties such as magnetization,
magnetic susceptibility and specific heat. We used a QMC package provided by the
Algorithms and Libraries for Physics Simulations (ALPS) project which, for the Heisenberg
spin hamiltonian, makes use of the Stochastic Series Expansion (SSE) method to determine
the thermodynamic properties of the system [75].

The SSE method is one of the most used and efficient QMC methods for simulations
with spin hamiltonians, allowing the inclusion of further terms such as phonon degrees of
freedom. It is based in a series expansion of the partition function as [76]

Z = Tr
(
e−βĤ

)
=
∑
α

∞∑
n=0

(−β)n

n!
〈α|Hn|α〉, (2.83)

where |α〉 is a basis of H

Now we write the hamiltonian H as a sum of operators

H =

M∑
b=1

Hb. (2.84)

In a practical example Hb can be the either diagonal or the non-diagonal parts of the
hamiltonian or can designate different sublattices.

Now let us expand Hn as a sum over all the possible product configurations of Hb and
introduce the index Sn to designate a sequence of products of Hb. In this way we can
rewrite (2.83) as

Z =
∑
α

∞∑
n=0

∑
Sn

(−β)n

n!

〈
α

∣∣∣∣∣
n∏
i=1

Hbi

∣∣∣∣∣α
〉

=
∑
α

∞∑
n=0

∑
Sn

W (α, Sn) , (2.85)

where we define the weight

W (α, Sn) =
(−β)n

n!

〈
α

∣∣∣∣∣
n∏
i=1

Hbi

∣∣∣∣∣α
〉
, (2.86)

From the expression of the weight we can write the expected value of an operator Â as

〈Â〉 =

∑
α

∑∞
n=0

∑
Sn
A (α, Sn)W (α, Sn)∑

α

∑∞
n=0

∑
Sn
W (α, Sn)

. (2.87)

In the Monte-Carlo method, two successive configurations (α′, S′n) and (α, Sn) are
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generated. Then, the ratio R between the respective weights is evaluated as

R =
W (α′, S′n)

W (α, Sn)
. (2.88)

and this is related to the probability of accepting or not a new configuration.
Equations (2.85)-(2.88) are the main point of the formalism for the SSE method.

Of course it is a much more complex problem, having a number of important points,
simplifications and further considerations. However, going through these points is beyond
the scope of this thesis. Some good texts that go properly deeper in this technique can be
found in references [67,76–78].

For a ferromagnetic system, the simulation of the problem is straightforward. However,
if we deal with a system with antiferromagnetic interactions, in principle we should expect
the hindrance of the so-called sign problem, related to the minus sign that emerge from the
permutation of two fermions. This problem causes an exponential growth of the statistical
errors and so the non-convergence of numerical results [78].

In some cases we can overcome this problem by simple algebraic operations, as for an
antiferromagnetic system where we can define a simple unitary transformation such that
S+
i → −S

+
i , S

−
i → −S

−
i with Szi remaining unchanged. This transformation does not

change neither the commutation relations nor the spectrum of the problem but allow us to
avoid the sign problem [67].
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Chapter 3

Samples: Crystal structure,
preparation and characterization

In this chapter we describe the crystal structure, synthesis and the characterization
of the samples by using the X-Ray diffractometry (XRD) and X-Ray fluorescence (XRF)
techniques. We begin discussing the crystal structure of the compounds used in this work.
After, we describe the method for the synthesis of the samples, which is known as the
method of supersaturated solution. Then, a description of the preparation of the samples is
presented. The results from the XRD, analyzed through the method of Rietveld refinement,
are shown as well as its confirmation that the samples produced are the ones expected.
Finally, the results from XRF, which allowed us to determine the concentration of Br
dopant in our samples, are presented.

3.1 Crystal structure of the compounds

The compound NiCl2-4SC(NH2)2, named dichlorotetrakisthioureanickel (DTN), forms
a body-centered structure with a tetragonal symmetry and belongs to the spacial group
I4 [79]. The orientation of DTN crystals is easy to determine since the samples are in
general more elongated in the c-axis. Also, once the crystal is consisted of chains of DTN
molecules lined up along the c-axis and due to the non-isotropic geometry of DTN molecule
it is expected that DTN samples have different index of refraction along different axis. In
this way, DTN samples are birefingents [80]. So, when one sample is exposed to visible
light and varying the relative angle between the sample and a polarizer, differences in the
intensity of light are easily seen, except when the light comes out through the sample in the
direction parallel to the c-axis, which is the direction of the polarization. This is a simple
but efficient method to confirm the orientation of the samples.

In figure 3.1 we present representations of the DTN molecule and the unit cell of DTN
crystals.

The crystal structure of MnCl2-4SC(NH2)2 (DTM), FeCl2-4SC(NH2)2 (DTF), and
CdCl2-4SC(NH2)2 (DTC) compounds is also tetragonal. They form face-centered structures
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and belong to the space group P 42/n Z [81–83]. In figure 3.2 we present the representation
for the unit cell of these crystals.

DTM, DTF and DTC crystals have a tetragonal bipyramidal shape with the c-axis
pointing along the top of the two opposite pyramids. While DTM and DTC crystals are
transparent, DTF crystals have a dark-green color when they just grow. However, after
some weeks (depending on the size of the crystal) or after few minutes of exposition in
temperatures around 80 ◦C, the crystal turn from dark-green to white. The dark-green
color of the crystals is due to the presence of O2 molecules during the growth process,
that are kept trapped in the crystal structure. After some time or through the application
of heat, these O2 molecules leave the crystal structure, turning the color of the crystal
into white [84]. The orientation of DTF crystals is also possible to determine due to its
birefringence.

Figure 3.1: Representations of the DTN molecule and the DTN crystal unit cell. The figure
of the DTN unit cell was reproduced from ref. [79].

Figure 3.2: Representation of DTM, DTF or DTC crystal unit cell. This figure was
reproduced from ref. [81].
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3.2 Method of supersaturated solution

The method of supersaturated solution consists in prepare a heated solvent and dissolve
in it an amount of solutes above the limit for the saturation in a lower temperature. Once
the solution is prepared, it is kept in a thermal bath in a lower (and constant) temperature.
Depending on the proportion of the compounds, the volume of the solution, the type of the
solvent, the temperatures during the preparation and the unperturbed rest in the thermal
bath, crystals are formed in periods from some hours to weeks [85].

Figure 3.3: Thermal bath with some DTN solutions.

3.3 Synthesis of the samples

3.3.1 DTN

Typical DTN samples used in this work were prepared by adding 20 g of NiCl2·6H2O
and 5.5 g of CS(NH2)2 (thiourea) in 75 ml of distilled water at 100 ◦C 1. The solution is
stirred during 1 hour and then filtered. Around 3 ml of HCl is added, once it was noted
that the reduction of pH in the solution increases the time of the growth of the samples and
then improving their quality. After, the solution is left in the heater at 100 ◦C to evaporate
until reach a volume of approximately 50 ml. Finally the solution is capped, allowing just a
small aperture to promote a slow evaporation, and inserted in a thermal bath at 35 ◦C. In
a period of a couple of days, DTN crystals are formed in the bottom of the becker. Some
DTN samples are shown in figure 3.4.

1All the chemical compounds used in this work have a high level of purity (≥ 99.0%) and were obtained
from commercial sources.
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Figure 3.4: DTN samples of different sizes produced from the method of supersaturated
solution. All the samples in the figure were align with the c-axis pointing vertically according
to the red arrow.

3.3.2 DTM and DTC

DTM and DTC samples are produced in the same way of DTN. For DTM, the proportion
of the chemical compounds are 25 g of MnCl2·4H2O and 9 g of thiourea, the same proportion
presented in ref. [86, 87]. DTC crystals are made by mixing 1.5 g of CdCl2·2 1/2 H2O and
4.5 g of thiourea, according to ref. [88]. For both samples, the solutes are mixed in 75 ml
of distilled water at 100 ◦C, stirred during 1 hour and then filtered. For these samples
we realized that there are no need to add HCl, since they grow very slowly and regularly.
The solutions are partially capped when their volume is around 50 ml to promote the
slow evaporation in a thermal bath at 35 ◦C. In the period between one to two weeks,
transparent crystals are formed.

3.3.3 DTF

The DTF samples are also produced by the supersaturated solution method. However
the solvent employed is pure ethanol. For these samples 3 g of FeCl2·4H2O and 3 g of
thiourea was dissolved 100 ml of ethanol, according to the proportion employed in [84,89–91].
The solution was heated to 100 ◦C and stirred in an erlenmeyer with a separatory funnel
attached to its end. In this way, the ethanol that was evaporated from the erlenmeyer enters
in the separatory funnel and cools down, condensing and entering again in the erlenmeyer.
This procedure is known as reflux, where the evaporated solvent is condensed and returns
to the solution [92].

After 1 hour the solution is filtered, totally capped and kept in rest in a temperature
of 0 ◦C. After some hours, dark green crystals are formed. However they are collected,
in general, after 2 days since it is observed that the crystals do not grow more after this
period. This crystals have a bipyramidal shape and maximum size around 3×3×3 mm.
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3.3.4 DTN-Br

The preparation of DTN samples with Br doping follows the same procedure as the
pure DTN samples. The difference is the addition of HBr-40% in the solution containing
NiCl2·6H2O and thiourea. Different percentages of Br in the samples requires different
proportion of the solutes. To the preparation of these samples we choose to keep the amount
of NiCl2·6H2O as 20g in the solution and vary the amount of thiourea and HBr.

To determine the percentage of Br in each sample we performed XRF analysis, which is
discussed in section 3.5 of this thesis.

3.4 XRD characterization and Rietveld refinement

In order to characterize our samples, we perform some XRD measurements from the
sample powder using a commercial X-ray Bruker-D8 Advance diffractometer in 2-theta
configuration [93]. The diffractogram was analyzed through the method of Rietveld
refinement.

The Rietveld refinement is based in a least-square method that fits a function to the
peaks of a diffractogram. Among several functions that can be fitted, the most used (and
the one used in this work), due to the good results provided, is the pseudo-Voigt function,
which consists in a convolution between a gaussian and a lorentzian functions [94],

V (x, σ, α) =

∫ ∞
−∞

G(x′, σ)L(x− x′, α)dx′, (3.1)

where

G(x, σ) =
e−x

2/(2σ2)

σ
√

2π
and L(x, σ) =

α2

(x2 + α2)
, (3.2)

are, respectively, the gaussian and the lorentzian functions.
From the fit of the pseudo-Voigt function by varying the several parameters presents in

the model it is possible to extract informations such as the the lattice parameters, thermal
exponents, existence of additional phases of the material, and many other properties. This
fit is in general made by some Rietveld refinement software. In this work we made use of
the Fullprof software [95].

The diffractograms presented in figure 3.5 correspond to the measured and refined
spectra for our samples. As we see, there is a good agreement between the measurement
and the adjust by the Rietveld refinement for all samples, which points that our samples
are the ones expected without any additional phase.

In the table 3.1 we summarize the results for the lattice parameters obtained by the
refinement with those from the literature [79,81–83]. It is important to mention that, for
each compound studied in this work, the lattice parameters a, b and c correspond to the
distance between two consecutive magnetic ions along the a, b and c-axis respectively.
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Figure 3.5: Rietveld refinement of (a) DTN, (b) DTM, (c) DTF and (d) DTC. The red dots
are obtained in the XRD measurements. The black curve is the adjust of the refinement,
the blue curve is the error between the XRD data and the adjust and the green tics point
out the position of the peaks.
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Table 3.1: Comparison between the lattice parameters (in Angstroms) from the refinement
and literature.

Sample a = b (refined) a = b (literature) c (refined) c (literature)
DTN 9.559 9.599 8.974 9.082
DTF 13.708 13.710 8.943 8.940
DTM 13.760 13.753 9.066 9.079
DTC 13.804 13.804 9.267 9.268

3.5 X-ray Fluorescence

In the X-ray Fluorescence (XRF) a photon with a certain amount of energy ionizes the
K shell of an atom. This processes generates a vacancy in the K shell, that is filled by an
atom in a outer shell, such as L or M shells. Consequently, the transition of an electron
from the L or M shell to the K shell results in the emission of a X-ray photon.

The principle of XRF technique consists in measuring the energy and intensity of
photons emitted by a sample. Since each element has distinct energy levels one from
another, the energy of a photon emitted by fluorescence is characteristic of each element.
In this way, the XRF technique allows the determination of the composition of a certain
material through the detection of photons emitted from fluorescence [96].

In this technique, photons from the L→ K transition, also known as Kα emission, are
predominant during the detection. Photons from the M → K transition, known as Kβ

emission, are also detected with a reasonable resolution.
A XRF spectrometer consists, basically, in a X-ray source and detector. The X-ray

source is a vacuum tube where an electron beam is accelerated by a potential difference of
the order of kV. The beam collides on a target and so the electrons stop abruptly. This slow
down process generates a continuous spectrum of radiation and it is called Bremsstrahlung
(from German, bremsen “to brake”, and Strahlung “radiation”).

In this work, the detector used was a XR-100 Silicon Drift Detector (SDD) by Amptec [97].
In this solid state detector, the incoming photon ionizes the atoms from the crystalline
lattice, generating an electric current measured by a electronic circuit. Figure 3.6 shows
the setup of X-ray source and detector used in this work.

3.5.1 Analysis

The first XRF measurement performed was the analysis of the paper used as a sample
holder in the experimental setup. This analysis was made in order to characterize the
elements from the sample holder that could, eventually, introduce errors in the sample
measurements. Figure 3.7 shows the XRF spectra for the sample holder.

In figure 3.7 two sharp peaks in the spectrum can be seen. The energies correspondent
to these two peaks, in 2.95 keV and 3.17 keV, are respectively those for the Kα and Kβ

transitions for the argon, since this element is present in the air.

33



CHAPTER 3. SAMPLES: CRYSTAL STRUCTURE, PREPARATION AND
CHARACTERIZATION

Figure 3.6: XRF setup used in this work with the X-ray source (on the left) and the X-ray
detector (on the right).
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Figure 3.7: XRF spectra for the paper used as the sample holder. Dashed lines mark denote
the position of the Kα and Kβ transitions of argon [98].

After the sample holder characterization, we started the analysis for the pure DTN and
DTN-Br samples. In figure 3.8 we present our results from the XRF measurements for the
Br-doped DTN samples.
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Figure 3.8: XRF spectra for Br-doped DTN samples. Dashed lines mark denote the position
of the Kα and Kβ transitions of each element [98].

For the pure DTN and for each DTN-Br batch 3 samples were analyzed in order to check
the reproducibility of the results and verify if for a single batch samples with different Br
concentration were grown. However no appreciable differences were seen in the XRF spectra
between samples from the same batch, indicating the good reproducibility of our XRF
measurements and the homogeneity of the solutions during the synthesis of the samples.

To obtain relative the percentage of bromine in our samples we apply the following
procedure. First we normalize the intensity of Kα peak for the nickel atoms to 1 for all
measurements. Since we know that in pure DTN the proportion of nickel and chlorine atoms
are 1:2 we use this normalization to have a reference for the height of Kα peak for chlorine
and bromine. Once the amount of any element in the sample is directly proportional to the
intensity of the peak and knowing the height of the Kα peaks for chlorine and bromine in
each sample, the determination of the relative Br and Cl concentration of each sample is
straightforward.

From the analysis of chlorine Kα peaks we should be able to extract the absolute
concentration of chlorine and, consequently, bromine in the samples. However, due to
the low Kα peak height for chlorine, not so pronounced as for bromine, determining the
chlorine absolute concentration may lead to non-trustworthy results. So a more precise
estimation for the halogen concentrations in the samples is given by analysing the Kα peaks
for bromine. From this we were able to determine only the relative bromine concentration in
the samples since we had no sample with a known bromine concentration. In order to have
a reference sample and so obtain the absolute value of such concentrations, we analysed
some samples by the chemical analytical method of Schöniger oxidation, in Instituto de
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Química in Universidade de São Paulo. Knowing the absolute concentration of, at least,
one sample we were able to estimate the absolute concentration of all samples using the
relative concentrations obtained from XRF measurements.

Another alternative to obtain the absolute concentration of chlorine and bromine in our
samples would be analysing them through XRD and Rietveld refinement. We performed
such analysis but the results were elusive since no appreciable difference for the lattice
parameters and bromine concentration was observed among the samples analysed. Our
hypothesis is that bromine concentrations in the sample are small and such differences from
one sample to the other are hardly observable. For higher concentrations these differences
may be more pronounced.

The results of our analysis are summarized in table 3.2.

Table 3.2: Br-doping percentage for different batchs of DTN-Br samples according to the
XRF analysis.

Sample batch NiCl2 ·6H2O (g) Thiourea (g) HBr (g) % Br
DTN-Br1 20 8 8 4.8
DTN-Br2 20 4 4 3.3
DTN-Br3 20 15 15 8.8
DTN-Br4 20 9 12 7.0
DTN-Br5 20 8.4 13 15.5
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Chapter 4

Experimental techniques

In this chapter we present the instruments used in the measurements to study the
magnetic properties and specific heat of our samples. Initially we discuss the commercial
SQUID device used to perform magnetization and AC susceptibility measurements. Then
we describe the multi-platform device employed to take specific heat measurements. Also, we
present the cryostat in which we performed measurements of AC magnetic susceptibility and
magnetization using a VSM in lower temperatures and higher magnetic fields than that the
commercial SQUID device can achieve. Finally, we discuss the Adiabatic Demagnetization
Refrigeration (ADR) technique used in one of our cryostats for AC magnetic susceptibility
measurements.

4.1 MPMS SQUID magnetometer

The Magnetic Property Measurement System (MPMS) is a commercial SQUID
magnetometer used to perform magnetization and AC magnetic susceptibility measurements.
This device works in a temperature range from 1.8 K to 400 K and has a 7 T superconducting
magnet, which allows to study the magnetic properties of samples under high external
magnetic field. MPMS is connected to a personal computer which makes possible to execute
automatized experiments.

SQUID is an acronym for (Superconducting QUantum Interference Device). These
devices are very sensitive magnetometers, being used for many applications. The operation
principle is based on the flux quantization in superconducting loops and in weak links on
superconductor junctions, which originate the so-called Josephson Effect, named after B. D.
Josephson.

A well known fact is that the total magnetic flux passing through a superconductor
loop is quantized in the form [71,99]

Φ =
h

2e
s = Φ0s, (4.1)

where h is the Planck constant, e is the electron charge and s an integer. The quantity
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Φ0 = h/2e = 2.07× 10−15 Tm2 is called flux quantum [99].

Figure 4.1: MPMS Model XL-7 SQUID magnetometer by Quantum Design used in our
measurements.

Now let us consider two pieces of superconductors separated by a thin (around 10 Å)
insulating layer. This configuration is called Josephson Junction. Due to the small thickness
of this layer, Cooper pairs are able to tunnelling from one superconductor piece to another.
Josephson showed that the current flowing from these superconductor junction is given
by [100]

I = I0 sin δ, (4.2)

were δ = θ2 − θ1 phase difference between the Cooper pairs wavefunctions in both sides of
the junction and I0 is proportional to the density of Cooper pairs [99].

The next step to understand the SQUID basic principles is to consider two Josephson
junctions in parallel, as in figure 4.2.

When a magnetic flux passes through this circuit, the currents in the junctions are
given by [71]

Ia = I0 sin
(
δ0 +

e

h̄
Φ
)

and Ib = I0 sin
(
δ0 −

e

h̄
Φ
)
, (4.3)

where δ0 = δb − δa and δa (or δb) is the phase difference between the both sides of the a (or
b) junction.

So the total current in the circuit is

I = Ia + Ib = I0

[
sin
(
δ0 +

e

h̄
Φ
)

+ sin
(
δ0 −

e

h̄
Φ
)]

= 2I0 sin(δ0) cos
( e
h̄

Φ
)
. (4.4)

This expression is the basis of the quantum interference device that is known as a SQUID.
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Figure 4.2: Two Josephson junctions in parallel. These junctions are formed by
superconductors separated by two insulators a and b. Ia and Ib are the currents passing
through the a and b branches of the loop and ~B is an external magnetic field applied to the
loop.

In a SQUID magnetometer, a superconductor loop with Josephson junctions, as sketched
in figure 4.2, is coupled to the inductive system of detection, consisting in a assembly with
pick-up coils (see figure 4.3). Small variations of the magnetic field in the pick-up coils
due to the extraction magnetization or AC field from a primary coil, produces measurable
changes in the voltage V of the superconducting loop, that are translated by the MPMS
software into magnetic units.

Figure 4.3: Schematic representation of the SQUID circuitry. The straw with a sample
inside is inserted and further extracted from the pick-up coils, here called second order
gradiometer and sometimes also second derivative detector array [101]. Inset: Voltage signal
measured during the extraction of the sample from the pick-up coils. Figure reproduced
from [102].
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4.2 PPMS

The Physical Property Measurement System (PPMS) is a commercial platform to
perform a variety of measurements, such as heat capacity, transport phenomena, optics,
and many others, in low temperatures and high magnetic fields. The temperature range of
operation is from 1.8 K to 400 K and a 9 T superconducting magnet provides the external
magnetic field to the measurements. Also, with our PPMS there is an insert coupled
to a dilution refrigerator (DR) which makes possible to perform experiments down to
50mK. PPMS also is connected to a personal computer and it is able to automatically run
experiments in the same way as the MPMS does.

Figure 4.4: Physical Property Measurement System (PPMS) platform by Quantum Design.

4.2.1 Specific heat measurements

Specific heat measurements are performed in a puck, consisting in a metallic frame
which supports in the middle of it a small sapphire platform suspended by eight thin gold
wires. In this way, the platform is nearly thermally isolated from the environment. The
platform has in one edge a heater and in the opposite edge a thermometer. The eight gold
wires also provided the electric current needed by the heater and the thermometer. The
sample is placed in the middle of the platform and it is fixed by Apiezon grease. This
assembly is shown in figure 4.5.

Under the puck there are electric terminals connected to the gold wires. For the
measurements the puck is attached in a rod and guided to the bottom of the PPMS
chamber, where the puck terminals are connected to a socket. So then, the puck is
connected to the PPMS and ready to perform the experiments.
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Figure 4.5: Top panel: Schematic representation of the heat capacity puck. This figure was
reproduced from ref. [103]. Lower panel: heat capacity puck with a sample.

The measurements are controlled by the PPMS software. Basically, a measurements
consists in giving through the heater some well known amount of heat to the system
and measure the heat transmitted to the thermometer. The PPMS software, using some
mathematical models, fits parameters such as the measured temperature and the power of
the heater to calculate the heat capacity.

There are two models used to infer the heat capacity. The first one, the simple (one-tau)
model considers that the heat capacity is given by,

Ctot
dT

dt
= −Kw(T − Tb) + P (t), (4.5)

where Ctot is the total heat capacity, T is the temperature of the platform, t is the time of
the measurement, Kw is the thermal conductance of the wires, Tb is the temperature of the
thermal bath (puck frame) and P (t) is the power given by the heater.

The solution of equation 4.5 is expressed as an exponential with a time constant τ .
This model considers that there is a very good coupling between the sample and the
platform. If the coupling is poorer or the thermal conductance of the sample should be
taken into account when, for example, the sample is thick, the software uses the two-tau
model, expressed as
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Cp
dTp
dt

= P (t)−Kw (Tp(t)− Tb) +Kg (Ts(t)− Tp(t)) , (4.6)

Cs
dTs
dt

= −Kg (Ts(t)− Tp(t)) , (4.7)

where Cp and Cs are, respectively, the heat capacity of the platform and sample, Tp and Ts
the temperatures of the platform and sample, and Kg is the thermal conductance between
the sample and the platform due to the grease [103].

In this work typical samples measured are approximately 2 mm × 2 mm wide and less
than 1 mm high.

It is worth to mention that before measuring a sample, the amount of Apiezon grease
to fix the sample should be measured first. This is called the addenda measurement. From
this measurement, the software will subtract the contribution of the grease to the heat
capacity from the total value when the sample is measured.

4.2.2 Slope analysis

In this work we made two kinds of specific heat measurements. In the first one, each
point of the specific heat curve consists is a short pulse, providing a increase of the heat
around 2% and followed by its measurement in the thermometer. So the software adjusts
the heating and cooling curves to is mathematical model. From this technique it is possible
to get specific heat curves in a wide range of temperatures but with a low resolution. The
second technique, known as slope analysis, consists in applying a large pulse of heat (around
30% of increasing of heat) and then measure the specific heat in this single shot. This
allows to get a very detailed curve but in a small range of temperatures. This method is
good to study in detail the region where a phase transition occurs [103].

4.2.3 Vibrating Sample Magnetometer (VSM) option

One of the options present in the PPMS is a Vibrating Sample Magnetometer (VSM),
which allows to study the magnetic properties of samples.

This device consists in a sample holder rod in which one of its ends hosts the sample
to be measured and the other is connected to a source of harmonic vibrations, such as
a speaker, linear actuator or a piezoelectric oscillator. An uniform magnetic field H

from a superconducting coil is applied to the samples perpendicular to the axis of the
oscillations. The response of the sample is measured in a pickup coil set with help of a
lock-in amplifier [104,105].

In figure 4.6 we present a schematic representation of a VSM.
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Figure 4.6: Schematic representation of a VSM.

4.2.4 Dilution Refrigerator (DR) option

Currently dilution refrigerators (DR) are one of the most efficient technologies to achieve
temperatures from 1 K down to 50 mK, typically. It is based on the properties of liquid
3He-4He mixtures.

According to the phase diagram presented in figure 4.7, a mixture of 3He and 4He with
at least 6.6% of 3He goes to a separation of rich-3He phase and rich-4He for temperatures
below 0.87 K. When these phases are cooled down, the rich-3He phase becomes even more
pure but for the rich-4He phase the concentration of 3He reaches the constant value of
6.6% [106].

For pedagogical purposes, a very simple plot of the working principle of a DR can be
depicted if we imagine a U shape tube as illustrated in figure 4.8.

In this assembly, almost pure 3He is inserted in the left side of the tube. The rest of
the tube is filled with the 3He-4He mixture with 6.6% of 3He. A pump is connected to
the right side of the tube to remove the vapour on this side. If the temperature of the
mixture is around 0.7 K, most of the vapour will consist in 3He atoms. When this vapour
is pumped out from the system, the amount of 3He in the mixture is no more of 6.6%. To
restore the equilibrium of the concentration, 3He atoms from the almost pure portion will
be transferred to the mixture. In this process, the system is cooled down due to the latent
heat of mixing [107].

The example above is quite simplistic, but gives an idea of the working principle of
DRs. More detailed descriptions can be found in references [106,107].
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Figure 4.7: Phase diagram of liquid 3He-4He mixture. The lambda line denote transition
between the normal phase to the superfluid phase of 4He. In the two-phase region, the
separation of rich-3He phase and rich-4He occurs. TF is the fermi temperature of 3He.
Figure adapted from reference [106].
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Figure 4.8: Schematic representation of an simplified version of a DR.

In figure 4.9 we show a picture of our DR system with the 3He-4He mixture cylinder
and DR insert.
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Figure 4.9: PPMS DR assembly with the 3He-4He mixture cylinder and DR insert.

4.3 AC susceptibility and VSM measurements setups

The AC susceptibility and some magnetization measurements are performed in two
cryostats, one with a 7.5 T and the other with a 20 T superconducting coil. In these setups
it is possible to achieve temperatures down to 1.4 K by pumping condensed 4He or even
cool down to 0.5 K using 3He. Also, they allow the sample to be immersed in the helium
bath, what improves the thermal coupling and favors the sample thermalization.

We perform AC susceptibility measurements using a mutual inductance bridge (see figure
4.11). In this bridge a lock-in amplifier provides to the primary (excitation) coil P a sine
wave signal with well defined amplitude and frequency. The pick-up (secondary/detection)
coils S are concentric to the primary coil and they consist in two equal coils connected in
series but one opposite direction to the other. In this way they cancel each other’s signal
generated by the primary excitation when there is no sample inside them. They are also
connected to the lock-in amplifier, measuring the amplitude and phase of the detected signal.
Also this bridge contains a reference toroidal inductance T and a Dekapot potentiometer
Rx to balance the resistive component of the signal [108].

Initially the bridge is adjusted from the Dekatran autotransformer D to have a total
null inductance. When the sample is inserted and centered in one of the two pick-up coils,
it promotes an unbalance of the bridge. The resultant inductance from this unbalance is
proportional to the signal of the sample. The lock-in amplifier displays the measured signal
as a voltage and provides an output terminal to read this signal in an external voltmeter.
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Then, the external voltmeter is connected to a computer via a GPIB connection and a data
acquisition software register the result of the measurement.

Figure 4.10: 7.5 T (left) and 20 T (right) cryostats.

Figure 4.11: Simplified mutual inductance bridge circuit, where a sine wave signal from
the lock-in amplifier provides an excitation to the primary coil P . χ is the set with the
primary and pick-up (secondary) S coils. The inductive and resistive components of the
signal measured in S are respectively balanced by setting the Dekatran autotransformer D
and the Dekapot potentiometer Rx. The circuit also contains the toroidal transformer T as
a reference inductance to the bridge and two isolation transformers I for the input and the
output signals. Inv is a switch that provides the inversion of the sign of the excitation.
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In this arrangement we are able to perform measurements of samples with a signal in
the order of magnitude of ∼ 10−5 emu.

We can express the AC magnetic susceptibility χ by χ = χ′ + iχ′′ where χ′ = χ cosφ

is the real part of the magnetic susceptibility, χ′′ = χ sinφ is the imaginary component
related to dissipative process in the sample and φ is phase of the signal relative to the
wave signal generated by the lock-in and the measured signal. In the lock-in amplifier it is
possible to adjust this phase in order to minimize the χ′′ component.

During a measurement, since in this arrangement the absolute value of the magnetic
susceptibility is difficult to determine, we just look to the real component χ′ without loss
of generality. However we always adjust the phase of the signal the best we can in order to
minimize the χ′′ component and maximize the χ′ component.

Coupled to the 20T cryostat we also have a VSM to perform magnetization
measurements.

4.4 Adiabatic Demagnetization Refrigeration (ADR)

The technique known as adiabatic demagnetization of a paramagnetic salt is an
alternative to dilution refrigerators to reach temperatures of the order of few milikelvin.

The idea behind this technique is the cooling by the reduction of the entropy of a system.
From Section 2.6 we saw that the entropy of an ideal paramagnet tends to S = R ln(2S+ 1),
where R is the gas constant and (2S + 1) are all possible spin configurations. Let us also
consider a paramagnetic salt in which all the contributions to the entropy of the salt (e.g.
lattice and electronic entropies) are very small compared to the magnetic disorder entropy.

Of course, when the temperature of the salt is reduced, some magnetic ordering may
arise. So the temperature achieved in this cooling process will be limited and comparable
to the magnetic ordering temperature.

An example of thermodynamic cycle for the ADR is depicted in figure 4.12. The first
step in the ADR is to couple the paramagnetic salt to a liquid 4He reservoir. By pumping
the 4He vapour, the achieved temperature is around 1 K. Then, an external magnetic field,
generally on the order of 0.1 T to 5 T is switched on. In this process, the magnetic moments
of the paramagnetic salt will at least partially line up along the direction of the applied
field. This reduces the entropy of the system and, since the paramagnetic salt is coupled
to the liquid 4He reservoir this is an isothermal process, as shown by the curve A−B in
figure 4.12. The next step is to remove the coupling between the paramagnetic salt with
the liquid 4He reservoir. So in this situation we have the isolated salt with the temperature
of the liquid 4He reservoir but now decoupled from it. Then, the external magnetic field
is adiabatically removed and the temperature of the system reduces by an isentropical
process (curve B − C in figure 4.12). Finally, when the external magnetic field is nearly
zero, the system starts to slowly warm up by heat leaking and the process needs to be
restarted if the low temperature achieved is required once more for the experiments [106].

47



CHAPTER 4. EXPERIMENTAL TECHNIQUES

Figure 4.12: An example of thermodynamic cycle for the ADR, showing the entropy of a
paramagnetic salt for different external magnetic fields applied. Figure reproduced from
reference [106].

Figure 4.13: Cryostat with an ADR system to measurements of AC magnetic susceptibility
at zero external magnetic field.
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While dilution refrigerators can work in a continuous way, being able to keeping the
temperature of the system nearly constant even for days, an adiabatic demagnetization
refrigeration is a one-shot process, which means that once the desired temperature is
reached, the system is warmed up by heat leaking.

In this work, some measurements of AC magnetic susceptibility at zero external magnetic
field were performed in a cryostat with an ADR system by Cambridge Cryogenics, showed
in figure 4.13. In this system it is possible to achieve temperatures down to 50 mK.

The measurement of AC magnetic susceptibility in this setup is very similar to the
process described in the last section. However this setup has two pick-up coils sets, one of 1
mm bore and the other with 5 mm bore, allowing to host two samples to be measured at
the same time.
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Chapter 5

Quasi-1D regime in DTN

In this chapter we discuss our results regarding the characterization of a quasi-1D regime
in DTN, through AC susceptibility and specific heat measurements, which are compared
with our Quantum Monte-Carlo calculations. Initially we give an overview of some examples
and features of quasi-1D systems, emphasizing antiferromagnetic systems which exhibit
both BEC phase of magnons and a quasi-1D regime. Then we present our results, where the
determination of the quasi-1D regime is displayed along the phase diagram of DTN, showing
a 3D-to-1D crossover, speaking in terms of magnetic behaviour. Finally, we extended our
studies for higher temperatures, where the interaction among the spins is expected to
become negligible. For such situation we discuss our estimate for D, which corroborate
some results from literature and show discrepancy with others. The results presented in
this Chapter were published in H. Fabrelli et al, J. Alloys Compd. 853, 157346 (2021).

5.1 Quasi-1D systems in condensed matter

Matter and their interactions manifest themselves in the three-dimensional (d = 3)
space. However, in some situations, depending on the symmetry of the system, boundary
conditions and strength of the interaction along different directions of the space, one or
more degrees of freedom can be neglected. So the description of such systems can be
approximated as if they were low dimensional (d < 3) entities.

In condensed matter physics, specially in magnetism, there are a number of systems for
which a low dimensional description is valid, leading to interesting results and potential
applications [109–111].

One-dimensional systems are interesting not just for their conceptual simplicity but also
for the possibility of finding exact solutions as in the case of the 1D Ising model [74,112]
and for some quantum models by means of the so called Bethe ansatz [113–115].

Regarding 1D fermi systems, the role of dimensionality leads to drastic changes in the
behaviour of such systems in different dimensions. Fermi systems with interaction are
well described by the Fermi liquid theory [116] for 2D and 3D cases. However, this theory
fails for 1D systems due to intractable infrared divergences of vertices in the perturbation
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theory [117]. In order to deal with this problem, the Tomonaga-Luttinger Liquid (TLL)
theory was formulated [117, 118], and it shows some proprieties that are not present in
higher dimension Fermi systems. Some characteristics of a TLL include [114,117]:

• The non-existence of individual excitations but collective ones, which implies the
appearance of charge and spin excitations separately, each one with its propagation
velocity, vch and vsp, respectively.

• The power-law decay of correlation functions at T = 0 and all other low-energy
proprieties driven by the exponents u and K from the TLL model hamiltonian

H =
h̄

2π

∫ [
uK

h̄2 (πΠ(x))2 +
u

K
(∇φ(x))2

]
dx, (5.1)

where u = (vchvsp)
1/2 is the sound velocity, K is a dimensionless parameter, Π(x) is

the canonical momentum and φ(x) is the free scalar field operator [114].

• The gapless linear energy dispersion at long wavelength which, as in the case of a
Fermi liquid, leads to a linear dependence of the specific heat with the temperature
in the form

cTLL =
Rπ

6u
T, (5.2)

where R is the gas constant.

Since the conception of TLL theory, several quasi-1D systems has been experimentally
investigated in order to verify the predictions from the theory. Carbon nanotubes [119,120],
electronic quantum circuits [121], optically trapped Bose and Fermi gases [122,123], and
quantum magnets are some examples of systems described by TLL theory.

Regarding quantum magnets, since field-induced antiferromagnetism can be mapped
into bosonic systems and the TLL behavior is also linked to a 1D bosonic system via
bosonization [114] both systems are closely related. Some efforts have been made in the past
years to identify such phenomena in magnetic systems [20,21,124–131]. One requirement
of such systems is that the interactions among the spins in one direction is much larger
than in other directions, which make these systems behave nearly as 1D systems and so
display the physics of the TLL regime. In table 5.1 we present some examples of magnetic
systems where the TLL regime is observed.

The possibility for the existence of a TLL regime was also studied in DTN. NMR
experiments [133] and theoretical predictions [132] claim that a genuine TLL regime in
DTN should occur for a energy scale comparable to the one in which the BEC of magnons
occurs, due to the interplay beetween the large-D gap and the interchain interactions. In
fact, the observation of a pure TLL regime in DTN is difficult to achieve since the interchain
interactions are not negligible regarding the intrachain interactions (Jab/kB = 0.18K and
Jc/kB = 2.2K) if we compare with the exchange interactions of compounds in which the
TLL regime is observed (see table 5.1).
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Table 5.1: Some examples of quasi-1D quantum magnets in which the existence of the TLL regime was identified. The exchange coupling
J⊥, also known as Jrung, leads to the formation of dimmers while J‖, also called Jladder is responsible to the coupling of dimmers along one
dimension. The term J ′ is the interladder (interchain) coupling which for these examples is very small and, in some cases, hard to determine.
TmaxLL is the maximum temperature in which the TLL regime is observed while HLL1 and HLL2 delimit the range of the external magnetic
field in that such regime is observed. All the compounds presented here are quasi-1D S = 1/2 AFM dimmers except in the case of NTENP
which is a S = 1 bond-alternating chain.

Compound J⊥/kB J‖/kB J ′/kB TmaxLL HLL1, HLL2 References
Cu(NO3)2 · 2.5D2O 5.16(4) K 1.39(5) K 0.06 K 220(5) mK 3.10 T, 3.92 T [124].

F5PNN 5.6 K 2.8 K 0.07 K >0.8 K ? T, 5.8 T [125,126].

Ni(C9H24N4)(NO2)ClO4 54.2 K 24.4 K 0.12 K >2.5 K 12 T, ? [20,127].
(NTENP)

(C5H12N)2CuBr4 12.9 K 3.6 K 0.02 K 1.5 K 6.99(5) T, 14.4(1) T [128–130].
(BCBP)

(C7H10N)2CuBr4 9.5 K 16.5 K ? >1.5 K 2.6 T, 29 T [21,131].
(DIMPY)
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Nevertheless, the emergence of a quasi-1D in DTN was reported from some
magnetoacoustic measurements [134], where the authors suggest the presence of the crossover
between 1D fermionic to the 3D bosonic magnetic excitations.

In this work we performed AC magnetic susceptibility and specific heat measurements
along with QMC calculations and we also verify the existence of a quasi-1D regime in DTN.
Our results are presented in the next section.

5.2 Results for the quasi-1D regime

In this section we present our results of magnetization, AC magnetic susceptibility
and specific heat measurements along with 1D and 3D QMC calculations for DTN. We
concentrate our studies in a range of temperature right above 1.2 K, which corresponds to
the maximum temperature for the observation of the BEC of magnons in DTN. In such
temperatures the thermal fluctuations are higher than Jab/kB, so the interchain coupling
becomes small in comparison with the thermal fluctuations and, as a consequence, the
long-range order is suppressed. However if the temperature of the system is lower or
comparable with Jc/kB , a short-range rather than a long-range ordering manifests itself. In
this situation the system is a collection of quasi-1D chains along the c-axis. Further, when
T >> Jc/kB, the thermal fluctuations overcome the interaction among the spins and the
system is in the paramagnetic phase.

Figure 5.1 illustrates the magnetic ordering of DTN in different ranges of temperature.

c

a

b

T

_b

_

_c

_

_a

_

Figure 5.1: Schematic representation of the correlations among Ni2+ in DTN for different
temperature ranges. In (a), corresponding to kBT ∼ Jab, the system displays a the field-
induced antiferromagnetic long-range order, represented by the blue-shaded region. With
an increasing of the temperature, for kBT ∼ Jc, the long-range ordering vanishes, but a
short-range ordering is present and the system becomes a collection of quasi-1D chains, as
shown in (b). When kBT >> Jc , the interaction among the spins becomes negligible and
the system is a collection of independent spins (as shown in (c)).
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The first result presented in this chapter concerns our measurement of AC magnetic
susceptibility χAC as a function of the external magnetic field H, applied parallel to the
c-axis, for temperatures higher than 1.2 K - the highest temperature for the observation of
BEC of magnons in DTN.

Additionally to the experiments we performed QMC simulations in order to compare
with our experimental results. For 1D simulations we considered a chain with 256 spins with
periodic boundary conditions and initially ran over 4×105 QMC steps, which we discarded
due to the thermalization, and took the next 8×106 steps to calculate the magnetization.
In the fully 3D calculations we employed a 8×8×32 grid with periodic boundary conditions
and discarded the first 2×105 steps, taking the next 4×106 steps. For these simulations we
consider as the parameters of the hamiltonian Jab/kB = 0.18 K, Jc/kB = 2.2 K, D/kB = 8.9

K and g = 2.2, as estimate in thermodynamic [50], neutron scattering [54] and electron
spin resonance measurements [51]. In 1D simulations we take Jab/kB = 0 K.

Once we have the magnetization, we obtain the susceptibility by the derivative of M(H)

with respect to H. It is worth to mention that this susceptibility, sometimes called static
susceptibility can differ from the AC susceptibility for high frequencies of the AC excitation
field. However in our measurements we apply a 155 Hz AC field, which is sufficiently low
and allow us to compare the AC and the static susceptibilities.

In figure 5.2 (a) and (b) we present our results of AC magnetic susceptibility with the
1D and 3D QMC simulations both for BEC regime temperatures (a) as well as above it (b).
We see from the curves that the more we increase the external magnetic field H the more
χAC increases, due to a weak paramagnetic response of the large-D gap. Keeping increasing
the field the gap closes and both ground state (Sz = 0) and the excited state (Sz = 1)
becomes degenerated. In figure 5.2 (a) we observe cusps around the critical fields, which
are characteristic of a long-range ordering. In figure 5.2 (b), since in the measurements the
temperature is higher than 1.2 K, which makes T >> Jab/kB , a long-range ordering do not
manifests itself. Instead, a quasi-1D antiferromagnetic behavior arises, characterized by the
presence of a broad maximum which is a consequence of the short-range correlations [44].
For even higher fields a spin polarized phase arises and, consequently, the saturation of
magnetic moments. This is characterized by the appearance of a second maximum in the
χAC(H) curves.

To characterize the results in figure 5.2 (b) as the signature of a quasi-1D regime, we
compare the χAC(H) curves both above and below 1.2 K with 1D and 3D QMC calculations.

As we would expect, for BEC regime temperatures (figure 5.2 (a)) the best agreement
between the experimental and theoretical results is given by the 3D QMC rather than 1D
QMC calculations, once a 3D ordering of the system is expected for such temperatures.

This situation changes for T >1.2 K, where a long-range ordering is no longer
expected. In fact for this case (figure 5.2 (b))we observe that both 1D QMC as well
3D QMC calculations displays nearly the same results and they significantly corroborate
our experimental results. It indicates that for such temperatures a 1D description of the
system is suitable.
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In figures 5.2 (c) and (d) we highlight the differences between the 3D and 1D QMC
calculations for T =0.6 K, which corresponds to a BEC regime temperature.
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Figure 5.2: χAC(H) measurements for temperatures to the occurrence of the BEC phase
(a) and above those for the occurrence of the BEC phase (b). Continuous lines correspond
to our measurements. Dotted circles and triangles are the results from 1D and 3D QMC
calculations respectively. The maximum of susceptibility curves are indicated by arrows. In
figure (c) and (d) we display magnetization and static susceptibility results from 1D and
3D QMC calculations at T =0.6 K.

From figure 5.2 we see a good agreement between the experimental data and the 1D
numerical simulations, confirming the quasi-1D nature of DTN for such temperatures.

We also performed specific heat measurements as a function of H for temperatures
down to 1.8K and magnetic fields up to 9T, applied parallel to the c-axis. We observe that
the C(H) curves display a non monotonic behaviour, since they decrease with the field up
to a certain value which coincides with the first maximum of the χAC curves. Then the
curves start to increase again with the increasing of H.

Similar results were reported theoretically for S = 1 chains with large easy-plane
anisotropy [135], in measurements for the spin-1/2 ladder compound (C5H12N)2CuBr4
[129, 136], as well as in the context of optically trapped ultracold bose gases in a TLL
regime, where the authors present curves of specific heat of the ultracold gas as a function of
the chemical potential µ [137]. According to the spin-boson mapping presented in chapter
2, the external magnetic field in a spin system is equivalent to the chemical potential in
a bose system, which makes the comparison of our results with those in reference [137]
straightforward. These results are presented in figure 5.3.

From the position of the maxima in the magnetic susceptibility in both experimental
and QMC data and the minima of C(H) curves, we present the phase diagram of DTN
with our results for the quasi-1D regime in figure 5.4. Magnetocaloric effect and specific
heat data measurements were obtained from reference [54].
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Figure 5.3: Top panel: Specific heat of DTN as a function of the external magnetic field
H for some temperatures. The arrows indicate the position of the minima for each curve.
Bottom panel: Specific heat of a optically trapped ultracold gas as a function of the chemical
potential µ (figure adapted from reference [137]).

We see in the diagram of figure 5.4 a reasonable agreement between the experimental
points and the theoretical data. Some discrepancies may have origin in the size of de grids
employed in the simulations and a small misalignment of the samples. The curves of 1D
and 3D QMC calculations nearly display the same results, from what we can attest the
quasi-1D nature of the system. From slight displacement from both 1D and 3D curves we
can conclude that, although the system in a good approximation behaves as a quasi-1D
system in these temperature and field ranges, the interchain interaction Jab still gives a
small contribution in these conditions.

Very similar phase diagrams are also presented for the compounds presented in table
5.1, where the authors presents both the BEC phase diagram and the region of the TLL
regime. Although such compounds really display the TLL regime due to their negligible
interchain interactions our results resembles to these presented in the literature.
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Figure 5.4: BEC phase diagram for DTN (blue shaded region) with our results in the
quasi-1D regime (red shaded region). Black circles correspond to the maxima of χAC(H)
curves while the green squares denote the minima of C(H) curves. Dashed green and purple
curves were obtained from 1D and 3D QMC calculations respectively. GP stands for gapped
regime while SP is the spin-polarized regime. The BEC phase diagram presented here was
obtained from previous magnetocaloric effect (MCE) and specific heat measurements from
reference [54].

We suggest that for DTN the spin chains along the c-axis are weakly coupled to each
other and this leads to a regime of weakly coupled TLL chains [10,128,138]. However, in
order to explore this hypothesis more theoretical and experimental efforts are necessary.
This can motivate further studies.

5.3 Higher temperatures (T > Jc/kB) results

Until now we have discussed the temperature range where T > Jab/kB. Now, let us
consider the case for higher temperatures, where T > Jc/kB and the contribution to the
magnetism of the system is given mostly by the single-ion anisotropy and by the Zeeman
term.

We performed magnetization measurements using the PPMS-VSM in a range of
temperature from 2 K to 10 K under different values of the external magnetic field. These
results are presented in figure 5.5 (left panel), where we display curves of DC magnetic
susceptibility, defined as χDC(T ) = M(T )/H, where M(T ) is the magnetization as a
function of the temperature. We compare these results with 1D QMC calculations.
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Initially we used in our simulations the same parameters in the hamiltonian mentioned
before. However we note that in order to fit the simulations with our experimental data the
value of D should be around 15% smaller. In other words, instead of adopting D/kB = 8.9

K best fittings are found when we consider D/kB = 7.6 K.

Additionally we compare the experimental results and the QMC calculations with an
analytic expression to the magnetization given for an ideal paramagnet. In such situation,
where T >> Jc/kB, the magnetization per ion in this system, according to the theory
presented in Appendix C, is given by

M(T,H) = gµB
sinh(gµBHβ)

cosh(gµBHβ) + 1
2e
βD
, (5.3)

where β = 1/kBT .

From figure 5.5 (right panel), where we plotted the temperature in which the maximum
of χDC(T ) is observed as a function of the external magnetic field, we see that the smaller
the value of H the better are our adjusts considering D/kB = 7.6 K. For higher fields
the maximum of χDC(T ) is observed in lower temperatures and so the contribution of Jc
cannot be neglected. This explains why the results given by (5.3) diverge comparing with
the experimental data for higher H.
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Figure 5.5: Left panel: DC magnetic susceptibility (χDC) of DTN as a function of the
temperature for different values of external magnetic field. Full lines correspond to our
experimental data while dots are from 1D QMC calculations. The arrows indicate the
maxima of χDC(T ) curves. Right panel: Temperature of the maximum of χDC(T ) curves
for different values of H. The experimental data is denoted by black stars, while the results
from QMC calculations are denoted by full circles. The continuous lines were obtained
from the equation (5.3) for the paramagnetic phase.
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We also see that, the higher the external magnetic field and the lower the temperature,
the better are the agreement between both theoretical and the experimental results. The
reason is that, for such conditions, the contributions of Zeeman term as well as the exchange
interactions became more and more relevant. In this sense, whatever the value of the
single-ion anisotropy between D/kB = 7.6 K and D/kB = 8.9 K, the experimental and
theoretical results tends to agree at low temperatures and high magnetic fields.

In fact, in the literature different values for the single-ion anisotropy in D are reported.
The first work which identified the field-induced antiferromagnetic phase in DTN gave an
estimate for the single-ion anisotropy as D/kB = 7.6 K, by fitting mean-field expressions to
AC magnetic susceptibility experimental curves [49]. Later, electron spin resonance (ESR)
measurements together with theoretical fittings to the spectrum found D/kB = 7.72 K for
external magnetic fields near Hc1 and D/kB = 8.9 K near Hc2 [62]. In reference [54], the
authors estimated from neutron scattering measurements D/kB = 8.12(4) K. However, the
most adopted value for D/kB in literature is D/kB = 8.9 K, given by ESR experiments at
external magnetic field up to 25 T [51].

It is worthwhile to mention that the advantage of determining the magnitude of
parameters of the system, such as exchange couplings, anisotropies and gyromagnetic factor,
by making measurements in low fields is that one minimizes any eventual effects, for example
magnetostriction, demagnetizing factor and torque, that manifest due to the presence of
the applied magnetic field. The influence of these high fields effects may leads to errors
when one estimates the magnitude of the desired parameters.

We suggest that such discrepancy between the values of the single-ion anisotropy may
arises either by these aforementioned effects that manifest themselves under high external
magnetic fields or from other interactions not took into account in the hamiltonian that
describes the DTN, for example Dzyaloshinskii-Moriya or even higher-order-neighbour
interactions. Therefore further investigation are necessary in order to elucidate this issue.

5.4 Conclusions

In this chapter we present our AC magnetic susceptibility, magnetization and specific
heat measurements as well as QMC calculations in 1D and 3D for the DTN above 1.2
K, which is the maximum temperature for the observation of BEC of magnons in this
compound. Our studies shows that under these conditions, the system displays a quasi-1D
behaviour rather than the long-range order observed in the BEC phase. This allow us to
delimit the region in the phase diagram where such regime is observed.

For some examples of field-induced antiferromagnets in the literature a TLL phase
was also identified. Although our results resembles these results, a genuine TLL regime
in DTN is not expected since the contribution of interchain interactions Jab is small but
not negligible. However the existence of the crossover between the bosonic excitations in
the BEC phase to fermionic excitations in temperatures correspondent to the quasi-1D
regime [133, 134] may indicate that some reminiscent of a TLL regime still plays some
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role in DTN. One possibility that deserves further investigation is the existence of weakly
coupled TLL chains, leading to complex behaviour of the magnetic excitations.

Furthermore, we performed magnetization measurements for T > Jc/kB were the
magnetism of the system is mainly ruled by the Zeeman term and the single-ion anisotropy.
The comparison between our results with QMC simulations and a theoretical approximation
shows that the value of the single-ion anisotropy is around 15% less than the value usually
adopted in the literature, which is D/kB = 8.9 K. Our results reinforce the discrepancy
of such result in the literature with other reported values. This issue invites to further
investigation in order to clarify this unconformity.
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Chapter 6

Magnetic and Specific heat
investigations on DTM and DTF
compounds

In addition to our studies on the DTN compound presented in the previous chapter we
also synthesized and performed magnetic and specific heat measurements in the Mn and Fe
based parent compounds of DTN, MnCl2-4SC(NH2)2 (DTM) and FeCl2-4SC(NH2)2 (DTF).
Initially we discuss some existing results for DTM and DTF compounds. Then we present
our magnetization results of DTM and DTF, comparing with DTN results and estimate,
from the Curie-Weiss law and mean-field calculations, the exchange couplings J , the single-
ion anisotropy D and gyromagnetic factor g of such compounds. We also performed AC
magnetic susceptibility and specific heat measurements, revealing the existence of two phase
transitions occurring in DTM, which allow us to construct a magnetic phase diagram for
this compound, and the absence of phase transitions in DTF down to 100 mK. Finally, we
make some general remarks on the nature of exchange interactions in these compounds.

6.1 DTM and DTF compounds

Despite the DTN compound has been intensively studied in the past two decades, very
few studies were dedicate to explore the physics of its parent compounds DTM and DTF.

Regarding DTM, some AC magnetic susceptibility measurements at H = 0 T in single
crystals were performed by H. J. Van Till, where the author identified an antiferromagnetic
transition around T = 0.56 K [139]. Later, some magnetic measurements parallel to the
(111) plane and down to 2 K as well as specific heat measurements down to 0.4 K for some
values of external magnetic fields up to 4 T applied perpendicular to the (111) plane did not
pointed out any indicative of phase transitions [87]. We reproduce these results in figure
6.1, for the specific heat curves, and figure 6.2, for the estimate energy levels obtained from
multi-level Schottky fits given by (2.79).
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Figure 6.1: Specific heat of DTM measured for magnetic field applied perpendicular to
the (111) plane (colourful dots) and multi-level Schottky fits (black curves) obtained from
expression (2.79). This figure was adapted from reference [87].

Figure 6.2: Representation of the energy levels in Mn2+ taking into account the zero-field
and Zeeman splittings (left panel). Energy levels of DTM as a function of external magnetic
field (right panel) obtained from multi-level Schottky fits to the specific heat data in figure
6.1. These figures were adapted from reference [87].

For the DTF compound, a magnetic measurement was carried out down to 4 K for the
powdered samples and no indicative of magnetic ordering was identified [140]. After, some
Mössbauer measurements determined the electronic transition energy to the 5Eg level equal
to 8700 cm−1 [141,142]. The value for the 5T2g transition was not reported.
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Motivated by the lack of magnetic and specific heat measurements we devoted part of
this work to study both DTM and DTF compounds under external magnetic fields and at
lower temperatures.

6.2 Results from magnetic measurements

The first results of this section are the χDC(T ) measurements at H = 0.01 T and
M(H) measurements for DTM and DTF single crystals in different orientations and the
comparison with DTN results. These results are presented in figures 6.3 and 6.4.

As we can see from figures 6.3 and 6.4, DTM and DTF displays each one the same
behaviour of χDC(T ) and M(H) along two directions perpendicular to the c-axis, since for
these directions the curves of the measurements lies in each other, which points out that
both compounds have an uniaxial magnetic anisotropy.

In order to estimate a exchange coupling J , the single-ion anisotropy D and the
gyromagnetic factor g for DTN, DTM and DTF we fitted the curves in figure 6.3 with
mean-field expressions for the zero field magnetic susceptibility given by [44,46,143]

χ(T ) =
χ0(T )(

1 + 2zJ
Ng2µ2B

χ0(T )
) , (6.1)

where z is the coordination number and χ0(T ) is the zero field magnetic susceptibility
calculated for a single ion. In Appendix C we present the zero field magnetic susceptibility
expressions calculated for single ions with S = 1, S = 2 and S = 5/2.
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Figure 6.3: χDC(T ) curves of DTN (red curves), DTM (blue curves) and DTF (green
curves) measured under an external magnetic field H = 0.01 T in different orientations,
with magnetic field applied parallel to c-axis, perpendicular to c-axis and perpendicular to
the c-axis with a rotation of 90◦ from the previous one.
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Figure 6.4: M(H) curves of DTN (red curves), DTM (blue curves) and DTF (green
curves) measured in different orientations, with magnetic field applied parallel to c-axis,
perpendicular to c-axis and perpendicular to the c-axis with a rotation of 90◦ from the
previous one.

In figure 6.5 we display in each panel the χDC(T ) curves of each compound studied in
this chapter as well as the correspondent fittings obtained from the expression (6.1). We
see in figure 6.5, in all the χDC(T ) curves presented, a very good agreement between the
experimental data with the fittings from the mean-field theory. The obtained values of J ,
D and g parameters from these fits are presented in table 6.1.

To obtain a hint on the magnetic ordering and the strength of interactions in these
systems we can analyse our results with help of the well known Curie-Weiss law, which
states that the inverse of the magnetic susceptibility follows as

1

χ
=

1

C
(T + θCW ), (6.2)

where C = Ng2µ2
B/3kB and for convenience we write a plus sign before θCW which means

that if θCW > 0 an antiferromagnetic ordering is expected in the system, otherwise, for
θCW < 0, the system may display a ferromagnetic ordering.

For such analysis, the results from figure 6.5 are plotted as 1/χDC(T ) in figure 6.6,
from which we can extract the values of g and θCW from the Curie-Weiss law (6.2). The
obtained values of J , D and g from these fittings are also presented in table 6.1.

We observe for all three compounds in both parallel and perpendicular directions
of applied H with respect to the c-axis that the estimate of θCW gives a positive value.
According to (6.2) it means that an antiferromagnetic ordering is expected for the three
compounds.
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From table 6.1 we see a good agreement for the values of p comparing with the data from
the literature for single ions of Ni2+, Fe2+ and Mn2+ [71]. For DTN and DTM we see that
the linear adjust gives approximately the same value of θCW in the parallel and perpendicular
directions. For DTF the values of θCW in the perpendicular directions are around 10 times
grater than for the parallel direction with respect to the c-axis. Another point is that the
greatest value θCW for DTF is around 1.5 times grater than for DTN. This suggests that
an antiferromagnetic ordering should appear for temperatures comparable to those for DTN.

Table 6.1: Values of J/kB, D, g and θCW obtained through the mean-field theory fittings
and the Curie-Weiss law for measurements parallel and perpendicular to the c-axis. From
literature [71] p = 3.2 for Ni2+, p = 5.9 for Mn2+ and p = 5.4 for Fe2+ ions. The relation
of p and g is given by p = g[S(S + 1)]1/2.

DTN DTM DTF
H ‖ c H ⊥ c H ‖ c H ⊥ c H ‖ c H ⊥ c

θCW (K) 6.52 6.28 1.52 1.06 1.89 10.15
gCW 2.08 2.34 1.89 1.97 2.21 2.25
gχDC 2.17 2.29 1.89 1.97 2.29 2.24
pCW 2.95 3.31 5.59 5.84 5.42 5.51
pχDC 3.07 3.23 5.59 5.83 5.61 5.49

DχDC/kB (K) 7.62 7.53 -0.17 0.15 1.42 1.44
zJχDC/kB (K) 4.93 3.53 0.73 0.44 0.37 4.76
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Figure 6.5: χDC(T ) curves of DTN (top panel), DTM (middle panel) and DTF (bottom
panel) measured under an external magnetic field H = 0.01 T in different orientations,
with magnetic field applied parallel and perpendicular to c-axis. The lines correspond to
the fittings obtained from equation (6.1).
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panel) measured under an external magnetic field H = 0.01 T in different orientations,
with magnetic field applied parallel and perpendicular to c-axis. The lines correspond to
linear fittings according to the Curie-Weiss law given by equation (6.2).
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Figure 6.7 shows the magnetization curves as a function of H for DTM and DTF
compounds.

We also compare these results with a theoretical model for an ideal paramagnet. Usually,
experimental M(H) curves are compared with the well-known Brillouin expression for ideal
paramagnets. However, such expressions do not take into account the single-ion anisotropy,
making this theoretical model inaccurate when single-ion anisotropies are relevant. In fact,
if we try to adjust the Brillouin expression in our results of figure 6.7, the obtained curves
do not fit the experimental results.

In order to provide a more accurate model which present a better agreement with our
experimental results we derived expressions of M(H) for an ideal paramagnet considering
that our hamiltonian has both the Zeeman term and the single-ion anisotropy. The
derived expressions are presented in Appendix C. However, one limitation of our proposed
model is the fact that obtaining the analytical expressions for M(H) curves for H applied
perpendicular to the c-axis is very difficult since the expressions for the eigenvalues of the
hamiltonian for this problem are very complicated. So, we compare our experimental results
with a theoretical model only for H applied parallel to the c-axis.

As we see from figure 6.7 such fittings provide very good results. In the case of DTM
we see that, even at low temperatures, T =0.52 K, the fitted curve adjust very well to the
experimental results, which suggest that for this compound a paramagnetic description
is valid and so the exchange interactions should be small comparing to kBT (in other
words, J/kB << T ). Additionally, the curves tends to saturate approximately around
M(µB/Mn2+) = 5, which correspond to the expected saturation value for Mn2+ ions.

For DTF we observe a slightly different plot. While for temperatures down to 2 K the
fittings also suggest a paramagnetic nature of the compound for such temperatures, for
the M(H) curve, at 0.58 K the fitted curve does not provide a good agreement. This may
indicate that for such temperature and values of the external magnetic field the contribution
of exchange interactions are significant, which explains the deviation of the theoretical
curve obtained for an ideal paramagnet from our experimental result.

In the case of DTM compound we also performed some magnetic measurements for
temperatures down to 0.45 K. In figure 6.8 we display χDC(T ) measurements under an
external magnetic field H = 0.1 T. As we see from this figure in both parallel and
perpendicular directions to c-axis the χDC(T ) present a kink around 0.6 K, what points
out to an antiferromagnetic ordering below such temperature.

In addition to the already presented χDC(T ) measurements, we also performed a χAC(T )

measurement for the DTF powder to temperatures below to 0.3 K, as presented in figure
6.9. For this compound we observe a broad maximum around T =1.5 K for the χAC(T )

measurement of the powder rather than a kink as for the DTM, which would indicate the
existence of an antiferromagnetic ordering. Despite the significant values of θCW summarized
in table 6.1, such indicative of magnetic ordering is not present these measurements.
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Figure 6.7: Magnetization measurements for DTM (top panel) and DTF (lower panel)
as a function of the external magnetic field H for different temperatures. Circles and
open triangles are experimental results while dashed curves are theoretical fittings from
expressions in Appendix C for an ideal paramagnet under an external magnetic field applied
parallel to the c-axis.
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Figure 6.9: χAC(T ) and χDC(T ) for DTF in different crystal orientations and for powder
samples.

72



CHAPTER 6. MAGNETIC AND SPECIFIC HEAT INVESTIGATIONS ON DTM AND
DTF COMPOUNDS

6.3 Results from specific heat measurements for DTM

For DTM and DTF compounds we also performed measurements of specific heat for
several values of applied magnetic field and temperatures.

As mentioned in the first section of this chapter, earlier specific heat measurements for
DTM revealed no magnetic phase transitions for temperatures down to 0.4 K and external
magnetic fields up to 4 T [87].

In our work we measured DTM and DTF samples for even lower temperatures, down
to 100 mK.

In figures 6.10 and 6.11 we present our results for the total specific heat and for the
magnetic contribution to the specific heat after the subtraction of the lattice contribution
obtained from the non-magnetic parent compound CoCl2-4SC(NH2)2 (DTC).

Since both DTM and DTC compounds have different masses, it expected that their
lattice contribution are not equal each other. From Chapter 2 we learn that the Debye
temperature is linearly proportional to the sound velocity cs of the acoustic waves in
the solid. In a good approximation, cs ∼ 1/

√
M , where M is the molecular mass of the

constituents in a lattice site. From this fact, we can rescale the Debye temperature of both
compounds in order to express the lattice contribution of a compound as a function of the
other [144]. Let us introduce the parameter r given by

r =
θDTMD

θDTCD

=
MDTC

MDTM
, (6.3)

where θDTMD and θDTCD the Debye temperature of DTM and DTC, respectively. MDTC =

487.59 u and MDTM = 430.12 u are the molecular mass of DTM and DTC, respectively.
Using the rescaling parameter r, we can finally write the lattice contribution CDTMlatt for

DTM as a function of the lattice contribution CDTClatt for DTC as

CDTMlatt (T ) = CDTClatt (rT ). (6.4)

Regarding the magnetic contribution to the specific heat in figures 6.11, we see that in
both orientations, with the external magnetic field applied parallel and perpendicular to the
c-axis, the sample displays antiferromagnetic phase transitions for several values of magnetic
field. For a large enough fields we observe the usual suppression of the antiferromagnetic
transition with the transition temperature TN moving to lower temperatures while decreasing
the high of the peak.

Specially for the sample oriented in the perpendicular, there are two transitions. From
these curves we extracted the phase diagram shown in figure 6.12.
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Figure 6.10: Total specific heat measured for DTM for several values of external magnetic
field applied in parallel (top panel) and perpendicular (bottom panel) to the c-axis
orientation. In both figures we compare the measured curves with the specific heat
measurement of DTC compound (see text).
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Figure 6.11: Magnetic contribution to the specific heat of DTM for several values of external
magnetic field applied in parallel (top panel) and perpendicular (lower panel) to the c-axis
orientation. These curves were obtained after subtracting the lattice contribution, obtained
from the specific heat of DTC compound, from the total specific heat curves presented in
figure 6.10.
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temperature of the transition, delimited by the peaks of the specific curves in figure 6.11.
Dashed lines are guide for the eyes.

In the phase diagram of figure 6.12 we plot the temperature TN of the transitions in
the specific heat curves. We also represent in the phase diagram the inflection points for
the magnetic susceptibility curves in figure 6.8, which is given by the maximum value
of the derivative dχDC/dT . According to a well known result by M. A. Fisher, in an
antiferromagnetic system, the temperature of such inflexion point is approximately equal
to TN [145], which shows to be consistent in our the phase diagram.

We analyse the dependence of the magnetic contribution to the specific heat with the
temperature for T < TN . In figure 6.13 we plot the Cm(T ) curve at H=0 T as a function
of T 3.

As we see, the low temperature portion of the curve is proportional to T 3. The reason
for this behaviour lies in the fact that the specific heat contribution of magnons in an
antiferromagnetic system is proportional to T 3, as we demonstrated in Chapter 2. From
this fact we again have an indicative for the antiferromagnetic nature of the system.

Another feature of the specific heat curve in figure 6.13 is the slight deviation of the
curve from the T 3 behaviour at low temperatures. As in some examples of antiferromagnets,
such deviation may be an indicative for the existence of an energy gap in the spin-wave
spectrum induced by an anisotropy [146–149].

We also calculate the magnetic contribution to the entropy by integrating Cm(T )/T , as
given in the Chapter 2 by equation (2.80). Our result for the entropy calculated from the
Cm(T ) curve at H=0 T is presented in figure 6.14.
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Figure 6.13: Magnetic contribution to the specific heat at H=0 T as a function of T 3. The
dashed red curve is a linear fit in the low temperature (T < TN ) portion of the Cm(T )
curve.
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Figure 6.14: Magnetic contribution to the entropy obtained by integrating Cm(T )/T for
the specific heat curve at H=0 T .
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In figure 6.14, we see that the magnetic contribution to the entropy, saturates at the
value S = R ln(6). According to equation (2.82) from Chapter 2 it corresponds to the
value for the entropy of an ideal paramagnetic system with S = 5/2. Then we conclude
that all the magnetic contribution to the entropy was take into account in the Cm(T )/T

integration.
Finally, regarding the two peak structure in our specific heat curves, we would like to

mention the existence of other examples in literature for compounds that exhibit two sharp
anomalies in the specific heat. We highlight some examples: the metal dihalides compounds
MnCl2 [150, 151] and NiI2 [152]; also NiCl2·2H2O [153, 154], and NiBr2·2H2O [155]; the
related compounds to the ones we study NiBr2-6SC(NH2)2 [156], NiI2-6SC(NH2)2 [157] and
the frustrated Ising system CoCl2-2SC(NH2)2 [158]; the compound K2PbCu(NO2)6 [159].

One explanation for such double peak behaviour in the specific heat curves is a partial
ordering of the spins, then followed by the full ordering of the spins at a lower temperature.
In the case of MnCl2 and K2PbCu(NO2)6 it is suggested that the existence of next-nearest
neighbours interactions and their competitions with the nearest neighbours interactions
leads to the partial ordering at certain temperatures and a subsequent full ordering of the
spins for lower temperatures. This competitions can also lead to different spin structures
like different types of antiferromagnetic ordering or even helimagnetic ordering, and the
two peaks can be related to the transition between different types of ordering. Also, the
possibility of a structural phase transition can be consider to explain the nature of one
of the peaks. In order to investigate which picture happens in DTM, our results urge for
neutron scattering measurements to account for the amount of ordered magnetic moment
and for the structure at low temperatures.

6.4 Results from specific heat measurements for DTF

In this section we present the results for the specific heat of DTF for different orientations
of the crystal and under different values of external magnetic field, as shown in figures 6.15
for the total specific heat and figure 6.16 for the magnetic contribution. Confirming our
magnetic susceptibility measurements, no indicative of magnetic ordering is observed down
to 0.1 K.

From the curves of the magnetic contribution to the specific heat we see that they
display a broad maximum, which shifts for higher temperatures the higher the value of the
external magnetic field. We identify the existence of such maxima as Schottky anomalies,
from fitting these curves with the multi-level Schottky expression (2.79) from Chapter 2
take into account five energy levels, since is expected for Fe2+ ion the existence of five
energy levels, in a simplified scheme with a zero-field splitting and external magnetic field
as depicted in figure 6.17
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Figure 6.15: Total specific heat measured for DTF for several values of external magnetic field
applied in parallel (top panel) and perpendicular (bottom panel) to the c-axis orientation.
In both figures we compare the measured curves with the specific heat measurement of
DTC compound.
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Figure 6.16: Magnetic contribution to the specific heat of DTF for several values of external
magnetic field applied in parallel (top panel) and perpendicular (lower panel) to the c-axis
orientation. These data were obtained after subtracting the lattice contribution, obtained
from the specific heat of DTC compound, from the total specific heat curves presented
in figure 6.15. Solid lines are adjust obtained from the expression (2.79) for the Schottky
anomaly of specific heat.
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Figure 6.17: Simplified energy level scheme for a Fe2+ ion, taking into account the zero-field
splitting and the Zeeman splitting due to the application of an external magnetic field.

In figure 6.18 we present the energy levels of DTF as a function of the external magnetic
field, estimated from fits of the Schottky model for the specific heat curves in figure 6.16.
The Ei energies presented in figure 6.18 account for the difference between a certain energy
level and the lowest energy level, as represented in figure 6.17.
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Figure 6.18: Energy levels of DTF as a function of the external magnetic field obtained
from multi-level Schottky fits to the magnetic contribution of the specific heat, for the
applied field parallel to the c-axis (left panel) and perpendicular to this axis (right panel).

We see from figure 6.18 that the energy levels present, in a good approximation, a linear
behaviour as a function of the magnetic field, which is due to the Zeeman splitting.

As in the previous section, we calculate the magnetic contribution for the entropy of
DTF for the specific heat curve at H=0 T. Our result is shown in figure 6.19.

Unlike the entropy curve for DTM, the curve of magnetic contribution to the entropy of
DTF does not saturate to the value for the entropy of an ideal paramagnetic system with
S = 2, but for a smaller value. The main reason for this fact is due to the absence of a
phase transition in DTF in the range of temperature studied.
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Figure 6.19: Magnetic contribution to the entropy obtained by integrating Cm(T )/T for
the specific heat curve at H=0 T.

Despite the value of θCW = 10.15 K for DTF, we do not see any indicative of magnetic
ordering down to 100 mK, which makes this compound a candidate for magnetic frustration,
with a frustration parameter f = |θCW |/TN > 100. More studies, specially neutron
scattering, are necessary in order to confirm the possibility of magnetic frustration in this
compound.

6.5 Considerations about the exchange interactions in DTM
and DTF

Due to the lack of works dedicated to determine the exchange interactions in DTM and
DTF compounds some of our results cannot be fully understand and some few questions
are still opened. On the other hand, some of our results help to extract some informations
about such interactions.

First, from magnetization measurements (see figures 6.3 and 6.4) for external magnetic
fields applied along the c-axis and along two directions perpendicular to it, we verify that
along these two directions perpendicular to the c-axis the magnetization measurements
display the same behaviour. Such results are seen in both DTM and DTF compounds.
Also, taking into account that for both compound the distance between two magnetic ions
along the a-axis and b-axis are equal (a = b = 13.760 Å for DTM and a = b = 13.708Å
for DTF) we conclude that the strength of exchange interactions along both a-axis and
b-axis should be equal, namely Jab, but different from the exchange interactions Jc along
the c-axis.
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Since DTM and DTF are face-centered structure, we may also consider a interaction Jf
among the atoms in a corner and in the center of a face of the unit cell. Such interaction
may not be non-negligible comparing to Jab and Jc.

In figure 6.20 we depicted a simplified representation of DTM and DTF structure with
the aforementioned exchange interactions.

Figure 6.20: Simplified representation of DTM and DTF structure. Jab are the exchange
interactions along a and b-axis, Jc is the exchange interaction along the c-axis and Jf is
the interaction among atoms in a corner and in the center of a face of the unit cell. Purple
spheres represent Mn or Fe atoms while Cl atoms are represented by green sphere. S,C,N
and H atoms were omitted for clarity.

Recalling table 6.1, where we summarize our estimates for the exchange interactions for
measurements with field applied parallel (H ‖ c) and perpendicular (H ⊥ c) to c-axis, we
observe some puzzling results which the explanation to then remains open. These results
regard the estimation of J for DTF for both H ‖ c and H ⊥ c. In principle, due to smaller
distance among the magnetic ions along to the c-axis (c = 8.940 Å) comparing to the
distance between two magnetic ions along the a-axis and b-axis (a = b = 13.708 Å) and also
the disposition of Cl atoms along the c-axis, which leads to superexchange interactions along
such axis, we would expected a larger value for J in the estimate for H ‖ c measurements
rather than for H ⊥ c measurements. However we observe the opposite scenario, with the
H ⊥ c measurements more than 10 times larger than the H ‖ c measurements and we are
still working for interpret such results.

Another feature that deserves more studies, concerns on the double peak structure of
specific heat in DTM. As mentioned, two transitions are also observed other compounds,
including in a related compound to DTM, the MnCl2. In this compound some neutron
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measurements [160] revealed that the contribution of second and third-neighbour interactions
are also relevant and may lead to different spin structures like different antiferromagnetic
orderings and helimagnetism. The relevance of such high order interactions in this compound
is explained by an intricate combination of different mechanism of superexchange interactions.
So, some similar study is necessary for DTM in order to explain the nature of the two
transitions.

Finally, the absence of magnetic ordering in DTF for temperatures down to 100 mK and
the its value for θCW = 10.15 K, may suggest the existence of strong magnetic frustration
in this compound. A non-negligible contribution (if we compare with Jab and Jc) of Jf
interactions among the atoms in a corner and in the center of the face of the unit cell, as
represented in figure 6.20, may lead to frustration in this compound.

6.6 Conclusions

Through magnetization, magnetic susceptibility and specific heat measurements we
studied the parent compounds of DTN, named DTM and DTF. We estimate the exchange
couplings J , single-ion anisotropy parameter D and gyromagnetic factor g for these
compounds through Curie-Weiss law and mean field fittings in magnetization curves.

From magnetic susceptibility and specific heat measurements for DTM we verify the
existence of sharp peaks in the curves of these measurements, which are associated to
antiferromagnetic transitions. In some specific heat curves we observe the existence of two
transitions, which may be related to a partial, followed by a full ordering of the magnetic
moments, as well as transitions between different spin structures or a structural phase
transition followed by a magnetic ordering. Neutron scattering measurements are needed in
order to corroborate these hypothesis.

For the DTF compound, no transition was observed for temperatures down to 100 mK,
despite its value for θCW = 10.15 K, making this compound a candidate for strong magnetic
frustration, with a frustration parameter f = |θCW |/TN > 100. Again, in order to verify
this issue further experiments are needed, specially neutron scattering.
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Chapter 7

Magnetic susceptibility studies on
Br-doped DTN

The aim of this chapter is to present our preliminary results of AC magnetic susceptibility
of Br-doped DTN samples NiCl2xBr2(1−x)-4SC(NH2)2 with different amounts x of the
dopant. From our results were able to construct a three-dimensional BEC phase diagram
relating the temperature, magnetic field H and the percentage of bromine in the system
and compare our results with previous measurements. Although some few magnetic studies
were performed in Br-doped DTN samples [24,25,161–166], to the best of our knowledge,
no phase diagram obtained from magnetic measurements relating the temperature, critical
magnetic field and bromine percentage was presented so far.

7.1 Disorder in quantum magnets and Br-doped DTN

In many systems in condensed matter physics, from basic research to technological
applications, disorder is an unwanted feature. Specially in the study of phase transitions,
disorder can prevents the occurrence of symmetry breaking and consequently suppress the
existence of phases in the system [167].

It turns out to be that, specially in quantum systems, the effects of disorder can lead to
unexpected behaviours. An important example was proposed by P. W. Anderson in 1958
where he considered the behaviour of electrons in a crystal with the tight-biding model with
a random potential. He showed that, even in the absence of interactions, the localization of
the wave functions is observed [168]. Since that, it has been discussed if such mechanism
can also describe the metal-to-insulator transition in some materials [169].

The effects of disorder have been also studied in bosonic systems. In the Bose-Hubbard
model, an analogous of the Hubbard model, it was shown that disorder in a bosonic
system leads to the suppression of the global phase of the system and the formation of
localized and isolated superfluid clusters of different sizes, the so-called Bose-Glass (BG)
phase [17,170,171]. Some efforts have been made in order to verify the scaling laws relating
the critical exponents and the universality class of bosonic disordered systems [167,172], both

85



CHAPTER 7. MAGNETIC SUSCEPTIBILITY STUDIES ON BR-DOPED DTN

theoretically and experimentally in studies with bosons in optical lattices [172], superfluid
helium in porous media [173] and in quantum magnets [174].

Regarding quantum magnets, disorder can be created either by site dilution, where the
magnetic ion is replaced by a non-magnetic ion, or bond dilution, where the ligand atoms
are replaced by other element. Some examples of materials where the effects of disorder
have been studied are the IPA-CuCl3−xBr3 [26–28, 38], Tl1−xKxCuCl3 [29–32] and the
DTN [17].

In the case of DTN, both site and bond dilutions have been studied in the past few
years. The site dilution consist in the replacement of some Ni ions by Cd ions [175], while
in the bond dilution some Cl atoms are replaced by Br atoms. Most of studies of disorder
in DTN focus on the Br-doped DTN, NiCl2xBr2(1−x)-4SC(NH2)2.

From magnetic and specific heat measurements in 8% (x=0.08) Br-doped DTN, R. Yu
et al [24] showed that the doping is responsible for the lowering of Hc1. This happens
because the substitution of Cl by Br atoms locally increases the exchange couplings. As
shown in Chapter 2, the gap depends on the exchange couplings, which means that the Br
doping in DTN tends to lower the gap. The authors also found that the exponent φ, which
relates the critical fields and temperature as Tc ∼ |H −Hc|φ, is φ = 1.1 for the Br-doped
DTN. This value is consistent with the predictions for the BG-to-BEC transition and the
results of this work are in a good agreement with QMC calculations. Finally, the authors
present the first experimental evidence of a Mott-Glass phase, where the susceptibility,
which is related to the compressibility of a Bose gas, vanishes despite the locally gapless
spectrum.

Also, some neutron scattering studies [161] as well as specific heat measurements [162,163]
for some Br-doped DTN with different amounts of Br indicates that the gap closes, when
H=0 T, for a Br content around 20%.

Finally, some Nuclear Magnetic Resonance (NMR) measurements combined with QMC
calculations in a 13% Br-doped DTN identified the resurgence of a quantum coherence which
implies in a disorder-induced BEC phase right after the critical field Hc2 for a maximum
temperature around 200 mK [164–166].

In our work we performed AC magnetic susceptibility measurements of Br-doped DTN
for different dopant amounts and we built a phase diagram relating the critical magnetic
field and temperature for the occurrence of the BEC phase with the percentage of the
bromine dopant.

7.2 Results

In this section we present our results of AC magnetic susceptibility measurement as a
function of external magnetic fields up to 5 T and temperatures down to 0.55 K for our
Br-doped DTN samples.

The results of these measurements are presented in figure 7.1 for several temperatures
from 0.55 K to 1.10 K. The kinks in the χAC curves, which marks the existence of a
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transition to an ordered state, are indicated by arrows. In some curves the position of the
kink was not clear at first sight. So, to determine the kinks we observe that right before and
after the region where the kink is located the χAC curves display a nearly linear behavior.
So we use the technique from reference [50] which consist in drawing straight lines in these
linear region and extrapolate them. Finally we identify the kink as the crosspoint of these
two lines. An example of the application of this technique is presented in figure 7.1 for the
χAC(H) curve measured for the 3.3% Br-doped sample at 0.55 K.

Once we determine the value of the field Hc1, which marks the position of the kink for
each χAC(H) curve we are able to construct a three-dimensional phase diagram for DTN
relating the critical temperature and field for the occurrence of the BEC phase with the
percentage of Br in the sample. This phase diagram is presented in figure 7.2.

From the panels of figure 7.1 and the phase diagram of figure 7.2 we see that increasing
of Br impurities lowers the critical field necessary to achieve the BEC phase. In other words,
for measurements of samples with different percentages of dopant performed at a certain
temperature, the higher the amount of Br in the sample, the lower the external magnetic
field necessary to achieve the BEC phase.

Also, we compare our results with previous measurements. In figure 7.3 we display the
curves from figure 7.2 together with Br-doped DTN phase diagrams for a Br content of 8%
and 13%, obtained from χAC(H) measurements by Professor A. Paduan-Filho, and specific
heat measurements in 21% from references [162,163].

From the comparisons in figure 7.3, we verify the consistency of our results with the
previous measurements, since the grater the amount of Br in the sample, the smaller the
critical field necessary to close the gap. Specially for our 8.8% Br-doped sample, we see that,
as expected, its phase diagram is nearly the same phase diagram for the 8.0% Br-doped
sample provided by Professor A. Paduan-Filho.

A clearer way to show these consistencies is presented in figure 7.4, where we selected
the value of Hc1 from each phase diagram presented in figure 7.3 at 0.6 K and 0.8 K and
plotted as a function of the Br content. For the 13% and 21% curves the value of Hc1 was
taken at 0.63 K, and also for the 21% we take the value of Hc1 at 0.84 K.

We see in figure 7.4 that the critical field Hc1 as a function of Br content displays a
linear behaviour, in a good approximation, except for the 21% curve at 0.63 K, where the
gap closes. The determination of a linear tendency of the critical field Hc1 as a function
of the Br content may be useful for an alternative determination of the Br content in the
samples in further measurements.
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Figure 7.1: AC magnetic susceptibility measurement as a function of the external magnetic
field for Br-doped DTN samples in different concentrations of bromine. The arrows indicate
the position of the kink in the χAC(H) curves (see text). The curves were shift vertically
for clarity.
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Figure 7.2: Phase diagram of Br-doped DTN obtained from the position of the kinks from
the curves presented in figure 7.1. For a better visualization of the results, the axis of the
applied external field is arranged in decreasing order.

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 00 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0
1 . 1
1 . 2
1 . 3

 0 . 0 %
 3 . 3 %
 4 . 8 %
 7 . 0 %
 8 . 0 %
 8 . 8 %
 1 3 . 0 %
 1 5 . 5 %
 2 1 . 0 %  ( R e f s .  [ 1 6 2 , 1 6 3 ] )

T (
K)

H  ( T )
Figure 7.3: Phase diagrams for Br-doped DTN samples comparing with previous AC
magnetic susceptility measurements for Br contents of 8% and 13%, provided by Professor
A. Paduan-Filho, and for 21% from specific heat measurements from [162,163].
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Figure 7.4: Critical field Hc1 as a function of the Br content at 0.6 K and 0.8 K, obtained
from the phase diagrams in figure 7.3. The value of critical field for samples with 13% and
21% Br content was taken at 0.63 K and also for the sample with 21% of Br the value of
Hc1 was taken at 0.84 K.

To understand these results is important to remember that the energy gap ∆ between
the Sz = 0 and Sz = 1 levels in DTN is given by [62]

∆ = D − 2Jc − 4Jab. (7.1)

The reason for the lowering of the critical field is due to the fact that the Cl and
Br atoms are responsible for the superexchange interactions among the Ni ions. Since
the presence of Br atoms modify the strength of such interactions and also the single-ion
anisotropy, it modify the size of the gap and this can promotes the closing of the gap for
sufficient high amounts of Br in the sample. As mentioned before and displayed in figure
7.3 such amount is around 20%.

In the aforementioned studies, determination of the exponent φ is made in the portion
of the phase diagram for temperatures below 0.5 K. Since in our experimental setup we can
achieve temperatures down to 0.55 K, the determination of such exponent is not possible.
We expect that, in a future work, we can perform magnetic measurements of these samples
in lower temperatures in order to determine such exponent.

7.3 Conclusions

In this chapter we presented our preliminary results about AC magnetic susceptibility
in Br-doped DTN samples with different amounts of the dopant. Our measurements
corroborate some studies where it is shown that the larger the amount of Br doping in the

90



CHAPTER 7. MAGNETIC SUSCEPTIBILITY STUDIES ON BR-DOPED DTN

system, the lower is the critical field Hc1 for the occurrence of the BEC phase due to the
reduction of the energy gap [24,161,163].

A similar phase diagram to the one in figure 7.2 was presented in reference [163] but for
specific heat measurements. To the best of our knowledge our phase diagram is the first one
obtained from AC magnetic susceptibility measurements that relates the critical magnetic
field, the critical temperature and the bromine content in the Br-doped DTN samples.

We also compared our results with previous measurements and verify that the critical
field Hc1 as a function of the amount of Br dopant present a linear behaviour for some
temperatures.

Since the lower temperature achieved in our experimental setup is around 0.55 K, the
determination of the exponent φ was not possible. We hope to perform further AC magnetic
susceptibility measurements in lower temperatures and higher magnetic fields to obtain the
critical exponents as well as the full phase diagram.
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Chapter 8

Preliminary studies on pressure in
DTN

In this chapter we discuss our preliminary studies on the influence of pressure in DTN
samples. First we review a study about the influence of pressure in Muon Spin Relaxation
and Inelastic Neutron Scattering measurements in DTN. Then we discuss some details
regarding the hydrostatic pressure cells used in the MPMS-SQUID and in the 20 T cryostat,
from which we performed magnetization measurements for different applied pressures up to
7.6 kbar. Finally we present our experimental results combined with mean-field theory and
our estimate for the critical pressure pc necessary to close the energy gap and so promote a
pressure-induced antiferromagnetic phase. Although the reproducibility of our results need
to be verified for pressures up to 3 kbar, our estimate of pc is very close to earlier results
obtained from thermal expansion and magnetostriction measurements.

8.1 Effect of pressure in field-induced antiferromagnets

In the previous chapter we presented our results of magnetic measurements of DTN
and its phase diagram for the pure and Br-doped samples. We saw that the existent gap
between the non-magnetic ground state and the excited state in DTN can be closed either
by applying an external magnetic field or by Br-doping, modifying the strength of exchange
couplings and the single-ion anisotropy term.

However there is a third alternative for closing the gap in field-induced antiferromagnets
by means of applying pressure to the system.

Studies on some field-induced antiferromagnets like TlCuCl3 [33–37], IPA-CuCl3 [38],
PHCC [39] and CsFeCl3 [40], showed that applying pressure by means of pressure cells can
close the gap between the non-magnetic state and the excited state, achieving a pressure-
induced antiferromagnetic phase. The reason for this closing of the gap relies on the fact
that compression of a crystal shortens the atomic distances, increasing the strength of the
exchange interactions. Since the size of the gap depends on the exchange interactions, as
shown in equation (2.22) for DTN, applying pressure tends to reduce the gap or, for high
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enough pressures, even close it.

A fundamental difference between field-induced and pressure-induced phase transitions
regards the universality class of the quantum critical point (QCP) associated with these
transitions. In the theory of phase transitions one of the defined critical exponent is the
so-called dynamical exponent z, related to the power-law of the single-particle dispersion
relation at long wavelengths at the QCP as ωk ∼ kz.

In the case of the BEC QCP we have z = 2. However, the pressure-induced QCPs belongs
to another universality class, where z = 1 [17,176]. It means that these antiferromagnetic
systems provide a very interesting opportunity for studying different universality classes by
varying some physical parameter as external magnetic field or applied pressure, each at
once or even both at same time, which may lead to more intricate phenomena.

For DTN the existence of pressure-induced phase was recently investigated from Muon
Spin Relaxation (µSR) experiments at zero applied field [162]. In these experiments,
powdered DTN was pelletized and inserted in hydrostatic pressure cells. Then, the procedure
to measure the samples under pressure consisted in applying a high pressure, up to 22 kbar,
to the cell and perform a µSR measurement. Later, the pressure was partially released and
a new µSR measurement was performed. This procedure was repeated until zero pressure.

In this study it was shown that, for applied pressures around 2.3 kbar, a pressure-induced
antiferromagnetic ordering is present in DTN and the transition temperature increases the
higher the applied pressure. The pressure-induced phase diagram for DTN obtained in
these experiments is presented in figure 8.1.

Figure 8.1: Pressure-induced phase diagram of DTN obtained from Muon Spin Relaxation
(µSR) experiments at zero applied field. The points denote the observed ordering
temperature TN in DTN as a function of pressure. This figure was adapted from
reference [162].

Since an antiferromagnetic ordering was identified for applied pressures around 2.3 kbar,
it was expected the closing of the energy gap for pressures from such value. In order to
verify it, some Inelastic Neutron Scattering (INS) measurements were performed at 1.8 K
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for applied pressures of 0 kbar and 4 kbar without applied magnetic field. These results are
presented in figure 8.2.

Figure 8.2: Inelastic Neutron Scattering (INS) measurements for DTN at 1.8 K for applied
pressure of 0 kbar (left panel) and 4 kbar (right panel). Both measurements were made
without applied magnetic field. This figure was adapted from reference [162].

As we see from figure 8.2, for an applied pressure of 4 kbar, which presumably should
be enough to close the gap, the gap lowers but still remains opened, since the brighter
periodic blue curve which represents the spin excitation spectra does not assume values of
zero energy.

This apparent contradiction was explained from neutron diffraction studies, where it
was shown that, for pressures above 8 kbar, DTN undergoes an irreversible structural
transition from a structure belonging to the I4 space group to another structure from the
P4 or P42 space group.

Since the µSR measurements were performed by successively decreasing the pressure
from an initial applied pressure higher than 8 kbar, the results presented in figure 8.1 does
not represent the pressure-induced phase diagram for the I4 DTN structural phase but for
its high pressure phase.

Although it was shown in reference [162] that for 4 kbar the DTN gap remains opened
and also that for 8 kbar DTN undergoes an irreversible structural phase transitions, the
possibility of pressure-induced phase transition for this range of pressures that precede the
structural phase transition remains not explored, as well as the influence of pressure in the
DTN phase diagram.

In our work we studied the effect of pressure in DTN by applying pressure to the samples
using a hydrostatic pressure cell and measuring the magnetization under different applied
pressures. In the case of AC magnetic susceptibility measurements, due to technical issues,
we did not concluded such measurements.
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8.2 Hydrostatic pressure cell

In this work many efforts were employed to measure the influence of hydrostatic pressure
in magnetic measurements in DTN samples. For such study some models of hydrostatic
pressure cell were built to be used in the MPMS-SQUID and in the 20 T cryostat.

In a hydrostatic pressure cell, a sample is inserted in a recipient containing some fluid,
generally oil. The recipient is desirably made from a soft material, like Teflon, to allow
deformation. In common assemblies for a pressure cell, this recipient is pushed by one or
two pistons. The pressure made by the pistons is homogeneously transferred to the sample
by means of the fluid that permeate it. Since, in general, a pressure of the magnitude
of a GPa is applied to the cell, their parts should be made from materials which sustain
high pressures. So then, the most common materials used to make a pressure cell are
cooper-beryllium (CuBe) alloys or tungsten carbide, due to the strength of these materials
in dealing with high pressures.

The advantages of using CuBe in to produce pressure cells lies in the fact that these
alloys are able to sustain high pressures and presents low magnetic signal. The CuBe alloy
used in this work display at T = 2 K a signal in the order of magnitude of −10−9 emu/mg,
which makes cooper-beryllium appropriate to build a pressure cell that gives a minimum
contribution to the total signal measured during the experiments.

8.2.1 Hardening of CuBe

In this work we built our pressure cells from CuBe 25 (C17200). The hardness of CuBe
alloys is enhanced after some heat treatment. So, we preferably acquired the material
without heat treatment in order to make the manufacturing of the pressure cells easier.
After the production of the components of the cell, we carried out with the hardening
process.

The hardening process employed consists in heat the material up to 315◦ C (600◦ F) for
3 hours and cooling it [177]. We prepared two hardened samples, one left to cooled down
naturally inside the oven after ramp the temperature down to the environment temperature
and the other by quenching, which consisted in cool down the sample rapidly by drop it
into water.

In order to infer the hardness of CuBe samples we performed Vicker hardness tests,
which consists in deforming the samples by applying pressure using a press with a pyramid-
shaped diamond tip. Then the hardness of the sample is calculated from the dimensions of
the impressions made by the diamond tip in the material.

We verify that our CuBe samples without heat treatment display a hardness of 221(6)
HV while the hardness of samples under heat treatment is 354(10) HV, which represents
an increase of 62% in the hardness. Both hardened samples, from natural cool down and
quenching, displayed no significant difference in their hardness value.

96



CHAPTER 8. PRELIMINARY STUDIES ON PRESSURE IN DTN

8.2.2 Designs for the pressure cell

In order to perform our magnetic measurements under pressure we develop some
pressure cells to be used in the MPMS-SQUID based on models commonly used in such
applications [178, 179]. In figures 8.3 and 8.4 we present, respectively, the schematic
representation of our pressure cell and its photo. Due to the limitations in the sample space
of MPMS the outer diameter of our pressure cells is 7.5 mm.

Locking screw

Locking screw

Anvil

Anvil

Piston

Piston

Sealing ring

Sealing ring

Te�lon capsule

Te�lon cap

Figure 8.3: Schematic representation of a pressure cell.

We verify that in our cells we are able to achieve pressures up to 7.6 kbar. However,
since the manufacturing of some pieces, specially the Teflon capsule, are hard due to their
small size they present some imperfections making hard to achieve such pressures. These
imperfections are responsible by the crashing of the capsules and the leaking of the pressure
media, which was Kerosene in our experiments. These damages limited in many situations
the maximum pressure achieved as about 3 kbar.
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To infer the pressure applied in the cell, commonly a small piece of a superconducting
material (in our case we used Pb or Sn) it is added with the sample, since the influence of
the pressure on the superconducting temperature Tc is well known. So, since we measure
the value of Tc from AC magnetic susceptibility measurements after applying the pressure
to the cell, we know the value of the pressure acting on the sample.

Figure 8.4: Parts of the pressure cell: Locking screw (LS), anvils (AV), pistons (PS), sealing
rings (SR) and the Teflon capsule with the Teflon cap (TC).

Another problem faced regards the low magnetic signal of DTN samples (M = 5.3×10−4

emu at H=0.5 T and T=1.8 K). Although the CuBe signal is low, the total signal of the
pressure cell is in the same order of magnitude of the DTN samples signal, making the
centering of the sample and its measurements hard to perform. In figure 8.5 we compare
the signal of a DTN sample with mass m = 7.76 mg and the signal of a pressure cell.

2 3 4 5 6 7 8 9 1 0
- 0 . 0 0 2
0 . 0 0 0
0 . 0 0 2
0 . 0 0 4
0 . 0 0 6
0 . 0 0 8
0 . 0 1 0
0 . 0 1 2

M(
em

u)

T ( K )

 D T N  s a m p l e  ( m = 7 . 7 6  m g )
 P r e s s u r e  c e l l

H = 0 . 5  T

Figure 8.5: Comparison between magnetization measurements of a DTN sample with a
mass of 7.76 mg (red curve) and an empty pressure cell (blue curve) under an external
magnetic field of 0.5 T.
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In another cryostat, with a larger sample space these hindrances could be overcame
building a larger pressure cell with a system of pick-up coils, and even also primary coils,
wrapped around the sample. In this case this assembly is inserted in the Teflon capsule
and the coils wires come out from the cell by a feedthrough.

We developed several types of coils to be used in a larger pressure cell for our 20 T
cryostat. These models include variations with and without a primary coil and secondary
coils with single and two opposite windings. The larger pickup coil build, following the
size limitation of the sample space, had 1760 turns of 44 AWG cooper wire and an inner
diameter about 2 mm. In figure 8.6 we show an example of a pick-up coil.

Figure 8.6: An example of pick-up coils to be used inside a pressure cell.

Despite trying to measure DTN samples with these coils at low temperatures (down to
1.8 K) using the mutual inductance bridge method, we were not able to reproduce magnetic
susceptibility measurements of DTN with this system, again due to the small signal of the
samples. However, we succeed to measure the transition of a Sn sample with m = 1.38 mg
to the superconductor state. In figure 8.7 we present a χAC(T ) measurement made from
such coil in which this transition can be seen.

We see in figure 8.7 that the reduction of temperature in the sample causes a decrease
in the magnetic susceptibility which, around T = 3.65 K is abrupt, marking the transition
to the superconductor state. This value is is close to the reported value for this transition,
Tc = 3.72 K.

It should be mention that these measurements are highly non-trivial to be performed,
since we are simultaneously dealing with low temperatures, high magnetic fields, high
pressures and samples with a low magnetic signal. Due to this difficulties we did not
conclude this study.
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Figure 8.7: χAC(T ) measurement (in arbitrary units) of a Sn sample made in a homebuilt
pickup coil for a pressure cell at external magnetic field H = 0 T and AC excitation field
hAC = 1 Oe with frequency f = 155 Hz.

8.3 Effects of pressure in DTN

With help of our pressure cell design for use in MPMS-SQUID, we performed magnetic
measurements of DTN samples under pressure. Due to the problems mentioned in the
last section the maximum pressure achieved in our experiments was 7.6 kbar in one
occasion. Since in many attempts the maximum pressure achieved was around 3 kbar, the
reproducibility of the results presented in this section could not be verify for pressures
higher than 3 kbar.

In these studies, a small piece of lead used as a barometer was glued to a DTN samples
using GE varnish. After the application of pressure in the cell, we measured the AC magnetic
susceptibility of the system at an external magnetic field H = 0 T and AC excitation field
hAC = 1 Oe with frequency f = 155 Hz. In this measurement we determined the transition
temperature to the superconducting state Tc in the χAC(T ) curves as the middle point
between the onset of the transition and the first points in the lower portion of the χAC(T )

curves.

The pressure in the system was inferred knowing that, in the case of lead, Tc as a
function of the applied pressure p is given by [180]

∂Tc
∂p

= −(3.61± 0.05)× 10−2 K/kbar. (8.1)
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After determining the pressure, we performed magnetization measurements in the
system under an external magnetic field H = 0.5 T. Since we use lead as a barometer, the
magnetization measurements should be made for values H higher than H = 0.08 T, given
that this is the critical field to observe the superconducting state in lead. For external fields
higher than such value the superconducting state is suppressed and the magnetic signal of
lead is low enough (10−5 emu/mg) to not interfere in the magnetization measurements of
DTN.

In figure 8.8 we present our results of χDC(T ) measurements for DTN under some
applied pressure as well as the χAC(T ) measurements to the determination of the Tc as
a function of the applied pressure. We fit our χDC(T ) DTN curves with the mean-field
expression given by (6.1) in order to determine an exchange coupling J and the single-ion
anisotropy parameter D as a function of the applied pressure.

We see from figure 8.8 (a) that the application of pressure shifts the temperature of the
maximum in DTN curves to higher temperatures and makes it broader. Also we verify that
the mean-field fits to the curves provide good agreement with the experimental data. For
low temperatures, such agreement tends to diverges since this model is an approximation
and does not take into account the intrachain interactions Jab, which are relevant as lower
the temperature.

Also, from figure 8.8 (b) we see that the application of pressure tends to lower the
critical temperature for the superconducting transition of lead, as described by expression
(8.1).

Once we estimate the exchange coupling J and the single-ion anisotropy parameter D
from the curves in figure 8.8 (a), we studied how the magnitude of such parameters changes
with application of pressure in the system. In figure 8.9 we present the estimate value for
these parameters as a function of the applied pressure.
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Figure 8.8: (a) χDC(T ) at H = 0.5 T under several pressures. Continuous black lines are fits
to the experimental data (colourful dots) using expression (6.1). (b) χAC(T ) measurement
(in arbitrary units) at external magnetic field H = 0 T and AC excitation field hAC = 1 Oe
with frequency f = 155 Hz. These curves were shifted vertically for clarity.
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Figure 8.9: Values of exchange coupling J and single-ion anisotropy parameter D as a
function of applied pressure p obtained from fits of curves in figure 8.8 using the mean
field expression (6.1). Black dots are experimental data and red lines are linear fits to the
experimental data.

As we see in figure 8.9, the value of both J and D parameters increases linearly, in a
good approximation, with the increasing of pressure. From a linear fit of such data we were
able to estimate the dependence of J and D as

J(p)/kB = 0.28p+ 2.75 K and D(p)/kB = 0.19p+ 7.36 K. (8.2)

Knowing the dependence of J and D with pressure, we can estimate the critical pressure
pc necessary to close the gap and so promote a pressure-induced antiferromagnetic ordering.
Let us recall the expression for the energy gap in DTN and, for simplicity, assume that
the magnitude of Jab is independent of pressure since Jab is an order of magnitude smaller
than Jc (Jab/kB = 0.18 K). So we have the dependence of the energy gap as a function of
pressure given by

∆(p) = D(p)− 2Jc(p)− 4Jab. (8.3)

Using the estimates for Jc(p) and D(p) from (8.2) we have for ∆(pc) = 0 that pc = 3.16

kbar, which is a value of pressure fully accessible with a hydrostatic pressure cell.

To corroborate our estimate we compare our obtained value for the critical pressure with
the value obtained from the pressure dependence along the c-axis of the critical magnetic
field Hc1, obtained from magnetostriction and magnetic susceptibility measurements and
given by [181]

∂Hc1

∂p
= −0.676 T/kbar. (8.4)

Considering that, at p = 0 kbar and T = 0 K, Hc1 = 2.2 T we can obtain from (8.4)
the pressure in which we have Hc1 = 0 T as pc = 3.25 kbar, which is very close to our
estimate but, according to neutron measurements in reference [162] not enough yet to close
the gap, what may happen for pressures higher than 4 kbar.
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However, these values are just qualitative estimates that were obtained from some
approximations. They point out that the magnitude of applied pressure necessary to
observe the pressure-induced transition is accessible with a hydrostatic pressure cell.

The next step on the study of the effects of pressure in DTN is to perform magnetization
measurements or magnetic susceptibility measurements for lower temperatures, as long
as the hindrances of measuring low magnetic signals, thermalization and achieving high
pressures are solved.

8.4 Conclusions

In this work we performed some preliminary measurements on the effect of hydrostatic
pressure in magnetic measurements in DTN.

We built different versions of hydrostatic pressure cells, some to be used in the MPMS-
SQUID and others to be used in our 20 T cryostat. With our pressure cell to the MPMS-
SQUID we were able to perform magnetization measurements in DTN under applied
pressures up to 7.6 kbar. However due to imperfections in the parts of cell, the maximum
pressure typically achieved was around 3 kbar. Regarding our pressure cell to be used in the
20 T cryostat, it was design to host both the pick-up coils and sample inside it. Nonetheless,
due to the limitations for the size of the sample and, consequently, the magnitude of its
signal, we were not able to measure the magnetic susceptibility on these samples.

From our magnetization measurements in DTN for different applied pressures combined
with mean-field fits we determined a linear dependence of the exchange coupling and
single-ion anisotropy as a function of pressure. From these dependences we estimated
the critical pressure to close the energy gap, and so achieved a pressure-induced ordering,
as pc = 3.16 kbar, which is close to the value calculated from the dependence of critical
magnetic field Hc1 with pressure, given by pc = 3.25 kbar.

This estimates point out the possibility for studying the pressure-induced ordering in a
hydrostatic pressure cell since the aforementioned experimental issues were solved.

Although neutron studies in reference [162] indicate that the gap does not close for an
applied pressure of 4 kbar and that DTN presents an structural phase transition at about 8
kbar, next studies can focus on exploring the magnetic behaviour and the possibility for
closing the gap for pressures between 4 kbar and 8 kbar as well as delimit the DTN phase
diagram for values of applied pressures and external magnetic field.
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Conclusions and perspectives

In this work we studied the compounds NiCl2-4SC(NH2)2 (DTN), MnCl2-4SC(NH2)2
(DTM), FeCl2-4SC(NH2)2 (DTF) as well as the Br-doped version of DTN, Ni(Cl1−xBrx)2-
4SC(NH2)2 from magnetic and specific heat measurements combined with theoretical results
from mean-field and, in the case of DTN, with Quantum Monte-Carlo calculations.

In DTN we identified, above the field-induced antiferromagnetic phase diagram which is
associated with a BEC phase of magnons, the existence of a quasi-1D Tomonaga-Luttinger
liquid (TLL) regime. Although a genuine TLL regime in DTN is not expected due to the
small, but not negligible, contribution of the interchain interactions Jab, our experimental
and numerical QMC results present significant similarities with experimental results and
theoretical predictions for other compound in which a purely 1D description is valid. It
suggest that DTN presents the reminiscent of a TLL regime and the existence of coupled
TLL chains, leading to complex behaviour of the magnetic excitations. Furthermore,
our magnetization measurements at higher temperatures, for T > Jc/kB, as well as our
analytical and QMC results determine the single-ion anisotropy parameter D/kB = 7.6 K,
which corroborate some results in literature and show discrepancy with other that claim a
value around D/kB = 8.9 K for this parameter. We suggest that other interactions, like
Dzyaloshinskii-Moriya or higher-order neighbours interactions, not included in the DTN
hamiltonian may explain these discrepancies.

Regarding our studies in DTM and DTF compounds, we estimate an exchange
coupling J , the single-ion anisotropy parameter D and the gyromagnetic factor g for
these compounds through Curie-Weiss law and mean field fittings in our magnetization
curves. Susceptibility and specific heat measurements in DTM reveal the existence of
antiferromagnetic transitions below 0.55 K. In some specific curves measured with H

perpendicular to the c-axis we verify the existence of two phase transitions, which may be
associated with a partial, followed by a full, ordering of the magnetic moments, transitions
between different spin structures or a structural phase transition. For the DTF compound,
no magnetic ordering was found for temperatures down to 100 mK, despite its value for
θCW = 10.15 K, making this compound a candidate for magnetic frustration, with a
frustration parameter f = |θCW |/TN > 100.
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For the Br-doped DTN compound we presented our preliminary results of AC magnetic
susceptibility for samples with different amounts of the dopant. These measurements
corroborate some studies where it is shown that the larger the amount of Br doping in
the system, the lower is the critical field Hc1 for the occurrence of the BEC phase due to
the reduction of the energy gap. From these results we built a phase diagram relating the
critical temperatures and fields to the concentration of the Br dopant. To the best of our
knowledge our phase diagram is the first one obtained from AC magnetic susceptibility
measurements that relates the critical magnetic field, the critical temperature and the
bromine content in the Br-doped DTN samples. Studies at lower temperature are needed
in order to determine the critical exponent related to the Bose-glass to BEC transition in
our samples.

Finally we discuss our preliminary results on the effect of pressure in magnetic
measurements in the DTN. Although the reproducibility of our results could not be
confirmed for pressures above 3 kbar due to technical issues in our pressure cell, the
preliminary results fitted by mean-field theory shows a linear dependence of the exchange
interaction and the single-ion anisotropy term as a function of pressure for the range of
applied pressure studied. By knowing these dependences we were able to estimate the
critical pressure to close the gap as pc = 3.16 kbar, which is close to the value of pc = 3.25

kbar obtained from the dependence of the critical field Hc1 with pressure. Since such
pressure are easily achieved from a hydrostatic pressure cell, we hope our results motivate
further investigations at lower temperature in order to observe a pressure-induced magnetic
transition in DTN.

Perspectives

We highlight some further features to be explored in the compounds studied in this
work

• Although the DTN compound has been extensively studied in the past two decades
some questions still demands further exploration. The first one is the aforementioned
discrepancy between the values of single-ion anisotropy D reported in the literature.
Another question to be explored is the effect of pressure in the DTN phase diagram.

The study of pressure-induced phase transitions in condensed matter-systems is a
current field of research. In DTN it represents a challenge, since the signal of the
samples is small (χac = 8 × 10−8emu/mg at T=1.8K). So, in order to study the
effect of pressure in χac measurements in DTN a large pressure cell is required to
host large samples. Another alternative is to use a pressure cell with pick-up coils
and, eventually, even the primary coil wrapped around the sample. In both cases the
thermalization and the thermometry must be handled with care to obtain trustworthy
results.
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• Subsequent studies of both DTM and DTF compounds may follow in several directions.
Starting from the synthesis of bigger and more regular samples, specially for the DTF
compound. One idea is employ the technique of supersaturated solution in a gel to
grow more regular samples in suspension.

To determine the strength of the single-ion anisotropy and exchange interactions
neutron scattering experiments are needed. Such measurements can also confirm our
hypothesis of the existence near-next-neighbours interactions among Mn atoms in
DTM, which could explain the existence of the double-peak structure observed in our
specific heat measurements and explore our hypothesis for the magnetic frustration
in DTF.

The synthesis of similar Mn and Fe based compounds can also be explored, for example
by replacing Cl to Br atoms. This leads to interactions and anisotropies with different
strengths or even different types of interactions and anisotropies, which may display
phenomena such as magnetic frustration or BEC of magnons.

• Regarding our Br-doped DTN samples a full phase diagram for χAC measurements
is one perspective for future works. In fact, for this kind of measurement, there is
just one result reported in the literature, for a sample with 8% of bromine in its
composition [24]. So, it would be relevant to perform χAC measurements to study
changes in the full phase diagram as a function of the bromine concentration. Even
more important is the detailed phase diagram at lower temperatures, in order to
characterize the critical exponents related to disordered bosonic systems.

For H = 0 it was predicted the existence of the so-called Mott-Glass phase, which
has the property of being a gapless but display a vanishing susceptibility. The first
observation of this phase in a physical system was reported in [24] for 8% of bromine
DTN doped sample in specific heat measurements. Since we produced Br-doped DTN
samples for several concentrations of dopant, the characterization of this phase as a
function of the bromine concentration also could be performed in many experiments,
including specific heat and magnetic susceptibility measurements.

As mentioned in Chapter 7, one striking observation in Br-doped DTN is the resurgence
of the BEC phase for fields higher that Hc2, observed in neutron magnetic resonance
experiments [164] and predicted theoretically [165,166]. Future work may follow to
explore this behaviour.
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Appendix A

System with two particles with
spin-1/2

In this appendix we present some results regarding a system with two particles with
spin-1/2. Specifically we are interested in evaluating the product S1S2 of the total spin for
the two particles. Such result is used in the derivation of the hamiltonian for the Heisenberg
model.

First, let us introduce the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (A.1)

The α component of the spin is simply given by

Sα =
h̄

2
σα. (A.2)

For sake of simplicity we will omit h̄ hereafter.

In a system with two particles with spin 1/2, we can write the spin matrices of this
system as a direct product of the spin matrices of the two particles. By the definition, the
direct product of two matrices A and B is given by

A⊗B =


a11B a12B . . .

a21B a22B . . .
...

...
. . .

 , (A.3)

where aij are the entries of the matrix A.

From this definition we are able to construct the matrices for a system of two particles
with spin 1/2. First, for the x component we have that the matrices for the two particles
can be constructed as S1x = Sx ⊗ 1 and S2x = 1⊗ Sx, which gives
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S1x =
1

2


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 , S2x =
1

2


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 (A.4)

Analogously, for the y and z components, we have

S1y =
1

2


0 0 −i 0

0 0 0 −i
i 0 0 0

0 i 0 0

 , S2y =
1

2


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 (A.5)

S1z =
1

2


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 , S2z =
1

2


1 0 0 0

1 −1 0 0

0 0 1 0

0 0 0 −1

 . (A.6)

The product of the total spin of the two particle is given by

S1S2 = S1xS2x + S1yS2y + S1zS2z (A.7)

which, using the matrices that we just built, can be represented by

S1S2 =
1

4


1 0 0 0

1 −1 2 0

0 2 −1 0

0 0 0 1

 . (A.8)
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Spin matrices

In this appendix we write the Sx and Sz spin matrices for S = 1, S = 2 and S = 5/2.
From these matrices we calculate the magnetization and magnetic susceptibility of
non-interacting spin systems in Appendix C.

For S = 1

Sx =

√
2

2

0 1 0

1 0 1

0 1 0

 , Sz =

1 0 0

0 0 0

0 0 −1

 . (B.1)

For S = 2

Sx =
1

2


0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2

0 0 0 2 0

 , Sz =


2 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 −1 0

0 0 0 0 −2

 . (B.2)

For S = 5/2

Sx =
1

2



0
√

5 0 0 0 0√
5 0 2

√
2 0 0 0

0 2
√

2 0 3 0 0

0 0 3 0 2
√

2 0

0 0 0 2
√

2 0
√

5

0 0 0 0
√

5 0


, Sz =

1

2



5 0 0 0 0 0

0 3 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −3 0

0 0 0 0 0 −5


.

(B.3)
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Appendix C

Magnetization and magnetic
susceptibility of ideal paramagnets

In this appendix we detail the calculation of magnetization and magnetic susceptibility
for non-interacting spins, which describes an ideal paramagnet. These expressions are used
in the context of the mean field theory. These are the first and the simplest approximation
to be done in order infer about the magnetic ordering of the systems and its parameters.

C.1 Evaluation of magnetization and magnetic susceptibility

To evaluate the thermodynamic properties of a system, we must find the eigenvalues of
the hamiltonian that describe such system to write its partition function

Z =
∑
i

e−βEi , (C.1)

where β = 1/kBT and Ei are the eigenvalues of hamiltonian H.
Once we have the partition function we can calculate the magnetization as

M =
1

β

∂ lnZ

∂H
, (C.2)

and the magnetic susceptibility as

χ =
∂M

∂H
. (C.3)

C.2 Expressions for H applied parallel to c-axis

In the case when the external magnetic field H is applied parallel to z-axis, we have
that the hamiltonian for a single-ion is given by

H = DS2
z − gµBHSz. (C.4)
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Since hamiltonian is diagonal, we can easily calculate the magnetization and magnetic
susceptibility. For a S = 1 system we have

H =

D − gµBH 0 0

0 0 0

0 0 D + gµBH

 , (C.5)

and, from equation (C.2), the magnetization is given by

M(T,H) = NgµB

[
2 exp(−Dβ) sinh(βgzµBH)

1 + 2 exp(−Dβ) cosh(βgzµBH)

]
. (C.6)

The zero-field magnetic susceptibility, from equation (C.3), is

χz(T,H = 0) =
2Ng2µ2

B

kBT

[
exp(−Dβ)

1 + 2 exp(−Dβ)

]
. (C.7)

In a S = 2 system

H =


4D − 2gµBH 0 0 0 0

0 D − gµBH 0 0 0

0 0 0 0 0

0 0 0 D + gµBH 0

0 0 0 0 4D + 2gµBH

 , (C.8)

M(T,H) = NgzµB

[
4 exp(−4Dβ) sinh(2βgzµBH) + exp(−Dβ) sinh(βgzµBH)

2 exp(−4Dβ) cosh(2βgzµBH) + exp(−Dβ) cosh(βgzµBH) + 1

]
,

(C.9)
and

χz(T,H = 0) =
Ng2µ2

B

kBT

[
2 exp(−Dβ) + 8 exp(−4Dβ)

1 + 2 exp(−2Dβ) + 2 exp(−4Dβ)

]
. (C.10)

Finally, for S = 5/2 we have

H =



25
4 D −

5
2gµBH 0 0 0 0 0

0 9
4D −

3
2gµBH 0 0 0 0

0 0 1
4D −

1
2gµBH 0 0 0

0 0 0 1
4D + 1

2gµBH 0 0

0 0 0 0 9
4D + 3

2gµBH 0

0 0 0 0 0 25
4 D + 5

2gµBH


,

(C.11)

M(T,H) =
NgzµB

2

[
5 exp(−6Dβ) sinh(5

2βgzµBH) + 3 exp(−2Dβ) sinh(3
2βgzµBH) + sinh(1

2βgzµBH)

exp(−6Dβ) cosh(5
2βgzµBH) + exp(−2Dβ) cosh(3

2βgzµBH) + cosh(1
2βgzµBH)

]
,

(C.12)

114



APPENDIX C. MAGNETIZATION AND MAGNETIC SUSCEPTIBILITY OF IDEAL
PARAMAGNETS

and

χz(T,H = 0) =
Ng2µ2

B

4kBT

[
1 + 9 exp(−2Dβ) + 25 exp(−6Dβ)

1 + exp(−2Dβ) + exp(−6Dβ)

]
. (C.13)

C.3 Expressions for H applied perpendicular to c-axis

When the external magnetic field H is applied perpendicular to z-axis, as for example
along x-axis, the we have that the hamiltonian for a single-ion is given by

H = DS2
z − gµBHSx. (C.14)

In this case the matrices are not diagonal and in some cases the exact diagonalization
of such matrices can be very cumbersome and demand approximations such as some
perturbation theory to evaluate the eigenvalues.

For the S = 1 case, the hamiltonian from C.14 can be written in a matrix form as

H =

 D −
√

2
2 gµBH 0

−
√

2
2 gµBH 0 −

√
2

2 gµBH

0 −
√

2
2 gµBH D

 . (C.15)

Diagonalizing this hamiltonian is simple and gives the eigenvalues

E1 =
1

2

[
D −

(
D2 + 4H2

)1/2]
, E2 = D, and E3 =

1

2

[
D +

(
D2 + 4H2

)1/2]
.

(C.16)

For H = 0 the magnetic susceptibility is given by

χx(T,H = 0) =
2Ng2µ2

B

D

[
1− exp(−Dβ)

1 + 2 exp(−Dβ)

]
. (C.17)

Diagonalizing (C.14) for S = 2 and S = 5/2 is a difficult task. Here we present the
S = 2 and S = 5/2 hamiltonians written in a matrix form and the zero-field magnetic
susceptibility obtained from reference [182] for S = 2 and from reference [46] for S = 5/2.

For S = 2 the hamiltonian written in a matrix form is given by

H =



4D −gµBH 0 0 0

−gµBH D −
√

3
2gµBH 0 0

0 −
√

3
2gµBH 0 −

√
3
2gµBH 0

0 0 −
√

3
2gµBH D −gµBH

0 0 0 −gµBH 4D


, (C.18)
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and the magnetic susceptibility at zero field is

χx(T,H = 0) =
Ng2µ2

B

kBT

[
6kBT
D (1− exp(−Dβ)) + 4D

3kBT
(exp(−Dβ)− exp(−4Dβ))

1 + 2 exp(−2Dβ) + 2 exp(−4Dβ)

]
.

(C.19)
For S = 5/2 the hamiltonian written in a matrix form is given by

H =



25
4 D −

√
5

2 gµBH 0 0 0 0

−
√

5
2 gµBH

9
4D −

√
2gµBH 0 0 0

0 −
√

2gµBH
1
4D −3

2gµBH 0 0

0 0 −3
2gµBH

1
4D −

√
2gµBH 0

0 0 0 −
√

2gµBH
9
4D −

√
5

2 gµBH

0 0 0 0 −
√

5
2 gµBH

25
4 D


,

(C.20)
and the magnetic susceptibility at zero field is

χx(T,H = 0) =
Ng2µ2

B

4kBT


(

9
kBT

+ 8
D

)
− 11

2D exp(−2Dβ)− 5
2D exp(−6Dβ)

1 + exp(−2Dβ) + exp(−6Dβ)

 . (C.21)
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