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Resumo

Apresentamos uma revisão dos elementos básicos do estudo da teoria clássica das su-

percordas em backgrounds planos e curvos, dando ênfase ao caso importante em que o

background é a variedade AdS5 × S5. Nós inclúımos um estudo da corda bosônica para

revisarmos alguns conceitos básicos da teoria de campos conforme em duas dimensões.

Em seguida estudamos a teoria das supercordas em um espaço plano onde apresentamos

uma introdução pedagógica ao formalismo de espinores puros. A última parte é dedicada

à generalização da ação de Green-Schwarz para o caso de AdS5 × S5 e uma apresentação

do modelo sigma do formalismo de espinores puros no mesmo background.

v



vi



Abstract

We present a review of the basic elements of the study of classical superstring theory in

flat and curved backgrounds, giving emphasis to the very important case of the AdS5×S5

background. We include a study of the bosonic string to review some basic concepts of

two dimensional conformal field theory. We then move on to the superstring in flat space

where we present a pedagogical introduction to the pure spinor formalism of superstrings.

The last part is devoted to the generalization of the Green-Schwarz action to AdS5 × S5

and a presentation of the pure spinor sigma model in the same background.
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Chapter 1

Introduction

The study of holographic theories has became a very active field of research in high energy

physics. It all started with the Maldacena conjecture, the so-called AdS/CFT (Anti-

de Sitter/Conformal Field Theory) correspondence which can be regarded as a duality

between certain four dimensional quantum gauge theories and a theory of closed strings

moving in a ten dimensional curved space-time.

To be precise, the example proposed by Maldacena suggested the duality between the

four dimensional maximally-supersymmetric N = 4 super Yang-Mills theory with gauge

group SU(N) and Type IIB superstring theory defined in an AdS5 × S5 background,

which is the product of a five dimensional anti-de Sitter space (the maximally symmetric

space of constant negative curvature) and a five-sphere.

The N = 4 super Yang-Mills theory is an exact conformal field theory in four dimen-

sions with conformal algebra given by so(4, 2), which includes the Poincaré algebra gener-

ators together with the generators of dilations and special conformal transformations. The

supersymmetry generators extend the conformal algebra to the superconformal algebra

psu(2, 2|4) which is the full algebra of global symmetries of the N = 4 theory. psu(2, 2|4)

also plays the role of symmetry algebra of Type IIB superstrings in the AdS5 × S5 back-

ground. As you can see, the gauge and string theory share the same symmetry algebra.

However this, in principle, does not imply their undoubted equivalence.

In order to achieve an explicit proof of the AdS/CFT conjecture, it is necessary to fully

understand superstring theory when formulated in AdS backgrounds. In this work, we

will be focusing on studying the very basic ingredients to formulate superstring theory in

AdS5 × S5. The plan of this dissertation is to review the basics of bosonic string theory

and superstring theory in flat space and then give an introduction to curved backgrounds

and the very important case of the AdS5× S5 background. Here I will give a short intro-
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2 1. INTRODUCTION

duction to the topics included in each of the chapters of this work.

Bosonic strings

The dynamics of a bosonic string propagating in a D-dimensional flat space is given

by the Polyakov action which can be interpreted as proportional to the area of the two

dimensional surface described by the string. The Polyakov action is given by

SP = − 1

4πα′

∫
d2σ
√
−g gab∂aXµ∂bXµ . (1.1)

One can show that the number of dimensions in which the bosonic string propagates is

equal to 26, we will see this by requiring the vanishing of the so called Weyl anomaly. The

bosonic string theory is a very simple theory, but it presents some inconsistencies. For

instance, the quantum spectrum of the theory presents tachyonic states which are a signal

of inconsistency1. However, the lack of fermionic states in the quantum spectrum is the

downfall of bosonic string theory. The inclusion of supersymmetry leads us to superstring

theory.

Superstrings

The Ramond-Neveu-Schwarz (RNS) formalism of the superstring is a field theory which

maps a supersymmetric worldsheet to a bosonic space-time, while the Green-Schwarz for-

malism maps a bosonic worldsheet to a supersymmetric space-time. On the one hand, the

RNS action is rather easy to quantize but the quantum spectrum of the theory requires an

ad-hoc prescription in order to make it supersymmetric, namely the Gliozzi-Scherk-Olive

(GSO) projection. Apart from that, the procedure to compute amplitudes higher than one

loop is very complicated because of the lack of manifest space-time supersymmetry. On

the other hand, the Green-Schwarz formalism possesses manifest space-time supersym-

metry and can be easily generalized to a generic supergravity background. However, due

to the nature of the constraints of the theory, the covariant quantization for this model is

not known, and one is forced to use the kappa symmetry of the theory to quantize it in

the light cone gauge, thus losing manifest Lorentz covariance. Furthermore, computing

amplitudes in light-cone gauge is extremely difficult. We should point out here, that we

will not be studying the RNS formalism in this dissertation.

The Berkovits’ pure spinor formalism possess manifest space-time supersymmetry and

the covariant quantization can be achieved by means of the inclusion of a BRST charge. In

1In fact, the open string tachyon has been related to the instability of D-branes.
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this sense, the pure spinor formalism takes the advantages of the RNS and Green-Schwarz

formalisms and it does not suffer from their difficulties.

Curved backgrounds

In generic supergravity backgrounds, both Green-Schwarz and pure spinor formalisms

can be used to describe a string at the classical level. The equations of motion for the

background fields are implied by the kappa symmetry in the Green-Schwarz case and by

BRST symmetry in the pure spinor one. As in the flat space case, the kappa symmetry is

a complicated gauge symmetry and the Green-Schwarz superstring is difficult to discuss

quantum-mechanically, whereas in the pure spinor formalism, kappa symmetry is replaced

by BRST symmetry.

The Type IIB supergravity background AdS5×S5 is supported by a self-dual Ramond-

Ramond five-form flux. The presence of this background flux does not allow us to use

the standard RNS formalism for the superstring. Then one needs to use a formalism with

manifest target supersymmetry. One may use the Green-Schwarz formalism or the pure

spinor formalism. Just as in the flat space case where the Green Schwarz-formalism can

be interpreted as a Wess-Zumino-Witten like sigma model on the coset superspace being

a quotient of the ten dimensional super-Poincaré group (SUSY(N = 2)) over its Lorentz

subgroup SO(9, 1), one can make use of a similar approach in the AdS5×S5 case but this

time with a target space given by the supercoset PSU(2,2|4)
SO(4,1)×SO(5)

. This supercoset has a Z4

structure which can be used to write the action model as a bilinear form of currents. A

classical action for the pure spinor formalism can be explicitly written down by applying

the same technique and by introducing pure spinor variables adapted to AdS5 × S5.
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Chapter 2

CFTs and the bosonic string theory

This chapter is intended to introduce the basic elements of conformal field theories (CFTs).

The techniques presented here will be widely used throughout the whole text. We start

by looking at the conformal group and then we develop the basics of CFTs. Since our

objective is to study the bosonic string, we work with two major examples; the first, which

we will call the XX system, is none other than Polyakov’s action after conformal gauge

fixing, and the bc system, which arises as the Faddeev-Popov ghost system. Some very

useful operator product expansions (OPEs) are computed explicitly. At the end of the

chapter we give a comprehensive although short presentation of the BRST quantization

of the bosonic string.

The main references we used to develop the basics of CFTs were the excellent books by

Polchinski [1] and Blumenhagen and Plauschinn [2], some other references we used include

[3] and the very useful lectures by Tong [4]. Some clear presentations of the bosonic string

theory include [5], [6] and [7].

2.1 The conformal group

We start by defining the so-called conformal transformations and we will see that these

transformations form a group which for the special case of two dimensions possess an

infinite number of generators. At the end of this section we will define the Virasoro

algebra as a central extension of the Witt algebra.

5



6 2. CFTS AND THE BOSONIC STRING THEORY

2.1.1 Conformal transformations

We consider a manifoldM provided with a metric g. We define a conformal transforma-

tion as the coordinate transformations defined by the mapping x→ x′ such that

g′ρσ(x′)
∂ x′ρ

∂ xµ
∂ x′σ

∂ xν
= Λ(x) gµν(x) . (2.1)

We will consider flat spaces, so we can write the condition for conformal transformations

as follows

ηρσ
∂ x′ρ

∂ xµ
∂ x′σ

∂ xν
= Λ(x) ηµν , (2.2)

where Λ(x) is a local scale factor. In other words, conformal transformations are coor-

dinate transformations that leave the metric tensor invariant up to a scale factor. The

set of conformal transformations form a group which contains the Poincaré group as a

subgroup, since the latter correspond to the case when Λ(x) = 1.

Let us consider now an infinitesimal coordinate transformation, with a small parameter

ε(x), up to first order we can write

x′ρ = xρ + ερ(x) . (2.3)

In order to know the consequences of equation (2.2) on the infinitesimal coordinate trans-

formations we have just defined, we replace the transformation above in (2.2)

ηρσ
∂ x′ρ

∂ xµ
∂ x′σ

∂ xν
= ηρσ

(
δρµ + ∂µε

ρ
)

(δσν + ∂νε
σ)

= (ηµσ + ηρσ ∂µε
ρ) (δσν + ∂νε

ρ)

= ηµν + (∂µεν + ∂νεµ) . (2.4)

Then, for this transformation to be conformal, we should require that1

∂µεν + ∂νεµ = f(x) ηµν

⇒ 2 ∂αε
α = f(x)D

⇒ f(x) =
2

D
∂αε

α , (2.5)

where in the second line we multiplied both sides by ηµν . Then replacing it back in (2.4)

we have:

ηρσ
∂ x′ρ

∂ xµ
∂ x′σ

∂ xν
=

(
1 +

2

D
∂αε

α

)
ηµν . (2.6)

1Let us stress here that µ, ν = 0, 1, . . . , D − 1.
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In this way, we can conclude that for a coordinate transformation with parameter ε to be

conformal, the following relation must hold

∂µεν + ∂νεµ =
2

D
∂α ε

αηµν . (2.7)

2.1.2 A look at the conformal group in D ≥ 3

Taking two derivatives ∂µ∂ν from both sides of equation (2.7) we get

(D − 1)�(∂ · ε) = 0 , (2.8)

where � = ηµν ∂
µ∂ν . It is easy to note from equation (2.8) that εµ is at most quadratic

in the coordinates, for this reason we can write a general expression for it as follows

εµ = aµ + bµνx
ν + cµνρ x

νxρ , cµνρ = cµρν . (2.9)

To study the generators of the conformal group, we need to study each of the terms in

(2.9) separately. We take the Table 2.1 appearing in the second chapter of reference [2]

Transformations Generators

Translation x′µ = xµ + aµ Pµ = −i∂µ
Dilation x′µ = αxµ D = −ixµ∂µ
Rotation x′µ = Mµ

νx
ν Lµν = i (xµ∂ν − xν∂µ)

SCFT x′µ = xµ−(x·x)bµ

1−2(b·x)+(b·b)(x·x)
Kµ = −i(2xµxν∂ν − (x · x)∂µ)

In the table above we can see each of the generators of the conformal group, and the

conformal transformations they are associated with. 2

Now that we have the generators, let us determine the conformal group for D ≥ 3. In

fact we will concentrate on the conformal algebra (the Lie algebra corresponding to the

conformal group). Defining

Jµ,ν = Lµν , J−1,µ = 1
2

(Pµ −Kµ) ,

J−1,0 = D , J0,µ = 1
2

(Pµ +Kµ) .

(2.10)

It is possible to verify that Jmn with m,n = −1, 0, 1, . . . , (D − 1) satisfy the following

commutation relations

[Jmn,Jrs] = i (ηmsJnr + ηnrJms − ηmrJns − ηnsJmr) . (2.11)

Let us finish this part of the discussion about the conformal group with the following

statement. For the case of dimensions D = p + q ≥ 3, the conformal group of Rp,q is

SO(p+ 1, q + 1).

2SCFT stands for special conformal transformations.



8 2. CFTS AND THE BOSONIC STRING THEORY

2.1.3 The conformal group in two dimensions

We now look at the very special case of two dimensions. Let us make a crucial observation,

the condition (2.7) in two dimensions reads as follows

∂0ε0 = +∂1ε1 , ∂0ε1 = −∂1ε0 . (2.12)

Conditions (2.12) are none other than the well known Cauchy-Riemann equations which

appears in complex analysis and state that a complex function whose real and imaginary

parts satisfy (2.12) is a holomorphic function. Let us introduce complex variables in the

following way

z = x0 + ix1 , ε = ε0 + iε1 , ∂z =
1

2
(∂0 − i∂1) , (2.13)

z̄ = x0 − ix1 , ε̄ = ε0 − iε1 , ∂z̄ =
1

2
(∂0 + i∂1) . (2.14)

Since ε(z) is holomorphic, so is f(z) = z + ε(z), then we can conclude that any change

of coordinates given by a holomorphic function f(z) gives rise to an infinitesimal two-

dimensional conformal transformation z 7→ f(z).

Now we show that the algebra of infinitesimal conformal transformations in two dimen-

sions is infinite dimensional. Let us consider some general conformal transformations

z′ = z + ε(z) = z +
∑
n∈Z

εn
(
−zn+1

)
, (2.15)

z̄′ = z̄ + ε̄(z̄) = z̄ +
∑
n∈Z

ε̄n
(
−z̄n+1

)
, (2.16)

where εn and ε̄n are just constants. The generators corresponding to a transformation for

a particular n are

ln = −zn+1∂z , l̄n = −z̄n+1∂z̄ . (2.17)

It is easy to note that since n ∈ Z, the number of independent infinitesimal conformal

transformations is infinite. Let us now compute the commutator of the generators con-
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sidered above

[lm, ln] = zm+1∂z
(
zn+1∂z

)
− zn+1∂z

(
zm+1∂z

)
= (n+ 1)zm+n+1∂z − (m+ 1)zm+n+1∂z

= −(m− n)zm+n+1∂z

= (m− n)lm+n , (2.18)

[
l̄m, l̄n

]
= (m− n)l̄m+n , (2.19)

[
lm, l̄n

]
= 0 . (2.20)

The first commutation relations define one copy of the so-called Witt algebra, and because

of the other two relations, there is a second copy which commute with the first one. From

the observation we made earlier this algebra is infinite dimensional.

Let us now define the so-called Virasoro algebra. The central extension g̃ = g⊕ C of a

Lie algebra g by C is defined by the following commutation relations

[ x̃, ỹ ]g̃ = [x, y]g + c p(x, y) , x̃, ỹ ∈ g̃ ,

[ x̃, c ]g̃ = 0 , x, y ∈ g ,

[ c, c ]g̃ = 0 , c ∈ C ,
(2.21)

where p : g × g 7→ C is bilinear. Let the elements of the central extension of the Witt

algebra be Ln with n ∈ Z. We define the Virasoro algebra as the central extension of the

Witt algebra, where the constant c in the following equation is called the central charge

[Lm, Ln] = (m− n)Lm+n +
c

12

(
m3 −m

)
δm+n,0 . (2.22)

2.2 Aspects of two dimensional conformal field the-

ory

In this section we will review some aspects of two dimensional conformal field theories.

We start by looking at how to define Ward identities in CFTs, then we move on to the

very important concept of Operator Product Expansions (OPEs), finally we work on some

important results which will be very useful to us when dealing with bosonic string theory,

such as some energy momentum tensor computations.
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2.2.1 Massless scalars, the XX CFT

Let us consider D massless scalar fields Xµ in two dimensions, these fields define the

so-called XX system. We will get the action for the XX system by fixing the so-called

conformal gauge (gab = ηab), and performing a Wick rotation on the Polyakov action (1.1)

S =
1

4πα′

∫
d2σ (∂1X

µ∂1Xµ + ∂2X
µ∂2Xµ) . (2.23)

The gauge defined above is called conformal gauge because after gauge fixing the world-

sheet metric, we still have some residual symmetry called conformal symmetry, that is,

our action is invariant under conformal transformations.

Now let us write the action (2.23) in complex coordinates, in order to achieve this let

us consider the following definitions

z = σ1 + i σ2 , z̄ = σ1 − i σ2 . (2.24)

We also need to define the derivatives in complex coordinates as follows

∂z = ∂ =
1

2
(∂1 − i ∂2) , ∂z̄ = ∂̄ =

1

2
(∂1 + i ∂2) . (2.25)

Let us now write the explicit form of the metric tensor in the new variables we have just

defined

gab =

(
0 1

2
1
2

0

)
, gab =

(
0 2

2 0

)
. (2.26)

Making use of all the notation defined above we can rewrite (2.23) in the following way

S =
1

2πα′

∫
d2z ∂Xµ∂̄Xµ . (2.27)

We can now apply the variational principle and we get the following equations of motion

∂(∂̄Xµ) = ∂̄(∂Xµ) = 0 . (2.28)

It is very easy to see from (2.28) that ∂Xµ is holomorphic, and ∂̄Xµ is anti-holomorphic

(holomorphic in z̄). The next step we will take is to find the propagator of the XX

system, and define the so-called Conformal Normal Ordering.
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2.2.2 The XX propagator

In order to find the propagator for our theory, we make use of a very simple property of

path integrals. As we know, the path integral of a total derivative vanishes, then:

0 =

∫
DX δ

δXµ(z, z̄)
[exp (−S)Xν(w, w̄)]

=

∫
DX exp (−S)

[
ηµνδ2(z − w, z̄ − w̄) +

1

πα′
∂z∂z̄X

µ(z, z̄)Xν(w, w̄)

]
= ηµν

〈
δ2(z − w, z̄ − w̄)

〉
+

1

πα′
∂z∂z̄ 〈Xµ(z, z̄)Xν(w, w̄)〉 , (2.29)

The equation (2.29) tells us that the classical equations of motion still holds at the quan-

tum level except at coincident points (z = w). If we consider additional fields far away

from z and w, we can actually write:

1

πα′
∂z∂z̄ 〈Xµ(z, z̄)Xν(w, w̄) . . . 〉 = −ηµν

〈
δ2(z − w, z̄ − w̄) . . .

〉
, (2.30)

where the dots represent additional insertions (fields) far away from z and w. Then, we

can write:
1

πα′
∂z∂z̄X

µ(z, z̄)Xν(w, w̄) = −ηµνδ2(z − w, z̄ − w̄) , (2.31)

which of course holds as an operator equation. Solving equation (2.31) we can write

〈Xµ(z, z̄)Xν(w, w̄)〉 = −ηµνα
′

2
ln |z − w|2 . (2.32)

Equation (2.32) is what we will refer to as the propagator of the XX system. We will

use this result when computing OPEs since we just need to replace the propagator of our

theory when contracting fields inside OPEs as we will see later.

Now let us define the conformal normal ordering of a general operator O denoted by

: O : , as follows

: Xµ(z, z̄) : = Xµ(z, z̄) , (2.33)

: Xµ(z, z̄)Xν(w, w̄) : = Xµ(z, z̄)Xν(w, w̄) +
α′

2
ηµν ln |z − w|2 . (2.34)

The whole point with this definition is that the expression above satisfies the equations

of motion as we see bellow

∂z∂z̄ : Xµ(z, z̄)Xν(w, w̄) : = ∂z∂z̄X
µ(z, z̄)Xν(w, w̄) +

α′

2
ηµν∂z∂z̄ ln |z − w|2

= −πα′ ηµνδ2(z − w, z̄ − w̄) +
α′

2
ηµν 2π δ2(z − w, z̄ − w̄)

= 0 , (2.35)
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where in the second line we made use of equation (2.31) as well as the identity

∂z∂z̄ ln |z|2 = 2π δ2(z, z̄) . (2.36)

You should note that equations like (2.34) are supposed to hold inside path integrals, so

the first term in the right is actually time ordered in the usual sense of ordinary quantum

field theory. For simplicity we will write many expressions in the same fashion, so you

should remember that all the operator equations we write are supposed to hold inside

path integrals.

2.2.3 Operator product expansion

Let us now define a very useful CFT tool here, the so-called Operator Product Expansion

(OPE). Consider a product of two local operators, if we take them defined at two points

sufficiently close together we can actually approximate this product to arbitrary accuracy

by a sum of a string of local operators at one of this points, that is

Oi(z, z̄)Oj(w, w̄) =
∑
k

ckij (z − w, z̄ − w̄)Ok(w, w̄) . (2.37)

As we said earlier, expressions like this are supposed to work inside path integrals, so we

can write

〈Oi(z, z̄)Oj(w, w̄) . . . 〉 =
∑
k

ckij (z − w, z̄ − w̄) 〈Ok(w, w̄) . . . 〉 , (2.38)

where again, the dots stand for operator insertions at points far away from z and w.

Now let us find some OPEs for the XX system. We can compactly generalize the

definition (2.34) for any functional F of the fields as follows

: F : = exp

(
α′

4

∫
d2z1d

2z2 ln |z12|2
δ

δXρ(z1, z̄1)

δ

δXρ(z2, z̄2)

)
F , (2.39)

where z12 = z1 − z2. We now give a very simple example of how this expression works,

: Xµ(z, z̄)Xν(w, w̄) : = exp

(
α′

4

∫
d2z1d

2z2 ln |z12|2
δ

δXρ(z1, z̄1)

δ

δXρ(z2, z̄2)

)
Xµ(z, z̄)Xν(w, w̄)

= Xµ(z, z̄)Xν(w, w̄) +

+
α′

4

∫
d2z1d

2z2 ln |z12|2
(

δ

δXρ(z1, z̄1)

δ

δXρ(z2, z̄2)
XµXν

)
= Xµ(z, z̄)Xν(w, w̄) +

+α′
∫
d2z1d

2z2 ln |z12|2
(
ηµρδ(z − z2, z̄ − z̄2) ηνρδ(w − z1, w̄ − z̄1)

)
= Xµ(z, z̄)Xν(w, w̄) +

α′

2
ln |z − w|2ηµν . (2.40)
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Which of course agrees with (2.34). If we invert equation (2.39), we get

F = exp

(
−α

′

4

∫
d2z1d

2z2 ln |z12|2
δ

δXµ(z1, z̄1)

δ

Xµ(z2, z̄2)

)
: F :

= : F : +
∑

contractions . (2.41)

These kind of expressions are what we will refer to as OPEs, where the term contractions

stand for taking a couple of fields an contract them, that is replacing them by the propa-

gator of the theory we are working with. We can generalize the expression above to find

the OPE of any pair of operators as:

: F : : G : = : F G : +
∑

cross-contractions . (2.42)

We will heavily use equation (2.42) to compute OPEs in a rather simple way in the rest

of this text.

2.2.4 Conformal Ward identities

We now derive the so-called Ward identities for a CFT, we first consider a symmetry in

general and then we particularize for the case of conformal symmetry. Let us consider

some general field theory with action S[φ] in D space-time dimensions. The action is

defined in such a way that it is invariant under the following symmetry transformations

φ′α(σ) = φα(σ) + δφα(σ) , (2.43)

where the second term on the right hand side is supposed to be proportional to an in-

finitesimal parameter. Because of this symmetry, the following product is invariant

D φ′ exp(−S[φ′]) = D φ exp(−S[φ]) . (2.44)

As we know from Noether’s theorem, a continuous symmetry in field theory automatically

implies the existence of a conserved current, but as we will see in the following, it also

implies Ward identities. To see this, let us consider the following transformations

φ′α(σ) = φα(σ) + ρ(σ)δφα(σ) , (2.45)

of course these transformations do not represent a symmetry, so the change in the product

(2.44) must be proportional to ∂aρ, that is

D φ′ exp(−S[φ′]) = D φ exp(−S[φ])

[
1 +

i ε

2 π

∫
ddσ g1/2ja∂aρ(σ) +O(ε2)

]
, (2.46)
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where the additional factor i ε
2π

has been included for simplicity. For the transformation

(2.45) to be a symmetry, it must be true that

ε

2 π i

∫
ddσ g1/2ρ(σ) 〈∂aja . . . 〉 = 0 , (2.47)

this is actually Noether’s theorem, where again, the dots represent additional insertions

away from σ. The procedure we sketched above is what we will refer to as Noether’s

procedure; we take a global symmetry, promote the transformation parameter to depend

on the coordinates, and finally we identify the current associated to our symmetry which

should be proportional to the divergence of the parameter associated to it.

Now we let ρ to be 1 in some region C(R) of radius R, and 0 outside it. Let us also

include some local operator O(σ0) (σ0 is allowed to be inside C(R)) in the path integral.

The operator transforms as follows

O′(σ0) = O(σ0) + ε δO(σ0) . (2.48)

In a similar way to before, we can write

D φ′ exp(−S[φ′])O′(σ0) = D φ exp(−S[φ])

[
1− i ε

2 π

∫
C(R)

ddσ g1/2∇aj
a(σ) ρ(σ)

]
×

× (O(σ0) + ε δO(σ0)) . (2.49)

In order to have a symmetry, it is easy to see that the following expression should vanish

− i

2 π

∫
C(R)

ddσ g1/2∇aj
a(σ)O(σ0) + δO(σ0) , (2.50)

lastly we make use of the divergence theorem to get the so-called Ward identities∫
∂ C
dAnaj

aO(σ0) =
2π

i
δO(σ0) , (2.51)

where ∂ C is the boundary of C(R), dA is the area element and na is the normal vector to

it. We now specialize to two dimensions and complex coordinates getting∮
C(R)

(j d z − j̄ d z̄)O(z0, z̄0) = 2 πδO(z0, z̄0) . (2.52)

This equation holds as an operator equation, so considering additional insertions we can

write∮
C
d z 〈jz(z, z̄)O(z0, z̄0) . . . 〉 −

∮
C
d z̄ 〈j̄z̄(z, z̄)O(z0, z̄0) . . . 〉 = 2π 〈δO(z0, z̄0) . . . 〉 . (2.53)



2.2. Aspects of two dimensional conformal field theory 15

In CFTs, the currents j and j̄ are holomorphic and anti-holomorphic respectively, so the

integral above just picks up the residues in the following way

Res {j(z)O(z0, z̄0)}+ Res {j̄(z̄)O(z0, z̄0)} =
1

i
δO(z0, z̄0) . (2.54)

In the left hand side of (2.54) we have the rest picked from the OPEs jO and j̄O, and

in the right hand side we just have the symmetry transformations of O. In other words,

the equation above tells us that, in conformal field theories, we have a very close relation

between the symmetry properties of an operator and the OPE of it with the conserved

current associated to such a symmetry.

We now apply the results obtained here to our example, the XX system, we will derive

the energy momentum tensor of the theory by considering Noether’s procedure, and then

we study the conformal properties of the fields involved.

2.2.5 The XX energy momentum tensor

The energy momentum tensor for the XX system can be found by using the Noether

procedure which we described before. We first consider the worldsheet translations δz =

ε , δz̄ = ε̄. Under these translations the fields transform as follows

δXµ(z, z̄) = ε ∂X + ε̄ ∂̄X . (2.55)

We now promote ε and ε̄ to depend on the worldsheet variables and vary the action as

follows

δS =
1

2πα′

∫
d2z

[
∂̄Xµ∂

(
∂Xµε+ ∂̄Xµε̄

)
+ ∂Xµ∂̄

(
∂Xµε+ ∂̄Xµε̄

)]
=

1

2π

∫
d2z

[
− 1

α′
: ∂Xµ∂Xµ : ∂̄ε− 1

α′
: ∂̄Xµ∂̄Xµ : ∂ε̄+

+ ∂(∂̄Xµ∂X
µε) + ∂̄(∂Xµ∂̄X

µε̄)

]
. (2.56)

We can drop the last two terms in the expression above since they are total derivatives. As

you can see, there is an holomorphic and anti-holomorphic part of the energy momentum

tensor

T (z) = − 1

α′
: ∂Xµ∂Xµ : , T̄ (z̄) = − 1

α′
: ∂̄Xµ∂̄Xµ : . (2.57)

The fact that Noether currents split into holomorphic and anti-holomorphic parts is a

general property of CFTs an not only of the XX system we are studying.
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We will now derive the energy momentum tensor by making use of the usual method

in field theory, that is we vary the action with respect to the metric

Tαβ = − 4 π√
−g

δ S

δ gαβ
. (2.58)

Let us apply (2.58) to Polyakov’s action (1.1). The part of the variation which involves

the metric field is the following

δS = − 1

4 πα′

∫
dτdσ

[
δ(
√
−g) gαβ ∂αX

µ∂βXµ +
√
−g δgαβ∂αXµ∂βXµ + 2

√
−g gαβ∂αδXµ∂βXµ

]
= − 1

4 πα′

∫
dτdσ

[
1

2

√
−g gab∂αXµ∂αXµ +

√
−g ∂αXµ∂βXµ

]
δgαβ +O(δXµ) . (2.59)

And then we have:

Tαβ = − 1

α′
:

(
∂αX

µ∂βXµ −
1

2
δαβ ∂ρX

µ∂ρXµ

)
: . (2.60)

A key property of CFTs is that the energy momentum tensor is traceless, for instance,

look at (2.60)

ηαβ Tαβ = − 1

α′
:

(
ηαβ∂αX

µ∂βXµ −
1

2
ηαβδαβ ∂ρX

µ∂ρXµ

)
: = 0 . (2.61)

Furthermore, we can write the energy momentum tensor (2.60) in complex coordinates

by using the following coordinate transformations

Tα′β′ =
∂σa

∂xα′

∂σb

∂xβ′ Tab . (2.62)

For instance, let us compute Tzz̄

Tzz̄ =
∂σa

∂z

∂σb

∂z̄
Tab

=
∂σ1

∂z

∂σ1

∂z̄
T11 +

∂σ2

∂z

∂σ1

∂z̄
T21 +

∂σ1

∂z

∂σ2

∂z̄
T12 +

∂σ2

∂z

∂σ2

∂z̄
T22 . (2.63)

We should note that ∂σ1

∂z
= ∂σ1

∂z̄
= 1

2
, ∂σ

2

∂z
= −∂σ2

∂z̄
= 1

2 i
, as well as

T11 = − 1

α′

(
∂1X

µ∂1Xµ −
1

2
∂1X

µ∂1Xµ − ∂2X
µ∂2Xµ

)
, (2.64)

T22 = − 1

α′

(
∂2X

µ∂2Xµ −
1

2
∂1X

µ∂1Xµ − ∂2X
µ∂2Xµ

)
, (2.65)

T12 = T21 = − 1

α′
(∂1X

µ∂2Xµ) . (2.66)
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Combining equations (2.63), (2.64), (2.65) and (2.66) we get

Tzz̄ = Tz̄z = 0 . (2.67)

In a similar way we can write the other components

Tzz = T (z) = − 1

α′
: ∂Xµ∂Xµ : , (2.68)

Tz̄z̄ = T̄ (z̄) = − 1

α′
: ∂̄Xµ∂̄Xµ : . (2.69)

Using the equations of motion it follows that ∂̄ Tzz = ∂ T̄z̄z̄, then T and T̄ are holomorphic

and anti-holomorphic respectively. As you can see, the equations above agree with the

ones we found using Noether’s procedure.

We will now define the so-called Primary Fields, we then realize that there is a close

relation between them and the energy momentum tensor of the theory that is been studied.

2.2.6 Primary fields

As we will see later, the energy momentum tensor of CFTs defines the conformal weight

of some especial fields called Primary fields. Let us define these fields as follows: If a field

φ(z, z̄) transforms under conformal transformations z → f(z) according to

φ(z, z̄)→ φ′(z, z̄) =

(
∂ f

∂z

)h(
∂ f̄

∂z̄

)h̄
φ(f(z), f̄(z̄)) , (2.70)

then it is called a Primary Field of conformal dimension (h, h̄). Now let us investigate how

a primary field φ(z, z̄) behaves under infinitesimal conformal transformations. Consider

a map f(z) = z + ε(z) with ε(z) very small, up to first order in ε(z) we have(
∂f

∂z

)h
= (1 + ∂ε(z))h = 1 + h ∂ε(z), (2.71)(

∂f̄

∂z̄

)h̄
= (1 + ∂̄ε̄(z̄))h̄ = 1 + h̄ ∂̄ε̄(z̄), (2.72)

φ(z + ε(z), z̄ + ε̄(z̄)) = φ(z, z̄) + ε(z) ∂φ(z, z̄) + ε̄(z̄) ∂̄φ(z, z̄) , (2.73)

and then making use of definition (2.70) for a primary field we get

φ′(z, z̄) = (1 + h ∂ε)(1 + h̄ ∂̄ε̄)(φ+ ε ∂φ+ ε̄ ∂̄φ)

= (1 + h̄ ∂̄ε̄+ h ∂ε)(φ+ ε∂φ+ ε̄∂̄φ)

= φ+ (h ∂ε+ h̄ ∂̄ε̄+ ε∂ + ε̄∂̄)φ . (2.74)
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Finally, from the equation above we can write how a primary field of conformal weight

(h, h̄) transforms under infinitesimal conformal transformations

δε,ε̄φ(z, z̄) = (h∂ε+ ε∂ + h̄ ∂̄ε̄+ ε̄∂̄)φ(z, z̄) . (2.75)

We will now make use of Ward identities to derive some properties of primary fields as

well as the energy momentum tensor

2.2.7 Conserved charges and radial ordering

As we saw earlier, when deriving Ward identities, in ordinary field theory, conserved

charges are generators of symmetry transformations

δφ = [Q, φ] . (2.76)

In the case of conformal transformations, the conserved currents can be written in terms

of the energy momentum tensor of the theory, then using equation (2.52) we can write

the conserved charges as follows

Q =
1

2 π i

∮
C

[
dz T (z)ε(z) + dz̄ T̄ (z̄)ε̄(z̄)

]
. (2.77)

This expression will allow us to determine the infinitesimal transformations of a field

φ(z, z̄) generated by a conserved charge Q. To do so, we compute δφ according to (2.76)

δφ(w, w̄) =
1

2 π i

∮
C
dz [T (z)ε(z), φ(w, w̄)] +

1

2 π i

∮
C
dz̄
[
T̄ (z̄)ε̄(z̄), φ(w, w̄)

]
. (2.78)

The expression we wrote above is none other than the Ward identities we derived before,

we just need to be careful at defining the commutators inside the integrals since expression

like this are supposed to work inside path integrals, so they are time ordered expressions,

or as can be equivalently considered, radial ordered.

In CFTs, time ordering can be regarded as radial ordering and thus products like

A(z)B(w) inside path integrals only make sense for |z| > |w|. For this reason, we define

the radial ordering of two operators as follows

R (A(z)B(w)) :=

{
A(z)B(w) for |z| > |w|
B(w)A(z) for |w| > |z|

. (2.79)

Taking this into account, expressions like the ones appearing in (2.78) can be written as

follows ∮
dz [A(z),B(w)] =

∮
|z|>|w|

dzA(z)B(w)−
∮
|z|<|w|

dz B(w)A(z)

=

∮
C(w)

dzR (A(z)B(w)) , (2.80)
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where C(2) is some contour of integration cetered at w. We can make use of this obser-

vation to write (2.78) in the following way

δφ(w, w̄) =
1

2π i

∮
C(w)

dz ε(z)R (T (z)φ(w, w̄)) +
1

2 π i

∮
C(w̄)

dz̄ ε̄(z̄)R
(
T̄ (z̄)φ(w, w̄)

)
.

(2.81)

If the field φ(z, z̄) we are considering above is primary, we can make use of (2.75), and

then compare it to the Ward identities we wrote above

δε,ε̄ φ(w, w̄) = h(∂wε(w))φ(w, w̄) + ε(w)(∂wφ(w, w̄)) + anti-holomorphic

=
1

2π i

∮
C(w)

dz ε(z)R (T (z)φ(w, w̄)) + anti-holomorphic . (2.82)

We can compare this two expressions by making use of the well known Cauchy’s differ-

entiation formula of complex analysis, the left hand side of the first line of 2.82 can be

written as follows

h(∂wε(w))φ(w, w̄) =
1

2πi

∮
C(w)

dz h
ε(z)

(z − w)2
φ(w, w̄) , (2.83)

ε(w)(∂wφ(w, w̄)) =
1

2πi

∮
C(w)

dz
ε(z)

(z − w)
∂wφ(w, w̄) . (2.84)

Comparing (2.82), (2.83) and (2.84), we can write for a primary field of weight (h, h̄)

R (T (z)φ(w, w̄)) =
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄) + . . . . (2.85)

From now on, we will drop the R form this kind of expressions, since for computation

purposes, they can be regarded as the OPEs we have been working with since the begin-

ning.

Based on our last results, let us present an alternative definition of a primary field as

follows: A field φ(z, z̄) is a primary field with conformal dimensions (h, h̄), if the OPE

between the energy momentum tensor and φ(z, z̄) takes the following form

T (z)φ(w, w̄) =
h

(z − w)2
φ(w, w̄) +

1

z − w
∂wφ(w, w̄) + . . . , (2.86)

T̄ (z̄)φ(w, w̄) =
h̄

(z̄ − w̄)2
φ(w, w̄) +

1

z̄ − w̄
∂w̄φ(w, w̄) + . . . (2.87)

We now go back to our main example, the XX system. By making use of this definition

and the propagator we found in (2.32), we compute the conformal weight (dimension) of
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some characteristic fields of this system

T (z)Xρ(w, w̄) = − 1

α′
: ∂Xν(z, z̄)∂Xν(z, z̄) : Xρ(w, w̄)

= ∂z ln |z − w|2 ∂Xρ(z, z̄) + . . .

= ∂z(ln(z − w) + ln(z̄ − w̄)) ∂Xρ(z, z̄) + . . .

=
∂Xρ(z, z̄)

z − w
+ . . .

∼ ∂Xρ(w, w̄)

z − w
. (2.88)

Similarly, we can compute

T (z)∂Xρ(w, w̄) = − 1

α′
: ∂Xν(z, z̄)∂Xν(z, z̄) : ∂Xρ(w, w̄)

= ∂w∂z ln |z − w|2∂zXρ(z, z̄) + . . .

=
∂zX

ρ(z, z̄)

(z − w)2
+ . . .

∼ ∂Xρ(w, w̄)

(z − w)2
+
∂2Xρ(w, w̄)

(z − w)
. (2.89)

It is very easy to see from (2.88) and (2.89), that the fields X and ∂X have conformal

weights (0, 0) and (1, 0) respectively.

2.2.8 Conformal properties of the energy momentum tensor

Now we want to investigate how the energy momentum tensor transforms under conformal

transformations. Is it a primary field? The answer is no. For a general CFT, the energy

momentum tensor transforms as follows

δT (z) =
c

12
∂3v(z) + 2 ∂zv(z)T (z) + v(z)∂zT (z) , (2.90)
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where c is a constant known as the central charge of the system. We will prove this result

for our case of interest, the XX system. First of all let us compute the TT OPE

T (z)T (w) =
1

α′2
: ∂zX

µ(z, z̄)∂zXµ(z, z̄) : : ∂wX
µ(w, w̄)∂wXµ(w, w̄) :

=
4

α′
∂wX

µ(w, w̄)∂zXµ(z, z̄)∂z∂w ln |z − w|2 +
1

2

1

(z − w)4
ηµµ + . . .

=
D

2

1

(z − w)4
− 2

α′
1

(z − w)2
: ∂wX

µ(w, w̄)∂zXµ(z, z̄) : + . . .

∼ D

2

1

(z − w)4
− 2

α′
1

(z − w)2
: ∂wX

µ(w, w̄)∂wXµ(w, w̄) : +

− 2

α′
1

(z − w)
: ∂wX

µ(w, w̄)∂2
wXµ(w, w̄) :

∼ D/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
. (2.91)

As we already know, there is a close relation between this kind of OPE and how the

field transforms under conformal transformations, so by making use of conformal Ward

identities we can write

δT (z) =
1

2π i

∮
C(z)

dw v(w)T (w)T (z)

=
1

2π i

∮
C(z)

dw v(w)

(
D/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)

)
=

D

12
∂3v(z) + 2T (z)∂v(z) + ∂T (z)v(z) . (2.92)

This is a very important result, as you can see for the XX theory, the central charge of

the theory coincides with the number of fields we are considering, namely the number of

degrees of freedom of the system.

2.2.9 Another example, the bc CFT

Until now we have just considered the XX system as our main example. However, we

will encounter more systems of interest to us, for instance the ghost system which arises

when gauge fixing the bosonic string theory is a bc CFT. Siegel’s modification of the

Green-Schwarz action that we will review in Chapter 3 is also a bc CFT. We will also

see a little of the so-called βγ system, since the two are pretty similar. Examples of this

system in string theory include the ghost system which arises when gauge fixing the RNS
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superstring and the Berkovits pure spinor ghost system, which is a curved βγ system as

we will see later.

Let us start with the bc CFT, we consider two holomorphic anti-commutative fields b

and c with conformal weights (λ, 0) and (1− λ, 0) with the following action

Sg =
1

2π

∫
d2z b ∂̄ c . (2.93)

As you can see the action is, by construction, invariant under conformal transformations.

It is very easy to deduce the equations of motion for the fields of our system which are

given by

∂̄b = ∂̄c = 0 . (2.94)

These equations tell us that the fields we are considering are indeed holomorphic, so we

can now write down how they transform under infinitesimal conformal transformations.

Using (2.75) and the conformal weights of the fields of our system we have

δb(z) = λ ∂ε b(z) + ε ∂b(z) , (2.95)

δc(z) = (1− λ) ε c(z) + ε ∂c(z) . (2.96)

We can use these transformations to apply Noether’s procedure in order to find the energy-

momentum tensor of our system

δSg =
1

2π

∫
d2z
[
δb ∂̄c+ b ∂̄δc

]
=

1

2π

∫
d2z

[
(λ ∂ε b+ ε ∂b) ∂̄c+ b ∂̄((1− λ)εc+ ε ∂c)

]
=

1

2π

∫
d2z

[
b(1− λ) ∂∂̄ε c+ ε̄ b∂c

]
=
−1

2π

∫
d2z [(1− λ) ∂b c− λ b ∂c] ∂̄ε . (2.97)

As you can see, the anti-holomorphic part of the energy momentum tensor of the bc CFT

vanishes, then from (2.97) we can write

T g(z) = (1− λ) : ∂b c : −λ : b ∂c : , T̄ g(z̄) = 0 . (2.98)

Before computing any interesting OPEs in this system, let us find the propagator for the

bc CFT, the procedure we follow is identical to the one employed in the XX system before

0 =

∫
D bD c δ

δc(z)
[exp(−Sg) c(w)]

=

∫
D bD c exp(−Sg)

[
− 1

2π
∂̄b(z) c(w) + δ2(z − w, z̄ − w̄)

]
. (2.99)
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Since the equations above hold inside path integrals, we can write them as operator

equations, from (2.99) we deduce

〈
∂̄b(z) c(w) . . .

〉
= 2πδ2(z − w, z̄ − w̄) . (2.100)

Where the dots represent additional insertions away from z and w. Solving the equation

above, we find the propagator for the bc CFT which is given by

〈b(z) c(w)〉 =
1

z − w
. (2.101)

As we did for the XX system, we can now define conformal normal ordering for the bc

system as follows

: b(z)c(w) := b(z)c(w)− 1

z − w
, (2.102)

of course this is defined in such a way that it satisfies the equations of motion

∂̄z̄ : b(z)c(w) : = ∂̄z̄b(z)c(w)− 2πδ2(z − w, z̄ − w̄)

= 0 . (2.103)

We saw before that the XX OPE is non-singular (up to infrared divergences), in contrast,

the basic fields in the bc system have singular OPEs

b(z)c(w) ∼ 1

z − w
, c(z)b(w) ∼ 1

z − w
, (2.104)

the other OPEs are non-singular.

Now, as an exercise, let us verify the conformal weights of the basic fields of the bc

system by computing their corresponding OPEs with the energy-momentum tensor T g

T g(z)c(w) = (1− λ) : (∂b(z))c(z) : c(w)− λ : b(z)∂c(z) : c(w)

∼ (1− λ)
c(z)

(z − w)2
+ λ

∂c(z)

(z − w)

∼ (1− λ)
c(w)

(z − w)2
+ (1− λ)

∂c(w)

(z − w)
+ λ

∂c(w)

(z − w)

∼ (1− λ)
c(w)

(z − w)2
+

∂c(w)

(z − w)
, (2.105)
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then c is indeed a primary field of conformal dimensions (1− λ, 0). On the other hand

T g(z)b(w) = (1− λ) : (∂b(z))c(z) : b(w)− λ : b(z)∂c(z) : b(w)

∼ (1− λ)
∂b(z)

(z − w)2
− λb(z)

−1

(z − w)2

∼ (1− λ)
∂b(w)

(z − w)
+ λ

b(w)

(z − w)2
+ λ

∂b(w)

(z − w)

∼ λ
b(w)

(z − w)2
+

∂b(w)

(z − w)
, (2.106)

and b is a primary field of dimensions (λ, 0).

Now we establish a very important result, we compute the central charge for the bc

CFT, we need to be very careful with signs, because of the anti-commutative nature of

the fields b and c

T g(z)T g(w) = [(1− λ) : ∂b(z)c(z) : −λ : b(z)∂c(z) :] [(1− λ) : ∂b(w)c(w) : −λ : b(w)∂c(w) :]

= (1− λ)2 (: ∂b(z)c(z) : : ∂b(w)c(w) :)− λ(1− λ) (: ∂b(z)c(z) : : b(w)∂c(w) :) +

−λ(1− λ) (: b(z)∂c(z) : : ∂b(w)c(w) :) + λ2 (: b(z)∂c(z) : : b(w)∂c(w) :)

∼ (1− λ)2

[
1

(z − w)4
− : ∂b(z)c(w) :

(z − w)2
− : c(z)∂b(w) :

(z − w)2

]
+

−λ(1− λ)

[
2

(z − w)3

1

(z − w)
+

: ∂b(z)∂c(w) :

(z − w)
+ 2

: c(z)b(w) :

(z − w)3

]
+

−λ(1− λ)

[
1

(z − w)

2

(z − w)3
+ 2

: b(z)c(w) :

(z − w)3
+

: ∂c(z)∂b(w) :

(z − w)

]
+

+λ2

[
−1

(z − w)2

−1

(z − w)2
− : b(z)∂c(w) :

(z − w)2
− : ∂c(z)b(w) :

(z − w)2

]
∼ −c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
, (2.107)

where the central charge of the bc system is given by

cg = −3 (2λ− 1)2 + 1 . (2.108)

Of course, since T̄=0, the anti-holomorphic central charge of the system vanishes, c̄ = 0 .

By looking at the action of the bc CFT we can see that it possesses the so-called ghost

number symmetry, that is it is invariant under the following global transformations

δb = −iεb , δc = iεc . (2.109)
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In fact

δSg =
1

2π

∫
d2z
(
δb ∂̄c+ b ¯∂δc

)
=

1

2π

∫
d2z
(
−iεb ∂̄c+ ib ε ∂̄c

)
= 0 . (2.110)

We can use Noether’s procedure to find the current associated to the ghost number sym-

metry

δSg =
1

2π

∫
d2z
(
δb ∂̄c+ b ∂̄δc

)
=

1

2π

∫
d2z
(
−iε b ∂̄c+ ib ε ∂̄c+ ib ∂̄ε c

)
= − i

2π

∫
d2z (− : bc :) ∂̄ε . (2.111)

We define the ghost number current as follows

j = − : bc : . (2.112)

Finally, let us compute some easy OPEs involving the ghost current we have just defined

above

j(z)b(w) = − : b(z)c(z) : b(w) = − b(w)

z − w
, (2.113)

j(z)c(w) = − : b(z)c(z) : c(w) = − c(w)

z − w
. (2.114)

We now give a very short look at the so-called βγ system. Basically, all the results found

for the bc system apply here (up to some sign changes). We consider commuting fields

this time, β is a (λ, 0) primary field and γ a (1− λ, 0) primary field. The action is

Sβγ =
1

2π

∫
d2z β ∂̄γ . (2.115)

The equations of motion are similar to the bc system, so these fields are both holomorphic.

We can define the OPEs for the fields, which will be similar to the bc system, up to some

sign changes, due to the different statistics of the fields

β(z)γ(w) ∼ − 1

z − w
, γ(z)β(w) ∼ 1

z − w
. (2.116)

The energy momentum tensor is given by

T (z) = (1− λ) : ∂β γ : −λ : β ∂γ : , T̄ (z̄) = 0 . (2.117)

And the central charge is simply reversed in sign

c = 3 (2λ− 1)2 − 1 , c̄ = 0 . (2.118)
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2.2.10 The Virasoro algebra

Thus far we have been studying the classical aspects of a two dimensional conformal field

theory in flat space. However we know that the worldsheet of a string is in general a

cylinder. For this reason it is useful to show the map that relates this two spaces. To do

so, we perform a change of variables from the cylinder to the complex plane as follows

z = ew = eσ
1 · eiσ2

, (2.119)

which is a map from the two dimensional world sheet described by σ1 and σ2 to the

complex plane described by z. As a consequence of this map, we should note that time

translations on the world-sheet σ′ 1 = σ1 + a are then mapped to complex dilations

z′ = eaz, and space translations σ′ 2 = σ2 + b are mapped to rotations in the complex

plane z′ = eibz.

Since, in usual quantum field theory we are interested in time-ordered correlation func-

tions, with the help of the observation above we can realise that time ordering on the

cylinder becomes radial ordering on the plane. For this reason, operators in correlation

functions are ordered so that those inserted at larger radial distance are moved to the

left, this is why we were referring to radial ordering as time ordering since the beginning.

Considering this, the energy momentum tensor of our theory, as we saw earlier, is an

holomorphic function on the complex plane. In general we can perform Laurent expansions

when dealing with holomorphic or anti-holomorphic (holomorphic in z̄) functions, so we

can write for the energy-momentum tensor as

Tzz(z)
∞∑

m=−∞

Lm
zm+2

, T̄z̄z̄(z̄) =
∞∑

m=−∞

L̄m
z̄m+2

. (2.120)

The coefficients Lm, known as Laurent modes can be found by inverting the expansions

above, they are given by

Lm =

∮
C

dz

2πi
zm+1 Tzz(z) , L̄m =

∮
C

dz̄

2πi
z̄m+1 T̄z̄z̄(z̄) . (2.121)

Let us now use equation (2.77) and the expansion for the energy momentum tensor we

wrote above. If we choose a particular conformal transformation ε(z) = −εnzn+1, we find

that

Qn =

∮
dz

2πi
T (z)

(
−εnzn+1

)
= −εn

∞∑
m=−∞

∮
dz

2πi
Lmz

n−m−1

= −εn
∑
m

δn,mLm

= −εnLn . (2.122)
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We have found that the Laurent modes are actually the generators of infinitesimal con-

formal transformations. For this reason they should satisfy the Virasoro algebra, as we

show next

[Lm, Ln] =

∮
dz

2πi

∮
dw

2πi
zm+1wn+1 [T (z), T (w)]

=

∮
dw

2πi
wn+1

∮
C(w)

dz

2πi
zn+1R (T (z)T (w))

=

∮
dw

2πi
wn+1

∮
C(w)

dz

2πi
zm+1

[
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

(z − w)

]
=

∮
dw

2πi

[ c
12

(m3 −m)wm+n−1 + 2(m+ 1)wm+n+1T (w) + wm+n+2∂wT (w)
]

=
c

12
(m3 −m)δm,−m + 2(m+ 1)Lm+n −

∮
dw

2πi
(m+ n+ 2)wm+n+1T (w)

= (m− n)Lm+n +
c

12
(m3 −m) δm,−n , (2.123)

and they indeed satisfy the Virasoro algebra (2.22). In a similar computation, we can

show that L̄m satisfy the same algebra with central charge c̄.

Let us make some observations when looking at the Virasoro algebra. Generally we

work with eigenstates of L0 and L̄0. The generator L0 satisfies

[L0, Ln] = −nLn . (2.124)

Then if |ψ〉 is an eigenstate of L0 with eigenvalue h, we have

L0Ln|ψ〉 = ([L0, Ln] + LnL0) |ψ〉
= (−nLn + LnL0) |ψ〉
= Ln(L0 − n)|ψ〉
= (h− n)Ln|ψ〉 , (2.125)

thus, Ln|ψ〉 is an eigenstate of L0 with eigenvalue (h−n). As you can see, the generators

with n < 0 raise the L0 eigenvalue and those with n > 0 lower it. We can also note that

the three generators L0, and L±1 form a closed algebra without central charge

[L0, L1] = −L1 ; [L0, L−1] = L−1 ; [L1, L−1] = 2L0 . (2.126)

This is the algebra of SL(2,R) .

Let us now consider the Laurent expansion for a general holomorphic tensor field (pri-

mary field) O of dimensions (h, 0)

O(z) =
∞∑

m=−∞

Om
zm+h

. (2.127)



28 2. CFTS AND THE BOSONIC STRING THEORY

Inverting this expansion we get∮
zn

2πi
O(z)dz =

∞∑
m=−∞

∮
dz

2πi
Omzm−n−h

=
∞∑

m=−∞

Om δm,n−h+1

= On−h+1 , (2.128)

performing a change of variables in the indices, we finally get for the Laurent modes of

the primary field O
Om =

1

2πi

∮
dz zm+h−1O(z) . (2.129)

We can make use of this modes and the general OPE for a primary field we found earlier

to compute the following commutator

[Lm,On] =

∮
dz

2πi

∮
dw

2πi
zm+1wn+h−1 [T (z),O(w)]

=

∮
dz

2πi
wn+h−1

∮
dw

2πi
zm+1

[
h

(z − w)2
Ow +

∂O(w)

(z − w)

]
=

∮
dz

2πi
wn+h−1

[
(m+ 1)hwnO(w) + wn+1∂O(w)

]
=

∮
dz

2πi

[
(m+ 1)hwm+n+h−1O(w) + wm+n+h∂O(w)

]
= (m+ 1)hOm+n − (m+ n+ h)Om+n

= [(h− 1)m− n]Om+n . (2.130)

Again, modes with n > 0 reduce L0, while modes with n < 0 increase it.

2.3 BRST quantization of the bosonic string theory

We now work on the BRST procedure to quantize the bosonic string. We will not show

the details of the Faddeev-Popov method when gauge fixing Polyakov’s action, we rather

choose to show the partition function after gauge fixing the worldsheet metric (gab = δab),

which is given by the sum of D free massless scalars and the ghost sector which is given

by the sum of an holomorphic and anti-holomorphic bc systems with λ = 2

Z =

∫
DXD bD c exp (−Sm − Sg) , (2.131)
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where the term S = Sm + Sg is given by

S =
1

2πα′

∫
d2z ∂Xµ∂̄Xµ +

1

2π

∫
d2z
(
b ∂̄c+ b̄ ∂c̄

)
. (2.132)

This is the quantum worldsheet action of the gauge-fixed theory. The associated energy-

momentum tensor is given by

T (z) = TX(z) + T g(z) , (2.133)

where the energy momentum tensor for the matter sector and the ghost sector are given

by equations (2.68) and (2.98) respectively (with λ = 2). Then we can compute the total

central charge of the theory, since we are considering D scalar fields, the central charge of

the matter sector is just D, and the central charge of the ghost sector is given by (2.108)

with λ = 2, then the total central charge is given by

c = cX + cg = D − 26 . (2.134)

2.3.1 The Weyl anomaly

At the classical level, one of the defining features of a CFT is the vanishing of the trace of

the energy-momentum tensor. This is a general property of Weyl invariant Lagrangians.

We will see that for this symmetry to hold at the quantum level, the total central charge

of the theory must vanish.

By a suitable choice of coordinates, we can always put any two dimensional metric in

the form gab = e2wδab. So the only non-vanishing Christoffel symbols are the following

Γ1
11 = Γ2

12 = Γ2
21 = −Γ1

22 = ∂1w , (2.135)

Γ1
12 = Γ1

21 = Γ2
22 = −Γ2

11 = ∂2w . (2.136)

By looking at the Christoffel symbols, there are just two non-vanishing components of

the Ricci tensor

R11 = R22 = −∂2w , (2.137)

where ∂2 = ∂1∂1w + ∂2∂2w. We can now easily compute the Ricci scalar as follows

R = g11R11 + g22R22

= −2e−2w∂2w . (2.138)

We claim that, at the quantum level

〈Tαα〉 = − c

12
R . (2.139)
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Let us prove this result. Our first step will be to find an expression for the Tzz̄Tww̄ OPE.

To do so, we start with the energy conservation equation ∂aTab = 0, which when written

in complex coordinates takes the following form

∂zTzz̄ + ∂ z̄Tz̄z = 0

⇒ −∂z̄Tzz = ∂zTzz̄ . (2.140)

With the help of the result above and the TT OPE encountered in (2.91), we can find

our desired OPE as follows

∂zTzz̄(z, z̄)∂wTw,w̄(w, w̄) = ∂z̄Tzz(z, z̄)∂w̄Tww(w, w̄)

= ∂z̄∂w̄

[
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . .

]
. (2.141)

The only non-vanishing term in the expression above is the first one, as it is easy to see

that

∂̄z̄∂̄w̄
1

(z − w)4
=

1

6
∂̄z̄∂̄w̄

[
∂2
z∂w

1

z − w

]
=

π

3
∂2
z∂w∂̄w̄δ(z − w, z̄ − w̄) . (2.142)

Inserting this result into the OPE (2.141) and integrating the ∂z∂w derivatives on both

sides we end up with

Tzz̄(z, z̄)Tw,w̄(w, w̄) =
cπ

6
∂z∂̄w̄δ(z − w, z̄ − w̄) . (2.143)

So the OPE above almost vanishes, but there is a singular behaviour when z is close

enough to w. We assume that 〈Tαα〉 = 0 in flat space. We will also consider spaces which

are close to flat space. Let us now compute the following correlation function

δ〈Tαα(σ)〉 = δ

∫
Dφ e−S Tαα(σ)

=
1

4π

∫
Dφ e−S

[
Tαα(σ)

∫
d2σ′
√
g δgabTab(σ

′)

]
, (2.144)

where we made use of the definition of the energy-momentum tensor we gave at (2.58).

We will now restrict ourselves to Weyl transformations, so the change in a flat metric is

δgab = 2wδab. Similarly the change in the inverse metric is δgab = −2wδab, so we can

write

δ〈Tαα(σ)〉 = − 1

2π

∫
Dφ e−S

[
Tαα(σ)

∫
d2σ w(σ′)T bb(σ

′)

]
. (2.145)



2.3. BRST quantization of the bosonic string theory 31

We will need to change the OPE (2.143) to Cartesian coordinates. In order to do this,

we should remember that we need to make a change of coordinates similar to the one

performed at (2.62). It is not hard to show that

T aa(σ)T bb(σ
′) = 16Tzz̄(z, z̄)Tw,w̄(w, w̄) and δ2(σ − σ′) = −8 ∂z∂̄w̄δ(z − w, z̄ − w̄) .

(2.146)

With the help of the results above, we can finally write the OPE (2.143) in Cartesian

coordinates as follows

T aa(σ)T bb(σ
′) = −c π

3
δ2(σ − σ′) . (2.147)

To finish the computation, we use the result above to calculate the integral (2.145),

integrating by parts and using the Dirac delta to compute the σ′ integral we get

δ〈Tαα〉 =
c

6
∂2w . (2.148)

We finally compare this result with equation (2.138), and our proof is finished

〈Tαα〉 = − c

12
R , (2.149)

where we considered e−2w ∼ 1. Thus, only if R = 0 or if c = 0 we have that the expectation

value of the trace vanishes. However, if we set R = 0 then we are only allowed to work

in flat space , so in order to include curved space-times, the central charge of the theory

must vanish, c = 0. Since the trace of the energy-momentum tensor vanishes classically,

due to the CFT being Weyl invariant, and since when quantizing the CFT this vanishing

is no longer guaranteed, we refer to (2.149) as the Weyl anomaly.

Let us look at equation (2.134), as you ca see, the easiest way to get a vanishing central

charge is to consider 26 bosonic free scalar fields as the matter sector, since each one

will contribute with a value of 1 to cX . However, this is not the only way to get this

value because we only need to consider a theory which has central charge 26 so it cancels

the ghost contribution. Then the space of CFTs with central charge equal to 26 can be

thought as the space of classical solutions to the bosonic string.

2.3.2 XX Laurent mode expansions

Let us now look at the Laurent mode expansions for the fields in free bosonic closed

string theory, the XX system. As we have seen, ∂X and ∂̄X are holomorphic and anti-

holomorphic respectively, and so we can expand them in Laurent modes just as follows

∂Xµ(z) = −i
(
α′

2

)1/2 ∞∑
m=−∞

αµm
zm+1

, ∂̄Xµ(z̄) = −i
(
α′

2

)1/2 ∞∑
m=−∞

ᾱµm
z̄m+1

. (2.150)
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Inverting these expansions the modes can be written as follows

αmµ =

(
2

α′

)1/2 ∮
dz

2π
zm∂Xµ(z) ,

ᾱmµ = −
(

2

α′

)1/2 ∮
dz̄

2π
z̄m∂̄Xµ(z̄) . (2.151)

The single-valuedness of Xµ implies that αµ0 = ᾱµ0 . Moreover, under space-time transla-

tions δXµ = aµ, we have for the space-time momentum

pµ =
1

2πi

∮
C
(dz jµ − dz̄ j̄µ) =

(
2

α′

)1/2

αµ0 =

(
2

α′

)1/2

ᾱµ0 . (2.152)

Integrating the mode expansions (2.150) we get

Xµ(z, z̄) =

∫
dzdz̄

(
∂Xµ(z) + ∂̄Xµ(z̄)

)
= xµ − iα

′

2
pµ ln |z|2 + i

(
α′

2

)1/2 ∞∑
m 6=0

1

m

(
αmµ
zm

+
ᾱµm
z̄m

)
. (2.153)

Now let us compute the following commutators

[αµm, α
ν
n] =

(
2

α′

)∮
dz

2π

∮
dw

2π
zmwn [∂Xµ(z), ∂Xν(w)]

= −
∮
dw

2π
wn
∮

dz

2π
zm

1

(z − w)2
ηµν

= mδm,−n η
µν , (2.154)

where in the second line we made use of the XX propagator derived earlier. In a similar

way it can be shown that

[xµ, pν ] = iηµν . (2.155)

These results could have also been obtained from standard canonical quantization. The

spectrum can be obtained by starting with a state |0, k〉 that has momentum kµ and which

is annihilated by all of the lowering modes, αµn for n > 0 and acting in all possible ways

with the raising (n < 0) modes.

We can now replace the mode expansions (2.150) in the energy momentum tensor, as
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follows

T (z) = − 1

α′
: ∂Xµ(z)∂Xµ(z) :

=
1

α′

(
α′

2

)1/2∑
m

∑
n

αµm
zm+1

αn µ
zn+1

=
1

2

∑
m

∑
n

αµmαn µ
1

zm+n+2

=
∑
m

(
1
2

∑
n α

µ
m−nαn µ

)
zm+2

, (2.156)

comparing this result with the Laurent expansion of the energy momentum tensor we

wrote in (2.120), we can identify the Laurent modes as follows

Lm ∼
1

2

∑
n

αµm−nαn µ . (2.157)

We put the symbol ∼ here because of the ordering of the modes.

• For m 6= 0 ;

[αµm−n, α
ν
n] = (m− n)δm−n,−nη

µν = 0 , (2.158)

then the mode operators in each term commute and thus the ordering is irrelevant.

So the expansion is well defined and correct as it stands.

• For m = 0, we put the lowering operators on the right, and introduce the normal

ordering constant aX

L0 =
1

2
αµ0α0 µ +

∞∑
n=1

αµ−nαn µ + aX

⇒ L0 =
α′p2

4
+
∞∑
n=1

αµ−nαn µ + aX . (2.159)

Since we know 2L0|0; 0〉 = (L1L−1 − L−1L1)|0; 0〉 = 0, then it follows that the

normal ordering constant aX vanishes

aX = 0 . (2.160)
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2.3.3 bc Laurent mode expansions

Le us now work with the bc system. We start by writing the Laurent expansions of the

fields b and c

b(z) =
∞∑

m=−∞

bm
zm+λ

, c(z) =
∞∑

m=−∞

bm
zm+1−λ . (2.161)

Using the OPEs of the fields we can easily find the commutator

{bm, cn} = δm,−n . (2.162)

As we will see later, the BRST method splits the theory into a part containing matter

fields and a part containing ghost fields, thus the vacuum of our theory |0〉 will be given

by the tensor product of the matter vacuum and the ghost vacuum |0〉 = |0, k〉 ⊗ |0〉g.
We have already defined the matter vacuum |0, k〉 in the preceding discussion, so we now

need to define the ghost vacuum. So we consider the ground state as the state annihilated

by all of the n > 0 modes. The b0, c0 oscillator algebra generates two such ground states

|↓〉 and |↑〉, with the following properties

b0 |↓〉 = 0 , b0 |↑〉 =|↓〉 , (2.163)

c0 |↓〉 = |↑〉 , c0 |↑〉 = 0 , (2.164)

bn |↓〉 = bn |↑〉 = cn |↓〉 = cn |↑〉 = 0 , n > 0 . (2.165)

The general state is obtained by acting on this states with the rising modes (n < 0). It is

convenient to group b0 with the lowering operators and c0 with the raising operators, so

we will single out |↓〉 as the ghost vacuum |0〉g. Thus the BRST vacuum is given by

|0〉 = |0, k〉⊗ |↓〉 . (2.166)

The physical states are constructed by acting with the BRST operator QB, but let us

postpone this discussion for the next section.

We can find the Virasoro generators for the ghost sector as we did for the matter sector,

they are given by

Lgm ∼
∞∑

n=−∞

(mλ− n) : bncm−n : +δm,0 a
g , (2.167)

where the expression inside the dots stand for the ordinary normal ordering of field theory,3

and the constant ag is a normal ordering constant which can be determined in a similar

3Note that we are treating the ordinary normal ordering and conformal normal ordering as if they

were equivalent. We should emphasise that this is not always the case.
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way than the normal ordering constant in the matter sector. In fact

2L0 |↓〉 = (L1L−1 − L−1L1) |↓〉
= (λ b0 c1) [(1− λ)b−1c0] |↓〉 = λ(1− λ) |↓〉 . (2.168)

Thus ag = λ(1−λ)
2

and

Lgm =
∞∑

n=−∞

(mλ− n) : bncm−n : +
λ(1− λ)

2
δm,0 . (2.169)

Let us now define the ghost number charge.

N g =
1

2πi

∮
dz j(z) , (2.170)

where j is the ghost number current defined in (2.112). With the help of the OPEs (2.113)

and (2.114) we can compute the following commutators

[N g, b(w)] = −b(w) , (2.171)

[N g, c(w)] = c(w) , (2.172)

[N g, Xµ(w)] = 0 . (2.173)

Which of course are none other than the ghost number transformations we defined in

(2.109). By looking at the equations above, we can see that the ghost number charge

counts the number of c minus the number of b excitations of the state considered. Now

we show that the ground state |↓〉 has ghost number −1
2
. First of all we expand the ghost

number charge in ghost modes to obtain

N g =
1

2
(c0 b0 − b0 c0) +

∞∑
n=1

(c−nbn − b−ncn) . (2.174)

Now let us use this operator to compute the ghost number of the ground state of our

theory

I⊗N g |0〉 = I⊗

(
1

2
(c0 b0 − b0 c0) +

∞∑
n=1

(c−nbn − b−ncn)

)
|0, k〉⊗ |↓〉

=
1

2
c0 b0 (|0, k〉⊗ |↓〉)− 1

2
b0 c0 (|0, k〉⊗ |↓〉) +

∞∑
n=1

c−nbn (|0, k〉⊗ |↓〉) +

−
∞∑
n=1

b−ncn (|0, k〉⊗ |↓〉)

= −1

2
(|0, k〉⊗ |↓〉) , (2.175)
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where in the computation above I is the identity operator which acts on the matter sector,

and we made use of equations (2.163), (2.164) and (2.165).

We now have enough material to explain the BRST method for quantizing the bosonic

string which we do next.

2.3.4 BRST symmetry in general

We consider a path integral in general provided with some local symmetry and let us

denote the path integral fields as φi(X
µ(σ), gab(σ)). By assumption, the gauge parameters

εα are real. The gauge transformations satisfy the following algebra

[δα, δβ] = fγαβ δγ , (2.176)

and the gauge fixing condition is given by

FA(φ) = 0 . (2.177)

Following the Faddeev Poppov procedure, the path integral becomes∫
Dφi
Vgauge

exp(−S1)→
∫
DφiDBAD bAD cα exp(−S1 − S2 − S3) , (2.178)

where S1 is the original gauge invariant action, S2 is the gauge fixing action

S2 = −iBAF
A(φ) , (2.179)

and S3 is the Faddeev Poppov action4

S3 = bAc
αδαF

A(φ) . (2.180)

The action written above is invariant under the Becchi-Rouet-Stora-Tyutin (BRST) trans-

formations

δBφi = −iε cαδαφi , (2.181)

δBBA = 0 , (2.182)

δBbA = εBA , (2.183)

δBc
α =

i

2
ε fαβγc

βcγ . (2.184)

4Note that we are using a very condensed notation here, for instance we can write

S2 = −iBAFA(φ) = −i
∫
dσ
√
−g BA(σ)FA(φ;σ) .
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In fact, to see this we just need to note that the following result holds

δB
(
bAF

A(φ)
)

= δBbAF
A(φ) + bAδBF

A(φ)

= εBAF
A(φ) + bA

(
−iε cαδαFA(φ)

)
= iε

(
−iBAF

A(φ) + bAc
αδαF

A(φ)
)

= iε (S2 + S3) . (2.185)

It is very easy to compute the variation under BRST symmetry transformations of the

full action by using the relations above

δB (S1 + S2 + S3) = δB

(
S1 +

1

iε
δB
(
bAF

A(φ)
))

= 0 , (2.186)

where we used the fact that the original gauge action S1 is clearly BRST invariant, as

well as the nilpotency of the BRST symmetry (δ2
B = 0), which can easily be checked by

looking at the transformations (2.181), (2.182), (2.183) and (2.184). And as you can see

the total action is constructed in such a way that it is indeed BRST invariant.

2.3.5 BRST cohomology and physical states

In the procedure of BRST quantization, the BRST symmetry is used to derive the physical

spectrum of quantum states of the gauge theory. A quantum amplitude is of the form

〈f |i〉 =

∫
DφiDBAD bAD cα exp(−S1 − S2 − S3) . (2.187)

For this amplitude to be physical, it should be independent of the gauge which one

chooses to calculate the path integral. Now consider a small change δF in the gauge-

fixing condition. The change in the ghost and gauge-fixing action gives

ε δ〈f |i〉 = −ε
∫
DφiDBAD bAD cα exp(−S1 − S2 − S3)δ (S1 + S2 + S3)

= ε

∫
DφiDBAD bAD cα exp(−S1 − S2 − S3)

(
−iBAδF

A(φ) + bAc
αδαδF (φ)

)
=

∫
DφiDBAD bAD cα exp(−S1 − S2 − S3)

[
iεBAδF

A(φ) + bAεc
αδαδF

A(φ)
]

=

∫
DφiDBAD bAD cα exp(−S1 − S2 − S3)

[
iδBbAδF

A(φ) + ibAδB
(
δFA(φ)

)]
= i〈f |δB

(
bAδF

A
)
|i〉

= −ε〈f |
{
QB, bAδFA

}
|i〉 , (2.188)
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where in the last line we have written the BRST variation as an anti-commutator with

the corresponding conserved charge QB.

Since this equality must hold for any arbitrary change δFA(φ) in the gauge choice, it

is required that all physical states |ψ〉 are closed with respect to the BRST charge

〈ψ|
{
QB, bAδFA

}
|ψ′〉 = 0 , (2.189)

then for the states to be physical they must be BRST invariant

QB|ψ〉 = QB|ψ′〉 = 0 . (2.190)

Let us now point out some important properties of the BRST charge without proving

them for now.

• The BRST charge is nilpotent

Q2
B = 0 . (2.191)

• The nilpotence of QB has an important consequence. A state of the form QB|χ〉
will be annihilated by QB for any χ and so it is a physical state. However it is

orthogonal to all physical states including itself

〈ψ|(QB|χ〉) = (〈ψ|QB)|χ〉 = 0 . (2.192)

• If QB|ψ〉 = 0, then all physical amplitudes involving such a null state vanish. Two

physical states that differ by a null state

|ψ′〉 = |ψ〉+QB|χ〉 , (2.193)

will have the same inner products with all physical states and are therefore physically

equivalent. In this way, we identify the true physical space with a set of equivalence

classes, where states which differ by a null state belong to the same equivalence

class. In other words, physical states belong to the cohomology of QB.

We will use the term BRST closed for states that are annihilated by QB, and the term

BRST exact for the states of the form QB|χ〉, then the prescription for the Hilbert space

of our theory will be as follows: the BRST Hilbert space HBRST is given by taking the

quotient of the Hilbert space formed from BRST closed states, Hclosed, with the Hilbert

space formed from BRST exact states, Hexact, so our physical Hilbert space is given by

HBRST =
Hclosed

Hexact

. (2.194)
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2.3.6 BRST quantization of the bosonic string

After conformal gauge fixing, the total BRST invariant action is given by

ST = SX + SGF + Sg , (2.195)

where

SX =
1

2πα′

∫
d2z ∂Xµ∂̄Xµ , (2.196)

Sg =
1

2π

∫
d2z

(
b∂̄c+ b̄∂c̄

)
. (2.197)

So the full path integral becomes:∫
DXDgD bD b̄D cD c̄ e(−SX−Sg) . (2.198)

You should note that in this path integral we have already integrated the auxiliary field

Bab as a result of gauge fixing gab = δab. For the sake of completeness, let us write the

gauge fixing term for the total action

SGF =
i

4π

∫
d2σ g1/2Bab (δab − gab) . (2.199)

The total action is invariant under the following BRST symmetry transformations

δBX
µ = iε

(
c∂ − c̄∂̄

)
Xµ ,

δBb = iε
(
TX + T g

)
,

δB b̄ = iε
(
T̄X + T̄ g

)
,

δBc = iε
(
c∂ − c̄∂̄

)
c ,

δB c̄ = iε
(
c∂ − c̄∂̄

)
c̄ , (2.200)

where we have used the equations of motion of Bab when writing the BRST transforma-

tions of the ghosts b and b̄.

Let us now employ Noether’s procedure to find the BRST current associated to the

BRST symmetry transformations I just wrote above

δBST = δBSX + δBSg . (2.201)
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As usual, we promote the symmetry parameter ε to depend on the worldsheet variables

z and z̄. For the matter part we have

δBSX =
1

2πα′

∫
d2z

[
∂δBX

µ∂̄Xµ + ∂Xµ∂̄δBXµ

]
=

1

2πα′

∫
d2z
[ (
∂εc∂Xµ + ε∂(c∂Xµ) + ∂εc̄∂̄Xµ

)
∂̄Xµ +

+ ∂Xµ

(
∂̄εc∂Xµ + ∂̄εc̄∂̄Xµ + ε∂̄(c̄∂̄Xµ)

) ]
=

1

2πα′

∫
d2z

{
∂ε
[
c̄∂̄Xµ∂̄Xµ

]
+ ∂̄ε [c∂Xµ∂Xµ] +

(
∂εc∂Xµ∂̄Xµ + ε∂(c∂Xµ)∂̄Xµ

)
+
(
∂̄εc̄∂̄Xµ∂Xµ + ∂Xµε∂̄(c̄∂̄Xµ)

)}
. (2.202)

Similarly, for the ghost part of the action we can write

δBSg =
1

2π

∫
d2z

[
δBb∂̄c+ b∂̄δBc+ δB b̄∂c̄+ b̄∂δB c̄

]
=

i

2π

∫
d2z

[
ε(TX + T g)∂̄c+ b∂̄(εc∂c) + ε(T̄X + T̄ g)∂c̄+ b̄∂(εc̄∂̄c̄)

]
=

i

2π

∫
d2z

[
(bc∂c)∂̄ε+ (b̄c̄∂̄c̄)∂ε

]
. (2.203)

The two terms at the end of (2.202) are just total derivatives, so we can write the total

variation of the action as follows

δST =
i

2π

∫
d2z

[(
−c̄ 1

α′
: ∂̄Xµ∂̄Xµ : + : b̄c̄∂̄c̄ :

)
∂ε+

+

(
−c 1

α′
: ∂Xµ∂Xµ : + : bc∂c :

)
∂̄ε

]
. (2.204)

From the variation computed above, it is pretty easy to identify the holomorphic and

anti-holomorphic parts of the BRST current

jB = c TX+ : b c ∂c : +
3

2
∂2c , (2.205)

j̄B = c̄ T̄X+ : b̄ c̄ ∂̄c̄ : +
3

2
∂̄2c̄ . (2.206)

Where the final terms in the currents are just total derivatives, so they do not contribute

to the BRST charge, they have been added by hand in order to make the BRST current

transform as a primary field.
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Let us now compute some useful OPEs of the BRST current with the ghost fields and

a general primary field

jB(z)b(w) = : c(z)TX(z) : b(w)+ : b(z)c(z)∂c(z) : b(w) +
3

2
∂2c(z)b(w)

=
TX(z)

(z − w)
− : b(z)c(z) :

(z − w)2
− : b(z)∂c(z) :

(z − w)
+

3

(z − w)3
+ . . .

=
TX(w)

(z − w)
− : b(w)c(w) :

(z − w)2
− : ∂(b(w)c(w)) :

(z − w)
− : b(w)∂c(w) :

(z − w)
+

3

(z − w)3
+ . . .

=
TX(w)

(z − w)
+

T g(w)

(z − w)
+

jg(w)

(z − w)2
+

3

(z − w)3
+ . . .

∼ 3

(z − w)3
+

jg(w)

(z − w)2
+

TX+g

(z − w)
, (2.207)

where of course, thanks to Ward identities, it is easy to see from the single pole of this

OPE the way the ghost field b transforms under BRST transformations. Similarly we can

work out the OPE with the c ghost field as follows

jB(z)c(w) = : c(z)TX(z) : c(w)+ : b(z)c(z)∂c(z) : c(w) +
3

2
∂2c(z)c(w)

=
: c(z)∂c(z) :

z − w
+ . . .

∼ c(w)∂c(w)

(z − w)
. (2.208)

And finally, computing the OPE with a general primary field operator O, we can inves-

tigate how it transforms under BRST transformations

jB(z)O(w) = : c(z)TX(z) : O(w)+ : b(z)c(z)∂c(z) : O(w)

= c(z)

[
h

(z − w)2
O(w) +

1

(z − w)
∂O(w) + . . .

]
∼ h

(z − w)2
c(w)O(w) +

1

(z − w)
[h(∂c(w))O(w) + c(w)∂O(w)] .(2.209)

Let us now define the BRST charge in the following way

QB =
1

2πi

∮
(dzjb − dz̄j̄B) . (2.210)

With the help of the jBb OPE showed in (2.207) and the fact that the j̄Bb OPE is non-
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singular, we can compute the following anti-commutator

{QB, bm} =

∮
dz

2πi

∮
dw

2πi
{jB(z), b(w)}wm+1

=

∮
dw

2πi
wm+1

∮
dz

2πi

[
TX+g

z − w
+

3

(z − w)3
+

jg

(z − w)2

]
=

∮
dw

2πi
wm+1TX+g(w)

= LXm + Lgm . (2.211)

We now find the explicit form of the BRST charge in terms of mode expansions and

Virasoro generators

QB =
1

2πi

∮
(dz jB(z)− dz̄ j̄B(z̄))

=

∮
dz

2πi

[∑
m,n

cmL
X
n

zm+n+1
−
∑
m,n,l

(l − 1)
bmcncL
zm+n+l+1

]
+ anti-holomorphic part

=
∞∑

n=−∞

cnL
X
−n −

∑
n,l

(l − 1) b−n−lcncl + anti-holomorphic part

=
∞∑

n=−∞

cnL
X
−n +

∑
n,m

(n−m)cncmb−n−m + anti-holomorphic part . (2.212)

With a similar contribution from the anti-holomorphic part, we can finally write

QB =
∞∑

n=−∞

(
cnL

X
−n + c̄nL̄

X
−n
)

+

+
∑
m,n

(m− n)

2
:
(
cmcnb−m−n + c̄mc̄nb̄−m−n

)
: +aB(c0 + c̄0) , (2.213)

where the terms are normal ordered and the normal ordering constant aB is just aB =

ag = −1. As we saw earlier, there is an anomaly in the gauge symmetry when cX 6= 26,

so we should expect a breakdown in the BRST formalism. It turns out that the BRST

charge QB is not nilpotent unless cX = 26

{QB,QB} = 0 only if cX = 26 . (2.214)

We can prove this very easily by using the definition (2.210). We just need to compute

the jBjB OPE, since the BRST charge anti-commutator just depends on the simple poles
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of this OPE. The computation goes as follows

jB(z)jB(w) =

(
c(z)TX(z)+ : b(z)c(z)∂c(z) : +

3

2
∂2c(z)

)
×

×
(
c(w)TX(w)+ : b(w)c(w)∂c(w) : +

3

2
∂2c(w)

)
= : c(z)c(w) : TX(z)TX(w) + c(z)TX(z) : b(w)c(w)∂c(w) : +

+ : b(z)c(z)∂c(z) : c(w)TX(w) + (: b(z)c(z)∂c(z) :)(: b(w)c(w)∂c(w) :) +

+
3

2
: b(z)c(z)∂c(z) : ∂2c(w) +

3

2
∂2c(z) : b(w)c(w)∂c(w) : + . . . . (2.215)

As you can see, the computation is quite lengthy, and we should be very careful with

signs, so we will perform this computation term by term. The first out of 6 terms in

(2.215) goes as follows

: c(z)c(w) : TX(z)TX(w) = : c(z)c(w) :

[
cX/2

(z − w)4
+

2TX(w)

(z − w)2
+
∂TX(w)

(z − w)

]
∼ ∂c(w)c(w)

[
cX/2

(z − w)3
+

2TX(w)

(z − w)

]
+
∂2c(w)c(w)

2

[
cX/2

(z − w)2

]
+

+
∂3c(w)c(w)

6

[
cX/2

(z − w)

]
, (2.216)

where in the first line we made use of the TXTX OPE of the matter part of the bosonic

string and in the second line a Taylor expansion was performed. We now work out the

second and third terms

c(z)TX(z) : b(w)c(w)∂c(w) : = TX(z)
c(w)∂c(w)

(z − w)

∼ TX(w)c(w)∂c(w)

(z − w)
. (2.217)

: b(z)c(z)∂c(z) : c(w)TX(w) =
: c(z)∂c(z) : TX(w)

(z − w)

∼ TX(w)c(w)∂c(w)

(z − w)
, (2.218)

where we have been using the bc propagator which we derived earlier in this chapter. The

computation for the fourth term is a bit lengthier since we find triple, double and single
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poles

3

2
: b(z)c(z)∂c(z) : ∂2c(w) = 3

: c(z)∂c(z) :

(z − w)3

∼ 3
c(w)∂c(w)

(z − w)3
+ 3

[
∂c(w)∂c(w)

(z − w)2
+
c(w)∂2c(w)

(z − w)2

]
+

+
3

2

[
∂c(w)∂2c(w)

(z − w)
+
c(w)∂3c(w)

(z − w)

]
∼ 3

c(w)∂c(w)

(z − w)3
+ 3

c(w)∂2c(w)

(z − w)2
+

3

2

∂c(w)∂2c(w)

(z − w)
+

+
3

2

c(w)∂3c(w)

(z − w)
. (2.219)

The fifth term is an easy one, we just need to use the bc propagator to get

3

2
∂2c(z) : b(w)c(w)∂c(w) := 3

c(w)∂c(w)

(z − w)3
. (2.220)

The last term requires a bit more of careful work, since there are triple, double and single

poles involved

: b(z)c(z)∂c(z) :: b(w)c(w)∂c(w) : = − : c(z)∂c(z)b(w)∂c(w) :

(z − w)
+
c(z)∂ : c(z)b(w)c(w) :

(z − w)2
+

− : b(z)c(z)c(w)∂c(w) :

(z − w)2
− : b(z)∂c(z)c(w)∂c(w) :

(z − w)
+

+
: c(z)∂c(w) :

(z − w)3
+

: ∂c(z)∂c(w) :

(z − w)2
− : c(z)c(w) :

(z − w)4
+

− : ∂c(z)c(w) :

(z − w)3

∼ 3
c(w)∂c(w)

(z − w)3
+

3

2

∂2c(w)∂c(w)

(z − w)
− 3

2

∂2c(w)c(w)

(z − w)2

− 2

3

∂3c(w)c(w)

(z − w)
. (2.221)

Putting pieces together, we can finally write

jB(z)jB(w) ∼ ∂c(w)c(w)

[
cX/2

(z − w)3
− 9

(z − w)3

]
+ ∂2c(w)c(w)

[
cX/4

(z − w)2
− 9

2

1

(z − w)2

]
+∂3c(w)c(w)

[
cX/12

(z − w)
− 13

6

1

(z − w)

]
. (2.222)
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Reducing this expression a bit more we are left with

jB(z)jB(w) ∼ − (cX − 18)

2 (z − w)3
c ∂c(w)− (cX − 18)

4 (z − w)2
c ∂2c(w)− (cX − 26)

12 (z − w)
c ∂3c(w) . (2.223)

As we said earlier, when computing the BRST charge anti-commutator with itself, we

will only be interested in the single pole of the OPE above, which as you can see only

vanishes when cX = 26, then the BRST charge is nilpotent only if the central charge of

the matter theory takes the critical value needed to cancel the Weyl anomaly.

In a very similar way, it can be shown that the BRST current is primary only for

cX = 26 by looking at the following OPE

TX+g(z)jB(w) ∼ cX − 26

2 (z − w)4
c(w) +

1

(z − w)2
jB(w) +

1

z − w
∂jB(w) . (2.224)

We will not compute this OPE explicitly, but after all the OPEs we have computed so far,

it should not be hard to convince you that the cubic term we added by hand in (2.205)

was crucial to cancel the total contribution to the quadruple pole showed in (2.224) when

cX = 26.

To finish this chapter let us spend a few words to talk about the spectrum of the bosonic

string. The main purpose was to develop some basic elements of conformal field theory

and the BRST method, so we will not compute the spectrum of the theory. However,

we have already defined the vacuum to be the direct product of the matter part and the

ghost part as follows

|0〉 = |0, k〉⊗ |↓〉 . (2.225)

The physical states of the theory are constructed by acting on the vacuum with the BRST

operator QB. For instance we have

QB|0〉 = QB (|0, k〉⊗ |↓〉)
=

(
(LX0 − 1)|0, k〉

)
(c0 |↓〉) +

∑
m>0

(LXm|0〉)(c−m |↓〉) , (2.226)

where in the last line, we only kept the terms for m > 0 since the m < 0 terms for c−m
annihilate |↓〉. As you can see, when the BRST charge annihilate the ground state we

have that for all m > 0

(LX0 − 1)|0, k〉 = 0 , LXm|0〉 = 0 . (2.227)

These are none other than the known physical state conditions which lead to the tachyon

of the bosonic string. Furthermore, imposing the extra condition bn|ψ〉 = 0 on physical

states implies that a physical state can not contain c oscillator modes. On the other hand,

fixing the ghost number prohibits the physical states from having any b oscillator modes.
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Chapter 3

Superstrings in flat space

The main purpose of this chapter is to formulate the superstring action in a ten-dimensional

flat-space. We start by studying the Green-Schwarz superstring as a generalization of the

Brink-Schwarz superparticle. We will explain the problems with the covariant quantiza-

tion of this particular superstring model. After that we give a pedagogical introduction

to the pure spinor superstring by constructing the pure spinor ghost action from some

consistency conditions which we will establish later.

The best reference to study the Green-Schwarz superstring is [5]. On the other hand,

there are some excellent lectures on the pure spinor superstring which include [8] and [9],

apart from that, [10] presents a very nice introduction, in fact, some of the computation

details that we omit can be found there.

3.1 The Brink-Schwarz superparticle

We will start by studying the superparticle action. Even though it is much simpler

than the superstring, it is extremely useful to review it since there are some important

similarities between them. Let us write the Brink-Schwarz action for the superparticle

[11] 1

S =

∫
dτ (ΠmPm + ePmP

m) , (3.1)

1The standard description of the massless superparticle can be obtained from (3.1) by using the

equation of motion for Pm (3.3) to get

S = −1

4

∫
dτ e−1ΠmΠm .

47
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where

Πm = Ẋm − i

2
θ̇α γmαβ θ

β , m = 0, 1, . . . , 9 , (3.2)

here the fermionic variables θα are Majorana-Weyl spinors, γmαβ are sixteen by sixteen

matrices, Pm are the canonical momenta associated to Xm and e is a Lagrange multiplier.

Furthermore, the equations of motion can be easily found by varying (3.1)

P 2 = 0 , Ṗm = 0 , (γmθ̇)αPm = 0 , Πm + 2ePm = 0 . (3.3)

The variables Πm are constructed in such a way that the action (3.1) possess manifest

supersymmetry, that is it is invariant under the following global transformations

δεθ
α = εα , (3.4)

δεX
m =

i

2
θα γmαβ ε

β , (3.5)

δεP
m = 0 , (3.6)

δεe = 0 , (3.7)

where εα is a constant fermionic parameter. We can check that (3.1) is indeed invariant

under the transformations above, it is straightforward to write

δεS =

∫
dτ (δε ΠmPm + ΠmδεPm + 2e δεP

mPm)

=

∫
dτ

(
δεẊ

m − i

2
δεθ̇ γ

mθ − i

2
θ̇ γmδεθ

)
=

∫
dτ

(
i

2
θ γmε− i

2
θ̇ γmε

)
= 0 . (3.8)

3.1.1 The problem with covariant quantization

The Brink-Schwarz superparticle represents an example of a constrained system, let us

find the constraints of this theory. In order to do this we first compute the canonical

momenta for the variables Xm and θα

δL

δẊm
= Pm , (3.9)

δL

δθ̇α
= − i

2
Pm (γmθ)α ≡ pα . (3.10)
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As you can see, the canonical momenta associated to θα depends explicitly on the variables,

this represent a constraint on the theory and for this reason, it should be treated using

Dirac’s prescription to quantize constrained systems [12].

In order to identify the nature of the constraints we are dealing with, we need to impose

canonical Poisson brackets as follows{
pα, θ

β
}
P

= −iδβα , {Xm, P n}P = ηmn . (3.11)

We will denote the constraints of the system as dα defined by

dα = pα +
i

2
Pm (γmθ)α = 0 . (3.12)

The Poisson bracket of the constraints is given by the following matrix

cαβ = {dα, dβ}P
=

i

2
Pm
{
pα, (γ

mθ)β
}
P

+
i

2
Pn
{

(γnθ)α , pβ
}
P

= Pm γ
m
αβ . (3.13)

We should remember that in general, if we have a set of constrains φA with cAB =

{φA, φB}P , φm are first class constraints if cAB is zero or a linear combination of the

constraints (weakly zero), otherwise φα are second class constraints. From relation (3.13),

we can note that half of the constraints are first class and the other half are second class.

We can see this as follows: because of the equation of motion P 2 = 0, one can chose a

reference frame in which Pm = (P, 0, . . . , 0, P ), so that cα,β ∼ (γ0 − γ9)αβ ∼ (γ−)αβ. The

rank of this matrix is 8, and for this reason, cαβ only has 8 eigenvalues different from zero.

In order to covariantly quantize the superparticle one should covariantly separate the

first and second class constraints, something that until now has not been achieved. How-

ever, in order to deal with the second class constraints, one can use the light cone gauge,

but the cost is the breaking of manifest Lorentz covariance.

3.1.2 Kappa symmetry

The eight first class constraints generate gauge symmetries, thus we can fix eight θα

components reducing the fermionic degrees of freedom. In order to deal with the first

class constraints we define

Dα = iPm γαβm dβ . (3.14)

It is easy to show that {
Dα, Dβ

}
= 0 . (3.15)
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These first class constraints Dα generate the so-called kappa symmetry discovered by

Warren Siegel [13], defined by the following transformations

δκθ
α = Pm (γm κ)α (3.16)

δκX
m = − i

2
(θ γm δκθ) (3.17)

δκP
m = 0 (3.18)

δκe = iθ̇ακα . (3.19)

Here κ is a local fermionic parameter. Let us show that the action (3.1) is indeed invari-

ant under these transformations. First let me find how the supersymmetric object Πm

transforms

δκΠ
m = δκẊ

m − i

2
δκθ̇

αγmαβθ
β − i

2
θ̇αγmαβδκθ

β

= −i
(
θ̇γmδκθ

)
= −i θ̇αγmαβ γβδn P nκδ

= −iθ̇ακα Pm . (3.20)

Then the effect of the kappa transformations on the action can be computed easily as

follows

δκS =

∫
dτ (δκΠ

mPm + δke PmP
m)

=

∫
dτ
(
−iθ̇ακα PmPm + iθ̇ακα PmP

m
)

= 0 . (3.21)

3.2 The Green-Schwarz superstring

We will describe the motion of a string in a ten dimensional Minkowski superspace with

two supersymmetries described by ten bosonic coordinates Xm (m = 0, . . . 9) and two

fermionic ones θ1α and θ2α, each of them with 32 components (α = 1, . . . 32).2

There are two string theories with N = 2 supersymmetry in ten dimensions, Type IIA

and Type IIB superstring theories. The difference between the two of them is the relative

chirality of the two spinorial coordinates in each of them

Type IIA : Γθ1 = θ1 ; Γθ2 = −θ2 , (3.22)

Type IIB : Γθ1 = θ1 ; Γθ2 = θ2 , (3.23)

2In fact, we will be working with Majorana-Weyl spinors. As we know a Dirac spinor has 2
D
2 compo-

nents in D dimensions, but because of the Majorana-Weyl conditions, the number of degrees of freedom

is reduced to 16. That is why we have been considering sixteen by sixteen gamma matrices γm.
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where Γ = Γ0 . . .Γ9 is the chirality matrix, you can see Appendix A for our conventions.

3.2.1 Generalizing the superparticle action

In order to define the Green-Schwarz action, we consider a bosonic action and then we

make it supersymmetric by defining manifest supersymmetric variables. Let us start with

Polyakov action

SP = − 1

4πα′

∫
M
d2σ
√
−g gab ∂aXµ∂bXµ . (3.24)

If we want to make (3.24) supersymmetric, we write the action above in the following way

S1 = − 1

4πα′

∫
M
d2σ
√
−g gab Πm

a Πn
b ηmn , (3.25)

where gab is the world-sheet metric, ηmn is the flat space metric and

Πm
a = ∂aX

m − iδAB θ̄Aγm∂aθB ; A,B = 1, 2 , (3.26)

here δAB is the usual Kronecker delta. The action (3.25) is, of course, supersymmetric by

construction, that is, it is invariant under the following global transformations

δεX
m = i δAB θ̄

AγmεB , (3.27)

δεθ
A = εA . (3.28)

Of course Πm
a is supersymmetric by construction

δεΠ
m
a = ∂aδεX

m − iδAB δεθ̄Aγm∂aθB

= i∂aθ̄
1γmε1 + i∂aθ̄2γmε2 − iε̄1γm∂aθ1 − iε̄2γm∂aθ2

= 0 . (3.29)

Then the action (3.25) we considered above has manifest supersymmetry

δεS1 = 0 . (3.30)

The action (3.25) is just a generalization of the superparticle action we considered before,

but it is not the action we are interested in since the so-called kappa symmetry has been

lost in this procedure. As a result, the fermionic variables θ describe twice as many

degrees of freedom as they should. For this reason, we need to recover the local kappa

symmetry of the theory. Apart from that, this symmetry is also of crucial importance for

the quantum spectrum of the theory to be supersymmetric.

In the next section, we show how to add a second term to the action (3.25) to make

it invariant under kappa transformations similar to the ones considered for the Brink-

Schwarz superparticle.



52 3. SUPERSTRINGS IN FLAT SPACE

3.2.2 Recovering kappa symmetry

Motivated by the Brink-Schwarz superparticle, let us establish the kappa transformations

for the bosonic coordinates Xm as follows

δκX
m = iδABθ̄

Aγmδκθ
B , (3.31)

so, it is not difficult to find the transformation rule for the superfields Πm
a which I show

next

δκΠ
m
a = δκ

(
∂aX

m − iδAB θ̄Aγm∂aθB
)

= iδAB ∂aθ̄
Aγmδκθ

B − iδAB δκθ̄Aγm∂aθB

= 2i δAB ∂aθ̄
Aγmδκθ

B . (3.32)

Now, with the help of the expression above, we can write the variation of S1 under kappa

transformations as follows

δκS1 = − i

2πα′

∫
d2 σ

{√
−g gab Πm

a δAB θ̄
Aγn∂bθ

B ηmn +

+ δκ
(√
−g gab

)
Πm
a Πn

b ηmn

}
, (3.33)

where the transformation rule for the world sheet metric under kappa transformations is

still to be determined.

The procedure to recover kappa symmetry will be the following: we will add a term

S2 to the action in such a way that the total action SGS = S1 + S2 is invariant under

kappa transformations without breaking any existent symmetry of the theory, namely

super-Poincaré invariance and diffeomorphism invariance.

There is a general method to achieve this (see Chapter 4 for details). We will write S2

as the integral of a two-form Ω2 which does not depend on the worldsheet metric, that is

S2 =

∫
M

Ω2 =
1

2

∫
M
d2σ εαβΩαβ . (3.34)

Now let us define the three-form Ω3 as follows

Ω3 = dΩ2 , (3.35)

using Stoke’s theorem we can write

S2 =

∫
D

Ω3 =

∫
M

Ω2 , (3.36)
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where D is a three dimensional manifold and M is his border which can be interpreted

as the string worldsheet, that is, ∂D =M. The main advantage of writing the action in

this fashion is that the symmetries of the theory appear manifest.

In order to have manifestly supersymmetry, we need to construct our three form using

manifest supersymmetric objects, the ones we count with are the following

Πm = dXm + iδAB θ̄
Aγm d θB and d θA . (3.37)

The correct form we need to consider turns out to be

Ω3 = sAB d θ̄
A γmd θB Πm , (3.38)

where sAB is a 2 × 2 matrix which will be determined by the requirement of Ω3 to be

exact, this is

dΩ3 = sAB d θ̄
A γmd θB dΠm

= s11 d θ̄
1 γmd θ1 dΠm + s22 d θ̄

2 γmd θ2 dΠm +

+ s12 d θ̄
1 γmd θ2 dΠm + s21 d θ̄

2 γmd θ1 dΠm

= s11 (d θ̄1 γmd θ1)(id θ̄1 γmd θ2) + s22 (d θ̄2 γmd θ2)(id θ̄1 γmd θ1) . (3.39)

It is very easy to see from the equation above, that for Ω3 to be exact, we need to have

s11 = −s22 = c , (3.40)

then

Ω3 = c
(
d θ̄1 γmd θ1 − d θ̄2 γmd θ2

)
Πm . (3.41)

Let us now compute how Ω3 transforms under kappa transformations

δκΩ3 = d
[
2c
(
δκθ̄

1 γmd θ1 − δκθ̄2 γmd θ2
)

Πm

]
⇒ δκΩ2 = 2c

(
δκθ̄

1 γmd θ1 − δκθ̄2 γmd θ2
)

Πm . (3.42)

We can now add the variation of the two pieces of our total action SGS = S1 + S2, this is

δκSGS = δκS1 + δκS2

= − i

2πα′

∫
M
d2σ

{√
−ggabΠm

a δAB δκθ̄
Aγn∂bθ

Bηmn + δκ(
√
−ggab)Πm

a Πn
b ηmn

}
+

+2c

∫
M
d2σ εab

(
δκθ̄

1γm∂aθ
1 − δκθ̄2γm∂aθ

2
)
. (3.43)
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The constant c is defined in such a way that the action is invariant under kappa transfor-

mations. Let us define c = − i
2πα

, replacing in the expression above and rearranging some

of the terms we get

δκSGS = − i

2πα′

∫
M
d2σ
√
−g
[
Πm
a

(
gab +

εab√
−g

)
δκθ̄

1γm∂bθ
1

]
+

− i

2πα′

∫
M
d2σ
√
−g
[
Πm
a

(
gab − εab√

−g

)
δκθ̄

2γm∂bθ
2

]
+

+
1

4πα′

∫
M
d2σ δκ

(√
−ggab

)
Πm
a Πn

b ηmn . (3.44)

Let us now define the following tensor operators

P ab
± =

1

2

(
gab ± εab√

−g

)
, (3.45)

these objects are called duality projectors in the worldsheet. Considering these definitions

we are allowed to write the following expression

δκSGS = − i

2πα′

∫
M
d2σ
√
−g
{

Πm
a P

ab
− δκθ̄

1γm∂bθ
1 + Πm

a P
ab
+ δκθ̄

2γm∂bθ
2
}

+

+
1

4πα′

∫
M
d2σ δκ

(√
−ggab

)
Πm
a Πn

b ηmn . (3.46)

Using the superparticle as a guide we write the kappa transformations for the fermionic

variables as δκθ
A = ΓmΠm

a κ
A a, using these transformations an some properties of gamma

matrices we end up with the following result

δκSGS = − i

2πα′

∫
M
d2σ
√
−gΠm

a Πn
b

{
∂cθ̄

1γmγn
(
P ac
− κ

1 b − P bc
− κ

1 a
)}

+

− i

2πα′

∫
M
d2σ
√
−gΠm

a Πn
b

{
∂cθ̄

2γmγn
(
P ac

+ κ2 b − P bc
+ κ

2 a
)}

+

+
1

4πα′

∫
M
d2σ δκ

(√
−ggab

)
Πm
a Πn

b ηmn . (3.47)

We can now define some constraints on the kappa parameters and the transformation

rule for the world sheet metric tensor under kappa transformations so that the total

Green-Schwarz action is invariant under kappa transformations

κ1 a = P ab
− κ

1
b , (3.48)

κ2 a = P ab
+ κ2

b , (3.49)

δκ
(√
−ggab

)
= 8i

√
−g
(
P ac
− ∂cθ̄

1κ1 b + P ac
+ ∂cθ̄

2κ2 b
)
. (3.50)
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With the conditions established above the expression (3.47) vanishes and thus we can

define an action invariant under kappa transformations. To conclude the discussion let us

summarize the procedure by writing the total Green-Schwarz action for the superstring

SGS = S1 + S2

= − 1

4πα′

∫
M
d2σ

{√
−ggab Πa · Πb − 2εab

(
θ̄1γm∂aθ

1
) (
θ̄2γm∂bθ

2
)

+

+2iεab∂aXm

(
θ̄1γm∂bθ

1 − θ̄2γm∂bθ
2
)}

.(3.51)

3.2.3 The problem with covariant quantization

The equations of motion which follow from the Green-Schwarz action are heavily non lin-

ear, for this reason, it is very difficult to solve them. The local kappa symmetry we talked

about last section allows us to define a special gauge in which these equations simplify

considerably, but before going into details, let us show that the Green-Schwarz superstring

suffers a similar illness as the Brink-Schwarz superparticle, namely, the constraints of the

theory can not be disentangled in a manifestly covariant way.

Let us first go to conformal gauge in equation (3.51), that is, we first Wick rotate the

signature and then fix the gauge according to gab = δab. Using the same definitions for

the worldsheet coordinates and the derivatives that we used in (2.24) and (2.25), the

Green-Schwarz action in conformal gauge can be written as follows

SGS =
1

2πα′

∫
d2z
[
∂Xm∂̄Xm − 2i∂Xm

(
θ̄1γm∂̄θ1

)
− 2i∂̄Xm

(
θ̄2γm∂θ2

)
+

−
(
θ1γm∂̄θ

1
) (
θ̄1γm∂θ1 + θ̄2γm∂θ2

)
+

−
(
θ2γm∂̄θ

2
) (
θ̄1γm∂̄θ1 + θ̄2γm∂̄θ2

) ]
. (3.52)

In order to quantize the Green-Schwarz action, we need to compute the conjugate mo-

menta pA for the fermionic variables θA and then impose canonical anti commutators

between them. To give an example of how this computation works, let us find the conju-

gate momentum for θ1

p1
α ≡ π

δSGS
δ ∂1θ1α

=
i

α′
(θ̄1γm)α

[
Πm +

i

2
(θ̄1γm∂1θ

2)

]
, (3.53)

where we can define the so-called Green-Schwarz constraints for the fermionic variables

θ1 as follows

d1
α ≡ p1

α −
i

α′
(
θ̄1 γm

)
α

Πm +
i

2α′
(
θ̄1 γm

)
α

(
θ̄1 γm∂1θ

1
)
, (3.54)
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and the matrix for the fermionic constraints d1
α follows to be

d1
α(z)d1

β(w) ∼ −
i γmαβΠm

z − w
, (3.55)

where we made use of the following OPE

p1
α θ

1β(w) ∼ δβα
z − w

. (3.56)

By following a similar reasoning than the one we considered for the Brink-Schwarz super-

particle, considering the so-called Virasoro constraints, ΠmΠm = 0,3 we conclude that half

of the constraints are first class and half of them are second class. There is no prescription

to disentangle the first and second class constraints in a covariant way. In the following,

let us look at a convenient gauge to work with, the so-called light-cone gauge.

3.2.4 Light cone gauge

As we said earlier, the equations of motion which follow from (3.51) are very hard to

solve, and as we have just seen, the covariant quantization is not known. However, even

though we will not do it here, it is possible to find the spectrum of the theory if we use

a convenient gauge. Let us introduce the so-called light cone coordinates in the following

way

X± =
1

2

(
X0 ±X9

)
, XI with I = 1, . . . 8 , (3.57)

we also need to make the following definitions

η+− = −ηII = −1 , (3.58)

γ± =
(γ0 ± γ9)√

2
. (3.59)

The light cone gauge consists on taking the plus coordinate in the following way

X+ = x+ + p+τ , (3.60)

where x+ and p+ are just constants. As a result of this choice for the bosonic coordinates,

the theory contains eight bosonic degrees of freedom.

3Where Πm are the momentum (3.26) written in complex coordinates. Furthermore, the equations of

motion for the metric are the Virasoro constraints

ΠmΠm = Π̄mΠ̄m = 0 .
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Let us now analyse the fermionic degrees of freedom. As we know, a spinor in ten di-

mensions has 32 complex components, since we are dealing with Majorana-Weyl spinors,

we in fact only have 16 real components. Since we have been studying Type IIB super-

strings, we need to consider two Majorana-Weyl spinors (θ1 and θ2), which makes a total

of 32 real components. As we said earlier, the local kappa symmetry transformations can

be used to gauge away half of the 32 fermionic degrees of freedom, so the light cone gauge

condition enables us to reduce the number of degrees of freedom to eight for each spinor

θA. So let us show how to use the local kappa symmetry to make our gauge choice. Let

us consider the following expression

γ+ θ̄′A = γ+
(
θ̄A + δκθ̄

A)
= γ+ θ̄A + γ+ΓmΠm

i κ
A i , (3.61)

where in the first line we performed a kappa transformation. Then, it is always possible

to use kappa transformations to make the following gauge choice

γ+θ̄′A = 0 , (3.62)

which is the so-called light cone gauge for the fermionic variables.

With the use of the light cone gauge conditions (3.60) and (3.62), the action takes a

very simple form. In order to notice this, we first need to realise that the only non zero

component of expressions like θ̄A γm∂θA (here the repeated indexes do not imply any kind

of sum) is when m = − since the transverse and plus components vanish, that is,

θ̄Aγm∂θA = 0 , except for m = − . (3.63)

In fact, the plus component vanishes because of (3.62). On the other hand, for the

transverse components we can write

θ̄A = θ†Aγ0 = θ†
(
γ+ + γ−

)
, (3.64)

and since
{
γI , γ+

}
= 0 and γ− = −(γ+)†, we can write

θ̄AγI∂θA = θ†AγI∂
(
γ+θA

)
−
(
γ+θA

)†
γI∂θA = 0 . (3.65)

It follows from the light cone gauge condition for the bosonic coordinates that

∂̄X+ = −∂X+ =
1

2
p+ . (3.66)
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Using the two identities (3.63) and (3.66), the Green-Schwarz action (3.52) takes the form

SGS =
1

2πα′

∫
d2z

[
−∂XI ∂̄XI − 1

2
p+∂̄X− +

1

2
p+∂X− + ip+(θ̄1γ−∂̄θ1)− ip+(θ̄2γ−∂θ2)

]
,

(3.67)

where the second and third terms can be dropped since they are total derivatives. Using

the representation for γ− that appears in Appendix A, (3.67) becomes

SGS =
1

2πα′

∫
d2z

(
−∂XI ∂̄XI + S̄1α∂̄S1α + S̄2α∂̄S2α

)
, (3.68)

here I = 1, . . . , 8 ; α = 1, . . . , 8 and

S1α =
1

21/4

√
ip+θ1α , S2α =

1

21/4

√
ip+θ2α . (3.69)

3.3 The pure spinor formulation of superstrings

We now review the construction of the so-called pure spinor formalism of superstrings.

We start by presenting Siegel’s approach to the Green-Schwarz superstring and then we

move on to construct the pure spinor formalism by requiring some consistency conditions.

3.3.1 Siegel’s approach to the Green-Schwarz superstring

As we saw in the last section when studying the Green-Schwarz superstring, the covariant

quantization of (3.51) can not be achieved due to the nature of the set of constraints of

the theory as it was explained. When trying to quantize the theory, it is necessary to use

kappa symmetry in order to fix the gauge (the so-called light cone gauge) thus breaking

the manifest Lorentz covariance.

In 1986, Siegel proposed a modification to the Green-Schwarz action in such a way

that the fermionic canonical momenta (3.53) were independent variables [14]. In order to

relate the Green-Schwarz superstring to Siegel’s proposal, we rewrite the action (3.52) by

considering only one spinor, that is we make θ1 = θ and θ2 = 0, in this way we get 4

SGS =
1

4π

∫
d2z

[
∂Xm∂̄Xm − 2i∂Xm(θγm∂̄θ)− (θγm∂̄θ)(θγ

m∂θ)
]
. (3.70)

We can define the conjugate momenta pα as follows

pα ≡ 2π
δSGS
δ ∂̄θα

=
1

2
(−2i∂Xm − θγm∂θ) (θγm)α , (3.71)

4From now on, in order to simplify the calculations, we make α′ = 2.
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and for this case, the Green-Schwarz constraints would be

dα ≡ pα −
1

2
(−2i∂Xm − θγm∂θ) (θγm)α , (3.72)

and the Green-Schwarz action becomes

SGS =
1

4π

∫
d2z

[
∂Xm∂̄Xm − 2(dα − pα)∂̄θα

]
=

1

2π

∫
d2z

(
1

2
∂Xm∂̄Xm + pα∂̄θ

α

)
− 1

2π

∫
d2z dα∂̄θ

α . (3.73)

Let us define Siegel action as follows

S1 ≡
1

2π

∫
d2z

(
1

2
∂Xm∂̄Xm + pα∂̄θα

)
, (3.74)

which is of course related to the Green-Schwarz action according to

S1 = SGS +
1

2π

∫
d2z dα∂̄θ

α . (3.75)

From the relation above, we can note that if pα is constrained by dα = 0, then the actions

(3.70) and (3.74) are completely equivalent. Otherwise, if we relax the constraint and

consider pα as an independent variable, we obtain an alternative action, Siegel’s action.

The main problem with Siegel’s attempt is that the theory has too many degrees of

freedom, thus, when trying to quantize (3.74) we need to write a set of constraints which

we should impose in order to truncate the spectrum. The Virasoro constraints T =

−1
2
ΠmΠm − dα∂θα and the kappa symmetry generators of the Green-Schwarz formalism

Gα = Πm (γmd)α should certainly belong to such a set of constraints. However, a complete

set of constraints that reproduces the superstring spectrum has not been found until now.

A way to solve this issue was proposed by Berkovits in 2000 [15]. Basically, we will add

new ghost fields to the theory in such a way that the physical spectrum of the theory can

be defined by a BRST charge Q to be defined properly. However, the procedure is not

that straightforward, we need to add new terms to Siegel’s action but they must obey

some consistency conditions.

It is very useful to note that Siegel’s action S1 can be thought as the sum of ten free

scalar fields which conform a XX system and sixteen bc-like systems (pα, θ
α) where we

can make the identification b → p and c → θ with conformal weights (1, 0) and (0, 0)

respectively. We have studied these systems extensively in Chapter 2 and we are very
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familiar with some results like OPEs and other computations associated to them. For

this reason, we are allowed to write the following OPEs

Xm(z, z̄)Xn(w, w̄) ∼ −1

2
ηmn ln |z − w|2 , (3.76)

pα(z) θβ(w) ∼ δβα
(z − w)

, (3.77)

dα(z) dβ(w) ∼ −1

2

γmαβΠm

(z − w)
, (3.78)

dα(z) Πm(w) ∼ −1

2

(γm∂θ)α
(z − w)

. (3.79)

We want our model to be free of anomalies, as a consequence, the central charge c1

associated to Siegel’s action should vanish. However, as we will see next, this is not the

case. This represent a big problem with Siegel’s attempt to modify the Green-Schwarz

formalism.

Let us compute explicitly the central charge to see that it is indeed non-vanishing. First

of all let me write the energy momentum tensor T 1 associated to Siegel’s model, from the

identification we did before it is straightforward to write the following relation

T 1 = −1

2
∂Xm∂Xm − pα∂θα . (3.80)

The central charge cX associated to the XX system is just equal to the number of degrees

of freedom of it, thus we can write cX = 10. On the other hand, the central charge cpθ

associated to the sixteen bc-like systems (pα, θ
α) is cpθ = 16× (−2) = −32, where λ = 1.

In this way, the total central charge of Siegel’s model is

c1 = cX + cpθ = −22 . (3.81)

In this way, the central charge of the set of ghosts that we will add, must be such that it

cancels the total central charge of the theory.

Let us now find the spin contribution to the Lorentz currents in Siegel’s model. As

we will only consider the spin contributions, let us write how the fermionic coordinates

transform under Lorentz transformations

δpα =
1

4
εmn(γmn) β

α pβ , δθα =
1

4
εmn(γmn)αβ θ

β . (3.82)

Now with the help of Noether’s procedure we can find the Lorentz currents associated to
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the fermionic variables

δS1 =
1

2π

∫
d2z

(
δpα ∂̄θ

α + pα ∂̄δθ
α
)

=
1

2π

∫
d2z

[(
1

4
εmn(γmn) β

α pβ

)
θ̄α + pα∂̄

(
1

4
εmn(γmn)αβθ

β

)]
=

1

2π

∫
d2z

[
1

4
εmn(γmn) β

α pβ∂̄θ
α +

1

4
pα∂̄εmn(γmn)αβθ

β +
1

4
pαεmn(γmn)αβ∂̄θ

β

]
=

1

2π

∫
d2z ∂̄εmn

[
1

4
(p γmnθ)

]
, (3.83)

where we have used the identity (γmn) β
α = −(γmn)βα to reduce terms in the last line.

Then we can write the Lorentz currents as follows

Σmn =
1

2
(p γmnθ) . (3.84)

Le us compute the ΣΣ OPE, the computation is quite tedious so we will not pay that

much attention to the details involved

Σmn(z)Σpq(w) =
1

4

[
pα(γmn)αβθ

β
]

[pµ(γpq)µνθ
ν ]

∼ 1

4

[
pα(γmn)αβ(γpq)µνθ

ν
δβµ

z − w
+ (γmn)αβθ

βpµ(γpq)µν
δνα

z − w
+

+
(γmn)αβ(γpq)µνδ

β
µδ

α
ν

(z − w)2

]
∼ 1

4

p (γmnγpq − γpqγmn) θ

z − w
+

1

4

tr(γmnγpq)

(z − w)2
. (3.85)

The numerator in the simple pole can be reduced by using the definition γmn = 1
2

[γm, γn],

and then just making use of the properties of gamma matrices. To reduce the double pole

numerator, we just need to use the following identity

tr(γmγnγpγq) = 16 (ηmnηpq − ηmpηnq + ηmqηnp) . (3.86)

The ΣΣ OPE finally takes the following form

Σmn(z)Σpq(w) ∼ ηp[nΣm]q − ηq[nΣm]p

z − w
+ 4

ηm[qηp]n

(z − w)2
. (3.87)

Wee need to make a key observation here. In the Ramond-Neveu-Schwarz (RNS) formal-

ism, the spin contribution to the Lorentz generators is given by Σmn
RNS = ψmψn, which
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satisfies the following OPE [7]

Σmn
RNS(z)Σpq

RNS(w) ∼ ηp[nΣ
m]q
RNS − ηq[nΣ

m]p
RNS

z − w
+
ηm[qηp]n

(z − w)2
. (3.88)

Comparing equations (3.87) and (3.88), we realize that there is a discrepancy concerning

the coefficient of the double pole of both OPEs. Berkovits considered this observation and

suggested that we should modify Siegel’s model in such a way that the Lorentz generators

Σmn obey the same OPE than those of the RNS formalism. In the procedure to construct

the pure spinor formalism we will consider these condition together with the vanishing of

the central charge as consistency conditions for the model.

3.3.2 A note on Lorentz ghost currents

The pure spinor formalism solves the two difficulties we discussed earlier, namely, it adds

a set of ghosts to Siegel’s model (the pure spinor ghost action) which contribute with the

right number to cancel the total central charge of the theory and its contribution to the

Lorentz generators is such that the OPE of the Lorentz generators is compatible with

equation (3.88).

It is easy to guess the OPE that the Lorentz generators associated to the pure spinor

ghost system should obey. Let us define the pure spinor Lorentz generators Mmn as

follows

Mmn = Σmn +Nmn , (3.89)

where Σmn is the contribution from Siegel’s model that we saw before and Nmn are the

Lorentz currents due to the pure spinor ghost action. Let us compute the Lorentz currents

OPE as follows

Mmn(z)Mpq(w) = (Σmn(z) +Nmn(z)) (Σpq(w) +Npq(w))

= Σmn(z)Σpq(w) +Nmn(z)Npq(w) + Σmn(z)Npq(w) +

+Nmn(z)Σpq(w) . (3.90)

For this expression to take the desired form of the OPE (3.88), the OPEs of the Lorentz

currents of the ghost system must be the following

Nmn(z)Npq(w) ∼ ηp[nNm]q − ηq[nNm]p

z − w
− 3

ηm[qηp]n

(z − w)2
, (3.91)

Σmn(z)Npq(w) ∼ regular . (3.92)
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Replacing equations (3.87), (3.91) and (3.92) in (3.90) we finally get our desired OPE

Mmn(z)Mpq(w) ∼ ηp[nMm]q − ηq[nMm]p

z − w
+
ηm[qηp]n

(z − w)2
. (3.93)

As we said earlier, the pure spinor formalism adds a set of ghost fields à la BRST to

Siegel’s model, from the relations above we know some consistency conditions that these

additional terms must satisfy, in particular, the Lorentz currents associated to them must

obey the OPEs (3.91) and (3.92).

3.3.3 Pure spinor ghosts and the BRST charge

Let us now proceed to define the BRST operator of the pure spinor formalism. Berkovits

proposed the BRST operator as a linear combination of the constraints dα and some

bosonic variables5 λα

QBRST =

∮
dz

2πi
λα(z) dα(z) , (3.94)

where the supersymmetric Green-Schwarz constraints are given by

dα = pα −
1

2
(γmθ)α ∂Xm −

1

8
(γmθ)α (θγm∂θ) . (3.95)

As we saw when studying the BRST quantization of the bosonic string in Chapter 2, for

the spectrum of the theory to be defined as the cohomology of the BRST operator, the

operator must be nilpotent Q2
BRST = 0. Applying this condition to the pure spinor BRST

operator we have just defined we get

Q2
BRST =

1

2
{QBRST , QBRST}

=

∮
dz

2πi

dw

2πi
λα(z) dα(z)λβ(w) dβ(w)

=

∮
dz

2πi

dw

2πi
λα(z)λβ(w)

(
−1

2

γmαβ Πm

z − w

)
= −1

2

∮
dz

2πi

(
λα γmαβ λ

β
)

Πm , (3.96)

where in the second line, we made use of the OPE (3.78). Looking at the expression

above, we can note that for the BRST operator to be nilpotent, the bosonic fields λα

must satisfy the so-called pure spinor constraints, that is

(λα γmαβ λ
β) = (λ γm λ) = 0 . (3.97)

5As we know, the BRST operator rises the ghost number, hence it has to contain λα, which has ghost

number +1, so it is natural to define the BRST operator as we did in (3.94).
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We will call a ten dimensional Weyl spinor λα a pure spinor if the relation above holds

for m = 0, . . . , 9.

The ten constraints contained in (3.97) are not independent. The pure spinor formalism

relies on the properties of the pure spinor λα. In order to solve the constraints (3.97), it

turns out to be necessary to perform a Wick rotation from SO(9, 1) to SO(10) and break

SO(10) to U(5). For this reason, we will spend a few words on how to do this.

3.3.4 Breaking SO(10) to U(5)

In order to solve the pure spinor constraints, we need a convenient group representation.

What we want is to write vectors, tensors and spinors of the Euclidean Lorentz group

SO(10) in terms of U(5) variables.

We can decompose any SO(10) vector V m in his fundamental (va ≡ 5) and anti-

fundamental (va ≡ 5̄) representations of U(5) in the following way

V m → (va ⊕ va) , (3.98)

with

va =
1√
2

(
V a + iV a+5

)
, (3.99)

va =
1√
2

(
V a − iV a+5

)
, (3.100)

where in the expressions above, a = 1, . . . , 5. We denote this decomposition as 10 = 5⊕5̄.

Furthermore, the scalar product of two vectors V m and Wm can be written in the following

way

V mWm = vawa + vaw
a . (3.101)

Following the same reasoning as above, we can deduce the U(5) decomposition of any

antisymmetric rank-2 SO(10) tensor Nmn as follows

Nmn → (va ⊕ va)⊗
(
wb ⊕ wb

)
→

(
nab ⊕ nab ⊕ nab ⊕ n

)
, (3.102)
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with

nab =
1

2

(
Nab + iNa(b+5) + iN (a+5)b −N (a+5)(b+5)

)
, (3.103)

nab =
1

2

(
Nab − iNa(b+5) − iN (a+5)b −N (a+5)(b+5)

)
, (3.104)

nab =
1

2

(
Nab − iNa(b+5) + iN (a+5)b +N (a+5)(b+5)

)
− iδ

a
b

5

∑
a

N (a+5)a , (3.105)

n =
i√
5

∑
N (a+5)a . (3.106)

We can prove the results above pretty easily by using definitions (3.99) and (3.100). For

instance

nab ≡ va ⊗ wb

=
1

2

(
V a + iV a+5

)
⊗
(
W b + iW b+5

)
=

1

2

(
Nab + iNa(b+5) + iN (a+5)b −N (a+5)(b+5)

)
. (3.107)

In this way, the 45 components ofNmn are decomposed according to 45→ 10⊕24⊕1̄0⊕1.

In order to decompose a spinor, it is necessary to decompose first the 10-dimensional

gamma matrices as follows

ai =
1

2

(
Γi + iΓi+5

)
; i = 1, . . . , 5 , (3.108)

ai =
1

2

(
Γi − iΓi+5

)
. (3.109)

We can use the Clifford algebra {Γi,Γj} = 2δij to write the following relations{
ai, a

j
}

= δij , {ai, aj} =
{
ai, aj

}
= 0 , (3.110)

We recognize this algebra as the harmonic oscillator algebra, then we can identify ai and

ai as creation and annihilation operators respectively. In this way, we can define a vacuum

state |0〉 by ai|0〉 = 0. A generic state |A〉 can be constructed by applying ai repeatedly

as follows

|A〉 =
[
A0 +

∑
i

Aia
i +
∑
i<j

Aija
iaj +

∑
i<j<k

Aijka
iajak +

+
∑

i<j<k<l

Aijkla
iajakal + A5a

1a2a3a4a5
]
|0〉 . (3.111)



66 3. SUPERSTRINGS IN FLAT SPACE

We should note that the number of components of this state is actually 1 + 5 + 10 + 10 +

5 + 1 = 32, as we could have suspected for a generic spinor in ten dimensions.

We are interested in how to decompose Weyl and anti-Weyl spinors, for this reason, let

us define the chirality matrix as

Γ = i
10∏
m=1

Γm , (3.112)

which can also be written in the following fashion

Γ = −
5∏
i=1

(ai + ai)(ai − ai) = −
5∏
i=1

(2aiai − 1) , (3.113)

where the following relations hold

{Γ, ai} =
{

Γ, ai
}

= 0 . (3.114)

Since, as it is easy to note, Γ|0〉 = |0〉, a positive chirality state (Γ|λ〉+ = |λ〉+) contains

only terms with 0, 2 or 4 creation operators ai, whereas a negative chirality state (Γ|ω〉− =

−|ω〉−) contains only terms with 1, 3 or 5 ai. Therefore, for a Weyl spinor we have

|λ〉+ = λ+|0〉+
1

2
λija

jai|0〉+
1

4!
λiεijklma

malakaj|0〉 , (3.115)

where the components are given by

λ+ = 〈0|λ〉 , λij = 〈0|aiaj|λ〉 , λi =
1

4!
εijklm〈0|ajakalam|λ〉 . (3.116)

On the other hand, for an anti-Weyl spinor we can write

|ω〉− = ωia
i|0〉+

1

2 · 3!
ωijεijklma

kalam|0〉+ ω+a
1a2a3a4a5|0〉 , (3.117)

where this time, the components are given by

ω+ = 〈0|a5a4a3a2a1|ω〉 , ωij =
1

3!
εijklm〈0|akalam|ω〉 , ωi = 〈0|ai|ω〉 . (3.118)

As you have seen, we have obtained the U(5) decomposition of a Weyl spinor as

λα →
(
λ+ ⊕ λij ⊕ λi

)
; (16 = 1⊕ 1̄0⊕ 5) , (3.119)

whereas, for an anti-Weyl spinor we can write

ωα →
(
ωi ⊕ ωij ⊕ ω+

)
; (1̄6 = 5̄⊕ 10⊕ 1̄) . (3.120)

It is relatively easy to solve the pure spinor constraints in these variables, we will do this

in the next sub-section, where we will be following [16].
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3.3.5 Solving the pure spinor constraints

To begin with, let us define the charge conjugation matrix C as follows

CΓmC−1 = −(Γm)T , (3.121)

which in ten dimensions can be written in the following way

C = −iΓ6Γ7Γ8Γ9Γ10 =
5∏
i=1

(ai − ai) , (3.122)

where the matrices ai and ai are defined in (3.108) and (3.109) respectively. What is

more, the following relations are valid

aiC = −Cai , aiC = −Cai . (3.123)

Furthermore, we should note that since (γm)αβ = (γm) γ
α Cγβ, the constraints (3.97) are

obtained from the 32-dimensional expression λ (ΓmCλ) = 0 which under the decomposi-

tion SO(10)→ U(5) goes to two independent equations

〈λ|γiC|λ〉 = 〈λ|(ai + ai)C|λ〉 = 0 , (3.124)

〈λ|γi+5C|λ〉 = i〈λ|(ai − ai)C|λ〉 = 0 , (3.125)

which can be reduced to the following expressions

〈λ|Cai|λ〉 = 0 , (3.126)

〈λ|Cai|λ〉 = 0 . (3.127)

In order to solve the two set of constraints above, we just need to consider the U(5)

expansion for a Weyl spinor given in (3.115), but before doing this, it is very useful to

note that the only non-vanishing terms in the expressions (3.126) and (3.127) are the ones

proportional to 〈0|C aiajakalam|0〉. In fact, from the definition of the charge conjugation

matrix, we can write C|0〉 = −a1a2a3a4a5|0〉 and 〈0|C = 〈0|a5a4a3a2a1. Furthermore, we

have

〈0|Ca1a2a3a4a5|0〉 = 〈0|a5a4a3a2a1a1a2a3a4a5|0〉 = 1 . (3.128)

The expression above is totally antisymmetric in the exchange of its indices, so we are

allowed to write

〈0|Caiajakalam|0〉 = εijklm . (3.129)
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We can now proceed to solve the two sets of constraints (3.126) and (3.127). Let us start

with the first one

〈λ|Cai0 |λ〉 = 〈0|C
(
λ+ +

1

2
λija

iaj +
1

4!
λiajakalamεijklm

)
ai0 |λ〉

= λ+〈0|Cai0|λ〉+
1

2
λij〈0|Caiajai0|λ〉+

+
1

24
λiεijklm〈0|Cajakalamai0|λ〉 , (3.130)

where we made use of relations (3.123) which can also be used to compute the brackets

involved in the expression above in the following way

〈0|Cai0|λ〉 =
1

24
λiεijklm〈0|Cai0amalakaj|0〉

=
1

24
λiεijklmε

i0mlkj

= λi0 , (3.131)

where in the first line we made use of the statement which carried us to equation (3.129).

Analogously we can compute

〈0|Caiajai0 |λ〉 =
1

2
λkl〈0|Caiajai0akal|0〉

=
1

2
λklε

iji0kl =
1

2
λklε

i0ijkl . (3.132)

〈0|Cajakalamai0|λ〉 = λ+〈0|Cajakalamai0|0〉
= λ+ε

jklmi0 = λ+ε
i0jklm . (3.133)

Finally, the first set of constraints takes the following form

〈λ|Cai0|λ〉 = λ+λ
i0 +

1

4
λijλklε

i0ijkl +
1

24
λiλ+εijklmε

i0jklm

= 2λ+λ
i0 +

1

4
εi0ijklλijλkl . (3.134)

from equation (3.126), the solution to the first set of constraints 2λ+λ
i+ 1

4
εijklmλjkλlm = 0

is given by

λi = − 1

8λ+

εijklmλjkλlm . (3.135)

It can be shown that (3.135) solves also the constraints (3.127) automatically. Therefore

a pure spinor in 10 dimensions is given by the decomposition (3.119) in which (3.135)
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holds for λ+ 6= 0. As a final remark, we should note from (3.135) that a pure spinor has

only eleven independent complex components (ten from λij and one from λ+) which, as

we will see later, leads to a vanishing central charge in the pure spinor formalism.

3.3.6 Consistency conditions

It turns out that we need to add some extra terms to Sielgel’s action (3.74). However, we

need these extra terms to be compatible with some consistency conditions which we will

summarize next.

• The first consistency condition should be clear at this point, the pure spinor ghost

action must be added to Siegel’s action in such a way that the resulting action

possesses a vanishing central charge and, as a consequence, the theory is free of

anomalies. For this reason we claim that the central charge of the pure spinor ghost

action must be cλ = 22.

• We have talked about the second consistency condition too. The Lorentz currents

associated to the pure spinor ghost action must obey the OPEs (3.91) and (3.92).

Let us write these OPE in U(5) language. We know how to perform a U(5) decompo-

sition of the Lorentz ghost currents (antisymmetric tensor of rank 2), therefore, we

claim that the U(5) Lorentz ghost currents nab, nab, nab, n must satisfy the following

OPEs6

nab(z)ncd(w) ∼
−δ[c

a n
d]
b (w)− 2√

5
δ

[c
a δ

d]
b n(w)

z − w
+ 3

δ
[c
a δ

d]
b

(z − w)2
, (3.136)

nab (z)ncd(w) ∼ δbcn
d
a(w)− δbaδdc (w)

z − w
− 3

δdaδ
b
c − 1

5
δbaδ

d
c

(z − w)2
, (3.137)

n(z)n(w) ∼ − 3

(z − w)2
, (3.138)

n(z)nab(w) ∼ − 2√
5

nab(w)

z − w
, (3.139)

n(z)nab(w) ∼ 2√
5

nab(w)

z − w
, (3.140)

n(z)nab (w) ∼ regular . (3.141)

6We used [10] to write these OPEs. Some of the computations details we are omitting can be found

there.
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Proving relations (3.136)-(3.141) is rather simple, we just need to use (3.103)-(3.106)

together with (3.91). For instance, the proof of (3.138) goes as follows

n(z)n(w) = −1

5

∑
a,b

N (a+5)aN (b+5)b

∼ −1

5

[∑
ab

δ(b+5)[aN (a+5)]b(w)− δb[aN (a+5)](b+5)(w)

z − w
+

−3
δ(a+5)bδa(b+5) − δ(a+5)(b+5)δab

(z − w)2

]
∼ −3

5

∑
a δ

(a+5)(a+5)δaa

(z − w)2

∼ − 3

(z − w)2
, (3.142)

as you can see, we have used δ instead of η in the OPE (3.91) since we are working

in SO(10). The proof of the rest of the OPEs is pretty similar but the computation

details are really tedious and we will not perform them here.

• We need to require one extra consistency condition. Since the pure spinor variables

λα must transform as spinors under the action of the Lorentz currents Mmn =

Σmn +Nmn, that is

δλα =
1

2

∮
dz

2πi
εmn [Mmn, λα] =

1

4
εmn(γmn)αβ λ

β . (3.143)

With the help of our experience when dealing with this kind of integrals, we know

that we need to replace the commutator inside the integral with its respective OPE.

Since the OPE of λα and Σmn has no poles, we can deduce that the pure spinor

variables must satisfy

Nmn(z)λα(w) ∼ 1

2

(γmn)αβ λ
β(z)

z − w
, (3.144)

we can use the U(5) decomposition of the pure spinor variables (λ+, λij, λ
i) and the

Lorentz ghost currents
(
nab ⊕ nab ⊕ nab ⊕ n

)
to find the U(5) version of the OPE
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written above. Let me summarize the results as follows

n(z)λ+(w) ∼ −
√

5

2

λ+(w)

z − w
, (3.145)

n(z)λcd(w) ∼ − 1

2
√

5

λcd(w)

z − w
, (3.146)

n(z)λc(w) ∼ 3

2
√

5

λc(w)

z − w
, (3.147)

nab (z)λ+(w) ∼ regular , (3.148)

nab (z)λcd(w) ∼ δadλcb − δacλdb
z − w

− 2

5

δabλcd
z − w

, (3.149)

nab (z)λc(w) ∼ 1

5
δabλ

c − δcbλa , (3.150)

nab(z)λ+(w) ∼ λab(w)

z − w
, (3.151)

nab(z)λcd(w) ∼ εabcdeλ
e , (3.152)

nab(z)λc(w) ∼ regular , (3.153)

nab(z)λ+(w) ∼ regular , (3.154)

nab(z)λcd(w) ∼ −δ
[a
c δ

b]
d λ+(w)

z − w
, (3.155)

nab(z)λc(w) ∼ −1

2
εabcdeλde . (3.156)

It is not that hard to prove all of these results, we just need to use the OPE (3.144)

together with some gamma matrices properties. For instance, the proof of (3.151)

goes as follows

nab(z)λ+(w) =
1

2

(
Nab − iNa(b+5) − iN (a+5)b −N (a+5)(b+5)

)
〈0|λ〉

∼ 1

4

〈0|
(
γab − iγa(b+5) − iγ(a+5)b − γ(a+5)(b+5)

)
|λ〉

z − w

∼ 〈0|aaab|λ〉
z − w

∼ λab
z − w

, (3.157)

where in the second line we made use of the OPE (3.144), and in the third line we

made use of the following identity

4 aiaj = Γij − iΓi(j+5) − iΓ(i+5)j − Γ(i+5)(j+5) , (3.158)
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which is valid for i 6= j. The rest of the OPEs can be computed in a similar way

and will not be performed here.

3.3.7 The pure spinor ghost action

It turns out that the action which is compatible with the three consistency conditions we

have stated, is a curved βγ-like system called Pure Spinor Ghost Action, which we define

next

Sλ ≡
1

2π

∫
d2z ωα∂̄λ

α , (3.159)

where λα are the pure spinor variables defined at (3.97) and ωα are their conjugate mo-

menta. We will spend the rest of this chapter trying to convince you that the pure spinor

ghost action indeed satisfies the consistency conditions we have talked before. As we said

earlier, the pure spinor variables are defined to guarantee the nilpotency of the BRST

operator defined in (3.94), however, because of the constraints (3.97), we can not use the

naive OPE (that for the βγ-like systems) between ωα and λα as

ωα(z)λβ(w) ∼
δαβ

z − w
, (3.160)

because we get a contradiction with the pure spinor constraints, as you can see in the

following equations

ωα(z)
(
λβγmβγλ

γ
)

(w) ∼ 2
γmαγλ

γ

z − w
6= 0 . (3.161)

For this reason, we need to write the pure spinor ghost action Sλ in terms of unconstrained

fields, that is, we need to use our solution to the pure spinor constraints and write the

action using U(5) variables.

To begin with, we need to realize that the action Sλ is invariant under the following

local transformations

δZωα = Zm(γm)αβλ
β , δλα = 0 , (3.162)

where Zm is a local vector parameter. We just need to vary the action Sλ as follows

δZSλ =
1

2π

∫
d2zZm(γm)αβλ

β∂̄λα

= − 1

2π

∫
d2z

{
∂̄
[
Zmλα(γm)αβλ

β
]

+ Zm(γm)βαλ
α∂̄λβ

}
= −δZSλ

⇒ δZSλ = 0 , (3.163)
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where in the second line we used integration by parts and the pure spinor constraints.

If we perform a U(5) decomposition of the vector parameters as Zm → (ζ i, ζi), then the

gauge transformations we defined in (3.162), can be written as follows

δZωα = ζ i(aiλ)α + ζi(a
iλ)α , (3.164)

where we have written the scalar product according to (3.101). Let us combine the

expression above together with (3.118) to get

δZωi = 〈0|ai|δZω〉
= ζj〈0|aiaj|λ〉+ ζj〈0|aiaj|λ〉
= ζj λij + ζi λ

+ , (3.165)

where we made use of (3.116) to write the U(5) components of λα. We can realize from the

expression above, that it is always possible to make a gauge choice such that ωi vanishes.

For instance, if we choose

Z i = − ωi√
2λ+

, Z i+5 = −i ωi√
2λ+

, (3.166)

the U(5) components follow immediately

ζ i = 0 , ζi = − ωi
λ+

. (3.167)

Using this gauge choice, it is straightforward to write

δZωi = −ωi ⇒ ωi → ωi + δZωi = ωi − ωi = 0 , (3.168)

then, it is always possible to make a gauge choice, such that the U(5) components ωi
vanish. We will consider this observation when writing the action Sλ in U(5) variables,

but before going on, let us investigate how does the scalar product between an anti-chiral

and a chiral spinor looks like. The charge conjugation matrix in ten dimensions admits

the following anti-diagonal form

C =

(
0 116

−116 0

)
, (3.169)

then we can define the scalar product as

−〈ω|C|λ〉+ =
(

0 ωβ

)( 0 δβα
−δβα 0

)(
λα

0

)
= −ωαλα . (3.170)
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On the other hand, the same computation can be done by considering the expansions for

a Weyl and anti-Weyl spinors (3.115) and (3.117) respectively

−〈ω|C|λ〉+ =

(
ω∗i 〈0|ai +

1

2 · 3!
ωij ∗εijklm〈0|amalak + ω∗+〈0|a5a4a3a2a1

)
×

×C
(
λ+|0〉+

1

2
λpqa

qap|0〉+
1

4!
λpεpqrsta

tasaraq|0〉
)

= − 1

4!
ω∗i λ

pεpqrst〈0|Caiatasaraqap|0〉 −
1

4!
ωij ∗λpqεijklm〈0|Camalakaqap|0〉+

−ω∗+λ+〈0|Ca5a4a3a2a1|0〉

= −ω∗+λ+ − ω∗i λi −
1

2
ωij ∗λij . (3.171)

Thus, comparing (3.170) and (3.171), we can write

ωαλ
α = ω∗+λ

+ + ω∗aλ
a +

1

2
ωab ∗λab , (3.172)

and as a consequence

ωα∂̄λ
α = ω∗+∂̄λ

+ + ω∗a∂̄λ
a +

1

2
ωab ∗∂̄λab . (3.173)

Let us now define

λ+ = es , λab = uab , λa = −1

8
e−sεabcdeubcude , (3.174)

and

ω∗+ = ∂t e−s , ωab ∗ = vab , ω∗a = 0 . (3.175)

for any s, t and antisymmetric u, v. You should note that we chose ω∗a = 0 which is

justified from the discussion we had earlier in (3.168). Taking into consideration all of

these definitions, it should not be very hard to convince you that the pure spinor ghost

action can be written as follows

Sλ =
1

2π

∫
d2z

(
−∂t ∂̄s+

1

2
vab∂̄uab

)
, (3.176)

where the following free field OPEs hold

t(z)s(w) ∼ ln (z − w) , (3.177)

vab(z)ucd(w) ∼ δ
[a
c δ

b]
d

z − w
. (3.178)
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The fields v, u, ∂t, and ∂s have conformal weights (1,0), (0,0), (1,1) and (1,1) respectively,

so we can write how these fields transforms under conformal transformations as follows

δvab = ∂ε vab + ε ∂vab + ε̄ ∂̄vab , (3.179)

δuab = ε ∂uab + ε̄ ∂̄uab , (3.180)

δ∂t = ∂ε∂t+ ε ∂2t+ ∂̄ε̄∂t+ ε̄ ∂̄∂t , (3.181)

δ∂̄s = ∂ε∂̄s+ ε ∂∂̄s+ ∂̄ε̄∂̄s+ ε̄ ∂̄2s . (3.182)

We now make use of these transformations to employ Noether’s procedure in order to

compute the energy momentum tensor Tλ of the pure spinor ghost action. It is rather

easy to note from the transformations above, that u and v form a βγ-like system under

the identification β → −1/2 vab and γ → uab, with conformal weights (1,0) and (0,0)

respectively. Therefore we can write its contribution to the energy-momentum tensor

directly. On the other hand, we vary the action in order to find the contribution from the

fields ∂t and ∂s, that is

δSλ = − 1

2π

∫
d2z (δ∂t ∂̄s+ ∂t δ∂̄s) + other contributions

= − 1

2π

∫
d2z
[
(∂ε∂t+ ε ∂2t+ ∂̄ε̄∂t+ ε̄ ∂̄∂t)∂̄s

+∂t(∂ε∂̄s+ ε ∂∂̄s+ ∂̄ε̄∂̄s+ ε̄ ∂̄2s)
]

+ other contributions

= − 1

2π

∫
d2z
[
(∂t∂s)∂̄ε+ (∂̄s∂̄t)∂ε̄

]
+ other contributions , (3.183)

Since we already know the contribution of the βγ-like system (see Chapter 2), it is straight-

forward to write the total energy-momentum tensor for the pure spinor ghost action

Tλ(z) =
1

2
vab∂uab + ∂t∂s+ ∂2s , (3.184)

where the last term is a total derivative that has been added by hand in order to make

the Lorentz currents transform as primary fields. We are interested in the central charge,

for this reason we need to compute the TλTλ OPE which we do next

Tλ(z)Tλ(w) =

[
1

2
vab∂uab(z) + ∂t∂s(z)

] [
1

2
vcd∂ucd(w) + ∂t∂s(w)

]
∼ 1

4

δ
[a
c δ

b]
d δ

[c
a δ

d]
b

(z − w)4
+

1

4

vab(z)∂ucd(w)δ
[c
a δ

d]
b

(z − w)2
+

1

4

∂uab(z)vcd(w)δ
[a
c δ

b]
d

(z − w)2
+

+
1

(z − w)4
+
∂t(z)∂s(w)

(z − w)2
+
∂s(z)∂t(w)

(z − w)2

∼ 11

(z − w)4
+

2Tλ(w)

(z − w)2
+
∂Tλ(w)

z − w
. (3.185)
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And as you can see from the quadruple pole, the central charge of the pure spinor ghost

system is just

cλ = 22 , (3.186)

which is the value we established earlier as a consistency condition. We now move on to

the consistency conditions involving the Lorentz ghost currents. We will make a strong

claim here and then we will prove it by computing the OPEs explicitly.

Claim: If we use the U(5) ghost variables s, t, u and v to construct the Lorentz ghost

currents n, nab, n
ab and nab as follows

n = − 1√
5

(
1

4
uabv

ab +
5

2
∂t− 5

2
∂s

)
, (3.187)

nab = ubcv
ac − 1

5
δabucdv

cd , (3.188)

nab = −esvab , (3.189)

nab = e−s
(

2∂uab − uab∂t− 2uab∂s+ uacubdv
cd − 1

2
uabucdv

cd

)
, (3.190)

then, their OPEs among themselves and with λ+, λab and λa correctly reproduce the rela-

tions (3.136)-(3.141) and (3.145)-(3.156). In other words, all the consistency conditions

are satisfied.

Let us prove our claim. We need to compute explicitly the OPEs involved, of course

we will not compute all of them, but we rather compute some of them to show the cal-

culation procedure, since they are very similar. Let us start with (3.140) which is pretty

simple

n(z)nab(w) = − 1√
5

(
1

4
uabv

ab(z) +
5

2
∂t(z)− 5

2
∂s(z)

)(
e−s(w)vcd(w)

)
∼ − 1√

5

(
es(w)vab(z)δ

[a
c δ

b]
d

z − w
− 5

2

es(w)vcd(w)

z − w

)

∼ 2√
5

nab

z − w
. (3.191)

The next will be (3.138), we have plenty of experience at computing OPEs, for this reason
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some of the computation details will be omitted

n(z)n(w) =
1

5

(
1

4
uabv

ab(z) +
5

2
∂t(z)− 5

2
∂s(z)

)(
1

4
uacdv

cd(w) +
5

2
∂t(w)− 5

2
∂s(w)

)
∼ 1

5

[
1

16
uab(z)vcd(w)

δ
[a
c δ

b]
d

z − w
− 1

16
vab(z)ucd(w)

δ
[a
c δ

b]
d

z − w
+

− 1

16

δ
[a
c δ

b]
d δ

[c
a δ

d]
b

(z − w)2
− 25

2

1

(z − w)2

]
∼ − 3

(z − w)2
. (3.192)

The last OPE from the Lorentz current OPEs we compute will be (3.136), this computa-

tion is a bit longer and requires some tricks to arrive to the desired form of it

nab(z)ncd(w) = e−s(z)
(

2∂uab(z)− uab∂t(z)− 2uab∂s(z) + uaeubfv
ef (z) +

−1

2
uabuefv

ef (z)

)
×
(
−es(w)vcd(w)

)
∼ 3

δ
[c
a δ

d]
b

(z − w)2
+

(1
2
uefv

ef + ∂t− ∂s)δ[c
a δ

d]
b

z − w
− ubfv

efδ
[c
a δ

d]
e

z − w
+

−uaevefδ[c
b δ

d]
f

z − w

∼
−δ[c

a n
d]
b − 2√

5
δ

[c
a δ

d]
b n

z − w
+ 3

δ
[c
a δ

d]
b

(z − w)2
, (3.193)

We now move on to the second set of OPEs which are a bit simpler, we start with (3.145),

the computation goes as follows

n(z)λ+(w) = − 1√
5

(
1

4
u(ab)v

ab(z) +
5

2
∂t(z)− 5

2
∂s(z)

)
es(w)

∼ − 5

2
√

5

es

z − w

∼ −
√

5

2

λ+

z − w
. (3.194)
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In a similar way, we can compute (3.148) and (3.156)

nab (z)λ+(w) = (ubev
ae(z)− 1

5
δabuefv

ef (z))ucd(w)

∼ ube(z)
δ

[a
c δ

e]
d

z − w
− 1

5
δabuef (z)

δ
[e
c δ

f ]
d

z − w

∼ δacubd − δadubc
z − w

− 1

5

(δabucd − δabudc)
z − w

∼ δacλbd − δadλbc
z − w

− 2

5

δabλcd
z − w

. (3.195)

nab(z)λc(w) =
(
e−s(z)vab(z)

)(−1

8
e−s(w)εcmnpqumnupq(w)

)
∼ 1

8
εcmnpq

(
δ[a
mδ

b]
nupq + δ[a

p δ
b]
q umn

)
∼ 1

8

(
4εcabpqupq

)
∼ −1

2
εabcpqλpq . (3.196)

To finish our prove let us compute one more OPE, since (3.147) is a bit tricky we compute

it here

n(z)λc(w) = − 1√
5

(
1

4
uabv

ab(z) +
5

2
∂t(z)− 5

2
∂s(z)

)(
−1

8
e−s(w)εcdefgudeufg(w)

)
∼ 1

32
√

5
uab(z)

[
δ

[a
d δ

b]
e

z − w
εcdefgufg +

δ
[a
f δ

b]
g

z − w
εcdefgude(w)

]
e−s(w) +

5

2
√

5

λc(w)

z − w

∼ 1

8
√

5

1

z − w
e−s(z)εcabfguabufg(z) +

5

2
√

5

λc(w)

z − w

∼ 3

2
√

5

λc

z − w
. (3.197)

To finish this chapter, let me write the full action for the Pure Spinor formalism of

superstrings7

SPS =
1

2π

∫
d2z

[
1

2
∂Xm∂̄Xm + pα∂̄θ

α − ∂t∂s+
1

2
vab∂̄uab

]
. (3.198)

7In fact, in this chapter we were working only with the holomorphic part of the action, if one for

instance wants to write the action for Type II superstrings, we would need to include an anti-holomorphic

part with superspace variables (p̂α̂, θ̂
α̂) and a pure spinor system (ω̂α̂, λ̂

α̂). The relative chirality of the

hatted and unhatted spinors define either Type IIA or Type IIB superstrings.
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where the total energy momentum tensor is given by

T PS(z) = −1

2
∂Xm∂Xm − pα∂θα +

1

2
vab∂uab + ∂t∂s+ ∂2s , (3.199)

where the central charge vanishes and the spinorial contribution to the Lorentz current

agrees with that of the RNS formalism. In this way we have constructed the pure spinor

ghost action which saved us from the inconsistencies of Siegel’s model, and allowed us

to formulate the Pure Spinor Superstring. Let us finish this section by remarking that

this chapter was intended to be a short introduction to the pure spinor superstring, we

are interested in formulating superstrings in AdS5 × S5 so this should be enough for our

purpose. However, the interested reader should review the references listed at the end of

this work in order to study the computation of amplitudes which is probably the most

interesting application of the formalism.
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Chapter 4

Superstrings in AdS5 × S5

In order to have a better understanding of the AdS/CFT duality, it is important to

study how to formulate superstrings in AdS backgrounds. For this reason we devote our

final chapter to give a rather short but pedagogical introduction to the required tools to

formulate the superstring in curved backgrounds, in particular the Type IIB supergravity

background AdS5×S5. We start by generalizing the Green-Schwartz superstring to curved

backgrounds and then we review the supercoset sigma-model formulation of the Green-

Schwarz superstring. At the end of the chapter we give a short presentation of the pure

spinor superstring in a generic supergravity background.

The best reference to study superstrings in AdS is the review by Mazzucato [17] which

we will follow closely. The supercoset sigma model formulation of the Green-Schwarz

superstring is explained in detail in [18]. On the other hand, the reader can consult [19]

and [20] for a basic approach to the theory of manifolds and superalgebras respectively.

4.1 Superstrings in general backgrounds

Until now, we have been studying superstring theory formulated in a flat target space.

However, our goal is to review the study of Type II superstrings in AdS5 × S5 so we will

start by generalizing the Green-Schwarz action to a generic curved background.

81
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4.1.1 Green-Schwarz superstring in general backgrounds

Let us start by considering a target superspace provided with curved supercoordinates

ZM = {Xm, θµ, θ̂µ̂},1 where just as we considered in Chapter 3, the Grassmann fermionic

coordinates are Majorana-Weyl spinors2 and M = (m,µ, µ̂); m = 0, . . . , 9. The Green-

Schwarz Type II superstring can be naturally extended to curved backgrounds [21]

SGS = − 1

4πα′

∫
d2σ

(√
−g gijGMN(Z) + εijBNM(Z)

)
∂iZ

M∂jZ
N . (4.1)

The action presented above represents a generalization of the action (3.51) we constructed

in Chapter 3. The first term corresponds to the kinetic term of (3.51), while the second

one corresponds to the Wess-Zumino term. GMN and BNM are background superfields.

The superspace can be regarded as a supermanifold, so at every point Z we can define

a tangent superspace with flat metric ηab and a cotangent superspace. The latter admits

coordinate dual basis {dZM} and orthonormal basis {JA}, where A = (a, α, α̂) with

a = 0, . . . , 9 ;α, α̂ = 1, . . . , 16 are indices on the tangent superspace. The change of basis

define the supervielbein E A
M as follows

JA = E A
M dZM . (4.2)

The superfield GMN represents a generalization of the metric to the superspace, then we

can write

GMN(Z) = E a
M (Z)E b

N (Z)ηab . (4.3)

On the other hand, in a general supergravity background the Wess-Zumino term is given

by the 2-superform

B =
1

2
BMNdZ

M ∧ dZN =
1

2
BABJ

A ∧ JB , (4.4)

where

BMN(Z) = E A
M (Z)E B

N (Z)BAB(Z) . (4.5)

1We will make a little change in the notation with respect to Chapter 3, we use hats instead of bars

to discriminate the chirality of the spinorial coordinates.
2As we said earlier in this work, Type IIB corresponds to spinors of the same chirality, while Type

IIA for those of opposite chiralities.
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The Wess-Zumino term can be written as an integral of the 2-superform B as follows

SWZ =
1

2πα′

∫
B =

1

4πα′

∫
BMNdZ

M ∧ dZN

= +
1

4πα′

∫
BMN∂iZ

M∂jZ
Ndσi ∧ dσj

= − 1

4πα′

∫
d2σ εijBMN∂iZ

M∂jZ
N . (4.6)

The expression (4.2) defining the supervielbein can be written in components in the

following way

J Ai = E A
M ∂iZ

M , (4.7)

so using equations (4.3), (4.6) and (4.7), the Green-Schwarz sigma model action in curved

backgrounds can be written as follows

SGS = − 1

4πα′

∫
d2σ

(√
−g gijηab J a

i J b
j + εijBABJ

A
i J Bj

)
. (4.8)

4.1.2 Coset formulation of superspace

As we have seen in the previous sub-section, in order to formulate the Green-Schwarz ac-

tion in curved backgrounds, we need to know the supervielbein E A
M and the 2-superform

BAB. The most important case occurs when the superspaceM can be regarded as a coset

manifold, so we need to first understand the theory of cosets.

If we consider a group G with a subgroup H,3 the coset group denoted by G/H is

defined as the group G modulo the elements related by equivalence relations under H,

that is elements g ∈ G, such that g ∼ gh for h ∈ H. If G and H are continuous groups,

then M ∼= G/H is a manifold (supermanifold) called coset manifold. The best known

example is the n-sphere which can be defined as

Sn ∼=
SO(n+ 1)

SO(n)
, (4.9)

SO(n + 1) plays the role of the group of isometries on the sphere, while SO(n) is the

group of local relations on the sphere which can be regarded as “the local Lorentz group”.

Let us now consider the Lie algebra G of the group G, with generators TA satisfying

[TA, TB] = C C
AB TC . (4.10)

3In fact, in order to construct a coset supermanifold M, we consider G as a supergroup and H as a

bosonic subgroup.
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Here C C
AB are structure constants. Consider now that we can split the generators as

TA =
(
T(ab), TA

)
, here T(ab) are the generators of H and TA remain in the quotient G/H.

As the generators span the tangent space of a group manifold, TA describes the tangent

superspace of M. By definition a coset element is

eZ
ATAh , ∀h . (4.11)

We have a coset representative for h = 1, and ZM being the coordinates on the coset,

defining it as a manifold (supermanifold). In order to construct the supervielbein, we first

define the so-called canonical form or Maurer-Cartan form

J ≡ g−1dg , g ∈ G , (4.12)

which takes values in the Lie algebra of G and, as a consequence, can be decomposed as

J = JATA = JATA + J (ab)T(ab), (4.13)

from the previous sub-section we can write the expression above as follows

J = J A
M dZMTA = J A

M dZMTA + J
(ab)

M dZMT(ab) . (4.14)

We can see equation (4.14) as a definition for the supervielbein J A
M and the spin con-

nections J
(ab)

M . By taking dZM = ∂iZ
Mdσi, we find

J A
i = J A

M ∂iZ
M , (4.15)

which are the same as in (4.7). In this way, the kinetic term of the action (4.8) can

be constructed with no major difficulties when we consider target spaces which can be

regarded as a coset manifold.

The Wess-Zumino term for a supergroup manifold can be obtained by generalizing the

bosonic analogue on a group manifold [22]. For the case of flat space, we have already

constructed the Wess-Zumino term for the Green-Schwarz superstring (see section 2.2 of

Chapter 3). Let us consider the 3-form

Ω3 = str (J ∧ [J ∧ J ]) = CABC J
A ∧ JB ∧ JC , (4.16)

with

CABC = C D
AB ηDC , (4.17)

where ηAB = str(TATB). Then the Wess-Zumino contribution is given by

SWZ =

∫
D

Ω3 , (4.18)
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where D is a three dimensional manifold whose boundary can be interpreted as the string

worldsheet. For the case of a supergroup one can make use of the Jacobi identity and the

Maurer-Cartan equation

dJ +
1

2
[J ∧ J ] = 0 , (4.19)

to show that Ω3 is closed, that is dΩ3 = 0. In this way, Ω3 can be regarded as locally

exact, which means that it is possible to find a 2-form B depending on the coordinates

of the supergroup such that Ω3 = dB. On the other hand, when dealing with supercoset

manifolds, in general the Wess-Zumino term can not be written as in (4.16), with Jm

restricted to G/H, because G/H is not a superalgebra and, as a consequence one can

not make use of Jacobi and Maurer-Cartan equations and Ω3 is in general not closed.

This problem can be solved for some particular cosets, we are particularly interested in

the coset model for AdS5 × S5, but we will first use the flat ten dimensional superspace

(N = 2) as an example.

4.1.3 Flat Green-Schwarz superstrings

Before trying to formulate the superstring action in the AdS5 × S5 background, we will

use the flat superspace background as a warm up. Let us construct the ten dimensional

space with two supersymmetries that we used in Chapter 3 to formulate the Green-

Schwarz superstring. Denoting by SUSY(N = 2) the super-Poincaré group with two

supersymmetries in ten dimensions and with SO(9, 1) its Lorentz subgroup, the flat ten

dimensional superspace with N = 2 is given by the following coset

SUSY(N = 2)

SO(9, 1)
. (4.20)

The superstring can be defined as a mapping from a two dimensional space-time (the

worldsheet) into the coset manifold SUSY(N = 2)/SO(9, 1) [23]. The bosonic generators

in the coset are given by Pm and the fermionic ones are Qα I where m = 0, . . . , 9 are

space-time indices and α = 1, . . . , 16 are spinorial indices and I = 1, 2 correspond to the

two supersymmetries.

The first step to formulate the superstring sigma model on (4.20) is to build the SUSY-

invariant Maurer-Cartan form. In order to do this we need to note that a coset element

is given by

g = eX
mPm+θα IQα I , (4.21)
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where the flat N = 2 superalgebra is given by

{Qα I , Qβ J} = −2iδIJ (γm)αβ Pm , (4.22)

[Pm, Pn] = 0 , (4.23)

[Qα I , Pm] = 0 . (4.24)

The Maurer-Cartan form can be constructed by making use of the Baker-Campbell-

Hausdorff formula

e−AdeA = dA+
1

2
[dA,A] +

1

3!
[[dA,A] , A] + . . . . (4.25)

Since we have[
dXmPm + dθα IQα I , X

nPn + θβ JQβ J

]
= −dθα Iθβ J {Qα I , Qβ J}
= −2i θα I (γm)αβ dθ

β IPm . (4.26)

Thus, using the equation above, we can realize that only the first two terms of the ex-

pansion (4.25) survive and then we find that the Maurer-Cartan form can be written as

follows

J = g−1dg =
(
dXm − i θIγmdθI

)
Pm + dθα IQα I . (4.27)

Comparing equations (4.13) and (4.27) and taking into consideration that for the case of

flat space, the indices on the supermanifold and on the tangent superspace are the same,

we can write

Jm = dXm − i θIγmdθI ; Jα I = dθα I , (4.28)

which can also be written in components as follows

J m
i = ∂iX

m − i θIγm∂iθI ; J α I
i = ∂iθ

α I . (4.29)

Equation (4.29) is none other than the supersymmetric objects Πm
a which we considered

in Chapter 3 when constructing the Green-Schwarz action. Thus we can use (4.29) and

the superstring sigma model action (4.8) to reproduce the kinetic part of Green-Schwarz

action (3.51) up to a normalization constant.

To construct the Wess-Zumino part of the action (4.8), we need to find the closed three

form Ω3 which is invariant under N = 2 supersymmetry transformations,4 such a form is

given by

Ω3 = fABC J
A ∧ JB ∧ JC , (4.30)

4We have already done this in Chapter 2 when trying to recover the kappa symmetry of the Green-

Schwarz action.
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where fABC are constants. Jm and Jα I transform respectively as a vector and a spinor

under Lorentz transformations SO(9, 1), so to make Ω3 Lorentz-invariant we need to con-

sider the constants fABC as the components of an appropriate Lorentz-covariant quantity

which provides Ω3 with the following Lorentz-covariant structure

Ω3 = i sIJJ
m ∧ Jα I (γm)αβ ∧ J

β J , (4.31)

where sIJ is symmetric, traceless, and in order to make Ω3 not only closed but exact, we

should take s11 = −s22 = 1. Then we can write

Ω3 = dB , (4.32)

where B is a 2-form, given by (See section 3.2 of Chapter 3)

B = εIJ
[
−i∂iXm

(
θ1γm∂jθ

1 − θ2γm∂jθ
2
)

+
(
θ1γm∂iθ

1
) (
θ2γm∂jθ

2
)]
d2σ . (4.33)

The Wess-Zumino part of the Lagrangian is given by -up to a constant-
∫
B. This shows

that the procedure we made in Section 3.2 of Chapter 3 to recover the kappa symmetry

of the action, was not trivial since we can interpret such a term as a Wess-Zumino term.

We now move on to construct the superstring sigma model in AdS5 × S5. As we

have seen in the example that we sketched above, the construction relies heavily in the

properties of the coset manifold, so the first step will be to study the properties of the

superalgebra psu(2, 2|4) which is what we will do next.

4.2 The psu(2, 2|4) superalgebra

A Lie Superalgebra G is a Z2-graded Lie algebra which admits a unique decomposition

G = G0̄ ⊕ G1̄, where the subspaces G0̄ and G1̄ are regarded as even (bosonic) and odd

(fermionic) respectively, and is equipped with a graded commutator defined as follows

[A,B] = AB − (−1)αβBA , (4.34)

which satisfies the following generalized Jacobi identity

(−1)αγ [A, [B,C]] + (−1)αβ [B, [C,A]] + (−1)βγ [C, [A,B]] = 0 , (4.35)

where the indices α, β, γ correspond to the Z2-gradings of A, B, C ∈ G respectively.

The bosonic subspace G0̄ forms an ordinary Lie algebra, and is usually referred to as the

maximal bosonic subalgebra. On the other hand, the fermionic subspace G1̄ transforms



88 4. SUPERSTRINGS IN ADS5 × S5

under a representation of G0̄ induced by the commutator, if this representation is reducible,

then G is referred to as a classical Lie superalgebra. If G is classical and also has a non-

degenerate invariant bilinear form, then G is referred to as a basic Lie superalgebra. Basic

Lie superalgebras have very similar properties to ordinary Lie algebras and are of greatest

interest in physics.

A real form of a Lie superalgebra G over C is defined as follows. Let φ be an involution

from G to G, such that: it preserves the Z2-grading of G, the graded commutator and is

a semi-linear map

φ(Gα) = Gα , α = 0̄, 1̄ ,

φ([X, Y ]) = [φ(X), φ(Y )] , X, Y ∈ G ,

φ(aX + bY ) = a∗ φ(X) + b∗ φ(Y ) , a, b ∈ C ,

(4.36)

where a∗ and b∗ stand for the usual complex conjugates of the complex numbers a and

b. We can regard φ as a generalized complex conjugate operation. We now construct a

matrix realization for the superalgebra su(2, 2|4) which can be defined as the real form of

sl(4|4).

4.2.1 Matrix realization of su(2, 2|4)

Some Lie superalgebras can be defined in terms of matrix realizations, which are very

useful when defining the real forms of them. Let V = V0̄ ⊕ V1̄ be a Z2-graded vector

space, where dim(V0̄) = m and dim(V1̄) = n. We define a supermatrix M as a linear map

of V into V which may be decomposed as follows

M

(
V0̄

V1̄

)
→

(
V0̄

V1̄

)
, M =

(
m θ

η n

)
. (4.37)

where m and n are of even grading and of dimension m ×m and n × n respectively, in

contrast, θ and η are of odd grading and of dimension m× n and n×m respectively.

We define the general linear Lie superalgebra gl(m|n) as the set of all supermatrices

(4.37) over the field C. The supertrace and supertranspose are defined as follows

strM ≡ trm− trn , M st =

(
mt −ηt

θt nt

)
. (4.38)

The matrix representation of sl(m|n) over C is given by

sl(m|n) = {M ∈ gl(m|n) ; strM = 0} . (4.39)
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We now specialize to the case of the superalgebra sl(4, 4) over the field C. The represen-

tation of this superalgebra is in terms of 8×8 supermatrices (4.37), which are constructed

in terms of 4× 4 blocks, where m and n are regarded as even (bosonic) and θ and η are

regarded as odd (fermionic).5 As we established in (4.39), we define the superalgebra

sl(4, 4) as spanned by the matrices M with vanishing supertrace strM ≡ trm− trn = 0 .

We define the superalgebra su(2, 2|4) as a non-compact real form of sl(4, 4). We consider

the so-called Cartan involution

φ(M) ≡M? = M , (4.40)

where M? is defined as follows

M? = −HM †H−1 , (4.41)

here M † stands for the adjoint of the supermatrix M defined by M † = (M t)∗. Combining

equations (4.40) and (4.41) we find that a supermatrix M from su(2, 2|4) satisfies the

following reality condition

MH +HM † = 0 . (4.42)

The Hermitian matrix H is defined as follows6

H =

(
Σ 0

0 14

)
, (4.43)

and Σ is a 4× 4 matrix defined as

Σ =

(
12 0

0 −12

)
. (4.44)

We can find how the reality condition (4.42) acts on the block entries of M by expanding

it as follows (
mΣ θ

ηΣ n

)
=

(
−Σm† −Ση†

−θ† −n†

)
, (4.45)

then the condition (4.42) implies

m† = −ΣmΣ , n† = −n , η† = −Σ θ , (4.46)

5The entries of θ and η can be thought as Grassmann anti-commuting variables
6Here 1n stands for the n× n identity matrix.
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from these conditions we can easily see that the matrix blocks m and n span the unitary

algebras u(2, 2) and u(4) respectively. From this simple analysis we can deduce that the

bosonic subalgebra of su(2, 2|4) is given by

su(2, 2)⊕ su(4)⊕ u(1) , (4.47)

where we have added the final factor since the u(1) generator i14 is also part of su(2, 2|4)

because it satisfies (4.42) and possess vanishing supertrace. We define the psu(2, 2|4)

superalgebra as a quotient algebra of su(2, 2|4) over this u(1) factor.

We will now try to find an explicit basis for the bosonic part of the superalgebra

su(2, 2|4). Let us start by defining the 8× 8 Dirac matrices as follows

γ1 =


0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0

 , γ2 =


0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0

 , γ3 =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0



γ4 =


0 0 −i 0

0 0 i i

i 0 0 0

0 −i 0 0

 , γ5 =


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 = Σ ,

(4.48)

which satisfy the SO(5) Clifford algebra relations

{γi, γj} = δij , i, j = 1, . . . , 5. (4.49)

It can be easily proven that γ5 = −γ1γ2γ3γ4. Since these matrices are Hermitian (γi)∗ =

(γi)t, the anti-Hermitian matrices constructed as iγi belong to su(4). As we know, we can

construct the spinor representation of so(5) by constructing the generators nij = 1
4

[γi, γj]

satisfying the relations[
nij, nkl

]
= δjknil − δiknjl − δjlnik + δilnjk nij = −nji . (4.50)

The Weyl spinor representation so(6) ∼ su(4) can be found by adding ni6 = i
2
γi to the

set of generators, satisfying the same relations (4.50), but now i, j = 1, . . . 6.

On the other hand, the set {iγ5, γi} with i = 1, . . . , 4 generates the Clifford algebra for

SO(4, 1). Analogously, if we introduce γ0 = iγ5, then the generators mij = 1
4
[γi, γj], with

i, j = 0, . . . , 4 satisfy the so(4, 1) relations[
mij,mkl

]
= ηjkmil − ηikmjl − ηjlmik + ηilmjk mij = −mji . (4.51)
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which compared to (4.50) involves η = diag(−1, 1, 1, 1) instead of the Kronecker delta.

We can enlarge the set of generators by defining mi5 = 1
2
γi, where i = 0, . . . , 4, thus

obtaining a realization of so(4, 2) ∼ su(2, 2), with the same algebra as in (4.51), but now

with the metric η = diag(−1, 1, 1, 1, 1,−1) and i, j = 0, . . . , 5.

In summary, the bosonic algebras su(2, 2) and su(4) can be thought as spanned by the

generators

su(4) spanned by
{
i
2
γi, 1

4
[γi, γj]

}
, i, j = 1, . . . , 5 ,

su(2, 2) spanned by
{

1
2
γi, i

2
γ5, 1

4
[γi, γj], i

4
[γ5, γj]

}
, i, j = 1, . . . , 4 .

(4.52)

If we add the u(1) generator i1, the full set of generators provides an explicit basis for the

bosonic subalgebra of su(2, 2|4).

4.2.2 Z4-Grading

Let us consider a basic Lie superalgebra G = G0̄ ⊕ G1̄. An automorphism Ω(G) → G
is a bijective homomorphism from G into itself which respects the Z2-gradation, that is

Ω(G0̄) ⊂ G0̄ and Ω(G1̄) ⊂ G1̄. The set of all automorphisms of G form a group denoted by

Aut(G). The group of inner automorphisms, denoted as Inn(G), is the group generated

by the automorphisms of the form X → gXg−1 with g = expY , where X ∈ G and

Y ∈ G0̄. The automorphisms of G which are not inner, are called outer automorphisms.

The principal characteristic of psu(2, 2|4) is that it admits a fourth order automorphism

as we will see next.

The automorphism group of sl(4|4) is generated by Ω(M) = e
1
2

Υ log ρMe−
1
2

Υ log ρ. Where

the matrix Υ is the so-called hypercharge defined by

Υ =

(
14 0

0 −14

)
, (4.53)

working out the exponentiation, it is easy to note that

e
1
2

Υ log ρ =

(
ρ

1
2 14 0

0 ρ−
1
2 14

)
, (4.54)

and then we can write

Ω(M) = e
1
2

Υ log ρMe−
1
2

Υ log ρ =

(
m ρθ
1
ρ
η n

)
. (4.55)
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The minus supertransposition M → −M st, where the supertranspose is defined in (4.38),

belongs to the group of automorphisms generated by (4.55), and is regarded as a fourth

order automorphism. This automorphism allows one to endow sl(4|4) with the structure

of a Z4-graded Lie superalgebra.

The superalgebra su(2, 2|4) admits an equivalent fourth order automorphism defined as

M → Ω(M) ≡ −KM stK−1 . (4.56)

Here K is the 8× 8 matrix K = diag(K,K), where K is a 4× 4 matrix defined as follows

K = −γ2γ4 =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 . (4.57)

The definition of the supertransposition and the fact that K2 = 18 automatically implies

the fourth order nature of the automorphism Ω defined in (4.56). Such an automorphism

decomposes the Lie superalgebra into four subspaces (H(k)) in such a way that each

subspace is an eigenspace of the map Ω, that is if we denote H = su(2, 2|4) we can write

H(k) =
{
M ∈ H , Ω(M) = ikM

}
; k = 0, 1, 2, 3 . (4.58)

In this way, as a vector space, H can be decomposed into a direct sum of graded subspaces

as follows

H = H(0) ⊕H(1) ⊕H(2) ⊕H(3) . (4.59)

where the subspaces satisfy[
H(k),H(m)

]
⊆ H(k+m) modulo Z4 . (4.60)

If we take a supermatrix M ∈ H, then its projection M (k) ∈ H(k) is given by

M (k) =
1

4

(
M + i3kΩ(M) + i2kΩ2(M) + ikΩ3(M)

)
. (4.61)

The projection M (0) and M (2) are even while M (1) and M (3) are odd. In fact, let us work

out these results explicitly. For M (0), according to (4.61) we can write

M (k) =
1

4

(
M + Ω(M) + Ω2(M) + Ω3(M)

)
, (4.62)
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where we can write the explicit form of every term as follows

Ω(M) = −Ω3(M) = −

(
KmtK−1 −KηtK−1

KθtK−1 KntK−1

)
, Ω2(M) =

(
m −θ
−η n

)
.

(4.63)

In this way, the projection M (0) takes the following form

M (0) =
1

2

(
m−KmtK−1 0

0 n−KntK−1

)
, (4.64)

which is indeed even. In a similar way we can obtain the explicit form of the projection

M (2) as follows

M (2) =
1

2

(
m+KmtK−1 0

0 n+KntK−1

)
. (4.65)

Analogously, we can write the explicit form of the odd projections M (1) and M (3) as

follows

M (0) =
1

2

(
0 θ − iKηtK−1

η + iKθtK−1 0

)
, (4.66)

M (1) =
1

2

(
0 θ + iKηtK−1

η − iKθtK−1 0

)
. (4.67)

On the other hand, by using the following property

Ω(M)† = ΥΩ(M)Υ−1 = − (ΥH) Ω(M) (ΥH)−1 , (4.68)

one can show that the Hermitian-conjugate of M (k) can be written in the following way

M (k) † = −1

4
H
[
M + ikΥΩ(M)Υ−1 + i2kΩ2(M) + i3kΥΩ3(M)Υ−1

]
H−1 . (4.69)

To finish this sub-section we realize that every matrix M ∈ su(2, 2|4) can be uniquely

decomposed into the sum (4.59), where each component M (k) takes values in su(2, 2|4).

4.3 Green-Schwarz superstring in AdS5 × S5

As we saw in section 1, the flat space Green-Schwarz superstring can be interpreted as a

sigma model whose target space is given by the coset (4.20). Remarkably, one can use a
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similar reasoning in the AdS5×S5 case, where we can define the Type IIB Green-Schwarz

superstring as a non-linear sigma model whose target space is given by

PSU(2, 2|4)

SO(4, 1)× SO(5)
. (4.70)

The supergroup PSU(2, 2|4) contains the bosonic subgroup SU(2, 2) × SU(4) which, as

you remember from classical group theory, is locally isomorphic to SO(4, 2)×SO(6), where

SO(4, 2) and SO(6) play the role of the isometry groups of AdS5 and S5 respectively. The

quotient SO(4,2)×SO(6)
SO(4,1)×SO(5)

provides a model of the AdS5×S5 manifold, with SO(4, 1)×SO(5)

being the group of local Lorentz transformations. In this way, we can regard the coset

(4.70) as a model of the AdS5 × S5 superspace with PSU(2, 2|4) playing the role of the

isometry group and SO(4, 1)×SO(5) representing the generalization of the Lorentz group

in the space AdS5 × S5 on analogy to the flat case.

4.3.1 The Metsaev-Tseytlin superstring

Just as we saw in the flat space action, the action for the Type IIB superstring propagating

in AdS5×S5 will be given by a Wess-Zumino-Witten like sigma-model Lagrangian, where

the first term corresponds to a kinetic term an the second one is obtained as the integral

of a closed 3-form Ω3 over a three dimensional manifold D which has the string worldsheet

as its boundary.

The first step is to define the Maurer-Cartan form. Let g be an element of the super-

group SU(2, 2|4), we define the Maurer-Cartan form as J = −g−1dg, since it takes values

in su(2, 2|4) we can write it as follows

J = −g−1dg = J (0) + J (2) + J (1) + J (3) , (4.71)

where we have exhibited the Z4-decomposition of J . We should observe that, by con-

struction J satisfy the Maurer-Cartan equation dJ −J ∧J = 0, which in components can

be written as follows7

∂αJβ − ∂βJα − [Jα, Jβ] = 0 . (4.72)

Let us now consider local right SO(4, 1) × SO(5) multiplication, that is we consider the

following transformation

g→ gh , (4.73)

7Here α and β denote worldsheet coordinates, so you should not confuse them with spinorial indices.
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where h belongs to SO(4, 1)×SO(5). It is easy to see that under this transformation the

Maurer-Cartan form transforms as follows

J → −(gh)−1 (dg h + g dh)

→ h−1J h− h−1dh . (4.74)

which in Z4 components reads

J (1,2,3) → h−1J (1,2,3) h , J (0) → h−1J (0) h− h−1dh . (4.75)

In order to formulate the Lagrangian, we need to make a key observation here. The

transformation on J (0) is typical of a gauge field, so we can understand J (0) as the

SO(4, 1) × SO(5) gauge field, while J (1,2,3) transform according to the adjoint repre-

sentation of SO(4, 1) × SO(5). Furthermore, since only the components J (1), J (2) and

J (3) undergo a similarity transformation, then any gauge invariant Lagrangian in the su-

percoset is given by a bilinear in the J ’s which can not contain J (0),8 thus the Lagrangian

should only depend on a coset element and not on the group element g.

We now proceed to construct the Green-Schwarz action on the supercoset (4.70). We

consider the kinetic term for the bosonic components J (2), but we can not allow a kinetic

term for the fermionic components because it would break kappa symmetry. In this way,

the fermionic components of the Maurer-Cartan form enter through the Wess-Zumino

term. The sigma model Type II superstring action on AdS5 × S5 is given by [24]

SGS =

∫
dτdσL , (4.76)

where L is given by

L = − 1

4πα′

[
γαβ str

(
J (2)
α J

(2)
β

)
+ κ εαβ str

(
J (1)
α J

(3)
β

)]
, (4.77)

where γαβ = gαβ
√
−g is the Weyl invariant combination of the worldsheet metric gαβ

such that det γ = 1. The parameter κ is a constant number which must be real in order

to guarantee the reality of the Lagrangian. Indeed, if we assume κ = κ∗ and taking into

consideration the conjugation rule for the fermionic entries, as well as the cyclic properties

of the supertrace we see that

L ∗ = − 1

4πα′

[
γαβstr

(
J

(2) †
β J (2) †

α

)
+ κεαβstr

(
J

(3) †
β J (1) †

α

)]
= − 1

4πα′

[
γαβstr

(
HJ

(2)
β H−1HJ (2)

α H−1
)

+ κεαβstr
(
HJ

(3)
β H−1HJ (1)

α H−1
)]

= L , (4.78)

8The components J (2) define the supervielbeins, so we could have formulated the kinetic part of the

Lagrangian by making use of (4.8).
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where in the second line we made use of (4.69) and in the third line we used the cyclic

property of the supertrace. Furthermore, as we will see later, the requirement of kappa

symmetry leaves only two possibilities κ = ±1.

It should be clear that we have been using the realization of the su(2, 2|4) superalgebra

rather than psu(2, 2|4), as we saw earlier, the difference between the two is due to the

appearance of the central element i1 in the projection J (2) of the su(2, 2|4) superalgebra.

Thus under a right multiplication of the coset element g with a group element from U(1)

corresponding to i1, the component J (2) is shifted

J (2) → J (2) + c · i1 . (4.79)

The supertrace of both J (2) and the identity matrix vanishes, then the transformation

(4.79) leaves invariant the Lagrangian (4.77). In this way, we recognize an extra local

u(1) symmetry induced by the central element i1. We can use this extra symmetry to

gauge away the trace of J (2), and then choosing J (2) to be traceless can be viewed as the

gauge fixing condition for these u(1) transformations.

We will now find the equations of motion which follow from the Lagrangian (4.77). In

order to this, we will make use of the following property

str
(
Ωk(M1)M2

)
= str

(
M1Ω4−k(M2)

)
. (4.80)

So, taking the variation of the Lagrangian (4.77) we get

δL = − 1

4πα′

[
2 γαβstr

(
δJ (2)

α J
(2)
β

)
+ κ εαβstr

(
δJ (1)

α J
(3)
β + J (1)

α δJ
(3)
β

)]
, (4.81)

Let us compute each of the terms of (4.81), for instance the term inside the first supertrace

on the right hand side can be written as follows

str
(
δJ (2)

α J
(2)
β

)
1 =

1

4
str
(
δJαJ

(2)
β − Ω(δJα)J

(2)
β + Ω2(δJα)J

(2)
β − Ω3(δJα)J

(2)
β

)
= str

(
δJαJ

(2)
β

)
, (4.82)

where in the second line we have used

str
(

Ω(δJα)J
(2)
β

)
= str

(
δJαΩ(Jβ)− δJαJβ + δJαΩ3(Jβ)− δJαΩ2(Jβ)

)
= −str

(
δJαJ

(2)
β

)
(4.83)

In a similar way, each of the terms in the first line of (4.82) contributes with one factor

of str
(
δJαJ

(2)
β

)
, proving (4.82). The second term of the right hand side of (4.81) can be
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found in a similar way as we show next

εαβstr
(
δJ (1)

α J
(3)
β + J (1)

α δJ
(3)
β

)
= εαβstr

(
δJ (3)

α J
(1)
β − δJ

(1)
α J

(3)
β

)
=

εαβ

4
str
(
δJαJ

(1)
β + iΩ(δJα)J

(1)
β − Ω2(δJα)J

(1)
β − iΩ

3(Jα)J
(1)
β

)
+

− εαβ

4
str
(
δJαJ

(1)
β − iΩ(δJα)J

(1)
β − Ω2(δJα)J

(1)
β + iΩ3(Jα)J

(3)
β

)
=

εαβ

4
str
(
δJα

(
J

(1)
β − J

(3)
β

))
, (4.84)

where the only computation we did is to carefully apply identity (4.80). With the help of

the results (4.82) and (4.84) we can write for the variation of the Lagrangian

δL = −str (δJαΛα) , (4.85)

where

Λα =
1

2πα′

[
γαβJ

(2)
β −

1

2
κ εαβ

(
J

(1)
β − J

(3)
β

)]
. (4.86)

What is more, the variation of Jα is given by

δJα = −δ
(
g−1∂αg

)
= −g−1δg Jα − g−1∂α(δg) , (4.87)

plugging the result above into the variation for the Lagrangian we wrote before, we get

δL = +str
[
g−1δg JαΛα + g−1∂α(δg)Λα

]
= −str

[
g−1δg (∂αΛα − [Jα,Λ

α])
]
, (4.88)

where we made use of integration by parts, and we arrived to the second line by neglecting

the total derivatives. Since equation (4.88) must vanish for an arbitrary group element g

and if we consider ∂αΛα − [Jα,Λ
α] as an element of su(2, 2|4) which contains the central

element i1, we must require that

∂αΛα − [Jα,Λ
α] = c · i1 (4.89)

where the parameter c can be found by taking the trace of both sides in the expression

above. Since we defined psu(2, 2|4) as the quotient algebra of su(2, 2|4) over its central

element, we may identify any elements proportional to the identity as zero, in this way

we can write the equations of motion as follows

∂αΛα − [Jα,Λ
α] = 0 . (4.90)
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We can use Z4 decomposition and rearrange all the terms of the equation above according

to its Z4 grading. For instance, the 0-grading term is given by

γαβ
[
J (2)
α , J

(2)
β

]
− 1

2
κ εαβ

([
J (3)
α , J

(1)
β

]
−
[
J (1)
α , J

(3)
β

])
= 0 . (4.91)

This equation is trivial, since each of the parts of the left hand side vanishes when using

the symmetry and anti-symmetry properties of γαβ and εαβ respectively leading to 0 = 0.

The 2-grading component is given by

∂α

(
γαβJ

(2)
β

)
− γαβ

[
J (0)
α , J

(2)
β

]
+

1

2
κ εαβ

([
J (1)
α , J

(1)
β

]
−
[
J (3)
α , J

(3)
β

])
. (4.92)

The 1-grading and 3-grading components of the equations of motion are given respectively

by

γαβ
[
J (3)
α , J

(2)
β

]
+ κ εαβ

[
J (2)
α , J

(3)
β

]
= 0 , (4.93)

γαβ
[
J (1)
α , J

(2)
β

]
+ κ εαβ

[
J (2)
α , J

(1)
β

]
= 0 , (4.94)

where we made use of the Maurer-Cartan equation (4.72). Let us define the tensors9

Pαβ
± =

1

2

(
γαβ ± κ εαβ

)
. (4.95)

Considering this definition, the equations of motion (4.93) and (4.94) can be written in

the following way

Pαβ
−

[
J (2)
α , J

(3)
β

]
= 0 , (4.96)

Pαβ
+

[
J (2)
α , J

(1)
β

]
= 0 . (4.97)

Furthermore, for κ = ±1, the tensors Pαβ
± are orthogonal projectors, that is they satisfy

the relations

Pαβ
+ + Pαβ

− = γαβ , Pαδ
± P

β
± δ = Pαβ

± , Pαδ
± P

β
∓ δ = 0 . (4.98)

When varying the Lagrangian, we have not considered the variations of the worldsheet

metric, so we can easily derive the equations of motion for the worldsheet metric by

varying the Lagrangian with respect to γαβ, obtaining the so-called Virasoro constraints

str
(
J (2)
α J

(2)
β

)
− 1

2
γαβγ

ρδ str
(
J (2)
ρ J

(2)
δ

)
= 0 . (4.99)

Just as we mentioned earlier in Chapter 3, these constraints represent the parametrization

invariance of the string action with respect to the worldsheet diffeomorphisms.

9These are equivalent to the projector tensors we consider in Chapter 3.
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4.3.2 Kappa symmetry revisited

In Chapter 3 we saw that there was a local hidden fermionic symmetry in the Brink-

Schwarz superparticle. We saw there that this symmetry was generated by the first

class constraints of the theory. We also required kappa invariance when studying the

Green-Schwarz superstring where we mentioned that its presence is crucial for the space-

time supersymmetry of the physical spectrum. Here we establish the kappa symmetry

transformations associated to the coset sigma model formulation of the Green-Schwarz

superstring.

Unlike the Brink-Schwarz superparticle and the standard formulation of the Green-

Schwarz superstring where, as we saw in Chapter 3, the kappa symmetry arises due to

the constraints of the theory, in the coset sigma-model formulation, the additional degrees

of freedom arise from the representation of the coset space algebra. Let us start by noting

that the canonical form J is trivially invariant under global left PSU(2, 2|4) multiplication

g→ g′g , g′ ∈ PSU(2, 2|4) . (4.100)

The PSU(2, 2|4) supergroup plays the role of the global symmetry group which is realized

on a coset element by multiplication from the left. Similarly, we can view the kappa sym-

metry transformations as the right local action of G = exp(ε) on the coset representative

g as follows

g ·G = g′ h , (4.101)

where ε = ε(τ, σ) is a local fermionic parameter taking values in psu(2, 2|4) and h is a

compensating element from the coset denominator SO(4, 1) × SO(5). Unlike the global

symmetry group case, the string action is not invariant for an arbitrary form of the

ε parameter. However, it is possible to find a set of such parameters that allows one

to remove the unphysical degrees of freedom. We now find the conditions on ε which

guarantee the invariance of the action.

Let us now investigate how the Maurer-Cartan form transforms under this right multi-

plication, using (4.101) we can write

J = −g−1dg → − (geε)−1 d(geε)

= −e−εg−1 (dgeε + geεdε)

= e−εJeε − dε (4.102)

Using the Baker-Hausdorff formula we can write, up to an infinitesimal parameter ε, the

following transformations

δεJ = −dε+ [J, ε] . (4.103)
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If we consider ε = ε(1) + ε(3), the transformations showed above can be written, upon Z4

decomposition, as follows

δε
(
J (0) + J (1) + J (2) + J (3)

)
= d

(
ε(1) + ε(3)

)
+
[
J (0) + J (1) + J (2) + J (3), ε(1) + ε(3)

]
.

(4.104)

We can rearrange the terms according to its respective gradation, if we do this we end up

with the following Z4 relations

δεJ
(0) =

[
J (3), ε(1)

]
+
[
J (1), ε(3)

]
, (4.105)

δεJ
(2) =

[
J (1), ε(1)

]
+
[
J (3), ε(3)

]
, (4.106)

δεJ
(1) = −dε(1) +

[
J (0), ε(1)

]
+
[
J (2), ε(3)

]
, (4.107)

δεJ
(3) = −dε(3) +

[
J (2), ε(1)

]
+
[
J (0), ε(3)

]
. (4.108)

We can make use of these formulae to find the variation of the Lagrangian as we do next

δεL = − 1

4πα′

[
δεγ

αβstr
(
J (2)
α J

(2)
β

)
+ 2γαβstr

(
δεJ

(2)
α J

(2)
β

)
+

+κ εαβstr
(
δεJ

(1)
α J

(3)
β − δεJ

(3)
α J

(1)
β

)]
. (4.109)

The variation of the terms inside the supertraces can be found easily as we show next

str
(
δεJ

(2)
α J

(2)
β

)
= str

([
J (1)
α , ε(1)

]
J

(2)
β +

[
J (3)
α , ε(3)

]
J

(2)
β

)
= str

([
J

(2)
β , J (1)

α

]
ε(1) +

[
J

(2)
β , J (3)

α

]
ε(3)
)
, (4.110)

where we made use of the Z4 kappa transformations together with the cyclic property of

the supertrace. Similarly we can write

str
(
δεJ

(1)
α J

(3)
β

)
= str

(
−∂αε(1)J

(3)
β +

[
J

(3)
β , J (0)

α

]
ε(1) +

[
J

(3)
β , J (2)

α

]
ε(3)
)
, (4.111)

str
(
δεJ

(3)
α J

(1)
β

)
= str

(
−∂αε(3)J

(1)
β +

[
J

(1)
β , J (2)

α

]
ε(1) +

[
J

(1)
β , J (0)

α

]
ε(3)
)
. (4.112)

Using all of these results, we can finally write for the variation of the Lagrangian

δεL = − 1

4πα′

[
δεγ

αβstr
(
J (2)
α J

(2)
β

)
− 2γαβstr

([
J (1)
α , J

(2)
β

]
ε(1) +

[
J (3)
α , J

(2)
β

]
ε(3)
)

+

+κ εαβstr

(
∂αJ

(3)
β ε(1) − ∂αJ (1)

β ε(3) +
[
J

(3)
β , J (0)

α

]
ε(1) +

[
J

(3)
β , J (2)

α

]
ε(3) +

+
[
J

(1)
β , J (2)

α

]
ε(1) +

[
J

(1)
β , J (0)

α

]
ε(3)

)
, (4.113)
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where we performed integration by parts and we neglected the total derivatives. In order

to reduce this expression, let us give a look at the Maurer-Cartan equations (4.72)

2εαβ ∂αJβ = εαβ [Jα, Jβ] , (4.114)

which using Z4 decomposition can be written as follows

2εαβ ∂α

(
J

(0)
β + J

(1)
β + J

(2)
β + J

(3)
β

)
= εαβ

[
J (0)
α + J (1)

α + J (2)
α + J (3)

α

]
. (4.115)

Comparing the terms of grading 1 and 3 of both sides of the equation above, we end up

with

εαβ∂αJ
(1)
β = εαβ

[
J (0)
α , J

(1)
β

]
+ εαβ

[
J (2)
α , J

(3)
β

]
, (4.116)

εαβ∂αJ
(3)
β = εαβ

[
J (0)
α , J

(3)
β

]
+ εαβ

[
J (1)
α , J

(2)
β

]
. (4.117)

Using these identities we can write the variation of the Lagrangian as follows

δεL = − 1

4πα′
δεγ

αβstr
(
J (2)
α J

(2)
β

)
+

1

πα′
str
(
Pαβ

+

[
J

(1)
β , J (2)

α

]
ε(1) + Pαβ

−

[
J

(3)
β , J (2)

α

]
ε(3)
)
.

(4.118)

where Pαβ
± are defined in (4.95). It is easy to see that the last two terms must vanish

because they are simply the projections of the equations of motion we wrote in (4.96) and

(4.97), whereas the first term vanishes due to the Virasoro constraints (4.99). However,

for the kappa transformations to define a true symmetry, the action should be invariant

without the use of the equations of motion, therefore we need to find the appropriate

transformation rule for the worldsheet metric δεγ
αβ.

We now consider the projection V α
± of any vector V α as follows

V α
± = Pαβ

± Vβ . (4.119)

Taking into consideration the definition we wrote above, the variation of the Lagrangian

takes the following form

δεL = − 1

4πα′
δεγ

αβstr
(
J (2)
α J

(2)
β

)
+

1

πα′
str
([
J

(1), α
+ , J

(2)
α,−

]
ε(1) +

[
J

(3), α
− , J

(2)
α,+

]
ε(3)
)
.

(4.120)

We will consider the following ansatz for the components of the fermionic parameter ε

ε(1) = J
(2)
α,−κ

(1), α
+ + κ

(1), α
+ J

(2)
α,− , (4.121)

ε(3) = J
(2)
α,+κ

(3), α
− + κ

(3), α
− J

(2)
α,+ , (4.122)
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where κ
(k), α
± are new independent parameters of kappa symmetry transformations which

are homogeneous elements of gradation k = 1, 3 with respect to Ω. It is possible to

represent the traceless even component J (2) as follows

J (2) =

(
miγi 0

0 niγi

)
. (4.123)

Here γi are the SO(5) Dirac matrices. The coefficients ni are considered as purely imag-

inary while mi are real for i = 1, . . . , 4 and imaginary for i = 5. We can further write

J
(2)
α,±J

(2)
β,± =

(
mi
α,±m

j
β,±γ

iγj 0

0 niα,±n
j
β,±γ

iγj

)
. (4.124)

As a consequence of the property Pαβ
± Jβ,∓ = 0 it is possible to show that the components

Jτ,± and Jσ,± must be proportional to each other, allowing us to rewrite the expression

above as follows

J
(2)
α,±J

(2)
β,± =

(
mi
α,±m

j
β,±

1
2
γiγj 0

0 niα,±n
j
β,±

1
2
γiγj

)

=

(
mi
α,±m

i
β,± 0

0 niα,±n
i
β,±

)
(4.125)

=
1

8
Υ str

(
J

(2)
α,±J

(2)
β,±

)
+

1

2

(
mi
α,±m

i
β,± + niα,±n

i
β,±
)

18 . (4.126)

Here 18 is the identity matrix and Υ is the hypercharge matrix defined in (4.53). As you

can see in the variation (4.120), upon substitution of our ansatz (4.121) and (4.122) we

will have products of J (2)’s which according to the expression above can be expressed as a

linear combination of two matrices, one of them being the identity matrix and the other

being Υ. When substituting all of these results in the variation of the Lagrangian, we

find that the term proportional to the identity matrix will drop out, leaving

δεL = − 1

4πα′
δεγ

αβ str
(
J (2)
α J

(2)
β

)
+

1

8πα′
str
(
J

(2)
α,−J

(2)
β,−

)
str
(

Υ
[
κ

(1), β
+ , J

(1), α
+

])
+

+
1

8πα′
str
(
J

(2)
α,+J

(2)
β,+

)
str
(

Υ
[
κ

(3), β
− , J

(3), α
−

])
. (4.127)

Thus, it is easy to see that for the Lagrangian to be invariant under kappa transformations,

the worldsheet metric must transform as follows

δεγ
αβ =

1

4
str
(

Υ
([
κ

(1), α
+ , J

(1), β
+

]
+
[
κ

(1), β
+ , J

(1), α
+

]
+
[
κ

(3), α
− , J

(3), β
−

]
+
[
κ

(3), β
− , J

(3), α
−

]))
.

(4.128)
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Furthermore, using the fact that the insertion of the hypercharge Υ turns the supertrace

into a regular trace of the matrix, and making use of the identity Pαγ
± P βδ

± = P βγ
± Pαδ

± , we

have

δεγ
αβ =

1

2
tr
([
κ

(1), α
+ , J

(1), β
+

]
+
[
κ

(3), α
− , J

(3), β
−

])
. (4.129)

We need to make a very important observation here; we have considered that Pαβ
± are

orthogonal projectors throughout the derivation we presented here, that is, the projectors

satisfy

Pαγ
± gβγP

γδ
∓ = 0 . (4.130)

Looking at the definition of the projector operators (4.95), it is easy to note that the

orthogonality condition is equivalent to require κ2 = 1, and then the parameter κ is

allowed to take values of one or minus one only.

Just as we did in Chapter 3, one can use the so-called light cone gauge in order to use

the kappa symmetry of the action to gauge away the extra fermionic degrees of freedom.

Apart from that, one could find an explicit form of the action by giving an appropriate

parametrization. We will not do it here but we refer the interested reader to the original

work [24] and the review [18] for more details about these issues.

4.4 Pure spinor superstrings in general backgrounds

We finish this chapter by giving a very short presentation of the so-called Berkovits-Howe

action, which is none other than the pure spinor sigma model in curved backgrounds. We

will present the action and explain the terms involved in it.

4.4.1 The Berkovits-Howe superstring

The sigma model action for Type II pure spinor superstrings in a generic supergravity

background is given by [25]

S =
1

2πα′

∫
d2z

[
1

2
(GMN(Z) +BMN(Z)) ∂ZM ∂̄ZN +

+
(
E α
M (Z) dα + Ω β

M α (Z)λαωβ
)
∂̄ZM +

(
E α̂
M (Z) d̂α̂ + Ω̂ β̂

M α̂ (Z) λ̂α̂ω̂β̂
)
∂ZM +

+Cβγ̂
α (Z)λαωβ d̂γ̂ + Ĉ β̂γ

α̂ (Z)λ̂α̂ω̂β̂ dγ +

+Pαβ̂(Z)dαd̂β̂ + Sβδ̂αγ̂(Z)λαωβλ̂
γ̂ω̂δ̂ +

1

2
α′Φ(Z)R(2)

]
+ Sλ + Sλ̂ . (4.131)
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Here the action is written in conformal gauge, so z and z̄ are the worldsheet coordinates.

On the other hand M = (m,µ, µ̂) are curved superspace indices and A = (a, α, α̂) are

tangent superspace indices. The independent worldsheet fields in this action are ZM =

(Xm, θµ, θ̂µ̂) and (dα, d̂α̂) in the matter sector, and (ωα, λ
α, ω̂α̂, λ̂

α̂) in the ghost sector. If

we vary the action with respect to these fields one could find their respective equations

of motion.

The ghost content Sλ and Sλ̂ are given by the same expressions we considered in the

flat space case in Chapter 3, that is they are given by

Sλ + Sλ̂ =
1

2πα′

∫
d2z

(
ωα∂̄λ

α + ω̂α̂∂λ̂
α̂
)
. (4.132)

If we substitute the factor Sλ + Sλ̂ that we wrote above into the action (4.131) then we

could define the covariant derivative on λ (λ̂) as the pullback of the left moving (right

moving) spin connection Ω β
α = dZMΩ β

Mα (Ω̂ β̂
α̂ = dZM Ω̂ β̂

Mα̂ ) as follows

(∇λ)α = ∂λα + Ω α
β λβ , (∇λ̂)α̂ = ∂λ̂α̂ + Ω̂ α̂

β̂
λ̂β̂ . (4.133)

The first line in the action (4.131) is just the standard Type II Green-Schwarz action

we saw in (4.1), whereas the other lines are needed for BRST invariance. R(2) is the

worldsheet curvature and G, B, P , C, Ĉ, S and Φ are background superfields. GMN

is the background metric superfield which can be written as GMN = E a
M E b

N ηab; the

background superfield BAB is the superspace 2-form potential; the lowest components of

Cβγ̂
α and Ĉ β̂γ

α̂ are related to the gravitini and dilatini; the lowest component of Pαβ̂ is

the Ramond-Ramond bispinor field strength; Sβδ̂αγ̂ is related to the curvature associated

to the connections Ω and Ω̂; E A
M are the supervielbeins and the Fradkin-Tseytlin term

1
2
α′Φ(Z)R(2) describes the coupling of the dilaton to the worldsheet curvature R(2). If

the Fradkin-Tseytlin term is omitted, (4.131) is the most general action with classical

worldsheet conformal invariance and zero (left-right)-moving ghost number which can be

constructed from the Type II worldsheet variables.

Berkovits and Howe showed that, up to the lowest order in α′, the conservation of the

BRST currents ∂̄(λαdα) = ∂(λ̂α̂d̂α̂) = 0 and nilpotency of the BRST charges, which are

postulated to have the same structure as in the flat space case, that is Q ∼
∮
λαdα and

Q̂ ∼
∮
λ̂α̂d̂α̂, actually imply Type II supergravity equations of motion for the background

superfields.

4.4.2 The pure spinor superstring in AdS5 × S5

We can construct the Pure Spinor superstring action in AdS5 × S5 in a very similar way

to the flat space case that we studied in Chapter 3. Before doing this, let us write the
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Metsaev-Tseytlin action we presented in (4.76) in conformal gauge. We consider the

following definitions

Jaz ≡ J (k) ; J
(k)
z̄ ≡ J̄ (k) . (4.134)

We also need to remember that the only non-vanishing components of the worldsheet

metric in z, z̄ coordinates are gzz̄ = gz̄z = 1
2
, whereas for the Levi-Civita tensor we have

εzz̄ = −εz̄z = 2i. Using this information we can easily write

SGS =
1

πα′

∫
d2z str

[
1

2
J (2)J̄ (2) − 1

4

(
J (3)J̄ (1) − J (1)J̄ (3)

)]
, (4.135)

where we used κ = −1. We recall the relation between the Siegel and Green-Schwarz

action we established in (3.75), but now such a relation reads

Smatter = SGS +
1

πα′

∫
d2z

(
dαJ̄

α (1) + dα̂J
α̂ (3) + Pαα̂dαdα̂

)
. (4.136)

It is not hard to realize that the first two terms in the integral above break the kappa

symmetry of the Green-Schwarz action. The third term in the integral is a coupling

term to the Ramond-Ramond superfield Pαα̂. When the Ramond-Ramond superfield is

invertible, dα and d̂β̂ become auxiliary fields and their equations of motion can be written

as follows

dα = J α̂ (3)ηαα̂ , d̂α̂ = −J̄α (1)ηαα̂ . (4.137)

Furthermore, Pαβ̂ can be taken as

Pαβ̂ = ηαβ̂ , (4.138)

where the matrix ηαβ̂ has rank sixteen and is numerically equal to the identity matrix.

We can use the equations of motion (4.137) to integrate out the auxiliary fields and we

obtain

Smatter = SGS +
1

πα′

∫
d2z str

(
J (3)J̄ (1)

)
=

1

πα′

∫
d2z str

(
1

2
J (2)J̄ (2) +

3

4
J (3)J̄ (1) +

1

4
J (1)J̄ (3)

)
. (4.139)

To construct the pure spinor action, we need to add a ghost term to the action (4.139).

The ghost fields must take values in the fermionic eigenspaces H(1) and H(3), hence we

can define them as λ(1) and λ̂(3). As we saw in Chapter 3, in flat space the momentum has

opposite chirality with respect to its conjugate field, so that the coupling ghost-momentum

is Lorentz invariant. Analogously in curved space we take each momentum in a different
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eigenspace with respect to its ghost, that is, ω(3) ∈ H(3) is the conjugate momentum of λ(1)

and ω̂(1) ∈ H(1) is the conjugate momentum of λ̂(3). To construct the pure spinor ghost

action in AdS5 × S5, we have to substitute the canonical derivative with the covariant

one. Since we interpreted J (0) as the SO(4, 1)× SO(5) gauge field, it is natural to define

∇ ≡ ∂ +
[
J (0), . . .

]
, ∇̄ ≡ ∂̄ +

[
J̄ (0), . . .

]
. (4.140)

Then the pure spinor ghost action can be written in the following way

Sghost =
1

πα′

∫
d2z str

(
ω(3)∇̄λ(1) + ω̂(1)∇λ̂(3)

)
. (4.141)

Finally the pure spinor action SPS = Smatter + Sghost in AdS5 × S5 reads

SPS =
1

πα′

∫
d2z str

[
1

2
J (2)J̄ (2) +

3

4
J (3)J̄ (1) +

1

4
J (1)J̄ (3) +

+ω(3)∇̄λ(1) + ω̂(1)∇λ̂(3) −NN̂
]
. (4.142)

Here we added a current-current coupling term in the action where N and N̂ are the

Lorentz generators in the ghost sector and are given by

N = −
{
ω(3), λ(1)

}
, N̂ = −

{
ω̂(1), λ̂(3)

}
, (4.143)

where λ(1) and λ̂(3) satisfy the following SO(4, 1)× SO(5) pure spinor constraints{
λ(1), λ(1)

}
= λαγmαβλ

β = 0 ,
{
λ̂(3), λ̂(3)

}
= λ̂α̂γm

α̂β̂
λ̂β̂ = 0 . (4.144)

It is important to note that the matter sector of the pure spinor superstring action (4.142)

is not kappa symmetric since the Green-Schwarz action (4.76) is the unique such action.

Another important difference is that the pure spinor action does not produce Virasoro

constraints even though it is written in conformal gauge. In the pure spinor formalism,

both the kappa symmetry and the Virasoro constraints are replaced by BRST symmetry.



Chapter 5

Final remarks

The main purpose of this dissertation work was to review the very basic tools to start

studying superstrings in curved backgrounds. We made a kind of deep review of the

classical bosonic string treating it as a two dimensional conformal field theory. We put

a lot of emphasis in some computation details that are hard to find in the literature.

Even though we have not discussed the quantum spectrum of the theory, a pedagogical

introduction to the BRST quantization method was presented.

Our study of superstrings in flat space was focused on the Green-Schwarz and the pure

spinor formalisms. The former was constructed by generalizing the superparticle action

and we explained the difficulties involved with the covariant quantization of this model.

The latter was introduced by requiring some consistency conditions for the pure spinor

ghost action. As you may have noticed, we have not talked that much about amplitudes,

even though this is one the most important aspects of the pure spinor formalism, that

is because our main objective was to formulate a superstring action in AdS5 × S5 rather

than the calculation of amplitudes.

We devoted the last chapter to the study of superstrings in curved backgrounds giving

especial attention to the very important case of AdS5×S5. The study we did was a review

based in the works by Frolov [18] and Mazzucato [17]. We offered some computations

details, but the interested reader should definitely consult those reviews for a deeper

study of the superstring in AdS backgrounds.

I want to finish this work by stressing that the importance of this dissertation relies on

the amount of calculation details explained in it, for this reason I hope this work can can

provide the basic elements for a comprehensive introduction to the pure spinor formalism

in flat space and the superstring in curved backgrounds.
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Appendix A

Notations and conventions

A.1 Indices and coordinates

A.1.1 Bosonic strings

µ, ν, ρ, σ = 0, 1, 2, 3, . . . , D − 1 Cartesian space-time indices , (A.1)

σ1, σ2 real worldsheet coordinates , (A.2)

z, z̄ complex worldsheet coordinates , (A.3)

m,n = −∞,∞ Virasoro modes indices . (A.4)

A.1.2 Superstrings

In flat space

m,n = 0, 1, 2, 3, . . . , 9 flat space-time indices , (A.5)

a, b = 1, 2 worldsheet coordinates (Green-Schwarz) , (A.6)

α, β = 1, . . . , 32 fermionic coordinates , (A.7)

I, J = 1, . . . , 8 transverse light cone coordinates , (A.8)

a, b = 1, . . . , 5 U(5) variables (pure spinor) , (A.9)

In curved backgrounds
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M = (m,µ, µ̂) superspace coordinates , (A.10)

m,n = 0, . . . , 9 superspace bosonic coordinates , (A.11)

µ, µ̂ = 1, . . . , 16 superspace fermionic coordinates , (A.12)

i, j = 1, 2 worldsheet coordinates , (A.13)

A = (a, α, α̂) tangent superspace coordinates , (A.14)

a, b = 0, . . . , 9 tangent superspace bosonic coordinates , (A.15)

α, β, γ, α̂, β̂, γ̂ = 1, . . . , 16 tangent superspace fermionic coordinates ,(A.16)

(0), (1), (2), (3) grading with respect to Ω . (A.17)

A.2 Gamma matrices in 10 dimensions

The convention for the flat metric that we use in this dissertation is given by ηmn =

diag(−1,+1,+1, . . . ,+1). In light cone coordinates, the only non-vanishing components

of the metric are ηII = +1 and η+− = η−+ = −1.

The 32 × 32 Dirac matrices in ten dimensions Γm, where m = 0, . . . , 9 in Minkowski

space and m = 1, . . . , 10 in Euclidean space, satisfy the SO(10) Clifford algebra

{Γm,Γn} = 2ηmn . (A.18)

In the Weyl representation, the gamma matrices are off-diagonal in 16× 16 blocks, then

Γm =

(
0 (γm)αβ

(γm)αβ 0

)
. (A.19)
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We will consider the following explicit form for the γ matrices

(γ0)αβ = −(γ0)αβ =

(
18 0

0 18

)
, (A.20)

(γ9)αβ = +(γ9)αβ =

(
18 0

0 −18

)
, (A.21)

(γi)αβ = +(γi)αβ =

(
0 σiaȧ
σi
bḃ

0

)
, (A.22)

(γ+)αβ = −(γ−)αβ =
√

2

(
18 0

0 0

)
, (A.23)

(γ−)αβ = −(γ+)αβ =
√

2

(
0 0

0 18

)
. (A.24)

Where we have defined for both chiralities

γ± =
1√
2

(γ0 ± γ9) . (A.25)

The chirality matrix can be expressed as Γ = iΓ1Γ2 . . .Γ10. However, if we consider

SO(9, 1), it can be expressed as Γ = Γ0Γ1 . . .Γ9.
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Appendix B

Properties of manifolds

If we consider the differentiable manifoldM and the Lie group G with identity e, we can

define the action of G on M by the following map (g, p) ∈ G×M→ gp ∈M such that

ep = pe = p , (B.1)

g1(g2p) = (g1g2)p , (B.2)

where we have defined ∀p ∈ M and ∀g1, g2 ∈ G. The action is transitive if ∀p1, p2 ∈ M
there is g ∈ G so that gp1 = p2. The orbit of p ∈ M under the action of G is the subset

Gp of M given by

Gp = {gp : g ∈ G} . (B.3)

If G acts transitively onM, then Gp =M. The little group (or isotropy group) of p ∈M
is the subgroup Hp of G so that

Hp = {g ∈ G : gp = p} . (B.4)

If H ⊂ G is a subgroup and g ∈ G, the subset gH = {gh ∈ G : h ∈ H} is the left coset

of H. Analogously one can define the right coset Hg. The set of all gH in G is called the

quotient space
G

H
= {gH ⊂ G : g ∈ G} , (B.5)

and it admits the structure of a group if and only if H is a normal subgroup, that is

if gH = Hg; ∀g. However if G is a Lie group, G/H admits a differentiable manifold

structure, and we call it coset manifold.

If a Lie group G acts on M transitively, and we choose as subgroup of G the little

group Hp of some p ∈M, the coset manifold G/Hp is homeomorphic toM, that is there

is a continuous map one to one between G/Hp and M.
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B.1 The n-sphere

If we consider a (n+1)-dimensional flat bulk of coordinates (yµ, yn), with µ = 0, . . . , n−1,

provided with the following metric

ds2
bulk = ηµνdy

µdyν + (dyn)2 , ηµν = diag(

n︷ ︸︸ ︷
+1, . . . ,+1 ) , (B.6)

the n-dimensional sphere is defined by

ηµνy
µyν + (yn)2 = R2 , (B.7)

where R ∈ R is the curvature radius. The group SO(n + 1) is transitive on the sphere,

and the group of rotations SO(n) around a point does not shift it, then one can write

Sn ∼=
SO(n+ 1)

SO(n)
, (B.8)

where we can note that

dim

(
SO(n+ 1)

SO(n)

)
= dimSO(n+ 1)− dimSO(n) (B.9)

=
1

2
(n+ 1)n− 1

2
n(n− 1) = n . (B.10)

B.2 The anti-de Sitter space

If we now consider a (n+ 1)-dimensional flat bulk provided with the following metric

ds2
bulk = ηµνdy

µdyν + (dyn)2 , ηµν = diag(+1,

n−1︷ ︸︸ ︷
−1, . . . ,−1 ) , (B.11)

then the n-dimensional Anti-de Sitter space is defined as the hyperboloid

ηµνy
µyν + (yn)2 = R2 . (B.12)

It corresponds in Lorentzian signature to the Lobachevsky space in Euclidean signature.

AdSn is the orbit of the group SO(n− 1, 2), that is this group acts transitively on AdS.

On the other hand, SO(n− 1, 1) is the little group with respect to any point of AdS, so

AdSn ∼=
SO(n− 1, 2)

SO(n− 1, 1)
, (B.13)

and we can write

dim

(
SO(n− 1, 2)

SO(n− 1, 1)

)
= dimSO(n− 1, 2)− dimSO(n− 1, 1)

=
1

2
(n+ 1)n− 1

2
n(n− 1) = n . (B.14)
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